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1. INTRODUCTION

1.1 A Brief History

The matrix package MXPAK was used in course work and
research by members of the Fritz Laboratory until the
GE 225 computer‘at Lehigh University was replaced by the
CDC 6400 in the Summer of 1968. MXPAK was written in
LEWIZ, a language developed at Lehigh, and was compatible
for use with the GE 225 but not the CDPC 6400.

To meet the immediate needs of the Laboratory,
FCMXPK (FORTRAN Callable Matrix Package) was written by
Mr. Edward T. Manning, Jr. and Mr. Iyengar in Fall 1968.
Later, a documentatioﬁ of this package was considered
worthwhile in view of ité highly satisfactory performance.
At this stage, it became evident that many improvements
and some additions were possible. The result of all such
modifications is the present version, FLMXPK (Fritz
Laboratory Matrix Package), which is described in the

succeeding pages.



1.2 Divisions in the Text

FLMXPK contains 30 routines to perform matrix operations,

as summarized in the following table.

. Operation , Subprogram

Add matrices ‘ ADD *
Determinant of matrix DETMT ,MINV, SINV, SOLVE
Create diagonal matrix : DIAG :

Eigenvalues of symmetric matrices EV,IEV,GEVP

Invert matrix MINV,SINV

Copy matrix MOVE

Multiply matrices MULT,PMULT,POSTM, SCMUL,

TMULT ,XABATC, XABTA,
XABTC,XATBAC, XATBB

Print matrix OUTE,OUTF,OUTG

Read matrix RDCBC, RDCOLG, RDRBR,
v RDROWG

Simultaneous equations SOLVE

Transpose matrix SQTR, TRANS

Subtract matrices SUB

Each of these routines has received individual treatment to
the extent considered necessary (Chapter 2). 1In general, the
discussion-is under the following headings:
1. Function
2. Development of the Subprogram
(including the mathematical background)
3. Special Features (if any)
4. Limitations (if any)
5. Additional Remarks (if any)
The limitations listed under each routine are in addition
to the general limitations which are discussed in Section 4.2
of the User's Guide (Chapter 4).
Chapter 3 - "General Notes" - contains remarks which
apply to the package as a whole. : ‘.
The User's Guide (Chapter 4) explains briefly how each

routine may actually be used. The more important limitations

-2
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of each routine are listed here also. The ready reference
sheet (Chaptef 5) is hopefully ali that a user needs in day—.
to-day work after he has.gaiﬁed some experience in the use
of this package. |

Proofs of certain theorems in matrix algebra and topics
related to the text are included in Appendix 1 to make the
subject matter as complete in content as possible.

Finally, the subprograms themselves are listed in

Appendix 2.
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2. ROUTINES

SUBROUTINE ADD (A,B,C,M,N)
2.1.1 Function
The sum of matrices A and B is made available to
the calling program as matfix C. C=A + B.
Matrices A,B, and C are each of size M rows by N

columns.

2.1.2 Development of the Subprogram

In algebraic terms, the addition of two matrices
may be expressed by CI,J = A1,y *+ By ,g. From this de-
finition, the following subprogram is easily written.

SUBROUTINE ADD(A,B,C,M,N)

COMMON/IYENGAR/I,J,¥Y(12)
REAL A(M,N),B(M,N),C(M,N)

DO 1000 I = 1,M
DO 1000 J = 1,N
1000 C(I,J)=A(I,J)+B(I,J)
RETURN
END

The use of thé labeled COMMON block is discussed
under "General Notes" in Chapter 3.

In the above routine, the computations required for
locating the elements in the three double-subscripted
arrays are time-consuming. The matrices may, however,
be treated as single-subscripted arrays in the sub-
program to reduce the time required for address compu-
tations.

A further advantage of this procedure is that the



400.4

operations can now be performed using a single DO-loop
as indicated in the listing (Appendix 2).

The size of each matrix is MxN elements but a dec-
laration of the type REAL A(M*N) is invalid. This dif-
ficulty is easily overcome by dimensioning each array
as a vector consisting of one element only. - When the
subprogram is CALL-ed, the starting addresses of each

array are passed to the subprogram and hence, in the

subprogram, the arrays are spaced as required in spite

of the arbitrary dimensioning.

2.1.3 Additional Remarks

The resultant matrix C can be stored in either of
the original matrices (say A). In this case, the origi-

nal matrix (A) will be destroyed.



SUBROUTINE DETMT (A,DA,N)

2.2.1 Function
The determinant of the given matrix A of size N rows

by N columns is made available to the calling program as

DA.

2.2.2 Development of the Subprogram

The basis of operations is to reduce the given mat-
rix to a lower or upper triangular matrix by elementary
transformations and form the product of the diagonal
elements of the reduced matrix to give the determinant.
In the process of such a reduction, whenever a submatrix
in the upper left of the original matrix is singular,
division by zero will be encountered. Row or column ex-
changes are necessary to overcome such a sitﬁation, if
it exists, before each step of the reduction process.

This subprogram utilizes column exéhanges and re-
duces the original matrix in its own space to an upper

triangular matrix.
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Assume that the matrix has the following form at the

end of I-1 (I>1) stages of the reduction process.

A1 P12 JECI | A1 N
0 A .. ' A
0 02’2 . : ?,N
0 0 . .
0 0 Arr Ar,z+1 -+ Ar,N
| 0 0 Ay, 1 Ay, 1+1 = - - Ay,Nn |

Except possibly for the elements in row 1, all the
elements are modified by the reduction process and, there-
fore, do not correspond, in general, to those of the ori-
ginal matrix. The part product of the diagonal elements
AK,K where K ranges from 1 through I-1 is assumed fo have
been computed and stored in DA.

Further processing starts with row I. Since A may

I,I
be zero, the immediate step is to search the Ith row for a
non-zero element in columns I through N. If Ay 1 itself
is non-zero, the process of reduction may be continued.
However, it is advantageous, in the interest of accuracy,
to choose A, such that it is as large as possible in
absolute value, since division by At 1 is later involved.

Hence, the Ith row is searched for the largest absolute

valued element in columns I through N.
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If all the elements searched are zero, the conclusion
is that the matrix is singular, and hence DA has the value
zero. Control is returned to the calling program in such
a. case. |

Otherwise, the largest absolute valued element in row
I is located in, say, column M where N>M>I. If M equals
I, the largest absolute valued element is AI,I itself and
no exchange of columns is involved. If M does not equal I,
columns M and I are exchanged, and the corresponding change
in the sign of the determinant is accounted for. It is
useful to note that such an exchange may be limited to
elements in rows I through N only, as elements in rows 1
through I - 1 do not affect the evaluation of the determinant.

For further discussion, the form of the matrix noted
above reémains valid, although the values of some of the
elements may have changed because of column exchanges.

The part product of the diagonal elements is then
modified to include Ar,1+ In FORTRAN language,

DA = DAxA(I,I).

The next step is the process of reduction. To reduce
the elements in column I of rows I + 1 through N to zero,
it is necessary to addi%%+%—times the Ith row to row M, .

'
where (I + 1) SMSN. Affer such additions, the modified

matrix has the following form.



1,2

2,2

AI,I (Elements
0 Aryr, 1417
0 .

0 .

0 .

0 Av, 141~
0 .

0 .

0 .

0 Ay, 1+1

in this row need not

Arq1,1 A

Ar,1

Ay, 1

Ar,I

I,I+1l

I,I+l

I,I+1

be modified)

. : Aryl, N
| ) Ay,n T
’ ’ A,y T

AT, 1

Ay, 1
I,I

Ay 1

I,I

Ar,N

y oo¥
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Since the purpose here is to evaluate only the
determinant, better speed caﬁ be achieved by avoiding
generation in the méchiﬁe of fresh values for some of
the elements.‘ Some of these values are known (zeroes
below AI,I in Ccolumn I) and others do not affect the
final product (elements to the right of A7,1. in row I).

The general formula, then, in the region of interest,

is ‘simply A
M, I

AM,J = AyM,J - Ar,J

Ar,1
where both M and J range in values from I + 1 through N,
and the prime* denotes the fresh values computed for

the corresponding elements.

A
The elements are evaluated row by row and M,1 is
AL,
recognized as a constant when elements in row M are

processed.

When the séarch and reduction process explained
above is repeated fdr a total of N-1 cycles, the matrix
is (upper) triangulated and all that remains is to mo-
dify the part product of the diagonal elements obtained
thus far by multiplying it by Aﬁ,N to give the final

value of the determinant DA.

*In the subprogram, it suffices to redefine Ay,g as the

guantity on the right-hand side of the equation.

-10-
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A special situation arises if N is 1. The normal
reduction process in this case would imply operations

in stages 1 through 0, which is meaningless. However,

_the determinant is simply Ayl of the original matrix

(1 by 1). Hence, very soon after the subroutine is
entered, N is checked for equality with 1 and if the

test is true, the determinant is set to Al,l and con-

"trol is returned to the calling program.

2.2,3 Features

The operations involved are carried out within the
space of the given matrix itself. Those operations
which do not affect the final result are avoided

altogether to ensure better speed of performance.

2.2.4 -Limitations

The original matrix A is destroyed in the process
of evaluating the determinant.

It is conceivable that the determinant of a matrix
which is singular may not be identically zero when this
subprogram is used, because of machine errors in using
floating-point arithmetic., A check of the diagonal
element AI,I for its absolute value at each stage of the
reduction process (after column exchangés, if any) with
a number like 1.0 x 1076 could have been employed to

recognize the singularity of the matrix, but this has

-11-~



an obvious disadvantage. The determinant is a function

of the values of the elements in the original matrix as

well as their positioné; Hence, a purely arbitrary num-

ber like 1.0 x 107% is inadequate for such a test. 1In

most engineering applications, the user has a feel for .
the value of the determinant based on the trend of a

set of calculations and is normally able to recognize a

singular matrix when the determinant is "small".

2.2.5 Additional Remarks

If the value of DA is to be printed, it is better to
output this quantity in E-format (or G-format) than in
F-format since, generally, its magnitude is unknown.

This is the only subprogram (in this package) that
can also be written as a FUNCTION subprogram [FUNCTION
DA(A,N)]. Were it so written, it would have to be
"referenced" instead of being "CALL-ed" by a calling
program. In its present form, no exception is necessary

to the general rule of CALL-ing any of the subprograms.

-12-
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SUBROUTINE DIAG(A,DA,H)

2.3.1 Function

Hatrix A of dimension N rows by N columns is gene-
rated as follows. All the diagonal elements have the
same value DA, and the off-diagonal elements are all

zero (Diagonal matrix).

2.3.2 Development of the Subprogram

Treating the matrix as a vector of Nxll elements in
the subprogram, a null array is created in the first
DO-loop (Appendix 2). WNext, the diagonal elements are

each assigned the value DA in the second DO-loop.

2.3.3 Additional Remarks

DA should be defined as a FORTRAMN real number in

the calling program.



ra 1

SUBROUTINE EV(A,S,1) and ENTRY IEV

2.4,1 Functicn
Eigenvalues and eigenvectors of the symmetric matrix

A are computed.

2.4.2 Development of the Subprogram

A. Theory and a Practical Approach

The procedure presented here is based upon the
mafhematical discussion of the problem outlined by
Greenstadt(l).

If A is a scalar and ¥ is a (non-zero) column vec-
tor such that AX = AX, vector X is kno&n as the eigen-~
vector corresponding to the eigenvalue A . -Since matrix
A 1s of size N (N rows by N columns), it has N eigenvalues
and N eigenvectors, Since matrix A is also svmmetric,
its eigenvalues are all real but not necessarily distinct.
However, N distinct eigenvectors can beé found. In fact,
it can be shown that these eigenvectors are also orthogo-
nal; that is, mutually perpendicular to each other.

If £he eigenvalues represent the diagonal elements
of a diagonal matrix D, and the‘corresponding eigenvec-
tors (normalized) represent the columns of a matrix S,
the equation AS = SD represents a generalization of .
AX = AX. (Recall that postmultiplication of matrix S .

€
by a diagonal matrix D 1s equivalent to multiplicaticn

of each column of matrix S by the corresponding diagonal

~-14-~
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“element of matrix D). Since the ¥ veckors are crino-

normal, S is an orthecnormal matrix and hence 5% = s-1.
The eqguation AS = SD can, therefore, also be written as
U

S*AS = D.

In mathematical terms, if § is an orthonormal matrix
suéh that the transform (STAS) of matrix A is a diagonal
matrix, the diagonal elements of the diagonal matrix are
tne elgenvaluﬁs of matrix A and the columns OF matrix S
are the corresponding eigenvectors. The requirement is,
therefore, to find the matrix S. In the case of a 2 x 2

matrix, it can be found almost directly, as shown below.

. '
A1 A1,21
21,2 A2,2J.

Matrix A is synmetric.

A

!

cos © sin ©
Assume S =

| ~sin © cos 6

Matrix S is orthonormal, and the value of 6 is to be

found. - The transform of A is given by STAS which is
. g Y

symmetric.

Al,lcosze + Azlésinze ~ 2A1,2cosesine
STA§ i 2 2
(A1 1-Ap, 2)cos6siné + Aj p(cos<6-sin?e)

(Al 1~ A2 2)c05951ﬂe + Al 2(cos 6 51n

l
Al,lsinze + A2,2cosze + 2Al,25inecose J

-15-
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Hence, A will be diagonalized if 9 satisfies the ¢

- iy = - . 2
(Al,l A2,2)511 29 2Al’2cos $)
-2Al,2 1)
or tan 26 =
AL 178 2 -
A simple application in Civil Engineering is the eva- .

luation of principal stresses in an element which is sub-

ject to normal and shearing stresses.
0. =6

T g =3

i
i
|
} -3 g = LI»
’ XX

Figure 1(a)

The stress tensor for the loading shown in Figure 1l(a) is

4 /3
/3 6
-2/3
From Equation (1), tan 26 = ——— = /3 or & = 30°.
4-6

Hence, the principal stresses are given by the diagonal

elements of the following matrix:

~-16-
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The orientations

in Figures 1l(b),
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1(c),

e
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and 1{d

P

-
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Ao =6
|y
|
N s -
\ 4 =3
e g =
o, = 3.0 \ 4 X Tx
o]
30
Fig. 1(b) Fig. 1 (c)
T
/"» N
®.73 7 N\
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/ 4
i \
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(0,0) (3,0) 1, T
\ ,?.;‘ E/ k54 R /'
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G - b/ ~-—Major Prin.Pl.
Minor Prin.Pl.—" " _~ ;

Fig. 1(d)
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When matrix A is larger than 2 x 2 it is not possible
to find S directly, since there is more than one off-
diagonal element to be annihilated. [Whenever an off-
diagonal element is referred to below, it is assumed to
be in the upper half of the matrix (subscripts P,Q where
P<Q). By symmetry, there is a corresponding (Q,P)
element identical in value in the lower half. Both
elements are affected in the same way tiroughout.]

However, 1t is possible to annihilate a selected off-
diagonal element Ap o if matrix A is transformed by R,
where R is the Identity matrix modified with regard to
the following elements only. |

Rp p = cos S Rp,Qﬁ sin ©

Ry, p =-sin © Rp,0= cos ©
-A

o]

Matrix R is orthonormal and tan 26 = = s ,
0.5 (A, p-2 )
rp,P “0,Q

(See Appendix 1 for the values of sin® and cos€ from this
equation). In the transform RTAR represented by matrix

B, BP,Q (and BQ,P) will be zero. We now need to continue
this process to annihilate some other off—diagonﬁl element
of matrix B by a transform using another orthonormal
matrix, say T. Let C = TIBT = TTRTART = (RT).TA(RT).

Since R and T are both orthonormal, RT is orthonormal
(Appendix 1). In other words, C is the transform of A by
RT, although it‘was shown to be derived in two steps

using elementary orthonormal transformation matrices R

~18=-
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_y

and T in turn.

With the transform of B to C, usually it happens
that BP,Q' which was zero, will not retain that value.
The annihilation of Ap g 1s therefore undone.

Naturally, therefore, the question arises whether a
proceés such as this is convergent. The answer in the
affirmative was first provided by Jacobi. (The proof
is not presented here.) To achieve rapid convergence,
he also proposed selection of that off—diagénal element
which has the largest absolute value, for annihilation
at the subsequent step of the process.

The selection of the off-diagonal element may be
modified slightly when using the high-speed electronic
computer(l). The preccedure is as follows.

The square rcot of the sum of the sguares of the off-
diagonal elements in the upper half of ratrix A is calcu-
lated first. (Note that squaring each element emphasizes
the importance of the elements having larger absoluté
values. The principle is analogous to that used in Least
Squares lMethod for Curve Fitting.) This is called the

initial threshold (WHRI in the subprogram). If diagonali-

o

zation of A can be continued indefinitely to the point
where all off-diagonal celements are zero, the final thres-
hold will be zero. For practical reasons, it is necessary -

to terminate the program when the absolute value of each

-19-



off-diagonal element is smaller than a specified value

(THRF in the subprogram). Since the magnitudes of the
original off-diagonal elements will differ with each
problem, it is further necessary to relate THRF to these
elements in some way. This‘subprogram assumes that TIRF .
is one-millionth of THRI. .(Greater accuracy <an be .
achieved as discussed later under ENTRY IEV.)

Having set the value of THRF, the value of THRI is
reduced by dividing it by a number M at 1ea§t equal to N,
the size of the matrix. In this subprogram, N itself is
the number chosen. Then, there is at least one off-
diagonal element which is larger in absolute value than
this new value of THRI(l).

Any off-diagonal element which exceeds THRI in
absolute value is a "candidate" for annihilation. The
choice is made systematically. If the first off-diagonal
element (Al,Z) is é candidate, it is annihilated. (Else,
Al,3 is considered.)

Assuming Al,Z was annihilated in the previous step,
the next off—diagonai element considered is By 3. (MNote
that A is transformed by now to B.) The next in order is
C2,3 , etc. (column by column). .

At the conclusion of the first sweep, there is no
guarantee that every off-diagonal element will be less

than THRI in absolute value, since annihilation of an

-20-
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element in a particular step may have been undone by guc-
ceeding transformationg. This is no serious problem since
one or more repeat sweeps will assure that THRI is larger
than every off-diagonal element in absolute value, by
virtue of convergence of the process. The necessity or
otherwise of a repeat sweep is indicated by the value of
the logical variable IND in the subprogram.

THRI is now further reduced by dividing it by M and
the process repeated all over again. When THRI, so
modified successively, becomes less than THRF, the diagona-

lization is terminated.

B. Programming Details

The procedure calls for many matrix multiplications.
Although several names have been used in the earlier dis-
cussion for the sake of clarity, the subprogram actually
uses only matrices A and S. The original matrix A is con-
tinuously modified so that on return to the calling nrogram,
it is diagonalized and has, for its diagonal elements, the
eigenvalues of the original maﬁrix A. Matrix S is ini-
tially defined to be the Identity matrix and i§_aléo
modified at each step so that finally it will store, in
its columns, the eigenvectors of the original matrix A.

Assuming calculations at stage J have been completed,
the modifications required for matrices A and S at stage

J + 1 will now be noted. Let R be the elementary

-21-
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orthonormal transformation matrix during this stage. For

convenience,

again, let B = RTAR and T = SR.

Since matrices A and B are symmetric and R contains a

number of zero elements, it is reasonable to suspect that

regular matrix multiplication is not warranted. & long-

hand matrix multiplication shows that the following equa-

tions are true.

These may, however, also be derived.

(AP,Q is the element to be annihilated.)

1k
Tr.p

T1,0

cos9 - AQ,K sin® where K # P or Q (2)
sin®6 + AQ,K cos® where K # P or Q (3)
coso - AT 0 sin® where I # P or Q (4)
sin® + AI,Q cos® where I # P or Q (5)
where I and K are both different (6)
from P and Q :
cosze + Ag o sin?e - ZAP,Q sinécos® (7)
sin%e + AQ,Q coszé + ZAP,Q sin€coso (8)
= (Ap,p - AQ,Q) cos® sin® + AP,Q(cos29f
sin?o) (9)
where K # P or Q (10)
coso - SI,Q sin® (11)
sine + SI,Q cos®e : (12)

This list of equations enables us to recognize a few

features which, when incorporated in the program, speed up

operations considerably.

-2
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P and Q and columns P and Q.

The matrix B 1s the same as matrix A, except fcr rows

Further, by virtue of symmetry,

rows P and Q are the same as columns P and Q, respectively.

The following scheme to generate matrix B (the new R) can

therefore be adopted.

1.

a4 Dot : H ii’
N

Calculate a new value for each element of column P.
Modify the corresponding element in row P to have
the same value,.

Do the same for column Q and row Q in the same DO-
loop. Eguations 4 and 5 are to be used.

As a consequence of step 1, we have some fictitious
values for (the pivotal) elements.BP,P, Bp,gs Bg,p
and BQ,Q as these elements also have been computed

using either Equation 4 or Eguation 5. However,

.this "wasteful" set of calculations (the values

will be discarded) has saved any checking of sub-
scripts thaf would otherwise be involved in Step 1.
The elements of the pivotal éet are now evaluated
according to the Equations 7, 8, and 9. The

"mistake" is thus corrected.

Turning next to matrix T, it is seen that, again, only
. columns P and Q of matrix T are different from those of
matrix S. The calculations needed can be easily combined

1 with those in Step 1 above.

-23-
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C. ENTRY IEV

It was remarked under Part A in the abhove discussion
that the accuracy of calcﬁlations need not be confined to
the degree where THRI equals one-millionth of the initial
threshold value. The following explains this feéture.

The diagonalization of matrix A was shown to be an
iterative process. Since a limit to this process was re-
guired to be set for practical reasons, THRF was set to the
value stated. The fraction, one-millionth, was arbitrarily
chosen assuming that the requirements of the user are there-
by met. (Reference 1 uses one-billionth in a numerical
example.) If, however, a user is interested in greater
accuracy, all that is necessary is to return to the sub-
program from the calling program and thus continue the
process which is iterative. In other words, the subprogram
should be CALL-ed again. However, one snag of this pro-
cedure must be avoilded.

If the subprogram is CALL-ed again in the form CALL
EV(A,S,N), the S-matrix will get reinitialized to the
Identity matrix. So, although the eigenvalues will be
improved, the eigenvectors will all have wrong values.

The ENTRY statement is useful to avoid this difficulty.

The statement ENTRY IEV in the subprogram allows an

alternate point of entry (the next executable statement .

after the ENTRY statement). IHence, if the CALL statement

-24~
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is CALI, IEV(A,S,N), the initialization of the matrix §
will be bypassed. “hgs, matrix S also will be improved.

In the subp;ogram, the positioning of the ENTRY state-
ment is such that calculations for THRI are also bypassed.
This was deliberately done for the following reasons.

With the first use of the subprogram, the calculations
for the initial threshold will be made and the diagonaliza-
tion procedure assures us that every off—diagonal element
is less than one-millionth of this ¢quantity in absolute
value. The variables THRI and THRF in the subprogram,
defined prior to the LNTRY statement, represent these quan-
tities. The variable THRI changes in value during the
execution of the subprogram and when the diagonalization
is terminated, it is less than THRF. If now, THRF is re-
duced to one-millionth of its own value, we will have set
the final threshold for a subseqﬁent use .of this subprogram
and be ready for the improvement procedure, without having
to calculate a new initial threshold. (See the redefini-
tion of THRF just prior to the  RETURN Statement.) The accu-
racy prescribed for the second run would, therefore, be
10712 times the initial threshold value calculated for the
original matrix A. This process is also iterative and
hence in general terms, the accuracy 1is 10—6n times the
initial threshold value, where n is the number of times

this subprogram is CALL-ed.

-25-~



The advantages are these: 1. The user has a measure

of the accuracy based on the number of CALL statements.
2. The calculations for initial threshold are limited to
the first set. 3. These calculations can be combined
with the initialization of the S matrix (to the Identity

matrix) in the same DO-loop nest.

D. CALL-ing Procedure

The following rules apply to the CALL statements for
the reasons stated.

1. CALL EV(A,S,N) must be used the first times around.
This permits matrix S to be initialized and the initial
threshold to be evaluated.

If the accuracy prescribed is considered good
enough, the problem is solved on return to the calling
program,

2. CALL IEV(A,S,N) must not be used fhe first time
around, since matrix S and the initial threshold will not
be properly initialized..

3. CALL IEV(A,S,N) may be used as often as necessary
subsequent to CALL EV(A,S,N).

Trail runs have shown that the eigenvalues will not
differ appreciably when improvement is attempted. This
is because the eigenvalues found in the initial run are

already very close to the exact ‘values.

-26-
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The eigenvectors show some improvement with each sub-
sequent CALL IEV(A,S,N). In engineering problems, one
improvement cycle may be considered the maximum necessary.

(A good check on the final results is to form the
matrix product SasT, where S'is the matrix of eigenvectors
and A is the matrix of eigenvalues, and compare this with
the original matrix A. Since the original matrix A is
destroyed when this subprogram is used, it needs to be
saved or printed earlier for comparison if this check is
deesmed necessary.)

A repeated number of improvement cycles indicates
fastidiousness.with respect to accuracy uncalled for in
engineering applications. Further, there is a gcod chance
of creating an underflow in the machine (extremely small
gquantities in absolute value other than zero itself can-
not be handled by the machine).

For obvious reasons, matrices A and S should not be
affected in any way in the calling program between two
successive CALL-s-to this subprogramn.

4, CALL EV(A,S,N) must not be used except for the first
time. The reason, as already stated, is that such a CALL
would destroy the S-matrix previously found by reinitial-

izing it to the Identity matrix.
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E. Special Case of 1 x 1 Matrix

If N equals 1, there are no off-diagonal elements.
For this case, the eigenvalue is the element itself and
the eigenvector is just 1.0. In the subprogram, therefore,
N is checked for equality with 1. If N = 1, the relations

mentioned are established directly.

2.4.3 Peatures

Memory requirements are minimal, and speed is ensured
by avoiding full-scale matrix multiplications.

An improvement of the eigenvalues and eigenvectors 1is
easily possible, at the user's option, by one or more

additional CALL statements.

2.4.4 Limitations

The matrix whose eigenvalues and eigenvectors are to
be found must be symmetric. It will be destroyed in the

subprograim.

—-28-



— el

400.4

SUBROUTINE GLVP(A,B,S8,T,i)

2.5.1 Function

Eigenvalues and eigenvectors of the symmetric
matrix A where AX = ABX are computed (General Eigenvalue
Problem). In this equation, X is the eigenvector cor-
responding to the eigenvalue A which is a scalar quanti-
ty. B is a symmetric matrix which is also positive

definite.

2.5.2 Development of the Subprogram

In terms of matrices, the above equation may be

rewritten in the form

where ¢ represents the matrix of eigenvectors; that is,
¢ = X, X \{_{ n
1 %2 Xygj and

Xl' X2,...,X are the W column vectors corresponding to

N
Ar Aoyee., Ay which are the N eigenvalues. L is the

matrix of eigenvalues and is a diagonal matrix.

At first siéht, it would appear that the solution
may be obtained directly by wrifing
B lag=901L or Cé¢ = &L
and finding the eigenvalues and éigenvectors of the
matrix C, by the use of another subprogram. This would

be in order provided the subprogram used can handle non-

symmetric matrices. This package does not contain such

_29._
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a subprogram.
Since B is symmetric, B—1 is also symmetric (Appen-
. -1 .
dix 1). The product C = B "A is, however, not neces-

.sarily symmetric, although both B T

and A are gymmetric
(Appendix 1).

The problem needs therefore a modification of the
matrices such that a symmetric matrix will result and
SUBROUTINE EV(A,S,N) may be used.

The matrix B can be expressed in the form B = sDs”
where D and S are the matrices of eigenvalues and eigen-
vectors respectively of matrix B (Section 2.4.2 D).

Hence,lAé = B3L = SDSTQ I ox sTaAs = DSTs L,

Since matrix B is positive-definite, its matrix of
~eigenvalues (diagonal matrix) will have, for its diago-
nal elements, only positive terms and hence it is pos-
sible to express matrix D as the product of two (diago-
nal) matrices G and G, where

G 1 =/5;7; and Gy ;= 0.0 for I # J,

without the necessity of dealing with imaginary numbers.

Hence, S'A & = psTé1 = ggsTé 1

or ¢ 1sTae = gsTs

which can be written as

“15Ta(sctesTy 8 = gsTa 1, "L

Using the notations, ¥ = GsTs , F = SG_l and hence

G

-30~-
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} rT o= (¢ L)T(sT) = ¢7tsT,

. FYAFY =YL

Tar by virtue of symmetry of 3,

Since (FTAF)T = F
FLAF is symmetric., Letting FLAF = C, CY =Y L, where
C is symmetric.
= This equation is hence in a form suitable for the
— use of SUBROUTINE EV(A,S,U).

The matrix of eigenvaluss, L, obtained in such a
manner needs no modification as it is the same L in the
original equation A ¢ = B3 L.

- From Y = GST$ , the matrix of eigenvectors ¢ is

given by ¢ = sg ty .

The procedure, in brief, is to modify matrix A and

obtain matrix C first. The eigenvalues of matrix C are

P

the required eigenvalues. The eigenvectors of matrix C
(matrix Y ) are to be modified by premultiplication by

*] the matrix SG—l
The importance of generating SG—l and saving it for

all modifications at further stages should be noted.

The product SG—l is simple to obtain. Denoting G_l as

H, and s¢™! = sH as T, the elements of T are

N
T =
) 1, I SI,KHK,J
. K=1 .

HK,J =90 if K # J,

>] Since G_l or H is a diagonal matrix and hence
-31-
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[a) * I‘
1,9 1,3 -

IJ,J
The columns of matrix T are thus the columns of
matrix S, each multiplied by a different scalar quantity.
The product SG—1(=T) can be stored in matrix S itself.
The required modifications may be outlined in the
following manﬁer, from the programming viewpoint.
Step 1. Obtain the eigenvalues and eigenvectors of
maﬁrix B by using SUBROUTINE EV(B,S,N). Matrix B now

stores the eigenvalues of the original matrix B and S

is its matrix of eigenvectors. (These correspond to

matrices D and S in the derivation.)

Step 2. Obtain the product sg™t

and store it in matrix
S. Note that each diagonal element of c1 (off-diagonal
elements are zero) 1is merely the reciprocal of the
square root of the corresponding diagonal element of
matrix B.

Step 3. Obtain theAproduct AS and store it in matrix

B using SUBROUTINE HMULT(A,S,B,N,N,N).

Step 4. Obtain the product sTs using the property of sym-
metry of the resulting matrix aﬁd store it in matrix A.
The product corresponds to matrix C in the derivation.
Step 5. Obtain the eigenvalues and eigenvectors of
matrix A using SUBROUTINE EV(A,B,N). Matrix A now cor-
responds to matrix L, the matrix of eigenvalues in the

derivation (no further modification required for matrix

-32~-
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L). Matrix B corresponds to matrix ¥ in the deriwvation.
Step 6. Obtain the product SB by using SUBROUTINE POSTII

($,B,N,N,T) where T is a vector required in that sub-

.program for computations. Hatrix B now stores the re-

quired eigenvectors (corresponding to matrix 2 in the

derivation).

2.5.3 Features

This subprogram uses other subérograms‘developed in
this package, and coding is mainly a set of CALL state-
ments. Additional storage spaces in the form of an
extra matrix and a vector, which are required to carry
out the compﬁtations, are believed to be the minimun

necessary.

2.5.4° Limitations

Original matrices A and B must be symmetric. Matrix
B must also be positive definite. The original matrices
are destfoyed when this subprogram is used. Other sub-
programs of this package as detailed in the User's Guide
(Chapter 4) must be available and loaded when this sub-

program is used.
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2.6 SUBROUTINE MINV (A,N,DET,NEXCH)
2.6.1 Function
The matrix A of size N rows by N columns is inverted
~and the inverse returned to the dalling program in A it~
self. Also, the determinaﬁt of the original matrix is
computed and returned in DET.
2.6.2 Development of the Subprogram
A. The Core of the Subprogram

jg By a process of elementary transformations (on

o rows) of A, it is possible to reduce matrix A to the

]

Identity Matrix, referred to as matrix B below.

TI"ITL‘-‘I'-]_' . .TleA = B

Hence,  TyTy.1-.-ToTB = pa™t = a7t

Thus, the same elementary transformations (on rows) of

]

]

-] B wili generate al,

4 In the discussion, the elementary transformations

3 will initially be limited to (i) division of a row by a

scalar and (ii) addition of a multiple of a row to

? another row. Later, they will also include row exchanges.
In general, there is no need to follow any definite

pattern in the reduction of matrix A to matrix B. The

rules below, however, provide a systematic method of

achieving the reduction, with a view to easy programming

-34-~
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Step 0. Create the Identity Matrix

Step 1. Let K = 1

Step 2. The piyot element is the diagonal element in
row K of matrix A. Divide the Kth row of both
matrices A and B by the pivot element. The
element A(K,K) will then be reduced to 1.0.

Step 3. Add suitable multiples of the (modified) Kth
row of matrices A and B to all other rows of the
respective matrices to generate 0.0 in the Kth
column of matrix A. If the row number is I,
-A(I,K) is the suitable multiple.

Step 4. Increment K by 1.

Step 5. If K exceeds N, stop. Otherwise, return to
Step 2.

The numerical example below illustrates this proce-
dure and provides as well some useful material for later
discussion. The matrix on the left is A and that on the
right is B.

Step 1. XK =1

! |

[ |

{ 4.0 3.0 1.0 E 0.0 1.0 0.0

(|1.0 1.0 1.0 '10.0 0.0 1.0

(The significance of the pair of dashed lines

will be explained later.)
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Step

Step

Step
Step

Step

Step

Step

Step

2.

r
!
|
[

Pivot element has the value
k\row 1 by 4.0. w

i;§> 0.25 0.0 -5225> 0

4.0 3.0 1.0 {’/o.o 1.

1.0 1.0 1.0| {{0.0 0

Add -4.0 times row 1 to row

1l to row 3.

[1.
0.

i O -

K

0

0

0

i
i
|
2.
!
|

5 0.0
1.0

5 1.0

1 =2

2 > 3, Return to Step 2.

4.0. Divide
0 0.0
0 0.0
0 1.0

2, -1.0 times row

0.25: 0.0 0.0
~1.0 , 1.0 0.0
o

|-0.251 0.0 1.0
the value 2.0. Divide row
| 0.25 Lo.o 0.0
| oS
{—0.5 0.5> 0.0
| _0.25 T0.0 1.0!

!

-0.25 times row 2 to row 1,-0.75 times

Pivot element has
2 by 2.0.

1.0 Lq:25 0.0
lo.o 1.0> 0.5
‘0.0{5175 1.0/
add

row 2 to row 3.
il.O 0.0 ' ~0.125
0.0 1.0, 0.5
0.0 0.0 ; 0.625|
K =2+ 1= 3.

3 » 3. Return to

-36-
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Step 2. Pivot element has the value 0.625. Divide

row 3 by 0.625."

1.0 0.0 ;-0.125 0.375 -0.125, 0.0
| |
! - I
0.0 1.0 | 0.5 0.5 0.5 | 0.0
0.0 0.0 1.0> 0.2 -0.6 1.6>

-~ -~

Step 3. Add ~-(~0.125) times row 3 to row lfi;O.S times
row 3 to row 2.

'1.0 0.0 o.o'

0.0 1.0 o.oi
I

0.0 0.0 1.0

!
o
@)}
o
-
[e0]

|
o
[ee}

Step 4. K =3 +1 =4
Step 5. 4>3. Stop.
Evidently, the process has to be repeated I times.
The procedure is summarized in the program section
below.
CALL DIAG(B,1.0,N)
DO 1000 K = 1,N
TEMP = 1.0/A(K,K

DO 2000 J = 1,N

A(K,J) A(K,J) «TEMP

2000 B(K,J) B (K,J) *TEMP

DO 3000 I = 1,N

IF(I -EQ- K) GO TO 3000

TEMP = -A(I,K)

DO 4000 J = 1,N

A(I,J) = A(I,J) + TEMP#A(K,J)
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4000 B(I,J) = B(I,J) + TENUP#B(X,J)
3000 CONTINUE
1000 CONTINUE
The program requires that i) separate memory space
for the matrix B be provided and ii) matrix B be defined
initially as the Identity Matrix. The ensuing discussion
aims at proving that these requirements need not be met.

- Note that, in any problem, the elements that do not
lie between the dashed lines will remain the same. These
invariant elements need not be stored, if the program can
account for them suitably when required. Consequently,
only matrix A is assumed to be available. The rules
earlier stated need to be modified to suit the new
situation.

Step 0. Let K =1

Step 1. Assume that a column véctor corresponding to
column K of the Identity matrix is attached to
the right of the matrix.

Step 2. The pivot element is the first element in row XK.
Divide the Kth row by the pivot element and
store each element in the column to the left of
its original position. This column "shift" has
the effect of "pushing" out the element referred
to as the pivot element (to the left) and "bor-

rowing" an element from the Identity Matrix
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(from the right). It is helpful to visualize
that the kinks in the dashed lines have been
straightened out by pulling the row K to thé
left in Step 2 of the numerical example above
at each of the N stages.

Step 3. Add -A(I,1) times the Kth row to row I (where
I # K), starting with the element in column 2 of
row I. Again, store each element in the column
to the left of its original position. Steps 2
and 3 together have the effect of advancing the
dashed lines, one column to the right.

Step 4. Increment K by 1.

Step 5. If X exceeds N, stop. Otherwise, return to

Step 1.
To illustrate, consider the previous example again.

Step 0., K =1

Step 1. 4.0 1.0 0.0 1.0
4.0 3.0 1.0 0.0
1.0 1.0 1.0 0.0

Note that the Kth column of the Identity matrix
is available by implication only and is not

stored in any vector or matrix.
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Step
1 by 4.0.

0.25 0.0 O.

4.0 3.0 1.

1.0 1.0 1.

Step 3. Add -4.0 times row 1

1l to row 3.

25

to row 2, -1.0 times row

'0.25 0.0 0.25
2.0 1.0 -1.0
0.75 1.0 -0.25
Step 4. K=1+ 1 =2
Step 5. 2} 3; Return to Step 1.

Step 1.
0.25 0.0 0.

2.0 1.0 -1.

l0.75 1.0 -0.

Step 2. Pivot element has the value 2.0.

row 2 by 2.0.

10.25 0.0 0.25
0.5 =-0.5 0.
0.75 1.0 —0.25! 0.

Step 3. Add -0.25 times row 2 to row 1, -0.75 times

row 2 to row 3.
-0.125 0.375

0.5 -0.5

0.625 0.125

-40-
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Step 4. ¥ =2 + 1 = 3

Step 5. 3 $3. Return to Step 1.

Step 1.
-0.125 0.375 =-0.125 0.0
0.5 -0.5 0.5 0.0
0.625 0.125 =-0.375 1.0

Step 2. Pivot element has the value 0.625. Divide

row 3 by 0.625,

-0.125 0.375 =0.125/ 0.0
0.5 -0.5 0.5 0.0
0.2 -0.6 1.6

Step 3. Add -(-0.125) times row 3 to row 1, -0.5 times

row 3 to row 2

Step 5. 4 >3. Stop.

In the progrém section that follows, note especially
the manner in which the elements of the Kth column of
the Identity matrix are assumed to be available. Further,
note also the necessity of generating the elements of the

Nth column outside the DO-loops.
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NM1 = N-1

DO 4000 K = 1,H
T = 1.0/A(X,1)

DO 8000 J = 1,NML

8000 A(K,J) A(K,J+1) «T

A(K,N)

T
DO 9000 I = 1,N

IF (I.EQ.K) GO TO 9000
BIG = -A(I,1)

DO 8888 J = 1,NMl

8688 A(I,J) A(I,J+1) + BIG=%xA(K,J)

A(I,N) BIG*T

9000 CONTINUE

4000 CONTINUE

B. The Problem of Vanishing Pivot Element

An important tacit assumption in the above develop-
ment is that the pivot element never has the value zero
and hence,division by the value of that element is legal.
This is eguivalent to the assumption that no submatrix of
A in the upper left is singular. (If matrix Avis itself
singular, there is obviously no solution to the problem.)

If the assumption does not hold, as in SUBROUTINE
DETMT (A,DA,N), here also row interchanges need to be - "

performed to overcome the difficulty. If the Identity
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matrix is assumed to be available, the following is a
simple example for illustration of the procedure.

0.0 2.0 1.0 0.0

3.0 4.0 {i0.0 1.0

Pivot element has the value of 0.0.

Interchange rows as division by zero is not per-
mitted. WNote that the rows of the Identity matrix are
also to be interchanged.

13.0 4.0f 0.0 1.0

1.0 0.0

0.0 2.01
- Step 1. K =1
Step 2. Pivot element has the value 3.0. Divide
row 1 by 3.0
(1.0 1.33

[0.0 2.0

0.0 0.33

1.0 0.0

Step 3. Add -(0.0) times row 1 ﬁo row 2. This
leaves the matrices unaffected.

Step 4. K =1+ 1 = 2

Step 5. 2$P2. Return to Step 2.

Step 2. Pivqt element has the value 2.0. Divide
row 2 by 2.0.

1.0 1.33 0.0 0.33

0.0 1.0 0.5 0.0

Step 3. Add -1.33 times row 2 to row 1.

1.0 0.0
0.0 1.0

-0.67 0.33
0.5 0.0
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Step 4. K= 2 + 1 =3

Step 5. 3>2. Stop.

Next, attempt the solution without the availability
of the Identity matrix.
Step 0. K =1
0.0 2.0

Step 1. 1.0

3.0 4.0 0.0
Rows of A will be interchanged, but since the Kth
column of the Identity matrix is available only by

implication, the elements here cannot be interchanged.

Hence
[3.0 4.0 1.0
IO 0 2.0 0.0
Step 2. Pivot element has the value 3.0. Divide row
1 by 3.0.
1.33  0.33]
0.0 2.0 i 0.0

Step 3. Add ~(0.0) times row 1 to row 2.
1.33 0.33

2.0 0.0

Step 4. K =1+ 1 =2
Step 5. 2 +2. Return to Step 1
0.0

2.0 0.0

Step 1. l1.33 0.33
i 1.0
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Step 2. Pivot element has the value 2.0. Divide row
2 by 2.0.
1.33 0.33 0.0
0.0 0.5

Step 3. Add -1.33 times row 2 to row 1.

0.33 -0.67

Step 4. K =2 + 1 = 3

Step 5. 3>2. Stop.

The answer here differs from the previous (correct)
answer in that the columns have been interchanged. This
is a direct consequence of our failure to interchange
rows of the Identity matrix in the modified method. The
remedy is simple., Merely interchange the columns.

The numerical example above provides the necessary
background for the development of the generalized ap-

proach which follows.

C. Row Interchanges and Corrective Modifications

Assume tha£ the rows of matrix A are interchanged.
Row interchange is one of the elementary transformations
and is equivalent to premultiplying a matrix by the cor-
responding elementary transformation matrix. Briefly,
TA = C where C is the resulting matrix after the inter-

change. Hence C 1 = A7t ang clv = a7l

-45-



Siaasd

400.4

The-product C_lT implies that the same elementary
transformation T operates on c™1 put this time post-
multiplication by T is ihvolved. The conclusion is that,
to get A_l froﬁ C—l, the columns of C—l have to be inter-
changed to match the interchange of rows of A.

Applying the principles to the 2 x 2 example, we see
that, in effect, given A, a matrix C was generated by

interchange of rows of A, and C_l was found. The answer

thus obtained needs, therefore, further modification
(interchange of columns of C_l).

With a 2 x 2 matrix, the number of interchanges is
limited to 1. Also, if the interchange is necessary, it
will be at stage K = 1. In the case of larger matrices,
the number may be as high as N-1 and the necessity may
arise at some or all stages from K = 1 to K = N-1.

In general, we may assume that the original matrix
after the required number of row interchanges has been

modified during the process itself to a new matrix C

~given by C = TMTM—l v T2T1A

_l_ :
Hence CA = TMTM_l .o T2Tl

andA’l=c T T ... T.T
M M-1 271

The last and first row interchanges are represented

by Ty and Tl respectively. 1In the modification, however,

the first and last column interchanges are represented
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by TM and Tl respectively.
So, if a number of row interchanges was involved,
the corresponding column interchanges must be performed

in reverse order. Appendix 1 contains a more formal proof.

D. The Best Pivotal Element

In the discussion so far, row interchange-was sug-
gested only if the pivotal element was identically zero.
The pivot element could be small in absolute value and
nence division by that element and later modifications
of other elements may lead to inaccuracies.

On the one hand, there is the need to check whether
the pivot element is zero. If so, on the other hand,
there is the need to search other rows (limited to rows
K through N of column K so as to preserve the action of
the previous modifications of the reduction process) for
a non-zero element.

Combining all of these, as in SUBROUTINE DETHMT (&,DA,
N), assume that a search will be made for the largest
absolute valued élement in the column containing the
pivot element. Three possibilities arise as a result of
the search.

l. Every element in the column is zero. The matrix is
then singular and A_l does not exist. (Note that the sub-
program does not produce an error message in this in-

stance. A message will result from the system when the
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machine ‘attempts later to handle infinity and the pro-
gram will be aborted.)
2. The pivot elemenf itéelf 1s the largest in absolute
value and hencé, no exchange is necessary.
3. An exchange is necessary.

Vector NEXCH is a bookkeeping vector which takes
into account items 2 and 3 above. The elements of this
vector get defined during the reduction process as C_l

is generated and are used later to perform the correspon-

ding column exchanges (in reverse order).

E. The Determinant of the Original Matrix A as a By-

Procduct

A comparison of the procedures involved in this sub-
program and SUBROUTINE DETMT (A,DA,N) shows that the re-
duction processes in the two cases have much in common.
In the latter case, the process was limited to reducing
the given matrix to én upper triangular matrix. In this
subprogran (see the reduction process assuming the exis-
tence of the Ideﬁtity matrix), this process has been ex-
tended so that the given matrix is diagonalized. This
extension which merely includes more elementary transfor-
mations does not alter the value of the determinant. The
determinant is hence the product of the pivotal elements

(before their reduction to 1.0).

-48-



| K- AR Ry Bacils Saciatcld i) iy il IS,

400.4

F. The Special Case of a 1 x 1 Matrix

An inspection of the DO-loop parameters in the final
version of the subprogram indicates that, if N = 1, the
ranges of some DO-loops would be from 1 to zero. This
difficulty is avoided by branéhing out control early in

the subprogram.

2.6.3 Features

It has been shown that (even) in the case of a general
square matrix (unsymmetric), the inversion process can be
carried out within the space of the original matrix itself,
provided no submatrix in the upper left of the original
matrix is singular. To handle matrices of a general nature,
only an additional vector of N elements is required. Speed
is considerably enhanced as constants are not generated

during execution.

2.6.4 Limitations

Original matrix A is destroyed.

2.6.5 Additional Remarks

It is not essential that NEXCH be a vector of integer
elements in the calling program. The use of that vector
is local to the subprogram and the user needs only to be
aware that any such vector, if defined prior to the CALL
statement in the calling program, may be destroyed when

this subprogram is used.

~49-



i g E‘; i hl. . :

400.4

2.

7

SUBROUTINE MOVE (A,B,M,N)

2.7.1 Function
The matrix B is defined to be the same as the given
matrix A. Both the matrices are of the same size M rows

by N columns.

2.7.2 Development of the Subprogram

The subprogram listed in Appendix 2 follows directly
from the relationship BI,J = AI,J' The matrices are

treated as single~subscripted arrays in the subprogram.

2.7.3 Features

In some cases, a matrix referenced in the CALL state-
ment of a calling program gets destroyed in the subpro-
gram when using the routines o0f this package.

Assume that the original matrix is needed later in
the calling program. In such situations, the use of
this subprogram, prior to a CALL to the routine where
the matrix gets destroyed, assures the availability of
the original matrix by a different name. The example
below illustrates this procedure.

CALL MOVE (A,B,N,N)
CALL DETMT (A,DA,N)

The original matrix A is destroyed by the second
CALL statement. However, by virtue of the first CALL

statement, matrix B is the same as the original matrix A

and can be operated on as if it were matrix A itself.
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In the example, if the second CALL statement is CALL
DETMT (B,DA,N) , matrix B gets destroyed and the original
matrix A is available for further operations by its own

name.

SUBROUTINE MULT (A,B,C,L,M,N)

2.8.1 Function

The product of matrix A (size L rows by M columns)
and matrix B (size ¥ rows by N columns) is made available
to the calling program as matrix C (size L rows by N

columns). C = AB

2.8.2 Development of the Subprogram

In algebraic terms, the elements of matrix C are
given by

C = 3 A * BK,J

and the following subprogram may, therefore, be written.
SUBROUTINE MULT (A,B,C,L,M,H)

COMMONW/IYENGAR/ I,J,K,Y (11)

REAL A(L,i),B @1,N),C(L,N)

DO 1000 I = 1,L
DO 1000 J = 1,N

c(r,J) = 0.0
LO 1000 K = 1,M
1000 C(I,J) = C(I,J) + A(I,K)%B(K,J)
RETURN
END

_Sl_
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It is worth noting here that for a specific set of
values of I and J, C(I,J) is completely defined only
after the innermost loop is satisfied. Hence, instead
of referring to C(I,J) which is a aouble—subscripted
variable, it is advantageous to refer to a scalar quan-
tity, say, SUM when this loop is being executed. This
modification saves time of execution.

To illustrate, assume two matrices each of size
100 x 100 are multiplied. The modified version listed
in Appendix 2 saves two million address computations.

The saving in time in a trial run was approximately 6

seconds (23.262 seconds vs. 17.148 seconds).

2.8.3 Limitations

In general, each of the matrices A, B and C will dif-
fer in size. Hence, no attempt is made in this sub-

program to store the product matrix C in either matrix A

‘or matrix B.

The size of matrix C will match the size of either
matrix A or matrix B or both,vif matrix B or matrix A or
both are square. The use of SUBROUTINE PMULT (A,B,K,L,X)
or SUBROUTINE POSTM(A,B,K,L,X) should be considered under
these conditions.

In any case, when SUBROUTINE MULT(A,B,C,L,M,N) is
used, the product matrix C should be distinct from both

the matrices A and B, although matrices A and B may
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themselves be identical.

SUBROUTINE OUTE (A,I,J,TITLE,TITEL) and ENTRY OUTF and

ENTRY OUTG

2.9.1 Function

Matrix A of size I rows by J columns is piinted.
Printing begins on a new page. Rows and columns are
numbered. Labels (up to 20 characters) provided by the
user appear at the top of each page.

If J < 10, and at the same time, I < 25, the matrix
is printed on one page. If J > 10, the first 10 columns
of matrix A are printed until all the rows (25 or less
to a page) are exhausted. Then the second 10 columns
(or less) of matrix A are printed until all the rows
(25 or less to a page) are exhausted. And so on.

The user has the choice of printing the elements in

E-, - or G-FORMAT.

2.9.2 Development of the Subprogram

A. Matrix Partitioning

The limits of 10 columns to a page and 25 rows
(double-spaced) to a page have been chosen taking into
consideration the number of characters that can be
printed per line (135 excluding the carriage control

character in column 1), the number of lines (about 63)
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per page, and ease of readability.

Since J columns are to be printed, the number of ver-
tical partitions of the matrix is given by JMAX below.

The use of integer arithmetic (FORTRAN) should be noted

here.

If 1<J<10, JMAX
If 11<J3<20, JMaX = 2, and so on.

In a similar way, tine number of horizontal partitions

JMAX

(J + 9)/10

=1

of the matrix is given by

Schematically, the partitions are as in Figure 2.
(I and J are assumed to be 58 and 45 respectively.

Hence, IMAX and JMAX have the values 3 and 5 respectively.)

I Rows

The required number of pages for the printout is

IMAX

(I + 24)/25

—— J Columns

. f'l,S
1,1 | 1,2 1,3 1,4/%
42,5
211 212 2,3 2,4 o
L3 5
3,1 | 3,21 3,3] 3,4/9%""
Figure 2

-54-

~given by the product of JMAX and IMAX.



eyt

! I

bk, b Yo, bsnai Keseid Biuiaswad. fociaad, [TRIE R bcazd, bl B, [T [SE B [ B foaesd

. 400.4

The choice is made to print the matrix in vertical
partitions. Hence, for the example in Figure 2, the sub-
matrix marked 1,1 will be printed on the firsﬁ page. This
is followed by printing of submatrix marked 2,1 and then
by the one marked 3,1. |

The process is next repeated for submatrices marked
1,2 and 2,2 and 3,2 in that order. And so on.

The outermost DO loop hence ranges from 1 to JMAX.
This is followed by the next DO loop whose fange is 1 to
IMAX.

Consider next the items on a specific page. Let the
submatrix being printed on the page havevindices IROW
and JCOL.

The table below gives the first and the last row and

column -numbers (of matrix A) printed on the page.

First row 25 (IROW) - 24

Last row 25 (IROW) or I, whichever is less
First column 10 (gcon) - 9

Last column 10 (JCOL) or J, whichever is less

B. TFORMAT Control

The form of output (E-,F- or G-FORMAT) is controlled
as follows. The FORMAT for printing elements of the
matrix is generated in an integer array IV. If the CALL

statement is CALL OUTE (A,I,J,TITLE,TITEL), the character
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stored in IV (2) is E in a suitable part of that (com-

puter) word, and hence the output is in E-FORMAT. Simi-
larly, CALL OUTF(...) and CALL OUTG(...) produce output
.in F- and G-FORMAT respectively.

The X preceding F12.5 in IV (2) is deliberately built
in to ensure at least one blank space between two numbers
in a row, when printing in F-FORMAT. This limits the
number of characters (digits plus the negative sign, if
any) to the left of the decimal point to 6.‘ If an ele-
ment has 7 or more characters to the left of the decimal
point, an asterisk will be printed by the machine
(CDC 6400) at the beginning of the field, warning the
user that the most significant digit/s and/or the nega-
tive sign, if any, are not printed. Briefly, the number
is too "largé" for a suitable printout under this FORMAT
control. On the other hand, if the number is too small,
only zeroes may appear on the printout. Under these con-
ditions, as well as under conditions where the magnitudes
of the elements being output are unknown or unpredictable,
the E-FORMAT should be preferred.

The E~-FORMAT output is not as easily readable as the
F-FORMAT output but this is a minor inconvenience, parti-
cularly after experience is gained in reading the numbers.

When G-FORMAT is specified, five significant digits

appear on output in F-FORMAT if the number lies in the
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rénge 100000.0 > absolute value > 0.1. Otherwise, the
number is output in E-FORMAT. That is, the machine makes
the choice between F-FORMAT and E-FORMAT, depending on
the magnitude of the number to be dutput. The decimal
points in G-FORMAT output may not line up vertically and,
in general, the output will be a mixture of E— and F-
FORMAT outputs. Some elegance is thereby lost. On the
other hand, once G-FORMAT output is specified, concern
need not be wasted on losing the most significant digits

(5 digits in this subprogram).

C. Labels

The user may label the matrix being output by using
appropriate "values" for the arguments TITLE and TITEL.
These "values" are Hollerith character strings up to a
maximum.of 10 each.

The labels will appear at the top of each page. Further,
these labels are followed by the word CONTINUED in paren-—
theses on the second and succeeding pages of output to
indicate that parts of the matfix have already. been output
in previous pages.

The size of the matrix also is indicated by a printout
directly after labelling. If no labels are to be used,
TITLE and TITEL must be matched with 1HF and 1lHY respec-

tively (¥ denotes blank). Examples on the use of labels
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are given in the User's Guide (Chapter 4).

2.9.3. Limitations

A matrix with a large number of columns and only a few
rows (say less than 10), when output using this subprogramn,
will use several sheets of paper. Consider, for examplez
a matrix 8 rows by 25 columns. The output, iﬂ this case,
is on 3 sheets. 1If, however, the transpose of the matrix
is printed, the output is on one sheet. Apart from
economy of paper, a further advantage of the latter pro-
cedure is that an overall view of the matrix is available
without'having to turn pages.

The user should weigh these advantages against the in¥

convenience of having to transpose the matrix and reading

the transposed matrix.
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2.

10 SUBROUTINE PMULT (A,B,X,L,X)

2.10.1 Function

The square matrix B of size L rows by L columns is pre-
multiplied by a rectangular matrix A of size K rows by L
columns and the product is returned to the calling pro-

gram in the rectangular matrix A. A = AB

2.10.2. Development of the Subprogram

In SUBROUTINE MULT(A,B,C,L,M,N), it was remarked that
the three matrices A, B, and C are of different sizes
Qhen dealing with general rectangular matrices and hence,
matrix C could not be stored in either matrix A or matrix

B. 1If, however, matrix B is square, it follows from

[A] « [B] = [C]_
K x L L XL K

x L
that the product matrix C is of the same size as the rec-
tangular matrix A, which premultiplies the square matrix
B. Advantage is taken of this feature to save memory
space by storing matrix C in matrix A.

Schematically,ithe order in which the elements of the

product matrix are generated (row‘by row) 1s shown in

Figure 3.

A _ B Product
- T

Figure 3
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3 Consider row 1 of matrix A. This row is used in con-

junction with each column of matrix B to generate elements
4 in row 1 of the product matrix. After this is done, row
1 of matrix A is never referenced égain. It is for this
reason that row 1 of the product matrix may be stored in
row 1 of matrix A. (The argument is valid for all the rows

in turn.)

4 However, throughout the process of generating the

3 elements in row 1 of the product matrix, the elements in
row 1 of the original matrix A must be available. Hence
the necessity of a vector X of size L elements for inter-
mediate storage of the generated product élements.

- The procedure involves, therefore, the following steps

: for all I from 1 to K.

1. Generate elements in row I of the product matrix
and store these in vector X.
2. Transfer the contents of vector X to row I of

matrix A.

2.10.3 Features

j Memory requirements are less when this subprogram is
used. A vector X of L elements will suffice to perform
the operations, whereas, previously a matrix of size K
rows by L columns was required (SUBROUTINE MULT

¥ (a,B,C,K,L,L)).

, . See also Section 2.11.5.
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2.10.4 Limitations

Matrix B must be square.

The advantage of saving of memory space is partly off-
set by a loss in speed of execution, as additional opera-
tions (transfer of vector X to a row of matrix A for each
I, I =1 to K) are necessary.

Original matrix A is destroyed.

2.10.5 Additional Remarks

Matrix A may be rectangular or square.

If matrix A is square, it should differ from matrix B
at least by name. That is, the product of a square matrix
and itself (say; matrix A times matrix A) cannot be ob-
tained with the use of this subprogram. SUBROUTINE MULT
(A,A,PROD,K,K,K) of this package is to be used.to obtain
such a product in matrix PROD which is distinct from

matrix A.
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2.11 SUBROUTINE POSTM(A,B,K,L,X)

2.11.1 Funcﬁion

The square matrix A of size K rows by K colﬁmns is
postmultiplied by the rectangular matrix B of size K rows
by L columns and the product is returned to the calling

program in the rectangular matrix B. B = AB

2.11.2 Development of the Subprogram

The logic here is essentially the same as in SUBROUTINE
PMULT (A,B,K,L,X). The elements of the product matrix are
generated column by column. Schematically, this process

is represented by Figure 4.

A B Product

Figure 4

The process involves the foilowing steps for all J
from.l to L.
1. Generate elements in column J of the product matrix
and store these in vector X which is of size K

elements.

2. Transfer the contents of vector X to column J of

matrix B.
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2.11.3 Features

Memory requirements are less when this subprogram is
used. A vector X of K elements will suffice to perform
the operations, whereas, previously a matrix of size K
rows by L colﬁmns was required; (SUBROUTINE MULT

(a,B,C,K,K,L).)

2.11.4 Limitations

Matrix A must be square.

Original matrix B is destroyed.

The advantage of saving of memory space is partly off-
set by d loss in speed of execution, as additional opera-
tions (transfer of vector X to a column of matrix B for

each J, J = 1 to L) are necessary.

2.11.5 2Additional Remarks

Matrix B may be rectangular or square.

If matrix B is square, it should differ from matrix A
at least by name. That 1s, the product of a square matrix
and itself (say, matrix B times matrix B) cannot be ob-
tained with the use of this subprogram. SUBROUTINE MULT
(B,B,PROD,K,K,K) of this package is to be used to obtain
such a product in matrix PROD which is distinct from
matrix B.

In the following discussion concerning the three multi-

plication routines described so far, assume that matrices
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A and B are square and differ at least by name. For com-

patibility in matrix multiplication, they are necessarily
of the same size, say K rows by K columns.

The user, in this case, has a cﬂoice of subprograms as
indicated in the table below, the choice being governed

by the criterion of saving one, none, or both ‘the matrices.

To Save Use CALL Statement
Matrix A CALL POSTM(A,B,K,K,X)
Matrix B CALL PMULT(Z,B,K,K,X)
Neither matrix Either of the above two
" Both matrices CALL MULT(A,B,C,X,K,K)
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2.

12 SUBROUTINE RDCBC (A,M,N)
SUBROUTINE RDCOLG (&,M,N)
SUBROUTINE RDRBR (&,H,N)
SUBROUTINE RDROWG (A,M,N)

2.12.1 Function’
Values are read in from data cards for the elements of

matrix A which is of size M rows by N columns.

2.12.2 Development of the Subprogram

A, The FORMAT Declaration

For convenience in punching values, a field width of
10 columns for each piece of data is prescribed. Thus, 8
values can be punched per card. In brief, the FORMAT
used is (8F10.0).

This choice of FORMAT requires that the decimal point
be punched in the field unless it is to be assumed (by
the machine) to be at the end of the field.

On the CDC6400 it is permissible to punch data in E-
FORMAT also under the same FORMAT control. Care nmust,
however, be exercised to see that the exponent is placed
at the end of a field.

B. Order in Assigning Values

The order in which the values are assigned to the
elements depends on the user's choice of one of the four
routines. The details are given in the User's Guide

(Chapter 4).
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2.12.3 Limitations

The decimal point must.be pﬁnched in the field, unless
it is to be assumed to be at the end of the field. The
maximum number éf characters (digits plus the negative
sign, if any) in any data piece is limited to 10 if the

decimal point is not punched and to 9, otherwise.

2.12.4 Additional Remarks

If an element is to be assigned the value zero, the
corresponding data field may, at user's option, be left

blank. In this case, the machine actually assigns the

value -0.0 to the element.

SUBROUTINE RDCOLG(A,M,N) is the fastest of the four
routines since the transfer of data occurs, with its use,
in the natural order of storage of array elemeﬁts (in the
machine) without any interruptions. It is also the most

economical one in terms of field length fequirements (see

Section 3.4).
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2.13 SUBROUTINE SCMUL(A,M,N,X)

2.13.1 Function
Elements of the given matrix A of size M rows by N
columns are modified so that the fresh elements are X

times the original ones.

2.13.2 Development of the Subprogram

Each element of th@original matrix is multiplied by
the scalar X and the result stored back in the element
itself. The matrix is treated as a single-subscripted

array in the subprogram.

2.13.3 Limitations

The original matrix A is destroyed.
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2.14 SUBROUTINE SINV(A,DA,N)

2.14.1 Function

The matrix A, which is symmetric (size N roWs by N
columns) and positive-definite, is inverted and the in-
verse returned to the calliné program in matrix A itself.
The determinant of the original matrix A is computed and

returned in DA.

2.14.2 Development of the Subprogram

A. Introduction

In civil engineering applications, the matrices that
need to be inverted are, in general, symmetric or can be
rendered symmetric; e.g., stiffness matrix, flexibility
matrix. These matrices are also positive-definite.

If the features of symmetry and positive-definite
nature ére utilized in a program, the inversion process
can be speeded up, the comparison being with SUBROUTINE
MINV(A,N,DET,NEXCH) which can invert matrices that may be
symmetric or unsymmetric.

B. Procedure

The symmetric matrix A can be expressed in the form

A =AM T where )\ is a lower triangular matrix.
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The elements of X\ are given by (Appendix 1)

J-1 2 X

g, = Bg,g ‘Kzl J,x
L J-1
A = Ar 5= Apop A g for 127
I,d }\J'J ’ K=1 'K J,
rg,53 = O - for I<J
- -1 - - -
Froma = T, a1l (AT T7h = (aTHT Al

The inverse of a lower-triangular matrix is also lower-

triangular. If u = k—l, the elements of p are
(Appendix 1)
uI,J = 0 for I< J
. 1
LT - 1,1
1 I-1
o) = - = by A " for I>J
1,3 "1 geg L Fr,

Briefly, then, the procedure involves 1) factorization_

-1

of A into A\ and XT, 2) obtaining A and 3) forming the

product A HToa ™ o give 2"t

.The algorithﬁ below shows that these operations can be
accomplished within the space of the original matrix 1it-
self.

By symmetry, matrix A can be considered fully defined

if all the elements on and above the diagonal are known.

The space below the diagonal is hence available to store
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elements of matrix A . Since A is a lower triangular
matrix, all its elements above the diagonal have the
value 0.0 and these elements will therefore neither be
generated or stored.

Regarding the diagonal elements of matrix A, it is

fortunate that, once A is generated, A is no longer

I,I I,I

required and hence, it is possible to store A; ; in place
- 7

of AI,I for all I.

In fact, it is advantageous to store the reciprocal of
KI,I in place of AI,I’ since the diagonal elements will

1.T

then be elements of matrix (X"l) or of matrix (A l) .
Refer to the schematic representation of this process in
Figure 5.

The order of generating elements of matrix A is as

| _ Y
follows. First, hl,l is computed as A i 1+ Next, the
, N
other elements of column 1 are computed from
1
A = ) using the symmetry of matrix A

1,17 %71 Pt

(A = A ). For all J in the range (N-1)>J>2, the
1,1 I,1
diagonal element is computed first, and the other elements
of column J next. When J = N, only the diagonal element
needs to be computed.
The next step is to generate matrix X-l. The diagocnal
elements of matrix (K_l)T, which are the same as those of

matrix K—l,_are'already available. A is a lower trian-
gular matrix. Since matrix N occupies the lower half of

the matrix space at this stage and matrix A is no longer
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required, matrix (7\—1)T instead of matrix A1 is stored
in the upper half of the matrix space. Refer again to
the schematic representation. If now p = (A—l)T, the

elements of matrix §, which is upper-triangular, are

- >
uJ,I 0 for J>1I

!
Mo, 1 7 T 1

X I-1

_ X

= - for I>J
1,1 T T %7 M1, *3,x’ t

1 T
The off-diagonal elements of matrix (A l) are generated

in the subprogram, column by column.
-1. T .-
The product (A l) (A l) is next required. The result-

l, and the matrix A is no longer required.

ing matrix is A~
Matrix A”1 can hence be stored in the lower half of the
matrix space.,

For clarity, assume X = (K—l)¢, Y = (X"l) = xT
and z = A"l = LTy = xy .

Then |

N N
ZI,J = PN XI KYK J = K§1XI,KXJ,K since Y

Il
b
=3

Expansion of 2 J yields (for I >J)
14

I

Z +

1,5 = %1,1%5,0 Y X1, 2%5,2 F -+ X1 5X5,5

e +

X X + X. X +
I,3+17°0,3+1 R e O

X X +...+X X .
I,I+1°J3,I+1 I,NJ,N
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For L>M, X is zero, since X is an upper-triangular

L,M

matrix. Hence, for IZ\JL‘

X

z - 1 x%5,K

1,J

M=

K=I

Assume that the elements Z (elements of matrix A—l)

’

are generated row by row. The index I therefore varies
from 1 to N, while index J varies from 1 to I for each I.
A study of the following three expressions shows that, in

this scheme, once Z is generated, X is no longer
1,J J,I

required.

VA =

X_ X + oot X
1,J 1,1°0,1I _ X1 8%, N

X X
I,I+1 J,I+1

X +

Hence, 2 5.7 = ¥y 1Xg41,1% X1, 1+1%5+1, 1417 - -+ ¥1,5%0+1,1

and  Zp.y 3= X101, 141%0, 141 T Xre1,1e2%0, 142 T f1e1 o, w
Hence, XJ [ may be overwritten by the generated value
?
of Z1 3 each time. The result is matrix A—l.
) 4
, - T -
A A a™hH ATH
A A A AT?
/ e / //
"Elements Elements Elements Elements
1. T 1 T -1
of A of (A7) of A7) of A
Figure 5-
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C. Built-in Subprogram

The computations require summations of the form
IFIN ’

z Ap gAg; g on four different occasions. It is well-
K=INIT ! !
known that subprograms are used in such situations to save
coding and reduce the number of machine instructions.
Since, however, such a subprogram may not have.the same
degree of usefulness in other programs or subprograms, a
compromise is struck by incorporating this feature in the
subprogram itself in an indirect manner.

This specific area of calculations in the subprogram
is referenced whenever the required summations are to be
computed, through the use of unconditional GO TO state-
ments (analagous to CALL statements). The RETURN state-
ment of a regular subprogram is simulated by an assigned
GO TO statement, of which the control variable is INDEX.
This variable 1is assigned the suitable statement label
prior to each occasion when the area of the "built-in"
subprogram is referenced. The fouf variables I, J, INIT,
IFIN also need definition. The DO-loop indices themselves
are generally used to account for this feature.

D. The Determinant of the Original Matrix as a
By-Product

Since A = AAT, det(A) = det()).det(AT). HNoting that

a matrix and its transpose have the same determinant,

det (A) = det(Ar).det(A). Since A is a lower-triangular
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matrix, its determinant is merely the product of its dia-

gonal elements. The computatibn of det(a) is thus inci-

dental to the inversion process.

E. The Case of a 1 x 1 Matrix

If N = 1, many DO-loops in the routine would have their
ranges such as 2 to 1. The difficulty is avoided by test-
ing whether N equals 1 early in the routine and if so,

calculating det(A) and A"l directly.

2.14.3 Features
Although the inverse of a symmetric matrix is symmetric,

it is conceivable that a symmetric matrix inverted by the

use of SUBROUTINE MINV(A,N,DET,NEXCH) does not result in

a perfectly symmetric matrix due to machine round-off
errors.

This subprogram, however, utilizes the property of sym-
metry of matrix A and'hence, guarantees the symmetric
nature of its inverse.

The algorithm of this subprogram utilizes only the
elements on and above the diagonél of the original matrix
A. Hence , only these need be defined when using this

subprogram. The inverse will be fully defined in any case.

\
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2.14.4 Limitations

Matrix A must be symmetric and also positive-definite.
It is destroyed in the subprogram. The necessity of
matrix A being positive-definite requires some elabora-
tion. If det(A) = x , det(a) = x2. If.det(A) and hence
x2 are negative, x is imaginary. Since det(A) = x is the
product of the diagonal elements of matrix A, this imp-
lies that the number of imaginary diagonal elements of
matrix A is odd.

If det(A) is positive, but a submatrix of A has a
negative determinant, there will be an even number of
imaginary diagonal elements in matrix A .

If det(A) is zero, matrix A is singular and its
inverse has no definition.

All of which leads to thé conclusion that, if matrix A
is positive-definite, there will be no need to deal with
imaginary numbers. This restriction has, therefore, been
imposed in developing this subprogram and, in view of the
introductory remarks, is a justifiable one.

However, if matrix A is not positive-definite (and non-
singular), its inverse does exist and the additional prob-
lem is that of handling imaginary numbers. It is possible
to modify this subprogram without actually using complex
number routines. This has been done in another version

of this subprogram. An even more general subprogram
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employing pivoting during factorization of matrix A has

also been attempted. However, these are obviously longer
and slower in execution. They are not included in this

package.

2.14.5 Additional Remarks

In solving civil engineering problems, where the inver-
sion of either the flexibility matrix or the stiffness
matrix is involved, it is recommended that this subprogram
be used in preference to SUBROUTINE MINV (A,N,DET,NEXCH),
at least during the development stage of a program.

For, the use of this subprogram will prevent full exe-
cution if the matrix is not positive-definite. Logical
errors (or punching errors) in the generation of the
matrix are thereby indicated.

It is possible to rewrite this subprogram using only
about half the matrix space (upper or lower triangle plus
the diagonal). In such a case, it is suspected that the
maximum use of the buiit—in subprpgram may not be feasible.
Further, a partial definition of the inverse is of

guestionable benefit.
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2.15 SUBROUTINE SOLVE(A,B,N,L,DET)

2.15.1 Function

A system of linear simultaneous equations is solved.

2.15.2 Development of the Subprogram

A. Procedure
The system solved is AX = B. The dimensions of the

matrices are as under.

Matrix : Size
Coefficient Matrix A N rows by N columns
Right-Hand Side B N rows by L columns

Only the spaces of matrices A and B are used and the
solution matrix X is returned in matrix B.

Matrix A is reduced to an upper-triangular matrix in
essentially the same manner as in SUBROUTINE DETMT(A,DA,N).
The only major difference is that, instead of column ex-
changes, row exchanges are made, if neceésary, in this
,subprogram. This variation is required in order to pre-
serve the correct order of the elements in the columns of
the solution matrix X. |

The reduction process is equivalent to forming suitable
linear combinations of the original set of equations.
Representing these operations as a set of elementary row
transformations given by T, we have, TAX = TB. Hence,

matrix B also needs modification in the same manner.
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At the conclusion of the reduction process, the

simultaneous equations have the form -

Al’l Allz LI I ] Al’N'
A2,2 s 0o 0 N A2,N _
A .o A .
I,I I,N
A A
(Zeroes) N-1,N-1 "N-1,N
A
N,N _|
- - -
CRRIESTRIREE o Bk
e o @ X2,K LY s 0 0 B2,K o s
- X . .. B s e
I,K = I,
* o e X . * 0
N-1,K N-1,K
.- XN,K - - - BN,K . s

Starting with the last row and‘assuming that a typical

column K of matrix X is being generated,

X = B . Hence X, =

A
N,N"N,K N, K /A

B
N,K N,k °N,N
An-1,8-1%w-1,k t An-1,5%N8,K = BN-1,K

Hence, XN—l,K =(BN—1,K - AN_llNXN,K)/AN—l,N—l
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For 1 £ I < N-1,

+ X +...+ A X = B
AI,IXI,K AI,I+1 I+1,K I,N'N,K I,K
Hence,
N
X = (B - ¥ A X ) /A
I,K I,K T=I+1 I,J.J,K I,I

It is interesting to note the order in whiéh the
elements of a column of the solution matrix X are
generated. The last element is generated first and the
first generated last. The process is hence generally
referred to as back-substitution.

Since BI,K is not required after XI,K is generated, it

is possible to store matrix X in matrix B.

B. The Determinant of the Coefficient Matrix as a

By-Product

The generation of this quantity is incidental to the
reduction process. Since the original matrix A has been
(upper) triangulated, the determinant is given by the

product of the diagonal elements of the reduced matrix A,

C. The Special Case of N =1

In this case, some DO-loops would have the range 1 to
0. The difficulty is avoided by branching out early in the

subprogram to make the evident direct calculations to get

final results.
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2.15.3 Limitations

The original matrices A and B are destroyed.

2.16.1 Function

3 2.16 SUBROUTINE SQTR(A,N)
3 The transpose of the squarelmatrix A of size N rows by

N columns is returned to the calling vrogram in matrix A

itself.

2.16.2 Development of the Subprogram

A general rectangular matrix A of size M rows by N col-
umns and its transpose, matrix B of size N rows by M
j columns differ in dimensions. If, however, matrix A is
sguare, its transpose also has the same dimensions. It
is, therefore, possible to transpose a square matrix in
its own space.

If N = 1, the matrix and its transpose are identical
and control is merely returned to the calling program in

this case.

The transpose operation does not affect the values of

j the diagonal elements. These are, therefore, never re-
] ferenced in the subprogram.
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Figure 6.

The matrix is treated as a single-subscripted array.
In Figure 6, consider the element in row K of column 1.
Proceeding parallel to the main diagonal from this element,
the subsequent elements (of the matrix when treated as a
single-subscripted array) have subscripts in increments
of N+1 and the last element has the subscript NZ—N*(K—l).
The elements of the lower triangle can thus be referenced
using t&o DO-loops, one with index K for elements in
column 1, and the other with index L (for a specific K)
for elements parallel to the main diagonal.

For a typical element with subscript L in the lower
triangle, the matching element}in the upper triangle has
the subscript L+INCR, where INCR = (K-1)#*(N-l1). These

elements are exchanged.

2.16.3 Features

The matrix is transposed in its own space.
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2.16.4 Limitations

The matrix must be square. The original matrix is

destroyed.

.17 SUBROUTINE SUB(A,B,C,M,N)

2.17.1 Function
Matrix B is subtracted from matrix A and the result
returned to the calling program in matrix C. - C = A-B,

Each matrix is of size M rows by N columns.

2.17.2 Development of the Subprogram

In algebraic terms, C = A B

I,J 1,3 "1,J°
is hence the same as SUBROUTINE ADD(A,B,C,M,N), except for

This subprogram

the sign. The matrices are treated as single-subscripted

arrays in the subprogram.

2.17.3 Additional Remarks

The resultant matrix C can be stored in either of the
original matrices (say B). In this case, the original

matrix (matrix B) will be destfoyed.
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2.18 SUBROUTINE TMULT(A,B,C,L,M,N)

2.18.1 Function

The transpose of métrix A (A is of size L rows by M
columns) 1is pos£—multiplied by matrix B (size L rows by
N columns) to give matrix C (size M rows by N columns).

c = ATB. '

2.18.2 Development of the Subprogram

In civil engineering applications, products of the
type ATB are required in computations quite often. Using
two of the subprograms in this package, the product may
be obtained as follows.

CALL TRANS(A,TEMP,L,M)

CALL MULT (TEMP,B,C,M,L,N)
Suéh an approach requires a temporary matrix TEMP of size
M rows by L columns. The transpose operation, as well as
the storage required for TEMP, may be saved by a slight
modification of the mﬁltiplication routine.

Assume that AT = TEMP and [TEMP]-[B] = C. An element

of C is then defined by

L
C = ¥ TEMP + B
I,Jd K=1 "I,K K,J
L T
= - . 3 — ni
ol AK,I BK,J by virtue of A TEMP.

This formulation shows that matrix TEMP does not need

either generation or storage.
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2.18.3 Limitations

The product matrix C should be distinct from matrices

A and B. However, matrices A and B may be identical.

2.19 SUBROUTINE TRANS (A,B,M,N)

2.19.1 Function
The transpose of matrix A (size M rows by N columns)
is made available to the calling program as matrix B

(size N rows by M columns).

2.19.2 Development of the Subprogram

The subprogram utilizes the property By 1
7

2.1%9.3 Limitations

If matrix A is square, its transpose (matrix B) is also
square. However, if they do not differ by name, the re-
sulting matrix will- always be symmetric. Hence, the

matrices should be distinct from each other in every case.

2.19.4 Additional Remarks

SUBROUTINE SQTR(A,N) is more efficient than this sub-
program in terms of memory space if a square matrix is to

be transposed and the original matrix may be destroyed.
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.20 SUBRQUTINE XABATC(A,B,C,L,M1,X)

SUBROUTINE XABTA (A,B,L,N,X)

SUBROUTINE XABTC (A,B,C,L,M,N)

SUBROUTINE XATBAC(A,B,C,L,M,X)

SUBROUTINE XATBB (A,B,L,N,X)

2.20,1 Function

Products of matrices i) C = ABAT, ii) A = AB

T

T

14

iii) ¢ = aBT, iv) ¢ = A'BA and v) B = ATB are obtained.

2.20.2 Development of the Subprograms

The concepts used in the earlier multiplication rou-
tines from the bases for the development of this set also.
The dimensions of the matrices are as noted in the User's

Guide (Chapter 4) for the several routines.

2.20.3 Additional Remarks

i) The multiplication routines of this package ([barring
SUBROUTINE SCMUL(A,M,N,X)] may be classified into three

groups as under:

Group 1 Group 2

MULT (C = AB) PMULT (A = AB)
POSTM (B = AB)
TMULT (C = ATB) XATBB (B = ATB)
XABTC (C = ABT) XABTA (A = ABT)
Group. 3
XABATC (C = ABAT)
XATBAC (C = ATBA)
_85...
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a. Groups 1 and 2 have the following features:

Product
Matrix

Dimen-
sions

Matrix
Dest~-
royed

Vector
X

Speed
of Exe-
cution

Memory

Require-

ment

(Arrays)

Group 1

Storage is in a matrix
C which is distinct from
both the original matri-
ces A and B in every
case (that is, even if
one or both the original
matrices match the pro-
duct matrix in size).

All the matrices are as-
sumed to be rectangular
(some or all of them may,
however, be square).

None

Vector X is not
required.

Faster

More

Group 2

Storage is in one of the
matrices A or B, as indi-
cated in the above nota-
tions.

Matrix A must be square,
if the product is stored
in matrix B, and vice ver-
sa (both the matrices may,
however, be square).

The original matrix that
bears the name of the pro-
duct matrix finally (or,
in other words, the matrix
that is not assumed to be
sqguare) is destroyed.

Vector X is of size NS
elements if the sguare
matrix is of size NS rows
by NS columns.

Slower, because of the ad-
ditional operation of re-
placement of a column or

a row by vector X.

Less, since vector X will
suffice instead of a
matrix.

b. Group 3 has the following features.

Matrix B must be square as well as symmetric.

A vector X

of size NS elements, if matrix B is of size NS rows by NS

columns, is required.

Matrix A may be rectangular or square.

The product matrix C is distinct from both the matrices A
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and B (even if matrix A 1is square). Matrix C is square as
well as symmetric. The original matrices A and B are not

destroyed in the subprograms.

ii) Other Products. Products as indicated on the left Of

the following table may be obtained by the set of CALL
statements on the right, provided both the matrices A and

B are square (the original matrix B need not be symmetric

in any of these cases). All the matrices are assumed to
be of size N rows by N columns. Vector X is of size N
elements.
Product CALL Statements
a. A = ATB CALL SQTR (A, V)
CALL PMULT(A,B,N,N,X)
b. B = ABT CALL  SQTR(B,N)
CALL POST™M(A,B,N,N,X)
c. A = ATBA CALL XATBB(A,B,N,N,X)
CALL POSTM(B,A,N,N,X)
d. B = ATBA CALL XATBB(A,B,N,N,X)
CALL, PMULT(B,A,N,N,X)
e, A = ABAT CALL XABTA(B,A,N,N,X)
CALL PMULT(A,B,N,N,X)
f. B = ABAT CALL POSTM(A,B,N,N,X)

CALL XABTA(B,A,N,N,X)

In items c and e above, the original matrix B is des-
troyed, even though the final product is formed in matrix
A. The original matrix A is not destroyed when the final

product is in matrix B.
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3. GENERAL NOTES

3.1 COMiiON Block Labelled IYENGAR

A. Purpose |

In normal usage, a COMMON block establishes the required
correspondence amongst the variables in the routines sharing
the block. Values of the variables are thus transmitted
from one routine to another.

The purpose of the block in this package is totally dif-
ferent. It merely serves as a means to esconomize on the
memory space requirements for the temporary variables used
in the several subprograms.

SUBROUTINE OUTE(A,I,J,TITLE,TITEL) with ENTRY OUTF and
ENTRY OUTG uses 14 temporary variables, and this is the maxi-
mum number required in any routine [with the exception of
SUBROUTINE EV(A,S,N) which will be treated as a special case
later in this discussionl. Consider, next, SUBROUTINE SINV
(A,DA,N) which requires 9 temporary variables. Together,
these two routines would need 23 locations in memory for
these variables.

Assume, now, the existence of a COMMON block 14 words long,
the length corresponding to the maximum number of temporary
variables in any routine. Let each set of temporary vari-
ables in the two routines belong to this block. Then, 14
locations will suffice for the variables, whereas previously

23 were required. The advantage 1is even more pronounced
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if the principle is extended by specifying that the temporary
variables of each routine in the entire package belong to the
séme COMMON block. The same 14 locations still suffice for
all the temporary variables, as against 131 which would have
been required without the use of the COMMON block. (To main-
tain the length of the block at 14 in each subprogram, a
filler array Y of variable size is used wherever necessary.)
Regarding the values associated with the variables, it is
immaterial whether these variables belong to the COMMON
block or not. This is because of the nature of the variables
themselves. They get defined in a subprogram before actual
use in the subprogram. The values they finally attain, at
the time of exit from the subprogram, are iﬁconsequential to
any other subprogram since they get redefined before use in
that subprogram.

' SUBROUTINE EV (A,S,N) actually usés more than 18 temporary
variaBles by name. The number is reduced to 18 through the
use of an EQUIVALENCE declaration. Of these, 14 are inc-
luded in the COMIMON block. The other four variables FN, IWND,
THRI and THRF are not. Recall that this subprogram has an
ENTRY IEV statement for improvement of eigenvalﬁes and eigen-
vectors. Assume that SUBRCUTINE EV(A,S,N) has. been CALL-ed
in the calling progiam. Then, the four variables listed
have some values in the subprogram at the time of exit from

the subprogram. These values need to be preserved for a sub-
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sequent improvement procedure, if any. The calling program
may use the improvement procedure immediately (that is,
before CALL-ing other subvrograms). There is no special
problem if it does. If not, assume that other subprograms
in this package will be used by‘the calling program before
the improvement procedure. In such a situation, these vari-
ables (whose values are not regenerated during the improve-
ment phase) will be . affected in values if they are included
in the COMMON block. Their values are preserved by excluding
them from the block.

Finally, therefore, 18 memory locations are required for

the temporary variables in the entire package.

B. COMMON Block Label

COMMON blocks may or may not have labels (or numbers).
The name biank COMMON applies if the block has no label (or
number). Else, the block is a labelled (or numbered) COMMON
block.

If blank COMMON were used in this package, the user would
be unable to specify another independent blank COMMON block
of variablés of his own choice in the main program and other
(user's) subprograms, since there can exist only one blank
COMMON block in a program.

Labelled (or numbered) COMMON blocks can be numerous, the

maximum number depending on the machine used. (In CDC 6400 at
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Lehigh, the number of labelled and numbered COMON blocks is
limited to 61). One requirement of these blocks is that each
label (or number) used in a program must be unique.

The originator of this package has chosen his last name
for the label in the justifiable hope that a general user
will not dream up this identical label for any of his label-
led COMMON blocks. All the same, it is necessary to emphasize
that the label IYENGAR should be considered taboo by the user
for any of his labelled COMMON blocks when using this package.
If the label is used, the variables listed by the user in the
block may get redefined with each CALL to a subprogram of

this package.

-9]-



i

USE OF VARIABLE (ADJUSTABLE) DIMENSIONS

3.2.1 Adopted Procedure

In this package, the dimensions of all arrays used in
the subprogramsafe adjustable dimensions. The motivation
for this approach is éxplained in what follows. .
A primary rule in communication between the- calling .
program and the called subprogram is that the row dimen- .
sions of all double-subscripted arrays which are arguments
must match exactly in both routines. This follows from
the fact that double-subscripted arrays are stored column
by column in the machine.
Consider SUBROUTINE MULT(2A,B,C,L,M,N) as an example for
discussion in the rest of this section, Sec. 3.2.
The dimensions of arrays A, B and C are specified in
the subprogram by the declaration
REAL A(L,M),B(M,N);C(L,N)
If, in the calling program, a matrix A (of size 10 rows
by 15 columns) is to be postmultiplied by a matrix B (of
size 15 rows by 20 columns) to give the product matrix C
(of size 10 rows by 20 columns), the proper declaration
in the calling program is
REAL A(10,15),B(15,20),C(10,20)
and the corresponding CALL statement is
CALL MULT(A,B,C,10,15,20)

In this case, the dimensions match automatically. Note
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that the array sizes chosen are exact. Under-dimensioning
will not work in any scheme, and over-dimensioning does not
permit suitable matching since double-subscripted arrays

are involved.

3.2.2 A Limitation of the Adopted Procedure

Occasionally, a matrix with the same name but of dif-
ferent sizes needs to be used in a calling program. The
dimension declaration in such a case must obviocusly account
for at least the maximum size of the matrix. (Note that a
subscripted variable can be dimensioned only once in a
programn. )

As an example, matrix A may vary in size, say, from 2
rows by 3 columns to 10 rows by 15 columns. Then the di-
mension declaration is

REAL A{(10,15)

Assuming that there are other similar matrices, the dec—

laration may be

REAL A(10,15),B(15,20) ,C(10,20)
No difficulty is experienced if the problem to be solved
involves the maximum dimensions; e.g., CALL MULT(A,B,C,10,
15,20). However, when solving problems using dimensions
less than the prescribed maximum dimensions, the sizes will
not match. For example,

CALL MULT (A,B,C,6,9,12)

implies that, in the subprogram, matrix A has dimensions

-93-



400.4

6 rows by 9 columns, whereas in the calling program it has
been dimensioned for size LO rows by 15 columns.

To rectify the situation, the subprograms themselves
need to be modified slightly as suggested in the following

subsection.

3.2.3 Suggestion for Modification by the User

If array sizes are variable in the calling program, the
required subprograms may be modified on the following lines.
The dimension declaration for the arrays in the calling
program should correspond to (at least) the maximum size
of each array in the program.
As an example,
REAL A(10,15), B(15,20),C(10,20)
For matching the arrays in the subprograms and specifying
the particular sizes to be operated on, the following.is a
suitable set of statements.
In the calling program,
CALL MULT (A,10,B,15,C,10,6,9,12)
In the subprogran, |
SUBROUTINE MULT (A,NRA,B,NRB,C,NRC,L,M,N)
REAL A(NRA,1),B(NRB,1l),C(NRC,1)
Recall tﬁat whenever variable dimensioning is used in
subprograms, the array names as well as the variables
which represent the dimensions must be formal parameters.

The last three parameters in the argument lists represent
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the sizes of the matrices to be operated on. The rest pre-
scribe the array names and maximum row dimensions.

The modified ﬁorm is obviously suitable even if the
sizes are not variable in the calling program. Hence, an
additional advantage of this procedure is that the user
may choose suitable maximum dimensions for matrices in a
program for solving problems of a particular type. The di-
mension declaration, in such a case, needs nolfurther at-
tention from problem to problem. However, it is worthwhile
to remember that memory space is wasted when problems that
do not involve maximum dimensions are solved.

The disadvantages of this procedure, attributable to
the longer argument list, are these:

1. Mistakes in matching arguments in CALL statements

. are more likely.

2. There is a loss of efficiéncy since addresses of
a larger number of arguments need to be passed
back and forth by the system.

In the authors' opinion, the disadvantages outweigh the
advantages. Also, the additional type of problem covered

by the modified procedure is of infrequent occurrence.

3.2.4 A Special Procedure

A few users have violated the rule of matching dimen-
sions and used the earlier version (FCMXPK) of this package

successfully without any modifications.
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The procedure is stated here only for the sake of comp-

leteness of this discussion on variable dimensions. It 1is
not recommended for generai use as special care needs to
be exercised in programming.

.Assuming that the requiredAmatrices are overdimensioned,
the matrices in this procedure are defined through the use
of relevant subprograms only. As an example,

REAL A(l0,15),B(15,20),C(10,20)
CALL RDROWG (A,6,9)
CALL RDROWG (B,9,12)
Here, 54 elements of matrix A and 108 elements of matrix
B get defined. The sequence of storage of the elements in
this case, alﬁhough not unpredictable, is dependent on the
extent of over-dimensioning and will hence change with each
problem. For the sake of brevity, the elements may be said
to be in "wrong" locations. If, now, CALL MULT (A,B,C,6,
9,12) is used, the machine again refers to the same wrong
locations of elements in matrices A and B. Since this is,
however, a consistent process in the machine, matrix C will
have proper values but its elements are again stored in
some other wrong locations.
The importance of printing each array through the use
of other subprograms is, by now, evident. In these sub-
programs, the machine again refers to the same wrong loca-

tions and the printed values will therefore be right.
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In short, this procedure will be successful if the main
program always CALL-s the relevant subprograms whenever
arrays are to be defined through reading in data from cards,
operated on, or brinted.

Wastage of memory space can be considerable if the
special procedure is adopted in solving problems where the
sizes of the matrices in the calling program remain statio-

nary. .
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3.3 RESERVED NAMES

When executing a FORTRAN main program with several sub-
programs, it is essential that each of these bear a unique
name so that the machine does not get “confused". The rules
of operation vary with each (maéhine) system when this re-
quirement is violated. In the following, the discussion
applies to the CDC 6400 installation at the Lehigh University
Computing Center. |

If more than one routine by the same name is loaded in
the machine, the one that was loaded first is recognized by
the machine as the one meant for use*% Assume that this pack-
age is loaded first in the machine and the uéer's subprogram
SUBROUTINE SOLVE (X,Y,Z2) is loaded subsequently. Since the
matrix package was loaded first and contains a subprogram
SUBROUTINE -SOLVE (A,B,N,L,DET), the user's subprogram
SUBROUTINE SOLVE (X,Y,Z) will be ignored during execution.

If this is the intention, there is no problem.

The converse is equally true. If the user's subprogram
is loaded first, the subprogram SUBROUTINE SOLVE (A,B,N,L,DET)
of the matrix package will be ignored.

Hence, it is best ﬁo treat all the 30 names used for the
routines in this package as reserved names, and choose other

names for the user's program and subprograms.

*For loading sequence, see User's Guide (Section 4.4).
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Further, it is obligatory that the name of every variable
used in a routine differ from the name of any subprogram
CALL-ed by the routine.

(A reminder -- the name IYENGAR is a reserved name when

labelling COMMON blocks.)
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3.4 SUBPROGRAM LENGTHS

The length of each subprogram in octal numbers, using the

RUN and FTN compilers of the CDC 6400 installation at Lehigh,

is indicated below. Small variations in these numbers are

likely with periodic revisions to the compilers.

of the COMMON block is 16,.

8
S1l.No. Subprogram

1 ADD

2 DETMT

3 DIAG

4 EV (IEV)

5 GEVP

6 MINV

7 MOVE

8 MULT :

9 OUTE (OUTF,OUTG)
10 PMULT

11 POSTM

12 RDCBC

13 RDCOLG

14 RDRBR

15 RDROWG

16 SCMUL

17 SINV

18 SOLVE

19 SQTR

20 SUB

21 TMULT

22 TRANS

23 XABATC

24 XABTA

25 XABTC

26 XATBAC

27 XATBB

COMMON block
TOTAL 3

RUN

31
141
33
405
146
230
26
53
233
63
62
46
27
46
50
24
217
265
50
31
53
36
105
64

54.

102
62

16

555

The length

Length (octal)
FTN (OPT=2)

42
221
43
364
215
254
37
77
224
105
101
52
34
52
52
40
255
362
65
42
103
57
130
102
74
131
104

16

4436

[The earlier version (FCMXPK) required 42658 words (RUN)

and had fewer routines,]
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The package uses two routines, SQRT and ABS, available in

the machine.

The following notes are especially for users of the
CDC 6400 at Lehigh.

Although this package may be catalogued as one unit on a
permanent file, it is not necessary to load the éntire pack-
age each time the file is attached. Selection of routines
is possible through the use of control cards (COPY routines)
such as COPYN, to minimize field length requirements for the

2) ) '
.( Note, however, that if SUBROUTINE GEVP (A,B,S,T,N)

job
is selected, other routines as mentionéd in .the User's Guide
(Chapter 4) must also be selected.

SUBROUTINE OUTE (A,I,J,TITLE, TITEL) must be selected if
any of the three print routines (OUTE,QOUTF,QUTG) is required
by a calliﬂg program.

Selection of SUBROUTINE EV (A,S,N) assures the avail-

ability of the associated ENTRY IEV.

Finally, such selection by the user may become unnecessary
in due course, because it is anticipated that the loader it-
self will be modified to select routines, as required, for

(3)

each job.
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3.5 TEMPORARY VECTORS

A few subprograms of this package require the use of tem-
porary vectors to stofe intermediate values.in computations.
The matching vectors in the calling program must obviously
be dimensioned. Such vectors, if they have been defined in
the calling program, will be destroyed in the subprograms.

It is sufficient to provide for only one temporary vector
in the calling program, even if it uses more than one sub-
program of the above type. The vector should be dimensioned

for the maximum size required in the use of all such subpro-

~grams. It may then be used repeatedly in all the correspond-

ing CALL statements. (Alternately, the several vectors that
result may be EQUIVALENCE-d at their starting addresses to
save memory space.)

SUBROUTINE GEVP(A,B,S,T,N), in this regard, is a special
case. It requires fhe use of a temporary matrix S in addi-
tion to that of a temporary vector T. In the calling program,
matrix S may be matched either by a matrix or by a vector of
N*N elements. Assuming matrix S is matched by a vector, the
two vectors corresponding to S and T must be independent of
each other in the calling program. In other words, they do

not share the same memory locations.
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3.6 Features of the CDC 6400

The routines in this package were developed using the
CDC 6400 computer at Lehigh. Some of the féatures of this
machine are noted below, since minor modifications may be
necessary when this package is used in other machines.

1. The name of a variable, routine, label etc., is
limited to 7 characters.

In this package, only the COMMON block label (IYENGAR)
is 7 characters long. All other names used are shorter.

2. On the line printer, a maximum of 135 characters (not
counting the carriage control character in column 1) can be
printed on a line.

Practically full advantage of this feature is taken
in the output routines of this package.

3. An ENTRY statement has no associated argument list.
However, in the CALL statement corresponding to the ENTRY
statement, the argument list (if any) of the routine in which
the ENTRY statement appears must be matched.

Example: CALL IEV(A,S,N)

4, Conversion of an integer to its real form may be done
by an assignment statement across the equality sign.

See line 34 of the coding in SUBROUTINE EV(A,S,N)

5. The length of each computer word is 60 bits. Hence,
it is possible to store 10 alphanumeric characters in each

word.
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A maximum of 20 characters may thus be used to match the
two variables TITLE and TITEL in ﬁhe output routines of this
package. The other entities in these routines using the same
feature are arrays Y and IV, and the A—field in the FORMAT

statement.

3.7 Use of Single Subscripts in Selected Routines

In only a few routines, the (double~-subscripted) matrices
are treated as single-subscripted arrays. These are some of
the simpler routines which could be so written with the ad-
vantages of saving memory space and execution time. Trials
with a few other routines showed that such ﬁodifications lead
to one of the advantages at the expense of the other, the
execution time being more generally the item hurt. Further

(

probing in 'this area seems warranted.
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4. USER'S GUIDE

4.1 INTRODUCTION

The subprograms in this package were developed by Mr.
Sampath Iyengar of the Computer Systems Group in Fritz Engi-
neering Laboratory, for use by members of the Laboratory.
Dr. C. N. Kostem is the Chairman of the Computer Systems
Group.

This version supersedes the earlier one (FCMXPK - Fortran
Callable Matrix Package) which will be withdrawn by a date to
be specified. Mr. Edward T. Manning, Jr. was associated
with Mr. Iyengar in the development of FCMXPK.

In this Guide, only a brief description of the function,
limitations and requirements of each subprogram is included.
More detailed information on how the subprograms were de-
veloped are available in Chapters 2 and 3.

The package includes routines for matrix manipulation as

under:
OPERATION SUBPROGRAM
Add matrices ADD
Determinant of matrix "DETMT, MINV, SINV, SOLVE
Create Diagonal matrix DIAG
Eigenvalues of symmetric matrices EV, IEV, GEVP
Invert matrix MINV, SINV
Copy matrix MOVE
Multiply matrices MmuLT, PMULT, POSTM, SCMUL,

: TMULT, XABATC, XABTA,

: . ~ XABTC, XATBAC, XATBB
Print matrix OUTE, OUTF, OUTG
Read matrix RDCBC, RDCOLG, RDRBR,
' RDROWG '

Simultaneous equations SOLVE
Transpose matrix SQTR, TRANS
Subtract matrices SUB
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4.2 GENERAL LIMITATIONS

The subprograms do not provide-any diagnostics 1if opera-
tions which are not possible mathematically, such as inver-
sion of a singular‘matrix, are attempted. The requirements
of the subprograms are not tested prior to or during execu-
tion and hence, when the requirements are violated, the
answers obtained are, in general, unpredictable and wrong.

Only ‘the following subprpgrams provide printouts:

i) SUBROUTINE OUTE (A,I,J,TITLE,TITEL)
ii) SUBROUTINE OUTF (A,I,J,TITLE,TITEL)
iii) SUBROUTINE OUTG (A,I,J,TITLE,TITEL)

SUBROUTINE RDCBC (A,M,N), SUBROUTINE RDCOLG (A,M,N), SUB-
ROUTINE RDRBR (A,M,N) and SUBROUTINE RDROWG (A,M,N) enable
reading in values from data cards for the matrix A. All
others are "calculation" subprograms.

In all the subprograms, "variable" or "adjustable" dimen-
sions are used for the several arrays. The user must, there-

fore, prescribe exact dimensions for all his arrays to be

handled by this package. Overdimensioning, except under
special circumstances of usage (Chapter 3), may lead to wroeng
results. Underdimensioning invariably produces wrong results
or aborts the execution of the program.

For Input-Output operations, card input and printer output
are assumed.

The limitations on the sizes of the matrices that can be
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handled are not due to any feature in programming involved in
this package but due to the capacity of the machine used.
The label IYENGAR may not be used in the'user'é program
for any of his labelled COMON blocks. Similarly, the names
of routines in this package may.not be used in the user's pro-

gram for his program or any of the subprograms.

4.3 DISCLAIMER

The burden of proof on the validity and applicability of
this package to a particular problem rests with the user, and
not the authors. ©No guarantee is stated or implied that the
package will give correct results, or that the mathematical
relations and assumptions used are proper and applicable to
the problem under consideration by the user. The authors
cannot be held responsible for incorrect results or damages
resulting from the use of the package, although it is be-
lieved that the package is correctly formulated.

The authors welcome suggestions for improvements and
notice of any errors. If a correctiqn is possible and imp-
lemented, proper publicity will bé given to the revised
status of the package. Else, the concerned subprogram will

be withdrawn.

4.4 DECK SETUP

This package is expected to be available as a permanent

file at Lehigh University Computing Center, in due course.
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At the present time, a prospective user who belongs to Fritz
Laboratory may borrow a binary deck and make his own copy.
Interested users will please contact the authors.

A sample deck setup, using the binary deck, is as follows:

Job Card ...

RUN (S)

LOAD (INPUT)

LGO.

7/8/9

User's FORTRAN Program with Subprograms, if any

7/8/9
Binary Deck (FLMXPK)

7/8/9
Data, if any
6/7/8/9
The matrix package will be loaded first and the user's

program next. To reverse the order, replace thecontrol cards

LOAD (INPUT) and LGO. by LOAD(LGO) and INPUT., respectively.

4.5 DESCRIPTION OF THE SUBPROGRAMS

From the user's viewpoint, there are, in all, 30 routines
in this package. These will be described in alphabetical
order under the following headings:

a. Function:

b. Calling Program:

i) Dimensions: Those that are required in the calling

program,
If the calling pfogram is the main program, the di-
mensions must be stated in terms of absolute numbers,

such as
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ii)

REAL A (10, 15). If it is a subprogram, the dimension
statement is either of the same form or of the form
REAL A (M,N) whefe M'and N have been defined through
operationsiprior to the use of the subprogram. (The
user is obliged, in the latter instance, to include
A, M and N in the argument list of his subprogram.)

All the subscripted variables handled by this

package are "real" variables. [The solitary excep-

tion, vector NEXCH in SUBROUTINE MINV (A,N,DET,NEXCH) '
needs ho special consideration by the user,] Mistakes
often occur when this fact is overlooked and the user
prescribes ah "integer" name for what is clearly an
array of "real" variables. An example from civil
engineering is to refer to the stiffness matrix as K
without a corresponding TYPE statement. An easy solu-
tion is to dimension the arrays in a TYPE statement
such as REAL K (20,20), TEMP (20). An advaﬁtage here
is that the user has a free choice of names. Further,
a separate DIMENSION statement need not be (in fact,
should not be) provided. Inclusion in the TYPE
statement of names of arrays which are "real" even
without a TYPE statement, like TEMP in the example,
does not hurt in any way.

Definitions: Arrays and variables that must be

defined prior to or in the CALL statement.
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N iii) Values Returned to the Calling Program:
j c. Limitations (if any):A
j The general limitations mentioned in Sectioﬁ 4.2 will
- ngt be repeated.

c. or d. Additional Notes (if any):

c. or d. or e. Examples of CALL Statement:

B 4.5.1 SUBROUTINE ADD (A,B,C,M,N)

a. Function:
Add matrices A and B and store the sum in matrix C.
{(C = A+ B).

2 b. Calling Program:

i) Each matrix is of size M rows by N columns.

ii) Matrices A and B, as well as integers M and N, must

be defined.
iii) Matrix C is defined in the subprogram.

c. Additional HNotes:

} : The resultant matrix may be stored in one of the
original matrices. Only in such a case, the specific
original matrix will be destrofed.

1 d. Examples:

i) caLL app (A,B,C,M,N)

ii) caLL App (A,B,C,15,20)

iii) cALL ADD (A,B,A,10,15)
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4.5.2  SUBROUTINE DETMT (A,DA,N)

a. Function:

The determinant of the given (square) matrix A is made

available to the calling program as DA. DA = det(a).

b. Calling Program:

i) Matrix A is of size N rows by N columns.
ii) Matrix A and integer N should be defined._
iii) DA is defined in the subprogram.

c. Limitations:

The original matrix A is destroyed.
d. Examples:
i) CALL DETMT (A,DA,N)

ii) CALL DETMT (ARRAY,DET,20)

.5.3 SUBROUTINE DIAG (A,DA,N)

a. Function:

A diagonal matrix A is generated as follows:
Each diagonal element has the value DA, and each off-
diagonal element has the value zero;

b. Calling Program:

i) Matrix A is of size N rows by N columns.

ii) The value of the diagonal element DA and integer N

nust be defined.

iii) Matrix A is defined in the subprogram.
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C. Examoies:A
i) CALL DIAG (A,DA,N)
ii) CALL DIAG (A,l.O,lS)

iii) CALL DIAG (ARRAY,DE,NSIZE)

4.5.4 SUBROUTINE EV (A&,S,N)

a. Function:
Eigenvalues and eigenvectors of the symmetric matrix A
are cdmputed.

b. Calling Program:

i) Matrices A and S are of size N rows by N columns.
ii) Matrix A and integer N must be defined.

iii) On return to the calling program, matrix A has, for
its diagonal elements, the eigenvalues of the origi-
nal matrix A and matrix S has, for its coiumns, the
corresponding eigenvectors.

c. Limitations:

The original matrix A must be symmetric. It will be
destroyed in the subprogram, as the eigenvalues are re-
turned in the same matrix.

d. Additional Notes:

The eigenvalues and eigenvectors may be improved
further, if so desired, by using SUBROUTINE IEV (A,S,N}.
e. Examples:

i) CALL EV (A,S,N)

ii) CALL EV (ARRAY,EVEC,10)
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4,5.5 SUBROUTINE GEVP (A,B,S,T,N)

a. Function:

Eigenvalues and eigenvéctors of the given matrix A
where [A] {X} =A[B] {X} are computed. Both the matrices
A and B are symmetric, and fﬁrther matrix B is also
positive—definite;

b. Calling Program:

i) Matrices A, B and S are of size N rows by N columns.
T is a vector of size N elements.
ii) Matrices A and B, as well as integer N, should be
defined.

iii) The eigenvalues are returned as the diagonal elements
of matrix A and the corresponding eigenvectors as the
columns of matrix B. Matrix S and vector T are used
for storing some intermediate values in computations.

c. Limitations:

Matrices A and B.must be symmetric. Matrix B must also
be positive-definite. Both the original matrices A and B
are destroyed in the subprogram.
The following subprograms of this package must be
available and loaded when this subprogram is used:
i) SUBROUTINE EV (A,S,N)
ii) SUBROUTINE MULT (A,B,C,L,M,N)

iii) SUBROUTINE POSTM (A,B,X,L,X)
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d. Examples:
i) CALL GEVP (A,B,S,T,N)

ii) CALL GEVP (EVAL,EVEC,S,TEMP,10)

4.5.6 SUBROUTINE IEV (A,S,N)

a. Punction:
Eigenvalues and eigenvectors of the symmetric matrix A
computed by the use of SUBROUTINE EV (A,S,N) are improved.

b. Calling Program:

Same as in SUBROUTINE EV (A,S,N).

c. Limitations:

Same as in SUBROUTINE EV (A,S,N).

d. Additional Notes:

The accuracy of calculations in SUBROUTINE EV (A,S,N)
is prescribed according to the following scheme. The
square root of the sum of the squares of the elements
above the major diagonal (of the original matrix A) is
computed first. This is called the initial threshold. A
finél threshold value of one—milliohth of such sum is then
established. The diagonalization, which is an iterative
process, proceeds up to the stage when the absolute value
of every off-diagonal element is less than or equal to
the final threshold value.

Since the process is iterative, the user has the option

to improve the accuracy of the results by successive CALL-s

to the subprogram. For reasons explained in the
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documentation (Chapter 2), these successive CALL-s must be

to SUBROUTINE IEV (A,S,N). The following rules apply.

i)

ii)

1ii)

SUBROUTINE EV (A,S,N) must be CALL-ed once only and
before the SUBROUTINE IEV (A,S,N) is CALL-ed.
SUBROUTINE IEV (A,S,N) may be CALL-ed subsequently the
required number of times to achieve the desired accu-
racy. If a total number of n CALL-s are made to (both)
the subprograms, each off-diagonal element will be
reduced in absolute value to (at least) lO—Gn times
the initial threshold.

Neither matrix A nor matrix S may be altered in the
calling program between any two of the above CALL-s

to the subprogram.

Trial runs have indicated that the improvement proce-
dure causes small but significant changes in the
eigenvectors, and practically no changes in the eigen-
values (apparently because these are already very
close to the exact values). An excessive number of
improvement cycles may result in an underflow in the

machine.

e. Example:

CALL EV (A,S,N)

CALL IEV (A,S,N)

CALL IEV (A,S,N)
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4.5.7 SUBROUTINE MINV {(A,N,DET,NEXCH)

a. Function:
The matrix A is inverted in its own space and its
determinant is computed.

b. Calling Program:

_ i) Matrix A is of size N rows by N columns. Vector NEXCH
is of size N elements (see item d below).
ii).Matrix A and integer N should be defined.
iii) The inverse of the original matrix A is returned in A
" itself. The value of the determinant of the original
matrix A is returned in DET.

¢c. Limitations:

The original matrix A is destroyed in the subprogram.
See also "Additional Notes" under SUBROUTINE SINV (A,DA,N).

d. Additional Notes:

The vector NEXCH is used for computations only in the
subproéram and the values of its elements are of no con-
sequence to the calling program. Hence , the matching
vector in the calling program need not necessarily be a
vector of integer elements.

3. Examples:
i) CALL MINV (A,N,DET,NEXCH)

ii) CALL MINV (ARRAY,10,DET,TEMP)
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4.5.8 SUBROUTINE MOVE (A,B,M,N)

a. Function:

Matrix A is copied as matrix B. (B = A4)

b. Calling Program:

i) Matrices A and B are of size M rows by N columns.

ii) Matrix A and integers M and N should be defined.

iii) Matrix B is defined in the subprogram.

c¢. Additional Notes:

When certain subprograms such as SUBROUTINE DETMT

(A,DA,N) of this package are CALL-ed, the original matrices

get destroyed in the subprograms.

to store the original matrices for further use

time. This subprogram meets such a need.

d. Examples:

i) CALL MOVE (A,B,M,N)

ii) CALL MOVE (ARRAY,SAME,10,15)

4.5.9 " SUBROUTINE MULT (A,B,C,L,M,N)

a. Function:

at a

The user may have a need

later

Matrix A is post-multiplied by matrix B to yield matrix

C. (C = AB)

b. Calling Program:

i) Matrices A, B and C have the following dimensions:

Matrix

A
B
C

Size

L rows by M columns
M rows by N columns
L rows by N columns
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ii) Matrices A, B and integers L, M and N should be
defined.
iii) The product matrix C is defined in the subprogram.

c. . Limitations:

Matrix C should be distinct from matrices A and B.
However, matrices A and B may be identical. See also
SUBROUTINE PMULTv(A,B,K,L,X) and SUBROUTIWNE POSTM
(A,B,K,L,X).

d. Examples:
i) CALL MULT (A,B,C,L,M,N)
ii) CcaAaLL MULT (A,A,C,N,N,N)

The examples below yield wrong results:

iii) CALL MULT (A,B,A,L,M,M)
iv) caLL MUuLT (A,B,B,L,L,N)

v) CALL MULT (A,A,A,N,N,N)

4,5.10 SUBROUTINE OUTE (A,I,J,TITLE,TITEL)

a. Function:

Matrix A of size I rows by J columns is printed. Print-
ing begins on a new page. The matrix is labelled at the
top of each page with the labels provided by the user. The
word CONTINUED in parantheses appears against the label if
printing is on more than one page. The size of the matrix
is indicated below the label.

Rows and columns are numbered. On any one page, the
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maximum number of rows printed is 25, and the maximum
number of columns is 10. Hence, if 3£ 10 and I 5'25,
printing is completed on one page. If J > 10, the first

10 columns are printed, until all the rows (25 or less to

a page) are exhuasted. Then the second 10 columns (or less)
are printed, until all rows are exhuasted, and so on. The
elements of matrix A are output in E-FORMAT. Five digits

appear to the right of the decimal point (E12.5).

" b. Calling Program:

i) Matrix A is of size I rows by J columns.

ii) Matrix A and integers I and J should be defined. Also,
the user's lakel must ke provided as a Hollerith
string of characters (maximum 20) through alphanumeric
variables or "values" corresponding to the arguments
TITLE and TITEL. See examples of CALL statement.

iii} No formal "values" are returnea by this subprogram.

c. Additional Notes:

This subprogram is recommended for use in preference to
SUBROUTINE OUTF (A,I,J,TITLE,TITEL) whenever the magnitudes
of the elements of the matrix to be printed are unknown,
unpredictable, or exceed the field F12.5. A slight
sacrifice of easy readability is implicit.

d. Examples:

i) CALL OUTE(A,I,J,TITLE,TITEL)
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ii) VAR = 10HMATRIX OF
TITLE = 10HREDUNDANTS,
CALL OUTE(a,I,J,VAR,TITLE)

iii) CALL OUTE(A,I,J,l0HORIGINAL M,SHATRiX)

4.5.11 SUBROUTINE OUTF(A,I,J,TITLE,TITEL)

a. Function:
All the details are the same as in SUBROUTINE OUTE(A,I,

J,TITLE,TITEL) except that the elements are output in F-

FORMAT. Five digits appear to the right of the decimal

point, and a maximum of six digits (five, if the value is
negative) appear to its left., (F12.5)

b. Calling Program:

Same as in SUBROUTINE OUTE(A,I,J,TITLE,TITEL)

c. Limitations:

The "largest" numbers that can be printed are of the
form abcdef.ghijk or -bcdef.ghijk. If a number "larger"
than these is attempted to be printed, an asterisk (*) will
appear at the beginning of the corresponding field.

c. Examples:
i) CALL OUTF(A,I,J,TITLE,TITEL)

ii) CALL OUTF(A,I,J,8HMATRIX A,1H )

4.5.12 SUBROUTINE OUTG(A,I,J,TITLE,TITEL)

a. Function:
All the details are the same as in SUBROUTINE OUTE(A,I,

J,TITLE,TITEL), except that the elements are output in G-
FORMAT.
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b. Calling Program:

Same as in SUBROUTINE OUTE(A,I,J,TITLE,TITEL)

c. Additional Notes:
Five significant digits appear on output, if the abso-

lute value x of the element being printed is in the range

0.1< x < 10°

(G 12.5)
Otherwise, the output is in E-FORMAT for the element.
d. Examples:

i) carLL ouTG(A,I,J,TITLE,TITEL)

1i) CALL OUTG(A,I,J,l1H ,1H )

4.5.13 SUBROUTINE PMULT(A,B,K,L,X)

a. Function:

The square matrix B is premultiplied by a rectangular
(or square) matrix A and the product matrix is stored in A.
A = AB. |

b. Calling Program:

i) Matrices A and B, and vector X, have the following

dimensions:
Matrix Size
A K rows by L columns
(may be square, K = L)
B L rows by L columns
X (Vector) L elements

1i) Matrices A, B and integers K, L should be defined.
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iii) The product matrix is returned in matrix A. Vector

X is required in the subprogram for computations only.

¢. Limitations:

Matrix B must be square. The original matrix A is
de;troyed. If matrix A is sqﬁare, it should differ from .
matrix B at least by name.
d. Examples:
i) CALL PMULT(A,B,K,L,X)
ii) CALL PMULT(A,B,K,K,X)
The example below yields wrong results:

iii) caLL PMULT(A,A,L,L,X)

4.5.14 SUBROUTINE POSTM(A,B,K,L,X)

a. Function:

The square matrix A is postmultiplied by a rectangular
(or square) matrix B and the product matrix is stored in B.
B = AB.

b. Calling Program:

i) Matrices A and B, and vector X, have the following

dimensions:
Matrix Size
A K rows by K columns
B K rows by L columns ST,
(may be square, K = L)
X (Vector) K elements

ii) Matrices A, B and integers K, L should be defined.
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5.

iii) The product matrix is returned in matrix B. Vector
X is required in the subprogram for computations
only.

c. Limitations:

Matrix A must be square. The original matrix B is
destroyed. If matrix B is square, it should differ from
matrix A at least by name.

d. Examples:

i) CALL POSTM(A,B,X,L,X)

ii) CALL POSTM(A,B,L,L,X)

The example below yields wrong results:

iii) CALL POSTM(A,A,XK,K,X)

15 SUBROUTINE RDCBC(A,M,N)

a. Function:

Elements of matrix A are defined (column by column) by
reading in values from data cards.

b. Calling Program:

1) Matrix A is of size M rows by N columns.
ii) Integers M and N should be defined.

The number of data cards required per column of

matrix A is (M+7)/8. (Integer division)
iii) Matrix A is defined in the subprogram.

c. Additional Notes:

i) FORMAT Control:

The FORMAT is (8F10.0) and the decimal point should
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ii)

preferably be punched in each data field. If it is
not punched, it will be assumed to be at the end of
the field. The non-punch positions in the field are
assumed to be filled with zeroes.

For example, if 23.5 is punched beginning in column
21, the value assigned to the corresponding element
is the same. If the decimal point is not punched,
the value assigned is 2305000000.0.

Order in Assigning Values:

Assume matrix A is of size 14 rows by 6 columns.

Two data cards are required per column. Hence, the
total number of data cards required is 12. The
eight values on the first data card will be assigned
in order to Al,l’ A2,1""’A8,l° The six values on
the second data card to A9 17 AlO,l""' Al4,l'

14

And so on.

d. Examples:

4.5.16

i)

CALL RDCBC (A,M,N)

ii) CALL RDCBC (A,14,6)

SUBROUTINE RDCOLG(A,M,N)

a. Function:

Elements of matrix A are defined by reading in values

from data cards. The elements are assumed to be in a con- -

tinuous string of columns of matrix A.
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b. Calling Program:

i) Matrix A is of size M rows by N columns.
ii) Integers M and N should be defined.
The number of data cards.required is (M%*N+7)/8.
(Integer division) |
iii) Matrix A is defined in the subprogram.

c. Additional Notes:

i) ‘Same as in SUBROUTINE RDCBC(A,M,N).

ii) Order in Assigning Values:

Assume matrix A is of size 14 rows by 6 columns.
Eleven data cards are required. The eight values
on the first data card will be assigned in order to
Al,l' Az,l""’A8,l' The first six values on the
second card to A9,1’A10,l""' Al4,l‘ The last two

values on the second card to A The eight

1,27 A2,2'
values on the.third card to A3,2, A4,2,..., AlO,Z'
And so on.

iii) Of the four READ subprograms in this package, this
one requires minimum execution time.

d. Examples:

i) CALL RDCOLG (A,M,N)

ii) CALL RDCOLG(A,14,6)

4.5.17 SUBROUTINE RDRBR(A,M,N)

a. Function:

Elements of matrix A are defined (row by row) by
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reading in values from data cards.

b. Calling Program:

i) Matrix A is of size M rows by N colﬁmns.
ii) Integers M and N should be defined.
The number of data cards required per row of matrix
A is (N+7)/8. (Integer division)
iii) Matrix A is defined in the subprogram.

c. Additional Notes:

i) Same as in SUBROUTINE RDCBC (A,M,N)

ii) Order in Assigning Values:

Assume matrix A is of size 14 rows by 6 columns. One
data card is required per row. Hence, the total num-
ber of data cards required is 14. The six values on
card number I (I ranges in value from 1 to 14) are
assigned in order to AI,l' AI,Z"“’ AI,G'
d. Examples:
i) CALL RDRBR(A,M,N)

1i) CALL RDRBR(A,14,6)

4.5.18 SUBROUTINE RDROWG(A,M,N)

a. Function:

Elements of matrix A are defined by reading in values
from data cards. The elements are assumed to be in a con-
tinuous string of rows of matrix A,

b. Calling Program:

Same as in SUBROUTINE RDCOLG(A,M,N)
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c. Additfonal'Notes:

i) Same as in SUBROUTINE RDCBC (A,M,N)

ii) Order in Assigning Values:

Assume matrix A is of size 14 rows by 6 columns.

Eleven data cards are required. The first six values

acd Rid Red

on the first data card will be assigned in order to

Al,l’ Al,2""’ Al,6' The last two values on the

first card to A , A . The first four values on
2,17 22,2

the second card to A The last

P I

2,3" By g1 By 50 By g-

four values on the second card to A3,l' A3,2, A3,3,

LM’A

. A .
A3’4 nd so on
d. Examples:

i) CALL RDROWG(A,M,N)

ii) CALL RDROWG(A,14,6)

4.5.19 SUBROUTINE SCMUL(A,M,N,X)

a. Function:
Elements of matrix A are multiplied by the scalar

quantity X.

b. Calling Program:

i) Matrix A is of size M rows by N columns.

ii) Matrix A and the scalar multiplier X as well as

.

Bcoad bt

integers M and N should be defined.
. iii) The modified matrix is returned in A itself.

c. Limitations:

The original matrix is destroyed.
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d. Examples:

i) CALL SCMUL(A,M,N,X)
ii) REI = 1.0/EI
CALL SCMUL(A,M,N,REI)

iii) CALL SCMUL(A,M,N,1.0/30000.0)

4,5.20 SUBROUTINE SINV(A,DA,N)

a. Function:
The symmetric matrix A (also positive-definite) is in-
verted in its own space and its determinant is computed.

b. Calling Program:

i) Matrix A is of size N rows by N columns.

ii) Matrix A and integer N should be defined. The sub-
program utilizes only the elements on and above the
diagonal of the original matrix A. Hence, if so
degired, only these elements of matrix A may be
defined.

1ii) The inverse is returned in matrix A itself., DA
stores the value of the determinant of the original
matrix A. ‘

c. Limitations:

- The original matrix A must be symmetric as well as
positive-definite. The original matrix is destroyed.

d. Additional Notes:

The inverse of a symmetric matrix is also symmetric.

This property has been utilized in this subprogram, and
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hence the resulting inverse of a symmetric matrix will be
symmetric when this subprogram.is used.
It is possible that tﬁe iﬁverse of a symmetric matrix ob-
tained by the uge of SUBROUTINE MINV(A;N,DET,NEXCH) is
not ideally symmetric because of round-off errors in the
machine.
e. Examples:

i) CALL SINV(A,DA,N)

ii) CALL SINV(K,DETK, 20)

4.5.21 SUBROUTINE SOLVE(A,B,N,L,DET)

a. Function:
A system of linear simultaneous equations AX = B is
solved.

b. Calling Program:

i) Matrices A and B have the following dimensions:
Matrix Size

Coefficient Matrix A N rows by N columns
Right-Hand Side Matrix B N rows by L columns

ii) Matrices A and B as well as integers N and L should
be defined.

iii) The solution matrix is returned in B. The value of
the determinant of the coefficient matrix A is
returned in DET.

c. Limitations:

The original matrices A and B are destroyed.
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‘j. d. Examples:

i) CALL SOLVE(A,B,N,L,DET)

ii) CALL SOLVE (COEFF,RHS,N,1,DA)

4.5.22 SUBROUTINE SQTR(A,N)

a. Function:
The transpose of the square matrix A is returned to the
calling program in A itself.

b. Calling Program:

i) Matrix A is of size N rows by N columns.
ii) Matrix A and integer N should be defined.
iii) The transposed matrix is returned in A itself.

c. Limitations:

Matrix A must be square. The original matrix is
destroyed.
d. Examﬁles:

i) CALL SQTR(A,N)-

ii) CALL SQTR(ASQ,10)

4.5.,23 'SUBROUTINE SUB(A,B,C,M,N)

a. Function:
Subtract matrix B from matrix A and store the result
in matrix C. (C = A -B) .

b. Calling Program:

i) Matrices A, B and C are each of size M rows by N

columns.
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ii) Matrices A and B, as well as integers M and N should
be defined.
iii) Matrix C is defined in the subprogram.,

c. Additional Notes:

The resultant matrix may be stored in one of the ori-
ginal matrices. Only in such a case, the specific origi-
nal matrix will be destroyed.

d. Examples:
i) CALL SuUB{(A,B,C,M,N)
ii) CALL SUB(A,B,C,10,15)

iii) CALL SUB(A,B,B,25,30)

4.5.24 SUBROUTINE TMULT(A,B,C,L,M,N)

a. Function:
The transpose of matrix A is postmultiplied by matrix
B to give matrix C. (C = ATB).

b. Calling Program:

i) Matrices A, B and C have the following dimensions:

Matrix Size
A , L rows by M columns
B L rows by N columns
C M rows by N columns

ii) Matrices A and B, as well as integers L, M and N,
should be defined.
1ii) The product matrix is returned in matrix C.

c. Limitations:

Matrix C should be distinct from matrices A and B.
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j However, matrices A and B may be identical.
d. Examples:
4 i) CALL TMULT(A,B,C,L,M,N)
o ii) CALL TMULT(A,A,B,L,M,M)
iii) CALL TMULT(A,A,B,N,N,N)
The examples below yield wrong results:

iv) CALL TMULT(A,B,A,L,L,L)

Q V) CALL TMULT(A,B,B,M,M,M)

vi) CALL TMULT(A,A,A,N,N,N)

4.5.25 SUBROUTINE TRANS(A,B,M,N)

a. Function:
} Matrix A is transposed to give matrix B. (B = AT)

b. Calling Program:

X : 1) Matrix A is of size M rows by N columns.
Matrix B is of size N rows by M columns.

ii) Matrix A and integers M and N should be defined.

iii) Matrix B is defined in the subprogram.

4 ¢. Limitations:

j Even if matrix A is square, it should be distinct
from the (square) matrix B.

d. Additional Notes:

If matrix A is square and the original matrix may be .
= destroyed, SUBROUTINE SQTR(A,N) should preferably be used.

3 e. Examples:

i) CALL TRANS(A,B,M,N)
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‘j ii) CALL TRANS(A,B,10,15)
iii) CALL TRANS (A,B,N,N)

j The example below yields wrong'results:

iv) CALL TRANS (A,A,N,N)

4.5.26 SUBROUTINE XABATC(A,B,C,L,M,X)

a. Function:
j The matrix product ABAT is formed in matrix C.
Matrix B is symmetric. C = aBAT

J b. Calling Program:

i) Matrices A,B,C and vector X have the following
dimensions:
Matrix Size
A L rows by M columns
B M rows by M columns
C L rows by L columns
X (vector) M elements

ii) Matrices A, B and integers L, M should be defined.

iii) The product matrix (symmetric) is returned in matrix

putations only.

¢. Limitations:

Matrix B must be symmetric. .
T Matrix C should be distinct from matrices A and B.
d. Examples:
i) CALL XABATC(A,B,C,L,M,X)

]

]

]

]

] | C. Vector X is required in the subprogram for com-
]

]

]

1

ii) CALL XABATC(A,B,C,L,L,X)
]

-133-



[Ape—

400.4
The examples below yield wrong results:

iii) CALL XABATC(A,B,B,L,L,X)
iv) CALL XABATC(A,B,A,L,L,X)

v) CALL XABATC(A,A,A,L,L,X)

4.5.27 SUBROUTINE XABTA(A,B,L,N,X)

a. Function:
The matrix product ABT is formed in matrix A. Matrix

B is square. A = aBT,

b. Calling Program:

i) Matrices A, B and vector X have the following dimensions:

Matrix: Size
A L rows by N columns
B N rows by N columns
X (Vector) N elements

ii) Matrices A, B and integers L, N should be defined.
iii) The product matrix is returned in matrix A. Vector X
is required in the subprogram for computations only.

c. Limitations:

Matrix B must be square. The original matrices A and B
should be distinct from each.other even if matrix A is
square. The original matrix A is destroyed:

d. Examples:
i)>CALL XABRTA(A,B,L,N,X)

ii) CALL XABTA(A,B,N,N,X)

The example below yields wrong results:

iii) CALL XABTA(A,A,N,N,X)
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. 4.5.28 " SUBROUTINE XABTC(A,B,C,L,M,N)

a. Function:

T . . ‘ . T
The matrix product AB  is formed in matrix C. C = AB

b. Calling Program:

i) Matrices A, B and C have the following dimensions:

Matrix Size
A L rows by M columns
B N rows by M columns
C L rows by N columns

ii) Matrices A, B and integers L, M and N should be
defined.
iii) The product matrix C is defined in the subprogram.

c. Limitations:

Matrix C should be distinct f:om'matrices A and B.
d. Examples:

1) CALL XABTC(A,B,C,L,M,N)-

ii) CALL XABTC(A,A,C,L,M,L)
iii) CALL XABTC(A,A,C,L,L,L)

The examples below yield wrong results:
iv) CALL XABTC(A,B,A,L,M,M)
v) CALL XABTC(A,B,B,L,L,L)

vi) CALL XABTC(A,A,A,L,L,L)

4.5.29 SUBROUTINE XATBAC(A,B,C,L,M,X)

a. Function:
The matrix product ATBA is formed in matrix C. Matrix

B is symmetric. C = ATBA
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b. Calling Program:

i) Matrices A, B and C and vector X have the following

dimensions:
Matrix ' Size
A L rows by M columns -
B L rows by L columns
C M rows by M columns .
X (Vector) L elements .

ii) Matrices A, B and integers L, M should be defined.

iiif The product matrix C (symmetric) is defined in the
subprogram. Vector X is required in the subprogram
for computations only.

c. Limitations:

Matrix B must be symmetric. Matrix C should be distinct

from matrices A and B.

d. Examples:
i) CALL XATBAC(A,B,C,L,M,X)

ii) CALL XATBAC(A,B,C,L,L,X)

The examples Below yield wrong results:
iii) CALL XATBAC(A,B,B,L,L;X)
iv) CALL XATBAC(A,B,A,L,L,X)

v) CALL XATBAC(A,A,A,L,L,X)

4.5.30 'SUBROUTINE XATBB(A,B,L,N,X) -

a. Function:

T

The matrix product A"B is formed in matrix B. Matrix

A is square. B = ATB.
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b. Calling Program:

i) Matrices A, B and vector X have the following

dimensions:

Matrix Size
A L rows by L columns
B ' L rows by N columns
X (Vector) L elements

ii) Matrices A, B and integers L, N should be defined.

iii) The product matrix is returned in matrix B. Vector
X is required in the subprogram for computations
only.

c. Limitations:

Matrix A must be square. The original matrix B is
destroyed. The original matrices A and B should be
distinct from each other evén if matrix B is square.
d. Examples:

i) CALL XATBB(A,B,L,N,X)

ii) CALL XATBB(A,B,N,N,X)
The example below yields wrong results:

iii) CALL XATBB(A,A,N,N,X)
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5. 'READY REFERENCE SHEET

After a few problems have been solved with the use

of this package,Athe user will have gained enough

experience to operate within its requirements and

limitations, and frequent references to the text .
become unnecessary in day-to-day usage. All the. |
same, matching the argument list of each subprogram

and dimensioning arrays suitably are problems which

may require some memofy aid. A ready reférence

sheet has, therefore, been provided. The sub-

programs are listed alphabetically.
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READY REFERENCE SHEET (FLMXPK) g
NO. SUBPROGRAM BRIEF DESCRIPTION DIMENSIONS NOTES -
1. ADD(A,B,C,M,N) C=A+ B A(M,N),B(M,N),C(M,N)
2. DETMT (A,DA,N) Determinant A (N,N)
3. DIAG(A,DA,N) Diagonal matrix A(N,N)
4. EV(A,S,N) E~values ,E-vectors A(N,N),S(N,N)
5. GEVP (A,B,S,T,N) Solve AX = ABX A(N,N),B(N,N),S(N,N),T(N)
6. IEV(A,S,N) Improve on EV A(N,N),S(N,N)
7. MINV(A,N,DETlNEXCH) Invert A A(N,N) ,NEXCH (N)
8. MOVE (A,B,M,N) B = A A(M,N),B(M,N)
9. MULT (A,B,C,L,M,N) C = AB A(L,M),B(M,N),C(L,N)
10. OUTE(A,I,J,TITLE,TITEL) Print A A(I,J)
11. OUTF(A,I,J,TITLE,TITEL) Print A A(L,J)
12. OoUTG(A,I,J,TITLE,TITEL) Print A A(I,J)
13. PMULT(A,B,K,L,X) A = AB A(X,L),B(L,L),X(L)
14, POSTM(A,B,K,L,X) B = AB A(K,K),B(K,L),X(K)
| 15. RDCBC (A, M, N) Read col. by col. A(M,N)
[
s 1s. RDCOLG (A,M, N) Read columns (grouped) A(M,N)
to17. RDRBR (A, M,N) Read row by row A(M,N)
18. RDROWG (A, M, N) Read rows (grouped) A(M,N)
19. SCMUL (A,M,N, X) A = xA A(M,N)
20. SINV (A,DA,N) Sym. inversion A(N,N)
21. SOLVE (A,B,N,L,DET) Sim. Egs. (AX = B) A(N,N),B(N,L)
22, SQTR (A, N) Transpose in place A(N,N)
23, SuB(A,B,C,M,N) C=A - B A(M,N),B(M,N),C(M,N)
24, TMULT (A,B,C,L,M,N) c = aATp A(L,M),B(L,N),C(M,N)
25.  TRANS (A,B,M,N) B = AT . A(M,N),B(N,M)
26. VXABATC(A,B,C,L,M,X) C = ABA A(L,M),B(M,M),C(L,L) ,X (M)
27. XABTA(A,B,L,N,X) A = aBl A(L,N),B(N,N),X(N) /
28.  XABTC(A,B,C,L,M,N) Cc = aBT A(L,M),B(N,M),C(L,N)
29. XATBAC(A,B,C,L,M,X) C = A%BA A(L,M),B(L,L),C(M,M),X(L)
30. ) XATBB(A,B,L,N,X) B = A™B A(L,L),B(L,N),X(L)
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APPENDIX 1

Proofs of Some Basic Theorems
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" 'APPENDIX 1

In support of the relations which were used earlier in
the mathematical derivations, proof of some basic theorems
in matrix algebra have been included in this Appendix for
ready reference. For the sake of brevity, the proofs are

~given in only a few lines. A standard text, such as Refe-
rence 4, may be consulted for more detailed information.
The algebraic derivation of sin 6 and cos 6 from tan 28 is
also included.

1. The transpose of a product is the product of the

transposes in reverse order.

Let ¢ = 2B, X = AT, v = BT ang z = vx = BIAT,

Z

N

N
=X A B =2 X Y =z

Z
IKK,J ~ 2 K, I70,K T2

Y7,8%k,1 T %3,1

Hence, CT = Z or (AB)T = BTAT

Extending the proof,

(aBc)T = [a(Bc)1T = (Bc)TaT = ¢TRTAT

2. The inverse of A exists iff (if and only if) the.de—

terminant of A is non-zero.

Some authors define and others show that A—l =

1 _ . B .
-det(A)[co factor], where det(A) = determinant of A.

If det(A) # 0, the Right-~Hand Side of this equation exists.

Hence, A"l exists.
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exists, the Left-Hand Side exists and, hence,

If A
det (A) # 0.

3. a71 is unique.

If B and C are both inverses of A,
AB(=BA)=I and AC(=CA)=I,
and hence A(B-C) = 0, the null matrix.
Premultiply by B or C.
"B -C=0
Hence, B = C.

4. The determinant of the product is the product of the

determinants.

Consider 2 x 2 matrices,

|2 8| = 21,1 21,2| [B1,1 B1,2
A2,1.A2,2 Ba,1 B2,2]
This is the same as Al,l Al-,2 0 0
Ay By, 00
,
-1 0 B, B,
0 -1 By,1 B2,2

since, by Laplace expansion, using the first and second

rows, the result is
1+2+1+ .
(-1) a1 = - B

Add B times first column to the third, B times
1,1 2,2

second column to the fourth, and then add Bl,2 times
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first column to the fourth, B2 1 times second column to
7

the third. The result is
1,1 21,2 B1,1B1,1™21,2B2,1  21,1B1,2%21,2B2,2
By,1 Bp 2 By 1By ,1%Bp 2By 1 By 1By, 2%R) 2Br,0

-1 0 0 0

0 -1 ’ 0 0
Again, by Laplace expansion, using the third and the
foﬁrth rows, this is equal to IAB].

The proof may intuitively be extended to matrices
larger than 2 x 2.

5. The determinant of the inverse is the reciprocal of

the determinant of the original matrix.

AA—l = I, hence det(A)-det(A"l) = det(I) = 1. This

also shows that, if det(a) = 0, det(a™1) = «, or the
elements of A™! are undefined.

6. The inverse of a product is the product of the

inverses in reverse order.

By definition, (aB)(aB)™% =1

Premultiply by A™1, B(aB) 1 = a”1
Premultiply by B!, (aB)”1 = p71a~!

Extending the proof,

(aBc) "t = [a(ec)]"t = (Bey~lal = ¢"lp1x71
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j 7. The inverse of the transpose is the transpose of the

inverse.
By definition, aa”l =1
By transpose, (a~1)TaT = 1T =1
Hence, (a™1)T = (aT)~1

8. The inverse of a symmetric matrix is symmetric

(A"l)T = (AT)—l

Since AT = a, (a~HT =_A—l

9. The product of symmetric matrices is symmetric iff the

matrices commute with each other.

By definition, A and B commute if AB = BA.

(aB)T = pTAT

By symmetry of A and B, (AB)T = BA
If A and B commute, (aB)T = aB
Also (only if part),
if AB =(AB)T, AB ='BTAT = BA or A and B commute

10. The product of a matrix and its transpose is

symmetric.

aaT)T = (aT)TaT T

A" = AA
Note that A need not be square, and in general,
aaT # aTp

11. The product RT is orthonormal, if R and T are ..

othonormal.

RT (RT)T = RTTTRY
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Since T is orthonormal, RT (RT)T

Since R is orthono;mal, RT(RT)T

Hence, (RT)T = (RT)'_l

RR

12. A symmetric matrix A may be expressed in the form

ka where A is lower triangular.

A = Find elements of A
For I < J, KI,J =0
For I > 4J,
N
= = + s e 0
A1g KElAI,KkJ,K Moata,at M2 g2 et g0
*rhrogtg,a trrL,aer Mool et ron Maw
i A = 1 <
Since L,M 0 if L< M,
J-1
A = ¥ A A .
I1,J =1 I,k J,kK '1,3°J,J
I-1 2 i
If I =J, ) = (A - T )2
I, I I, I K=1 I,K
1 J-1
If I>J, A = —=— (AL = % Ae o Ao )
1,37 X5 5 1,7 ko1 LK "IIK
13. A is lower-triangular if A is lower-triangular. Find
elements of A™ YL,
By definition, AB = I where B = a~1,
N
Z A =
z I,KBK,J al,J (Kronecker Delta)
K=1
6. _ = | |
1,0 - B1,18%1,5 * Br,2B2,50 teeet Br o 1Br,o t Ar,reiBrea,s
...+ AI’NBN’J
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Sinc = 0 for L < M
ince AL,M '
I
1,0 = KEIAI,KBK,J
IfI =1, and J>1, § = 0

1,3
0 = Al,lBl,J ’ hence, Bl,J = 0
IfI=2, and'J>I, 6I’J=0
Siﬁilarly, for all J>1I, By 5 = 0
4

Hence, B = A+ is lower-triangular.

Non~zero elements of B.

= 8 =
If I ‘J, 1,3 1
I
1l = Kzl AI,KBK,I = AI,IBI,I’ since both A and B are
lower-triangular. Hence, By 1 = -
Ar,1
If I>J, 6 5 = 0
0 = AI’lBl,J + AI'ZBZ’J+...+ AI,JBJ’J+...+ AI’IBI'J
BL,M = 0 if L< M. Hence,
0 =Aa; 4By, g *++o+ Bp 1-1B1-1,5 * 21,1B1,5
1 I-1
Hence, BI,J = - — § AI,KBK,J) for I>J.
!
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400.4

14. Given

~Bp g

The value of tan 286 is given by tan 26 =

0.5(a - A

P,P Q,Q)
This problem arises in SUBROUTINE EV(A,S,N).

Let A = Numerator and { ; Denominator.
Since tan o= tan (o-m), there are two solutions for 2€ in

the range -7 to m. Since the solutions are supplements of

each other, a unique solution is available if the range is

chosen as - —%— to —%—. The range of 8 is then - : to z
. _sin 20 _ 2 sin 8V1 - sin?8 _ _)
tan 26 = 25598 1 - 2 sinZ2 © =L

By squaring, rearrangement and the substitution x = sin® @

2 2 2 2
4x (l+'——)\——2) - 4x (1 + )\2) +—>\—-§=0
B M B
A2
o X=0.5[li l“—z-—z]
A4l
Since -35%-59-5-%37 sin® 8 or x has a maximum value of 1/2.
A [ a2/(x2 2y -
Hence, x = 0.5(1 - /1 - ) = 0.5 /(A2 + p %)
A+
) 2 g tl w1 -2202 + 2

- A2 +4p2' sinf =

vé(l +V1 - u2)

The signs of sin® and tan 28 in the range chosen for 8 are

the same. The sign of tan 28 is governed by the signs of A

and M . The proper value of siné will therefore be available

with the definitions,
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w

w = (sign of W) , éine =
A2 +p? [(1 +V1 - w?)
The value of cosé in the range is positive.

cos8 = V1 -~ sin29

The advantages of this formulation are these:

1. sin® and cos6 may be computed algebraically.
2. Even if ¢ = 0 (and hence tan 28 is infinity), the
computations for sin® and cosf can be carried out

without difficulty in the computer.

- 15, when the Identity Matrix is available by implication

“only, the column exchanges, to match previous row exchanges

during reduction, must be performed .in reverse order. [See

SUBROUTINE MINV(A,N,DET,NEXCH)].

With the availability of the I—Métrix, this problem does
not arise as rows of I can also be interchanged during the
process itself.

When the I-matrix is not available, the Kth column of I is
available by implication only. When rows of A are inter-

changed, the net effect on I is that the corresponding rows

and columns of I are interchanged. Thus, if Xy is the trans-
formation matrix corresponding to the row interchange, we
have

1

TleT lA ; IXll

-148-
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400.4

at an intermediate stage of the reduction process and

TyTy-1 " TpXp **r ToXpTyXT[A [IX X, «ov Xp|

at the final stage:

‘ .
In short, §S|A ! IX1Xy = X

Thus, SA =1 or S =a"1

-1 -1
A "X X . =
and 1%5 XP C
-1 -1.-1 -1 -1
or A = o--x X
c XP 2 1
-1
= C XP XZXl
-149-
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OO0 OOOO0

(o NoNe

FRITZ LABORATORY MATRIX PACKAGE (FLMXPK)
SUBROUTINE ADD (A»8,C,MsN)

AUTHOR = SAMPATH IYENGAR, FRITZ ENGINSERING LABORATORY,
LEHIGH UNIVERSITY, BETHLEHEM, PA., 18015,

THIS GROUP OF SUBPROGRAMS (FLMXPK - FRITZ LABQORATORY MATRIX
PACKAGE) CONTAINS 30 ROUTINEZS TO PERFORM MATRIX OPERATIONS.
FOR DETAILED DOCUMZNTATION, SEE FLMXPK - A MATRIX PACKAGE,
FRITZ LABORATORY REPORT NO. 4004,

COMMON /Z/IYENGAR/ I MN,Y(12)
REAL A(1),B(1),C(1)

ROUTINE TO ADO MATRICES A AND 8. C=A+8

MN=M*N

DO 1660 I=1,MN
C(I)=A(I)+B(I)
RETURN

END

. - - L WS B w S L S W WL WD AP A e D S D WD G WD M D D D WP G I D D WR D D TS AT WD Am ES e D e S WP SN AR e A I G W MR P L G me Wk WS MR R S Sn e ae WP LGB AL SD ON @s Mm e wm

OOOO

OOO0 QOO0

AOO

1000

1010

SUBROUTINE DETMT (A,DA,N)
ROUTINE TO FIND THE DETERMINANT DA OF MATRIX A,

COMMON /IYENGAR/ I,IP1,J,MyNML1,T,TEMP,XX,Y(6)
REAL A(NsN)

0aA=1.0

IF (N.EQe1) GO TO 1950
NMi=N-1

DO 1040 I=1,NM1
IP1=T+1

SEARPCH ROW T FOR THE LARGEST ABSOLUTZ-VALUED
ELEMENT IN COLUMNS I THROUGH N.

TEMP=0.0
DO 1000 J=I,N
T=A3S(ACI,J))

IF (TEMP.GE.T) GO TO 1000
TEMP=T

THE LARGEST ABSOLUTE-VALUED ELEHMENT IS IN COLUMY M OF ROW I.
M=J

CONT INUE

IF (TEMP.NE.0.0) GO TO 1010

ALL THE ELEMENTS OF ROW I ARE IDENTICALLY ZERO.
DETERMINANT VANISHES,

DA=0.0
RETURN

EXCHANGE COLUMNS M AND I, ONLY IF M IS DIFFERENT FROM I,

IF (M.EQ.I) GO TO 1030



FRITZ LABORATORY MATRIX PACKAGE (FLMXPK)
----------------------------- PAGE NO. 2 bndndi el g adndndaddadhaihd ottt

DO 1020 J=I,N . 35
T=A(JyM} ' 39
A(I,M)=A(J, 1) 40

1020 A(J,>I)=T _ | L1
c - , . 42
c CHANGE THE SIGN OF THE DETERMINANT, ' 43
C SINCE COLUMNS HAVE BEEN EXCHANGED. . 44
C 45
DA=-DA : 46

1030 TEMP=A{I,I) L7
c 48
c CONTINUQUS PART-PR0DUCT FOR THE DETERMINANT, . ; 49
c 50
DA=DA*TEMP ‘ 5¢

C 52
c THE PROCESS OF REDUCTION TO AN UPPER-TRIANGULAR MATRIX, 53
c : 54
TEMP=1.0/TEMP , 55

DO 1040 M=IP1,N: 56
XX==A(M,I)*TEMP ' 57

D0 1040 J=IP1i,N 58

1040 A(MyJ)=A(MsJ) +XXFA(I,J) _ 59
c 60
c FINAL VALUE OF THE JETERMINANT. 61
C ' 62
1050 DA=DA*A(N,N) , 63
RETURN ' 64

END 65
SUBROUTINE DIAG (A,DA,N) 1

C : 2
C ROUTINSE TO CREATE A DIAGOMAL MATRIX A, 3
c A 4
~ COMMON ZIYENGAR/ I,NP1,NSQ,Y{(11) 5

- REAL A(D) )

c 7
c ZERO THE ARRAY. 8
c 4 9
NSA=N*N 10 .

DO 1000 I=1,NSQ 11

1000 A(I)=0.0 12
c 13
c ASSIGN DA TO EACH DIAGONAL ELEMENT, 14
c 15
ND1=N+1 16

DO 1010 I=1,NSQ,NP1 17

1610 A(I)=DA .18
RZTURN ‘19

EMD ‘ 20
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FRITZ LABORATORY MATRIX PACKAGE (FLMXPK)

------------------------------- PAGE NO, 3 =-mcccmmmcemcccmec e e ccmmaaa
SUBROUTINE EV (A,S,N) 1
c z
c ROUTINE TQ FIND EIGENVALUES AND EIGENVECTORS 3
c OF THE SYMMETRIC MATRIX A, 4
c : 5
COMMON /IYENGAR/ AI®,AIQ,APP,AQ12,C0SSQ,C0ST,I,P,Q,QM1,SINSQ,SINT,T ¢
1EMP, TSCT ‘ 7
SQUIVALENSE (AIP,SIP,Y), (AIQ>SIQ)» (P,IP1)» (QrJ)» (QML,NM1), (TE 8
1MP,SIGN), (THRI,SUM), (TSCT,X) 3
LOGICAL IND 10
REAL A(N,N) ,S(N,N) 11
INTEGER P,Q,QM1 12
c 13
IF (N.EQ.1) GO TO 1010 14
c 15
c CALCULATE THRI, THE INITIAL THPESHOLD VALUE. 16
c INITIALIZE MATRIX S AS THE IDENTITY MATRIX. 17
c 13
SUM=0,0 13
NM1=N-1 20
DO 1000 I=1,NMi 2-
S(I,I)=1.0 2
IP1=I+1 23
00 1000 J=IP1,N 24
TEMP=A (I, J) 25
S(I,J)=0.0 25
S(J,I)=0,0 27
1000 SUM=SUM+TEMP®*TEMP z3
. THRI=SART (SUM) 23
c ‘ 30
c SET THE DESIRED ACCURACY (THRF). 31
c : 32
THRF=THRI*1,0E~-6 33
FN=N 34
c 35
c INITIALIZE INDICATOR IND. 35
c A 37
IND‘—'.TRUE- 33
1010 S(N,N)=1.0 3a
c 40
ENTRY IEV 41
c 42
c SUBROUTINE IEV (A,S,N) 43
c ROUTINE TO IMPROVE EIGENVALUES AND EIGENVECTORS. 44
c ‘ 45
IF (N.EQ.1) RETURN 45
IF (THRI.EQ.0.0) RETURN 47
c 48
c LOWER THE INITIAL THRESHOLD THRI, 49
c SUGCESSIVELY BY DIVISION BY N. 50
c 51
1020 THRI=THRI/FN 52
c 53
c ITERATION BEGINS HERE, 54
c 55
1030 D0 1050 Q=2,N 56
aM1=Q-1 57
D0 1050 P=1,QM1 58
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FRITZ LABORATORY MATRIX PACKAGE (FLMXPK)
------------------------- PAGE NO4 4 —==m=====mommommmemoemoo

TEST £ACH OFF-DIAGONAL

m

LEMENT IN TURN.

X==-A (P, Q) . |
IF (ABS(X).LT.THRI) GO TO 1050

THE OFF-DIAGONAL ELEMENT IS NOT LESS THAN THRI IN ABSOLUTFE VALUE,
ANNIHILATE IT. RESET INDICATOR, SINCE ANNIHILATION IS NICESSARY,

IND=.FALSE,
CALCULATE TRIGONOMETRIGC FUNCTIONS.

APP=A(P,P)

AQQ=A(Q,Q)
Y=0.5%(APP-AQQ)

SIGN=1.0

IF (Y.LT.0.0) SIGN=-1.0
TEMP=SIGN*X/SART (X*X+Y*Y)
STNT=TEMP/SART(2.0%(1.0+SQRT (1. 0-TEMP*TEMP)))
SINSQ=SINT®*SINT
£0SSQ=1.0-SINSQ
COST=SQART(COSSQ)
TSCT=-2,0*X*SINT*COST

MODIFY ELEMENTS OF MATRICES A AND S ROW BY ROW.
ALSO, TRANSPOSE TO MODIFY CORRESPONDING ROWS OF A,

DO 1040 I=1,N

AIP=A(I,P)

ATIQ=A(I, Q)
TEMP=AIP¥COST-AIQ*SINT
A(I,P)Y=TEMP

A(P; I)=TEMP
TEMP=ATP*SINT+AIQ*COST
A(I,Q)=TMP

A(Q, T)=TEMP

SIP=S(I,P)

SIQ=S(I,Q)
S(I,P)=SIP*COST-SIQ*SINT
S(I,Q)=SIP¥SINT+SIA*COST

FVALUATE FRESH ELEMENTS OF THE PIVOTAL SET.
A(P,P)=APP*COSSQ+ANA*SINSQ-TSCT

A{QsQ) =AQA*COSSQA+APDP*SINSQ+TSCT

A(P,Q)=0.0

ACQ,P)=0.0

CONT INUE

CHEGCK WHETHER A REPEAT SWEEP IS NECESSARY.
IF (IND) GO TO 1060

A REPEAT SWEEP IS NECESSARY.

IND=.TRUE.,
GO TO 1030

82

91

iog
101
.192
107
104
-105
105
107
183
ine
110
111
112
i1=
11t
11¢
116
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FRITZ LABORATORY MATRIX PACKAGE

(FLMXPK)

------------------------- PAGE NOs 5 ====-==-mmmcmmemccmmemces

CHECK WHETHER THE DESIRED ACCURACY IS ACHIEVED.,

IF (THRI.GE.THRF) GO TO 1020

RESET THRF TO BE IN READINESS FOR A
SUBSEQUENT IMPROVEMENT PROCEDURE, IF ANY,

THRF=THRF*1.0E-56
RETURN
END
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SUBROUTINE GEVP (A,8,S,T,N)

ROUTINE TO SOLVE THE GENERAL EIGENVALUE PROBLEM.,

A*X=_AMBDA¥B¥*X

COMMON /IYENGAR/ I,J,K4SUM,TEMP,Y(9)
REAL A(NsN)sB(N»sN)s»s S(NsN),»T(N)

DIAGONALIZE MATRIX B.

CALL EtEv (Q,§,N)

IMPROVEMENT PROCEJURE.,

CALL IEV (B,S,N)

FORM THE MATRIX PRODUCT S*INVERSE OF G IN S,

DO 1000 J=1,N
TEMP=1.0/SQRT(B(J» J))
00 1000 I=1,N
S(I,J)=S(I,J)*TEMP

MODIFY MATRIX A,

CALL MULT (A,S,8,N,N,N)
DO 10280 I=1,N

00 1020 J=I»N

SUM=0.0

DO 1010 K=1,N
SUM=SUM+S(K,I) *B(K,J)
A(I,J)=SUM

A(J,I)=SUM

OBTAIN EIGENVALUES OF A.

CALL EV (A»B»N)
CALL IEV (A,B,N)

FORM THE MATRIX PRODUCT S*EIGENVEGCTOR MATRIX
TO OBTAIN THE FINAL EIGENVECTORS.

CALL POSTM (S,ByN,N,T)
RETURN
END
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FRITZ LABORATORY MATRIX PACKAGE (FLMXPK)
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SUBROUTINE MINV {A»N,DET,NEXCH)

ROUTINE TO INVERT MATRIX A,

COMMON /IYENGAR/ BIG,I,JyKyNMLyNPL1,NR,»T»Y(6)
REAL A(N,N) '
INTEGER NEXCH(N)

IF (N.NE.1) GO TO 1000
DET=A(1,1)
A(1,1)=1.0/DET

RETURN

DET=1.0

NMi=N-1

DO 1070 K=1,N

SEARCH COLUMN 1 FOR THE LARGEST ABSOLUTE-VALUED
ELEMENT IN ROWS K THROUGH N.

81G=0.0

DO 10610 I=KyN
T=A8S{A(I,1))

IF {BIG.GE.T) GO TO 1010
BIG=T

THE LARGEST ABSOLUTE-VALUED ELEMENT IS IN ROW NR.

NR=I
CONT INUE

EXCHANGE ROWS NR AND K» ONLY IF NR IS DIFFERENT FROM
IF (NR.EQ.K) GO TO 1030

DO 1020 J=1,N

T=A(K,J)

A(Ky JY=A(NR,J)

A(NR, ) =T

CHANGE THE SIGN OF THE OETERMINANT,
SINCE ROWS HAVE BEZEN EXCHANGED.,

DeET=-DET

BOOK-KEEPING VECTOR NEXCH STORES THE INFORMATION
ABQUT ROW EXCHANGES.

NEZXCH (K) =NR
T=A{K,1)

CONTINUQUS PART-PRODUCT FOR THE DETERMINANT,

DET=DET*T
T=1.0/T

MODIFY ROW K BY UDIVISION BY THE PIVOT ELEMENT.,

DO 1040 J=1,NM1
A(Ky, J)ZA(K,J+1) % T

AN
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------------------------------- PAGE NOs 7 =—====—==—=eomcm—omee—mooen.

A(K,NI=T 59

¢ 54
c MODIFY ALL ROWS OTHER THAN ROW X BY ADDITION 61
c OF SUITASLE MULTIPLES OF ROW K. 652
c : 63
DO 1060 I=1,N 54

IF (I.5Q.K) GO TO 10690 65
BIG==A(I,1) 66

D0 1050 J=1,NM1 67

1650 A(I,J)=A{I,J+1)+BIG¥A(K,N) 63
A(I»N)=BIG*T 69

1060 CONTINUE - 70
1070 CONTINUE 71
c 72
c PERFORM COLUMN EXCHANGES TO MATCH PREVIOUS ROW SXCHANGES 73
c (IN REVERSE ORDER) . NOTE THAT NEXCH(N)=N, ALWAYS. HENGE, , 74
c K IS NOT ALLOWED TO ASSUME THE VALUE N IN THE FOLLCWIN3 CQO-LGOOP. 75
c ' 75
NP1=N+1 - 77

D0 1090 J=2,N 78
K=NP1-J 79
NR=NEXCH (K) _ 80

IF (NR.EQ.K) GO TO 1090 81

DO 1080 I=1,N ] 82
T=A(I,X) 83

1688 A(I,NR) =T 85
1090 CONTINUE 86
' RETURN 37
END : ' 88
SUBROUTINE MOVE (A,8,M,N) 1

c = 2
c ROUTINE TO COPY MATRIX A AS MATRIX 8. B=A 3
c A
“COMMON /IYENGAR/ T,MN,Y(12) A 5
\REAL A(1),8(1) 6

c " 7
MN=MEN , 8

DO 1000_I=1,MN : - 3

1000 B(I)=A(I) R 10
RETURN = - 11

END 12
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SUBROUTINE MULT (A,5,C,yL,4M,uN)

ROUTINE TO FORM THE PRODUCT OF MATRIGCES A AND B, C=A*B

COMMON /IYENGAR/ I,J,K,SUH,Y (10)
REAL A(L,M),B{M,N),C(L,N)

DO 1010 I=%,L
DO 10610 J=1,uN

- SUM=0.0

1000
1010

0O 1000 K=1,M
SUM=SUM+A(I,K)*B(K,J)
C(I,J)=SUM

RETURN

END

OO0OO0

OO

100¢

DOOO0 OO0 OO

QOO

SUBRQUTINE OUTE (A,I,J,TITLE,TITEL)
COMMOM /IYENGAR/ II,IMAX,IROM,IVI2),TI1,JC0L,yJJ,.IMAX,J1,J2,KK,Y(2)
REAL A(I,J)

ROUTINE TO PRINT MATRIX A IN E-FORMAT,
STORE E IN IV(2) FOR E-FORMAT OUTPUT,

IV(2)=10H0{XE12.5))
JMAX = NUMBER OF VERTICAL PARTITIONS OF THE MATRIX.

JHMAX=(J+3) /10

"IMAX = MUMBER OF HORIZONTAL PARTITIONS OF THE MATRIX.

IMAX=(I+24) /25
IV(L)=10H(1HO0, T4, X1
Y (1) =10H

Y (2)=10H

DO 1020 JCOL=1,JMAX

PRESCRIBE THE FIRST (J1) AND LAST (JJ) COLUMN NUMBERS
TO BE PRINTED ON THE PAGE,

JJ=10*JCOL

Ji=J4J-9

IF (J.LT.Jd) JJ=J
D0 1020 IROW=1,IMAX

PRESCRIBE THE FIRST (I1) AND LAST (II) ROW NUMBERS
TO BE PRINTED ON THE PAGE.,

I1=25%IROH

I1=TI-24

IF (I.LT.II) II=I

LABEL THE OUTPUT, INDICATE MATRIX SIZE AND NUMBIR THE COLUMNS,

PRINT 1030, TITLE’TITEL,Y’I’J’(KK)KK:Ji,JJ)
DO 1010 KK=I1,II

NUMBER THE ROWS AND PRINT ELEMENTS OF THE MATRIX.

OV OONON &S WM
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c _ 43
1010 PRINT IV, KK» (A(KK,J2),J2=J1,J9) 4y
Y{(1)=10H (CONTINUE ' ‘ 45

1020 Y (2)=10HD) 45
RETURN o A . . L7

c 438
c : 49
ENTRY OUTF ' S0

c ' : 51
c . SUBROUTINE OUTF (A,I,J,TITLE,TITEL) : 52
c ROUTINE TO PRINT MATRIX A IN F-FORMAT. 53
c STORE F IN IV(2) FOR F-FORMAT OUTPUT. _ S 54
c 55
IV(2)=10H0(XF12.5)) 56

GO TO 1000 : ‘ 57

C 58
c : 59
ENTRY 0OUTG 61

c 61
c " SUBROUTINE OUTG (A»I»J>TITLE,TITEL) 62
c ROUTINE TO PRINT MATRIX A IN G-FORMAT, 63
c STORE G IN IV(2) FOR G-FORMAT OUTPUT. _ 64
c ] 65
IV(2)=10H0(XG12.5)) . 56

GO T0.1000 67

c 55
c 659
1030 FOSMAT (1H110X4A10/1HUL0X4HSIZET4,8H ROWS BYI4,8H COLUMNS/2HO 10Ii 7¢C
13) 71

END , 72
SUBROUTINE PMULT (A,B,K,L,X) i

c : 2
c ROUTINE TO FORM THE MATRIX PRODUCT A*B IN A WHEN B IS SQUARE, 3
c : 4
COMMON /IYENGAR/ I,J,M,SUM,Y(10) 5

REAL A(K,L),B(L,yL),X{L) 5

c : 7
D0 1020 I=1,K 8

c 9
c GENERATE ELEMENTS OF I-TH ROW OF PRODUCT MATRIX 11
c AND STORE THESE IN VECTOR X. 11
c . 12
D0 1010 J=1,L 13
SUM=0.0 14

DO 1000 M=1,L . 15

1000 SUM=SUM+A(I,M)*B(M,J) 16
1010 X(J)=SUM 17
c 13
c REPLACE THE I-TH R0W OF A BY THE VECTOR X. 19
c _ 20
DO 1020 J=1,L : - . 21

1020 A(I,J)=X(J) : 22
RETURN L _ 32

END ' ‘ 24
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SUBROUTINE POSTM (A,B,K,L,X) 1

c 2

§ c ROUTINE TO FORM THE MATRIX PRCDUCT A*B IN B WHEN A IS SQUARE, 3
c 4

j COMMON /IYENGAR/ I,JsM,SUM,Y (10) . 5
4. REAL A(K,K)yB(K,yL) yX(K) 6
c 7

’ D0 1020 J=1,L 8
X c . 9
c GENZRATE ELEMENTS 0F J-TH COLUMN OF PRODUCT MATRIX 10

c AND STORE THESE IN VECTOR X 11

1 c : i A2
4 DO 1010 I=1,K « 13
SUM=0.0 ) . 14

5 DO 1009 M=1,K - 15
d, 1000 SUM=SUM+A(I,M)*B(M,J) 16
1010 X(I)=SUM 17

' C ‘ 13
: c REPLACE THE J-TH COLUMN OF B BY VECTOR X. . 13
c 20

. 00 1020 I=1,K 21
§ 1020 8(I,J)=X(I) 22
RETURN _ 23

. END 24
i SUBROUTINE ROCBC (A,M,N) 1
c 2

3 c ROUTINE TO READ IN VALUES FOR ELEMENTS OF MATRIX A, 3
c COLUMN BY COLUMN, 4

c 5

. COMMON /IYENGAR/ I,J,Y(12) 6
i , REAL A(M,N) : 7
c 3

DO 1000 J=1,N 9

3 1000 READ 1010, (A(I,J),I=1,M) - 10
RETURN . _ 11

c 12

c , _ 13

1010 FORMAT (8F10.0) 14

END 15

SUBROUTINS ROCOLG (A»M»N) 1

c : 2

‘ C ROUTINE TO READ IN VALUES FOR ELEMENTS OF MATRIX A, .03
} c COLUMN BY COLUMN IN A CONTINUOUS STRING OF COLUMNS., 4
4. c ' 5
: COMMON /IYENGAR/ Y(1i4) 6

E? REAL A(M,N) 7
o R 8

READ 1000, A . g

" RETURN : 10
kb c 11
N c _ ' 12
" 1000 FORMAT (8F10.0) ' 13
3? END 14
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SUBROUTINE RORBR (A,M,N)

ROUTINE TO READ IN VALUES FOR ELEMENTS OF MATRIX A,
ROW BY ROW.

COMMON /IYENGAR/ I,J Y(12)
REAL A(M,N)

DO 1000 I=1,M
RETURN

FORMAT (8F10.,0)
END
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SUBROUTINE RGROWG (A,M,N)

ROUTINE TO READ IN VALUES FOR ELEMENTS OF MATRIX A,
ROW BY ROW IN A CONTINUOUS STRING OF ROWS.

COMMON /IYENGAR/ I:J,Y(12)
REAL A(M,N)

READ 1080, {(A(I,J),J=1,N),I=1,M)
RETURN

. FORMAT (8F10.0)

END
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SUBROUTINE SCMUL (A,M,N,X)

ROUTINE TO MULTIPLY MATRIX A BY THE SCALAR QUANTITY
A = X TIMES A

COMMON /IYENGAR/ TI,MN,Y(12)
REAL A(1D)

MN=M#N

DO 1000 TI=1,MN
A(I)=X*A(I)
RZTURN

END
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SUBROUTINE SINV (A,DA4A,N)

C
c ROUTINE TO FIND THE INVERSE OF A SYMMETRIGC,
c POSITIVE-DEFINITE MATRIX A.
C
COMMON /IYENGAR/ I,IFIN, INUEX INIT 9yJ,JP1,K4SUM, TEMP,Y (5)
REAL A(N,yN)
c
IF (N.NE.1) GO TO 1920
DA=A(1,1)
A(1,1)=1,0/DA
RETURN
C .
Cc BUILT-IN SUBPROGRAM,
C

1000 SUM=0.0 .
00 1010 K=INIT,IFIN
1010 SUM=SUM+A(I,K)Y*®A(J,K)
GO TO INDEX, (1040,1050,1070,1080)

GENERATE MATRIX LAM3DA (A=LAMBDA*LAMSDA TRANSPOSS).
NOTE - ONLY THE DIAGONAL ELEMEMTS ARE THOSE OF
LAMBDA-INVERSE-TRANSPOSE (LIT),.

(1,1) ELEMENT OF LIT.,

QOO0 O

1020 DA=1,.0/SART(A(L,1))
A(1,1)=DA

" FIRST COLUMN OF LAMBDA,

OO0

DO 1030 I=2,N
1030 A(I,1)=A(1,I)*DA
INIT=1
DO 1050 J=2,N
ASSIGN 1040 TO INDEX

IFIN=J-1
I=J
GO TO 1000

J-TH DIAGONAL ELEMENT OF LIT (2 .LE. J LE. N)

OO0

1040 TEMP=1.0/SQRT(A{J»J) =SUM)
A(Jd, J)=TEMP -

Cc
c CONTINUQUS PART=-PROJOUCT FOR THE RECIPRGCAL
C OF THE SQUARE ROOT OF THE DETERMINANT,
C
DA=DA*TEMP
IF (J.EQ.N) GO TO 1060
ASSIGN 1050 TO INDEX
JP1i=J+1 :
DO 1050 I=JP1i,N
G0 TO 1000
Cc
c J-TH COLUMN OFf LAMBDA (2 «LE. J LE, N-1).
Cc

1050 A(I, N =(A(J,I)-SUM) *TEMP
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1060 ASSIGN 1070 TO INDEX

OO0

OO0

1070

OO0

1080
1030

FINAL VALUE OF THE DETERMINANT.,

DA=DA*DA
DA=1.0/0DA

GENERATE OFF-DIAGONAL ELEMENTS OF LIT.

DO 1070 I=2,N
IFIN=I-1

TEMP=A(I,I)

DO 1070 J=1,IFIN
INIT=J

GO TO 1000

ACJ, I)==-SUM®TEMP
ASSIGN 10380 TO INDEX
IFIN=N

FORM THE PRODUCT LIT®INVERSE OF LAMBNDA,
RESULT IS INVERSE OF THE ORIGINAL MATRIX A.

DO 1090 I=1,N

INIT=I

00 1090 J=1,I
GO TO 1000
A(I,J)=SUM
A(J>,I)=SUM
RETURN

END

- W - -

1gco

1010

OO0

SUBROUTINE SOLVE (A,B,N,L,DET)

ROUTINE TO SOLVE THE SYSTEM OF LINEAR
SIMULTANEOUS EQUATIONS A*X=8,

COMMON /IYENGAR/ A3SA,BIG,DyI,I1JKyIP1,J,K,NML,Y(4),Z
REAL A(N,N),B(N,L)

IF (N.NE.1) GO TO 1010
DET=A(1,1)

DO 1000 J=1,L
8(1,J)=8(1,J)/DET
RETURN ,

NM1=N=-1

DET=1.0

DO 1070 I=1,NM1
IP1=T+1

SEARCH COLUMN I FOR THE LARGEST ABSOLUTE-VALUED
ELEMENT IN ROWS I THRGQUGH N.

BIG=0.0

DG 1020 J=I,N
ABSA=ABS(A(J,I))

IF (BIG.GE.ABSA) GO TO 1020
BIG=ABSA



- - -

1030

1040

OO0

1050

o NoNe

o000

1050

1070

DO

Qo0

1080
1090
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THE LARGEST ABSOLUTE-VALUED ELEMENT IS IN ROW K OF COLUMN I,

K=J
CONTINUE

EXCHANGE ROWS K AND I, ONLY IF X IS DIFFERENf FROM I.

IF (K.EQ.I) GO TO 1050
DO 1030 J=I,4N

Z=A(1,J)

A(I,J)=A(K,J)

A(K,J) =2

DO 1040 J=1,L

Z=8(1,J)

B(I,J)=B(XyJ)

B(K»J)=Z

CHANGE THE SIGN OF THE DETERMINANT,
SINCE ROUWS HAVE BESN EXCHANGED.

DET=-DET
Z=A(I,1)

CONTINUOUS PART-PRODUCT FOR THE DETERMINANT,.

DET=DET*Z
Z=1.0/2

MODIFY ELEMENTS OF A - THE REDUCTION PROCESS.
MODIFY MATRIX B ALSO.

DO 10670 K=IPi,N
D==A(K,I)*2Z

D0 1060 J=1,L
B(K,J)=B(K,J)+D¥B(I,)
D0 1070 J=IP1,N

A(Ks J)=A(K,J)+D*A (I, J)
Z=A(N,yN)

FINAL VALUE OF THE DETERMINANT.

DET=DET*Z
Z=1.0/2

PROCESS OF BACK-SUBSTITUTION TO GET THE SOLUTION MATRIX.

DO 1090 X=1,L
B(N,K)=B(N,K)*Z

DO 1090 TJUK=1>NM1
I=N-IJK

IPi=TI+1

D=0.0

DO 1080 J=IP1:,N
D=D+A(I,J)*8(J,K)
B(I,K)=(B(I,K)Y-D)/A(I,I)
RETURN

—-----c-.._----——-.-—--------..-——----q--—-------------—-‘——-————-—------—-—-—-—n
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SUBROUTINE SQTR (A,N) 1

c ‘ 2
c ROUTIME TO TRANSPOSE THE SQUARE MATRIX A IN ITS OWN SPACE. 3
c A
COMMON /IYENGAR/ I»INCRsK»L>LAST,NML,NP1,T,Y(6) 5

REAL A(1) 6

C 7
IF (N.EQ.1) RETURN 8
NM1=N-1 : 3
NP1=N+1 10
LAST=N*N 21
INCR=0 : i 12

DO 1000 K=25N 132
LAST=LAST-N 14
INCR=INCR+NM1 15

DO 1050 L=K,LAST,NP1 . 16
I=L+INCR 17

C 18
c EXCHANGE ELEMENTS WITH SUBSCRIPTS I AND L. 19
c 21
T=A(D) . 21

ACI) =A(L) - 22

1000 A(L)=T o 23
RETURN 24

END 25
SUBROUTINE SUB (A,3,C,M,N) 1

c 2
c . ROUTINE TO SUBTRAGCT MATRIX B FROM MATRIX A. C=A-B 3
c 4
COMMON /IYENGAR/ TI>MN»Y(12) ' _ 5

REAL A{1),8(1),C(1) 8

C 7
MN=M¥N 8

DO 1000 I=1,MN 9

1000 C(I)=A(I)=B(I) 10
RETURN C 11

END _ 12
SUBROUTINE TMULT (A,B,C,L, M,N) 1

c 2
c ROUTINE TO FORM THE MATRIX PRODUCT OF (TRANSPOSE 0OF MATRIX A) 3
c AND MATRIX B. C=(TRANSPOSE OF A)*8 4
c 5
"COMMON /IYENGAR/ I,J,K,SUM,Y(10) 6

REAL A(LyM) 3B ILyN)4C(HM,N) 7

C : 8
DO 1010 I=1,M B 9

00 1010 J=1,N : 10
SUM=0.0 _ 11

- DO 1000 K=1,L 12
1000 SUM=SUM+A(K,I)*B(K»J) , : 13
1010 C(I,J)=SUM 14
RETURN 15

END _ 16
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SUBROUTINE TRANS (A,B,M,N)
ROUTINE TO TRANSPOSE MATRIX A, B=TRANSPOSE OF A

COMMON Z/IYENGAR/ I,J,Y(12)
REAL A(M,N)sB(N>» M)

DO 1000 I=1,M
DO 1000 J=1,N
8(J>I)1=A(I,J)
RETURN

END

- em wm en o w -~ -

OO0 (]

QOO0

1000

1010

SUBROUTINE XABATC (A,B,C,L,M,X)

ROUTINE TO FORM THE MATRIX PRODUCT
A®B* (TRANSPOSE OF A) WHEN B IS SYMMETRIC,

COMMON /IYENGAR/ I»J,K,SUM,Y(10)
REAL A(L,M),B3(M,M),C(L,L),X(M)

DO 1030 I=1i,L
GENERATE ROW I OF PART=-PRODUCT A*B IN VECTOR X.

DO 1010 J=1,M
SUM=0,0

DO 1000 K=1i,M
SUM=SUM+A(I5K) *B8(K>»J)
X (J) =SUM

PRODUCT MATRIX C IS SYMMETRIC, SINCE MATRIX B IS SYMMETRIC.

GENZRATE PRODUCT MATRIX.

D0 1030 J=I,L
SUM=0.0

00 1020 K=1,M

SUM= SUM+X(K)’A(J;K)
C(J, I)=SUM
C(I,J)=SUM

RETURN

END
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c

c ROUTINE TO FORM THE MATRIX PRODUCT
c

c

FRITZ LABORATORY MATRIX PACKAGE (FLMXPK)
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SUBROUTINE XABTA (A,8,L,N,X) -

A¥* (TRANSPOSE OF B) IN A WHEN B IS SQUARE.

COMMON /IYENGAR/ I,J,K,SUM,Y(10)
REAL A(L,N)yBINyN) 4 X(N)

c
DO 1020 I=1,L
c 1
c GENERATE ROW I OF PRODUCT MATRIX IN VECTOR X, 11
c ) 1¢
D0 1010 J=1,N 13
SUM=0,0 ' 14
D0 1000 K=1,N 15
1000 SUM=SUM+A(I,K)*B(J,K) 16
1010 X(J)=SuM - 17
c 19
c REPLACE ROW I OF MATRIX A BY VECTOR X, is
c 20
DO 1020 J=1,N 21
1020 A(I,J)=X(J) ’ 22
RETURN ] 23
END 24
SUBROUTINE XABTC (A,B,C,L,M,N) 1
c 2
c ROUTINE TO FORM THE MATRIX PRODUCT 3
c A4 (TRANSPOSE OF B) ' A
c 5
COMMON /IYENGAR/ I,J,K»SUM,Y(10) 6
REAL ACL,M) ,8IN,M),C(L,N) 7
c 3
DO 1010 I=1,L 9
D0 1010 J=1,N io
SUM=0,0 11
DO 1000 K=1,M 12
16060 SUM=SUM+A(I,K)*B(J,K) 13
1010 C(I,»J)=SuM 14
RETURN 15
END 16
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OO0 (9]

OO0

1000
1010

1020

1030

FRITZ LABORATORY MATRIX PACKAGE (FLMXPK)
SUBROUTINE XATBAC (A,B,C,yL,yM,yX)

ROUTINE TO FORM THE MATRIX PRODUCT
(TRANSPOSE OF A) *B*¥A WHEN B IS SYMMETRIC.,

COMMON /IYENGAR/ I,J5K»SUM,Y(1D)
REAL A(LyM),B(L,L),C{M,M),4X (L)

DO 1030 J=1,M
GENERATE COLUMN J OF PART-PROOUCT 8%A IN VECTOR X.

D0 1010 I=1,L

SuM=0.0

DO 10093 K=1i,L
SUM=SUM+3(I,K)*A(KyJ)
X(I)=SUM

PRODUCT MATRIX C IS SYMMETRIG, SINCE MATRIX B8 IS SYMMETRIC.
GENERATE PRODUCT MATRIX.

00 1030 I=1,J
SUM=0.0

0O 1020 K=1,L
SUM=SUM+A (K, I)*X(K)
C(I,J)=SuH
C(J>I)=SUM

RETURN

SUBRQUTINE XATB88 (A»B,LsNsX)

ROUTINE TO FORM THE MATRIX PRODUCT
(TRANSPOSE OF A)*B IN B WHEN A IS SQUARE.,

COMMON /IYENGAR/ I,J,K,SUM,Y(10)
REAL A(L,L),,B{L,yN),X (L)

DO 1020 J=1,N
GENERATE COLUMN J OF PRODUCT MATRIX IN VEGCTOR X.

DO 1010 I=1,L

SUM=0.0

DO 1000 K=1,L
SUM=SUM+A(K,I)*B(KyJ)
X(I)=SUM

REPLACE COLUMN J OF MATRIX B BY VECTOR X,
DO 1020 I=1,L

B(I,J)=X(I)
RETURN
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