
Lehigh University
Lehigh Preserve

Fritz Laboratory Reports Civil and Environmental Engineering

1986

Structured software - designed and maintenance,
C.E. 309 Lecture Notes, Part II, August 1986
Celal N. Kostem

Follow this and additional works at: http://preserve.lehigh.edu/engr-civil-environmental-fritz-lab-
reports

This Technical Report is brought to you for free and open access by the Civil and Environmental Engineering at Lehigh Preserve. It has been accepted
for inclusion in Fritz Laboratory Reports by an authorized administrator of Lehigh Preserve. For more information, please contact
preserve@lehigh.edu.

Recommended Citation
Kostem, Celal N., "Structured software - designed and maintenance, C.E. 309 Lecture Notes, Part II, August 1986" (1986). Fritz
Laboratory Reports. Paper 2138.
http://preserve.lehigh.edu/engr-civil-environmental-fritz-lab-reports/2138

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Lehigh University: Lehigh Preserve

https://core.ac.uk/display/228629166?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://preserve.lehigh.edu?utm_source=preserve.lehigh.edu%2Fengr-civil-environmental-fritz-lab-reports%2F2138&utm_medium=PDF&utm_campaign=PDFCoverPages
http://preserve.lehigh.edu/engr-civil-environmental-fritz-lab-reports?utm_source=preserve.lehigh.edu%2Fengr-civil-environmental-fritz-lab-reports%2F2138&utm_medium=PDF&utm_campaign=PDFCoverPages
http://preserve.lehigh.edu/engr-civil-environmental?utm_source=preserve.lehigh.edu%2Fengr-civil-environmental-fritz-lab-reports%2F2138&utm_medium=PDF&utm_campaign=PDFCoverPages
http://preserve.lehigh.edu/engr-civil-environmental-fritz-lab-reports?utm_source=preserve.lehigh.edu%2Fengr-civil-environmental-fritz-lab-reports%2F2138&utm_medium=PDF&utm_campaign=PDFCoverPages
http://preserve.lehigh.edu/engr-civil-environmental-fritz-lab-reports?utm_source=preserve.lehigh.edu%2Fengr-civil-environmental-fritz-lab-reports%2F2138&utm_medium=PDF&utm_campaign=PDFCoverPages
http://preserve.lehigh.edu/engr-civil-environmental-fritz-lab-reports/2138?utm_source=preserve.lehigh.edu%2Fengr-civil-environmental-fritz-lab-reports%2F2138&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:preserve@lehigh.edu

...

STRUCTURED SOFTWARE DESIGN AND MAINTENANCE

(CE 309: COMPUTER PROGRAMMING LECTURE NOTES; PART-II)

FRITZ ENGINEF::RING
l1\BORATO!-N Li8R,li,RY

by

Celal N. Kostem

Fritz Engineering Laboratory

Department of Civil Engineering

Lehigh University

Bethlehem, Pennsylvania

August, 1986

Fritz Engineering Laboratory Report No. 400.31

Table of Contents
•

FOREWORD•...........••..........................•.•.. 1

1. STRUCTURED AND MODULAR PROGRAMMING 2
1.1. NEED FOR A STRUCTURED LANGUAGE 2

1.1.1. Counter Arguments 4
1.2. LIFECYCLE OF SOFTWARE 5
1.3. TOP-DOWN PROGRAMMING 8
1. 4. MODULAR PROGRAMMING ,' 8

1.4.1. Rules for Modularization 9
1.5. STRUCTURED PROGRAMS 10

1.5.1. Basic Building Blocks 10
1.6. PROPERTIES OF A WELL-STRUCTURED PROGRAM 10
1.7. STRUCTURED PROGRAMMING CODING STANDARDS 16

2. SOFTWARE DEBUGGING · 19
2.1. COMPILATION AND EXECUTION ERRORS•.......... 20

2.1.1. Compilation Errors: 20
2 .1. 2. Execution Errors: 21

2 . 2 . FOSS IBLE SOURCES OF ERRORS 21
2. 3. ERROR CATEGORIES 22
2.4. DEBUGGING GUIDELINES ... ; 23

3. OPTIMIZATION OF THE FORTRAN 77 SOURCE CODE 25
3.1. WHAT IS OPTIMIZATION ••••••••••••• ...•. 25
3.2. OPTIMIZING COMPILERS p•••••••··········~·····25
3.3. WHY DO WE NEED OPTIMIZATION 25
3.4. GUIDELINES FOR"OPTIMIZATION 26
3.5. LEVELS OF OPTIMIZATION IN CDC NOS FORTRAN77 27

3.5.1. OPT=O Compilation•..................... 27
3.5.2. OPT=1 Compilation 27
3.5.3. OPT=3 Compilation 28

3.6. PROGRAMMING STRATEGIES FOR OPTIMAL SOURCE CODE. ; 29

4. E~FICIENCY OF SOFTWARE 32
4.1. EFFICIENCY CHECKLIST 32

5. RELIABILITY OF SOFTWARE 34
5.1. RELIABILITY CHECKLIST•........ 34

6. UNDERSTANDABILITY OF COMPUTER SOFTWARE 35

i

7 •

8.

9 .

10.

11.

6. 1.

6. 2.

UNDERSTANDABILITY CHECKLIST ..
6.1.1. Structuredness.
6. 1. 2.
6 .1. 3.
6. 1. 4.

Documentation
Consistency .. .
Completeness .. .

6.1.5. Conciseness
COMMENTS ON THE MODULE SIZE ..

MODIFIABILITY OF SOFTWARE

•• 3 5
.35

. • 35
.36

. . 37
• ••• 3 7

.37

. . 39
7.1. MODIFIABILITY CHECKLIST. • ••• 39

PORTABILITY OF .SOFTWARE • • 41
8 .1.
8. 2.

PORTABILITY CHECKLIST. • •• 41
GENERAL COMMENTS

TESTABILITY OF SOFTWARE
9.1. TESTABILITY CHECKLIST.

USABILITY OF SOFTWARE
10.1. USABILITY CHECKLIST.

OVERLAYING•.....
1 1 . 1 .
11.2.

NEED FOR OVERLAYING ..
OVERLAYING CONCEPTS.

. ..

.
11.2.1. MAIN and PRIMARY OVERLAYS.

11. 3.
11.4.
11.5.

11.6.

11.2.2. SECONDARY OVERLAYS ..
PROGRAMMING STATEMENTS•.
OVERLAY COMMUNICATIONS ..•..
VIRTUAL COMPUTER SYSTEMS ••..

.
11.5.1.
11.5.2.
EXAMPLE

Computer Resource Requirements.
Future Trends. • •••••.
PROGRAM........ . •••..

ii

.42

. • • 4 3
• • 43

• ••• 4 4
• • 44

.48
• •••• 4 8

• • 49
• • 49

. •.••.•... 52 52
. .. 54 54
. .. 55
. .. 55

. . 55

FOREWORD

The first part of the CE 309: Computer Programming lecture notes

covers the salient FORTRAN77 statements, their proper use in

structured programming environment, and the interpretation of

frequently used civil engineering formulae, specifications, and

analysis techniques in terms of FORTRAN77. The second part, i.e.

these lecture notes, cover the key issues in the development,

maintenance, and testing of software packages, with emphasis on

those coded in FORTRAN77.

The majority of the material in this note set, especially the

"lists," is based on the material included in Software Main-

tenance - The Problem and Its Solutions, by

Carma McClu~e (Prentice-Hall, Inc., 1983).

an excellent source of information on software

James Martin and

Even though this is

maintenance, the

incorporation of the concepts presented in the coding stage will

result in a highly desirable product.

1

1. STRUCTURED AND MODULAR PROGRAMMING

Engineers have been writing "programs" in FORTRAN for digital
computers since 1956. The programs coded in the late fifties and
early sixties, even in the late sixties, which used the prevail
ing programming "styles," would be "unacceptable" if current
standards are applied. The American National Standards Institute
(ANSI) provided standards for FORTRAN in 1966. This FORTRAN is
known as FORTRAN-IV or FORTRAN-66. In the sixties and early
seventies the work carried out by the computer scientists led to
the development of stringent programming guidelines and to new
programming languages. The programming language Pascal, intro
duced in 1971, is probably the most influential language as far
as its effects on today's FORTRAN. In addition, to "remedy" the
shortcomings of the earlier programming styles, which were
strictly programmer-dependent, in the seventies new concepts,
rules, guidelines, and standards emerged. They are: program
modules and modular programming, top~down programming, and struc
tured programming. These guidelines were in conflict with the
loosely "structured,'' or unstructured, nature of FORTRAN-66.
ANSI issued the standards for FORTRAN-77, which is a highly
"structured" language as compared to FORTRAN-66, but which is not
structured enough as compared to, for example, Pascal.

1.1 NEED FOR A STRUCTURED LANGUAGE
The best justification for a structured programming style can be
noted by studying the fictitious program segment shown in Fig.
1.1. The program is incomprehensible because of the crisscross
ing arrows highlighting the transfer of control, or logic. It
should also be recognized that this is an extreme example; not
all FORTRAN-66 codes were written in such a chaotic manner.

There are a number of reasons given by the proponents of
"structured programming" as to why it is the only approach that
should be rigidly adhered to (rather dogmatic!). Some of the
reasons are:

* The program must be understandable and comprehensible.

(Inspection of Fig. 1.1 does not give a clue as to what is
happening. This is due to the maze of arrows showing the
transfer of control. In a well structured program a brief
inspection should easily reveal what is happening.)

2

1 ····································-
F

r-+-.._..... IFC.. ..)2
1
3

~-....-~2 -.......... .

r---+-~ GO Toe 1-Is }6) II

t---+-e---i i ································

3

5
t---+-~

GO TO 1

6 ·-·············

DO 7

---,._-t IFC.. ..) GO TO 1

7 ······-····················

Fig. 1.1 A Sample Nonstructured Program

3

'!

..

* The control of transfer of operations should be as sequen
tial as possible.

(This would permit the study and understanding of the
program from the top of the page to the bottom, without
going back to earlier lines too many times. This also makes
the automatic optimization easier.)··

* The program should be modular.

(It should be possible to identify the basic self-contained
computational and/or other logical units. It should be pos
sible to pull out the module and replace it by another unit
serving the same purpose, without making "any(?)" changes in
the rest of the program. This feature improves the under
standability and modifiability of the software. Further
more, it is a blessing as far as debugging is concerned.)

* The program must be modifiable.

(In order to modify the program one needs to know what is
being done and where, and how it is done. If the program is
too rigid, ala Fig. 1.1, its modifiability is in question.)

* The program should be .flowchartable.

(Any and every program is flowchartable. Thus, this
requirement, prescribed by the experts, is misleading.
However, if the logic flow of the program is too complex
(polite way of saying haphazard, disorganized, etc.) its
flowchart would be almost impossible to follow. Thus the
ease of understandability of the flowchart is a requirement
for the overall program behavior.)

*Etc.

1.1.1 Counter Arguments
A few case studies observed personally, and lived through, by the
author will be presented herein to highlight the possible misun
derstandings regarding unstructured vs. structured programming.

CASE-1: A package developed in the late sixties employed standard
FORTRAN66. Every care and effort was put forth to make the
package insensitive to possible changes in operating system and
the compiler. With the emergence of STRUCTURED FORTRAN, a
reputable computer scientist indicated that this package should
be re-coded for increased efficiency. This mission was under
taken by this scientist. The resulting program did not perform
any faster. Thus, not all packages coded in FORTRAN66 can and
should be labeled inefficient.

4

..

CASE-2: A parallel development was undertaken by a "computer
honcho" for the above package in the same time frame as the
original development. Use of every imaginable feature of the
operating system and the compiler available were made in order to
reduce the central core requirement of the computer and increase
its execution speed. The finished product performed admirably,
both in terms of speed and core requirements. However, every
major update in the compiler or the operating system required
rewriting parts of the program. Finally, to strip the program of
its compiler and operating system redundancy, i.e. to make it
fully portable at the expense of losing some of the efficiency,
slightly less than 5-minutes of conversion effort was required
per statement.

Program portability is the most critical attribute of
any given program to make it operable in continually
changing hardware and software environments.

CASE-3: In the late sixties and early seventies a major program
was developed using FORTRAN66. Prior to the initiation of the
activities it was decided that the main program, i.e. primary
module, would not be more than 132-lines long. During the
development program specifications and requirements were sub
jected to one major change every month, on the average. About
half a dozen major patches were required to be added every three
months. At the completion of the programming, debugging, and
testing the length of the main program was in excess of 2,000
lines long.

A structured program development was subjected to similar
requirements by individuals who are experts on the subject matter
but who do not have any idea about soft.ware engineering.

w.bether a progra. is coded in structured or an unstruc
tured language, external require•ents that can be i•
posed by the uninitiated can hinder the successful
completion of any given package.

1.2 LIFECYCLE OF SOFTWARE
Activities pertaining to the development of any given software
from the definition of the problem statement and/or requirements
through the installation of the production version of the
software are presented in Fig. 1.2. One 'can and should be able
to go to any one of the activities, and be able to initiate
productive efforts. If the developed software can be com
prehended only by its originator, so long as he/she can remember
what was done, than this software is doomed to oblivion. Any
package that is developed with structuredness and modularity can
be revived less painfully as compared to the one that does not
have these characteristics.

5

SOFJNRRE LIFE CYCLE

ll£0UIR£KEnTS
I ,.
J~ I .

I ~ : Sft£CIFICATIOHS ~,

I .. PRELIUHJliY
DESIIiH ... I

_fONT. ... DETrtiLED

~ .. DESI&H

t -• • CODIHii JlHD ... -
DUUiiliiHii ...

.. TESTIHii anD
,..

UJlLIDRTIOH ~

... Of'ERATIOHS MD ,.. IIAIHTEnftHC£ ... _...,._

REVALIDATION ! ! ! !

Fig. 1.2 Software Life Cycle

6

DESIGN
SPECIFICATIONS

COOING REQUIREMENTS

MODULE TES

Fig. 1.3 Effort Required on Various Software
Development Activities (Except Software
Maintenance (from: Principles of Software
Engineering and Design, M.A.Zelkowitz, A.C.
Shaw, J. D. Gannon, Prentice-Hall, Inc.,
1979)

7

Contrary to beliefs, the time requirement for the coding and
debugging is only 20% of the overall effort (See Fig. 1.3). An
equal amount of time is spent on the development of the
"specifications and requirements" of the software module. Just
the design of the software requires 15% of the total effort.
Before the inception of any coding effort one should spend about
one third of the allocated time and funding.

The percentages given herein are to illustrate the extensive
planning required prior to the coding of any software. Actually
similar rules of thumb exist for the idealization of data design
prior to database-related activities, and/or conceptualization of
a problem prior to the use of a canned package. This presupposes
that the user is sufficiently familiar with the subject matter.
One of the worst practices by engineering managers, especially at
the middle-management level, has been to direct the engineers to
start "getting computer results" without any initial planning.
"Saving" the first 20%-30% of the effort does not reduce the to
tal cost of the project. In the coding, testing and implementa
tion phases major stumbling blocks are usually encountered. This
requires a double take, and requires the repetition of previous
efforts.

1.3 TOP-DOWN PROGRAMMING
If the "top-down programming" concept is literally applied, the
program execution will be a sequential one, starting with the
first executable statements until the "STOP" or "RETURN'' is en
countered. Exception to this rule is the DO-loops. A program
like this will not require any "statement numbers," since the
control of the execution will not be "controlled." Even though
such compilers exist, they are rarely favored by engineers. Ac
tually, most FORTRAN-77 compilers contain extensive enhancements
to ANSI FORTRAN77 provisions. Thus, most compilers permit move
ment to an earlier statement in the program, even though it vio
lates the spirit of the "top-down" practice.

In programming everr effort should be put forth to make
the progra. top-dow.o, so long as this does not result in
an absurd code.

1.4 MODULAR PROGRAMMING
A program module is defined as a logically,self-contained unit of
a program with specific entry and specific exit points, and is
aimed to accomplish a predefined mission. Each subroutine can be
considered a module, so long as its mission is to perform one
task.

Inspection of Fig. 1.4 shows that a part of the program can be
isolated as a module, like the IF-THEN-ELSE block. Without know
ing the contents of the blocks for the .TRUE. and .FALSE.

8

, branches of the logical IF-check, further suggestions for other
sub-modules would not be proper.

POSSIBLE DECOMPOSITION :
IF-THEN-ELSE BLOCK

~----~7

Fig. 1.4 Decomposition/Isolation of a Program
Module

1.4.1 Rules for Modularization
Once the basic module concept is understood, then the best
guideline for the establishment of modules and modular design is
common sense. The following list gives additional guidelines to
be noted for modular software design:

1) Decompose the program into independent, discrete modules.

2) Structure the program modules to reflect the design
process.

3) Construct
properties:

each program module with the following

a) The module is closed.

b) The module has one unique entry point and one unique
exit point.

9

c) The module represents one logical, self-contained
function.

1.5 STRUCTURED PROGRAMS
The structured programs essentially follow the "top-down"
concepts; preferably not too rigidly for the sake of the program
mers sanity in transition from FORTRAN66 to FORTRAN77. Ideally
these programs do not have any GOTO statements, thereby eliminat
ing the statement labels, i.e. statement numbers. Conversely, a
program without GOTO statements, which violates the long list of
requirements described in this chapter, would not be a structured
program.

1.5.1 Basic Building Blocks
Strictly speaking, the structured program will consist of the
building blocks described in Fig. 1.5. So far there has not been
a clear cut definition of the terminology for these blocks. The
proper terminology for the second block should be "decision."
The third block could possibly be labeled as a "DO-loop" as well.

Limited deviation from these blocks, depending upon the options
and capabilities of a given compiler, may rarely result in the
improvement of efficiency of the program, and may also make it
more understandable. Any deviation should not violate the por
tability of the software; the consequences of which are presented
in this document.

Proper composition of the basic building blocks is shown in Fig.
1.6. If each basic building block can be considered as the
lowest form of a module, proper composition of the blocks should
lead to an acceptable format. Improper use of the modules can be
seen in Fig. 1.7. In the first case there are two entry points
to the segment. From the description of the modular construc
tion, it is known that there should be only one entry and one
exit. The second case is improper because of multiple exits.
The third case is improper because of the improper entry to the
module. In the top-down approach, it is recommended to enter at
the top, and exit at the bottom. The fourth case looks improper
because of the relative complexity of the flowchart. This module
should be decomposed into two modules. .,

1.6 PROPERTIES OF A WELL-STRUCTURED PROGRAM
1. The program is divided into a set of modules arranged in
a hierarchy defining their logical and execution-time
relationships.

2. The execution flow from module to module is restricted

10

BASIC BUILDING BLOCKS OF STRUCTURED PROGRAMMING

1. SEQUENCE

2. SELECTION
TRUE

FALSE

3. ITERATION

•I.._ _ ___.

TRUE

Fig. 1.5 Basic "Building Blocks" of Structured
Prograrruning

11

FALSE

PROPER PROGRAM SEGMENTS

Fig. 1.6 Integration of Basic Building Blocks
(Modular Construction)

12

•

PROPER PROGRAM SEGMENTS (CONT.)

Fig. 1.6 (Cont.) Integration of Basic Building Blocks
(Modular Construction)

It1PROPER PROGRAM SEGMENTS

<TWO ENTRY POINTS TO THE "MODULE11
)

Fig. 1.7 Improper "Integration" of Basic Building Blocks

13

IMPROPER PROGRAM SEGMENTS

0 CTWO EXIT POINTS FROt1 THE MODULE.)

IMPROPER PROGRAM SEGMENTS

C11MIDPOINT11 ENTRY TO THE MODULE.)

Fig. 1.7 (Cont.) Improper "Integration" of Basic Building
Blocks

14

IMPROPER PROGRAM SEGMENTS
(SHOULD BE DECOMPOSED TO T~O MODULES.) <!)

Fig. 1.7 (Cont.) Improper "Integration•• of Basic Building
Blocks

to a simple, easily understood scheme in which control must
enter the module at its entry point, must leave the module
from its exit point, and must always be passed back to the
invoking module.

3. Module construction is standardized according to tradi
tional modularization rules, and legal program control con
structs are restricted concatenation, selection, repetition,
and a "well-behaved" br~nch.

4. Each program variable serves only one program purpose,
and the scope of a variable (i.e. the set of modules in
which the variable is accessed) is apparent and limited.

5. Error processing follows normal control flow except in
the case of unrecoverable errors where normal processing
cannot continue.

15

6. Documentation is required in the source code to intro
duce each module by explaining its function, its data
requirements, and its invocation relationship to other
modules in the program.

1.7 STRUCTURED PROGRAMMING CODING STANDARDS
1. The program is divided into independent pieces called
modules.

2. A module is a self-contained unit whose code is physi
cally and logically separate from the code of any other
module in the program.

a) A module represents one unique logical program func
tion.

b) The size of a module should not exceed 100 instruc
tions.

c) A module is bounded by one entry point and one exit
point. During the execution, the program control can
enter a module only at its entry point and can leave
the module only from its exit point.

3. Modules are related to one another in a hierarchical
control structure. Each level in the control structure rep
resents a more detailed functiona~ description of what the
program does. It also dictates the transfer of program con
trol from module to module during execution.

Level-l (top of the hierarchy) contains one and only one
program module. Logically, this module represents the over
all program structure and contains the "mainline" code for
the program. Program execution always begins with this
module.

Level-2 contains modules that are performed to execute the
overall program function. The modules at level-2 can be ex
ecuted only by transferring control to them from the main
line module. Execution cannot cause control to "fall" into
a module.

Level-3 modules represent functions required to further
define the functions at level-2. Control is transferred to
level-3 modules only from level-2 modules. This scheme con
tinues from level to level down the entire hierarchical
structure.

Program control is always transferred from a module at one
level to a module.at the next successively lower level (e.g.

16

from level-3 to level-4). When a module completes executing
its code, control is always returned to the module that
"called" it.

No loops are allowed in the control structure. This means
that a module cannot call itself, nor can it call any module
that has called it.

4. Each module should begin with a comment block explaining
the function that the module performs, the values passed to
the module, the values returned, the modules that called
this module, and the modules that this module calls.

5. Comments embedded in the module code should be separated
from instructions by one blank line.

6. All comments should be meaningful (e.g. a meaningful
comment does not state that this is an add instruction).

7. Avoid unnecessary labels; do not use labels as comments.

8. All variable and module names should be meaningful.
Module names should suggest the logical function they per
form (e.g. INVERT) and variable names should suggest their
purpose in the program (e.g. SHEAR or V).

9. Names of variables that belong to the same table or that
are local (i.e. used only in one module) should begin with
the same prefix. (Editorial comments: This rule is highly
desirable, idealistic, but quite impractical. May clash
with #8 above!!!)

10. The only allowable control constructs are concatenatio~,
selection, repetition, and branch. (Editorial comment:
This rule, as it is worded, is too rigid and clashes with
the current programming practice of the professionals.)

11. At most, one instruction is coded on a line. If an in
struction requires more than one line, successive lines are
indented.

12. IF-statements should not be nested more than three
levels. (Editorial comment: This rule could be considered
as a target goal. For some cases it is impractical!!!)

13. The scope of a GOTO statement (branch instruction)
should be limited to the module in which it occurs. This
means that the GOTO should not be used to transfer control
from one module to another; it is used only to branch to the
entry point or the exit point off the module in which it oc
curs.

17

14. NONSTANDARD LANGUAGE FEATURES SHOULD NOT BE USED AS A
GENERAL RULE. (This is a cardinal rule of programming.)

15 • OBSCURE (TRICK) CODE SHOULD BE AVOIDED.

18

2. SOFTWARE DEBUGGING

The debugging, or "reprogramming(!)," of any given software has
negative connotations to the uninitiated, however, this activity
is carried out almost perpetually if the "computing environment"
is not static. For example, if a given software is not fully in
dependent of the operating system, the change in the operating
system~ require the recompilation of the program. Even though
the program might have been executing satisfactorily prior to
this change in operating system, after the change the program may
or may not give the correct answers. If the program had been
coded robustly and followed all the guidelines discussed in CE
309, then at worst only a recompilation would have been required.
However, since most "completed" programs are far from being
ideal, prior to the recompilation modifications are usually
needed. The changes in the program that need to be undertaken
can be labeled as "debugging" under the new environment.

If a program which was executing fully satisfactorily in a given
computer configuration has to be moved to another computer sys
tem, then changes to make the program run again may be in
evitable. If the program was fully portable (an extremely
elusive goal to attain) than the source code should not require
any modifications prior to recompilation in the new environment.
Sometimes changes in the hardware and software environment neces
sitate changes in the program. If, for example, a program was
making use of the plotting devices, an upgrading of the plotting
device may require substantial changes in the parts of the
program using the plotting devices. Numerous possible permuta
tions on the compiler, operating system, peripheral devices, etc.
may lead to the need to "debug" the program.

The ''status" of the program may require different approaches in
debugging:

(a) You may have been "given," or more likely "leased,"
only the "load module" of the program. You may not have any
access in any form or fashion to the 'source code. Under
these circumstances, you need to contact the "software
vendor" for a new load module that will execute under the
new computing environment. This action may require "funds"
for the transaction, in addition to the regular monthly or
annual outlays. Extensive testing (?) of the new version of
the program is supposed to have been completed by the
software vendor. However, select testing of the new load
module of the program by the principal users is in order.

19

The cost of these tests would be borne by the users.
(Example: ANSYS in the Civil Engineering Department's CAB
Laboratory, NASTRAN at LUCC.)

(b) Access to the source code may be restricted. Even
though you may be the major user of the package you may not
have permission to have access to the source code, even to
the listing of the source code. Changes to the source code
may be undertaken by the "systems programmers," who may be
totally unfamiliar with the "subject area" to which the
program is applicable. In a situation like this, when the
need for the change to the source code is made and if the
program has recompiled, you need to test the new version
with as many "case studies" as possible. The cost of these
tests should be borne by the systems group and/or the
developers. If the software developers are not contrac
tually required to make the changes, then the changes may
not be implemented up until the first "opportune period(?)."
(Example: Programs FLMXPK, SAP4CNK, SPLT, and ADINA at
LUCC.)

(c) If you have full access to the source code, and if you
are responsible for the maintenance of the software, the
changes in the code will have to be undertaken by you. At
the completion of the reprogramming activity, extensive
tests need to be conducted by you to confirm the reliability
of the results. The cost of these tests may be borne by the
computer center only if the computer system change is sub
stantial and during the interim period you are "invited" to
test the new configuration. This is a short duration window
of opportunity, and the tests can be conducted only at
select times and select dates. Other than this possibility,
the cost of the tests is usually borne by the software
developer.

2.1 COMPILATION AND EXECUTION .ERRORS
In order to initiate any debugging you have to have access to the
source code. If this is not the case, the only realistic action
you can take is to inform the software vendor/developer of the
execution error you have encountered, and seek assistance.

If you have access to the source code and ~f you have to initiate
debugging operations, the following paragraphs should be noted,
and implemented.

2.1.1 Compilation Errors:
In debugging during the compilation all fatal errors must be
eliminated. Various compilers generate informative messages for
non-fatal errors. A non-fatal error corresponds to an
"operation," statement, usage, etc., that is not fully acceptable

20

to the compiler, and results in the compiler making an
"assumption" in the interpretation of the "code.'' Even though
most non-fatal errors may not have any detrimental effect on the
results of your program, all non-fatal errors should be expunged
through rewriting the source code, and recompiling the program.
After the successful compilation of the program with linkage, and
with or without execution, the following checks must be
performed:

(a) "Maps" of each module must be carefully examined. The
reasons for "unused" variables must be determined. This
could be due to "clerical errors," e.g. typing IO instead of
IU. Should that be the case, the likelihood of execution
error arises. All unused and undefined variables must be
taken care of.

(b) Any error messages emanating from "linker" and "loader"
must be checked. Corrective actions must be taken to
eliminate these messages in the subsequent submissions.

At the completion of the above activities the program is ready to
be executed. However, this does not indicate whether the source
code is correct or not.

2.1.2 Execution Errors:
Debugging of the program if execution errors are encountered can
be trivial, or as in most cases, extremely painful. To isolate
the execution errors a logical approach, as itemized later in
this document, can and should be employed. The most qualified
individuals to identify the source of the execution errors are
not the experts at any given computing center, but instead are
the individuals who are intimately familiar with (a) the employed
solution scheme, (b) the source code in question, and (c) the
programming language employed.

2.2 POSSIBLE SOURCES OF ERRORS
The sources of possible errors in the "source code" could be due
to almost any predictable or unpredictable reasons and
"accidents." However, based on past experience software en
gineers have developed "classes of errors" or "error categories."
Different sources tend to quote diffe~ent causes and class
ifications. The list presented below is taken from the book by
Martin and McClure. It should be remembered that this is not an
all-inclusive list, but is merely a general guideline.

21

2.3 ERROR CATEGORIES
I. Design Error

1. Missing cases or steps
2. Inadequate checking/editing
3. Initialization error
4. Loop counter error
5. Misunderstanding of "specifications"
6. Incorrect algorithm (e.g. math error)
7. Timing problems
8. Failure to consider all data types

II. Coding Error
1. Misunderstanding of "design"
2. I/0 format error
3. Control structure error
4. Syntax error
5. Incorrect subroutine usage
6. Initialization/reinitialization errors

(e.g. incorrect "flagging")
7. Indexing/subscripting error
8. Naming inconsistency
9. Inadequate checking/editing

10. Error in parameter passing
11. Using wrong arithmetic mode
12. Overflow, underflow, truncation

III. Clerical Error
1. "Slip" of pencil (misspelling)
2. Keypunch/data entry

IV. Debugging Error
1. Insufficient or incorrect use of test cases
2. Negligence
3. Misinterpretation of error source/debugging results

V. Testing Error
1. Inadequate test cases/data
2. Misinterpretation of test results
3. Misinterpretation of program specifications
4. Negligence

VI. External
1. Hardware failure
2. Software reaction to hardware failure
3. Problems in other systems that interfaced with

this one

VII.Specification Error
1. Incomplete or ambiguous specification
2. Incorrect problem definition

22

2.4 DEBUGGING GUIDELINES
Almost any and all debugging activities, especially the ones in
itiated by individuals who do not have a good grasp of software
engineering, tend to be disjointed. If the individual is under
constant pressure to debug the program to meet deadlines, the ef
forts may be futile due to the disorganized attack to the bugs.
To remedy the situation, below you will find some specific
guidelines that must be observed. This list is taken from Martin
and McClure's book.

I. Do not use a random approach to debugging. Begin by
excluding the unlikely sources of the error. First
eliminate the simple cases, and then move on to the more
difficult cases.

II. Isolate one error at a time.

III. Employ defensive programming by making program errors
easy to locate with t.he use of debugging code embedded in
the program (e.g. printout of selective variable values,
logic traces, "end-of-program logic" message). After debug
ging is completed, leave the debugging code in the program
by changing each debugging statement into a nonexecutable
comment so they are available for future use but do not in
terfere with normal processing.

IV. Carefully study actual program output, comparing it to
samples of expected output. Many errors are observable in
the output listings.

V. Focus attention on data handled by the program rather
than solely on program processing logic. Focus on boundary
and invalid-input conditions when checking for data-related
errors. C~eck data type, data value ranges, data field
size, and data value.

VI. Use the most powerful debugging tools available and a
variety of debugging methods (e.g. computer-based and non
computer-based) to avoid becoming locked into considering
only one possibility too prematurely.

VII. Keep a record of errors detected and corrected,
noting where the errors occurred in .the program and the
types of errors that were found, since this information can
be used to predict where future errors will occur.

VIII. Measure program complexity. Programs (modules) with
high complexity have greater propensity for error and will
probably require more time to detect and correct errors.
Programs (modules) with high complexity are more likely to
contain specifications/design type errors, whereas programs
(modules) with low complexity are more likely .to contain

23

clerical/coding type errors.

(IX. Use programs artifically seeded with errors to train
programmers in debugging techniques and then give them im
mediate feedback on all seeded errors, showing them what
they missed. This is used in "computer center" operations
as well as in software engineering courses.)

24

3. OPTIMIZATION OF THE FORTRAN 77 SOURCE CODE

3.1 WHAT IS OPTIMIZATION
The source code written by the "programmer'' needs to be
''translated" into a form which will be understandable to the
hardware. Compilers will perform this operation. The source
code is operated on by the compiler to generate a new code, i.e.
program, which is called the "object code,'' or the object module.
In the generation of the object code the compilers can catch some
"inefficient'' FORTRAN statements or program segments. If the
compiler is instructed to do so, the compiler will replace the
inefficient code by an efficient code. This is optimization.

The levels of optimization are defined by the extent of
''replacements" that will be performed. Even the low~st level op
timization, i.e. no optimization, contains limited amount of im
provements. For example, a statement like X=((Y+S.-
3.))**(1./3.) will be modified to X=(Y+2.)**0.333333333333333.
At higher levels of optimization, the code that needs to be
modified is not so readily noticeable.

3.2 OPTIMIZING COMPILERS
All FORTRAN compilers running on miniframes and mainframes have
optimization capabilities. Some of th·e microcomputer-based com
pilers have started to have some optimization capabilities. As
the compilers perform higher and higher levels of optimization
and develop the corresponding object code, the possibility of
"generating" an object code that will not exactly do what was
specified by the source code arises.

In CDC NOS (Network Operating System) there are three leveis of
optimization; the highest, OPT=3, can be used with ''caution."
The new operating system, VE (Virtual Environment), that is being
developed by CDC, and is currently being tested at LUCC, does not
have OPT=3. Rather than having an object code of extreme speed,
which may not be fully reliable, the approach is in the direction
of the generation of the fastest object code that is fully reli
able.

3.3 WHY DO WE NEED OPTIMIZATION
It is known that compilation of a program without optimization
takes less time than its compilation with optimization. Thus as
far as the cost of compilation is concerned, compilation without
optimization is a be~ter choice! However, if the object code

25

generated after the compilation is to be executed it is not pos
sible to make a categorical statement as to which one will be
less costly.

If a program is to perform a substantial number of repetitive
operations, any optimization of these basic operations will sub
stantially reduce the total computational cost. For example, if
a program is coded to solve a "quadratic equation" once, the time
savings involved via optimization may not be perceptible, and
also may not be necessary.

Assume that a nonlinear finite element analysis of a three
dimensional framed structure is to be conducted. Further assume
that there are 1,000 beam-column elements with 6-degrees of
freedom per node. The structure is to be analyzed for 50 load
steps, and three iterations will be used per load step. Let us
also assume that the programming strategy employed is rather
routine, and the stiffness matrix for each element and the global
stiffness matrix will be reassembled for each iteration cycle of
each load step.

If we recall the formula for the computation of the element
stiffness matrix, i.e. [B]T[D][B], we will note that there are
two matrix multiplications per element. If "x-nanoseconds" can
be shaven of by using optimizaion from each matrix multiplica
tion, than the total savings will be: (x-nanoseconds)*(2 matrix
multiplications per element)*(1,000 elements)*(three iteration
cycles)*(50 load steps)= 300,000 * "x-nanoseconds.'' Thus if a
set of statements is to be executed too many times, any improve
ment on its performance will have a noticeable positive effect on
the total cost of the job.

For the type of program and problem described above, it will not
be unrealistic to say that "unoptimized compilation" will take
''1-unit of time," and the execution will require 100-units of
time. If optimization is to be used, the optimization time may
very well be 1.5-2 units of time. The execution time may very
well be 70-units of time. Thus the unoptimized run may cost
$101, and the optimized run will be $72.

If the execution of the prograa is far longer than its
compilation, this program is a candidate for some form
of optimization.

3.4 GUIDELINES FOR OPTIMIZATION
The following is a list of guidelines to assist in the decision
making process on whether the optimization should be performed or
not.

(I) The optimization is performed during the compilation
phase. If the compiler is instructed to perform higher

26

levels of optimization the amount of time required for the
compilation, which also includes the optimization, goes up.

(II) During the initial debugging phase of program develop
ment the use of optimization may not be prudent. This is
especially the case if you are still obtaining compilation
error messages.

(III) During the later parts of the debugging, where you may
be getting execution errors, the optimization could be used
with the following proviso. If the time required for the
execution of the program is substantially longer than the
time required to compile the program, some level of op
timization may be justifiable. If the additional time
required for the optimization is less than the execution
time, than the optimization is a viable alternative.

(IV) During the final testing of a program with different
data sets the decision regarding the different levels of op
timization will be similar to the above argument.

(V) When the program is "fully debugged(!!!)" and ready to
be installed in object code form, then the program should be
optimized to the most "reliable" level.

3.5 LEVELS OF OPTIMIZATION IN CDC NOS FORTRAN77 COMPILER
3.5.1 OPT=O Compilation
This mode corresponds to ''no-optimization," i.e. default value.
During compilation constant subexpressions and redundant instruc
tions are removed. These checks are made at the "statement
level." For example, X=((Y+5.-3.))**(1./3.) is modified to
X=(Y+2.)**0.333333333333333.

It should be noted
this level could have
program.

3.5.2 OPT=l Compilation

that most of the optimization performed at
been done by "careful" coding of the

In addition to the OPT=O level optimization, the following are
performed.

(1) Redundant instructions and expressions within a sequence
of statements are eliminated.

(2) PERT critical path scheduling is done to utilize the
multiple functional units efficiently.

(3) Subscript calculations are simplified, and values of
simple integer variables are stored in machine registers
throughout the loop execution, for innermost loops satisfy-

27

ing all of the following conditions:

a) Having no entries other than by normal entry at the
beginning of the loop.

b) Having no exits other than by normal termination at
the end of the loop.

c) Having no external references (user function
references or subroutine calls; input/output, STOP, or
PAUSE statement; or intrinsic function references) in
the loop.

d) Having no
backward to
loop.

IF or GOTO statement in the loop branching
a statement appearing previously in the

It should be noted that (a) above could have been done by careful
programming. However, (b) is not normally considered by the
programmers. Thus, the optimization by the compiler would be far
more efficient than the amateur attempts. In order to do (c),
you need to program in assembler language, thus optimization by
the compiler is a highly desirable alternative.

It can be seen that OPT=O was done at statement level; whereas,
OPT=l is carried out on program segments.

3.5.3 OPT=3 Compilation
In OPT=3 compilation mode, the compil'er performs certain op
timizations which are POTENTIALLY UNSAFE. The following op
timizations are performed in addition to those provided by OPT=2.

(1) In small loops, indexed array references are prefetched
unconditionally WITHOUT ANY SAFETY CHECKS.

(2) When an intrinsic function is referenced, the compiler
assumes that the contents of certain "B-registers" are
preserved for use following the function processing.

In a loop, the registers available for assignment are determined
by presence or absence of external references. External
references are user function references and subroutine calls,
input/output statements, and intrinsic functions (SIN, COS, SQRT,
EXP, etc.).

When OPT=3 is not selected, the compiler assumes that any exter
nal reference modifies all registers; therefore, it does not ex
pect any register contents to be preserved across function calls.

28

If a math library other than FORTRAN Common Library is used in an
installation to supply intrinsic functions, the B-Register por
tion of the OPT=3 option must be deactivated by an installation
option in order to ensure correct object code.

PAST EXPERIENCE USING "FULL OPTIMIZATION," I .E. OPT=3
FOR THE CURRENT CONFIGURATION, IN CYBER SYSTEMS GIVES
EXCELLENT RESULTS WHEN THE OPTIMIZATION WORKS. THERE
ARE CASES rfHERE THE OPTIMIZED OBJECT CODE DID NOT COR
RESPOND TO THE "FUNCTIONAL REQUIREMENTS" OF THE SOURCE
CODE. THUS, IT IS. RECOHHENDED THAT OPT=3 SHOULD BE USED
WITH GREAT CARE AND CAUTION.

3.6 PROGRAMMING STRATEGIES FOR OPTIMAL SOURCE CODE
The recommendations contained in this section are known to im
prove the execution time required of the programs written in
FORTRAN 77 running under NOS. Some of the recommendations were
also tested in select minicomputers, and it was observed that
there was a noticeable imp~ovement in the performance.

If the following guidelines are observed in the development of
the FORTRAN 77 source code, the program will run faster.

(1) Since the arrays are stored in columnar mode, DO-loops
(including implied DO-loops in input/output lists) which
manipulate multidimensional arrays should be nested so that
the range of the DO-loop indexing over the first subscript
is executed first. Implied DO-loop increments should be
"one" whenever possible.

Example: Poor practice:
DIMENSION A(20,30,40), B(20,30,40)
DO 10 I=1,20
DO 10 J=1,30
DO 10 K=1,40

10 A(I,J,K)=B(I,J,K)

Good practice:
DIMENSION A(20,30,40), B(20,30,40)
DO 10 K=1,40
DO 10 J:1,30
DO 10 I=1,20

10 A(I,J,K)=B(I,J,K)

29

(2) The number of different variable names in the subscript
expressions should be minimized. For example:

X:A(I+l,I-1) + A(I-l,I+l)

is more efficient than:

IPl=I+l
IMl=I-1
X=A(IPl,IMl)+A(IMl,IPl)

NOTE: It is also known that if the subscript expres
sions are overly complicated, than it may also cor
respond to an undesirable situation. Caution should be
used in the interpretation of the above guideline.

(3) The use of EQUIVALENCE statements should be avoided.

(4) COMMON blocks should not be used as a scratch storage
area for simple variables.

NOTE: The software packages that were initially
developed in the early seventies, e.g. FLMXPK, had
scratch variables for each subroutine in a LABELED COM
MON block. This permitted the saving of a dozen or so
address locations per subroutine. This approach is
redundant in today's programming approach.

(5) Program logic should be kept simple and straightforward.

NOTE: The basic premise of structured top-down program
ming practice requires that "spaghetti-like logic"
shall not be employed. The execution of the program,
or the subroutines, should start at the top, and
proceed until the end of this program unit; during
which time the control should not be transferred to an
earlier part in the program. A program that is being
written from scratch can follow the guideline.
However, most of the earlier vintage programs, espe
cially those that have been '"enhanced" at various
times, tend to have a spaghetti-like logic.

(6) Program unit, i.e. the main program or a subroutine,
length should be less than about 600 executable statements.

NOTE-I: However desirable, the above guideline is
sometimes impractical. The Wegmueller-Kostem plate
bending finite element has 24 degrees of freedom. The

30

element stiffness matrix can be populated in one master
subroutine. In very crude terms 576 statements, ex
clusive of any other statement to control the logic,
are needed to populate the matrix. Thus there are some
"algorithms'' that will inevitably need more than 600
executable statements to perform the assigned mission.

NOTE-II: The system-programmers or certain virtual
memory minicomputers recommend that after full debug
ging of the program, the subroutines should be
eliminated, and the whole program should be a
"continuous string." This type of an argument is
highly impractical; however, it indicates that the op
timal program for one computer with a given operating
system may not, actually will not, be optimal for
another configuration. Programs need to be "tuned" for
different configurations.

(7) The use of dummy arguments (formal parameters) should be
avoided if possible.

NOTE: This guideline somehow conflicts with the sug
gestions to use variable dimensions, where applicable.
The rule can be slightly altered: "Keep the number of
formal parameters at a minimum."

(8) The variable dimensions should be avoided if possible;
COMMON or local variables should be used instead.

NOTE: The exclusion of variable dimensions will create
havoc in programming. This guideline should be dis
carded for the sake of "convenience."

31

4. EFFICIENCY OF SOFTWARE

Efficiency is defined as the extent to which a program performs
its intended functions without wasting machine resources such as
memory, mass storage ut~lization, channel capacity, and execution
time. Efficiency is important but should not be carried to an
extreme. Many programmers are unnecessarily concerned with
machine efficiency considerations. This obsession with tuning
programs to achieve some optimal level of efficiency by playing
off time and space requirements is a questionable investment and
expense.

The issue above pertaining to dependency, or heavy dependency, on
the specific options of the operating system and or compiler
needs further elaboration. As will be discussed later in this
document, it is highly desirable that the program must be as
portable as possible. If the program is heavily dependent on an
existing system, then to move this program to another computer
facility will be a very painful proposition. Even much worse,
for a given computer configuration the vendor will periodically
"update" the compiler and the operating system. If each update
requires rewriting parts of the program, i.e. debugging, then
this program's efficency per run may be good, but over the life
of the use of the program it has been an inefficient one because
of the continuous investments of time required.

The second issue that requires careful addresing is the pos
sibility of using the OPTIMIZING COMPILER as a crutch for ineffi
cient and sloppy programs. The programmer should try to code the
program as efficiently as possible, without being to dependent on
the one-of-a-kind features of the operating system and/or com
piler. The optimization of this code will enhance its perfor
mance.

4.1 EFFICIENCY CHECKLIST
1. Is the program modularized and well-structured?

2. Does the program have a high degree of locality - that
is, does the program use only a small subset of its pages at
any point during execution - to aid efficient use of virtual
memory?

3. Are unused labels and expressions eliminated to take
full advantage of compiler optimization?

32

4. Are exception routines and error-handling routines iso
lated in separate modules?

5. Was the program compiled with the use of an optimizing
compiler?

6. Was as much initialization (e.g., initializing arrays,
variables, storage allocations) as possible done at compila
tion time?

7. Is all invariant code, that is, code which does not need
to be processed within a loop, processed outside the loop?

8. Are fast mathematical operations substituted for slower
ones? (For example, I+I is faster than 2*I.)

9. Is integer arithmetic instead of floating-point arith
metic used when possible?

10. Are mixed data types in arithmetic or logical operations
avoided when possible to eliminate unnecessary conversions?

11. Are decimal points of operands used in arithmetic
aligned when possible?

12. Are program variables aligned in storage?

13. Does the program avoid nonstandard subroutine or func
tion calls?

14. In a n-way branch construct, ·is the most likely condi
tion to be .TRUE. tested first?

15. In a complex logical condition,
.TRUE. expression tested first?

is the most likely

16. Are the most efficient data types used for subscripts?

17. Are input/output files blocked efficiently?

33

5. RELIABILITY OF SOFTWARE

Reliability is defined as the extent to which a program correctly
performs its functions in a manner intended by the users as in
terpreted by its designers. Total reliability ·remains a goal
rather than an actuality in virtually all "real-world" software.
There currently exist no means for guaranteeing 100% reliability
or for measuring exactly how reliable a program is.

5.1 RELIABILITY CHECKLIST

1. Does the program contain checks for potentially undefined
arithmetic operations (e.g., division by zero)?

2. Are loop termination and multiple transfer index
parameter ranges tested before they are used?

3. Are subscript ranges tested before they are used?

4. Are error recovery and restart procedures included?

5. Are numerical methods sufficiently accurate?

6. Are input data validated?

7. Are test results satisfactory (i.e., do actual output
results correspond exactly to expected results)?

8. Do tests show that most execution paths have been exer
cised during testing?

9. Do tests concentrate on the most complex modules and most
complex module interfaces?

10. Do tests cover the normal,
processing cases?

extpeme, and exceptional

11. Was the program tested with real as well as contrived
data?

12. Does the program make use of standard library routines
rather than develop its own code to perform co.mmonly used
functions?

34

6. UNDERSTANDABILITY OF COMPUTER SOFTWARE

Understandability is defined as the ease with which we can under
stand the function of a program and how it achieves this function
by reading the program source code and its associated documenta
tion.

A simple rule for the understandability of the software is 90-10
rule, which was suggested by Sheiderman (Human Factors in Com
puter and Information Systems, by B. Sheiderman, Winthrop Pub
lishers, Cambridge, MA, 1980):

A competent programmer should be able
reconstruct fro• aeaory 90% of tbe
minutes of examining the source code.

to functionally
•odule after 10

The following checklist can be used to assess the
''understandability" of any given source code. Detailed discus
sions of the entries can be found in Characteristics of Software
Quality, by B. Boehm, J. Brown, H. Kaspar, M. Lipow, J. MacLeod
and M. Menit, TRW/North Holland Publishing Co., 1978. The
greater the number of ''yes" answers, the greater the understand
ability of the software.

6.1 UNDERSTANDABILITY CHECKLIST

6.1.1 Structuredness

1. Is the program modularized and well-structured?

6.1.2 Documentation

2. Is the program documented? Minimal documentation for a
well-structured program requires a comment block for each
module, subroutine, or subprogram that explains:

(a) What the module does in one or two brief sentences.

(b) A list of program variables whose values may be
modified in this module.

(c) A list of modules that invoke this module.

35

(d) A list of modules that this module invokes.

3. Is
program?

other useful commentary material included in this
This would include:

(a) Inputs and outputs

(b) Accuracy checks

(c) Limitations and restrictions

(d) Assumptions

(e) Error recovery procedures for all foreseeable error
exist

(f) Modification history

(g) Date written and date last changed

6.1.3 Consistency

4. Is a consistent indentation and spacing style used
throughout the program?

5. Is there at most one executable statement per line of
code?

6. Are all variable names and procedure names unique,
descriptive, and in compliance with company standards?

7. Does each variable and each procedure have one and only
one unique name in the program?

8. Is each variable used to represent one and only one
quantity, and is each procedure used to represent one and
only one logical function?

9. Is the program a true representation of the design; that
is, is the integrity of the design p~eserved throughout the
entire program?

(a) Does the program neither add to nor subtract from
the design algorithm?

(b) Is the design structure exactly and explicitly rep
resented in the code?

10. Are all elements of an array/table functionally related?

36

11. Are parentheses used to clarify the evaluation order of
complex arithmetic and logical expressions?

6.1.4 Completeness

12. Are cross-reference listings of variable names and a map
of calling and called subroutines supplied?

13. Are all external references resolvable and all
input/output descriptions available?

14. Does the program contain all referenced subprograms not
available in the usual system library?

15. Are all unusual termination codes described?

16. Are error recovery procedures included?

17. Are error messages descriptive and clearly displayed?

6.1.5 Conciseness

18. Is all code reachable?

19. Are all variables necessary?

20. Is redundant
modules/subroutines?

code avoided

21. Is there a transfer to all labels?

by creating common

22. Is division of the program into an excessive number of
modules, overlays, functions, O+ subroutines avoided?

23. Are expressions factored to avoid unnecessary repetition
of common subexpressions?

24. Does the program avoid performing complementary opera
tions on the same variable(s) such that removal of these
operations leaves the program unchanged?

25. Does the program avoid poorly understood and nonstandard
language features?

6.2 COMMENTS ON THE MODULE SIZE
There have been a number of suggestions regarding how big a
module (sometimes translated as ''subprogram") is ''tolerable":

37

(a) The old rule of thumb was that a routine should not be
larger than the number of cards that can be gripped in one
hand between the thumb and the index-finger. (Highly
unscientific and depends on your "anatomy.")

(b) CDC: Should not exceed 100 lines (FORTRAN77 Reference
Manual).

(c) IBM: Should not exceed 50 lines (B. Boehm, "Seven Basic
Principles of Software Engineering," in Infotech State-of
the-Art Reports: Software Engineering Techniques, Infotech
International, Maidenhead, England, 1977).

(d) Practical suggestions: The length of the source code
should not exceed one page of printed lines.

(e) A counter-observation: Wegmuller-Kostem plate bending
finite element has 24-degrees of freedom. The terms of the
element stiffness matrix can be defined in one subprogram.
Just the listing of elements requires 576 lines. Additional
lines of the code ar~ essential for dimensioning, populating
the elements, etc. If this subroutine is broken into a
smaller subroutine, it will adversely affect its
"readability." Thus there are some operations that should
not be broken down merely for the size of the module.

38

7. MODIFIABILITY OF SOFTWARE

Modifiability is defined as the ease with which a program can be
changed. A programmer has a low probability of success when
modifying a program. If the modification involves fewer than 10
program instructions, the probability of correctly changing the
program in the first attempt is approximately 50%; but if the
modifications involve 50 program instructions, the probability
drops to 20% (J. Munson, "Software Maintainability: A Practical
Concern for Life-Cycle Costs," Proceedings of IEEE 2nd Interna
tional Computer Software and Application Conference, Chicago,
1978).

5.1 MODIFIABILITY CHECKLIST

1. ~s the program modular and well-structured?

2. Is the program understandable?

3. Does the program avoid using literal constants in arith
metic expressions, logical expressions, size of
tables/arrays, and input/output device designators?

4. Is there additional memory capacity available to support
program extensions?

5. Is information provided to evaluate the impact of change
and to identify which portions of the program must be
modified to accommodate the change?

6. Is redundant code avoided by creating common
modules/subroutines?

7. Does the program use standard library routines to
provide commonly used functions?

8. Does the program possess the quality of generality in
terms of its ability to:

(a) Execute on different hardware configurations?

(b) Operate on different input/output formats?

(c) Function in subset mode performing a selected set
of features?

39

(d) Operate with different data structures or algo
rithms depending on resource availability?

9. Does the program possess the quality of flexibility in
terms of its ability to:

(a) Isolate specialized functions that •are likely to
change in separate modules?

(b) Provide module interfaces that are insensitive to
expected changes in individual functions?

(c) Identify a subset of the system that can be made
operational as a part of contingency planning for a
smaller computer?

(d) Permit each module function to perform one unique
function?

(e) Define module intercommunication based on the func
tion the modules perform, not upon how the modules work
internally?

10. Is the use of each variable localized as much as
possible?

40

8. PORTABILITY OF SOFTWARE

Portability is defined as the extent to which a program can be
easily and effectively operated in a variety of computing en
vironments.

The criticality of this issue can not be overstated. For ex
ample, a program may be developed, or an existing program may be
modified, within the scope of a research project. These ac
tivities may be carried out in CYBER 730. The program may then
have to be "installed" in a virtual 32-bit machine. Or, con
versely, a program may have to migrate from a virtual 32-bit
machine to CYBER. Major modifications may have to be undertaken.
In the case of a major program, say about 50K executable state
ments, in FORTRAN-IV from CYBER environment to IBM-3084 FORTRAN
VM corresponds to many ~an-months of effort, if not in excess of
a man-year effort. CYBER has a relatively straightforward job
control language (JCL), where very little, if any, references to
the source code and files· need to be made at JCL. IBM 3084
FORTRAN VM has a highly complex JCL environment, where extensive
referencing to the source code files has to be made.

Regarding the portability, the following ''experience" should be
remembered. A finite element code for DG MV/10000 with AOS/VS
operating system was brought in. The developers indicated there
was no DG-AOS/VS version of this program, however, an IBM 4341
version did exist. Both the DG and IBM versions were based on
32-bit virtual configuration, with very similar FORTRAN77 com
pilers. It was suggested that with slight changes the IBM ver
sion should run on DG. In the effort to compile the program, the
DG compiler generated fatal error messages about three times the
length of the source code. The project was abandoned!

8.1 PORTABILITY CHECKLIST

1. Is the program written in ;high-level, machine-
independent langua.ge?

2. Is the program written in a widely used standardized
programming language, and does the program use only a stand
ard version and features of that language?

3. Does the program use only standard, universally avail
able library functions and subroutines?

41

4. Does the program use operating system functions mini-
mally or not at all?

5. Are program computations independent of word size for
achievement of required precision or memory-size
restrictions?

6. Does the program-initialize memory prior to execution?

7. Does the program position input/output devices prior to
execution?

8. Does the program isolate and document machine-dependent
statements?

9. Is the program structured to allow phased (overlay)
operation on a smaller computer?'

10. Has dependency on internal bit representation of al
phanumeric or special characters been avoided or documented
in the program?

8.2 GENERAL COMMENTS
The literature on conversion of software from FORTRAN-IV to
FORTRAN77 is limited. The publications by hardware and software
vendors tend to lack specificity. One of the few "general" books
that can be referred to is by Ingemar Dahlstrand, Software Por
tability and Standards, John Wiley and Sons, 1984.

Canned automated conversion programs tend to follow Kostem's 95-5
rule; that is, the program will convert 95% of FORTRAN-IV state
ments that are unacceptable in FORTRAN77. The remaining 5% con
version, which will have to be done "manually," would require 95%
of the total conversion effort.

42

9. TESTABILITY OF SOFTWARE

Testability is defined as the ease with which program correctness
can be demonstrated. Thoroughness of testing depends on a care
ful selection of test cases and is guided by the following rules:

1. Every program instruction and every path should be ex
ecuted at least once.

2. The more heavily used parts of the program should be
tested more thoroughly.

3. All modules should be tested individually before they are
combined. Then the paths and intersections between the
modules sh~uld be tested.

4. Testing should proceed from the simplest to the most com
plex test cases; that is, tests involving fewer loops and
conditions should be performed before tests involving more
complicated control constructs and more decisions.

5. Testing of program should include normal processing
cases, extremes, and exceptions.

9.1 TESTABILITY CHECKLIST

1. Is the program modularized and well-structured?

2. Is the program understandable?

3. Is the program reliable?

4. Can the program display optional intermediate results?

5. Is program output identified in a clear, descriptive
manner?

6. Can the program display all inputs upon request?

7. Does the program contain capability for tracing and dis
playing logical flow of control?

8. Does the program contain a checkpoint-restart capability?

9. Does the program provide for display of descriptive error
messages?

43

10. USABILITY OF SOFTWARE

Regardless of the high degree of accuracy, efficiency, ease of
maintenance, etc. of any given software package, the single most
critical attribute of the software is its "usability." If, in
order to use the software, the user has to master too many sub
ject areas or be cognizant of many rules regarding the use of the
program, than regardless of the potential of the software its use
may either be limited, or if the users are required to use it,
then the efficient use of the program can not be attained.

In the extreme, it is stated that any given software should not
have a users manual(!!!). The program should prompt the user for
input data stream, and for the interpretation of the results.
For example, the manuals of the finite element program ANSYS take
a number of three ring binders. The program also contains an on
line "manual" capability. However, due to the abbreviated na-.
ture of the on-line manuals, the complexity of the subject matter
dictates the use of the hard-copy manuals. The on-line manual
capability is employed by the user during the "session" to check
the key points and salient details only. Thus, so far for com
plicated programs, e.g. nonlinear finite element analysis,
''manual-less" programs, espoused by the computer scientists and
artificial intelligence experts, have not materialized as yet.

The ''cost" associated with the usability of the software may be
the single most important factor in the use of the computer in
any given process. In the Lientz-Swanson survey of over 500
data-processing departments, almost 50% of all software main
tenance work was attributed to user requests, while less than 20%
was attributed to software errors (Software Maintenance Manage
ment, by B. Lientz and E. Swanson, Addison-Wesley Publishing,
Reading, MA, 1980).

10.1 USABILITY CHECKLIST
(Based on "User-Perceived Quality
Dzida et al., Proceedings of 3rd
Software Engineering, May 1975).

of Interactive Systems," by W.
International Conference on

1. Is the program self-descriptive from the user
perspective?

(a)
what

Are the explanations of how the program works and
the program does available in different levels of

44

detail with examples included?

(b) Is the HELP feature pertinent to any dialogue
situation included?

(c) Is a correct, complete explanation of each command
and/or operating mode available on request?

(d) Can the user become thoroughly acquainted with the
program usage without human assistance?

(e) Is current program status information readily
available on request?

2. Does the program provide the user with a satisfying and
appropriate degree of control over processing?

(a) Does the program permit interruptions of a task to
start or resume another task when operating in interac
tive mode?

(b) Does the program permit process canceling without
detrimental or unexpected side effects?

(c) Does the program allow the user to make background
processes visible?

(d) Does the program have a command language that is
easy to understand and allows clustering of commands to
build "macros?"

(e) Does the program provide detailed prompting when
requested to help the user find his way through the
system?

(f) Does the program provide understandable, non-
threatening error messages?

3. Is the program easy to learn to use?

(a) Is the program usable without special data
processing knowledge?

(b) Are input formats, requirements, and restrictions
completely and clearly explained?

(c) Is user input supported by a menu technique in in
teractive systems?

(d) Does the program offer error messages with correc
tion hints?

45

(e) For interactive systems, are manuals "on-line?"
For batch systems, are manuals readily available?

(f) Are manuals written using user terminology?

4. Does the program make use of a data management system
that automatically performs clerical/housekeeping activities
and manages formatting, addressing, and memory organization?

5. Does the program behave consistently in a manner that
corresponds to use~ expectations?

(a) Does the program have a syntactically homogeneous
language and error message format?

(b) Does the program behave similarly in similar
situations by minimizing variances in response times?

6. Is the program fault-tolerant?

(a) Can the prqgram tolerate typical typing errors?

(b) Can the program accept reduced input when actions
are to be repeated?

(c) Can command be abbreviated?

(d) Does the program validate input data?

7. Is the program flexible?

(a) Does the program allow for freeform input?

(b) Does the program provide for repeated use without
the need for redundant specifications of input values?

(c) Are variety of output options available to the
user?

(d) Does the program provide for omission of unneces
sary inputs, computations, and output for optional
modes of operation?

(e) Does the program allow the user to extend the com
mand language?

(f) Is the program portable? ·

(g) Does the program allow the user to define his own
set of functions and features?

(h) Can the program be seen in a subset mode?

46

(i) Does the program allow the experienced user to
work with a faster version, allowing abbreviated com
mands, default values, and so on, and inexperienced
users to work with a slower version, providing a help
command, monitoring capabilities, and so on?

47

11. OVERLAYING

11.1 NEED FOR OVERLAYING
The physical size of the central memory of any given computer is
not unlimited. As shown in Fig. 11.1, part, if not most, of the
physical space of the central core will be taken up by the
operating system, and many other resident "routines and files."
The indicated available space is what the program, including the
DIMENSIONED ARRAYS, can utilize. If the total central core
requirement of the program is less than the available space, than
the program can compile, link, load and execute without any com
plication. It should be noted that if all variables are in
DOUBLE PRECISION, than the central core requirement for the vari
ables will be twice the amount of the SINGLE P~ECISION case.
This does not mean that the core requirements will double; only
the space needed by the variables will increase.

COMPUTER MEMORY

.
OPERATING SYSTEM

COMPILERS

"ACCOUNTING FILES.,

LIBRARY ROUTINES J ETC.

AlJAILABLE SPACE!!!!!

Fig. 11.1 The Use of Non-Virtual Computer Core

48

If the available central core space is less than the program
requirement (see Fig. 11.2), and if the computer system in ques
tion is not a virtual system than the program can not be handled
by this computer without some modifications. Some of the
"scientific computers," e.g. CYBER 850, and most of the personal
computers do not have virtual memory. If these computers are to
be used for very long programs and/or programs that use many

, large arrays, such that they will not fit into non-virtual sys
tems, the approach to take will be the use of OVERLAYING. This
is a definite need for the problem shown in Fig. 11.2.

The need for overlaying can be illustrated via a past experience
with program development in CDC 6400 computer (predecessor of
CYBER 850 at the LUCC). In the early seventies this particular
computer had 40,960 60-bit words were available to the users.
The developed finite element program, even in its pre-production
version, required about 230,000 words of central core storage!
Due to the long word-length of the computer, there was no need
for any DOUBLE PRECISION variables. Due .to the programming
strategy involved it was possible to develop and execute the
program within 35,000 word central storage. Because of the
"improvements(!)" to the operating system by the vendor, the
program later required about 40,500 words.

In the develop•ent of overlayed progra.s for non-virtual
computer systems, the maximum central core required
should be kept "sufficiently" below the liaitations of
the computer. Any future limited changes to the program
and/or changes by the vendor to the computer system
should not require the reorganization of the program.

11.2 OVERLAYING CONCEPTS
In order to "fit" the program to the core it is essential that
the program on hand be subjected to a major "re-arrangement."

·This effort is usually quite demanding if the program was
developed without any consideration for future overlaying.
However, if the program development is conducted with full con
sideration for overlaying, than this program can be overlayed
with great ease.

Furthermore, an overlayed program can be stripped of its overlay
features and executed as a "routine" program if needed. Such a
need can arise if the program migrates from non-virtual memory
computer to a virtual memory computer, e.g. from CYBER 850 to
Data General MV/10000.

11.2.1 MAIN and PRIMARY OVERLAYS
In order to overlay a program, first a
"executive" program needs to be identified.

49

"main," "core," or
This "portion" of

COMPUTER MEMORY

I
.

OPERATING SYSTEM

I COMPILERS

I 11ACCOUNTING FILES ..

I LIBRARY ROUTINES} ETC.

A~JAILABLE SPACE!!!!!

PR06R8H

<MOTE: PR06R8H > RURILRBLE SPICE >

Fig. 11.2 Central Core Requirement of A Large Program

50

the original program will reside in core for the full duration of
the job. This program can be referred to as (OVERLAY 0,0), and
is also known as the MAIN OVERLAY. These discussions can best be
visualized through inspection of Fig. 11.3. It is then possible
to identify major program segments that can reside in the core
one at a time in addition to the executive program. OVERLAY-1,
OVERLAY-2, etc. can be considered as independent programs, or
"mega-subroutines." OVERLAY-1, OVERLAY-2, etc. can be called
only from OVERLAY-0, i.e. the executive program. When the execu
tion of OVERLAY-0 reaches such a point that a call is made to
OVERLAY-!, OVERLAY-0 and OVERLAY-1 will be in the central core.
When this call is made the control of the flow of the program
will be transferred to OVERLAY-1. This is similar to the calls
that are made to SUBROUTINES. At the completion of the execution
of OVERLAY-1 the control will be transferred back to OVERLAY-0.
At this stage OVERLAY-1 is "automatically removed" from the
central core. The execution of OVERLAY-0 will continue, and a
call to OVERLAY-4 may be encountered. OVERLAY-4 will be brought
inro the core; thus, OVERLAY-0 and OVERLAY-4 will be in core. At
the completion of the execution of OVERLAY-4, the control will be
transferred back to OVERLAY-0, etc.

PROGRH"
E>{ECUTIUE PROGRAH1 I.E. TRAFFIC CONTROLLER
(must reside tn-cot--e thr·oughout the execution)

CAti CALL 01JERLAYS-11 21 3 1 i

,OIJERLAV-1

OIJERLAY-2
CAN CALL OIJERLAYS- 2.11 2.21 2.31 2.i

OUERLRY-i!.l
OOERLRY-i!.l

OOERLRY-i!.i!

I Ol.IERLAY-3

JouERLAY-i

OOERLRY
-i!.'l

Fig. 11.3 Overlay Structuring of A Large Program

51

11.2.1 SECONDARY OVERLAYS
It is also possible to identify program segments within a primary
overlay that can be considered as "self-contained." Calls to
these SECONDARY OVERLAYS can be made from the PRIMARY OVERLAY to
which they ''belong." The general concept can be seen in Fig.
11.3. It should be noted that, for example, during the execution
of OVERLAY-2,3, the overlays that will be in the core are
OVERLAY-0, OVERLAY-2, and OVERLAY-2,3.

There are no tertiary overlays.

11.3 PROGRAMMING STATEMENTS
OVERLAY is not an ANSI (American National Standards Institute)
approved feature. The material presented in this section is
based on FORTRAN 5 (enhanced version of ANSI FORTRAN 77) of Con
trol Data Corporation. The following is a typical program, whose
length can be from a few hundred to many hundreds of thousands of
lines long:

OVERLAY(CE309,0,0)
PROGRAM XXX

CALL OVERLAY(5HCE309,1,0)

CALL OVERLAY(5HCE309,4,0)

....
CALL OVERLAY(5HCE309,2,0)

CALL OVERLAY(5HCE309,3,0)

CALL OVERLAY(5HCE309,1,0)

STOP
END
SUBROUTINE PDQ(,,,,,)

RETURN
END
[additional subroutines, where needed]
OVERLAY(CE309,1,0)
PROGRAM YYY

RETURN
END

52

SUBROUTINE ABC(.....)

RETURN
END
[additional subroutines, where needed]
OVERLAY(CE309,2,0)
PROGRAM ZZZ

CALL OVERLAY(5HCE309,2,1)

CALL OVERLAY(5HCE309,2,4)

CALL OVERLAY(5HCE309,2,2)

CALL OVERLAY(5HCE309;2,3)
. PROGRAM YYY

CALL OVERLAY(5HCE309,2,1)

....
RETURN
END
[as many subroutines as needed]
OVERLAY(5HCE309,3,0)
PROGRAM WWW

RETURN
END
[subroutines, if needed]
OVERLAY(5HCE309,4,0)
PROGRAM XYZ

RETURN
END

In the above example CE309 is the name of the file on which gen
erated overlays are to be written. "0,0", "1,0", "2,0", "2,1",
"2,2", etc. are the primary and secondary overlay numbers. These
numbers are in octal (0 through 77).

There are additional parameters, or switches, on the overlay
statement. They are not used frequently enough to justify their
presentation herein.

53

11.4 OVERLAY COMMUNICATIONS
Inspection of Fig. 11.3 and the ''program" given in the previous
section indicates that there exists a need for a mechanism to
transfer the values of the variables from one overlay to another.
If such a mechanism does not exist the values read or computed,
for example, in OVERLAY(CE309,0,0) can not be transferred to
OVERLAY(CE309,1,0).

Communication amongst the overlays, in terms of the transfer of
data, can be accomplished in the following two ways:

(a) LABELED COMMON and/or blank COMMON, and/or

(b) files.

In the use of COMMON the values can be assigned to the variables
listed in the COMMON in one overlay. These LABELED COMMON and/or
blank COMMON must also be listed in the MAIN OVERLAY, i.e.
OVERLAY(... ,O,O). The overlay which needs this information can
have the appropriate COMMON blocks listed. Thus, for example,
the values generated in OVERLAY(.•. ,1,0) will, in a sense, be
available in the corresponding COMMON blocks in OVERLAY(•.. ,O,O),
and when OVERLAY(... ,4,0) is activated the data will readily be
available if the COMMON blocks are listed in this overlay.

The second approach, which is especially used for large matrices,
employs the unformatted file approach. At OVERLAY(... ,O,O)
necessary files, e.g. TAPE11=11 in FORTRAN 5 terminology, can pe
d~fined. In an appropriate overlay the data can be written to
this file. In another overlay the file should be rewound (i.e.
issue REWIND command) and the data can be read. Since the "file
number" is another variable that must be transmitted, it needs to
be defined in a LABELED COMMON.

11.5 VIRTUAL COMPUTER SYSTEMS
In virtual configurations the physical size of the central core
is not a major limitation if the program has core requirements
that are far larger than the core. Part of the "hard disk'' is ac
cessible by the program as if it is part of the core. This
access is automatically handled by the.software system of the
computer, and it is totally transparent to the user. Thus, there
is no need to overlay the programs. Actually, most new systems
do not have any overlay features. All minicomputer systems have
virtual memory features. Most advanced and powerful personal
computers are in the process of introducing virtual system con
cepts. On the other hand, MS.FORTRAN, which is available for
personal computers with MS.DOS and PC.DOS, has the overlay fea
tures. For any scientific and engineering computations the com
puter system should either have overlay features or should have
virtual memory.

54

•

11.5.1 Computer Resource Requirements
Limited benchmark tests conducted by the author may give some
''feel" for the CPU time requirements for overlayed vs. virtual
systems. Two finite element programs were fine-tuned for non
virtual memory system, i.e. overlaying was used. A series of
finite element problems were executed. The same problems were
run using two different virtual memory minicomputers using two
different finite element programs. The programs were fine tuned
by the developers for these minicomputers. The same problems
were executed in these new programs with modified element and/or
node point numbering in order to give the best performance as far
as the specific program is concerned. The total CPU time for
these runs were at least five times larger than the corresponding
figures obtained in the non-virtual computer. For some problems
the factor was larger than "10." It is recognized that the mini
computers are slower than the scientific mainframes; however,
such a discrepancy in the time requirements was unexpected(!!!).

11.5.2 Future Trends
It should be recognized that the trend is towards virtual systems
for "decent" personal computers, workstations, minicomputers, and
mainframes. It is not unrealistic to expect that in the "near
future" there will not be any need for overlaying techniques.

11.6 EXAMPLE PROGRAM
The logical flowchart of a finite element program for the
elastic-plastic analysis of eccentrically stiffened plates is
given in Fig. 11.4. In this chart almost each "box" corresponds
to PRIMARY or SECONDARY OVERLAYs. The first two boxes correspond
to the MAIN OVERLAY.

55

I Start I
t

Read Data, Initialize Arrays,
Compute Constants

• jApply Unit Load!

• Compute Yield Load and
Scale up all Field Quantities

* I .
l Increment Load by (F} I

• l Iteration Begins J
t

Generate and Solve the Equilibrium Equa-
tions for the Increments in Displacement

' Compute Curvature Rates in each Plate Element
and Total Strain and Stress Rates in eac~ Layer

t
Compute Effective Stress and
Total Stresses in each Layer

' Yes Is Effective Stress in No
Update all Records J Plastic Plate Layers Acceptable?

t
Correct Stresses in
all Plastic Layers

i
Find and Print Accumulated Yes

Last Cycle
No

Values for All Field Quantities

t
No Yes I Stopj Last Load Increment?

•

56

	Lehigh University
	Lehigh Preserve
	1986

	Structured software - designed and maintenance, C.E. 309 Lecture Notes, Part II, August 1986
	Celal N. Kostem
	Recommended Citation

	tmp.1350423203.pdf.JVFuS

