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FOREWORD 

The first part of the CE 309: Computer Programming lecture notes 

covers the salient FORTRAN77 statements, their proper use in 

structured programming environment, and the interpretation of 

frequently used civil engineering formulae, specifications, and 

analysis techniques in terms of FORTRAN77. The second part, i.e. 

these lecture notes, cover the key issues in the development, 

maintenance, and testing of software packages, with emphasis on 

those coded in FORTRAN77. 

The majority of the material in this note set, especially the 

"lists," is based on the material included in Software Main-

tenance - The Problem and Its Solutions, by 

Carma McClu~e (Prentice-Hall, Inc., 1983). 

an excellent source of information on software 

James Martin and 

Even though this is 

maintenance, the 

incorporation of the concepts presented in the coding stage will 

result in a highly desirable product. 
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1. STRUCTURED AND MODULAR PROGRAMMING 

Engineers have been writing "programs" in FORTRAN for digital 
computers since 1956. The programs coded in the late fifties and 
early sixties, even in the late sixties, which used the prevail
ing programming "styles," would be "unacceptable" if current 
standards are applied. The American National Standards Institute 
(ANSI) provided standards for FORTRAN in 1966. This FORTRAN is 
known as FORTRAN-IV or FORTRAN-66. In the sixties and early 
seventies the work carried out by the computer scientists led to 
the development of stringent programming guidelines and to new 
programming languages. The programming language Pascal, intro
duced in 1971, is probably the most influential language as far 
as its effects on today's FORTRAN. In addition, to "remedy" the 
shortcomings of the earlier programming styles, which were 
strictly programmer-dependent, in the seventies new concepts, 
rules, guidelines, and standards emerged. They are: program 
modules and modular programming, top~down programming, and struc
tured programming. These guidelines were in conflict with the 
loosely "structured,'' or unstructured, nature of FORTRAN-66. 
ANSI issued the standards for FORTRAN-77, which is a highly 
"structured" language as compared to FORTRAN-66, but which is not 
structured enough as compared to, for example, Pascal. 

1.1 NEED FOR A STRUCTURED LANGUAGE 
The best justification for a structured programming style can be 
noted by studying the fictitious program segment shown in Fig. 
1.1. The program is incomprehensible because of the crisscross
ing arrows highlighting the transfer of control, or logic. It 
should also be recognized that this is an extreme example; not 
all FORTRAN-66 codes were written in such a chaotic manner. 

There are a number of reasons given by the proponents of 
"structured programming" as to why it is the only approach that 
should be rigidly adhered to (rather dogmatic!). Some of the 
reasons are: 

* The program must be understandable and comprehensible. 

(Inspection of Fig. 1.1 does not give a clue as to what is 
happening. This is due to the maze of arrows showing the 
transfer of control. In a well structured program a brief 
inspection should easily reveal what is happening.) 

2 
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F 

r-+-.._..... IFC.. .. )2
1
3 

~-....-~2 ................... -.......... . 

r---+-~ GO Toe 1-Is }6) II 

t---+-e---i i ································ 

3 ......................... . 

5 ........................ . 
t---+-~ 

GO TO 1 

6 ............. ·-············· 

DO 7 ....... . 

---,._-t IFC.. .. ) GO TO 1 

7 ······-···················· 

Fig. 1.1 A Sample Nonstructured Program 
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* The control of transfer of operations should be as sequen
tial as possible. 

(This would permit the study and understanding of the 
program from the top of the page to the bottom, without 
going back to earlier lines too many times. This also makes 
the automatic optimization easier.)·· 

* The program should be modular. 

(It should be possible to identify the basic self-contained 
computational and/or other logical units. It should be pos
sible to pull out the module and replace it by another unit 
serving the same purpose, without making "any(?)" changes in 
the rest of the program. This feature improves the under
standability and modifiability of the software. Further
more, it is a blessing as far as debugging is concerned.) 

* The program must be modifiable. 

(In order to modify the program one needs to know what is 
being done and where, and how it is done. If the program is 
too rigid, ala Fig. 1.1, its modifiability is in question.) 

* The program should be .flowchartable. 

(Any and every program is flowchartable. Thus, this 
requirement, prescribed by the experts, is misleading. 
However, if the logic flow of the program is too complex 
(polite way of saying haphazard, disorganized, etc.) its 
flowchart would be almost impossible to follow. Thus the 
ease of understandability of the flowchart is a requirement 
for the overall program behavior.) 

*Etc. 

1.1.1 Counter Arguments 
A few case studies observed personally, and lived through, by the 
author will be presented herein to highlight the possible misun
derstandings regarding unstructured vs. structured programming. 

CASE-1: A package developed in the late sixties employed standard 
FORTRAN66. Every care and effort was put forth to make the 
package insensitive to possible changes in operating system and 
the compiler. With the emergence of STRUCTURED FORTRAN, a 
reputable computer scientist indicated that this package should 
be re-coded for increased efficiency. This mission was under
taken by this scientist. The resulting program did not perform 
any faster. Thus, not all packages coded in FORTRAN66 can and 
should be labeled inefficient. 

4 



.. 

CASE-2: A parallel development was undertaken by a "computer 
honcho" for the above package in the same time frame as the 
original development. Use of every imaginable feature of the 
operating system and the compiler available were made in order to 
reduce the central core requirement of the computer and increase 
its execution speed. The finished product performed admirably, 
both in terms of speed and core requirements. However, every 
major update in the compiler or the operating system required 
rewriting parts of the program. Finally, to strip the program of 
its compiler and operating system redundancy, i.e. to make it 
fully portable at the expense of losing some of the efficiency, 
slightly less than 5-minutes of conversion effort was required 
per statement. 

Program portability is the most critical attribute of 
any given program to make it operable in continually 
changing hardware and software environments. 

CASE-3: In the late sixties and early seventies a major program 
was developed using FORTRAN66. Prior to the initiation of the 
activities it was decided that the main program, i.e. primary 
module, would not be more than 132-lines long. During the 
development program specifications and requirements were sub
jected to one major change every month, on the average. About 
half a dozen major patches were required to be added every three 
months. At the completion of the programming, debugging, and 
testing the length of the main program was in excess of 2,000 
lines long. 

A structured program development was subjected to similar 
requirements by individuals who are experts on the subject matter 
but who do not have any idea about soft.ware engineering. 

w.bether a progra. is coded in structured or an unstruc
tured language, external require•ents that can be i•
posed by the uninitiated can hinder the successful 
completion of any given package. 

1.2 LIFECYCLE OF SOFTWARE 
Activities pertaining to the development of any given software 
from the definition of the problem statement and/or requirements 
through the installation of the production version of the 
software are presented in Fig. 1.2. One 'can and should be able 
to go to any one of the activities, and be able to initiate 
productive efforts. If the developed software can be com
prehended only by its originator, so long as he/she can remember 
what was done, than this software is doomed to oblivion. Any 
package that is developed with structuredness and modularity can 
be revived less painfully as compared to the one that does not 
have these characteristics. 
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SOFJNRRE LIFE CYCLE 

ll£0UIR£KEnTS 
I ,. 
J~ I . 

I ~ : Sft£CIFICATIOHS ~, 

I .. PRELIUHJliY .. ... 
DESIIiH ... I 

_fONT. ... DETrtiLED 

~ .. DESI&H 

t -• • CODIHii JlHD ... -
DUUiiliiHii ... 

.. TESTIHii anD 
,.. 

UJlLIDRTIOH ~ 

... Of'ERATIOHS MD ,.. IIAIHTEnftHC£ ... _...,._ 

REVALIDATION ! ! ! ! 

Fig. 1.2 Software Life Cycle 
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DESIGN 
SPECIFICATIONS 

COOING REQUIREMENTS 

MODULE TES 

Fig. 1.3 Effort Required on Various Software 
Development Activities (Except Software 
Maintenance (from: Principles of Software 
Engineering and Design, M.A.Zelkowitz, A.C. 
Shaw, J. D. Gannon, Prentice-Hall, Inc., 
1979) 
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Contrary to beliefs, the time requirement for the coding and 
debugging is only 20% of the overall effort (See Fig. 1.3). An 
equal amount of time is spent on the development of the 
"specifications and requirements" of the software module. Just 
the design of the software requires 15% of the total effort. 
Before the inception of any coding effort one should spend about 
one third of the allocated time and funding. 

The percentages given herein are to illustrate the extensive 
planning required prior to the coding of any software. Actually 
similar rules of thumb exist for the idealization of data design 
prior to database-related activities, and/or conceptualization of 
a problem prior to the use of a canned package. This presupposes 
that the user is sufficiently familiar with the subject matter. 
One of the worst practices by engineering managers, especially at 
the middle-management level, has been to direct the engineers to 
start "getting computer results" without any initial planning. 
"Saving" the first 20%-30% of the effort does not reduce the to
tal cost of the project. In the coding, testing and implementa
tion phases major stumbling blocks are usually encountered. This 
requires a double take, and requires the repetition of previous 
efforts. 

1.3 TOP-DOWN PROGRAMMING 
If the "top-down programming" concept is literally applied, the 
program execution will be a sequential one, starting with the 
first executable statements until the "STOP" or "RETURN'' is en
countered. Exception to this rule is the DO-loops. A program 
like this will not require any "statement numbers," since the 
control of the execution will not be "controlled." Even though 
such compilers exist, they are rarely favored by engineers. Ac
tually, most FORTRAN-77 compilers contain extensive enhancements 
to ANSI FORTRAN77 provisions. Thus, most compilers permit move
ment to an earlier statement in the program, even though it vio
lates the spirit of the "top-down" practice. 

In programming everr effort should be put forth to make 
the progra. top-dow.o, so long as this does not result in 
an absurd code. 

1.4 MODULAR PROGRAMMING 
A program module is defined as a logically,self-contained unit of 
a program with specific entry and specific exit points, and is 
aimed to accomplish a predefined mission. Each subroutine can be 
considered a module, so long as its mission is to perform one 
task. 

Inspection of Fig. 1.4 shows that a part of the program can be 
isolated as a module, like the IF-THEN-ELSE block. Without know
ing the contents of the blocks for the .TRUE. and .FALSE. 
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, branches of the logical IF-check, further suggestions for other 
sub-modules would not be proper. 

POSSIBLE DECOMPOSITION : 
IF-THEN-ELSE BLOCK 

~----~7 

Fig. 1.4 Decomposition/Isolation of a Program 
Module 

1.4.1 Rules for Modularization 
Once the basic module concept is understood, then the best 
guideline for the establishment of modules and modular design is 
common sense. The following list gives additional guidelines to 
be noted for modular software design: 

1) Decompose the program into independent, discrete modules. 

2) Structure the program modules to reflect the design 
process. 

3) Construct 
properties: 

each program module with the following 

a) The module is closed. 

b) The module has one unique entry point and one unique 
exit point. 
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c) The module represents one logical, self-contained 
function. 

1.5 STRUCTURED PROGRAMS 
The structured programs essentially follow the "top-down" 
concepts; preferably not too rigidly for the sake of the program
mers sanity in transition from FORTRAN66 to FORTRAN77. Ideally 
these programs do not have any GOTO statements, thereby eliminat
ing the statement labels, i.e. statement numbers. Conversely, a 
program without GOTO statements, which violates the long list of 
requirements described in this chapter, would not be a structured 
program. 

1.5.1 Basic Building Blocks 
Strictly speaking, the structured program will consist of the 
building blocks described in Fig. 1.5. So far there has not been 
a clear cut definition of the terminology for these blocks. The 
proper terminology for the second block should be "decision." 
The third block could possibly be labeled as a "DO-loop" as well. 

Limited deviation from these blocks, depending upon the options 
and capabilities of a given compiler, may rarely result in the 
improvement of efficiency of the program, and may also make it 
more understandable. Any deviation should not violate the por
tability of the software; the consequences of which are presented 
in this document. 

Proper composition of the basic building blocks is shown in Fig. 
1.6. If each basic building block can be considered as the 
lowest form of a module, proper composition of the blocks should 
lead to an acceptable format. Improper use of the modules can be 
seen in Fig. 1.7. In the first case there are two entry points 
to the segment. From the description of the modular construc
tion, it is known that there should be only one entry and one 
exit. The second case is improper because of multiple exits. 
The third case is improper because of the improper entry to the 
module. In the top-down approach, it is recommended to enter at 
the top, and exit at the bottom. The fourth case looks improper 
because of the relative complexity of the flowchart. This module 
should be decomposed into two modules. ., 

1.6 PROPERTIES OF A WELL-STRUCTURED PROGRAM 
1. The program is divided into a set of modules arranged in 
a hierarchy defining their logical and execution-time 
relationships. 

2. The execution flow from module to module is restricted 

10 



BASIC BUILDING BLOCKS OF STRUCTURED PROGRAMMING 

1. SEQUENCE 

2. SELECTION 
TRUE 

FALSE 

3. ITERATION 

•I.._ _ ___. 

TRUE 

Fig. 1.5 Basic "Building Blocks" of Structured 
Prograrruning 
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PROPER PROGRAM SEGMENTS 

Fig. 1.6 Integration of Basic Building Blocks 
(Modular Construction) 
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PROPER PROGRAM SEGMENTS (CONT.) 

Fig. 1.6 (Cont.) Integration of Basic Building Blocks 
(Modular Construction) 

It1PROPER PROGRAM SEGMENTS 

<TWO ENTRY POINTS TO THE "MODULE11
) 

Fig. 1.7 Improper "Integration" of Basic Building Blocks 
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IMPROPER PROGRAM SEGMENTS 

0 CTWO EXIT POINTS FROt1 THE MODULE.) 

IMPROPER PROGRAM SEGMENTS 

C11MIDPOINT11 ENTRY TO THE MODULE.) 

Fig. 1.7 (Cont.) Improper "Integration" of Basic Building 
Blocks 
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IMPROPER PROGRAM SEGMENTS 
(SHOULD BE DECOMPOSED TO T~O MODULES.) <!) 

Fig. 1.7 (Cont.) Improper "Integration•• of Basic Building 
Blocks 

to a simple, easily understood scheme in which control must 
enter the module at its entry point, must leave the module 
from its exit point, and must always be passed back to the 
invoking module. 

3. Module construction is standardized according to tradi
tional modularization rules, and legal program control con
structs are restricted concatenation, selection, repetition, 
and a "well-behaved" br~nch. 

4. Each program variable serves only one program purpose, 
and the scope of a variable (i.e. the set of modules in 
which the variable is accessed) is apparent and limited. 

5. Error processing follows normal control flow except in 
the case of unrecoverable errors where normal processing 
cannot continue. 

15 



6. Documentation is required in the source code to intro
duce each module by explaining its function, its data 
requirements, and its invocation relationship to other 
modules in the program. 

1.7 STRUCTURED PROGRAMMING CODING STANDARDS 
1. The program is divided into independent pieces called 
modules. 

2. A module is a self-contained unit whose code is physi
cally and logically separate from the code of any other 
module in the program. 

a) A module represents one unique logical program func
tion. 

b) The size of a module should not exceed 100 instruc
tions. 

c) A module is bounded by one entry point and one exit 
point. During the execution, the program control can 
enter a module only at its entry point and can leave 
the module only from its exit point. 

3. Modules are related to one another in a hierarchical 
control structure. Each level in the control structure rep
resents a more detailed functiona~ description of what the 
program does. It also dictates the transfer of program con
trol from module to module during execution. 

Level-l (top of the hierarchy) contains one and only one 
program module. Logically, this module represents the over
all program structure and contains the "mainline" code for 
the program. Program execution always begins with this 
module. 

Level-2 contains modules that are performed to execute the 
overall program function. The modules at level-2 can be ex
ecuted only by transferring control to them from the main
line module. Execution cannot cause control to "fall" into 
a module. 

Level-3 modules represent functions required to further 
define the functions at level-2. Control is transferred to 
level-3 modules only from level-2 modules. This scheme con
tinues from level to level down the entire hierarchical 
structure. 

Program control is always transferred from a module at one 
level to a module.at the next successively lower level (e.g. 

16 



from level-3 to level-4). When a module completes executing 
its code, control is always returned to the module that 
"called" it. 

No loops are allowed in the control structure. This means 
that a module cannot call itself, nor can it call any module 
that has called it. 

4. Each module should begin with a comment block explaining 
the function that the module performs, the values passed to 
the module, the values returned, the modules that called 
this module, and the modules that this module calls. 

5. Comments embedded in the module code should be separated 
from instructions by one blank line. 

6. All comments should be meaningful (e.g. a meaningful 
comment does not state that this is an add instruction). 

7. Avoid unnecessary labels; do not use labels as comments. 

8. All variable and module names should be meaningful. 
Module names should suggest the logical function they per
form (e.g. INVERT) and variable names should suggest their 
purpose in the program (e.g. SHEAR or V). 

9. Names of variables that belong to the same table or that 
are local (i.e. used only in one module) should begin with 
the same prefix. (Editorial comments: This rule is highly 
desirable, idealistic, but quite impractical. May clash 
with #8 above!!!) 

10. The only allowable control constructs are concatenatio~, 
selection, repetition, and branch. (Editorial comment: 
This rule, as it is worded, is too rigid and clashes with 
the current programming practice of the professionals.) 

11. At most, one instruction is coded on a line. If an in
struction requires more than one line, successive lines are 
indented. 

12. IF-statements should not be nested more than three 
levels. (Editorial comment: This rule could be considered 
as a target goal. For some cases it is impractical!!!) 

13. The scope of a GOTO statement (branch instruction) 
should be limited to the module in which it occurs. This 
means that the GOTO should not be used to transfer control 
from one module to another; it is used only to branch to the 
entry point or the exit point off the module in which it oc
curs. 

17 



14. NONSTANDARD LANGUAGE FEATURES SHOULD NOT BE USED AS A 
GENERAL RULE. (This is a cardinal rule of programming.) 

15 • OBSCURE (TRICK) CODE SHOULD BE AVOIDED. 

18 



2. SOFTWARE DEBUGGING 

The debugging, or "reprogramming(!)," of any given software has 
negative connotations to the uninitiated, however, this activity 
is carried out almost perpetually if the "computing environment" 
is not static. For example, if a given software is not fully in
dependent of the operating system, the change in the operating 
system~ require the recompilation of the program. Even though 
the program might have been executing satisfactorily prior to 
this change in operating system, after the change the program may 
or may not give the correct answers. If the program had been 
coded robustly and followed all the guidelines discussed in CE 
309, then at worst only a recompilation would have been required. 
However, since most "completed" programs are far from being 
ideal, prior to the recompilation modifications are usually 
needed. The changes in the program that need to be undertaken 
can be labeled as "debugging" under the new environment. 

If a program which was executing fully satisfactorily in a given 
computer configuration has to be moved to another computer sys
tem, then changes to make the program run again may be in
evitable. If the program was fully portable (an extremely 
elusive goal to attain) than the source code should not require 
any modifications prior to recompilation in the new environment. 
Sometimes changes in the hardware and software environment neces
sitate changes in the program. If, for example, a program was 
making use of the plotting devices, an upgrading of the plotting 
device may require substantial changes in the parts of the 
program using the plotting devices. Numerous possible permuta
tions on the compiler, operating system, peripheral devices, etc. 
may lead to the need to "debug" the program. 

The ''status" of the program may require different approaches in 
debugging: 

(a) You may have been "given," or more likely "leased," 
only the "load module" of the program. You may not have any 
access in any form or fashion to the 'source code. Under 
these circumstances, you need to contact the "software 
vendor" for a new load module that will execute under the 
new computing environment. This action may require "funds" 
for the transaction, in addition to the regular monthly or 
annual outlays. Extensive testing (?) of the new version of 
the program is supposed to have been completed by the 
software vendor. However, select testing of the new load 
module of the program by the principal users is in order. 
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The cost of these tests would be borne by the users. 
(Example: ANSYS in the Civil Engineering Department's CAB
Laboratory, NASTRAN at LUCC.) 

(b) Access to the source code may be restricted. Even 
though you may be the major user of the package you may not 
have permission to have access to the source code, even to 
the listing of the source code. Changes to the source code 
may be undertaken by the "systems programmers," who may be 
totally unfamiliar with the "subject area" to which the 
program is applicable. In a situation like this, when the 
need for the change to the source code is made and if the 
program has recompiled, you need to test the new version 
with as many "case studies" as possible. The cost of these 
tests should be borne by the systems group and/or the 
developers. If the software developers are not contrac
tually required to make the changes, then the changes may 
not be implemented up until the first "opportune period(?)." 
(Example: Programs FLMXPK, SAP4CNK, SPLT, and ADINA at 
LUCC.) 

(c) If you have full access to the source code, and if you 
are responsible for the maintenance of the software, the 
changes in the code will have to be undertaken by you. At 
the completion of the reprogramming activity, extensive 
tests need to be conducted by you to confirm the reliability 
of the results. The cost of these tests may be borne by the 
computer center only if the computer system change is sub
stantial and during the interim period you are "invited" to 
test the new configuration. This is a short duration window 
of opportunity, and the tests can be conducted only at 
select times and select dates. Other than this possibility, 
the cost of the tests is usually borne by the software 
developer. 

2.1 COMPILATION AND EXECUTION .ERRORS 
In order to initiate any debugging you have to have access to the 
source code. If this is not the case, the only realistic action 
you can take is to inform the software vendor/developer of the 
execution error you have encountered, and seek assistance. 

If you have access to the source code and ~f you have to initiate 
debugging operations, the following paragraphs should be noted, 
and implemented. 

2.1.1 Compilation Errors: 
In debugging during the compilation all fatal errors must be 
eliminated. Various compilers generate informative messages for 
non-fatal errors. A non-fatal error corresponds to an 
"operation," statement, usage, etc., that is not fully acceptable 
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to the compiler, and results in the compiler making an 
"assumption" in the interpretation of the "code.'' Even though 
most non-fatal errors may not have any detrimental effect on the 
results of your program, all non-fatal errors should be expunged 
through rewriting the source code, and recompiling the program. 
After the successful compilation of the program with linkage, and 
with or without execution, the following checks must be 
performed: 

(a) "Maps" of each module must be carefully examined. The 
reasons for "unused" variables must be determined. This 
could be due to "clerical errors," e.g. typing IO instead of 
IU. Should that be the case, the likelihood of execution 
error arises. All unused and undefined variables must be 
taken care of. 

(b) Any error messages emanating from "linker" and "loader" 
must be checked. Corrective actions must be taken to 
eliminate these messages in the subsequent submissions. 

At the completion of the above activities the program is ready to 
be executed. However, this does not indicate whether the source 
code is correct or not. 

2.1.2 Execution Errors: 
Debugging of the program if execution errors are encountered can 
be trivial, or as in most cases, extremely painful. To isolate 
the execution errors a logical approach, as itemized later in 
this document, can and should be employed. The most qualified 
individuals to identify the source of the execution errors are 
not the experts at any given computing center, but instead are 
the individuals who are intimately familiar with (a) the employed 
solution scheme, (b) the source code in question, and (c) the 
programming language employed. 

2.2 POSSIBLE SOURCES OF ERRORS 
The sources of possible errors in the "source code" could be due 
to almost any predictable or unpredictable reasons and 
"accidents." However, based on past experience software en
gineers have developed "classes of errors" or "error categories." 
Different sources tend to quote diffe~ent causes and class
ifications. The list presented below is taken from the book by 
Martin and McClure. It should be remembered that this is not an 
all-inclusive list, but is merely a general guideline. 
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2.3 ERROR CATEGORIES 
I. Design Error 

1. Missing cases or steps 
2. Inadequate checking/editing 
3. Initialization error 
4. Loop counter error 
5. Misunderstanding of "specifications" 
6. Incorrect algorithm (e.g. math error) 
7. Timing problems 
8. Failure to consider all data types 

II. Coding Error 
1. Misunderstanding of "design" 
2. I/0 format error 
3. Control structure error 
4. Syntax error 
5. Incorrect subroutine usage 
6. Initialization/reinitialization errors 

(e.g. incorrect "flagging") 
7. Indexing/subscripting error 
8. Naming inconsistency 
9. Inadequate checking/editing 

10. Error in parameter passing 
11. Using wrong arithmetic mode 
12. Overflow, underflow, truncation 

III. Clerical Error 
1. "Slip" of pencil (misspelling) 
2. Keypunch/data entry 

IV. Debugging Error 
1. Insufficient or incorrect use of test cases 
2. Negligence 
3. Misinterpretation of error source/debugging results 

V. Testing Error 
1. Inadequate test cases/data 
2. Misinterpretation of test results 
3. Misinterpretation of program specifications 
4. Negligence 

VI. External 
1. Hardware failure 
2. Software reaction to hardware failure 
3. Problems in other systems that interfaced with 

this one 

VII.Specification Error 
1. Incomplete or ambiguous specification 
2. Incorrect problem definition 
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2.4 DEBUGGING GUIDELINES 
Almost any and all debugging activities, especially the ones in
itiated by individuals who do not have a good grasp of software 
engineering, tend to be disjointed. If the individual is under 
constant pressure to debug the program to meet deadlines, the ef
forts may be futile due to the disorganized attack to the bugs. 
To remedy the situation, below you will find some specific 
guidelines that must be observed. This list is taken from Martin 
and McClure's book. 

I. Do not use a random approach to debugging. Begin by 
excluding the unlikely sources of the error. First 
eliminate the simple cases, and then move on to the more 
difficult cases. 

II. Isolate one error at a time. 

III. Employ defensive programming by making program errors 
easy to locate with t.he use of debugging code embedded in 
the program (e.g. printout of selective variable values, 
logic traces, "end-of-program logic" message). After debug
ging is completed, leave the debugging code in the program 
by changing each debugging statement into a nonexecutable 
comment so they are available for future use but do not in
terfere with normal processing. 

IV. Carefully study actual program output, comparing it to 
samples of expected output. Many errors are observable in 
the output listings. 

V. Focus attention on data handled by the program rather 
than solely on program processing logic. Focus on boundary 
and invalid-input conditions when checking for data-related 
errors. C~eck data type, data value ranges, data field 
size, and data value. 

VI. Use the most powerful debugging tools available and a 
variety of debugging methods (e.g. computer-based and non
computer-based) to avoid becoming locked into considering 
only one possibility too prematurely. 

VII. Keep a record of errors detected and corrected, 
noting where the errors occurred in .the program and the 
types of errors that were found, since this information can 
be used to predict where future errors will occur. 

VIII. Measure program complexity. Programs (modules) with 
high complexity have greater propensity for error and will 
probably require more time to detect and correct errors. 
Programs (modules) with high complexity are more likely to 
contain specifications/design type errors, whereas programs 
(modules) with low complexity are more likely .to contain 
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clerical/coding type errors. 

(IX. Use programs artifically seeded with errors to train 
programmers in debugging techniques and then give them im
mediate feedback on all seeded errors, showing them what 
they missed. This is used in "computer center" operations 
as well as in software engineering courses.) 
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3. OPTIMIZATION OF THE FORTRAN 77 SOURCE CODE 

3.1 WHAT IS OPTIMIZATION 
The source code written by the "programmer'' needs to be 
''translated" into a form which will be understandable to the 
hardware. Compilers will perform this operation. The source 
code is operated on by the compiler to generate a new code, i.e. 
program, which is called the "object code,'' or the object module. 
In the generation of the object code the compilers can catch some 
"inefficient'' FORTRAN statements or program segments. If the 
compiler is instructed to do so, the compiler will replace the 
inefficient code by an efficient code. This is optimization. 

The levels of optimization are defined by the extent of 
''replacements" that will be performed. Even the low~st level op
timization, i.e. no optimization, contains limited amount of im
provements. For example, a statement like X=((Y+S.-
3.))**(1./3.) will be modified to X=(Y+2.)**0.333333333333333. 
At higher levels of optimization, the code that needs to be 
modified is not so readily noticeable. 

3.2 OPTIMIZING COMPILERS 
All FORTRAN compilers running on miniframes and mainframes have 
optimization capabilities. Some of th·e microcomputer-based com
pilers have started to have some optimization capabilities. As 
the compilers perform higher and higher levels of optimization 
and develop the corresponding object code, the possibility of 
"generating" an object code that will not exactly do what was 
specified by the source code arises. 

In CDC NOS (Network Operating System) there are three leveis of 
optimization; the highest, OPT=3, can be used with ''caution." 
The new operating system, VE (Virtual Environment), that is being 
developed by CDC, and is currently being tested at LUCC, does not 
have OPT=3. Rather than having an object code of extreme speed, 
which may not be fully reliable, the approach is in the direction 
of the generation of the fastest object code that is fully reli
able. 

3.3 WHY DO WE NEED OPTIMIZATION 
It is known that compilation of a program without optimization 
takes less time than its compilation with optimization. Thus as 
far as the cost of compilation is concerned, compilation without 
optimization is a be~ter choice! However, if the object code 
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generated after the compilation is to be executed it is not pos
sible to make a categorical statement as to which one will be 
less costly. 

If a program is to perform a substantial number of repetitive 
operations, any optimization of these basic operations will sub
stantially reduce the total computational cost. For example, if 
a program is coded to solve a "quadratic equation" once, the time 
savings involved via optimization may not be perceptible, and 
also may not be necessary. 

Assume that a nonlinear finite element analysis of a three
dimensional framed structure is to be conducted. Further assume 
that there are 1,000 beam-column elements with 6-degrees of 
freedom per node. The structure is to be analyzed for 50 load 
steps, and three iterations will be used per load step. Let us 
also assume that the programming strategy employed is rather 
routine, and the stiffness matrix for each element and the global 
stiffness matrix will be reassembled for each iteration cycle of 
each load step. 

If we recall the formula for the computation of the element 
stiffness matrix, i.e. [B]T[D][B], we will note that there are 
two matrix multiplications per element. If "x-nanoseconds" can 
be shaven of by using optimizaion from each matrix multiplica
tion, than the total savings will be: (x-nanoseconds)*(2 matrix 
multiplications per element)*(1,000 elements)*(three iteration 
cycles)*(50 load steps)= 300,000 * "x-nanoseconds.'' Thus if a 
set of statements is to be executed too many times, any improve
ment on its performance will have a noticeable positive effect on 
the total cost of the job. 

For the type of program and problem described above, it will not 
be unrealistic to say that "unoptimized compilation" will take 
''1-unit of time," and the execution will require 100-units of 
time. If optimization is to be used, the optimization time may 
very well be 1.5-2 units of time. The execution time may very 
well be 70-units of time. Thus the unoptimized run may cost 
$101, and the optimized run will be $72. 

If the execution of the prograa is far longer than its 
compilation, this program is a candidate for some form 
of optimization. 

3.4 GUIDELINES FOR OPTIMIZATION 
The following is a list of guidelines to assist in the decision 
making process on whether the optimization should be performed or 
not. 

(I) The optimization is performed during the compilation 
phase. If the compiler is instructed to perform higher 

26 



levels of optimization the amount of time required for the 
compilation, which also includes the optimization, goes up. 

(II) During the initial debugging phase of program develop
ment the use of optimization may not be prudent. This is 
especially the case if you are still obtaining compilation 
error messages. 

(III) During the later parts of the debugging, where you may 
be getting execution errors, the optimization could be used 
with the following proviso. If the time required for the 
execution of the program is substantially longer than the 
time required to compile the program, some level of op
timization may be justifiable. If the additional time 
required for the optimization is less than the execution 
time, than the optimization is a viable alternative. 

(IV) During the final testing of a program with different 
data sets the decision regarding the different levels of op
timization will be similar to the above argument. 

(V) When the program is "fully debugged(!!!)" and ready to 
be installed in object code form, then the program should be 
optimized to the most "reliable" level. 

3.5 LEVELS OF OPTIMIZATION IN CDC NOS FORTRAN77 COMPILER 
3.5.1 OPT=O Compilation 
This mode corresponds to ''no-optimization," i.e. default value. 
During compilation constant subexpressions and redundant instruc
tions are removed. These checks are made at the "statement
level." For example, X=((Y+5.-3.))**(1./3.) is modified to 
X=(Y+2.)**0.333333333333333. 

It should be noted 
this level could have 
program. 

3.5.2 OPT=l Compilation 

that most of the optimization performed at 
been done by "careful" coding of the 

In addition to the OPT=O level optimization, the following are 
performed. 

(1) Redundant instructions and expressions within a sequence 
of statements are eliminated. 

(2) PERT critical path scheduling is done to utilize the 
multiple functional units efficiently. 

(3) Subscript calculations are simplified, and values of 
simple integer variables are stored in machine registers 
throughout the loop execution, for innermost loops satisfy-
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ing all of the following conditions: 

a) Having no entries other than by normal entry at the 
beginning of the loop. 

b) Having no exits other than by normal termination at 
the end of the loop. 

c) Having no external references (user function 
references or subroutine calls; input/output, STOP, or 
PAUSE statement; or intrinsic function references) in 
the loop. 

d) Having no 
backward to 
loop. 

IF or GOTO statement in the loop branching 
a statement appearing previously in the 

It should be noted that (a) above could have been done by careful 
programming. However, (b) is not normally considered by the 
programmers. Thus, the optimization by the compiler would be far 
more efficient than the amateur attempts. In order to do (c), 
you need to program in assembler language, thus optimization by 
the compiler is a highly desirable alternative. 

It can be seen that OPT=O was done at statement level; whereas, 
OPT=l is carried out on program segments. 

3.5.3 OPT=3 Compilation 
In OPT=3 compilation mode, the compil'er performs certain op
timizations which are POTENTIALLY UNSAFE. The following op
timizations are performed in addition to those provided by OPT=2. 

(1) In small loops, indexed array references are prefetched 
unconditionally WITHOUT ANY SAFETY CHECKS. 

(2) When an intrinsic function is referenced, the compiler 
assumes that the contents of certain "B-registers" are 
preserved for use following the function processing. 

In a loop, the registers available for assignment are determined 
by presence or absence of external references. External 
references are user function references and subroutine calls, 
input/output statements, and intrinsic functions (SIN, COS, SQRT, 
EXP, etc.). 

When OPT=3 is not selected, the compiler assumes that any exter
nal reference modifies all registers; therefore, it does not ex
pect any register contents to be preserved across function calls. 

28 



If a math library other than FORTRAN Common Library is used in an 
installation to supply intrinsic functions, the B-Register por
tion of the OPT=3 option must be deactivated by an installation 
option in order to ensure correct object code. 

PAST EXPERIENCE USING "FULL OPTIMIZATION," I .E. OPT=3 
FOR THE CURRENT CONFIGURATION, IN CYBER SYSTEMS GIVES 
EXCELLENT RESULTS WHEN THE OPTIMIZATION WORKS. THERE 
ARE CASES rfHERE THE OPTIMIZED OBJECT CODE DID NOT COR
RESPOND TO THE "FUNCTIONAL REQUIREMENTS" OF THE SOURCE 
CODE. THUS, IT IS. RECOHHENDED THAT OPT=3 SHOULD BE USED 
WITH GREAT CARE AND CAUTION. 

3.6 PROGRAMMING STRATEGIES FOR OPTIMAL SOURCE CODE 
The recommendations contained in this section are known to im
prove the execution time required of the programs written in 
FORTRAN 77 running under NOS. Some of the recommendations were 
also tested in select minicomputers, and it was observed that 
there was a noticeable imp~ovement in the performance. 

If the following guidelines are observed in the development of 
the FORTRAN 77 source code, the program will run faster. 

(1) Since the arrays are stored in columnar mode, DO-loops 
(including implied DO-loops in input/output lists) which 
manipulate multidimensional arrays should be nested so that 
the range of the DO-loop indexing over the first subscript 
is executed first. Implied DO-loop increments should be 
"one" whenever possible. 

Example: Poor practice: 
DIMENSION A(20,30,40), B(20,30,40) .................................. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
DO 10 I=1,20 
DO 10 J=1,30 
DO 10 K=1,40 

10 A(I,J,K)=B(I,J,K) 

Good practice: 
DIMENSION A(20,30,40), B(20,30,40) ................................. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
DO 10 K=1,40 
DO 10 J:1,30 
DO 10 I=1,20 

10 A(I,J,K)=B(I,J,K) 
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(2) The number of different variable names in the subscript 
expressions should be minimized. For example: 

X:A(I+l,I-1) + A(I-l,I+l) 

is more efficient than: 

IPl=I+l 
IMl=I-1 
X=A(IPl,IMl)+A(IMl,IPl) 

NOTE: It is also known that if the subscript expres
sions are overly complicated, than it may also cor
respond to an undesirable situation. Caution should be 
used in the interpretation of the above guideline. 

(3) The use of EQUIVALENCE statements should be avoided. 

(4) COMMON blocks should not be used as a scratch storage 
area for simple variables. 

NOTE: The software packages that were initially 
developed in the early seventies, e.g. FLMXPK, had 
scratch variables for each subroutine in a LABELED COM
MON block. This permitted the saving of a dozen or so 
address locations per subroutine. This approach is 
redundant in today's programming approach. 

(5) Program logic should be kept simple and straightforward. 

NOTE: The basic premise of structured top-down program
ming practice requires that "spaghetti-like logic" 
shall not be employed. The execution of the program, 
or the subroutines, should start at the top, and 
proceed until the end of this program unit; during 
which time the control should not be transferred to an 
earlier part in the program. A program that is being 
written from scratch can follow the guideline. 
However, most of the earlier vintage programs, espe
cially those that have been '"enhanced" at various 
times, tend to have a spaghetti-like logic. 

(6) Program unit, i.e. the main program or a subroutine, 
length should be less than about 600 executable statements. 

NOTE-I: However desirable, the above guideline is 
sometimes impractical. The Wegmueller-Kostem plate 
bending finite element has 24 degrees of freedom. The 
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element stiffness matrix can be populated in one master 
subroutine. In very crude terms 576 statements, ex
clusive of any other statement to control the logic, 
are needed to populate the matrix. Thus there are some 
"algorithms'' that will inevitably need more than 600 
executable statements to perform the assigned mission. 

NOTE-II: The system-programmers or certain virtual 
memory minicomputers recommend that after full debug
ging of the program, the subroutines should be 
eliminated, and the whole program should be a 
"continuous string." This type of an argument is 
highly impractical; however, it indicates that the op
timal program for one computer with a given operating 
system may not, actually will not, be optimal for 
another configuration. Programs need to be "tuned" for 
different configurations. 

(7) The use of dummy arguments (formal parameters) should be 
avoided if possible. 

NOTE: This guideline somehow conflicts with the sug
gestions to use variable dimensions, where applicable. 
The rule can be slightly altered: "Keep the number of 
formal parameters at a minimum." 

(8) The variable dimensions should be avoided if possible; 
COMMON or local variables should be used instead. 

NOTE: The exclusion of variable dimensions will create 
havoc in programming. This guideline should be dis
carded for the sake of "convenience." 
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4. EFFICIENCY OF SOFTWARE 

Efficiency is defined as the extent to which a program performs 
its intended functions without wasting machine resources such as 
memory, mass storage ut~lization, channel capacity, and execution 
time. Efficiency is important but should not be carried to an 
extreme. Many programmers are unnecessarily concerned with 
machine efficiency considerations. This obsession with tuning 
programs to achieve some optimal level of efficiency by playing 
off time and space requirements is a questionable investment and 
expense. 

The issue above pertaining to dependency, or heavy dependency, on 
the specific options of the operating system and or compiler 
needs further elaboration. As will be discussed later in this 
document, it is highly desirable that the program must be as 
portable as possible. If the program is heavily dependent on an 
existing system, then to move this program to another computer 
facility will be a very painful proposition. Even much worse, 
for a given computer configuration the vendor will periodically 
"update" the compiler and the operating system. If each update 
requires rewriting parts of the program, i.e. debugging, then 
this program's efficency per run may be good, but over the life 
of the use of the program it has been an inefficient one because 
of the continuous investments of time required. 

The second issue that requires careful addresing is the pos
sibility of using the OPTIMIZING COMPILER as a crutch for ineffi
cient and sloppy programs. The programmer should try to code the 
program as efficiently as possible, without being to dependent on 
the one-of-a-kind features of the operating system and/or com
piler. The optimization of this code will enhance its perfor
mance. 

4.1 EFFICIENCY CHECKLIST 
1. Is the program modularized and well-structured? 

2. Does the program have a high degree of locality - that 
is, does the program use only a small subset of its pages at 
any point during execution - to aid efficient use of virtual 
memory? 

3. Are unused labels and expressions eliminated to take 
full advantage of compiler optimization? 
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4. Are exception routines and error-handling routines iso
lated in separate modules? 

5. Was the program compiled with the use of an optimizing 
compiler? 

6. Was as much initialization (e.g., initializing arrays, 
variables, storage allocations) as possible done at compila
tion time? 

7. Is all invariant code, that is, code which does not need 
to be processed within a loop, processed outside the loop? 

8. Are fast mathematical operations substituted for slower 
ones? (For example, I+I is faster than 2*I.) 

9. Is integer arithmetic instead of floating-point arith
metic used when possible? 

10. Are mixed data types in arithmetic or logical operations 
avoided when possible to eliminate unnecessary conversions? 

11. Are decimal points of operands used in arithmetic 
aligned when possible? 

12. Are program variables aligned in storage? 

13. Does the program avoid nonstandard subroutine or func
tion calls? 

14. In a n-way branch construct, ·is the most likely condi
tion to be .TRUE. tested first? 

15. In a complex logical condition, 
.TRUE. expression tested first? 

is the most likely 

16. Are the most efficient data types used for subscripts? 

17. Are input/output files blocked efficiently? 
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5. RELIABILITY OF SOFTWARE 

Reliability is defined as the extent to which a program correctly 
performs its functions in a manner intended by the users as in
terpreted by its designers. Total reliability ·remains a goal 
rather than an actuality in virtually all "real-world" software. 
There currently exist no means for guaranteeing 100% reliability 
or for measuring exactly how reliable a program is. 

5.1 RELIABILITY CHECKLIST 

1. Does the program contain checks for potentially undefined 
arithmetic operations (e.g., division by zero)? 

2. Are loop termination and multiple transfer index 
parameter ranges tested before they are used? 

3. Are subscript ranges tested before they are used? 

4. Are error recovery and restart procedures included? 

5. Are numerical methods sufficiently accurate? 

6. Are input data validated? 

7. Are test results satisfactory (i.e., do actual output 
results correspond exactly to expected results)? 

8. Do tests show that most execution paths have been exer
cised during testing? 

9. Do tests concentrate on the most complex modules and most 
complex module interfaces? 

10. Do tests cover the normal, 
processing cases? 

extpeme, and exceptional 

11. Was the program tested with real as well as contrived 
data? 

12. Does the program make use of standard library routines 
rather than develop its own code to perform co.mmonly used 
functions? 
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6. UNDERSTANDABILITY OF COMPUTER SOFTWARE 

Understandability is defined as the ease with which we can under
stand the function of a program and how it achieves this function 
by reading the program source code and its associated documenta
tion. 

A simple rule for the understandability of the software is 90-10 
rule, which was suggested by Sheiderman (Human Factors in Com
puter and Information Systems, by B. Sheiderman, Winthrop Pub
lishers, Cambridge, MA, 1980): 

A competent programmer should be able 
reconstruct fro• aeaory 90% of tbe 
minutes of examining the source code. 

to functionally 
•odule after 10 

The following checklist can be used to assess the 
''understandability" of any given source code. Detailed discus
sions of the entries can be found in Characteristics of Software 
Quality, by B. Boehm, J. Brown, H. Kaspar, M. Lipow, J. MacLeod 
and M. Menit, TRW/North Holland Publishing Co., 1978. The 
greater the number of ''yes" answers, the greater the understand
ability of the software. 

6.1 UNDERSTANDABILITY CHECKLIST 

6.1.1 Structuredness 

1. Is the program modularized and well-structured? 

6.1.2 Documentation 

2. Is the program documented? Minimal documentation for a 
well-structured program requires a comment block for each 
module, subroutine, or subprogram that explains: 

(a) What the module does in one or two brief sentences. 

(b) A list of program variables whose values may be 
modified in this module. 

(c) A list of modules that invoke this module. 
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(d) A list of modules that this module invokes. 

3. Is 
program? 

other useful commentary material included in this 
This would include: 

(a) Inputs and outputs 

(b) Accuracy checks 

(c) Limitations and restrictions 

(d) Assumptions 

(e) Error recovery procedures for all foreseeable error 
exist 

(f) Modification history 

(g) Date written and date last changed 

6.1.3 Consistency 

4. Is a consistent indentation and spacing style used 
throughout the program? 

5. Is there at most one executable statement per line of 
code? 

6. Are all variable names and procedure names unique, 
descriptive, and in compliance with company standards? 

7. Does each variable and each procedure have one and only 
one unique name in the program? 

8. Is each variable used to represent one and only one 
quantity, and is each procedure used to represent one and 
only one logical function? 

9. Is the program a true representation of the design; that 
is, is the integrity of the design p~eserved throughout the 
entire program? 

(a) Does the program neither add to nor subtract from 
the design algorithm? 

(b) Is the design structure exactly and explicitly rep
resented in the code? 

10. Are all elements of an array/table functionally related? 
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11. Are parentheses used to clarify the evaluation order of 
complex arithmetic and logical expressions? 

6.1.4 Completeness 

12. Are cross-reference listings of variable names and a map 
of calling and called subroutines supplied? 

13. Are all external references resolvable and all 
input/output descriptions available? 

14. Does the program contain all referenced subprograms not 
available in the usual system library? 

15. Are all unusual termination codes described? 

16. Are error recovery procedures included? 

17. Are error messages descriptive and clearly displayed? 

6.1.5 Conciseness 

18. Is all code reachable? 

19. Are all variables necessary? 

20. Is redundant 
modules/subroutines? 

code avoided 

21. Is there a transfer to all labels? 

by creating common 

22. Is division of the program into an excessive number of 
modules, overlays, functions, O+ subroutines avoided? 

23. Are expressions factored to avoid unnecessary repetition 
of common subexpressions? 

24. Does the program avoid performing complementary opera
tions on the same variable(s) such that removal of these 
operations leaves the program unchanged? 

25. Does the program avoid poorly understood and nonstandard 
language features? 

6.2 COMMENTS ON THE MODULE SIZE 
There have been a number of suggestions regarding how big a 
module (sometimes translated as ''subprogram") is ''tolerable": 
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(a) The old rule of thumb was that a routine should not be 
larger than the number of cards that can be gripped in one 
hand between the thumb and the index-finger. (Highly 
unscientific and depends on your "anatomy.") 

(b) CDC: Should not exceed 100 lines (FORTRAN77 Reference 
Manual). 

(c) IBM: Should not exceed 50 lines (B. Boehm, "Seven Basic 
Principles of Software Engineering," in Infotech State-of
the-Art Reports: Software Engineering Techniques, Infotech 
International, Maidenhead, England, 1977). 

(d) Practical suggestions: The length of the source code 
should not exceed one page of printed lines. 

(e) A counter-observation: Wegmuller-Kostem plate bending 
finite element has 24-degrees of freedom. The terms of the 
element stiffness matrix can be defined in one subprogram. 
Just the listing of elements requires 576 lines. Additional 
lines of the code ar~ essential for dimensioning, populating 
the elements, etc. If this subroutine is broken into a 
smaller subroutine, it will adversely affect its 
"readability." Thus there are some operations that should 
not be broken down merely for the size of the module. 
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7. MODIFIABILITY OF SOFTWARE 

Modifiability is defined as the ease with which a program can be 
changed. A programmer has a low probability of success when 
modifying a program. If the modification involves fewer than 10 
program instructions, the probability of correctly changing the 
program in the first attempt is approximately 50%; but if the 
modifications involve 50 program instructions, the probability 
drops to 20% (J. Munson, "Software Maintainability: A Practical 
Concern for Life-Cycle Costs," Proceedings of IEEE 2nd Interna
tional Computer Software and Application Conference, Chicago, 
1978). 

5.1 MODIFIABILITY CHECKLIST 

1. ~s the program modular and well-structured? 

2. Is the program understandable? 

3. Does the program avoid using literal constants in arith
metic expressions, logical expressions, size of 
tables/arrays, and input/output device designators? 

4. Is there additional memory capacity available to support 
program extensions? 

5. Is information provided to evaluate the impact of change 
and to identify which portions of the program must be 
modified to accommodate the change? 

6. Is redundant code avoided by creating common 
modules/subroutines? 

7. Does the program use standard library routines to 
provide commonly used functions? 

8. Does the program possess the quality of generality in 
terms of its ability to: 

(a) Execute on different hardware configurations? 

(b) Operate on different input/output formats? 

(c) Function in subset mode performing a selected set 
of features? 
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(d) Operate with different data structures or algo
rithms depending on resource availability? 

9. Does the program possess the quality of flexibility in 
terms of its ability to: 

(a) Isolate specialized functions that •are likely to 
change in separate modules? 

(b) Provide module interfaces that are insensitive to 
expected changes in individual functions? 

(c) Identify a subset of the system that can be made 
operational as a part of contingency planning for a 
smaller computer? 

(d) Permit each module function to perform one unique 
function? 

(e) Define module intercommunication based on the func
tion the modules perform, not upon how the modules work 
internally? 

10. Is the use of each variable localized as much as 
possible? 
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8. PORTABILITY OF SOFTWARE 

Portability is defined as the extent to which a program can be 
easily and effectively operated in a variety of computing en
vironments. 

The criticality of this issue can not be overstated. For ex
ample, a program may be developed, or an existing program may be 
modified, within the scope of a research project. These ac
tivities may be carried out in CYBER 730. The program may then 
have to be "installed" in a virtual 32-bit machine. Or, con
versely, a program may have to migrate from a virtual 32-bit 
machine to CYBER. Major modifications may have to be undertaken. 
In the case of a major program, say about 50K executable state
ments, in FORTRAN-IV from CYBER environment to IBM-3084 FORTRAN 
VM corresponds to many ~an-months of effort, if not in excess of 
a man-year effort. CYBER has a relatively straightforward job 
control language (JCL), where very little, if any, references to 
the source code and files· need to be made at JCL. IBM 3084 
FORTRAN VM has a highly complex JCL environment, where extensive 
referencing to the source code files has to be made. 

Regarding the portability, the following ''experience" should be 
remembered. A finite element code for DG MV/10000 with AOS/VS 
operating system was brought in. The developers indicated there 
was no DG-AOS/VS version of this program, however, an IBM 4341 
version did exist. Both the DG and IBM versions were based on 
32-bit virtual configuration, with very similar FORTRAN77 com
pilers. It was suggested that with slight changes the IBM ver
sion should run on DG. In the effort to compile the program, the 
DG compiler generated fatal error messages about three times the 
length of the source code. The project was abandoned! 

8.1 PORTABILITY CHECKLIST 

1. Is the program written in ;high-level, machine-
independent langua.ge? 

2. Is the program written in a widely used standardized 
programming language, and does the program use only a stand
ard version and features of that language? 

3. Does the program use only standard, universally avail
able library functions and subroutines? 
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4. Does the program use operating system functions mini-
mally or not at all? 

5. Are program computations independent of word size for 
achievement of required precision or memory-size 
restrictions? 

6. Does the program-initialize memory prior to execution? 

7. Does the program position input/output devices prior to 
execution? 

8. Does the program isolate and document machine-dependent 
statements? 

9. Is the program structured to allow phased (overlay) 
operation on a smaller computer?' 

10. Has dependency on internal bit representation of al
phanumeric or special characters been avoided or documented 
in the program? 

8.2 GENERAL COMMENTS 
The literature on conversion of software from FORTRAN-IV to 
FORTRAN77 is limited. The publications by hardware and software 
vendors tend to lack specificity. One of the few "general" books 
that can be referred to is by Ingemar Dahlstrand, Software Por
tability and Standards, John Wiley and Sons, 1984. 

Canned automated conversion programs tend to follow Kostem's 95-5 
rule; that is, the program will convert 95% of FORTRAN-IV state
ments that are unacceptable in FORTRAN77. The remaining 5% con
version, which will have to be done "manually," would require 95% 
of the total conversion effort. 
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9. TESTABILITY OF SOFTWARE 

Testability is defined as the ease with which program correctness 
can be demonstrated. Thoroughness of testing depends on a care
ful selection of test cases and is guided by the following rules: 

1. Every program instruction and every path should be ex
ecuted at least once. 

2. The more heavily used parts of the program should be 
tested more thoroughly. 

3. All modules should be tested individually before they are 
combined. Then the paths and intersections between the 
modules sh~uld be tested. 

4. Testing should proceed from the simplest to the most com
plex test cases; that is, tests involving fewer loops and 
conditions should be performed before tests involving more 
complicated control constructs and more decisions. 

5. Testing of program should include normal processing 
cases, extremes, and exceptions. 

9.1 TESTABILITY CHECKLIST 

1. Is the program modularized and well-structured? 

2. Is the program understandable? 

3. Is the program reliable? 

4. Can the program display optional intermediate results? 

5. Is program output identified in a clear, descriptive 
manner? 

6. Can the program display all inputs upon request? 

7. Does the program contain capability for tracing and dis
playing logical flow of control? 

8. Does the program contain a checkpoint-restart capability? 

9. Does the program provide for display of descriptive error 
messages? 
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10. USABILITY OF SOFTWARE 

Regardless of the high degree of accuracy, efficiency, ease of 
maintenance, etc. of any given software package, the single most 
critical attribute of the software is its "usability." If, in 
order to use the software, the user has to master too many sub
ject areas or be cognizant of many rules regarding the use of the 
program, than regardless of the potential of the software its use 
may either be limited, or if the users are required to use it, 
then the efficient use of the program can not be attained. 

In the extreme, it is stated that any given software should not 
have a users manual(!!!). The program should prompt the user for 
input data stream, and for the interpretation of the results. 
For example, the manuals of the finite element program ANSYS take 
a number of three ring binders. The program also contains an on
line "manual" capability. However, due to the abbreviated na-. 
ture of the on-line manuals, the complexity of the subject matter 
dictates the use of the hard-copy manuals. The on-line manual 
capability is employed by the user during the "session" to check 
the key points and salient details only. Thus, so far for com
plicated programs, e.g. nonlinear finite element analysis, 
''manual-less" programs, espoused by the computer scientists and 
artificial intelligence experts, have not materialized as yet. 

The ''cost" associated with the usability of the software may be 
the single most important factor in the use of the computer in 
any given process. In the Lientz-Swanson survey of over 500 
data-processing departments, almost 50% of all software main
tenance work was attributed to user requests, while less than 20% 
was attributed to software errors (Software Maintenance Manage
ment, by B. Lientz and E. Swanson, Addison-Wesley Publishing, 
Reading, MA, 1980). 

10.1 USABILITY CHECKLIST 
(Based on "User-Perceived Quality 
Dzida et al., Proceedings of 3rd 
Software Engineering, May 1975). 

of Interactive Systems," by W. 
International Conference on 

1. Is the program self-descriptive from the user 
perspective? 

(a) 
what 

Are the explanations of how the program works and 
the program does available in different levels of 
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detail with examples included? 

(b) Is the HELP feature pertinent to any dialogue 
situation included? 

(c) Is a correct, complete explanation of each command 
and/or operating mode available on request? 

(d) Can the user become thoroughly acquainted with the 
program usage without human assistance? 

(e) Is current program status information readily 
available on request? 

2. Does the program provide the user with a satisfying and 
appropriate degree of control over processing? 

(a) Does the program permit interruptions of a task to 
start or resume another task when operating in interac
tive mode? 

(b) Does the program permit process canceling without 
detrimental or unexpected side effects? 

(c) Does the program allow the user to make background 
processes visible? 

(d) Does the program have a command language that is 
easy to understand and allows clustering of commands to 
build "macros?" 

(e) Does the program provide detailed prompting when 
requested to help the user find his way through the 
system? 

(f) Does the program provide understandable, non-
threatening error messages? 

3. Is the program easy to learn to use? 

(a) Is the program usable without special data 
processing knowledge? 

(b) Are input formats, requirements, and restrictions 
completely and clearly explained? 

(c) Is user input supported by a menu technique in in
teractive systems? 

(d) Does the program offer error messages with correc
tion hints? 
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(e) For interactive systems, are manuals "on-line?" 
For batch systems, are manuals readily available? 

(f) Are manuals written using user terminology? 

4. Does the program make use of a data management system 
that automatically performs clerical/housekeeping activities 
and manages formatting, addressing, and memory organization? 

5. Does the program behave consistently in a manner that 
corresponds to use~ expectations? 

(a) Does the program have a syntactically homogeneous 
language and error message format? 

(b) Does the program behave similarly in similar 
situations by minimizing variances in response times? 

6. Is the program fault-tolerant? 

(a) Can the prqgram tolerate typical typing errors? 

(b) Can the program accept reduced input when actions 
are to be repeated? 

(c) Can command be abbreviated? 

(d) Does the program validate input data? 

7. Is the program flexible? 

(a) Does the program allow for freeform input? 

(b) Does the program provide for repeated use without 
the need for redundant specifications of input values? 

(c) Are variety of output options available to the 
user? 

(d) Does the program provide for omission of unneces
sary inputs, computations, and output for optional 
modes of operation? 

(e) Does the program allow the user to extend the com
mand language? 

(f) Is the program portable? · 

(g) Does the program allow the user to define his own 
set of functions and features? 

(h) Can the program be seen in a subset mode? 
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(i) Does the program allow the experienced user to 
work with a faster version, allowing abbreviated com
mands, default values, and so on, and inexperienced 
users to work with a slower version, providing a help 
command, monitoring capabilities, and so on? 
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11. OVERLAYING 

11.1 NEED FOR OVERLAYING 
The physical size of the central memory of any given computer is 
not unlimited. As shown in Fig. 11.1, part, if not most, of the 
physical space of the central core will be taken up by the 
operating system, and many other resident "routines and files." 
The indicated available space is what the program, including the 
DIMENSIONED ARRAYS, can utilize. If the total central core 
requirement of the program is less than the available space, than 
the program can compile, link, load and execute without any com
plication. It should be noted that if all variables are in 
DOUBLE PRECISION, than the central core requirement for the vari
ables will be twice the amount of the SINGLE P~ECISION case. 
This does not mean that the core requirements will double; only 
the space needed by the variables will increase. 

COMPUTER MEMORY 

. 
OPERATING SYSTEM 

COMPILERS 

"ACCOUNTING FILES., 

LIBRARY ROUTINES J ETC. 

AlJAILABLE SPACE!!!!! 

Fig. 11.1 The Use of Non-Virtual Computer Core 
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If the available central core space is less than the program 
requirement (see Fig. 11.2), and if the computer system in ques
tion is not a virtual system than the program can not be handled 
by this computer without some modifications. Some of the 
"scientific computers," e.g. CYBER 850, and most of the personal 
computers do not have virtual memory. If these computers are to 
be used for very long programs and/or programs that use many 

, large arrays, such that they will not fit into non-virtual sys
tems, the approach to take will be the use of OVERLAYING. This 
is a definite need for the problem shown in Fig. 11.2. 

The need for overlaying can be illustrated via a past experience 
with program development in CDC 6400 computer (predecessor of 
CYBER 850 at the LUCC). In the early seventies this particular 
computer had 40,960 60-bit words were available to the users. 
The developed finite element program, even in its pre-production 
version, required about 230,000 words of central core storage! 
Due to the long word-length of the computer, there was no need 
for any DOUBLE PRECISION variables. Due .to the programming 
strategy involved it was possible to develop and execute the 
program within 35,000 word central storage. Because of the 
"improvements(!)" to the operating system by the vendor, the 
program later required about 40,500 words. 

In the develop•ent of overlayed progra.s for non-virtual 
computer systems, the maximum central core required 
should be kept "sufficiently" below the liaitations of 
the computer. Any future limited changes to the program 
and/or changes by the vendor to the computer system 
should not require the reorganization of the program. 

11.2 OVERLAYING CONCEPTS 
In order to "fit" the program to the core it is essential that 
the program on hand be subjected to a major "re-arrangement." 

·This effort is usually quite demanding if the program was 
developed without any consideration for future overlaying. 
However, if the program development is conducted with full con
sideration for overlaying, than this program can be overlayed 
with great ease. 

Furthermore, an overlayed program can be stripped of its overlay 
features and executed as a "routine" program if needed. Such a 
need can arise if the program migrates from non-virtual memory 
computer to a virtual memory computer, e.g. from CYBER 850 to 
Data General MV/10000. 

11.2.1 MAIN and PRIMARY OVERLAYS 
In order to overlay a program, first a 
"executive" program needs to be identified. 

49 

"main," "core," or 
This "portion" of 



COMPUTER MEMORY 

I 
. 

OPERATING SYSTEM 

I COMPILERS 

I 11ACCOUNTING FILES .. 

I LIBRARY ROUTINES} ETC. 

A~JAILABLE SPACE!!!!! 

PR06R8H 

<MOTE: PR06R8H > RURILRBLE SPICE > 

Fig. 11.2 Central Core Requirement of A Large Program 
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the original program will reside in core for the full duration of 
the job. This program can be referred to as (OVERLAY 0,0), and 
is also known as the MAIN OVERLAY. These discussions can best be 
visualized through inspection of Fig. 11.3. It is then possible 
to identify major program segments that can reside in the core 
one at a time in addition to the executive program. OVERLAY-1, 
OVERLAY-2, etc. can be considered as independent programs, or 
"mega-subroutines." OVERLAY-1, OVERLAY-2, etc. can be called 
only from OVERLAY-0, i.e. the executive program. When the execu
tion of OVERLAY-0 reaches such a point that a call is made to 
OVERLAY-!, OVERLAY-0 and OVERLAY-1 will be in the central core. 
When this call is made the control of the flow of the program 
will be transferred to OVERLAY-1. This is similar to the calls 
that are made to SUBROUTINES. At the completion of the execution 
of OVERLAY-1 the control will be transferred back to OVERLAY-0. 
At this stage OVERLAY-1 is "automatically removed" from the 
central core. The execution of OVERLAY-0 will continue, and a 
call to OVERLAY-4 may be encountered. OVERLAY-4 will be brought 
inro the core; thus, OVERLAY-0 and OVERLAY-4 will be in core. At 
the completion of the execution of OVERLAY-4, the control will be 
transferred back to OVERLAY-0, etc. 

PROGRH" 
E>{ECUTIUE PROGRAH1 I.E. TRAFFIC CONTROLLER 
(must reside tn-cot--e thr·oughout the execution) 

CAti CALL 01JERLAYS-11 21 3 1 i 

,OIJERLAV-1 

OIJERLAY-2 
CAN CALL OIJERLAYS- 2.11 2.21 2.31 2.i 

OUERLRY-i!.l 
OOERLRY-i!.l 

OOERLRY-i!.i! 

I Ol.IERLAY-3 

JouERLAY-i 

OOERLRY 
-i!.'l 

Fig. 11.3 Overlay Structuring of A Large Program 
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11.2.1 SECONDARY OVERLAYS 
It is also possible to identify program segments within a primary 
overlay that can be considered as "self-contained." Calls to 
these SECONDARY OVERLAYS can be made from the PRIMARY OVERLAY to 
which they ''belong." The general concept can be seen in Fig. 
11.3. It should be noted that, for example, during the execution 
of OVERLAY-2,3, the overlays that will be in the core are 
OVERLAY-0, OVERLAY-2, and OVERLAY-2,3. 

There are no tertiary overlays. 

11.3 PROGRAMMING STATEMENTS 
OVERLAY is not an ANSI (American National Standards Institute) 
approved feature. The material presented in this section is 
based on FORTRAN 5 (enhanced version of ANSI FORTRAN 77) of Con
trol Data Corporation. The following is a typical program, whose 
length can be from a few hundred to many hundreds of thousands of 
lines long: 

OVERLAY(CE309,0,0) 
PROGRAM XXX 

CALL OVERLAY(5HCE309,1,0) 

CALL OVERLAY(5HCE309,4,0) 

.... 
CALL OVERLAY(5HCE309,2,0) 

CALL OVERLAY(5HCE309,3,0) 

CALL OVERLAY(5HCE309,1,0) 

STOP 
END 
SUBROUTINE PDQ(,,,,,) 

RETURN 
END 
[additional subroutines, where needed] 
OVERLAY(CE309,1,0) 
PROGRAM YYY 

RETURN 
END 
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SUBROUTINE ABC( ..... ) 

RETURN 
END 
[additional subroutines, where needed] 
OVERLAY(CE309,2,0) 
PROGRAM ZZZ 

CALL OVERLAY(5HCE309,2,1) 

CALL OVERLAY(5HCE309,2,4) 

CALL OVERLAY(5HCE309,2,2) 

CALL OVERLAY(5HCE309;2,3) 
. PROGRAM YYY 

CALL OVERLAY(5HCE309,2,1) 

.... 
RETURN 
END 
[as many subroutines as needed] 
OVERLAY(5HCE309,3,0) 
PROGRAM WWW 

RETURN 
END 
[subroutines, if needed] 
OVERLAY(5HCE309,4,0) 
PROGRAM XYZ 

RETURN 
END 

In the above example CE309 is the name of the file on which gen
erated overlays are to be written. "0,0", "1,0", "2,0", "2,1", 
"2,2", etc. are the primary and secondary overlay numbers. These 
numbers are in octal (0 through 77). 

There are additional parameters, or switches, on the overlay 
statement. They are not used frequently enough to justify their 
presentation herein. 
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11.4 OVERLAY COMMUNICATIONS 
Inspection of Fig. 11.3 and the ''program" given in the previous 
section indicates that there exists a need for a mechanism to 
transfer the values of the variables from one overlay to another. 
If such a mechanism does not exist the values read or computed, 
for example, in OVERLAY(CE309,0,0) can not be transferred to 
OVERLAY(CE309,1,0). 

Communication amongst the overlays, in terms of the transfer of 
data, can be accomplished in the following two ways: 

(a) LABELED COMMON and/or blank COMMON, and/or 

(b) files. 

In the use of COMMON the values can be assigned to the variables 
listed in the COMMON in one overlay. These LABELED COMMON and/or 
blank COMMON must also be listed in the MAIN OVERLAY, i.e. 
OVERLAY( ... ,O,O). The overlay which needs this information can 
have the appropriate COMMON blocks listed. Thus, for example, 
the values generated in OVERLAY( .•. ,1,0) will, in a sense, be 
available in the corresponding COMMON blocks in OVERLAY( •.. ,O,O), 
and when OVERLAY( ... ,4,0) is activated the data will readily be 
available if the COMMON blocks are listed in this overlay. 

The second approach, which is especially used for large matrices, 
employs the unformatted file approach. At OVERLAY( ... ,O,O) 
necessary files, e.g. TAPE11=11 in FORTRAN 5 terminology, can pe 
d~fined. In an appropriate overlay the data can be written to 
this file. In another overlay the file should be rewound (i.e. 
issue REWIND command) and the data can be read. Since the "file 
number" is another variable that must be transmitted, it needs to 
be defined in a LABELED COMMON. 

11.5 VIRTUAL COMPUTER SYSTEMS 
In virtual configurations the physical size of the central core 
is not a major limitation if the program has core requirements 
that are far larger than the core. Part of the "hard disk'' is ac
cessible by the program as if it is part of the core. This 
access is automatically handled by the.software system of the 
computer, and it is totally transparent to the user. Thus, there 
is no need to overlay the programs. Actually, most new systems 
do not have any overlay features. All minicomputer systems have 
virtual memory features. Most advanced and powerful personal 
computers are in the process of introducing virtual system con
cepts. On the other hand, MS.FORTRAN, which is available for 
personal computers with MS.DOS and PC.DOS, has the overlay fea
tures. For any scientific and engineering computations the com
puter system should either have overlay features or should have 
virtual memory. 
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11.5.1 Computer Resource Requirements 
Limited benchmark tests conducted by the author may give some 
''feel" for the CPU time requirements for overlayed vs. virtual 
systems. Two finite element programs were fine-tuned for non
virtual memory system, i.e. overlaying was used. A series of 
finite element problems were executed. The same problems were 
run using two different virtual memory minicomputers using two 
different finite element programs. The programs were fine tuned 
by the developers for these minicomputers. The same problems 
were executed in these new programs with modified element and/or 
node point numbering in order to give the best performance as far 
as the specific program is concerned. The total CPU time for 
these runs were at least five times larger than the corresponding 
figures obtained in the non-virtual computer. For some problems 
the factor was larger than "10." It is recognized that the mini
computers are slower than the scientific mainframes; however, 
such a discrepancy in the time requirements was unexpected(!!!). 

11.5.2 Future Trends 
It should be recognized that the trend is towards virtual systems 
for "decent" personal computers, workstations, minicomputers, and 
mainframes. It is not unrealistic to expect that in the "near 
future" there will not be any need for overlaying techniques. 

11.6 EXAMPLE PROGRAM 
The logical flowchart of a finite element program for the 
elastic-plastic analysis of eccentrically stiffened plates is 
given in Fig. 11.4. In this chart almost each "box" corresponds 
to PRIMARY or SECONDARY OVERLAYs. The first two boxes correspond 
to the MAIN OVERLAY. 
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