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1. INTRODUCTION 

J 1.1 A Brief History 

J The matrix package MXPAK was used in course work and 

'-
research by members of the Fritz Laboratory until the 

]· GE 225 computer at Lehigh University was replaced· by the 

·-] CDC 6400 in the Summer of 1968. MXPAK was written in 

LEWIZ, a language developed at Lehigh, and was compatible 

:.] for use with the GE 225 put not the CDC 6400. 

To meet the immediate needs of the Laboratory, 

] FCHXPK (FORTRAN Callable Matrix Package) was written by 

J 
Mr. Edward T. Manning, Jr. and Mr. Iyengar in Fall 1968. 

Later, a documentation of this package was considered 

] worthwhile in view of its highly satisfactory performance. 

At this stage, it became evident that many improvements 
.] 
-· and some additions were possible. The resu~t of all such 

] modifications is the present version, FLMXPK (Fritz 

Laboratory Matrix Package), which is described in the 

"] -· 
succeeding pages. 

:] 

J r 

"' ] 

] 

] -1-
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1.2 Divisions in the Text 

FLMXPK contains 30 routines to perform matrix operations, 

as summarized in the following table. 

. Operation 

Add matrices 

Subprogram 

ADD 
DETHT,MINV,SINV,SOLVE 
DIAG 

Determinant of matrix 
Create diagonal matrix 
Eigenvalues of symmetric 
Invert matrix 

matrices EV,IEV,GEVP 

Copy matrix 
Multiply matrices 

Print matrix 
Read matrix 

Simultaneous equations 
Transpose matrix 
Subtract matrices 

MINV,SINV 
MOVE 
MULT,PMULT,POSTH,SCHUL, 

TMULT,XABATC,XABTA, 
XABTC,XATBAC,XATBB 

OUTE,OUTF,OUTG 
RDCBC,RDCOLG,RDRBR, 

RDROWG 
SOLVE 
SQTR ,·TRAi'lS 
SUB 

Each of these routines has received individual treatment to 

the extent considered necessary (Chapter 2). In general, the 

discussion-is under the following headings: 

1. Function 
2. Development of the Subprogram 

(including the mathematical background) 
3. Special Features (if any) 
4. Limitations (if any) 
5. Additional Remarks (if any) 

The limitations listed under each routine are in addition 

to the general limitations which are discussed in Section 4.2 

of the User's Guide (Chapter 4). 

Chapter 3 - "General Notes" - contains remarks which 

apply to the package as a whole. 

The User's Guide (Chapter 4) explains briefly how each 

routine may actually be used. The more important limitations 

-2-
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of each routine are listed here also. The ready reference 

sheet (Chapter 5) is hopefully all that a user needs in day­

to-day work after he has gained some experience in the use 

of this package. 

Proofs of certain theorems in matrix algebra and topics 

related to the text are included in Appendix 1 to. make the 

subject matter as complete in content as possible. 

Finally, the subprograms the~selves are listed in 

Appendix 2. 

-3-
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2.1 

l 

l 

2. ROUTINES 

SUBROUTINE ADD (A,B,C,M,N) 

2. 1. 1 Function 

The sum of matrices A and B fs made available to 

the calling program as matrix C. C = A + B. 

Hatrices A,B, and C are each of size M r_ows by N 

columns. 

2.1.2 Development of the Subprogram 

In algebraic terms, the addition of two matrices 

may be expressed by CI J = AI J + BI J• From this de-
, I I 

fini tion, the following subprogram is e_asily written. 

SUBROUTINE ADD(A,B,C,M,N) 
CO.tv' ... NON/IYBNGAR/I ,J, Y (12) 
REAL A(M,N) ,B(M,N) ,C(M,N) 
DO 1000 I = l,M 
DO 1000 J = l,N 

1000 C(I,J)=A(I,J)+B(I,J) 
RETURN 
END 

The use of the labeled COHHON block is discussed 

under "General Notes" in Chapter 3. 

In the above routine, the computations required for 

locating the elements in the three double-subscripted 

arrays are time-consuming. The matrices may, however, 

be treated as single-subscripted arrays in the sub-

program to reduce the time required for address compu-

tations. 

A further advantage of this procedure is that the 

-4-
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operations can now be performed using a single DO-loop 

as indicated in the listing (Appendix 2). 

The size of each matrix is M*N elements but a dec­

laration of the type REAL A(H*N) is invalid. This dif­

ficulty is easily overcome by dimensioning each array 

as a vector consisting of one element only. · When the 

subprogram is CALL-ed, the starting addresses of each 

array are passed to the subprogram and hence, in the 

subprogram, the arrays are spaced as required in spite 

of the arbitrary dimensioning. 

2.1.3 Additional Remarks 

The resultant matrix C can be stored in either of 

the original matrices (say A). In this case, the origi­

nal matrix (A) will be destroyed. 

-5-
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2.2 SUBROU~INE DETMT(A,DA,N) 

2.2.1 Function 

The determinant of the given matrix A of size N rows 

by N columns is made available to the calling program as 

DA. 

2.2.2 Development of the Subprogram 

The basis of operations is to reduce the given mat-

rix to a lower or upper triangular matrix by elementary 

transformations and form the product of the diagonal 

elements of the reduced matrix to give the determinant. 

In the process of such a reduction, whenever a submatrix 

in the upper left of the original matrix is singular, 

division by zero will be encountered. Row or column ex-

changes are necessary to overcome such a situation, if 

it exists, before each step of the reduction process. 

This subprogram utilizes column exchanges and re-

duces the original matrix in its own space to an upper 

triangular matrix. 

-6-
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Assume that the matrix has the following form at the 

end of I-1 (I> 1) stages of the reduction process. 

Al,l A1,2 . . . Al,N 

0 A2 2 . . . A2,N 
0 0 ' 
0 0 

0 0 AI,I AI,I+l AI,N 

0 0 AI+l, I AI+l,I+l• AI+l,N 

. 

0 0 

Except possibly for the elements in row 1, all the 

elements are modified by the reduction process and, there-

fore, do not correspond, in general, to those of the ori-

ginal matrix. The part product of the diagonal elements 

AK,K where K ranges from 1 through I-1 is assumed to have 

been computed and stored in DA. 

Further processing starts with row I. Since AI,I may 

be zero, the immediate step is to search the Ith rmv for a 

non-zero element in columns I through N. If AI,I itself 

is non-zero, the process of reduction may be continued. 

However, it is advantageous, in the interest of accuracy, 

to choose AI,I such that it is as large as possible in 

absolute value, since division by AI,I is later involved. 

Hence, the Ith row is searched for the largest absolute 

valued element in columns I through N. 

-7-
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If all the elements searched are zero, the conclusion 

is that the matrix is singular, and hence DA has the value 

zero. Control is returned to the calling program in such 

a. case. 

Otherwise, the largest absolute valued element in row 

I is located in, say, column N where N > M,;::: I. If H equals 

I, the largest absolute valued element is AI,I itself and 

no exchange of columns is involved. If M does not equal I, 

columns M and I are exchanged, and the corresponding change 

in the sign of the determinant is accounted for. It is 

useful to note that such an exchange may be limited to 

elements in rows I through N only, as elements in rows 1 

through I - 1 do not affect the evaluation of the determinant. 

For further discussion, the form of the matrix noted 

above remains valid, although the values of some of the 

elements may have changed because of column exchanges. 

The part product of the diagonal elements is then 

modified to include AI,I· In FORTP~N language, 

DA = DA*A(I,I). 

The next step is the process of reduction. To reduce 

the elements in column I of rows I + 1 through N to zero, 
-A 

it is necessary to add !1 ·I times the Ith row to row H, 
AI,I 

where (I + 1) $.. H.:S N. After such additions, the modified 

matrix has the following form. 

-8-
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Al,l A1,2 • Al,N 0 

"'"' 0 A2,2 • A2,N 

0 

0 

0 

• 0 AI,I (Elements in this row need not be modified) 

0 0 0 0 0 0 AI+l,I+l-
Ar+l,I 

AI,I+l AI+l,N-
AI+l,I 

Ar,N 
Ar,I Ar,I 

0 

0 

I • 0 
\.0 

Ar-1 I AM, I I 

0 0 0 0 0 0 AH, I+l ' AI,I+l AM,N AI N 
Ar,I AI,I . I 

0 

0 

0 

0 0 0 0 0 0 ~,I+l 
AN,I 

AI,I+l AN,N 
AN,I 

AI,N A AI,I I,I 
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Since the purpose here is to evaluate only the 

determinant, better speed can be achieved by avoiding 

generation in the machine of fresh values for some of 

the elements. Some of these values are known (zeroes 

below AI,I in column I) and others do not affect the 

final product (elements to the right of AI, I- in row I). 

The general formula, then, in the region of interest, 

is -simply 
AH,I 

AM,J = AH,J -
AI,I 

AI,J , 

where both !1 and J range in values from I + 1 through N, 

and the prime* denotes the fresh values computed for 

the corresponding elements. 

AH I 
The elements are evaluated row by row and ---'- is 

AI,I 
recognized as a constant \vhen elements in row M are 

processed. 

When the search and reduction process explained 

above is repeated for a total of N-1 cycles, the matrix 

is (upper) triangulated and all that remains is to mo-

dify the part product of the diagonal elements obtained 

thus far by multiplying it by AN,N to give the final 

value of the determinant DA. 

*In the subprogram, it suffices to redefine AH J as the 
quantity on the right-hand side of the equati~n. 

-10-
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,., 

A special situation arises if N is 1. The normal 

reduction process in this case would imply operations 

in stages 1 through 0, which is meaningless. However, 

. the determinant is simply A1 , 1 of the original matrix 

(1 by 1). Hence, very soon after the subroutine is 

entered, N is checked for equality with 1 and if the 

test is true, the determinant is set to A1,1 and con-

·trol is returned to the calling program. 

2.2.3 Features 

The operations involved are carried out within the 

space of the given matrix itself. Thos~ operations 

which do not affect the final result are avoided 

altogether to ensure better speed of performance. 

2.2.4 ·Limitations 

The original matrix A is destroyed in the process 

of evaluating the determinant~ 

It is conceivable that the determinant of a matrix 

which is singular may not be identically zero when this 

subprogram is used, because of machine errors in using 

floating-point arithmetic. A check of the diagonal 

element AI,I for its absolute value at each stage of the 

reduction process (after column exchanges, if any) with 

a number like 1.0 x 10-6 could have been employed to 

recognize the singularity of the matrix, but this has 

-11-
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an obvious disadvantage. The determinant is a function 

of the values of the elements in the original matrix as 

well as their positions. Hence, a purely arbitrary num­

ber like 1.0 x 10-6 is inadequate for such a test. In 

most engineering applications, the user has a feel for 

the value of the determinant based on the trend of a 

set of calculations and is normally able to recognize a 

singular matrix when the determinant is "small". 

2.2.5 Additional Remarks 

If the value of DA is to be printed, it is better to 

output this quantity in E-format (or G-format) than in 

F-format since, generally, its magnitude is unknown. 

This is the only subprogram (in this package) that 

can also be written as a FUNC~ION subprogram [FUNCTION 

DA (A,N)]. Were it so written, it would have to_be 

"referenced" instead of being "CALL-ed" by a calling 

program. In its present form, no exception is necessary 

to the general rule of CALL-ing any of the subprograms. 

-12-
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] 2. 3 SUBP.OU'r IL-!E D lAG (l\, DA, lJ) 

2.3.1 Function 

J. Ilatrix A of dimension N rm·1s by ;:~ columns is gene-

J rated as follows. All the diagonal elements have the 

same value DA, and the off-diagonal elements are all 

] zero (Diagonal matrix). 

~1 
., 

2._3.2 Development of the Subprogram 

Treating the matrix as a vector of N*N elements in 

"j 
the subprogram, a null array is created in the first 

l DO-loop (Appendix 2). Next, the diagonal elements are 

each assigned the value DA in the second DO-loop. 

] 
2.3.3 Additional Remarks 

"] DA should be defined as a FOETl\.2\N real nu:nber in 

the calling program. 

] 

'j ., 

.J 

.J 

.1 
] 

,. 

J 

J 
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2.4 SUBROUTINE EV(A,S,~) and E~TUY IEV 

2. 4. 1 FuncJcion 

Eigenvalues and eigenvectors of the symmetric matrix 

A are computed. 

2. 4. 2 Development of the S1..1.bprogram 

A. Theory and a Practical Approach 

The procedure presented here is based upon the 

mathematical discussion of the problem outlined by 

(1) 
Greenstadt . 

If X is a scalar and X is a (non-zero) column vee-

tor such that AX = A. X, vector X is known as the eigen-

vector corresponding to the eigenvalue X • c. ; . -,)lnce ma-cr1.x 

A is of size N (N rows by N columns), it ha~ N eigenvalues 

and N eig~nvectors. Since matrix A :i.s also ~~ymmetric, 

its eigenvalues are all real but not necessarily distinct. 

However, N distinct eigenvectors can b~ found. In fact, 

it can be shown that these eigenvectors are also orthogo-

nal; that is, mutually perpendicular to each other. 

] If the eigenvalues represent the diagonal elements 

] 

.1 

1 

of a diagonal matrix D, and the corresponding eigenvec-

tors (normalized) represent the columns of a matrix S, 

the equation AS = SD tepresents a generalization of 

AX = XX. (Recall that postmultiplication of ~atrix S 
-( 

by a diagonal matrix D is equivalent to multiplication 

of each column of matrix S by the corresponding diagonal 

-14-
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. 
.element of matrix D). Since the X vectors are crtho-

normal 1 s iS an OrthOn0l"n1dl m.J.triX an<..t hence sri.' ::: s-·1, 

The equation AS = SD can, therefore, also be written as 

In mathematical terms, if S is an orthonormal matrix 

such that the transform (sTAs) of matrix A is -a diagonal 

matrix, the diagonal elements of the dia."gonal mu.trix are 

the eigenvalues of matrix A and the columns of natrix S 

are the corresponding eigenvectors. The requirement is, 

therefore, to find tha matrix S. In the case of a 2 x 2 

matri~, it can be found almost directly, as shown below. 

A = t:·: 
L , 

Hatrix A is syfiu:tetric. 

Assume S = [ co~ e sin e ] 

--s ln e cos 6 

Matrix S is orthonormal, and the value of e is to be 

found. · The transform of h is given by s'l'As 'dhich is 

symmetric. 

= [A1 , 1 cos 2e + A 2 ,~sin2e..:. 2A1 , 2 cosesinG 

(Al,l-A2 , 2 )cos8sin8 + A1 , 2 (cos2e-sin2e) 

l 
( ) . ( 2 . 2,\1 A1 , 1 -A2 , 2 cos9sln8 + A1 , 2 cos 8-sln 8,

1 

A1 , 1sin 2e + A2 , 2cos 2e + 2A1 , 2sin9cos6 J 

-15-
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Hence, A will be diagonalizcd if 8 satisfies the rcl2tion 

(A1 , 1-A2 , 2 )sin 28 = -2A1 , 2cos 28 

-2Al 2 
I ' 

or tan 28 = ( 1) 

A simple application in Civil Engineering is the eva-

luation of principal stresses in an element which is 

ject to norr7lal and shearing stresses. 
I (5 = 6 l yy 

_, ______ --- C5 = r3 
,--------, ~ 1/ 

1' I xy 
' 1 

~1-- : i --;-- C5 = 4 

li I v XX 
L_ ____ __J 

------;r 

I 
t 

Figure l(a) 

sub-

The stress tensor for the loading shown in Figure l(a) is 

From Equation (1), tan 28 -
4-6 

Hence, the principal stresses are given by the diagonal 

elements of the follm1ing matrix: 

[

3. 0 

0.0 

0. OJ 
7.0 

-16-
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The or-ientations of ti1e pr·incip2..l pl2..~1e s are c:cpi cted 

in Figures l(b), l(c), and 1(d). 

(0 '0) 

Minor-

-~ (J 

I YY 
= 6 

I 
~--- (J = ./3 

\ II_:,_ 
y'/" \ / 

,._- \ .:-
;·~\ . 

0 

30 

Fig. 1 (b) 

(J 

XX 
= 4 

Fig. 1(d) 
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When matrix A is larger than 2 x 2 it is not possible 

to findS directly, since there is more than one of£-

diagonal element to be annihilated. ['i"lhenever an off-

diagonal element is referred to below, it is assumed to 

be in the upper half of the matrix (subscripts P,Q where 

p < Q) ~ By symmetry, there is a corresponding- (Q,P) 

element identical in value in the lower half. Both 

elements are affected in the same way t:1roughout.] 

However, it is possible to annihilate a selected off-

diagonal element Ap,Q if matrix A is transforoed by R, 

where R is the Identity matrix modified with regard to 

the following elements only. 

RP,P = cos e 

RQ,P =-sin 9 

Rp,Q=' sin 8 

RQ,Q= cos e 

t•latrix R is orthonormal and tan 29 

(See Appendix 1 for the values of sinS and cose from this 

equation). In the transform RTAR represented by matrix 

B, BP,Q (and BQ,P) will be zero. We now need to continue 

this process to annihilate some other off-diagonal ele;nent 

of matrix B by a transform using another orthonormal 

matrix, say T. 
,., 

( RT ) '-A ( ET ) . 

Since R and 'l' are both orthonormal, R'r is orthonormal 

(Appendix l) . In other words, Cis the transform. of A by 

RT, although it was shown to be derived in two steps 

using elementary orthonormal transformation matrices R 

-18-
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and T in turn. 

With the transform of B to C, usually it happens 

that BP,Q' whi~h was zero, will not retain that value. 

The annihilation of AP,Q is therefore undone. 

Naturally, therefore, the question arises whether a 

process such as this is convergent. The answer in the 

affirmative was first provided by Jacobi. (The ?roof 

is not presented here.) To achieve rapid convergence, 

he also proposed selection of that off-diagonal element 

which has the largest absolute value, for annihilation 

at the subsequent step of the process. 

The selection of the off-diagonal element may be 

modified slightly when using the high-speed electr.onic 

computer(l). The procedure is as follows. 

The square root of the sum of the squares of the off-

diagonal elements in the upper half of matrix A is calcu-

lated first. (Note that squaring each element emphasizes 

the importance of the elements having larger absolute 

values. The principle is analogous to that used in Least 

Squares Method for Curve Fitting.) This is called the 

initial threshold (TURI in the subprogram) . If diagonali-

zation of A can be continued indefinitely to the point 

where all off-diagonal elements are zero, the final thres-

hold will be zero. For practical reasons, it is necessary 

to terminate the program when the absolute value of each 

-19-
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off-diagonal element is sr.taller thc:..n a specified valur.:; 

(THRF in the subprogram) . Since the magnitudes of the 

original off-diagonal elements will differ with each 

problem, it is further necessary to relate THRF to these 

elements in some way. This subprogram assumes that 'riiRF 

is one-millionth of THRI. (Greater accuracy ~an be 

achieved as discussed later under ENTRY IEV.) 

Having set the value of THRF, the value of THRI 1s 

reduced by dividing it by a number Hat least equal to N, 

the size of the matrix. In this subprogram, N itself is 

the nurilier chosen. 'l'hen, there is at least one off-

diagonal element which is larger in absolute value than 

this new value of THRI{l). 

Any off-diagonal eleffient which exceeds THRI in 

absolute value is a "candidate" for annihilation. The 

choice is made syste;:natically. If the first of£-diasonal 

element (A1 ,2) is a candidate, it is annihilated. 

Al,3 is considered.) 

(Else, 

Assuming A1 , 2 was annihilated in the previous step, 

the next off-diagonal element considered is Bl,3· (Note 

that A is transformed by now to B.) The next in order is 

c2 , 3 , etc. (column by column). 

At the conclusion of the first sweep, there is no 

guarantee that every off-diagonal element \·!ill be less 

than THRI in absolute value, since annihilation of an 

-20-
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l element in a particular step may have been undone by sue-

l 
ceeding transformations. This is no serious problem since 

one or more repeat sweeps will assure that THRI is larger 

l- than every off-diagonal element in absolute value, by 

virtue of convergence of the process. The necessity or 

)· otherwise of a repeat sweep is indicated by the value of 

J 
the logical variable IND in the subprogram. 

THRI is now further reduced by dividing it by N and 

l the process repeated all over again. When THRI, so 

modified successively, becomes less than THRF, the diagona-

l lization is terminated. 

1 B. Programming De·tails 

7he procedure calls for many matrix multiplications. 

-~ -· Although several names have been used in the earlier dis-

J 
cussion for the sake of clarity, the subprogram actually 

uses only matrices A and S. The original matrix A is con-

J tinuously modified so that on return to the calling program, 

J 
it is diagonalized and has, for its diagonal elements, the 

eigenvalues of the original matrix A.· Matrix S is ini-

j tially defined to be the Identity matrix and is also 

modified at each step so that finally it will store, in 

J . 
its columns, the eigenvectors of the original matrix A. 

_ .. , 
-·" 

Assuming calculatio~Bat stage J have been completed, 

the modifications required for matrices A and S at stage 

J J + 1 will now be noted. Let R be the elementary 

J 
-21-
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l orthonormal transfor::c1ation matrix during this stage. For 

'l 
convenience, again, let B = RTAR and T = SR. 

Since matrices A and B are synm1etric and R contains a 

r nuwber of zero elements, it is reasonable to suspect that 

regular matrix multiplication is not warranted. A long-

.1 hand matrix multiplication shows that the following equa-

., tions are true. These may, however, also be derived . 

~ (AP,Q is the element to be annihilated.) 

l BP,K = A cose - AQ -,. sine where K :j p or Q (2) P,K ,h 

l BQ,K = Ap T' sine + AQ,K cose where K _J, p or Q ( 3) 
,t>- I 

BI
1

P = AI P cose - AIIQ sine where I t- p or Q ( 4) 
I 

1 BI,Q = AI P sine + AIIQ cose where I =J p or Q ( 5) 
I 

'] 

l 

B = AI,K vlhere I ancl. K are both different ( 6) I 1 K 
from p and Q 

2 
sin2e sinecose ( 7) Bp p = Ap p cos e + AQ,Q - 2Ap

1
Q 

I I 

BQIQ = Ap p sin2e + AQ,Q cos2e + 2AP
1
Q sinecose ( 8) 

' 

.1 
BPIQ = B = (Aplp - AQ,Q) cose sine + A0 Q(cos2e-Q,P .. ' 

sin2e) ( 9 ) 

.1 TI
1
K = SI K where K t- p or Q ( 10) 

' 

.1 

TI,P = si,P cos8 SI Q sine ( ll) 
' - . 

TI,Q = si P sine + si,Q cose (12) 
I 

l This list of equations enables us to recognize a few 

l features which, when incorporated in the program, speed up 

operations considerably. 

l 
:l 
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The matrix B is the s.:rrne as matrix A, except fer ro'.-:s 

P and Q and colunms P and Q. Further, by virtue of s :;·m;~>e try, 

.] rows P and Q are the same as colunms P and Q, respectively. 

]. 
The following scheme to generate m~trix B (the new A) can 

therefore be adopted. 

. . -]- l. Calculate a new value for each element- of column P . 

f-lodify the corresponding element in row P to have 

the same value. 

Do the same for column Q and row Q in the same DO-

loop. Equations 4 and 5 are to be used. 

-·]. 
-· 

2. As a consequence of step l, we have some fictitious 

values for (the pivotal) elements Bp
1

p 1 Bp,Q, BQ,P 

and BQ,Q as these elements also have been conputed 

using either Equation 4 or Equation 5 . 

. this ">vasteful" set of calculations (the values 
\ 

] will be discarded) has saved any checking of S'lJb-

scripts that would otherwise be involved in Step l. 

J The elen-:ents of the pivotal set are nm-1 evaluated 

according to the Equation~ 7, 8, and 9. The 

"mistake" is thus corrected. 

] Turning next to matrix T, it is seen that, again, only 

columns P and Q of matrix T are different from those of 

matrix S. The calculations needed can be easily cornbined 

1 
with those in Step l above. 

1 
-23-
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1 
C. ENTRY IEV 

It was remarked under Part A in the above discussion 

1 that the accuracy of calculations need not be confined to 

the degree where THRF equals one-millionth of the initial 

l threshold value. The following explains this feature. 

1 The diagonalization of matrix A was shown to be an 

iterative process. Since a limit to this process was re-

quired to be set for practical reasons, THRF was set ·to the 

value stated. The fraction, one-millionth, was arbitrarily 

chosen assu:raing that the requirements of the user are there-

l by met. (Reference 1 uses one-billionth in a numerical 

example.) If, however, a user is interested in greater 

l accuracy, all that is necessary is to return to the sub-

l 
program from the calling program and thus continue the 

process which is iterative. In other words, the subprogram 

:I 
should be CALL-ed again. However, one snag of this pro-

cedure must be avoided . 

. I If the subprogram is CALL-'ed again in the fo1.·m CALL 

'1 

EV(A,S,N), the S-matrix will get reinitialized to the 

Identity matrix. So, although the eigenvalues will be 

. l improved, the eigenvectors wi 11 all have wrong. valu.es . 

The ENTRY statement is useful to avoid this difficulty. 
1 

.j The statement ENTRY IEV in the subprogram allows an 

1 
alternate point of entry (the next executable statement 

I after the ENTRY statement). Hence, if the CALL statement 

l 
l 
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is CALL IEV(A,S,N), the initializa~ion of the matrix S 

will be bypassed. Thus, matrix S also will be improved. 

In the subprogram, the positioning of the ENTRY state-

ment is such that calculations for THRI are also bypassed. 

This was deliberately done for the following reasons. 

With the first use of the subprogram, the ~alculations 

for the initial threshold will be made and the diagonaliza-

tion procedure assures us that every off-diagonal element 

is less than one-millionth of this quantity in absolute 

value. The variables THRI and THRF in the subprogram, 

defined prior to the ENTRY statement, represent these quan-

tities. The variable THRI changes in value during the 

execution of the subprogram a~d when the diagonalization 

is terminated, it is less than THRF. If now, THRF is re-

duced to one-millionth of its mm value, we will have set 

the final threshold for a subsequent use .of this subprogram 

and be ready for the improvement procedure, without having 

to calculate a new initial threshold. (See the redefini-

tion of THRF just prior ·to the RE'l'URN Statement.) The accu-

racy prescribed for the second ruri would, therefore, be 

lo- 12 times the initial threshold value calculated for the 

original matrix A. This process is also iterative and 

-6n hence in general terms, the accuracy is 10 times the 

initial threshold value, where n is the number of times 

this subprogram is CALL-ed. 

-25-
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The advantages are these: 1. The user has a measure 

of the accuracy based on the nurrtber of CALL s ta ternents. 

2. The calculat~ons for initial threshold are limited to 

the first set. 3. These calculations can be combined 

with the initialization of the S matrix (to the Identity 

matrix) in the same DO-loop nest. 

D. CALL-ing Procedure 

The following rules apply to the CALL st~tements for 

the reasons stated. 

1. CALL EV(A,S,N) must be used the first time around. 

This permits matrix S to be initialized and the initial 

threshold to be evaluated. 

If the accuracy prescribed is considered good 

enough, the problem is solved on return to the calling 

program. 

2. CALL IEV(A,S,N) must not be used the first time 

around, since matrix S and the initial threshold will not 

be properly initialized. 

3. CALL IEV(A,S,N) may be used as often as necessary 

subsequent to CALL EV(A,S,N). 

Trail runs have shown that the eigenvalues '.vill not 

differ appreciably when improvement is attempted. This 

is because the eigenvalues found in the initial run are 

already very close to the exact values. 

-26-
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The eigenvectors shm: some improverr:ent \·lith eac:1 sub-

sequent CALL IEV(A,S,N). In engineering problems, one 

improvement cycle may be considered the maxir.mm necessary. 

(A good check on the final resul~s is to form the 

matrix product SAST, where s is the matrix of eigenvectors 

and A is the matrix of eigenvalues, and compare this Hith 

the original matrix A. Since the original matrix A is 

destroyed when this subprogram is used, it needs to be 

saved or printed earlier for comparison if this check is 

deemed necessary.) 

A repeated number of improvement cycles indicates 

fastidiousness with respect to accuracy uncalled for in 

engineering applications. Further, there is a good chance 

of creating an underflow in the machine (extremely small 

quantities in absolute value other than zero itself can­

not be handled by the machine). 

For obvious reasons, matrices A and S should not be 

affected in any Hay in the calling prog-ram betv1een t>.-10 

successiva CALL-s·to this subprogram. 

4. CALL EV(A,S,N) must not be used except for the first 

time. The reason, as already stated, is that such a CALL 

would destroy the S-matrix previously found by reinitial­

lZlng it to the Identity matrix. 
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400.4 
E. Special Case of l x l Natrix 

If N equals l, there are no off-diagonal elements. 

For this case, the eigenvalue is the element itself and 

the eigenvector is just 1.0. In the subprogram, therefore, 

N is checked for equality with 1. If N = 1, the relations 

mentioned are established directly. 

2.4.3 Features 

Memory requirements are minimal, and speed is ensured 

by avoiding full-scale matrix multiplications. 

An improvement of the eigenvalues and eigenvectors is 

easily possible, at the user's option, by one or more 

additional CALL statements. 

2.4.4 Limitations 

The matrix whose eigenvalues and eigenvectors are to 

be found must be syrnmetric. It will be destroyed in the 

subprogram. 

l 
J 
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2.5 SUBROUTINE GEVP(~,B,S,T,N) 

2.5.1 Function 

Eigenvalues and eigenvectors of the syn:ur.etric 

matrix A where AX = A.BX are computed (General Eigenvalue 

Problem) . In this equation, X is the eigenvector cor-

responding to the eigenvalue A. \·lhich is a scalar quanti-

ty. B is a synune·tric matrix which is also positive 

definite. 

2. 5. 2 Development of the Subprogram 

Iri tetms of matrices, the above equation may be 

rewritten in the form 

A·~= B~L 

where ~ represents the matrix of eigenvectors; that is, 

q? = [xl x2 X l • • • :;rj and 

xl' X2' ••• 'XN are the N colunm vectors corresponding to 

A. 1 1 'A 21 ••• , A.N Hhich are the N eigenvalues. L is the 

matrix of eigenvalues and is a diagonal matrix. 

At first sight, it would appear that the solution 

may be obtained directly by writing 

or C Q = qj L 

and finding the eigenvalues and eigenvectors of the 

matrix C, by the use of another subprogram. This would 

be in order provided the subprogram· used can handle non-

synunetric matrices. This package does not contain such 
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a subprogram. 

Since B is symmetric, B-l is also symrr:etric U\ppen­

-1 
dix l). The product C = B A is, however, not neces-

. sarily syr.unetric, although both B-l and A are syrmnetric 

(Appendix l) . 

The problem needs therefore a modification of the 

matrices such that a symmetric matrix will result and 

SUBROUTINE EV(A,S,N) may be used. 

The matrix B can be expressed in the form B = SDST 

where D and S are the matrices of eigenvalues and eigen-

vectors respectively of matrix B (Section 2.4.2 D). 

Hence, A ~ = B ~ L = SDST ip L or 

Since matrix B is positive-definite, its matrix of 

eigenvalues (diagonal matrix) will have, for its diago-

nal elements, only positive terms and hence it is pos-

sible to express matrix D as the product of two (diago-

nal) matrices G and G, where 

GI,I =ID1 , 1 and GI,J = 0.0 for I 1 J, 

without the necessity of dealing ,,vi th imaginary nurrcbers. 

Hence I sTA ip = DST <.P L = GGST .p L 

or 

which can be written as 

= GST <.P L 

Using the notations, ~ = GST~ -1 
, F = SG and hence 
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F AF'l:' = '±' L 

Since (FTAF)T = F1,AF by virtue of syrmnetry of A, 

FTAF is symmetric. Letting FT AF = C, C '±' = '±' L, Hhere 

C is synunetric. 

This equation is hence in a form suitabl~ for the 

use of SUBROUTINE EV(A,S,H). 

The matrix of eigenvalues, L, obtained in such a 

manner needs no modification as it is the same L in the 

original equation A Q = B .P L. 

From \J/ = GST~ the matrix of eigenvec-tors Q is J. 

given by iQ = SG-l '±' 

The procedure, in brief, is to modify matrix A and 

obtain matrix C first. The eigenvalues of matrix C are 

the required eigenvalues. The eigenvectors of matrix C 

(matrix '±' ) are to be modified by premultiplic2tion by 

. -1 
the matr1.x SG . 

-1 
The importance of generating SG and saving it for 

all modifications at further stages should be noted. 

'i'he product SG-l is simple to obtain. -1 Denoting G as 

H, and SG-l = SH as T, the elements of T are 

N 
TI,J = E si,KHK,J 

K=l 
-1 

Since G or H is a diagonal matrix and hence 

HK,J = 0 if K f J, 
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The columns of matrix T are thus the columns of 

matrix S, each multiplied by a different scalar quantity. 

-1 
The product SG (=T) can be stored in matrix S itself. 

The required modifications may be outlined in the 

following manner, from the programining viewpoint . 

Step 1. Obtain the eigei1values and eigenvectors of 

matrix B by using SUBROUTINE EV(B,S,N). Matrix B now 

stores the eigenvalues of the original matrix B and S 

is its matrix of eigenvectors. (These correspond to 

matrices D and Sin the derivation.) 

Step 2. Obtain the product SG-l and store it in matrix 

S. Note that each diagonal element of G-l (off-diagonal 

elements are zero) is merely the reciprocal of the 

square root of the corresponding diagonal element of 

matrix B. 

Step 3. Obtain the product AS and store it in matrix 

Busing SUBROUTINE MULT(A,S,B,N,N,N). 

Step 4. Obtain.the product STB using the property of sym­

metry of the resulting matrix and store it in matrix A. 

The product corresponds to matrix C in the derivation. 

Step 5. Obtain the eigenvalues and eigenvectors of 

matrix A using SUBROUTINE EV(A,B,N). Matrix A now cor-

responds to matrix L, the matrix of eigenvalues in the 

derivation (no further modification required for matrix 
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L). r·latrix B corresponds to matrix ·y ln the derivatio!1. 

Step 6. Obtain the product SB by using SUBF<.OUTDJE POSTt-1 

(S,B,N,N,T) where T is a vector required in that sub-

. program for computations. £·latrix B now stores the re-

quired eigenvectors (corresponding to matrix ~ in the 

derivation). 

2.5.3 Features 

This subprogram uses other subprograms developed in 

this pc>.ckag·e, and coding is mainly a set of CALL s·tate-

ments. Additional storage spaces in the form of an 

extra matrix and a vector, which are required to carry 

out the computations, are believed to be the minimrn1 

necessary. 

2.5.4 · Limitations 

Original matrices A and B must be symmetric. Matrix 

B must also be positive definite. The original matrices 

are destroyed when this subprogram is used. Other sub-

programs of this package as detailed in the User's Guide 

(Chapter 4) must be available and loaded v-1hen this sub-

program is used. 
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2.6 SUBROUTINE MINV (A,N,DET,NEXCH) 

2.6.1 Function 

The matrix A of size N rmvs by N columns is inverted 

and the inverse returned to the calling program in A it-

self. Also, the determinant of the original matrix is 

computed and returned in DET. 

2.6.2 Development of the Subprogram 

A. The Core of the Subprogram 

By a process of elementary transformations (on 

rows) of A, it is possible to reduce matrix A to the 

Identity Matrix, referred to as matrix B below. 

Hence, 

'I'ln.1s, the same elementary transformations (on rm1s) of 

B will generate A- 1 . 

In the discussion, the elementary transformations 

will initially be limited to (i) division of a row by a 

scalar and (ii) addition of a multiple of a row to 

another row. Later, they will also include row exchanges. 

In general, there is no need to follow any definite 

pattern in the reduction of matrix A to matrix B. The 

rules below, however, provide a systematic method of 

ach~ving the reduction, with a view to easy programming 

on a computer. 

-34-



~ 

l 
l 
~·, 
~~· ~ -

I1 
~1 
-~1 

~l 
.. , 
··-4 

-~, 

"~ 

400.4 

Step 0. Create the Identity Matrix 

Step 1. Let K = 1 

Step 2. The pivot element is the diagonal element in 

row K of matrix A. Divide the Kth row of both 

matrices A and B by the pivot element. The 

element A(K,K) will then be reduced to 1.0. 

Step 3. Add suitable multiples of the (modified) Kth 

row of matrices A and B to all other rows of the 

respective Qatrices to generate 0.0 in the Kth 

colurrm of matrix A. If the rm·l number is I, 

-A(I,K) is the suitable multiple. 

Step 4. Increment K by 1. 

Step 5. If K exceeds N, stop. Otherwise, return to 

Step 2. 

'l'he numerical example below illustrates this proce-

dure and provides as well some useful material for later 

discussion. 'I'he matrix on the left is A and that on the 

right is B. 

Step 1. K = 1 

4.0 1.0 0.0 

4.0 3.0 1.0 

1.0 1.0 1.0 

1.0 . 0.0 0.0 

0.0 1.0 0.0 

0.0 0.0 1.0 

(The significance of the pair of dashed lines 

will be explained later.) 
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Step 2 . 

l.. 

( 

Step 3. 

Step 4. 

Step 5. 

Step 2 . 

Step 3 . 

Step 4. 

Step 5. 

Pivot element has the value 4. 0 . Divide 

rmv l by 4 . 0 . 
l.... 

..... 
o. ?5·> 1.0"> 0.25 0.0 0.0 0.0 ..-...-
__ ..... 

4.0 3.0 1.0 I 0.0 1.0 0.0 
I 
I 

1.0 1.0 1.0 i I 0.0 0.0 1.0 

Add -4.0 times row l to row 2' -1.0 tir.1es row 

l to row 3. 

ILO i 0 25 
I • 0.0 0 25 I • I 0.0 0.0 

I 
1.0 

I 
1.0 0.0 0.0 I 2. 0 -1.0 I 

I I 
1. o I I 0. 0 l 0. 7 5 1.0 1-0.25 I 0.0 

I I 

K = l + l = 2 

2 *' 3' Return to Step 2. 

Pivot element has the value 2 . 0 . Divide ro'd 

2 by 2. 0. 

11.0 ! 0 25 0.0, r 0.25 
I 

0.0 " . t__O.O 
...... 

1-o.s 
...... 

.... ' I o. o 1.0> 0. 51 0.5> 0.0 
/ " / 

_, 
I r I r 0.0 10.75 1. 01 t-0.25 I 0. 0 1. 0 I 

I 

Add -0.25 times rov1 2 to rmv l,-0.75 tur,es 

row 2 to row 3. 

11.0 0.0 -0.125 0.375 I -0 .125 I 0.0 

I ·o. o 10.0 1.0 0.5 -0.5 0.5 

lo.o 0.6251 
I 

0.0 0.125 -0.375 I 1.0 
I 

K = 2 + l = 3. 

3 } 3. Return to Step 2. 
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Step 2. Pivot element has the value 0.625. Divide 

row 3 by 0.625. · 

1.0 0.0 I 1-0.125 0.375 I -0.125 I 0.0 
I I 

0.0 1.0 
I 

-0.5 0.5 ~ 0. 0 l.. 0. 5 
..... ... 

' ... 
0.0 0.0 1.0> 0.2 -0.6 1. 6> 

/ / 
/ 

_, 
.-· / 

/ ,.... 
Step 3. Add -(..:..0.125) tirr,es row 3 to row 1, _-0.5 times 

row 3 to row 2. 

1.0 0.0 0.0, 1 o. 4 -0.2 0.2 

i 
0.0 1.0 0.01 :-0. 6 0. 8 -0.8 

I I 
0.0 0.0 1.0 I ! 0.2 -0.6 1.6 I 

Step 4 . K = 3 + 1 = 4 

Step 5. 4 > 3. Stop. 

Evidently, the process has to be repeated N times. 

The procedure is surnrnarized in the program section 

belov7. 

CALL DIAG(B,l.O,N) 

DO 1000 K = l,N 

TEMP = 1.0/A(K,K) 

DO 2000 J = l,N 

A(K,J) = A(K,J)*TEMP 

2000 B(K,J) = B(K,J)*TEMP 

DO 3000 I = l,N 

IF(I ·EQ· K) GO TO 3000 

1'El'1P = -A (I I K) 

DO 4000 J = l,H 

A(I,J) = A(I,J) + TEMP*A(K,J) 

-37-



1 

1 

1 
] 

l 
l 
'J 

l 
] 

1 

l 
] 

1 
1 

1 
] 

1 
'] 

'1 

400.4 
4 0 0 0 D (I I J) = 13 (I I J) + TEr1P * B ( K I J) 

3000 CONTINUE 

1000 CONTINUE 

The program requires that i) separate memory space 

for the matrix B be provided and ii) matrix B be defined 

initially as the Identity Matrix. The ensuin·g discussion 

aims at proving that these requirements need not be met. 

Note that, in any problem, the elements that do not 

lie between the dashed lines will renain the same. These 

invariant elements need not be stored, if the program can 

account for them suitably when required. Consequently, 

only matrix A is assumed to be available. The rules 

earlier stated need to be modified to suit the new 

situation. 

Step 0. Let K = 1 

Step 1. Assume that a column vector corresponding to 

column K of the Identity matrix is attached to 

Step 2. 

the right of the matrix. 

The pivot elernent is the first element in rmv K. 

Divide the I\th rmv by the pivot element and 

store each element in the column to the left of 

its original position. This column "shift" has 

the effect of "pushing" out the element referred 

to as the pivot elem.ent (to the left) and "bor­

rowing" an element from the Identity Matrix 

-38-



l 
'1 
-~ 

: .. ! 

.. ) 

.. 

.] 

J 
] 

_] 

] 

l 
] 

l 

400.4 

(from the right). It is helpful to visualize 

that the kinks in the dashed lines have been 

straightened out by pulling the row K to the 

left in Step 2 of the numerical example above 

at each of the N stages. 

Step 3. Add -A(I,l) times the Kth row to row I (where 

I =} K), starting with the element in column 2 of 

row I. Again, store each elerr.ent in the colurrm 

to the left of its original position. Steps 2 

and 3 together have the effect of advancing the 

dashed lines, one column to the right. 

Step 4. Increment K by 1. 

Step 5. If K exceeds N, stop. Otherwise, return to 

s·tep 1 . 

To illustrate, consider the previous example again. 

Step 0. K = 1 

Step 1. 4.0 1.0 0.0 1.0 

4.0 3.0 1.0 0.0 

1.0 1.0 1.0 0.0 

Note that the Kth column of the Identity matrix 

is available by implication only and is not 

stored in any vector or matrix. 
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Step ') Pivot element has the value 4. 0. Divide row '- . 

1 by 4. 0. 

0.25 0.0 0.25 

4.0 3.0 1.0 0.0 

1.0 1.0 1.0 0.0 

Step 3. Add -4.0 tines row 1 to rO\·T 2 1 -1.0 times r0\·1 

1 to rO\·J 3 . 

I 0, 25 0.0 0.25 

2.0 1.0 -1.0 

0.75 1.0 -0.25 

Step 4. K = 1 + 1 = 2 

Step 5. 2 t 3; Return to Step l. 

Step l. 
0.25 0.0 0.25 0.0 

2.0 1.0 -1.0 1.0 

0.75 1.0 -0.25 0.0 

Step 2. Pivot element has the value 2 . 0 . Divide 

row 2 by 2. 0. 

0.25 0.0 0.25 0.0 

0.5 -0.5 0.5 

0.75 1.0 -0.25 0.0 

Step 3. Add -0 . 2 5 times row 2 to rO\v 1, -0. 7 5 times 

row 2 to rovT 3 . 

-0.125 0.375 

0.5 -'0.5 

0.625 0.125 
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] Step 4 . K = 2 + 1 = 3 

1 
Step 5. 3 :}- 3. Return to Step 1. 

Step 1. 
-0.125 0.375 -0. '125 0.0 

1 0.5 -0.5 0.5 0.0 

1· 0.625 0.125 -0.375 1.0 

Step 2. Pivot element has the value 0.625. Divide 

.1 rmv 3 by 0. 6 25. 

-0.125 0.375 -0.1251 0.0 

"1 0.5 -0.5 0.5 0.0 

l 0.2 -0.6 1.6 

Step 3. Add -(-0.125) times row 3 to row 1, -0.5 times 

l row 3 to rovl 2 

0.4 -0.2 0. 2 

l -0.6 0.8 -0.8 

) I 0.2 -0.6 1.6 

Step 4. K = 3 + 1 = 4 

") .. · Step 5. 4 > 3. Stop . 

l In the program section th~t follows, note especially 

the manner in which the elements of the Kth column of 

J the Identity matrix are assumed to be available. Further, 

] note also the necessity of generating the elements of the 

Nth column outside the DO-loops. 

] 

] 
-41-
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] NNl = N-1 

:l 
DO 4000 K = l,N 

T = 1.0/A(K,l) 

1 DO 8000 J = l,NMl 

8000 A(K,J) = A(K,J+l)*T 

j A(K,N) = T 

1 
DO 9000 I = l,N 

IF (I.EQ.K) GO TO 9000 

j . 
BIG= -A(I,l) 

DO 8888 J = l,NMl 

:j 
" 

8888 A(I,J) = A(I,J+l) + BIG*A(K,J) 

'•j 
·~ 

A(I,N) = BIG*T 

9000 CONTINUE 

'1 "' 

4000 CONTINUE 

I B. The Problem of Vanishing Pivot Element 

An important tacit assumption in the above develop-

.1 ment is that the pivot element never has the value zero 

~1 
and hence,division by the value of that element is legal. 

This is equivalent to the assumption that no submatrix of 

<j A in the upper left is singular. (If matrix A is itself 

singular, there is obviously no solution to the problem.) 

] If the assumption does not hold, as in SUBROUTINE 

J 
DETMT (A,DA,N), here also row interchanges need to be 

performed to overcome the difficulty. If the Identity 

J 
-42-
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matrix is assumed to be available, the following is a 

simple exa111ple for illustration of the procedure. 

0.0 2.0 1.0 0.0 

3.0 4.0 

Pivot element has the value of 0.0. 

Interchange rows as division by zero is i10t per-

mitted. Note tha~ the rows of the Identity matrix are 

also to be interchanged. 

!3.0 

[o.o 
Step 1. K = 1 

4. 0 f 

2. 0 l 
0. 0 1.0 

1.0 0.0 

Step 2. Pivot element has the value 3.0. Divide 

Step 3 . 

Step 4 . 

Step 5. 

Step 2. 

row 1 by 3.0 

Add 

jl.O 1.33 
I 
10.0 2.0 

-(0.0) times row 

0.0 0.33 

1.0 0.0 

1 to rmv 2 .. 

leaves the matrices unaffected. 

K = 1 + 1 = 2 

2 .} 2. Return to Step 2. 

Pivot element has the value 2 . 0 . 

row 2 by 2.0. 

1.0 1.33 0.0 0.33 

0.0 1.0 0.5 0.0 

Step 3. Add -1.33 times row 2 to roH. 1. 

1

1.0 

0.0 

0.0 

1.0 

-0.67 0.33 

o.5 o~o 
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Step 4. K = 2 + l = 3 

Step 5. 3 > 2. Stop. 

Next, attempt the solution without the availability 

of the Identity matrix. 

Step 0. K = l 

Step l. 0.0 2.0 1.0 

3.0 4.0 0.0 

Rows of A will be interchanged, but sine~ the Kth 

column of the Identity matrix is available only by 

implication, the elements here cannot be interchanged. 

Hence 

Step 2 • 

Step 3 . 

Step 4. 

Step 5. 

Step l. 

r 3. o 
[o.o 

4.0 

2.0 

Pivot element has 

l by 3. 0. 

l. 33 0. 331 
I 

0.0 2.0 l 
Add -(0.0) times 

l. 33 0.33 

2.0 0.0 

K = l + l = 2 

2 } 2. Return to 

11.33 0.33 

I l 2. 0 0.0 

1.0 

0.0 

the value 3 . 0 . 

0.0 

row l to row 2. 

Step l 

0.0 

1.0 

-44-
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Step 2. Pivot element has the value 2.0. Divide row 

2 by 2.0. 

1.33 0.33 0.0 

0.0 0.5 

Step 3. Add -1.33 times row 2 to row 1. 

0.33 -0.67 

0.0 0.5 

Step 4. K = 2 + l = 3 

Step 5. 3 > 2. Stop. 

The answer here differs from the previous (correct) 

answer in that the colunms have been interchanged. This 

is a direct consequence of our failure to interchange 

rows of the Identity matrix in the modified method. The 

remedy is simple. Merely interchange the columns. 

The numerical example above provides the necessary 

background for the development of the generalized ap­

proach which follows. 

C. Row Interchanges and Corrective I1odifications 

Assume that the rows of matrix A are interchanged. 

Rovl interchange is one of the elementary tran-sformations 

and is equivalent to premultiplying a matrix by the cor­

responding elementary transformation matrix. Briefly, 

TA = C where C is the resulting matrix after the inter­

change. Hence C-l = A-lT-l and c-lT = A-l. 
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The product c- 1T implies that the same elementary 

• . -1 • 
transformatlon T operates on C ~ but this tlme post-

multiplication by T is involved. The conclusion is that, 

to get A-l fro~ C-l, the colu~~s of C-l have to be inter-

changed to match the interchange of rows of A. 

Applying t1"1e principles to the 2 x 2 exarr,ple, '"'e see 

that, in effect, given A, a matrix C was generated by 

interchange of rows of A, and C-l was found. The answer 

thus obtained needs, therefore, further modification 

(interchange of columns of c- 1
). 

v.Ji th a 2 x 2 matrix, the number of interchanges is 

limited to 1. Also, if the interchange is necessary, it 

will be at stage K = 1. In the case of larger matrices, 

the number may be as high as N-1 and the necessity may 

arise at some or all stages from K = l to K = N-1. 

In general, v.1e may assume that the original matrix 

after the required number of row interchanges has been 

modified during the process itself to a new ma·trix C 

1 -1 
and A- = C T T l1 H-1 

T T 
2 1 

The last and first row interchanges are represented 

by TM and T
1 

respectively. In the modification, however, 

the first and last colunm interchanges are represented 
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by T and T
1 

respectively . 
Iv1 

So, if a number of row interchanges was involved, 

the corresponding column interchanges must be performed 

in reverse order. Appendix 1 contains a more formal proof. 

D. The Best Pivotal Element 

In the discussion so far, row interchange was sug-

gested only if the pivotal element was identically zero. 

The pivot element could be small in absolute value and 

hence division by that element and later modifications 

of other elements may lead to inaccuracies. 

On the one hand, there is the need to check whether 

the pivot element is zero. If so, on the other hand, 

there is the need to search other rows (limited to rows 

K through N of colunm K so as to preserve the action of 

the previous modifications of the reduction process) for 

a non-zero element. 

Combining all of these, as in SUBROUTINE DE':L'HT (l-.,DA, 

N), assume that a search will be made for the largest 

absolute valued element in the column containing the 

pivot element. Three possibilities arise as a result of 

the search. 

l. Every element in the column is zero. The matrix is 

then singular and A-l does not exist. (Note that the sub-

program does not produce an error message in this in-

stance. A message will result from the system when the 

-47-



J 400.4 

J 

'-1 
" 

J 

J 

J 

] 

] 

J 

J 
] 

J 

J 

J 

J 

J 
] 

J 

machine attempts later to handle infinity and the pro-

gram will be aborted.) 

2. The pivot element itself is the largest in absolute 

value and hence, no exchange is necessary. 

3. An exchange is necessary. 

Vector NEXCH is a bookkeeping vector which takes 

into account items 2 and 3 above. The elements of this 

-1 vector get defined during the reduction process as C 

is generated and are used later to perform the correspon-

ding column exchanges (in reverse order) . 

E. The Determinant of the Original Matrix A as a By-

Product 

A comparison of the procedures involved 1n this sub-

program and SUBROUTINE DETMT (A,DA,N) shows that the re-

duction processes in the two cases have much in common. 

In the latter case, the process was limited to reducing 

the given matrix to an upper triangular matrix. In this 

subprogram (see the reduction process assuming the exis-

tence of the Identity matrix), this process has been ex-

tended so that the given matrix is diagonalized. This 

extension which merely includes more elementary transfor-

mations does not alter the value of the determinant. The 

determinant is hence the product of the pivotal elements 

(before their reduction to 1.0). 
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400.4 
F. ~he Special Case of a 1 x 1 Matrix 

An inspection of the DO-loop parameters in the final 

version of the subprogram indicates that, if N = 1, the 

ra~ges of some DO-loops would be from 1 to zero. This 

difficulty is avoided by branching out control early in 

the subprogram. 

2.6.3 Features 

It has been shown that (even) in the case of a general 

square matrix (unsymmetric) , the inversion process can be 

carried out within the-space of the original matrix itself, 

provided no submatrix in the upper left o£ the original 

matrix is singular. To handle matrices of a general nature, 

only an additional vector of N elements is required. Speed 

is considerably enhanced as constants are not generated 

during execution. 

2.6.4 Limitations 

Original matrix A is destroyed. 

2.6.5 Additional Remarks 

It is not essential that NEXCH be a vector of integer 

elements in the calling program. The use of that vector 

is local to the subprogram and the user needs only to be 

aware that any such vector, if defined prior to the CALL 

statement in the calling program, may be destroyed when 

this subprogram is used. 
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2.7 SUBROUTINE MOVE (A,B,M,N) 

2.7.1 Function 

The matrix B is defined to be the same as the given 

matrix A. Both the matrices are of the same size :H rO\vs 

by N columns. 

2.7.2 Development of the Suborogram 

The subprogram listed in Appendix 2 follows directly 

from the relationship BI ,J = AI ,J· 'l'he matrices are 

treated as single-subscripted arrays in the subprogram. 

2.7.3 Features 

In some cases, a matrix referenced in the CALL state-

ment of a calling program gets destroyed in the subpro-

gram when using the routines of this package. 

Assume that the original matrix is needed later in 

the calling program. In such situations, the use of 

this subprogram, prior to a CALL to the routine where 

the matrix gets destroyed, assures the availability of 

the original matrix by a different name. The example 

below illustrates this procedure. 

CALL MOVE(A,B,N,N) 
CALL DETHT(A,DA,N) 

The original matrix A is destroyed by the second 

CALL statement. However, by virtue of the first CALL 

statement, matrix B is the same as the original matrix A 

and can be operated on as if it were matrix A itself. 
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In the example, if the second CALL statement is CALL 

DETNT(B,DA 1 N) 1 matrix B gets destroyed and the original 

matrix A is available for further operations by its mvn 

name. 

2.8 SUBROUTINE MULT (A,B,C,L,M,N) 

2.8.1 Function 

The product of matrix A (size L rows by M columns) 

and matrix B (size M rows by N columns) is made available 

to the calling program as matrix C (size L rows by N 

colunms) . C = AB 

2.8.2 Development of the Subprogram 

In algebraic terms, the elements of matrix Care 

given by 
!-1 

C = I: A 
I,J K=l I,K 

and the following subprogram may, therefore, be written. 

SUBaOUTINE MULT (A,B,C,L,M,N) 

CO~WON/IYENGAR/ I,J,K 1 Y (11) 

REAL A ( L , 111) , B (I•'l , N ) , C ( L , N ) 

DO 1000 I = l 1 L 

DO 1000 J = l,N 

C(I,J) = 0.0 

GO 10 0 0 K = 1 I f>'l 

1000 C(I,J) = C(I,J) + A(I,K)*B(K,J) 

RETURN 

END 
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] It is worth noting here that for a specific set of 

values of I and J, C(I,J) is completely defined only 

] after the innermost loop is satisfied. Hence, instead 

1 9f referring to C(I,J) which is a dotilile-subscripted 

variable, it is advantageous to refer to a scalar quan-

] tity, say, SUM when this loop is being executed. This 

modification saves time of execution. 

To illustrate, assume two matrices each of size 

] 100 x 100 are multiplied. The modified version listed 

in Appendix 2 saves two million address computations. 

] The saving in time in a trial run was approximately 6 

] 
seconds (23.262 seconds vs. 17.148 seconds). 

2.8.3 Limitations 

J In general, each of the matrices A, B and C will dif-

J 
fer in size. Hence, no attempt is made in this sub-

program to store the product matrix C in either matrix A 

or matrix B. 

The size of matrix C will match the size of either 

matrix A or matrix B or both, if matrix B or matrix A or 

j both are square. The use of SUBROUTINE PMULT(A,B,K,L,X) 

or SUBROUTINE POSTM(A,B,K,L,X) should be considered under 

j these conditions. 

In any case, when SUBROUTINE r-mLT(A,B,C,L,H,N) is 

J used, the product matrix C should be distinct from both 

j the matrices A and B, although matrices A and B may 

·] 
-52-
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themselves be identical. 

SUBROUTINE OUTE (A,I,J,TITLE,TITEL) and ENTRY OUTF and 

ENTRY OUTG 

2.9.1 Function 

Matrix A of size I rows by J columns is printed. 

Printing begins on a new page. Rows and columns are 

numbered. Labels (up to 20 characters) provided by the 

user appear at the top of each page. 

If J ~ 10, and at the same time, I< 25, the matrix 

is printed on one page. If J > 10, the first 10 columns 

of matrix A are printed until all the rows (25 or less 

to a page) are exhausted. Then the second 10 columns 

Cor less) of matrix A are printed until all the rows 

(25 or less to a page) are exhausted. And so on. 

The user has the choice of printing the elements in 

E-, F- or G-FORMAT. 

2.9.2 Development of the Subprogram 

A. Matrix Partitioning 

The limits of 10 columns to a page and 25· rmvs 

(double-spaced) to a page have been chosen taking into 

consideration the number of characters that can be 

printed per line (135 excluding the carriage control 

character in column 1), the number of lines (about 63) 

-53-



400.4 

] per page, and ease of readability. 

Since J colu~1s are to be printed, the nurr~er of ver-

tical partitions of the matrix is given by JHAX belmv. 

The use of integer arithmetic (FORTPJill} should be noted 

here. 
Jj\iAX = ( J + 9 } I 10 

If 1 :5. J :5. 10, Jf.·IAX = 1 

If 11 :::_ J < 20, Jt-lAX = 2, and so on. 

In a similar way, t~1e number of horizontal partitions 

] of the matrix is given by 

IHl\X = (I + 24) /25 

Schematically, the partitions are as in Figure 2. 

j (I and J are assumed to be 58 and 45 respectively. 

Hence, IMAX and Jt-iAX have the values 3 and 5 respectively.} 

---~· J Columns ------

1,1 1,2 1,3 1,4 {. 1,5 

I l~ows ·--
i -

2,1 2,2 2,3 2,4 '!,' 
2,5 

j 
---· 

J 3,1 3,2 3,3 3,4 ?! 
I 
3,5 

Figure 2 

j The required nunilier of pages for the printout is 

. given by the product of JMAX and I.Lv1AX. 
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The choice is made to print the matrix in vertical 

partitions. Hence, for the example in Figure 2, the sub­

matrix marked 1,1 will be printed on the first page. This 

is followed by printing of submatrix marked 2,1 and then 

by the one marked 3,1. 

The process is next repeated for submatrices marked 

1,2 and 2,2 and 3,2 in that order. And so on. 

The outermost DO loop hence ranges . from 1 to Jiv1AX. 

This is followed by the next DO loop whose range is 1 to 

IMAX. 

Consider next the items on a specific page. Let the 

submatrix being printed on the page have indices IRm'iT 

and JtOL. 

The table below gives the first and the last row and 

colunm ·numbers (of matrix A) printed on the page. 

First row 

Last row 

First column 

Last column 

B. FORHAT Control 

2 5 ( IROvV) - 2 4 

25 (IRm'l) or I, whichever is less 

10 (JCOL) - 9 

10 (JCOL) or J, whichever is less 

'l'he form of output (E- ,F- or G-FORHAT) is controlled 

as follows. The FO&~T for printing elements of the 

matrix is generated in an integer array IV. If the CALL 

statement is CALL OUTE (A,I,J,TITLE,TITEL) 1 the character 

-55-



] 

] 

"] 

] 

J 
] 

J 

.1 

1 

1 

J 

j 

J 

j 

J 

j 

J 

400.4 

stored in IV (2) is E in a suitable part of that (com­

puter) word, and hence the output is in E-FORM1Vr. Simi­

larly, CALL OUTF( ... ) and CALL OUTG( ... ) produce output 

in F- and G-FORMAT respectively. 

The X preceding Fl2.5 in IV (2) is deliberately built 

in to ensure at least one blank space between two nuwbers 

in a row, when printing in F-FOR1'1AT. This limits the 

number of characters (digits plus the negative sign, if 

any) to the left of the decimal point to 6. If an ele­

ment has 7 or more characters to the left of the decimal 

point, an asterisk will be printed by the machine 

(CDC 6400) at the beginning of the field, warning the 

user that the most significant digit/s and/or the nega­

tive sign, if any, are not printed. Briefly, the number 

is too "large" for a suitable printout under this FORNAT 

control. On the other hand, if the number is too small, 

only zeroes may appear on the printout. Under these con­

ditions, as well as under conditions where the magnitudes 

of the elements being output are unknown or unpredictable, 

the E-FORMAT should be preferred. 

The E-FO~ffiT output is not as easily readable as the 

F-FORMAT output but this is a minor inconvenience, parti­

cularly after experience is gained in reading the nillliDers. 

(~hen G-FORMAT is specified, five significant digits 

appear on output in F-FORJ.~ffiT if the number lies in the 
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range 100000.0 > absolute value ;:::: 0.1. Otherwise, the 

number is output in E-FORl·1AT. That is, the machine makes 

the choice between F-FOP11AT and E-FORHAT, depending on 

the magnitude of the nu!T'ber to be output. The decimal 

points in G-FORMi\.T output may not line up vertically and~ 

in general, the output will be a mixture of E- and F­

FO&~ffiT outputs. Some elegance is thereby lost. On the 

other hand, once G-FOID1AT output is specified, concern 

need not be wasted on losing the most significant digits 

(5 digits in this subprogram). 

C. Labels 

The user may label the matrix being output by using 

appropriate 11 Values 11 for the arguments TITLE and TITEL. 

These 11 Values 11 are Hollerith character strings up to a 

maximum of 10 each. 

The labels will ~ppear at the top of each page. Further, 

these labels are followed by the word CONTINUED in paren­

theses on the second and succeeding pages of output to 

indicate that parts of the matrix have already been output 

in previous pages. 

The size of the matrix also is indicated by a printout 

directly after labelling. If no labels are to be used, 

TITLE and TITEL must be matched with lH~ and lH~ respec­

tively (~ denotes blank). Examples on the use of labels 
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J are given in the User's Guide (Chapter 4). 

j 2.9.3. Limitations 

A matrix with a large number of columns and only a few 

j rows (say less than 10), when output using this subprogram, 

will use several sheets of paper. Consider, for example, 

a matrix 8 rows by 25 columns. The output, in this case, 

j is on 3 sheets. If, however, the transpose of the matrix 

is printed, the output is on one sheet. Apart from 

j economy of paper, a further advantage of the latter pro-

j 
cedure is that an overall view of the matrix is available 

without having to turn pages. 

j The user should weigh these advantages against the in-

convenience of having to transpose the matrix and reading 

j the transposed matrix. 

1 

j 

j 

j 

j 

.1 
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2.10 SUBROUTINE PMULT(A,B,K,L,X) 

2.10.1 Function 

The square ma,trix B of size L rows by L columns is pre-

multiplied by a rectangular matrix A of size K rows by L 

columns and the product is returned to the calling pro-

gram in the rectangular matrix A. A = AB 

2.10.2. Development of the Subprogram 

In SUBROUTINE f·1UL'l' (A,B,C,L,N,N) 1 it was remarked that 

the three matrices A, B, and C are of different sizes 

when dealing with general rectangular matrices and hence, 

matrix C could not be stored in either matrix A or matrix 

B. If, however, matrix B is square, it follows from 

[A] • [B] = [C] 
K X L L X L K X L 

that the product matrix C is of the saw~ size as the rec-

tangular matrix A, which premultiplies the square matrix 

B. Advantage is taken of this feature to save memory 

space by storing matrix C in matrix A. 

Schematically, the order in which the elements of the 

product matrix are generated (row by row) is shown in 

Figure 3. 

A D Product 
r ;;-

Figure 3 
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Consider row 1 of matrix A. This row is used in con-

junction with each column of matrix B to generate elements 

] in row 1 of the product matrix. After this is done, row 

1 of matrix A is never referenced again. It is for this 

reason that row 1 of the product matrix may be stored in 

row 1 of matrix A. (The argument is valid for -all the rows 

in turn.) 

However, throughout the process of generating the 

elements in row 1 of the product matrix, the elements 1n 

row 1 of the original matrix A must be available. Hence 

the necessity of a vector X of size L elements for inter-

mediate storage of the generated product elements. 

The procedure involves, therefore, the following steps 

j 
' 

for all I from 1 to K. 

1. Generate elements in row I of the product matrix 

l and store these in vector X. 

2. Transfer the contents of vector X to row I of 

matrix A. 

2.10.3 Features 

:1 
Nemory requirements are less when this subprogram is 

used. A vector X of L elements will suffice to perform 

j the operations, whereas, previously a matrix of size K 

rmvs by L columns was required (SUBROUTINE MULT 

J (A,B,C,K,L,L)). 

j 
See also Section 2~11.5. 
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400.4 
2.10.4 Limitations 

Matrix B must be square. 

The advantage of saving of memory space is partly off-

set by a loss in speed of execution, as additional opera-

tions (transfer of vector X to a row of matrix A for each 

I, I = 1 to K) are necessary. 

Original matrix A is destroyed. 

2.10.5 Additional Remarks 

Matrix A may be rectangular or square. 

If matrix A is square, it should differ from matrix B 

at least by name. 'l'hat is, the product of a square matrix 

and itself (say, matrix A times matrix A) cannot be ob-

tained with the use of this subprogram. SUBROUTINE I·lULT 

(A,A,PROD,K,K,K) of this package is to be used to obtain 

such a product in matrix PROD which is distinct from 

matrix A. 
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2.11 SUBROUTINE POSTM(A,B,K,L,X) 

2 .11. 1 Function 

The square matrix A of size K rmvs by K columns is 

P?Stmultiplied by the rectangular matrix B of size K rows 

by L colu~1s and the product is returned to the calling 

program in the rectangular matrix B. B = AB 

2.11.2 Development of the Subprogram 

The logic here is essentially the same as in SUBROUTINE 

PNULT(A,B,K,L,X). The elements of the product matrix are 

generated column by colunm. 

is represented by Figure 4. 

------'~ 

_____ ,..,.. 
-

A B 

Schematically, this process 

r 
=~ 

Product 

Figure 4 

The process involves the follmving steps for all J 

from 1 to L. 

1. Generate elements in column J of the product matrix 

and store these in vector X which is of size K 

elements. 

2. Transfer the contents of vector X to column J of 

matrix B. 
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2 .11. 3 Features 

Hemory requirements are less when this subprogram is 

used. A vector X of K elements will suffice to perform 

the operations, whereas, previously a matrix of size K 

rows by L columns v1as required. (SUBROUTINE HULT 

(A,B,C,K,K,L).) 

2.11.4 Limitations 

Matrix A must be square. 

Original matrix B is destroyed. 

The advantage of saving of memory space is partly off­

set by a loss in speed of execution, as additional opera­

tions (transfer of vector X to a column of matrix B for 

each J, J = 1 to L) are necessary. 

2.11.5 Additional Remarks 

Matrix B may be rectangular or square. 

If matrix B is square, it should differ from matrix A 

at least by name. That is, the product of a square matrix 

and itself (say, matrix B times matrix B) cannot be ob­

tained with the use of this subprogram. SUBROUTINE MULT 

(B,B,PROD,K,K,K) of this package is to be used· to obtain 

such a product in matrix PROD which is distinct from 

matrix B. 

In the following discussion concerning the three multi­

plication routines described so far, assume that matrices 
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A and B are square and differ at least by name. For com-

patibility in matrix multiplication, they are necessarily 

of the same size, say K rmvs by K columns. 

The user, in this case, has a choice of subprograms as 

indicated in the table below, the choice being governed 

by the criterion of saving one, none, or both the matrices. 

To Save 

Matrix A 
Matrix B 
Neither matrix 
Both matrices 

Use CALL Statement 

CALL POSTH(A,B,K,K,X) 
CALL PMULT(A,B,K,K,X) 
Either of the above tv;o 
CALL HULT(A,B,C,K,K,K) 
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2.12 SUBROUTINE RDCBC(A,M,N) 
SUBROUTINE riDCOLG(A,M,N) 
SUBROUTINE RDRBR(A,M,N) 
SUBROUTINE RDROWG(A,M,N) 

2.12.1 Function· 

Values are read in from data cards for the elements of 

matrix A which is of size M rows by N columns. 

2.12.2 Development of the Subprogram 

A." The FORMAT Declaration 

For convenience in punching values, a field width of 

10 columns for each piece of data is prescribed. Thus, 8 

values can be punched per card. In brief, the FORMAT 

used is (8Fl0.0). 

This choice of FOR..."-iAT requires that the deci!llal point 

be punched in the field unless it is to be assumed (by 

the machine) to be at the end of the field. 

On the CDC6400 it is permissible to punch data in E-

FORMAT also under the same FORHAT control. Care must, 

however, be exercised to see that the exponent is placed 

at the end of a field. 

B. Order in Assigning Values 

The order in which the values are assigned to the 

elements depends on the user's choice of one of the four 

routines. The details are given in the User's Guide 

(Chapter 4). 
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2.12.3 Limitations 

The decimal point must be punched in the field, unless 

it is to be assumed to be at the end of the field. The 

maximum number of characters (digits plus the negative 

sign, if any) in any data piece is limited to 10 if the 

decimal point is not punched and to 9, otherwi-se. 

J 2.12.4 Additional Remarks 

If an element is to be assigned the value zero, the 

corresponding data field may, at user's option, be left 

blank. In this case, the machine actually assigns the 

value -0.0 to the element. 

SUBROUTINE RDCOLG(A,N,N) is the fastest of the four 

routines since the transfer of data occurs, with its use, 

J in the natural order of storage of array elements (in the 

1 machine) without any interruptions. It is also the most 

economical one in terms of field length requirements (see 

J Section 3.4). 

J 

J 
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2.13 SUBROUTINE SC1'1UL(A,H,N,X) 

2.13.1 Function 

Elements of the given matrix A of size M rows by N 

columns are modified so that the fr'esh elements are X 

times the original ones. 

2.13.2 Development of the Subprogram 

Each element of th3original matrix is multiplied by 

the scalar X and the result stored back in the element 

itself. The matrix is treated as a single-subscripted 

array in the subprogram. 

2.13.3 Limitations 

The original matrix A is destroyed. 
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] 2.14 SUBROUTINE SINV(A,DA,N) 

2'.14. 1 Function 

] The matrix A, which is symmetric (size N rows by N 

J 
columns) and positive-definite, is inverted and the in-

verse returned to the calling program in matrix A itself. 

] The determinant of the original matrix A is computed and 

returned in DA. 

] 
2.14.2 Development of the Subprogram 

A. Introduction 

] 
In civil engineering applications, the matrices that 

need to be inverted are, in general, symmetric or can be 

J rendered symmetric; e.g., stiffness matrix, flexibility 

matrix. These matrices are also positive-definite. 

If the features of symrnetry and posi 'ci ve-de finite 

J 
nature are utilized in a program, the inversion process 

can be speeded up, the comparison being with SUBROUTINE 

l 
j MINV(A,N,DET,NEXCH) which can invert matrices that may be 

symmetric or unsymmetric. 

J B. Procedure 

J 
The symmetric matrix A can be expressed in the form 

A = A.A. T where A. is a lower triangular matrix. 

J 
1 

_..! 

J 
-68-
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The elements of A are given by {i\ppendix 1) 

A I IJ 

AI ,J 

From A 

J-1 
= (AJIJ - 2:: 

K=l 

2 ~ 
A ) 2 

JIK 

J-1 
1 

= CZ\I IJ - 2:: A I I K 
"A J ,J K=l 

= 0 

AA T -1 ( A T) 
-1 

= A = I 

.AJIK) for 

for 

( A -1) = (A-l)T( 

I> J 

I< J 

A -1) 

The inverse of a lower-triangular matrix is also lower­

triangular. If ~ = /, -l, the elements of ~ are 

(Appendix 1) 

~I ,J = 0 for I< J 

~I I I 
1 = 

TI,I 
I-1 

~I ,J = - 1 2:: 
A I ,K AI

1
I K=J ~ K,J for I> J 

Briefly, then, the procedure involves 1) factorization 

of A into A and AT 1 2) obtaining A -l and 3) forming the 

-1 T -1 -1 product (A ) ( A ) to give A . 

The algorithm below shows that these operations can be 

accomplished within the space of the original·matrix it-

self. 

By symmetry, matrix A can be considered fully defined 

if all the elements on and above the diagonal are known. 

The space below the diagonal is hence available to store 
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elements of matrix A. . Since A. is a lower triangular 

matrix, all its elements above the diagonal have the 

value 0.0 and these elements will therefore neither be 

generated or stored. 

Regarding the diagonal elements of matrix A. , it is 

fortunate that, once A.I,I is generated, AI,I is no longer 

required and hence, it is possible to store A.I I in place 
. I 

of AI I for all I. 
I 

In fact, it is advantageous to store the reciprocal of 

A.I,I in place of AI,I' since the diagonal elements will 

then be elements of matrix (t..-1) or of matrix (A.-l)T. 

Refer to the schematic representation of this process in 

Figure 5. 

The order of generating elements of matrix A. is as 

follows. A. ~ First, l,l is computed as A l,l" Next, the 

other elements of column 1 are computed from 

1 = A. (A1 I) us.:j_ng the symrnetry of matrix A 
1,1 I 

(Al,I = A1 , 1 ). For all J in the range (N-1).2 J> 2, the 

diagonal element is computed first, and the other elements 

of column J next. When J = N, only the diagonal element 

needs to be computed. 
-1 

The next step is to generate matrix A. . The diagonal 

elements of matrix (A. -l) T, _which are the same as those of 

matrix A.- 1 , are already available. A.-l is a lower trian-

gular matrix. Since matrix A. occupies the lower half of 

the matrix space at this stage and matrix A is no longer 
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required; matrix (A-l)T instead of matrix A-l is stored 

in the upper half of the matrix space. Refer again to 

the schematic representation. If now ~ = ( A-l) T, the 

elements of matrix ~' which is upper-triangular, are 

~ J I I = 0 

1 
~I I I = AI I 

I 

1 
~ = -

J ,I AI I 
I . 

for J >I 

I-1 

(K~J A I I K ~ J I K) 
for I> J 

T 
The off-diagonal elements of matrix (A-l) are generated 

in the subprogram, column by column. 

The product (A-l)T(A-l) is next required. The result-

ing matrix is A- 1 , and the matrix A is no longer required. 

Matrix A-l can hence be stored in the lower half of the 

matrix space. 

For clarity, assume X = (A-l)T, y = (A-1) = xT 

and Z = A-l = (A-l)T(A~l) = XY . 

Then 
~ rJ 

zi,J = ~ XI KYK J = ~ XI KXJ K since Y = 
K=l , I K=l I , 

Expansion of z I, J yields (for .I .2: J) 

+ ... + X X 
I,I J,I 

X x· + ... +X X . 
I,I+l J,I+l I,~ J,~ 
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For L>H 1 XL
1
H is zero, since X is an upper-triangular 

matrix. Hence 1 for I> J 1 . 

N 

= L: XI KXJ K 
K=I I I 

Assume that the elements Z (elements of matrix A-
1

) 
I,J 

are generated rov; by rmv. The index I therefore varies 

from 1 to N, while index J varies from 1 to I for each I. 

A study of the following three expressions shows that, in 

this scheme, once zi,J is generated, XJ,I is no longer 

required. 

ZI J = XI X + X X + 
I ,I J,I I,I+l J,I+l 

Hence, xJ,I may be overwritten by the generated value 

of zi,J each time. The result is matrix A- 1 . 

·Elements 

of A 

Elements 
T 

of (A. - 1
) 

Figure 5· 
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C. Built-in Subprogram 

The computations require summations of the form 
IFIN 

L: AI, KAJ, K on four different occasions. 
K=INIT 

It is well-

known that subprograms are used in such situations to save 

coding and reduce the number of machine instructions. 

Since, however, such a subprogram may not have the same 

degree of usefulness in other programs or subprograms, a 

compromise is struck by incorporating this feature in the 

subprogram itself in an indirect manner. 

This specific area of calculations in ·the subprogram 

is referenced whenever the required summations are to be 

computed, through the use of unconditional GO TO state-

ments (analagous to CALL statements). 'l'he RETURN state-

ment of a regular subprogram is simulated by an assigned 

GO TO statement, of which the control variable is INDEX. 

This variable is assigned the suitable statement label 

prior to each occasion when the area of the "built-in" 

subprogram is referenced. The four variables I, J, INIT, 

IFIN also need definition. The DO-loop indices themselves 

are generally used to account for this feature. 

D. The Determinant of the Original Matrix as a 
By-Product 

Since A= ~~T, det(A) = det(~).det(~T). Noting that 

a matrix and its transpose have the same determinant, 

det(A) = det(~).det(~). Since~ is a lower-triangular 
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matrix, its determinant is merely the product of its dia-

gonal elements. The computation of det(A) is thus inci-

dental to the inversion process. 

E. The Case of a 1 x 1 Matrix 

If N = 1, many DO-loops in the routine would have their 

ranges such as 2 to 1. The difficulty is avo{ded by test-

ing whether N equals 1 early in the routine and if so, 

calculating det(A) and A-l directly. 

2.14.3 Features 

Although the inverse of a sy~~etric matrix is symmetric, 

it is conceivable that a symmetric matrix inverted by the 

use of SUBROUTINE MINV(A,N,DET,NEXCH) does not result in 

a perfectly sy1nrnetric matrix due to machine round-off 

errors. 

This subprogram, however, utilizes the property of sym-

metry of matrix A and hence, guarantees the symmetric 

nature of its inverse. 

The algorithm of this subprogram utilizes only the 

elements on and above the diagonal of the original matrix 

A. Hence , only these need be defined when using this 

subprogram. The inverse \vill be fully defined in any case. 
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2.14.4 Limitations 

Matrix A must be symmetric and also positive-definite. 

It is destroyed.in the subprogram. The necessity of 

matrix A being positive-definite requires some elabora­

tion. If det( A) = x , det(A) = x 2 • If det(A) and hence 

x 2 are negative, xis imaginary. Since det(A)- = x is the 

product of the diagonal elements of matrix A, this imp­

lies that the number of imaginary diagonal elements of 

matrix A is odd. 

If det(A) is positive, but a submatrix of A has a 

negative determinant, there will be an even number of 

imaginary diagonal elements in matrix A . 

If det(A) is zero, matrix A is singular and its 

inverse has no definition. 

All of which leads to the conclusion that, if matrix A 

is positive-definite, there will be no need to deal with 

imaginary numbers. This restriction has, therefore, been 

imposed in developing this subprogram and, in view of the 

introductory remarks, is a justifiable one. 

However, if matrix A is not positive-definite (and non­

singular), its inverse does exist and the additional prob-

lem is that of handling imaginary numbers. It is possible 

to modify this subprogram without actually using complex 

number routines. This has been done .in another version 

of this subprogram. An even more general subprogram 
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employing pivoting during factorization of matrix A has 

also been attempted. Hmvever, these are obviously longer 

and slower in execution. They are not included in this 

package. 

2.14.5 Additional Remarks 

In solving civil engineering problems, where the inver­

sion of either the flexibility matrix or the stiffness 

matrix is involved, it is recommended that this subprogram 

be used in preference to SUBROUTinE MINV(A,N,DET,NEXCH), 

at least during the development stage of a program. 

For, the use of this subprogram will prevent full exe­

cution if the matrix is not positive-definite. Logical 

errors (or punching errors) in the generation of the 

matrix are thereby indicated. 

It is possible to rewrite this subprogram using only 

about half the matrix space (upper or lower triangle plus 

the diagonal). In such a case, it is suspected that the 

maximum use of the built-in subprogram may not be feasible. 

Further, a partial definition of the inverse is of 

questionable benefit. 
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2.15 SUBROUTINE SOLVE(A,B,N,L,DET) 

2.15.1 Function 

, 

A system of linear simultaneous equations is solved. 

2.15.2 Development of the Subprogram 

A. Procedure 

The system solved is AX = B. The dimensions of the 

matrices are as under. 

r•latrix 

Coefficient Matrix A 

Right-Hand Side B 

Size 

N rows by N columns 

N rows by L col unms 

Only tie spaces of matrices A and B are used and the 

solution matrix X is returned in matrix B. 

Matrix A is reduced to an upper-triangular matrix in 

essentially the same manner as in SUBROUTINE DET:t•IT (A, DA, N) . 

The only major difference is that, instead of column ex­

changes, row exchanges are made, if necessary, in this 

subprogram. This variation is required in order to pre-

serve the correct order of the elements in the columns of 

the solution matrix X. 

The reduction process is equivalent to forming suitable 

linear combinations of the original set of equations. 

Representing these operations as a set of elementary row 

transformations given by T, we have, TAX= 'rB. Hence, 

matrix B also needs modification in the same manner. 
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At the conclusion of the reduction process, 

simultaneous 

Al,l Al,2 

A2,2 

(Zeroes) 

equations have the form 

Al,N · 

A2,N 

A A • I,I I,N 

A A 
N-l,N-1 N-l,N 

X ••• 
N-l,K 

B_ 
.L,K 

B ••• 
N-l,K 

BN, K ' '' 

the 

Starting with the last rmv and assuming that a typical 

column K of matrix X is being generated, 

A X = B . Hence X = B /A 
N,N N,K N,K N,K N,K N,N 

AN-l,N-lXN-l,K + AN-l,NXN,K = BN-l,K 
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For 1 S. I ~ N-1, 

Hence, 
N 

X = (B - L: A X ) I A 
I,K I,K J=I+l I,J J,K I,I 

It is interesting to note the order in which the 

elements of a column of the solution matrix X are 

generated. The last element is generated first and the 

first generated last. The process is hence generally 

referred to as back-substitution. 

Since BI,K is not required after XI,K is generated, it 

is possible to store matrix X in matrix B. 

B. The Determinant of the Coefficient Matrix as a 

By-Product 

The generation of this quantity is incidental to the 

reduction process. Since the original matrix A has been 

(upper) triangulated, the determinant is given by the· 

product of the diagonal elements of the reduced matrix A. 

c. The Special Case of N = 1 

In this case, some DO-loops would have the range 1 to 

0. The difficulty is avoided by branching out early in the 

subprogram to make the evident direct calculations to get 

final results. 
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2.15.3 Limitations 

The original matrices A and B are destroyed. 

2.16 SUBROUTINE SQTR(A,N) 

2.16.1 Function 

The transpose of the square matrix A of size N rows by 

N columns is returned to the calling program in matrix A 

itself. 

2.16.2 Development of the Subprogram 

A general rectangular matrix A of size M rows by N col-

umns and its transpose, matrix B of size N rows by H 

columns differ in dimensions. If, however, matrix A is 

square, its transpose also has the same dimensions. It 

is, therefore, possible to transpose a square matrix in 

its own space. 

If N = 1, the matrix and its transpose are identical 

and control is merely returned to the calling program in 

this case. 

The transpose operation does not affect the values of 

the diagonal elements. These are, therefore, never re-

ferenced in the subprogram. 
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Figure 6. 

The matrix is treated as a single-subscripted array. 

In Figure 6, consider the element in row K of column 1. 

Proceeding parallel to the main diagonal from this element, 

the subsequent elements (of the matrix when treated as a 

single-subscripted array) have subscripts in increraents 

of N+l and the last element has the subscript N2-N*(K-l). 

The elements of the lower triangle can thus be referenced 

using two DO-loops, one with index K for elements in 

column 1, and the other with index L (for a specific K) 

for elements parallel to the main diagonal. 

For a typical element with subscript L in the lower 

triangle, the matching element in the upper triangle has 

the subscript L+INCR, where INCR = (K-l)*(N-1). These 

elements are exchanged. 

2.16.3 Features 

The matrix is transposed in its own space. 
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2.16.4 Limitations 

The matrix must be square. The original matrix is 

destroyed. 

2.17 SUBROUTINE SUB(A,B,C,M,N) 

2.17.1 Function 

Matrix B is subtracted from matrix A and the result 

returned to the calling program in matrix C. C = A-B. 

Each matrix is of size H rows by N columns. 

2.17.2 Development of the Subprogram 

In algebraic terms, ci,J = AI,J-BI,J" This subprogram 

is hence the same as SUBROUTINE ADD(A,B,C,~1,N), except for 

the sign. The matrices are treated as single-stiliscripted 

arrays in the subprogram. 

2.17.3 Additional Remarks 

The resultant matrix C can be stored in either of the 

original matrices (say B). In this case, the original 

matrix (matrix B) will be destroyed. 
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2.18 SUBROUTINE TrlULT(A,B,C,L,rvl,N) 

2.18.1 Function 

The transpose of matrix A (A is of size L rows by M 

columns) is post-multiplied by matrix B (size L ro':ls by 

N colurrms) to give matrix C (size M ro1:1s by N columns). 

2.18.2 Development of the Subprogram 

In civil engineering applications, products of the 

type ATB are required in computations quite often. Using 

two of the subprograms in this package, the product may 

be obtained as follows. 

CALL TRANS(A,TEMP,L,M) 

CALL MULT(TEMP,B,C,M,L,N) 

Such an approach requires a temporary matrix TEMP of size 

N rov1s by L colurrms. The transpose operation, as \vell as 

the storage required for TEMP, may be sa~ed by a slight 

modification of the multiplication routine. 

Assume that AT= TEMP and [TEMP]· [B] =C. An element 

of C is then defined by 

L 

CI J = ~ TEMP • BK,J 
I K=l I,K 

= by virtue of AT = TEMP. 

This formulation shows that matrix TEMP does not need 

either generation or storage. 
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2.18.3 Limitations 

The product matrix C should be distinct from matrices 

A and B. However, matrices A and B may be identical. 

2.19 SUBROUTINE TRANS(A,B,H,N) 

2.19.1 Function 

The transpose of matrix A (size N rm·1s by N columns) 

is made available to the calling program as matrix B 

(size N rows by M columns). 

2.19.2 Development of the Subprogram 

The subprogram utilizes the property BJ,I = AI,J" 

2.19.3 Limitations 

If matrix A is square, its transpose (matrix B) is also 

square. However, if they do not differ by name, the re-

sulting matrix will· always be symmetric. Hence, the 

matrices should be distinct from each other in every case. 

2.19.4 Additional Remarks 

SUBROUTINE SQTR(A,N) is more efficient than this sub-

program in terms of memory space if a square matrix is to 

be transposed and the original matrix may be destroyed. 
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2.20 SUBROUTINE XABATC(A,B,C,L,M,X) 

SUBROUTINE XABTA (A,B,L,N,X) 

SUBROUTINE XABTC (A,B,C,L,M,N) 

SUBROUTINE XATBAC(A,B,C,L,M,X) 

SUBROUTINE XATBB (A,B,L,N,X) 

2.20.1 Function 

Products of matrices i) C = ABAT, ii) A= ABT, 

iii) C = ABT, iv) C = ATBA and v) B = ATB are obtained. 

2.20.2 Development of the Subprograms 

The concepts used in the earlier multiplication rou-

tines from the bases for the development of this set also. 

The dimensions of the matrices are as noted in the User's 

Guide (Chapter 4) for the several routines. 

2.20.3 Additional Remarks 

i) The multiplication routines of this package [barring 

SUBROUTHJE SCIYIUL (A,M,N ,X)] may be classified into three 

groups as under: 

Grou2 1 

HULT (C = 

THULT (C = 
XABTC (C = 

Group 

AB) Pl:·1ULT 
POSTf-1 

ATB) XATBB 
ABT) XABTA 

Group. 3 

XABATC (C = ABAT) 
XATBAC (C = ATBA) 
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a. Grouos 1 and 2 have the following features: 

Product 
Ivlatrix 

Dimen­
sions 

Matrix 
Dest­
royed 

Vector 
X 

Speed 
of Exe­
cution 

Hemory 
Require­
ment 
(Arrays} 

Group 1 

Storage is in a matrix 
C which is distinct from 
both the original matri­
ces A and B in every 
case (that is, even if 
one or both the original 
matrices match the pro­
duct matrix in size) . 

All the matrices are as­
sumed to be rectangular 

(some or all of them may, 
however, be square). 

None 

Vector X is not 
required. 

Faster 

More 

Group 2 

Storage is in one of the 
ma~rices A or B, as indi­
cated in the above nota­
tions. 

Matrix A must be square, 
if the product is stored 
in matrix B, and vice ver­
sa (both the matrices may, 
however, be square). 

The original matrix that 
bears the name of the pro­
duct matrix finally (or, 
in other words, the matrix 
that is not assumed to be 
square) is destroyed. 

Vector X is of size NS 
elements if the square 
matrix is of size NS rows 
by NS columns. 

Slower, because of the ad­
ditional operation of re­
placement of a column or 
a row by vector X. 

Less, since vector X will 
suffice instead of a 
matrix. 

b. Group 3 has the following features. 

Hatrix B must be square as well as symmetric. A vector X 

of size NS elements, if matrix B is of size NS rows by NS 

columns, is required. £-latrix A may be rectangular or square. 

The product matrix C is distinct from both the matrices A 
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J and B (even if matrix A is square). Matrix C is square as 

well as symmetric. The original matrices A and B are not 

J destroyed in the subprograms. 

] ii) Other Products. Products as indicated on the left Of 

J 
the following table may be obtained by the set of CALL 

statements on the right, provided both the matrices A and 

] B are square (the original matrix B need not be symmetric 

1n any of these cases). All the matrices are assumed to 

] be of size N rows by N columns. Vector X is of size N 

elements. 
] 

Product CALL Statements 

] A = ATB CALL s QTR ("-I i'J) 
CALL Pf-1ULT (A I BIN IN I X) 

a. 

] 
B = ABT CALL SQTR(B,N) 

CALL POSTM(A,B,N,N,X) 
b. 

l 
A = ATBA CALL XATBB(A,B,N,N,X) 

CALL POSTM(B,A,N,N,X) 
c. 

d. B = ATBA CALL XATBB(A,B,N,N,X) 

] CALL H1ULT(B,A,N,N,X) 

e. A = ABAT CALL XABTA(B,A,N,N,X) 

] 
f. 

CALL PMULT(A,B,N,N,X) 

B = ABAT CALL POSTM(A,B,N,N,X) 

] 
CALL XABTA(B,A,N,N,X) 

In items c and e above, the original matrix B is des-

] 
troyed, even though the final product is formed in matrix 

] A. The original matrix A is not destroyed when the final 

product is in matrix B. 

] 
-87-
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3. GENERAL HOTES 

3.1 COMMON Block Labelled IYENGAR 

~ A. Purpose 

In normal usage, a COlvJ.HON block establishes the required 
'] ·. 

correspondence amongst the variables in the routines sharing 

the block. Values of the variables are thus tran.smi tted 

from one routine to another. 

The purpose of the block in this package is totally dif-

;] 
ferent. It merely serves as a means to economize on the 

memory space requirements for the temporary variables used 

in the several subprograms. 

SUBROUTINE OUTE(A,I,J,TITLE,TI'rEL) with ENTRY OUTF and 

ENTRY OUTG uses 14 temporary variables, and this is the maxi-

mum number required in any routine [1vi th the exception of 

SUBROUTINE EV (A, S, N) 'ivhich 'dill be treated as a special case 

later in this discussion]. Consider, next, SUBROUTINE SINV 

(A,DA,N) which requires 9 temporary variables. Together, 

these two routines would need 23 locations in memory for 

these variables. 
. 

Assume, now, the existence of a COH!"l0N block 14 words long, 

the length corresponding to the maximum number of temporary 

variables in any routine. Let each set of temporary vari-

ables in the two routines belong to this block. Then, 14 

locations will suffice for the variables, whereas previously 

23 were required. The advantage is even more pronounced 

] 
-88-
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if the principle is extended by specifying that the temporary 

variables of each routine in the entire package belong to the 

same COHHON block. The same 14 locations still suffice for 

all the temporary variables, as against 131 which would have 

been required without the use of the COHNON block. (To main-

tain the length of the block at 14 in each subprogram, a 

filler array Y of variable size is used wherever necessary.) 

Regarding the values associated with the variables, it is 

inuuaterial whether these variables belong to the CO.HHON 

block or not. This is because of the nature of the variables 

themselves. They get defined in a subprogram before actual 

use in the subprogram. The values they finally attain, at 

the tirr.e of exit from the ·subprogram, are inconsequential to 

any other subprogram since they get redefined before use in 

that subprogram. 

SUBROUTINE EV(A,S,N) actually uses more than 18 temporary 

variables by name. The number is reduced to 18 through the 

use of an EQUIVALENCE declaration. Of these, 14 are inc-

luded in the COJ>lHON block. The other four variables FN, nm, 

THRI and THRF are not. Recall that ·this subprogram has an 

ENTRY IEV staternent for improvement of eigenvalues and eigen-

vectors. Assume that SUBaOUTINE EV(A,S,N) has. been CALL-ed 

in the calling program. Then, the four variables listed 

have some values in the subprogram at the time of exit from 

the subprogram. These values need to be preserved for a sub-
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sequent improvement procedure, if any. The calling program 

may use the improvement procedure immediately (that is, 

before CALL-ing other subprograms). There is no special 

prob~em if it does. If not, assume that other subprograms 

in this package will be used by the calling program before 

the improvement procedure. In such a situation, these vari-

ables (\vhose values are not regenerated during the improve-

ment phase) will be.affected in values if they are included 

in the COHHON block. Their values are preserved by excluding 

them from the block. 

Finally, therefore, 18 memory locations are required for 

the temporary variables in the entire package. 

B. COHHON Block Label 

cor-li•ION blocks may or may not have labels (or numbers). 

The name blank COI1MON applies if the block has no label (or 

number) . Else, the block is a labelled (or numbered) COf.lMON 

block. 

If blank C0~~10N were used in this package, the user would 

be unable to specify another independent blank COMMON block 

of variables of his own choice in the main program and other 

(user's) subprograms, since there can exist only one blank 

CO~~ON block in a program. 

Labelled (or numbered) COM1-10N blocks can be numerous, the 

maximum number depending on the r:tachine used. (In CDC 6400 at 
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Lehigh, the number of labelled and numbered C01·IHON blocks is 

limited to 61). One requirement of these blocks is that each 

label (or number) used in a program must be unique. 

The originator of this package has chosen his last name 

for the label in the justifiable hope that a general user 

will not dream up this identical label for any of his label­

led COMMON blocks. All the same, it is necessary to emphasize 

that the label IYENGAR should be considered taboo by the user 

for any of his labelled cm,'lNON blocks when using this package. 

If the label is used, the variables listed by the user in the 

block may get redefined with each CALL to a subprogram of 

this package. 
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3.2 USE OF VARIABLE (ADJUSTABLE) DIMENSIONS 

3.2.1 Adopted Procedure 

In this packa.ge, the dimensions of all arrays used in 

the subprogra~sare adjustable dimensions. The motivation 

for this approach is explained in what follows. 

A primary rule in communication between the· calling 

program and the called subprogram is that the row dimen­

sions of all double-subscripted arrays which are arguments 

must match exactly in both routines. This follows from 

the fact that double-subscripted arrays are stored column 

by column in the machine. 

Consider SUBROUTINE MULT(li.,B,C,L,H,N) as an example for 

discussion in the rest of this section, Sec. 3.2. 

The dimensions of arrays A, B and C are specified in 

the subprogram by the declaration 

REAL A(L,M) ,B(M,N) ,C(L,N) 

If, in the calling program, a matrix A (of size 10 rows 

by 15 columns) is to be postmultiplied by a matrix B (of 

size 15 rows by 20 columns) to give the product matrix C 

(of size 10 rows by 20 columns), the proper declaration 

in the calling program is 

REAL A ( 1 0 I 15 ) I B ( 15 I 2 0 ) I c ( 10 I 2 0 ) 

and the corresponding CALL statement is 

CALL MULT(A,B,C,l0,15,20) 

In this case, the dimensions match automatically. Note 
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that the array sizes chosen are exact. Under-dimensioning 

will not work in any scheme, and over-dimensioning does not 

permit suitable matching since double-subscripted arrays 

are involved. 

3.2.2 A Limitation of the Adopted Procedure 

Occasionally, a matrix with the same name but of dif­

ferent sizes needs to be used in a calling program. The 

dimension declaration in such a case must obviously account 

for at least the maximum size of the matrix. (Note that a 

subscripted variable can be dimensioned only once in a 

program.) 

As an example, matrix A may vary in size, say, from 2 

rows by 3 columns to 10 rows by 15 columns. Then the di­

mension declaration is 

REAL A(l0,15) 

Assuming that there are other similar matrices, the dec­

laration may be 

REAL A ( 10 , 15 ) , B ( 15 , 2 0 ) , C ( 10 , 2 0 ) 

No difficulty is experienced if the problem to be solved 

involves the maximum dimensions; e.g., CALL HULT(A,B,C,lO, 

15,20). However, when solving problems using dimensions 

less than the prescribed maximum dimensions, the sizes will 

not match. For example, 

CALL MULT(A,B,C,6,9,12) 

implies that, in the subprogram, matrix A has dimensions 
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6 rows by 9 columns, whereas in the calling program it has 

been dimensioned for size 10 rows by 15 columns. 

To rectify the situation, the subprograms themselves 

need to be modified slightly as suggested in the following 

subsection. 

3.2.3 Suggestion for Mod~fication by the User 

If array sizes are variable in the calling program, the 

required subprograms may be modified on the following lines. 

The dimension declaration for the arrays in the calling 

program should correspond to (at least) the maximum size 

of each array in the program. 

As an example, 

REAL A ( 10 , 15 ) , B ( 15 , 2 0 ) , C ( 1 0 , 2 0 ) 

For matching the arrays in the subprograms and specifying 

the particular sizes to be operated on, the folloltling is a 

suitable set of statements. 

In the calling program, 

CALL .i:1IULT (A,lO,B,l5,C,l0,6,9,12) 

In the subprogram, 

SUBROUTINE HULT (A,NRA,B,NRB,C,NRC,L,H,N) 

REAL A (NRA,l),B (NRB I 1) I c (NRC I 1) 

Recall that whenever variable dimensioning is used in 

subprograms, the array names as well as the variables 

which represent the dimensions must be formal parameters. 

The last three parameters in the argument lists represent 
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the sizes ·of the matrices to be operated on. The rest pre­

scribe the array names and maximum row dimensions. 

The modified form is obviously suitable even if the 

sizes are not variable in the calling program. Hence, an 

additional advantage of this procedure is that the user 

may choose suitable maximum dimensions for matr·ices in a 

program for solving problems of a particular type. The di­

mension declaration, in such a case, needs no further at­

tention from problem to problem. However, it is worthwhile 

to remember that memory space is wasted when problems that 

do not involve maximum dimensions are solved. 

The disadvantages of this procedure, attributable to 

the longer argument list, are these: 

1. Mistakes in matching arguments ln CALL sta~ements 

are more likely. 

2. There is a loss of efficiency since addresses of 

a larger number of arguments need to be passed 

back and forth by the system. 

In the authors' opinion, thedisadvantages outweigh the 

advantages. Also, the additional ·type of problem covered 

by the modified procedure is of infrequent occurrence. 

3.2.4 A Special Procedure 

A few users have violated the rule of matching dimen­

sions and used the earlier version (FC~~PK) of this package 

successfully without any modifications. 
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The procedure is stated here only for the sake of comp-

leteness of this discussion on variable dimensions. It is 

not recommended for general use as special care needs to 

be exercised in programming. 

Assuming that the required matrices are overdimensioned, 

the matrices in this procedure are defined thrqugh the use 

of relevant subprograms only. As an example, 

REAL A ( 1 0 ' 15 ) I B ( 15 I 2 0 ) I c ( 10 ' 2 0 ) 

CALL RDRm'1G (A, 6, 9) 

CALL RDROWG (B,9,12) 

Here, 54 elements of matrix A and 108 elements of matrix 

B get defined. The sequence of storage of the elements in 

this case, although not unpredictable, is dependent on the 

extent of over-dimensioning and will hence change \vi th each 

problem .. For the sake of brevity, the elements may be said 

to be in "wrong" locations. If, now, CALL HULT (A,B,C,6, 

9,12) is used, the machine again refers to the same wrong 

locations of elements in matrices A and B. Since this is, 

however, a consistent process in the machine, matrix C will 

have proper values but its elements are again stored in 

some other wrong locations. 

The importance of printing each array through the use 

of other subprograms is, by now, evident. In these sub­

programs, the machine again refers to the same \vrong loca­

tions and the printed values will therefore be right. 
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In short, this procedure will be successful if the main 

program always CALL-s the relevant subprograms whenever 

arrays are to be defined through reading in data from cards, 

operated on, or printed. 

Wastage of memory space can be considerable if the 

special procedure is adopted in solving problems where the 

sizes of the matrices in the calling program remain statio­

nary. 
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3. 3 RESERVED NAlvlES 

When executing a FORTRAN main program with several sub-

programs, it is essential that each of these bear a unique 

j 
name so that the machine does not get "confused". The rules 

of operation vary with each (machine) system when this re-

j quirement is violated. In the following, the discussion 

applies to the CDC 6400 installation at the Lehigh University 

Computing Center. 

] 
If more than one routine by the same name is loaded in 

the machine, the one that was loaded first is recognized by 

] the machine as the one meant for use~ Assume that this pack-

age is loaded first in the machine and the user's subprogram 

] SUBROUTINE SOLVE (X,Y,Z) is loaded subsequently. Since the 

] 
matrix package was loaded first and contains a subprogram 

SUBROUTINE ·SOLVE (A,B,N,L,DET), the user's subprogram 

] SUBROUTINE SOLVE (X,Y,Z) will be ignored during execution. 

If this is the intention, there is no problem. 

] The converse is equally true. If the user's subprogram 

] is loaded first, the subprogram SUBROUTINE SOLVE (A,B,N,L,DET) 

of the matrix package will be ignored. 

] Hence, it is best to treat all the 30 names used for the 

routines in this package as reserved names, and choose other 

l names for the user's program and subprograms. 

*For loading sequence, see User's Guide (Section 4.4). 
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l Further, it is obligatory that the name of every variable 

j used in a routine differ from the name of any subprogram 

CALL-ed by the routine. 
, 

]. (A renunder -- the name IYENGAR lS a reserved name when 

labelling CO~L.'-'iON blocks.) 

] .. 

] 

] 

] 

] 

] 

] 

] 

l 
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3.4 SUBPROGRAH LENGTHS 

The length of each subprogram in octal numbers, using the 

RUN and FTN compil~rs of the CDC 6400 installation at Lehigh, 

is indicated belmv. Small variations in these numbers are 

likely with periodic revisions to the compilers. The length 

of the COM£.10N block is 16 8 • 

Sl. No. 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 

Subprogram 

ADD 
DETMT 
DIAG 
EV (IEV) 
GEVP 
MINV 
HOVE 
MULT 
OUTE (OUTF,OUTG) 
P~1ULT 

POSTM 
RDCBC 
RDCOLG 
RDRBR 
RDROWG 
SCMUL 
SINV 
SOLVE 
SQTR 
SUB 
TMULT 
TRANS 
XABATC 
XABTA 
XABTC 
XATBAC 
XA'rBB 

RUN 

31 
141 

33 
405 
146 
230 

26 
53 

233 
63 
62 
46 
27 
46 
50 
24 

217 
265 

50 
31 
53 
36 

105 
64 
54. 

102 
62 

CO~ll-'ION block 16 ---
TOTAL 3555 

Length (octal) 
FTN (OPT=2) 

42 
221 

43 
364 
215 
254 

37 
77 

224 
105 
101 

52 
34 
52 
52 
40 

255 
362 

65 
42 

103 
57 

130 
102 

74 
131 
104 

16 

4436 

[The earlier version (FCHXPK) required 4265 8 words (RUN) 

and had fewer routines.] 
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The package uses two routines, SQRT and ABS, available in 

the machine. 

The following notes are especially ,for users of the 

CDC 6400 at Lehigh. 

Although this package may be catalogued as one unit on a 

permanent file, it is not necessary to load the entire pack-

age each time the file is attached. Selection of routines 

is possible through the use of control cards (COPY routines) 

such as COPYN, to minimize field length requirements for the 

. b ( 2) 
JO • Note, however, that if SUBROUTINE GEVP (A,B,S,T,N) 

is selected, other routines as mentioned in .the User's Guide 

(Chapter 4) must also be selected. 

SUBROUTINE OUTE (A,I,J,TITLE, TITEL) must be selected if 

any of the three print routines (OUTE,OUTF,OUTG) is required 

by a calling program. 

Selection of SUBROUTINE EV (A,S,N) assures the avail-

ability of the associated ENTRY IEV. 

Finally, such selection by the.user may become unnecessary 

in due course, because it is anticipated that the loader it-

self will be modified to select routines, as required, for 

each job. (J) 
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3.5 TEMPORARY VECTORS 

A few subprograms of this.package require the use of tern-

porary vectors to store intermediate values in computations. 

The rnatching vectors in the calling program must obviously 

be dimensioned. Such vectors, if they have been defined in 

the calling program, will be destroyed in the subprograms. 

It is sufficient to provide for only one temporary vector 

in the calling program, even if it uses more than one sub-

program of the above type. The vector should be dimensioned 

for the maximum size required in the use of all such subpro-

. grams. It may then be used repeatedly in all the correspond-

ing CALL statements. (Alternately, the several vectors that 

result may be EQUIVALENCE-d at their starting addresses to 

save memory space.) 

SUBROUTINE GEVP(A,B,S,T,N), in this regard, is a special 

case. It requires the use of a temporary matrix S in addi-

tion to that of a temporary vector T. In the calling program, 

matrix S may be matched either by a matrix or by a vector of 
-

N*N elements. Assuming matrix S is matched by a vector, the 

b1o vectors corresponding to S and T must be independent of 

each other in the calling program. In other words, they do 

not share the same memory locations. 
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] 3.6 Featur~s of th~ CDC ·6400 

The routines in this package were developed using the 

] 
CDC 6400 computer at Lehigh. Some of the features of this 

machine are noted below, since minor modifications may be 

necessary when this package is used in other machines. 

] 1. The name of a variable, routine, label etc.·, is 

limited to 7 characters. 
] 

In this package, only the C0Mi"10N block label (IYENGAR) 

] is 7 characters long. All other names used are shorter. 

2. On the line printer, a maximum of 135 characters (not 

] counting the carriage control character in column 1) can be 

] 
printed on a line. 

Practically full advantage of this feature is taken 

] in the output routines of this package. 

3. An ENTRY statement has no associated argument list. 

However, in the CALL statement corresponding to the ENTRY 

] 
statement, the argument list (if any) of the routine in which 

the ENTRY statement appears must be matched. 

] Example: CALL IEV(A,S,N) 

4. Conversion of an integer to its real form may be done 

] by an assignment statement across the equality slgn. 

.l 
See line 34 of the coding in SUBROUTINE EV(A,S,N) 

5. The .length of each computer word is 60 bits. Hence, 

J it is possible to store 10 alphanumeric .characters in each 

word. 

] 
-103-

1 
l 



J 
:~ 
j 

] 

] 

] 

] 

] 

] 

] 

] 

J 
] 

] 

J 

400.4 

A maximum of 20 characters may thus be used to match the 

bw variables TITLE and TITEL in the output routines of this 

package. The other entities in these routines using the same 

featt;tre are arrays Y and IV, and the A-field in the FOFJ-'lAT 

statement. 

3.7 Use of Single Subscripts in Selected Routines 

In only a few routines, the (double-subscripted) matrices 

are treated as single-subscripted arrays. These are some of 

the simpler routines which could be so written with the ad-

vantages of saving memory space and execution time. Trials 

with a few other routines showed that such modifications lead 

to one of the advantages at the expense of the other, the 

execution time being more generally the item hurt. Further 

probing in ·this area seems warranted. 
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4. USER'S GUIDE 

4.1 INTRODUCTION 

The subprograms in this package were developed by Hr . 

Sampath Iyengar of the Computer Systems Group in Fritz Engi-

neering Laboratory, for use by members of the Laboratory. 

Dr. C. N. Kostem is the Chairman of the Computer Systems 

Group. 

This version supersedes the earlier one (FCMXPK - fortran 

Callable Matrix Package) which will be wi thdra1'.·m by a date to 

be specified. Mr. Edward T. Manning, Jr. was associated 

with Hr. Iyengar in the development of FCMXPK. 

In this Guide, only a brief description of the function, 

limitations and requirements of each subprogram is included. 

Nore detailed information on how the subprograms were de-

veloped are available in Chapters 2 and 3. 

The package includes routines for matrix manipulation as 

under: 

OPERATION 

Add matrices 
Determinant of matrix 
Create Diagonal matrix 
Eigenvalues of symmetric 
Invert matrix 
Copy matrix 
Hultiply matrices 

Print matrix 
Read matrix 

Simultaneous equations 
Transpose matrix 
Subtract matrices 

SUBPROGRA.H 

ADD 
DETHT~ HINV, SINV, SOLVE 
DIAG 

matrices EV, IEV 1 GEVP 
MINV 1 SINV 
MOVE 
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HULrr, PNULT 1 POSTl'-1 1 SCHUL 1 

THULT, XABATC, XABTA 1 

XABTC, XATBAC, XATBB 
OUTE 1 OUTF, OUTG 
RDCBC 1 RDCOLG 1 RDRBR 1 

RDROh1G 
SOLVE 
SQTR 1 TRANS 
SUB 
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4.2 GENERAL LIMITATIONS 

The subprograms do not provide any diagnostics if opera-

tions which are not possible mathematically, such as inver­

sion of a singular matrix, are attempted. The requirements 

of the subprograms are not tested prior to or during execu-

tion and hence, when the requirements are violated, the 

answers obtained are, in general, unpredictable and wrong. 

Only ·the following subprograms provide printouts: 

i) SUBROUTINE OUTE (A,I,J,TITLE,TITEL) 

ii} SUBROUTINE OUTF (A,I,J,TITLE,TITEL) 

iii} SUBROUTINE OUTG (A,I,J,TITLE,TITEL) 

SUBROUTINE RDCBC (A,M,N), SUBROUTINE RDCOLG (A,M,N), SUB-

ROUTINE RDRBR (A,M,N) and SUBROUTINE RDROWG (A,M,N) enable 

reading in values from data cards for the matrix A. All 

others are "calculation" subprograms. 

In all the subprograms, "variable" or "ad)ustable" dimen­

sions are used for the several arrays. The user must, there-

fore, prescribe exact dimensions for all his arrays to be 

handled by this package. Overdimensioning, except under 

special circumstances of usage (Chapter 3), may lead to wrong 

results. Underdimensioning invariably produces wrong results 

or aborts the execution of the program. 

For Input-Output operations, card input and printer output 

are assumed. 

The limitations on the sizes of the matrices that can be 
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handled are not due to any feature in programming involved in 

this package but due to the capacity of the machine used. 

The label IYEI:JGAR may not be used in the user's program 

for c;my of his labelled CO.N.HON blocks. Similarly, the names 

of routines in this package may not be used in the user's pro-

gram for his program or any of the subprograms. 

4.3 DISCLAIMER 

The burden of proof on the validity and applicability of 

this package to a particular problem rests with the user, and 

not the authors. No guarantee is stated or implied that the 

package will give correct results, or that the mathematical 

relations and assumptions used are proper and applicable to 

the problem under consideration by the user. The authors 

cannot be held responsible for incorrect results or damages 

resulting from the use of the package, although it is be­

lieved that the package is correctly formulated. 

The authors welcome suggestions for improvements and 

notice of any errors. If a correction is possible and imp­

lemented, proper pUblicity will be given to the revised 

status of the package. Else, the concerned subprogram will 

be withdrawn. 

4.4 DECK SETUP 

This package is expected to be available as a permanent 

file at Lehigh University Computing Center, in due course. 
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At the present tine, a prospective user who belongs to Fritz 

Laboratory may borrow a binary deck and make his own copy. 

Interested users will please contact the authors. 

A sample deck setup, using the binary deck, is as follmvs: 

Job Card ... 
RUN(S) 
LOAD(INPUT) 
LGO. 
7/8/9 
User's FORTRAN Program with Subprograms, if any 
7/8/9 
Binary Deck (FLMXPK) 
7/8/9 
Data, if any 
6/7/8/9 

The matrix package will be loaded first and the user's 

program next. To reverse the order, replace thecontrol cards 

LOAD(INPUT) and LGO. by LOAD(LGO) and INPUT., respectively. 

4.5 DESCRIPTION OF THE SUBPROGRAMS 

From the user's viewpoint, there are, in all, 30 routines 

in this package. These will be described in alphabetical 

order under the following headings: 

a. Function: 

b. Calling Program: 

i) Dimensions: Those that are required in the calling 

program. 

If the calling program is the main program, the di-

mensions must be stated in terms of absolute nu~bers, 

such as 
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~1 400.4 , REAL A (10, 15). If it is a subprogram, the dimension 

statement is either of the same form or of the form 

l - REAL A (H,N) v1here H and N have been defined through 

:). . 

operations prior to the use of the subprogram. (The 

user is obliged, in the latter instance, to include 

~-. A, M and N in the argument list of his su?program.) 

All the subscripted variables handled by this 

l .package are "real" variables. [The solitary excep-

l 
tion, vector NEXCH in SUBROUTINE MINV (A,N,DET,NEXCH) 1 

needs no special consideration by the user.] Mistakes 

~ often occur when this fact is overlooked and the user 

prescribes an "integer" name for what is clearly an 

l array of "real" variables. An example from civil 

l 
engineering is to refer to the stiffness matrix as K 

without a corresponding TYPE statement. An easy solu-

1 tion is to dimension the arrays in a TYPE statement 

such as REAL K (20,20), TEMP (20). An advantage here 

J is that the user has a free choice of names. Further, 

J 
.. 

~ 

a separate DIMENSION statement need not be (in fact, 

should not be) provided. Inclusion in the TYPE 

.J statement of names of arrays which are "real" even 

without a TYPE statement, like TEMP in the example, 

_] does not hurt in any way. 

~ 
ii) Definitions: Arrays and variables that must be 

defined prior to or in the CALL statement. 

"l -- -109-
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iii) Values Returned to the Calling Program: 

c. Limitations (if any) : 

The general limitations mentioned in Section 4.2 will 

not be repeated. 

c. or d. Additional Notes (if any): 

c. or d. or e. Examples of CALL Statement: 

4.5.1 SUBROUTINE ADD (A,B,C,M,N) 

a. Function: 

Add matrices A and B and store the sum in matrix c. 

(C = A + B) • 

b. Calling Program: 

i) Each matrix is of size M rov1s by N columns. 

ii) Matrices A and B, as well as integers M and N, must 

be defined. 

iii) Hatrix C is defined in the subprogram. 

c. Additional Notes: 

The resultant matrix may be stored in one of the 

original matrices. Only in such a case, the specific 

original matrix will be destroyed. 

d. Examples: 

i) CALL ADD (A,B,C,M,N) 

ii) CALL ADD (A,B,C,l5,20) 

iii) CALL ADD (A,B,A,l0,15) 
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4.5.2 SUBROUTINE DETMT (A,DA,N) 

a. Function: 

The determinant of the given (square) matrix A is made 

available to the calling program as DA. DA = det(A). 

b. Calling Program: 

i) Matrix A is of size N rows by N columns. -

ii) Matrix A and integer N should be defined. 

iii) DA is defined in the subprogram. 

c. Limitations: 

The original matrix A is destroyed. 

d. Examples : 

i) CALL DETI•IT (A, DA, N) 

ii) CALL DETHT (ARRAY,DET,20) 

4.5.3 SUBROUTINE DIAG (A,DA,N) 

a. Function: 

A diagonal matrix A is generated as follows: 

Each diagonal element has the value DA, and each off-

diagonal element has the value zero. 

b. Calling Program: 

i) Hatrix A is of size N rows by N columns. 

ii) The value of the diagonal element DA and integer N 

must be defined. 

iii) Matrix A is defined in the subprogram. 

' I . ... 
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c. Exarnoles: 

i) CALL DIAG (A, DA, N) 

ii) CALL DIAG (,A 1 1. 0 1 15) 

iii) CALL DIAG (ARRAY,DE,NSIZE) 

4.5.4 SUBROUTINE EV (A,S,N) 

a. Function: 

Eigenvalues and eigenvectors of the symmetric matrix A 

are computed. 

b. Calling Program: 

i) Hatrices A and S are of size N rows by N columns. 

ii) Matrix A and integer N must be defined. 

iii) On return to the calling program, matrix A has, for 

its diagonal elements, the eigenvalues of the origi-

nal matrix A and matrix S has, for its columns, the 

corresponding eigenvectors.· 

c. Limitations: 

The original rna trix A rnus t be symmetric. It ~.vi 11 be 

destroyed in the subprogram, as the eigenvalues are re-

turned in the same matrix . 

d. Additional Notes: 

The eigenvalues and eigenvectors may be improved 

further, if so desired, by using SUBROUTINE IEV (A,S,N). 

e. Examples: 

i) CALL EV (A,S,N) 

ii) CALL EV (ARRAY,EVEC,lO) 
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4.5.5 SUBROUTINE GEVP (A,B,S,T,N) 

a. Function: 

Eigenvalues and eigenvectors of the given matrix A 

where [A] (X} =\[B] (X} are compu~ed. Both the matrices 

A and B are symmetric, and further matrix B is also 

positive-definite. 

b. Calling Program: 

i) Natrices A, B and S are of size N rows by N columns. 

T is a vector of size N elements. 

ii) Matrices A and B, as well as integer N, should be 

defined. 

iii) The eigenvalues are returned as the diagonal elements 

of matrix A and the corresponding eigenvectors as the 

colunms of matrix B. Hatrix S and vector T are used 

fo~ storing some intermediate values in computations. 

c. Limitations: 

Matrices A and B must be symmetric. Matrix B must also 

be positive-definite. Both the original matrices A and B 

are destroyed in the subprogra~. 

The following subprograms of this package must be 

available and loaded when this subprogram is used: 

i) SUBROUTINE EV (A,S,N) 

ii) SUBROUTINE NULT (A,B,C,L,M,N) 

iii) SUBROUTINE POSTM (A,B,K,L,X) 
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d. Examples: 

i) CALL GEVP (A,B,S,T,N) 

ii) CALL GEVP (EVAL,EVEC,S,TEMP,lO) 

4.5.6 SUBROUTINE IEV (A,S,N) 

a. Function: 

Eigenvalues and eigenvectors of the symmetric matrix A 

computed by the use of SUBROUTINE EV (A,S,N) are improved. 

b. Call~ng Program: 

Same as in SUBROUTINE EV (A,S,N). 

c. Lim~tations: 

Same as in SUBROUTINE EV (A,S,N). 

d. Additional Notes: 

The accuracy of calculations in SUBROUTINE EV (A,S,N) 

is prescribed according to the following scheme. The 

square root of the sum of the squares of the elements 

above the major diagonal (of the original matrix A) is 

computed first. This is called the initial threshold. A 

final threshold value of one-millionth of such sum is then 

established. The diagonalization, which is an iterative 

process, proceeds up to the stage when the absolute value 

of every off-diagonal element is less than or equal to 

the final threshold value. 

Since the process is iterative, the user has the option 

to improve the accuracy of the results by successive CALL-s 

to the subprogram. For reasons explained in the 
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documentation (Chapter 2), these successive CALL-s must be 

to SUBROUTINE IEV (A,S,N). The following rules apply. 

i) SUBROUTINE EV (A,S,N) must be CALL-ed once only and 

before the SUBROUTINE IEV (A,S,N) is CALL-ed. 

ii) SUBROUTINE IEV (A,S,N) may be CALL-ed subsequently the 

required number of times to achieve the desired accu-

racy. If a total number of n CALL-s are made to (both) 

the subprograms, each off-diagonal element will be 

reduced in absolute value to (at least) 10- 6n times 

the initial threshold. 

iii) Neither matrix A nor matrix S may be altered in the 

calling program between any tv10 of the above CALL-s 

to the subprogram. 

Trial runs have indicated that the improvement proce-

dure causes small but significant changes in the 

eigenvectors, and practically no cha~ges in the eigen-

values (apparently because these are already very 

close to the exact values). An excessive number of 

improvement cycles may result in an underflmv in the 

machine. 

e. Example: 

CALL EV (A,S,N) 

CALL IEV (A,S,N) 

CALL IEV (A,S,N) 
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4.5.7 SUBROUTINE HINV (A,N,DET,NEXCH) 

a. Function: 

The matrix A is inverted in its 0\'m space and its 

determinant is computed. 

b. Calling Program: 

i) Matrix A is of size N rows by N columns. Vector NEXCH 

is of size N elements (see item d below). 

ii) Matrix A and integer N should be defined. 

iii) The inverse of the original matrix A is returned in A 

itself. The value of the determinant of the original 

matrix A is returned in DET. 

c. Limitations: 

The original matrix A is destroyed in the subprogram. 

See also "Additional Notes" under SUBROUTINE SINV (A,DA,N). 

d. Additional Notes: 

The vector NEXCH is used for computations only in the 

subprogram and the values of its elements are of no con-

sequence to the calling program. Hence , the matching 

vector in the calling program need-not necessarily be a 

vector of integer elements. 

3. Examples: 

i) CALL MINV (A,N,DET,NEXCH) 

ii) CALL HINV (ARRAY,lO,DET,TEMP) .. 



l 

j. 

~'J. 
~J . 

] 

J 
] 

] 

J 
] 

] 

J 

J 

J 

400.4 

4.5.8 SUBROUTINE MOVE (A,B,M,N) 

a. Function: 

Matrix A is copied as matrix B. (B = A) 

b. Calling Program: 

i) Matrices A and B are of size H rows by N columns. 

ii) Hatrix A and integers M and N should be defined. 

iii) Matrix B is defined in the subprogram. 

c. Additional Notes: 

When certain subprograms such as SUBROUTINE DETMT 

(A,DA,N) of this package are CALL-ed, the original matrices 

get destroyed in the subprograms. The user may have a need 

to store the original matrices for further use at a later 

time. This subprogram meets such a need. 

d. Examples: 

i) CALL MOVE (A,B,H,N) 

ii) CALL NOVE (ARRAY,SAME,l0,15) 

4.5.9 SUBROUTINE 11ULT (A,B,C,L,M,N) 

a. Function: 

Matrix A is post-multiplied by matrix B to yield matrix 

C. (C = AB) 

b. Calling Program: 

i) Matrices A, Band C have the following dimensions: 

Matrix Size --
A L rows by M columns 
B M rov1s by N columns 
c L rows by N columns 
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] ii) Matrices A, B and integers L, M and N should be 

defined. 

iii) The product matrix C is defined in the subprogram. 

J c .. Limitations: 

Matrix C should be distinct from matrices A and B. 

] However, matrices A and B may be identical. See also 

SUBROUTINE PHULT (A,B,K,L,X) and SUBROUTINE POST11 

(A I B 1 K 1 L 1 X) • 

] d. Examples: 

i) CALL MULT (A,B,C,L,M,N} 

] ii) CALL MULT (A,A,C,N,N,N) 

"]'· 
.. 

The examples beloH yield \vrong results: 

iii} CALL MULT (A,B,A,L,H,M} 

J iv) CALL HULT (A,B,B,L,L,N) 

v} CALL MULT (A,A,A,N,N,N) 

] 
4.5.10 SUBROUTINE OUTE (A,I,J,TITLE,TITEL} 

J a. Function: 

l'iatrix A of size I rows by J columns is printed. Print-

ing begins on a new page. The matrix is labelled at the 

J 
top of each page with the labels provided by the user. The 

word CONTINUED in parantheses appears against the label if 

.J printing is on more than one page. The size of the matrix 

is indicated below the label. 

J Rows and columns are numbered. On any one page, the 

] 
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maximum number of rows printed is 25, and the maximum 

number of columns is 10. Hence, if J ~ 10 and I~ 25, 

printing is completed on one page. If J > 10, the first 

10 columns are printed, until all the rov1s (25 or less to 

a page) are exhuasted. Then the second 10 columns (or less) 

are printed, until all rows are exhuasted, and so on. The 

elements of matrix A are output in E-FOm,mT. Five digits 

appear to the right of the decimal point (El2.5). 

b. Calling Program: 

i) Matrix A is of size I rows by J columns. 

ii) Matrix A and integers I and J should be defined. Also, 

the user's label must be provided as a Hollerith 

string of characters (maximum 20) through alphanumeric 

variables or "values" corresponding to the arguments 

TITLE and TITEL. See examples of CALL statement. 

iii} No formal "values" are returned by this subprogram. 

c. Additional Notes: 

This subprogram is recommended for use in preference to 

SUBROUTINE OUTF (A,I,J,TITLE,TITEL) whenever the magnitudes 

of the elements of the matrix to be printed are unknown, 

unpredictable, or exceed the field Fl2.5. A slight 

sacrifice of easy readability is implicit. 

d. Examples: 

i) CALL OUTE(A,I,J,TITLE,TITEL) 
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ii} VAR = 10 Hi\IATRIX OF 
TITLE = lOHREDUNDANTS. 
CALL OUTE(A,I,J,VAR,TITLE} 

iii} CALL OUTE(A,I,J,lOHORIGINAL M,5BATRIX) 

4.5.11 SUBROUTINE OUTF(A,I,J,TITLE,TITEL) 

a. Function: 

All. the details are the same as in SUBROUTINE OUTE(A,I, 

J,TITLE,TITEL) except that the elements are output in F-

FORl.'1AT. Five digits appear to the right of the decimal 

point, and a maximum of six digits (five, if the value is 

negative} appear to its left. (Fl2.5} 

b. Calling Program: 

Same as in SUBROUTINE OUTE(A,I,J,TITLE,TITEL} 

c. Limitations: 

The "largest" numbers that can be printed are of the 

form abcdef. ghijk or -bcdef. ghijk. If a number "larger" 

than these is attempted to be printed, an asterisk (*) will 

appear at the beginning of the corresponding field. 

c. Examples: 

i) CALL OUTF(A,I,J,TITLE,TITEL) 

ii) CALL OUTF (A, I I J I 8Hr--<;.]J..TRIX AllH 

4.5.12 SUBROUTINE OUTG(A 1 I,J,TITLE,TITEL} 

a. Function: 

All the details are the same as in SUBROUTINE OUTE(A 1 I, 

J 1 TITLE,TITEL) 1 except that the elements are output in G­

FORMAT. 
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b. Calling Program: 

Same as in SUBROUTINE OUTE(A,I,J,TITLE,TITEL) 

c. Additional Notes: 

Five significant digits appear on output, if the abso-

lute value x of the element being printed is in the range 

0.1 ~ X < 10 5 (G 12.5} 

Otherwise, the output is in E-FORMAT for the element. 

d. Examples: 

i} CALL OUTG(A,I,J,TITLE,TITEL} 

ii) CALL OUTG(A,I,J,lH ,lH) 

4.5.13 SUBROUTINE PMULT(A,B,K,L,X} 

a. Function: 

The square matrix B is premultiplied by a rectangular 

(or square) matrix A and the product matrix is stored in A. 

A = AB. 

b. Calling Program: 

i} Matrices A and B, and vector X, have the following 

dimensions: 

Hatrix Size 

A K rows by L columns 
(may be square, K = L) 

B L rows by L columns 

X (Vector) L elements 

ii} Matrices A, B and integers K, L should be defined. 

-121-



l . ' 

J 

' ..1 

j 

] 

J 

j 

] 

J 

J 

J 

J 

400.4 

iii) The product matrix is returned in matrix A. Vector 

X is required in the subprogram for computations only. 

c. Limitations: 

Matrix B must be square. The ori·ginal matrix A is 

destroyed. If matrix A is square, it should differ from 

matrix B at least by name. 

d. Examples_: 

i) CALL P.iYlULT (A,B,K,L,X) 

ii) CALL PI>1ULT (A,B,K,K,X) 

The example below yields wrong results: 

iii) CALL PMULT(A,A,L,L,X) 

4.5.14 SUBROUTINE POSrrr-I(A,B,K,L,X) 

a. Function: 

The square matrix A is postmultiplied by a rectangular 

(or square) matrix B and the product matrix is stored in B. 

B = AB. 

b. Calling Program: 

i) r1atrices A and B, and vector X, have the following 

dimensions: 

Matrix 

A 

B 

X (Vector) 

Size 

K rows by K columns 

K rows by L columns 
(may be square, K = L) 

K elements 

ii) Matrices A, B and integers K, L should be defined. 
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iii) The product matrix is returned in matrix B. Vector 

X is required in the subprogram for computations 

only. 

c. Limitations: 

Matrix A must be square. The original matrix B is 

destroyed. If matrix B is square, it should differ from 

matrix A at least by name. 

d. Examples: 

i) CALL POSTH(A,B,K,L,X} 

ii} CALL POSTM(A,B,L,L,X} 

The example belmv yields wrong results: 

iii} CALL POSTM(A,A,K,K,X} 

4.5.15 SUBROUTINE RDCBC(A,H,N} 

a. Function: 

Elements of matrix A are defined (column by column} by 

reading in values from data cards. 

b. Calling Program: 

i} Matrix A is of size H rows by N columns. 

ii} Integers M and N should be defined. 

The number of data cards required per column of 

matrix A is (M+7}/8. (Integer division} 

iii) Matrix A is defined in the subprogram . 

c. Additional Notes: 

i} FORHAT Control: 

The FOR}ffiT is (8Fl0.0} and the decimal point should 
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preferably be punched in each data field. If it is 

not punched, it will be assumed to be at the end of 

the field. The non-punch positions in the field are 

assumed to be filled with zeroes. 

For example, if 23.5 is punched beginning in column 

21, the value assigned to the corresponding element 

is the same. If the decimal point is not punched, 

the value assigned is 2305000000.0. 

ii) Order in Assigning Values: 

Assume matrix A is of size 14 rows by 6 columns. 

Two data cards are required per column. Hence, the 

total number of data cards required is 12. The 

eight values on the first data card will be assigned 

in order to Al,l' A2 , 1 , .•. ,A8 , 1 • The six values on 

the second data card to A9 , 1 , AlO,l''''' Al4,1" 

And so on. 

d. Examples: 

i) CAI.L RDCBC (A, M, N) 

ii) CALL RDCBC(A,l4,6) 

4.5.16 SUBROUTINE RDCOLG(A,H,N) 

a. Function: 

Elements of matrix A are defined by reading in values 

from data cards. The elements are assumed to be in a con-

tinuous string of columns of matrix A. 
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b. Calling Program: 

i) Hatrix A is of size H rows by N columns. 

ii) Integers M and N should be defined. 

The number of data cards required is (M*N+7)/8. 

(Integer division} 

iii) Matrix A is defined in the subprogram. 

c. Additional Notes: 

i) Same as in SUBROUTINE RDCBC(A,M,N}. 

ii) Order in Assigning Values: 

Assume matrix A is of size 14 rows by 6 colunms. 

Eleven data cards are required. The eight values 

on the first data card will be assigned in order to 

Al,l' A2 , 1 , ... ,A8 , 1 . The first six values on the 

second card to A9 , 1 ,A10 , 1 , ... , A14 , 1 . The last two 

values on the second card to A
1

,
2

, A
2

,
2

. The eight 

values on the third card to A3 , 2 , A4 , 2 , ... , A10 , 2 . 

And so on. 

iii) Of the four READ subprograms in this package, this 

one requires minimum exe~ution time. 

d. Examples: 

i) CALL RDCOLG(A,H,N) 

ii) CALL RDCOLG(A,l4,6) 

4.5.17 SUBROUTINE RDRBR(A,M,N) 

a. Function: 

Elements of matrix A are defined (rmv by row) by 
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reading in values from data cards. 

b. Calling Program: 

i) lv:latrix A is of size H rows by N columns. 

ii) Integers M and N should be defined. 

The number of data cards required per row of matrix 

A is (N+7)/8. (Integer division} 

iii) Matrix A is defined in the subprogram. 

c. Additional Notes: 

i) Same as in SUBROUTINE RDCBC(A,M,N) 

ii} Order in Assigning Values: 

Assume matrix A is of size 14 rows by 6 columns. One 

data card is required per row. Hence, the total num-

ber of data cards required is 14. The six values on 

card number I (I ranges in value from 1 to 14) are 

assigned in order to AI,l' AI, 2 , ... , AI,6" 

d. Examples: 

i) CALL RDRBR(A,M,N) 

ii) CALL RDRBR(A,l4,6) 

4.5.18 SUBROUTINE RDROWG(A,M,N) 

a. Function: 

Elements of matrix A are defined by reading in values 

from data cards. The elements are assumed to be in a con-

tinuous string of rows of matrix A. 

b. Calling Program: 

Same as in SUBROUTINE RDCOLG(A,M,N) 
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c. Additional Notes: 

i) Same as in SUBROUTINE P~CBC(A,M,N) 
• 

ii) Order in Assignina Values: 

Assume matrix A is of size 14 rm·1s by 6 columns. 

Eleven data cards are required. The first six values 

on the first data card will be assigned in order to 

Al,l' A1 , 2 , ... , A1 , 6 . The last two values on the 

·first card to A2 , 1 , A2 , 2 . The first four values on 

the second card to A2 , 3 , A2 , 4 , A2 , 5 , A2 , 6 . The last 

four values on the second card to A3 , 1 , A3, 2 , A3,3' 

And so on. 

d. Examples: 

i) CALL RDROWG(A,M,N) 

ii) CALL RDROHG(A,l4,6) 

4.5.19 SUBROUTINE SCMUL(A,M,N,X) 

a. Function: 

Elements of matrix A are multiplied by the scalar 

quantity X. 

b. Calling Program: 

i) Hatrix A is of size H rows by N columns. 

ii) Matrix A and the scalar multiplier X as well as 

integers M and N should be defined. 

iii) The modified matrix is returned in A itself. 

c. Limitations: 

The original matrix is destroyed. 
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d. Examples: 

i) CALL SCMUL(A,M,N,X)_ 

ii) REI = 1. 0/EI 

CALL SCMUL(A,H,N,REI) 

iii) CALL SCMUL(A,M,N,l.0/30000.0) 
' 

J 4.5.20 SUBROUTINE SINV(A,DA,N) 

a. Function: 

The symmetric matrix A (also positive-definite) is in-

l verted in its mvn space and its determinant is computed. 

b. Calling Program: 

i) Hatrix A is of size N rows by N columns. 

ii) Matrix A and integer N should be defined. The sub-

program utilizes only the elements on and above the 

l diagonal of the original matrix A. Hence, if so 

desired, only these elements of matrix A may be 

defined. 

1 iii} The inverse is returned in matrix A itself. DA 

stores the value of the determinant of the original 

matrix A. 

c. Limitations: 

The original matrix A must be symmetric as well as 

] positive-definite. The original matrix is destroyed. 

d. Additional Notes: 

The inverse of a syiTmetric matrix is also symmetric. 

This property has been utilized in this subprogram, and 
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hence the resulting inverse of a symmetric matrix will be 

symmetric when this subprogram is used. 

It is possible that the inverse of a symmetric matrix ob-

tained by the use of SUBROUTINE MINV(A,N,DET,NEXCH) is 

not ideally symmetric because of round-off errors in the 

machine. 

e. Examples: 

i) CALL SINV(A,DA,N) 

ii) CALL SINV(K,DETK,20) 

4.5.21 SUBROUTINE SOLVE(A,B,N,L,DET) 

a. Function: 

A system of linear simultaneous equations &~ = B is 

solved. 

b. Calling Program: 

i) Matrices A and B have the following dimensions: 

Hatrix 

Coefficient Matrix A 
Right-Hand Side Matrix B 

Size 

N rows by N columns 
N rows by L columns 

ii) Matrices A and B as well as integers N and L should 

be defined. 

iii) The solution matrix is returned in B. The value of 

the determinant of the coefficient matrix A is 

returned in DET. 

c. Limitations: 

The original matrices A and B are destroyed. 
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d. Examples: 

i) CALL SOLVE(A,B,N,L,DET) 

ii) CALL SOLVE(COEFF,RHS,N,1,DA) 

4.5.22 SUBROUTINE SQTR(A,N) 

a. Function: 

The transpose of the square matrix A is returned to the 

calling program in A itself. 

b. Calling Program: 

i) Matrix A is of size N rows by N columns. 

ii) Matrix A and integer N should be defined. 

iii) The transposed matrix is returned in_ A itself. 

c. Limitations: 

Matrix A must be square. The original matrix is 

destroyed. 

d. Examples: 

i) CALL SQTR(A,N) · 

ii) CALL SQTR(ASQ,lO) 

4.5.23 SUBROUTINE SUB(A,B,C,M,N) 

a. Function: 

Subtract matrix B from matrix A and store the result 

in matrix c. (C = A -B) 

b. Calling Program: 

i) Matrices A, B and C are each of size M rows by N 

columns. 
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ii) Matrices A and B, as well as integers M and N should 

be defined. 

iii) Matrix C is defined in the subprogram. 

c. Additional Notes: 

The resultant matrix may be stored in one of the ori-

ginal matrices. Only in such a case, the spe_cific origi-

nal matrix will be destroyed. 

d. Examples: 

i) CALL SUB(A,B,C,M,N) 

ii) CALL SUB(A,B,C,lO,lS) 

iii) CALL SUB(A,B,B,25,30) 

4.5.24 SUBROUTINE TMULT{A,B,C,L,M,N) 

a. Function: 

The transpose of matrix A is postmultiplied by matrix 

B to give matrix C. 

b. Calling Program: 

i) Matrices A, Band C have the following dimensions: 

Matrix 

A 
B 
c 

Size 

L rmvs by H columns 
L rows by N columns 
N rows by N columns 

ii) Matrices A and B, as well as integers L, .H and N, 

should be defined. 

iii) The product matrix is returned in matrix c. 

c. Limitations: 

Matrix C should be distinct from matrices A and B. 
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However, matrices A and B may be identical. 

d. Examples: 

i) CALL TNULT(A,B,C,L,H,N) 

ii) CALL TMULT(A,A,B,L,M,M) 

iii) CALL TMULT(A,A,B,N,N,N) 

The examples below yield wrong results-: 

iv) CALL TMULT(A,B,A,L,L,L) 

v) CALL TMULT(A,B,B,M,M,H) 

j vi) CALL TMULT(A,A,A,N,N,N) 

4.5.25 SUBROUTINE TRA.J.~S(A,B,H,N) 

a. Function: 

j Matrix A is transposed to give matrix B. (B -- AT) 

b. Calling Program: 

J i) Matrix A is of size ry1 rows by N columns. 
Matrix B is of size N rows by H columns. 

.I ii) Matrix A and integers M and N should be defined. 

iii) Matrix B is defined in the subprogram. 

c. Limitations: 

Even if matrix A is square-, it should be dis tinct 

from the (square) matrix B. 

J d. Additional Notes: 

.... 

J 
If matrix A is square and the original matrix may be 

destroyed, SUBaOUTINE SQTR(A,N) should preferably be used. 

] e. Examples: 

i) CALL TRP~S(A,B,M,N) 

J 
-132-
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] . ii) CALL TRANS(A,B,l0,15) 

iii) CALL TRANS(A,B,N,N) 

] The example belmv yields wrong results: 

J .. 
iv) CALL TRANS(A,A,N,N) 

4.5.26 SUBROUTINE XABATC(A,B,C,L,M,X) 

] . 
. . 

a. Function: 

] The matrix product ABAT is formed in matrix C. 

Matrix B is symmetric. C = ABAT 

] b. Calling Program: 

J 
i) .Hatrices A, B, C and vector X have the following 

dimensions: 

] Matrix Size --
A L rows by M columns 

J B M rows by H columns 
c L rows by L columns 

X(vector) H elements 

ii) Matrices A, B and integers L, M should be defined. 

iii) The product matrix (symmetric) is returned in matrix 

] 
C. Vector X is required in the subprogram for com-

] putations only. 

c. Limitations: 

] Matrix B must be symmetric. 

Matrix C should be distinct from matrices A and B. 

] 
d. Examples: 

J i) CALL XABATC(A,B,C,L,M,X) 

ii) CALL XABATC(A,B,C,L,L,X) 

1 
-133-
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The examples below yield wrong results: 

iii) CALL XABATC(A,B,B,L,L,X) 

iv) CALL XABATC(A,B,A,L,L,X) 

v) CALL XABATC(A,A,A,L,L,X) 

4.5.27 SUBROUTIHE XABTA(A,B,L,N,X) 

a. Function: 

The matrix product ABT 1s formed in matrix A. Natrix 

B is square. A= ABT. 

b. Calling Program: 

~Matrices A, Band vector X have the following dimensions: 

Matrix: 

A 
B 

X(Vector) 

Size 

L rows by N columns 
N rmvs by N columns 
N elements 

ii) Matrices A, B and integers L, N should be defined. 

iii) The product matrix is returned in matrix A. Vector X 

is required in the subprogram for computations only. 

c. Limitations: 

.Hatrix B must be square. The original matrices A and B 

should be distinct from each other even if matrix A is 

square. The original matrix A is destroyed. 

d. Examples: 

i) CALL XABTA(A,B,L,N,X) 

ii) CALL XABTA(A,B,N,N,X) 

The example belov1 yields wrong results: 

iii) CALL XABTA(A,A,N,N,X) 
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4. 5. 28 SUBROUTINE XABTC (A ,B, C, L·,M, N) 

a. Function: 

The matrix product ABT is formed in matrix C. C = ABT 

b. Calling Program: 

i) Matrices A, B and C have the following dimensions: 

!-latrix 

A 
B 
c 

Size 

L rows by M columns 
N rov1s by .r-1 columns 
L rows by N columns 

ii) Matrices A, B and integers L, M and N should be 

defined. 

iii) The product matrix C is defined in the subprogram. 

c. Limitations: 

Matrix C should be distinct from matrices A and B. 

d. Examples: 

'i) CALL XABTC(A,B,C,L,M,N) 

ii) CALL XABTC(A,A,C,L,M,L) 

iii) CALL XABTC(A,A,C,L,L,L) 

The examples below yield wrong results: 

iv) CALL XABTC(A,B,A,L,M,M) 

v) CALL XABTC(A,B,B,L,L,L) 

vi) CALL XABTC(A,A,A,L,L,L) 

4.5.29 SUBROUTINE XATBAC(A,B,C,L,M,X) 

a. Function: 

The matrix product ATBA is formed in matrix C. Matrix 

B is symmetric. C = ATBA 
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b. Calling Program: 

i) Hatrices A, B and C and vector X have the following 

dimensions: 

Matrix 

A 
B 
c 

X(Vector) 

Size 

L rows by 
L rows by 
M rows by 
L elements 

H columns 
L columns 
H columns 

ii) Matrices A, B and integers L, M should be defined. 

iii) The product matrix C (symmetric) is defined in the 

subprogram. Vector X is required in the subprogram 

for computations only. 

c. Limitations: 

!•latrix B must be symmetric. Matrix C should be distinct 

from matrices A and B. 

d. Examples: 

i) CALL XATBAC(A,B,C,L,M,X) 

ii) CALL XATBAC(A,B,C,L,L,X) 

The examples below yield wrong results: 

iii) CALL XATBAC(A,B,B,L,L,X) 

iv) CALL XATBAC(A,B,A,L,L,X) 

v) CALL XATBAC(A,A,A,L,L,X) 

4.5.30 SUBROUTINE XATBB(A,B,L,N,X) 

a. Function: 

The matrix product ATB is formed in matrix B. Matrix 

A is square. B = ATB. 
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b. ~allihg Program: 

i) Hatrices A, B and vector X have the follmving 

dimensions: 

Matrix Size 

A L rows by L columns 

-,.. 
j . 

B L rows by N columns 
X(Vector) L elements 

~' . 
ii) Matrices A, B and integers L, N should be defined. 

iii) The product matrix is returned in matrix B. Vector 

X is required in the subprogram for computations 

only. 

c. Limitations: 

Matrix A must be square. The original matrix B is 

destroyed. The original matrices A and B should be 

] distinct from each other even if matrix B is square. 

d. Examples: 

i) CALL XATBB(A,B,L,N,X) 

ii) CALL XATBB(A,B,N,N,X) 

The example below yields 1.vrong results: 

iii) CALL XATBB(A,A,N,N,X) 

... :4. 
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5. READY REFERENCE SHEET 

After a few problems have been solved with the use 

of this package, the user will have gained enough 

experience to operate within its requirements and 

limitations, and frequent references to the text 

become unnecessary in day-to-day usage. All the. 

same, matching the argument list of each subprogram 

and dimensioning arrays suitably are problems which 

may require some memory aid. A ready reference 

sheet has, therefore, been provided. The sub-

programs are listed alphabetically. 
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NO. SUBPROGRAM 
1. ADD(A,B,C,M,N) 
2. DETHT(A,DA,N) 
3. DIAG(A,DA,N) 

4. EV(A,S,N) 
5. GEVP(A,B,S,T,N) 
6. IEV(A,S,N) 

7. MINV(A,N,DET,NEXCH) 
8. MOVE(A,B,M,N) 
9. MULT(A,B,C,L,M,N) 

10. OUTE(A,I,J,TITLE,TITEL) 
11. OUTF(A,I,J,TITLE,TITEL) 
12. OUTG(A,I,J,TITLE,TITEL) 

13. PMULT(A,B,K,L,X) 
14. POSTM(A,B,K,L,X) 

I 
15. RDCBC(A,M,N) 

....... 
w 16. RDCOLG(A,M,N) 1..0 
I 17. RDRBR(A,M,N) 

18. RDROWG(A,M,N) 

19. SCMUL(A,M,N,X) 
20. SINV(A,DA,N) 
21. SOLVE(A,B,N,L,DET) 

22. SQTR(A,N) 
23. SUB(A,B,C,M,N) 
24. THULT(A,B,C,L,M,N) 

25. TRANS(A,B,M,N) 
26. XABATC(A,B,C,L,M,X) 
27. XABTA(A,B,L,N,X) 

28. XABTC(A,B,C,L,M,N) 
29. XATBAC(A,B,C,L,M,X) 
30. XA'l'BB (A I B' LIN, X) 

.~ .L....... .~ .W .L-J 

READY REFERENCE SHEET (FLMXPK) 

BRIEF DESCRIPTION DIMENSIONS 
C = A + B A(H,N) ,B (M,N) ,C(M,N) 
Determinant A(N,N) 
Diagonal matrix 1\(N,N) 

E-values,E-vectors A(N,N) ,S (N,N) 
Solve AX = A.BX A(N,N) ,B(N,N) ,S(N,N) ,T(N) 
Improve on EV A(N,N) ,S(N,N) 

Invert A A(N,N) ,NEXCH(N) 
B = A A(M,N) ,B(M,N) 
C = AB A (L,M) ,B (M,N) ,C (L,N) 

Print A A(I,J) 
Print A A(I,J) 
Print A A(I,J) 

A = AB A (K,L) ,B (L,L) ,X (L) 
B = AB A(K,K) ,B (K,L) ,X (K) 
Read col. by col. A(M,N) 

Read columns (grouped) A(M,N) 
Read row by row A(M,N) 
Read rows (grouped) A(M,N) 

A = xA A(M,N) 
Syrn. inversion A(N,N) 
Sim. Eqs. (AX = B) A(N,N) ,B(N,L) 

Transpose in place A(N,N) 
c = A. - B A(M,N) ,B (M,N) ,C (H,N) 
c = ATB A(L,M) ,B(L,N) ,C(H,N) 

B = AT A(H,N) ,B(N,M) 
c = ABAT A(L,H) ,B(M,M) ,C(L,L) ,X(M) 
A = AB'l' A(L,N) ,B(N,N) ,X(N) 

c = ABT A(L,M) ,B(N,M) ,C(L,N) 
c = ATBA A (L,M) ,B (L,L) ,C (M,M) ,X (L) 
B = ATB A (L,L) ,B (L,N) ,X (L) 

. f 

.~ 
! _.._._.. _;:___J 

NOTES 

-.:--
of:>. 
0 
0 
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APPENDIX 1 

Proofs of Some Basic Theorems 

1 
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'APPENDIX 1 

In support of the relations which were used earlier in 

the mathematical derivations, proof of some basic theorems 

in matrix algebra have been included in this Appendix for 

ready reference. For the sake of brevity, the proofs are 

. given in only a few lines. A standard text, such as Refe-

renee 4, may be consulted for more detailed information. 

The algebraic derivation of sin 9 and cos 9 from tan 29 is 

also included. 

1. The transp6se of a product is the product of the 

transposes in reverse order. 

Extending the proof, 

2. The inverse of A exists iff (if and only if) the de-

terminant of A is non-zero. 

Some authors define and others show that A-l = 

1 
det(A) [co-factor] where det(A) = determinant of A. 

If det(A) ~ 0, the Right-Hand Side of this equation exists. 

Hence, A- 1 exists. 
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If A-l exists, the Left-Hand Side exists and, hence, 

det(A) =I 0. 

3. A-1 is unique. 

If B and C are both inverses of A, 

AB(=BA)=I and AC(=CA)=I, 

and hence A(B-C) = 0, the null matrix. 

Premultiply by B or c. 

B - C = 0 

Hence, B = C. 

4. The determinant of the product is the product of the 

determinants. 

Consider 2 x 2 matrices. 

I Al·l B I = Al,l AlI 2 

A2,1 A2,2 

This is the same as A A 
1,1 1,2 

0 0 

A2,1 A2,2 0 0 

-1 0 Bl,l B 
1,2 

0 -1 B . 2,1 B2,2 

since, by Laplace expansion, using the first and second 

rows, the result is 

Add B times first column to the third, B
2

,
2 

times 
1,1 

second column to the fourth, and then add B1 , 2 times 
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first column to the fourth, B
2

,
1 

times second column to 

the third. The result is 

Al,l Al,2 Al,1Bl,l+Al,2B2,1 Al,1Bl,2+Al,2B2,2 

A2,1 A2 2 
' 

A2,1B1,1+A2,2B2,1 A2,1B1,2+A2,2B2,2 

-1 0 0 0 

0 -1 0 0 

Again, by Laplace expansion, using the third and the 

fourth rows, this is equal to IABj. 

The proof may intuitively be extended to matrices 

larger than 2 x 2. 

5. The determinant of the inverse is the· reciprocal of 

the determinant of the original matrix. 

-1 1 AA =I, hence det(A)·det(A-) = det(I) = 1. This 

also s~ows that, if det(A) = 0, det(A-1) = w, or the 

elements of A- 1 are undefined. 

6. The inverse of a product is the product of the 

inverses in reverse order. 

By definition, (AB) (AB)-l = I 

Premultiply by A-l, B(AB)-1 = A- 1 

Premultiply by B-1 , (AB)- 1 = B-1A-1 

Extending the proof, 
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7. The in:ve·rse ·of the transpose· is the transpose of the 

inverse. 

By definition, AA-l = I 

By transpose, (A-l)TAT = IT = I 

Hence, (A-l)T = (AT)-1 

8. The inverse of a symmetric matrix is symmetric 

(A-l)T = (AT)-1 

Since AT = A, (A-l)T = A-1 

9. The product of symmetric matrices is symmetric iff the 

matrices commute with each other. 

By definition, A and B commute if AB = BA. 

(AB) T = BTAT 

By symmetry of A and B, (AB)T = BA 

If A and B commute, (AB)T = AB 

Also (only if part), 

if AB =(AB)T, AB = BTAT = BA or A and B commute 

10. The product of a matrix and its transpose is 

symmetric. 

Note that A need not be square, and in general, 

11. The product RT is orthonormal, if R and T are 

othonormal. 
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Since T is orthonormal, RT (RT) T = RRT 

Since R is orthonormal, RT (RT) T = I 

Hence, (RT)T = (RT) -l 

12. A symmetric matrix A may be expressed in the form 

A = 

AIIJ 

A.A.T where A is lower triangular. 

For I < J, AI,J = 0 

For I 2:. J, 

N 

= L: A I KAJ K = 
K=l I I 

Find elereents of A • 

+ AI,JAJ,J + AI
1
J+l AJ,J+l +.·.+A I,N AJ,N 

Since A. = 0 if L< M, 
L,M 

J-1 
A = L: AI K A +/.. A 
I,J K=l I J,K IIJ J,J 

I-1 
2 % If I = J, A = (A L: 

·AI,K 
) . 

I,I I,I K=l 

1 J-1 
If I> J I AI,J = A . - L: AI, K A. J,K) 

AJ,J I,J 
K=l 

13. 
-1 

A is lower-triangular if A is lower-triangular. Find 

eiements of A- 1 . 

By definition, AB = I vlhere B = A-1 . 
N 

L: A B = 8I,J K=l I,K K,J 
(Kronecker Delta) 

•.• + 
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1 
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Since 

If I 

lL = 0 for L < M, --L,M 

I 

5I,J = K~lAI,KBK,J 

= 1 , and J > I , 6 · = 0 I,J 

0 = A1 , 1B1 ,J , hence, Bl,J = 0 

If I = 2 , and J > I , 6 I , J = 0 

0 = A2 ,lBl,J + A2 , 2B2 ,J = 0 + A2 , 2B2 ,J, hence, B2 ,J = O 

Similarly, for all J >I, BI ,J = 0 

Hence, B = A-l is lower-triangular. 

Non-zero elements of B. 

If I = J, 6 = 1 
I ,J 

I 
1 = L: AI,KBK,I = 

K=l 
since both A and B are 

lower-triangular. Hence, BI,I = --1-­
AI,I 

If I>J, 5I,J = 0 

BL,M = 0 if L< H. Hence, 

0 = AI,JBJ,J + .•• + AI,I-lBI-l,J + AI,IBI,J 

Hence, BI,J 
1 I-1 

= - -- ( L: AI KBK J) 
AI,I K=J ' ' . 

for I> J. 
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400.4 
14. Given· tan 29 ,· find ·sin· ·9 and co·s a. 

The value of tan 29 is given by tan 29 = 

This problem arises in SUBROUTINE EV(A,S,N). 

Let A = Numerator and ~ = Denominator. 

Since tan a= tan ( a- n ) , there are two solutions for 28 in 

the range - n to n • Since the solutions are supplements of 

each other, a unique solution is available if the range is 

chosen as - n 

2 
to n 

2 
The range of 9 is then -

n 
4 

n 
to 4· 

sin 29 tan 29 = cos 29 = 2 sin 9 Vl - sin2e 
1 - 2 sin2 9 

By squaring, rearrangement and the substitution x = sin2 e, 

2 A 2 A2 A 2 
4x (1 + --) - 4x (1 + -) + -- = 0 

~ 2 ~2 ~ 2 

= 0.5[1 +} A2 
X 2 2] 

A +~ 

Since - ~ < 9 ,:s ~ , sin 
2 

9 or x has a maximum value of 1/2. 

0.5(1- jl A 2. 
o.srA2;p.:2 +f.l.2) 

~2J Hence, X = 2 2) = ll +) 1 ~,.z;o,2 A + ~ 
A2 + 

If w2 = + w 
A2 + 2' sine = -~ 

j2 (l + )1 - w2) 
The signs of sine and tan 29 in the range chosen for 9 are 

the same. The sign of tan 29 is governed by the signs of A 

and ~ . The proper value of sin9 will therefore be available 

with the definitions, 
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1 

1 

J 

] 

J 

J 

J 

J 

J 

] 

J 

J 

J 

;\. w 
w = (sign of · 1-L ) -------, sine = 

j ;\.2 +!J-2 

The value of cose in the range is positive. 

The advantages of this formulation are these: 

1. sine and cose may be computed algebraically. 

2. Even if !J. = 0 (and hence tan 2e is infinity), the 

computations for sine and cose can be carried out 

without difficulty in the computer. 

.. 15. When the Identity Matrix is available by implication 

only, the column exchanges, to match previous row exchanges 

during reduction, must be performed.in reverse order. [See 

SUBROUTINE t.fiNV (A IN I DET I NEXCH) ] • 

With the availability of the I-t-latrix, tl:lis problem does 

not arise as rows of I can also be interchanged during the 

process itself. 

When the !-matrix is not available, the Kth column of I is 

available by implication only. When rows of A are inter-

changed, the net effect on I is that the corresponding rows 

and columns of I are interchanged. Thus, if x1 is the trans­

formation matrix corresponding to the rm·T interchange, we 

have 
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at an intermediate stage of the reduction process and 

at the final stage. 

In short, I I -11 I I c 
' 

Thus, SA = I or 

] and A- 1x x ···x = c- 1 
1 2 p 

or A-1= c-1 -1 -1 -1 X • ··X X 
-1? 2 1 

] 

] 

] 

J 
' 

] 
-149-
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1 

FRITZ LABORATORY MATRIX PACKAGE CFLMXPK) 
------------------------------- PAGE NO, 1 -------------------------------

SUBROUTINE ADO (A,a,c,:·bN) 1 
c 
C AUTHOR - SAMPATH IYENGAR, FRITZ ENGIN~ERING LABORATORY, 
C L~HIGH UNIVERSITY, BETHLEHEM, PA, 18015. 
c 
C THIS GROUP OF SU8P~OGRA~S CFLMXPK - FRITZ LABOR~TORY M~TRIX 
C PACKAGE> CONTAINS 30 ROUTINES TO PERFORM MATRIX OPERATIONS, 
C FOR DETAILED OOCUM~NTATION, SEE FLMXPK - A MATRIX PACKAGE, 
C FRITZ LABORATO~Y RE~ORT NO, 400,4. 
c 

c 

COMMON /IYENGAR/ I,MN,YC12> 
REAL A C 1) , 8 C 1) , C C 1> 

C ROUTINE TO ADO MATRICES A AND 8. C=A+B 
c 

c 

MN=M.~;~.N 

00 1GOO I=1,MN 
1000 CCI>=ACil+BCI> 

RF:TU RN 
END 

SUB~OUTINE OETMT CA,OA,N> 

C ROUTINE TO FIND THE DETERMINANT OA OF MATRIX A, 
c 

c 

c 

COMMON /IYENGAR/ I,IP1,J,M,NM1,T,TEMP,XX,YC6) 

0!\=1.0 
IF OJ.EQ.t> GO TO 1050 
m11= N-1 
DO 1040 I=1,NM1 
IPi=I+i 

C SEA°CH qow I FQq THE LA~GEST ABSOLUTE-VALUED 
C ELEMENT IN COLUMNS I TH~OUGH N. 
c 

c 

TEMP=O.O 
00 1000 J=I,N 
T=AI3SCA(I,J)) 
IF CTEMP.GE.T> GO TO 1000 
TEMP=T 

C THE LARGEST ABSOLUTE-VALUED ELEMENT IS IN COLUM~ M OF ROW I. 
c 

M=J 
1000 CONTINUE 

IF CTEMP,NE.O.Ol GO TO 1010 
c 
C ALL THE ELEMENTS OF ROW I ARE IDENTICALLY ZERO. 
C DETERMINANT VANISHES. 
c 

c 

OA=O.O 
RETURN 

C EXCHANGE COLUMNS M AND I, ONLY IF M IS DIFFERENT FROM I. 
c 

1010 IF CM.EQ.I) GO TO 1030 

2 
3 
4 
5 
6 
7 
8 
g 

10 
11 
12 
13 
14 
15 
15 
17 
1~ 

19 
20 

1 
2 
3 
4 
5 
5 
7 
9 
9 

10 
11 
12 
13 
14 
15 
15 
17 
1·3 
19 
20 
21 
22 
23 
24 
25 
26 
27 
2.13 
29 
30 
31 
32 
33 
34 
35 
35 
37 
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c 

DO 1020 J=I,N 
T=ACJ,MI 
ACJ,M>=ACJ,I> 

1020 A(J,J>=T 

C CHANGE THE SIGN OF TH~ DETERMINANT, 
C SINCE COLUMNS HAVE BEEN EXCHANGED. 
c 

DA=-DA 
1030 TEMP=A<I,I> 

c 
C CONTINUOUS PART-P~OOUCT FOR THE DETERMINANT. 
c 

DA=OA,..TEMP 
c 
C THE PROCESS OF REDUCTION TO AN UPPE~-TR.IANGULAR MATRIX. 
c 

c 

TEt~P=1. 0 /TEMP 
DO 1040 M=IP1,N' 
XX=- A CM, I> •TEMP 
00 1040 J=IPi,N 

1040 A(M,J)=A(M,J)+XX•Aci,J) 

C FINAL VALUE OF THE JETERMINANT. 
c 

1050 DA=DA,..A<N,N) 
RETURN 
EtW 

33 
3g 
40 
41 
42 
43 
44 
45 
46 
b7 
48 
49 
so 
51 
52 
53 
54 
55 
5~ 

57 
58 
59 
60 
61 
62 
63 
64-
65 

---------------------------------------------------------------------------
SUBROUTINE QIAG C~1 DA,N> 

c 
C ROUTINE TO CREATE A DIAGONAL MATRIX A. 
c 

c 

COMMON /IYENGAR/ I,NP1,NSQ,Y(11) 
REAL A<U 

C ZERO THE ARRAY. 
c 

NSQ=N'"N 
DO 1000 I=1,NSQ 

1000 ACI>=O.O 
c 
C ASSIGN OA TO EACH DIAGONAL ELEMENT. 
c 

N~1=N+1 
00 1010 I=1,NSQ,NP1 

1010 A<I>=DA 
RETURN 
END 

1 
2 
3 
4 
5 
6 
7 

g 
10. 
11 
12 
1"3 
14 
15 

-15 
17 

• 1·g 
•1 g 
20 

-------------------------------------------------------------------------·--
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FRITZ LABORATORY MATRIX PACKAGE CFLMXPK> 
------------------------------- PAGE NO. 3 -------------------------------

SUBROUTIN~ Ey tA,S,N> 1 
c 
c 
c 
c 

2 
~OUTINE TO FIND EIGENVALUES AND EIGENVECTORS 3 
OF THE SYMMETRIC MATRIX 4. 4 

5 
CO~MON /IYENGAR/ AI 0 ,AIQ,APP 1 AQQ,COSSQ,COST,I,P,Q,QM1,SINSQ,SINT,T 6 

1Et--IP, TSCT 7 
EQUIVALENCE CAI::>,SIP,Y), CAIQ,SIQ), CP,IP1), (Q,J), CQ"H,NM1>, CTE 8 

1MP,SIGN>, {THRI,SUM), <TSCT ,X) 9 
LOGICAL INO 10 
REAL ACN,N>,SCN,Nl 11 
INT~GER P,Q,QM1 i~ 

c 
IF CN.EQ.1> GO TO 1010 

c 
C CALCULATE TH~I, THE INITIAL THPESHOLD VALUE. 
C INITIALIZE MATRIX S AS THE IDENTITY MATRIX. 
c 

c 
c 
c 

c 

SUM::O.O 
mlt=N-1 
DO 1000 I::1,NM1 
SCI,I>=t.O 
IP1::I+1 
DO 1000 J::IP1,N 
T E i1 P :: A (! , J > 
SCI,Jl::O.b 
SCJ,I>-=0.0 

1000 SUM=SUM+TEMP•TEMP 
TWU ::SQR T C SUM) 

SET THE DESIRED ACCURACY <THRF>. 

TH~F=THRI~1.0E-6 
FN::N 

C INITIALIZE INDICATOR IND. 
c 

INO::. TRUE. 
1010 SCN,N)::1.0 

c 
ENTRY IEV 

c 
C SUBROUTINE IEV CA,S,N> 
C ROUTINE TO IMPROVE EIGENVALUES AND EIGENVECTORS. 
c 

IF CN.EQ.1> RETU~N 
IF CTHRI.EQ.O.O) RETURN 

c 
C LOWER THE INITIAL THRESHOLD THRI, 
C SUCCESSIVELY BY DIVISION BY N. 
c 

1020 THRI=THRI/FN 
c 
C ITERATION BEGINS HE~E. 
c 

1030 DO 1050 Q=2,N 
QM1::Q-1 
00 1050 P=1,QH1 

13 
14 
15 
16 
17 
1g 
19 
20 
? ' 

23 
24 
25 
26 
27 
2<5 
29 
30 
31 
32 
33 
3 L; 

3? 
35 
37 
33 
39 
40 
41 
42 
43 
44 
45 
46 
47 
4:1 
4'3 
50 
51 
52 
53 
54 

~~I 
57' 
?li 
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------------------------------- PAGE NO. 4 -------------------------------· 
c 59 
C TEST EACH OFF-DIAGONAL ELEMENT IN TURN. ~Q 

c 51 

c 
c 
c 
c 

c 
c 
c 

c 
c 
c 
c 

1040 
c 
c 

·c 

1050 
c 
c 
c 

c 
c 
c 

X=-A CP,Ql 
IF <ABSCX) .LT.THRI> GO TO 1050 

THE OFF-DIAGONAL ELEMENT IS NOT LESS THAN THRI IN ABSOLUTF VALUE. 
ANNIHILATE IT. RESET INDICATOR, SINCE A~NIHILATION IS N~C~SS~~v. 

IND=.FALSE. 

CALCULATE TRIGONOMETRIC FUNCTIONS. 

APP=A CP,P) 
AQQ=ACQ,Ql 
Y=0.5""(APP-AQQ) 
SIGN=1.0 
IF <Y.LT.O.O> SIGN=-1.0 
TEMP=SI!,N~X/SQRTCX~X+Y~Y) 

SINT=TEMP/SQRTC2.0~(1.0+SQRTC1.0-TEMP~TEHP))) 

S Ii'-!SQ=SiiH"'SINT 
COSS 0=1. 0-SINSll 
COST=SQRTCCOSSQ) 
TSCT=-2.o~x~srNT~cosT 

MODIFY ELEMENTS OF MATRICES A AND S ROW BY ROW. 
ALSO, TRANSPOSE TO MODIFY CORRESPONDING ROWS OF A. 

DO 1040 I=1,N 
AIP=ACI,P> 
A IQ= A CI, Q) 

TEMP=AIP~COST-AIQ~SINT 

A(!, P> =TEMP 
A CP,!) =TEMP 
TEHP=AIP~SINT+AIQ~COST 

A<I,Q>=TC::MP 
1\(Q,I>=TEHP 
SIP=S<I,P> 
SIQ=SCI,Q> 
sci,P>=SIP~cosT-sra~siNT 
S(I,Q)=SIP""SINT+SI1~COST 

EVALUATE FRESH ELEMENTS OF THE PIVOTAL SET. 

ACP,P>=A0P~COSSQ+AQ1~S!NSQ-TSCT 
ACQ,Q)=AQQ•COSSQ+AP 0 •SINSQ+TSCT 
ACP,Q)=O.O 
ACQ,P>=O.O 
CONTINUE 

CHECK WHETHER A REPEAT SHEEP IS NECESSARY. 

IF ( INO) GO TO 1060 

A REPEAT SHEEP IS NECESSARY. 

IND=.TRUE. 
GO TO 1030 

62 
53 
6l~ 

55 

67 
..f>8 
sg 
70 

·71 
72 
73 
74 
75 
76 
77 
79 
7S 
30 
8t 
82 
83 
84 
85 
86 
87 
88 
sg 
9'i 
91 
92 
g< 

gr; 
96 
97 
98 
gg 

100 
101 

.10 2 
101 
104 

--105 
106 
107 
108 
iDS 
110 
111 
112 
11-::; 
11L: 
11 ::;: 
11G 
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------------------------------- PAGE NO. 5 -------------------------------
c 
c 
c 

c 
c 
c 
c 

1060 

CHECK WHETHER THE DESIRED ACCURACY IS ~CHIEVEO. 

IF <THRI.GE.THRF> GO TO 1020 

RESET THRF TO BE IN READINESS FOR A 
SUBSEQUENT IMPROVEMENT PROCEDURE, IF ANY. 

THRF=THRF~1.0~-6 

RETURN 
END 

117 
118 
119 
120 
121 
122 
123 
12~ 

125 
125 
127 

-------------------------------------------------------~-------------------
SUBROUTINE GEVP CA,B,S,T,N> 

c 
C ROUTINE TO SOLVE T~E GENERAL EIGENVALUE PROBLEM. 
C A~X=LAMBDA~B~X 

c 

c 

COMMON /IYENGAR/ I,J,K,SUM,TEMP,YC9) 
REAL ACN,N),B(N,N),S(N,N),T(N) 

C DIAGONALIZE MATRIX B. 
c 

CALL EV (B,S,N> 
c 
C IMPROVEMENT PROCEDURE. 
c 

CALL IEV CB,S,N> 
c 
C FORM THE MATRIX DROOUCT s~INVERSE OF G IN S. 
c 

DO 1000 J=1 7 N 
TEMP=i.O/SQRTCB(J,J)) 
DO 1000 I=1,N 

1000 S<I,J>=SCI,J>~TEMP 
c 
C MODIFY MATRIX A. 
c 

CALL MULT CA,S,B,N,N,N> 
DO 1020 I=1,N 
DO 1020 J=I,N 
SUM=O.O 
DO 1010 K=1,N 

1010 SUM=SUM+SCK,I>~BCK,J) 
A cr, J> =SUt1 

1020 A(J,I>=SUM 
c 
C OBTAIN EIGENVALUES OF A. 
c 

c 

CALL EV (~,B,N) 

CALL IEV CA,B,N) 

C FORM THE MATRIX PRODUCT s~EIGENVECTO~ MATRIX 
C TO OBTAIN THE FINAL EIGENVECTORS. 
c 

CALL POSTM CS,B,N,N,T) 
RETURN 
END 

1 
2 
3 
4 
5 
G 
7 
8 
g 

10 
11 
12 
13 
14 
15 
"' ,.. 
LO 

17 
18 
19 
20 
21 
22 
23 
2~ 

25 
2S 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
4!J 
41 
42 
lt 3 
44 
45 

---------------------------------------------------------------------------
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---------~------~-------------- PAGE NO. 6 -------------------------------· 
SUBROUTINE HINV (A,N,DET,NEXCHl 1 

c 2 
C ROUTINE TO INVERT MATRIX A. 3 
c 4 

CO~MON /IYENGAR/ BIG,I,J,K,NM!,NP!,NR,T,Y(6) 5 
REAL A(N,N) 6 
INTEGER NEXCH(N) 7 

c 8 
IF <N.NE.U GO TO 1000 9 
DET=A(1,1) 10 
A<1,1>=1.0/DET 11 
RETURN 12 

1000 DET=1.0 13 
NM1=N-1 14 
DO 1070 K=1,N 15 

c 16 
C SEARCH COLUMN 1 FOR THE LARGEST ABSOLUTE-VALUED 17 
C ELEMENT IN ROWS K THROUGH N. 18 
c 19 

BIG=O.O 20 
DO 1010 I=K,N 21 
T=ABS<A<I,1)) 22 
IF <BIG.GE.T> GO TO 1010 23 
BIG=T 24 

c 25 
C THE LA~GEST ABSOLUTE-VALUED ELEMENT IS IN ROW NR. 26 
c 27 

NR=I 28 
1010 CONTINUE 29 

c 30 
C EXCHANGE ROWS NR AND K, ONLY IF NR IS DIFFERENT FROM K. 31 
c 32 

IF CNR.EQ.K> GO TO 1030 33 
DO 1020 J=1,N 34 
T=A<K,Jl 3? 
ACK,J>=A<NR,J> 36 

1020 A<NR,J>=T 37 
c 38 
C CHANGE THE SIGN OF THE DETERMINANT~ 39 
C SINCE ROWS HAVE BEEN EXCHANGED. 40 
c 41 

DET=-DET 42 
c 43 
C BOOK-KEEPING VECTOR NEXCH STORES THE INFORMATION ~44 
C ABOUT ROW EXCHANGES. 45 
c 46 

1030 NEXCHCK>=NR -47 
T=ACK,1) '48 

c 
C CONTINUOUS PART-PRODUCT FOR THE DETERMINANT. 

49 
50 
51 
52 
53 
54 
55 
56 
57 
58 

c 

c 

DET=DET•T 
T=1.0/T 

C MODIFY ROW K BY DIVISION BY THE PIVOT ELEMENT. 
c 

DO 1040 J=1,NH1 
1040 ACK,Jl=A<K,J+l>~T 
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c 
c 
G 
c 

1050 

1060 
1070 

c 
c 
c 
c 
c 

c 
c 
c 

c 

1080 
1090 

1000 

ACK,N>=T 

MODIFY ALL ROWS OTHER THAN ROW K BY ADDITION 
OF SUITA9LE MULTIPLES OF ROW ~· 

DO 1060 I=1,N 
IF CI.EQ.K> GO TO 1060 
BIG=-A<I,1> 
DO 1050 J=1,NH1 
ACI,J>=AC!,J+i)+BIG~ACK,JJ 

A (I, N> =BIG~T 
CONTINUE 
CONTINUE 

PER~ORM COLUMN EXC4ANGES TO MATCH PREVIOUS ROW ~XCHANGES 

CIN REVERSE ORDER>. NOTE THAT NEXCHCN>=N, ALWAYS. HEN~€, 

K IS NOT ALLOWED TO ASSUME THE VALUE N IN THE FOLLOWINS CO-LOOP. 

NP1=N+1 
00 1090 J=2,N 
K=NP1-J 
NR=NEXCHCK> 
IF CNR.EQ.K> GO TO 1090 
DO 1080 I=1,N 
T=ACI,Kl 
ACI,K>=A<I,NR> 
A<I,NR>=T 
CONTINUE 
RETURN 
END 

SUBROUTINE HOVE CA,B,H,N> 
_.; 

ROUTINE TO COPY MATRIX A AS MATRIX B. O=A 

,---coMr10N /IYENGAR/ I,MN,YC12) 
\ 

\REAL AC1),BC1J -. -
HN=M~_N- ' 

I 

DO 1000 __ I= 1 t.._M~~ j __., 
!' 

B!I>=A<I> C' c /; 
RETURN 
END 

5g 
so 
51 
52 
63 
64 
65 
6~ 
57 
6!3 
E)g 
70 
71 
72 
73 
74 
75 
76 
77 
78 
79 
80 
81 
82 
83 
84 
85 
135 
87 
88 

-i _.. 
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10 
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c 
c 
c 

c 

1000 
1010 

SUSROUTIN~ HULT CA,G,C,L,H,N) 

ROUTINE TO FORM THE PRODUCT OF MATRICES A AND B. C=A~B 

COMMON /IYENGAR/ I,J,K,SUM,YC10) 
REAL ACL,H> ,BCH,tH ,CCL,Nl 

DO 1010 I=1,L 
DO 1010 J=1,N 
SUN=O.O 
DO 1000 K=1,H 
SUM=SUM+ACI,K>~B<K,J) 

CCI,J>=SUM 
RETURN 
END 

1 
2 
3 
4 
5 
6 
7 
8 
g 

·'UJ 
11 
12 

"'13 
14 
15 

---------------------------------------------------------------------------

c 

SUBROUTINE OUTE <A,I,J,TITLE,TITEL> 
C011MON /IYENGAR/ II,IMAX,IROH,IV(2) ,I1,JCOL,JJ,.JMAX,J1,J2,KK,YC2l 
REAL A CI,J> 

C ROUTINE TO PRINT MATRIX A IN E-FORMAT. 
C STORE E IN IVC2> FOR E-FORHAT OUTPUT. 
c 

IV<2>=10HO{XE12.5}) 
c 
C JMAX = NUMBER OF VE~TICAL PARTITIONS OF THE MATRIX. 
c 

1000 JMAX=CJ+9)/10 
c 
C !MAX = NUMBER OF HORIZONTAL PARTITIONS OF THE MATRIX. 
c 

c 
c 
c 
c 

c 
c 
c 
c 

c 
c 
c 

c 
c 

IHAX=<I+24)/25 
IV<1>=10HC1HO,I4,X1 
Y(1>=10H 
YC2>=10H 
00 1020 JCOL=1 7 JMAX 

PRESCRIBE THE FIRST (J1) AND LAST (JJ) COLUMN NUMBERS 
TO BE PRINTED ON THE PAGE. 

JJ=10~JCOL 

Ji=JJ-9 
IF <J.LT.JJ) JJ=J 
00 1020 IROW=i,IMAX 

PRESCRIBE THE FIRST CI1l AND LAST <II> ROW NUMBERS 
TO BE PRINTED ON THE PAGE. 

II=25li'IROW 
I1=II-24 
IF CI.LT.II> II=I 

LABEL TH~ OUTPUT, INDICATE MATRIX SIZE AND NUM9~R THE COLUMNS. 

PRINT 1030, TITLE,TITEL,Y,I,J, CKK,KJ<:J1,JJ) 
00 1010 KK-=!1,!! 

NUMBE~ THE ROWS AND PRINT ELEMENTS OF THE HATRIX. 

1 
2 
3 
4 
5 
6 
7 
8 
q 

10 
11 .. .... 
..LC 

13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 

- 2 3 
29 
30 

-. 31 
32 
33 
34 
35 
36 
37 
38 
3g 
40 
41 
42 
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C 43 

1010 PRINT IV, KK,CACKK,J2),J2=J1,JJ) 44 
YC1)=10H <CONTINUE 45 

1020 Y (2) =10H0) 46 
RETURN 47 

c 48 
c 49 

ENTRY OUTF 50 
c 51 
C SUBROUTINE OUTF CA,I,J,TITLE,TITEL) 52 
C ROUTINE TO PRINT MATRIX A IN F-FORMAT. 53 
C STORE F IN IVC2) FO~ F-FORMAT OUTPUT. 54 
c 55 

IV<2>=10HO<XF12.5l) 56 
GO TO 1000 57 

c 58 
c 59 

ENTRY OUTG 61J 
c 61 
C SUBROUTINE OUTG (A,I,J,TITLE,TITEL) 62 
C ROUTINE TO PRINT MATRIX A IN G-FORMAT. 63 
C STORE G IN IVC2> FOR G-FORMAT OUTPUT. 64 
c 65 

lVC2l=10HOCXG12.5l) 66 
GO T0.1000 67 

c 68 
c 69 

1030 FORMAT C1H110X4A10/1H010X4HSIZEI4,8H ROWS BYI4 7 8H COLUMNS/2HO 10!1 7C 
13) 71 

END 72 

SUBROUTINE PMULT CA,B,K,L,X> 
c 2 
C ROUTINE TO FORM THE MATRIX PRODUCT A~B IN A WHEN 8 IS SQUARE. 3 
c 4 

COMMON /IYENGAR/ I,J,M,SUM,Y<10l 5 
REAL ACK,L>,BCL,U,XCL> 6 

c 7 
DO 1020 I=1 7 K ~ 

c 9 
C GENERATE ELEMENTS OF I-TH ROW OF PRODUCT MATRIX 10 
C AND STORE THESE IN VECTOR X. 11 
c 12 

00 1010 J=1 7 L 13 
SUH=O.O 14 
DO 1000 H=1,L 15 

~000 SUM=SUM+ACI,Hl~B(M,J) 16 
1010 XCJl=SUH 17 

c 18 
C REPLACE THE I-TH ~OW OF A BY THE VECTOR X. 19 
c 20 

DO 1020 J=1,L 21 
1020 ACI,J>=XCJ> 22 

RETURN 23 
END 24 

-------------------------~-------------------------------------------------
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SUBROUTINE POSTM CA,B,K,L,X> 1 
c 2 
C ROUTINE TO FORM THE MATRIX PRODUCT A•B IN B WHEN A IS SQUARE. 3 
c 4 

COMMON /IYENGAR/ I,J,M,SUH,Y(10) 5 
REAL ACK,K),B(K,U,XCK) 6 

c 7 
DO 1020 J=1,L 8 

c .. g 
C GENERATE ELEMENTS OF J-TH COLUMN OF PRODUCT MAT~IX 10 
C AND STORE THESE IN VECTOR X. 11 
c 42 

DO 1010 I=1,K 13 
SUH=O.O 14 
DO 1000 M=1,K 15 

1000 SU~=SUM+ACI,M>•B<M,J) 16 
1010 XCI>=SUM 17 

c 18 
C REPLACE THE J-TH COLUMN OF B BY VECTOR X. 19 
c 20 

c 
c 
c 
c 

c 

c 
c 

c 

00 1020 I=1,K 21 
1020 BCI,J>=X<I> 22 

RETURN 23 
END 24 

SUBROUTINE RDCBC CA,M,N) 

~OUTINE TO READ I~ VALUES FOR ELEMENTS OF MATRIX A, 
COLUMN BY COLUMN. 

COMMON /IYENGAR/ I,J,Y<12l 
REAL ACM,N) 

DO 1000 J=1,N 
1000 READ 1010, CACI,J>,I=1,H> 

RETURN 

1010 FORMAT C8F10.0) 
END 

SUBROUTINE RDCOLG (A,H,N> 

1 
.2 
3 
4 
5 
6 
7 
8 
g 

10 
11 
12 
13 
14 
15 

C ROUTINE TO READ IN VALUES FOR ELEMENTS OF MATRIX A, 

1 
2 

. 3 
4 C COLUMN BY COLUMN IN A CONTINUOUS STRING OF COLUMNS. 

c 

c 

c 
c 

COMMON /IYENGAR/ YC14) 
REAL ACM,N) 

REAO 1000, A 
RETURN 

1000 FOR~AT C8F10.0) 
END 

• 5 
. 6 

7 
8 
g 

10 
11 
12 
13 
14 

---------------------------------------------------------------------------
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SUBROUTINE RDRBR CA,M,N) 1 
c 2 
C ROUTINE TO READ IN VALUES FOR ELEMENTS OF MATRIX A, 3 
C ROW BY ROW. 4 
c 5 

c 

c 
c 

COMMON /IYENGAR/ I,J,Y{12> 
REAL ACM,N) 

DO 1000 I=1,H 
1000 READ 1010, CACI,Jl,J=1,N) 

R.ETU RN 

1010 FORMAT C8F10.0) 
END 

5 
7 
3 
g 

10 
11 
12 
13 
!4 
1? 

---------------------------------------------------------------------------
SUBqOUTINE RGROWG CA,M,N> 

c 
C ROUTINE TO READ IN VALUES FOR ELEMENTS OF MATRIX 
C ROW BY ROW IN A CONTINUOUS STRING OF ROWS. 
c 

c 

c 
c 

c 

CO~MON /IYENGAR/ I,J,YC12> 
REAL ACM,N> 

READ 1000, {{ACI,J>,J=1,N>,I=1,Hl 
RETURN 

100Q FORMAT C8F10.0> 
END 

SUBROUTINE SCMUL CA,M,N,X> 

A, 

C ROUTINE TO MULTIPLY MATRIX A BY THE SCALAR QUANTITY X. 
C A = X TIMES A 
c 

c 

COMMON /IYENGAR/ I,MN,YC12> 
REAL A(1} 

HN=MJS.N 
DO 1000 I=1,MN 

1000 ACI>=Xli-A(!) 
RETURN 
END 

1 
2 
3 
4 
5 
5 
7 
8 
g 

10 
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c 
c 
c 
c 

c 

c 
c 
c 

c 
c 
c 
c 
c 
c 
c 

1000 

1010 

1020 

c 
c 
c 

c 
c 
c 

c 
c 
c 
c 

c 
c 
c 

1030 

10·40 

1050 

SU9ROUTINE SINV <A,DA,N) 

ROUTINE TO FINO THE INV~RSE OF A SYMMETRIC, 
POSITIVE-DEFINITE M~TRIX A. 

COMMON /IYENGAR/ I,IFIN,INOEX,INIT,J,JP1,K,SUM,TEMP,YC5) 
REAL A< N, N) 

IF (N.NE.U GO TO 1020 
DA=A (1,1> 
A<1, 1>=1.0/DA 
RETURN 

BUILT-IN SUBPROGRAM~ 

SUM=O.O 
DO 1010 K=INIT,IFIN 
SUM=SUMtACI,K)•ACJ,K) 
GO TO INDEX, <1040 7 1050,1070,1080) 

GEN~RATE MATRIX LAMBDA CA=LAMBOA•LAMBOA TRANSPOS~>. 
NOTE - ONLY THE DIAGONAL ELEMENTS ARE THOSE OF 
LAMBDA-INVERSE-TRANSPOSE CL!T). 

(1,1) ELEMENT OF LIT. 

DA=1.0/SQRTCAt1,1)) 
AC1,1>=DA 

FIRST COLUMN OF LAMBDA. 

00 1030 I=2,N 
ACI,1>=AC1,I>•DA 
INIT=1 
DO 1050 J=2,N 
ASSIGN 1040 TO INDEX 
IFIN=J-1 
I=J 
GO TO 1000 

J-TH DIAGONAL ELEMENT OF LIT <2 .u:. J .LE. N> • 

TEMP=1.0/SQRTCACJ,J)-SUM) 
A CJ, J) =TEMP~ 

CONTINUOUS PART-PRODUCT FOR THE RECIPROCAL 
OF THE SQUARE ROOT OF THE DETERMINANT. 

OA=DA""TEMP 
IF (J.EQ.N) GO TO 1050 
ASSIGN 1050 TO INDEX 
JP1=J+1 
00 1050 I=JP1,N 
GO TO 1000 

J-TH COLUMN OF LAMBDA <2 .LE. J .LE. N-1). 

ACI,Jl=tACJ,I)-SUH>""TEMP 

1 
2 
3 
4 
5 

7 
8 
g 

" 10 
11 
12 

..-11 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
25 
27 

29 
30 
31 
32 
33 
34 
35 
35 
37 
38 
39 
40 
41 
42 
43 

- 44 
·4s 

46 
.. . 4 7 

4.'3 
4g 
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1060 ASSIGN 1070 TO INDEX 59 

c so 
C FINAL VALUE OF THE DETERMINANT. 51 
c 62 

DA=D A~OA 6 3 
OA=1. 0/DA 64 

c 65 
C GENERATE OFF-DIAGONAL ELEHENTS OF LIT. 66 
c 67 

DO 1070 I=2,N 68 
IFIN=I-1 69 
TEHP=A<I,I) 70 
00 1070 J=1 1 IFIN 71 
INIT=J 72 
GO TO 1000 73 

1070 ACJ,Il=-SUM~TEHP 74 
ASSIGN 1080 TO INDEX 75 
IFIN=N 76 

c 77 
C FOR~ THE PRODUCT LIT~INVERSE OF LAMBIJA. 78 
C RESULT IS INVERSE OF THE ORIGINAL MATRIX A. 79 
c 80 

DO 1090 I=1,N 81 
INIT=I 82 
DO 1090 J=1,I 83 
GO TO 1000 84 

1080 ACI,J>=SUM 85 
1090 A(J,I>=SUM ~6 

RETURN 8 7 
END 88 

---------------------------------------------------------------------------
c 
c 
c 
c 

c 

c 

SUBROUTINE SOLVE CA,B,N,L,DET> 

ROUTINE TO SOLVE THE SYSTEM OF LINEAR 
SIMULTANEOUS EQUATIONS A~X=B~ 

COMMON /IYENGAR/ A8SA,BIG,O,I,IJK,IP1,J,K,NM1,Y(4) ,z 
REAL ACN,N>,BCN,L> 

IF {N.NE.U GO TO 1010 
DET=A(1,1) 
DO 1000 J=1,L 

1000 9C1,Jl=BC1,J)/DET 
RETURN 

1010 Nt11=N-1 
DET=1.0 
DO 1070 I=1,NH1 
IP1=I+1 

C SEARCH COLUMN I FOR THE LARGEST ABSOLUTE-VALUED 
C ELEMENT IN ROWS I THROUGH N. 
c 

c 

BIG=O.O 
DO 1020 J=I,N 
ABSA=ABSCA<J,Il) 
IF <BIG.GE.ABSA) GO TO 1020 
BIG=ABSA 

1 
2 
3 
4 
5 

7 
8 
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10 
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c THE LARGEST ABSOLUTE-VALUED ELEMENT IS IN ROW K OF COLU~N I. 28 
c 

1020 
c 
c 
c 

1030 

K=J 
CONTINUE 

EXCHANGE ROWS K AND I, ONLY IF K IS DIFFERENT FROM I. 

IF C K. EQ.!) GO TO 1050 
DO 1030 J=I,N 
Z=ACI,J) 
A<I,J>=ACK,Jl 
ACK,J>=Z 
DO 1040 J=1,L 
Z=BCI,J> 
BCI,Jl=BCK,J) 

1040 B<K,J>=Z 
c 
C CHANGE THE SIGN OF THE DETERMINANT, 
C SINCE ROWS HAVE BEEN EXCHANGED. 
c 

DE T=-DET 
1050 Z=ACI,I> 

c 
C CONTINUOUS PART-PRODUCT FOR THE OETERMINANT. 
c 

c 
c 
c 
c 

c 

DET=DET""Z 
Z=1.0/Z 

MODIFY ELEMENTS OF A - THE REDUCTION PROCESS. 
MODIFY MATRIX 8 ALSO. 

00 1070 K=IP1,N 
0=-ACK,I>•Z 
00 1060 J=i,L 

1050 BCK,J>=B<K,J)+D•BCI,J) 
00 1070 J=IPi,N 

1070 ACK,J>=~(K,Jl+D•A(I,J) 
Z=ACN,N) 

C FINAL VALUE OF THE ryETERMINANT. 
c 

c 

OET=DET• Z 
Z=1.0/Z 

C PROCESS OF BACK-SUBSTITUTION TO GET THE SOLUTION MATRIX. 
c 

00 1090 K=1,L 
BCN,K>=B<N,K)""Z 
00 1090 IJK=1,NH1 
I=N-IJK 
IP1=!+1 
0=0.0 
DO 1080 J=IP1,N 

1080 O=O~ACI,J>•BCJ,Kl 
1090 B<I,Kl=CBCI,Kl-0)/ACI,Il 

RETURN 
END 

29 
30 
31 
32 
33 
34 
35 
35 .. 
37 
3~3"' 

;39 
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5? 
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55 
55 
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58 
5S 
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62 
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66 
67 
68 
69 
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73 
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75 
76 
77 
78 
79 
80 
81 
82 
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c 
c 
c 

c 

c 
c 
c 

SUBROUTINE SQTR (A,N) 1 

ROUTINE TO TRANSPOSE THE SQUARE MATRIX A IN ITS OWN SPACE. 

COMMON /IYENGAR/ I,INCR,K,L,LAST,NM1,NP1,T,Y(6) 
REAL A ( 1) 

IF <N.EQ.1) RETURN 
NN1=N-1 
NP1=N+1 
LAST:::N.v-N 
INCR=O 
DO 1000 K=2,N 
LAST=LAST-N 
INC~=INCR+NM1 
00 10GO L=K,LAST,NP1 
I=L+INCR. 

EXCHANGE ELEMENTS WITH SUBSCRIPTS I AND L. 

2 
3 
i+ 
5 
6 
7 
8 
g 

10 
_,, . ... .:.. 

12 
13 
14 
15 
16 
17 
18 
1q 

1000 

T= A (I) 

ACH=A<L> 
A<U =T 
Rt:TURN 
END 

20 
21 
22 
23 
2i+ 
25 

c 
c 
c 

c 

SUBROUTINE SUB CA,9,C,M,N) 

ROUTINE TO SUBTRACT MATRIX B FROM MATRIX Ao C=A-B 

COMMON /IYENGAR/ I,MN,Y(12) 
REAL A<1>,B<U,C(1) 

MN=M•N 
DO 1000 I=1,MN 

1000 CCI>=A<I>-BCI) 
RETURN 
END 

1 

:-~ 

4 
5 
6 
7 

8 
g 

10 
11 
12 

---------------------------------------------------------------------------. ·.·~ .. 
S'UBROUTINE TMULT CA,B,C,L,H,N) 1 

c 2 
C ROUTINE TO FORM THE MATR.IX PRODUCT OF <TRANSPOSE OF MATRIX A> 3 
C AND MATRIX B. C=<TRANSPOSE OF A>•B 4 
c 5 

COMMON /IYENGAR/ I,J,K,SUM,Y(10) 6 
REAL ACL,Ml,BCL,Nl,CCM,Nl 7 

c 8 
DO 1010 I=1,M 9 
DO 1010 J=1,N 10 
SUM=O.O 11 
DO 1000 K=1,L 12 

1000 SUM=SUM+A(K,Il~BcK,J) 13 
1010 C<I,Jl=SUM 14 

RETURN 15 
END 16 

---------------------------------------------------------------------------



] 

] 

] 

1 
j 

J 

.., 

J 

l 
j 

l 
j 

FRITZ LABORATORY MATRIX PACKAGE CFL~XPK) 
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SUB~OUTINE TRANS CA,B,~,N> 1 

c 2 
C ROUTINE TO TRANSPOSE MATRIX A. B=TRANSPOSE OF A 3 
c 4 

COMMON /IYENGAR/ I,J,YC12l 5 
REAL A(H,N),B(N,M) 5 

c 7 
00 1000 I=1,M 
DO 1000 J=!,N 

1000 BCJ,I>=ACI,J> 
RETURN 
END 

g 
.. 10 

11 
.--12 

---------------------------------------------------------------------------SUBP.OUTINE XABATC CA,B,C,L,M,X) 
c 
C ROUTINE TO FORM THE ~ATRIX PRODUCT 
C A~B•<TRANSPOSE OF A> WHEN 8 IS SYMMETRIC. 
c 

c 

c 

COMMON /IYENGAR/ r,J,K,SUM,YC10) 
REAL ACL,M> ,BCM,M) ,CCL,L) ,XCM) 

DO 1030 I=1,L 

C GENERATE ROW I OF PART-PRODUCT A~B IN VECTOR X. 
c 

c 

DO 1010 J=1,M 
SUM=O.O 
DO 1000 K=!,M 

1000 SUM=SUH+A(I,K>~B(K,J> 
1010 XCJ>=SUH 

C PRODUCT MATRIX C IS SYMMETRIC, SINCE MATRIX 8 IS SYMMETRIC. 
C GENeRATE PRODUCT HAT~IX. 
c 

00 1030 J=I,L 
SUM=O.O 
00 1020 K=1,M 

1020 SUM=SUM+X(K}~ACJ,K) 
C CJ, Il =SUM 

1030 C<I,J>=SUM 
RETURN 
END 

1 
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3 
4 
5 
5 
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---------------------------------------------------------------------------
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c 
C ROUTINE TO FORM TY~ MATRIX PRODUCT 
C A'~-CTRANSPOSE OF Bl IN A WHEN B IS SQUARE. 
c 

COMMON /IYENGAR/ I,J,K,SUM,YC10) 
REAL ACL,Nl,BCN,Nl,XCN> 

c 

c 
C GENERATE ROW I OF PRODUCT MATRIX IN VECTOR X. c 

DO 1010 J=1,N 
SUM=O.O 
DO 1000 K=1,N 

1000 SUM=SUM~ACI,K>•B<J,K) 
1010 XCJ>=SUM 

c 
C REPLACE ROW I OF MATRIX A BY VECTOR x. 
c 

DO 1020 J=1,N 
1020 ACI,Jl=X(J) 

RETURN 
END 

E 
I 
( 

<:: 

1C 
11 
12 
13 
14 
.15 
16 
17 
113 
1S 
20 
21 
22 
23 
24----------------------------------------------------------------------------SUSqOUTINE XABTC CA~B,C,L,M,N> 

c 
C ROUTINE TO FORM THE MATRIX PRODUCT 
C A4 CTRANSPOSE OF 8) 
c 

c 
COMMON /IYENGAR/ r,J,K,SUM,YC10) 
REAL ACL,M),3CN,M),CCL,N) 

DO 1010 I=1,L 
DO 1010 J=1,N 
SUM=O.O 
00 1000 K=1,M 

1000 SUM=SUM+ACI,K>•BCJ,K) 
1 0 1 0 c (I, J) = su ti 

RETURN 
END 

1 
2 
3 
4 
5 
5 
7 
8 
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) 

l 

l 

l 
., 
\ 

SUBROUTINE XATBAC CA,B,C,L,M,X> 1 
2· 

ROUTINE TO FORM THE MATRIX PRODUCT 3 
<TRANSPOSE OF A>•A•A WHEN B IS SYMMETRIC. 4 

c 
c 
c 

5 c 
COMMON /IYENGAR/ I,J,K,SUH,Y(10) G 
REAL A<L,Ml,BCL,Ll,CCM,H>,XCL) 7 

8 c 
DO 1030 J=1,M 9 ,0 

11 
12 
f3 
14 
15 
15 
17' 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
2e 
29 

c 
c 
c 

c 
c 
c 
c 

1000 
1010 

GENERATE COLUMN J OF PART-PRODUCT s•A IN VECTOR X. 

DO 1010 I=1,L 
SUH=O.O 
DO 1000 K=1,L 
SUH=SUM+BCI,K>•ACK,Jl 
X<I>=SUH 

PRODUCT MATRIX C IS SY~METRIC, SINCE HATR!X B IS SYMM~TRIC. 
GENERATE PRODUCT MATRIX. 

DO 1030 I=1,J 
SUM= 0. 0 
DO 1020 K=1,L 

1020 SUM=SUM+ACK,I>•X<K> 
C (!, Jl =SUt1 

1030 C(J,Il=SUM 
RETURN 
END 

---------------------------------------------------------------------------
c 
C ROUTINE TO FORM TH~ MATqix PRODUCT 
C <TRANSPOSE OF A>•B IN B WHEN A IS S~UARE. 
c 

c 

c 

COMMON /IYENGAR/ I,J,K,SUM,YC10) 
REAL ACL,L> ,B<L,N> ,XCL) 

00 1020 J=1,N 

C GENERATE COLUMN J OF PRODUCT MATRIX IN VECTOR X. 
c " 

c 

00 1010 I=i,L 
SUM=O.O 
DO 1000 K=1,L 

1000 SUM=SUM+ACK,I>•BCK,J) 
1010 XC!)=SUM 

C REPLACE COLUMN J OF MATRIX B BY VECTOR X. 
c 

DO 1020 I=1,L 
1020 B(!,J):X(Il 

RETURN 
END 

1 
2 
3 
4 
5· 
6~ 
7 
8 
9 

10 
11 
12 
13 

'14 
~15 

16 
<17 

18 
19 
20 
21 
22 
23 
24 

---------------------------------------------------------------------------
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