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INTRODUCTION 

As a portion of the DOT project at Lehigh University entitled 

"Tolerable Flaw Sizes in Full Scale Bridge Weldments", crack shapes 

and structural complexities of various cracks which may be encoun­

tered in this project have been studied from the viewpoint of analy­

tical treatment. Exact analytical treatment of natural cracks in 

service components has never been possible. The first goal of the 

analytical work is to predict K-values for the cracks studied in this 

project with enough accuracy to permit an understanding of the fracture 

failues in terms of failure load and fracture toughness. A second 

goal' o·f the analytical study is to develop simplified methods of 

dealing with the influences of structural complexities commonly as­

sociated with bridge structure cracks. It is believed that the 

methods discussed in this report will prove satisf~ctory with regard 

to the first objective. Since the two goals are related, some com­

ments on simplification of K-estimate methods will be included. 

Two-dimensional problems involving one or two free edges and 

various stress distributions are discussed first. These results are 

of value for direct use in the case of through-the-thickness cracks. 

In addition they provide perspective with regard to the interaction 

between free surface effects and stress distribution. Three-dimen­

sional crack problems are much.more complex .. The half-elliptical 

crack extending directly into a plate from a single free surface was 
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first discussed in 1962 (1). Increased interest in this problem led 

to enough analytical and experimental results so that approximate K­

estimates for uniform tension and uniform bending can be made with 

some confidence. 

A useful proposal for making estimates of this kind in terms of 

semi-empirical equations has been furnished by Merkle (2,3). In the 

case of surface cracks which have a large surface length-to-depth 

ratio (greater than 6) , K-values for the central region of major 

interest can .usually be understood in terms of a two-dimensional 

analysis. For the cracks with smaller surface length-to-depth ratio, 

the accuracy of Merkle's equation should be on the order of ±5%, an 

adequate degree of precision for this project. In the case of residual 

stress fields which cannot be closely approximated as a combination 

of uniform bending and uniform tension, use of Merkle's equation be­

comes very complex. Study has therefore been given to a weight factor 

approach to K-value estimates for three-dimensional surface cracks of 

ellipitical contour. This approach is based upon the exactly known 

K-value weight factors for the case of pairs of splitting forces 

acting on the surfaces of a circular disc crack in an infinite plate. 

Using these as a guide, approximat~ weight factor functions were es­

timated and explored for pairs of splitting forces acting on the sur­

faces of a flat elliptical crack in an infinite plate. A satisfactory 

degree of accuracy was obtainable with a relatively simple weight 

function when the ratio of the semi-axes of the crack was less than 3 

(corresponding to surface leng~h-to-depth ratio less than 6 for a 

surface crack). Calculations of K-values at several points of interest 
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on the crack boundary were made for a variety of stress distributions. 

Comparison of these results to results obtained using the Merkle 

equation and to K-value results otherwise available suggest approxi-

mate free surface influences for various free surface geometries. 

Because of the limited accuracy and limited number of possible three-

dimensional comparisons, estimates of the interaction between the 

free surface and stress distribution for three-dimensional cracks can 
, " <- • .,. ...l-..-.::-. I 
C\,.,)V t •' \.C,... (1 

be aG~~gned for specific problems· and on an individual basis, by com-

parison to known ttv-o-dimensional results • 
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1. 'IWO-DIMENSIONAL EDGE CRACK PROBLEMS 

As was discussed in the introduction, when surface cracks have a 

·large surface length-to-depth ratio, solutions for two-dimensional 

edge crack problems provide approximate stress intensity factors for 

the region near the deepest crack edge. 

One of the objectives of this section would be to provide infor­

mation about free surface effects on stress intensity factors in two­

dimensional crack problems. Some useful solutions for various geome­

tric and loading configurations are illustrated. 

A. An Edge Crack in Half-Plane (Straight Free Boundary) 

Figure la. 

Figure la 

Stress intensity factors for various 

loading conditions are known for this 

geometry. Only approximate formulae 

and their estimated accuracies 

will be presented for several basic 

stress distributions. For more infor­

mation see Ref. 4, pp. 8.1-8.8. 
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(A-3) ·partially Distributed Constant 

Pressure, Fig. 1d. 

2 -1 b F(.£) K = - cr/TTa (sin -) 
cr . rr a a 

b 5/2 
(3) 

F(.£) ,._, 1.30 - 0.18 - (-) - a a 

(Better than 2% for b/a) - - cr any . 
F(b/a) is the free surface 

correction factor. 

Figure 1d 
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(A-4) Concentrated Splitting Forces 

Figure le 

a 

t t t t 

(Green's Function), Fig. le. 

K _ 2P 1 
- b 2 

;m /1-(-) 
a 

(
b ,..., 

F -) - 1.30 - 0.30 a 

(4) 

(Better than 2% for ~ny b/a) 

F(b/a) is the free surface 

correction factor. 

(A-5) Example: 

a -a y 

b~J 

a~ b 

Residual 
Stress 

a> b 

. -
_...- .-~ K =1. 122 CJ../TI(i .,. a 

/',. (a/cry = 0.4) 

b ..... a.: 
Figure lf 

-6-

Consider a crack extending 

through a tensile residual 

stress field (equal to yield 

stress cry) under uniform 

tension, as shown in Fig. 1f. 

When a ~ b, from Equation (1) 

K = 1.122 ay JTia (5) 

When a > b, from Equations 

(1) and (3), 

K = 1.122 ~/na 

2 -1 b b 
+-(a -a) /Tia(sin :-) F(-) 

n Y a a 

(6) 

Where F(b/a) is given by 

Equation (3). 



Note: 

1. For any non-uniform stress·distributions, stress intensity 

factors are obtained by integration of Equation (4). 

2. Equation (4) shows that the correction factor for a single 

free surface 

K/K ::::: 1.30 (7) 
CX> 

for any normal stress distribution 

as long as the normal stress has 

the same sign over the entire 

crack length. 

K is the solution for the infin-., 

ite plane with geometry and loading 

configuration reflected across the 

free boundary, Fig. 2. 

Figure 2 
· For the infinite plane prob-

lem, the exact Green's function 

is known (in Eq.(4), F(b/a) • 1) and K calculations are con-., 

siderably simpler. 

3. In engineering practice, when only the rough idea with ac-

ceptable accuracy will suffice, one can simply estimate K as 

K "" 1.15 K (8) 
CX> 

without causing substantial error. The error is never beyond 

15% and usually much less .. (When the normal stress has the 

same sign over the entire crack.) A complicated, more 

rigorous analysis may not be justified. 
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0 
(") 

,.-4 

4. When a more accurate value is desirable, K estimate is improved 

by separating non-uniform stress into uniform stress and non-

uniform stress as sho"tm in Fig. 4. 

:1.122 <L< 
K 

1.210 
co 

:1.210 <L< 
K 

1.310.· 
9J 

1.072 <L< 
K 

1.122 
co 

1.0 <L 
K 

< 1.072 
co 

Figure 3 

K 

a~ 

(J' -

.. 
I 

Figure 4 
-8-

From Equations (1) through 

(4), the ranges of free sur-

face correction factors K/K 
co 

for various non-uniform stress 

distributions are known 

(Figure 3) and the values at 

the middle of the range are 

within 4% accuracy. For the 

example shm.;rn in Figure 4, K 

is estimated as 

(9) 

and the accuracy improves as 

cr /cr increases. (Even when 
0 

cr = 0, accuracy is within 
0 

4%). 

Although this method 

applies to the case where the 

stress distribution changes 

its sign over the crack length, 

the accuracy is not e}.-pected 

to be as good. 



B. An Edge Crack in Half-Plane (Free Boundary Consists .of Two 

Straight Lines), Figure 6a·. 

Figure 5 

Figure 6a 

Figure 6b 

In welded structures or components, sur-

face cracks often initiate in the re-

sidual stress zone near the welding as 

shown in Figure 5. When the crack is 

relatively small, the solutions for the 

c~nfiguration shown in Figure 6 may have 

some value for estimating stress in-

tensity factors. 

Approximate formulas for stress 

intensity factors and their estimated 

accuracies are given for several loading 

conditions. These formulas were es-

tablished based on an interpolation 

method. 

(B-1) Uniform Normal Stress; Figure 6b. 

K = cr /Tia F(S) 

F(S)= 0.175 + 0.266S + 0.373S
2 

+ 0.126S
3 

83/2. 
(10) 

(Better than 1% for any S) 
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Figure 6c 

Figure 6d 

. (B-2) Linearly Varying Stress (In-Plane 

Bending), Figure 6c. 

K = a /i1Cz; F(S) 

( ) - 0.117 + 0.0228 + 0.055s2 + 0 106 ~ 
F S - 3/2 

s 

(Better than 1% for any S) 

(B-3) Concentrated Splitting Forces . 

(Green's Function), Figure 6d. 

K = /1 P • F(E , S) 
n (a - b) a 

F(~ S) A + BS + cs
2 

+ ns
3 

a 
8

3/2 

A = f (b/a) 

B ~-3.54 - 4f(b/a) + g(b/a) 

c = 9.19 + 5f(b/a) - 2g(b/a) 

D = - 4.24 - 2f(b/a) + g(b/a) 

f(b/a) = 1.10 (1- b/a) 312 

(ll) 

(12). 

_ + 7 • 35 - 1. 70 (b/a) 312 

g(b/a) - /1 + b/a 

(Much better than 5%; better than 

2% for S ~ 0.5) 

When b = 0 

1.10- 0.60S + 0.03S
2
+0.89s

3 
F(O,S) = 

8
3/2 

(Better than 2% for any S) 

-10-
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C. An Edge Crack in a Long Strip, Figure 7a. 

w 

Figure 7a 
a 

~--w 

a 

JZigure 7b 

w 

Figure 7c 

Stress intensity factor solutions are 

known for various loading conditions for 

this geometry. Only approximate formulas 

and their accuracies are given for 

several basic cases. For more informa-

tion see Ref. 4, pp. 2.10 - 2.21 and 

2 •. 25 - 2.29. 

(C-1) Uniform Tension, Figures 7b, 7c 

K = a ITici F(a/w) 

'

2,.;r na 
F(a/w) ='- tan­. na . 2w 

a na 3 
0.752 + 2.02- + 0.37(1-sin ~) 

x ------------~w------~·-------w~-
na cos-2w 

(Better than 0.5% for any a/w) 

-11-
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a 

w _ __,~ 

-a 

·a 

Figure 7d 

p 

Figure 7e 

(C-2) .Uniform Bending, Figure 7d 

K = a /i1a ·. F(a/w) 

I 
2,.;r na F(a w) = -- tan --na 2w 

X 

4 
0.923 + 0.199 (l-sin¥e) 

na cos-2w 

(Better than 0.5% for any a/w) 

(C-3) Concentrated Splitting Forces 

(Green's Function), Figure 7e 

K = 
2
P F(b/a, a/w) 

100 

F(b/a,a/w) = 3.52 (1 - b/a) 

(1 - a/w) 312 

4.35 - 5.28 b/a 

(1 - a/w) 112 

+{1.30 - 0.30(b/a)
312 

. . ~1 - (b/a) 2 1 
· 

(14) 

+ 0.83 - 1. 76 b/a} { 1- (1-b/a)a/w} 

(15) 
(Better than 2% for any b/a and a/w) 
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1..0 

b 

·o b 

Residual 

- ct (Jy 

( - 2b 
ct -

w - 2b) 
w 

Figure 8a 

(16) 

(17) 

Figure 8b 

K 

(C-4) Example: 

b 

w 

Consider an edge crack extending 

in a residual stress field, as 

shown in Figure Sa. 

b 1 
(- = -· w 7, 

2 
ct = -) 

5 

When a :::: b 

F(a/w) 

When b :::: a (< w - b) 

K = (l+ct) cry /i1a F l (b/a 

- a cry ;Tia F(a/w) 

~ere F(a/w) is given by 

(16) 

a/w) 

(17) 

Equation (13) and F
1

(b/a, a/w) 

is free surface correction for 

the uniform pressure distributed 

on a portion of the crack. 

Numerical values of F1(b/a,a/w) 

up to a/-v1 "' 0. 62 are read from 

. the curves given by Emery, et 

5 
al. (Figure 3· in Ref. 5) 

a :;;;:: w - b is not considered. 

In Figure 8b, numerical values of Equations (16) and (17) are 

plotted. It is noticed that the value of the stress intensity 

factor rapidly decreases as the crack extends beyond the tensile 

residual stress zone. 
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It should be noted that the solutions illustrated above are valid 

only when the displacement of the strip is free from constraint. In 

actual structures, any connected structural member is under constraints 

imposed by the connections. When a crack occurs in a certain component, 

its ·compliance increases and load and deformation are redistributed 

between members. Thus, the boundary condition is not displacement-

free but displacement-limited. If the change in compliance of the 

cracked member is kno~~ as a function of the crack size, such stat-

ically indeterminate problems will be solved by usual methods of 

structure analysis. The fracture mechanics method is helpful to es-

tablish the relationship between compliance and crack size of the 

component. 

(C-5) Examples of displacement constrained 
cr 

t t t strip with a single edge crack are 

given in Figure 9. The in-plane 

transverse displacement at infinity 

is restrained. 

The stress intensity factors 

are given by the following formulas 

K = cr jTia F(a/w) 

Where: 

a. Hhen the local in-plane trans-

verse d{splacement near the 

cr 
cracked section is not re- . 

Figure 9a strained (Figure 9a) 

-14-
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Figure 9b 

. 2 3 
a a a a 1.122- 0.561 w + 0.085(-w) + 0.180(-w) 

F(wJ= 

(18) 

(Better than 2% for any a/w) 

b. When the local transverse displace-

ment-is also restrained (Figure 9b) 

(Exact) 

2w 
na 

tan na 
2w (19) 

Equation (18) is 12 to 30 percent larger than Equation (19). When 

the s'trlp has attachments such as stiffeners, Equation (19) is ex-

pected to give reasonable estimates for stress intensity factors. An 

edge crack in the flange plate of a beam is a typical example in 

practical structures. 

-· 
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2. 'IRE HALF-CIRCLE Al\TD QUARTER-CIRCLE SURFACE CRACKS 

A. A Circular Crack in an Infinite Body 

Corresponding to a policy of treating the influence of free sur-

faces as a superimposed correction factor (see Section lA), the K cal-

culations for surface cracks of half-circle and quarter-circle shape 

depend in a basic way upon the K values for a circular (penny-shaped) 

crack in an infinite body subjected to various normal stress distri-

butions. 

(A-1) When the normal stress distributions have circular s;~etry, 

the K is independent of position along the crack border. 

Furtherm9re, the analytical simplicity thus obtained permits 

computation of K for any normal stress distribution, p(r), 

from the following equation. 
a 

K = j p(r) f(r) dr 
0 

f(r) = 2 

100 
r 

2' 
r 

where a is the radius of the· circular crack. 

(20) 

Results for a number of. such stress distributions are given 

in Reference 4. 

(A-2) When the normal stress distributions are not circular, the 

stress intensity factor which is dependent on position along the 

crack border can be calculated using the solution fer con-

centrated splitting force problems. 
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Figure 10 

y 

Figure 11 

When a pair of splitting forces P are 

applied at point B, the stress in-

tensity factor at point A (see Figure 

10) is given by (4) 

2' 
- r (21) 

For any normal stress distribution 

p (x, y) or p (r,9), the stress in-

tensity factor at point A, K(X, Y) 

or K (~), is calculated by 

Equation (21) as follows (see 

Figure ll) 

K(X,Y)=ffp(x,y)f1(X,Y;x,y)dxdy 

over 
2+ 2 2 

X y Q1, 

where 

a 2n 

(22a) 

K(§)= J fp(r,9)f2(??;r,9)r d9 dr 
r=o 9=o 

where 

(22b) 

Some examples are given in Ref. 4. 
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(A-3) Two-dimensional normal stress fields, p(x,y) = p(y), such as 

uniform bending field ·are special cases of (A-2). · To analyze 

y 

a 

load p 

p 

A 

Figure 12 

y 

y > c 

..el 

X 
..e2 

y 

..el 
..e2 

X 

Y< c 

Figure 13 

problems of this type, it is helpful 

to establish the solution for con-

stant line load problem, Figure 12. 

When a constant line load p is ap~ 

plied along y = c, the stress. in-

tensity factor at A, K(X,Y) is cal-

culated from Equation (21) or (22) 

as follows, see Figure 12. 

K(X, Y) 

where 

b 

- _i_ J _'.}""""'--'-b z __ -=-x=--2--
- ~ r.;:;;:; 2 2 dx 
. IV na (X-x) + (Y-c) 

-b 

b = fa2 21 
- c 

(23) 

Equation (23) is reduced to the fol-

lowing simple form 

K(X, Y) - _p_ _I - (fi - .,.ITia ..e 1 - l ) (24) 

or 

-(@ - l)when Y > c K(X, Y) 
_ _p_ a+Y 
-/m Y-c 

-c I 

- l)when - _p_ a - y K(X, Y) - ;m ~ c - y Y<c 

(25) 

See Figure 13. 
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The stress intensity factors for any two-dimensional normal 

stress distributions, p(y), are c~1culated by Equation (25) as follows: 

K(X,Y) 

where 

y 

f p(y) f1 (y,Y) 

-a 

a 

dy + f p(y) 
y 

1 ( 
1 a + Y £1 (y,Y) = jTia ~ y _ y I) 

(~~=(I) 

(26) 

For an example, the stress intensity factor at point A, for a "tent­

shaped" two-dimensional normal stress distribution p(y) = p(l - Jyj_) a 

y - 2-D Stress 

p 

. Figure 14 

The final expression is 

2 15 4 K(X Y) = - p JTia - - -
' TI 6 3 

as shown in Figure 14, is calcul-

ated by Equation (26) • 
y 

. K(X,Y) ~I (1 - ~) fl (y, Y)dy 

-a a 

+ I ( 1 - ~) f 2 (y 'Y) d y 
y 

For Y > b 

f 1(y,Y)dy 

y3/2(4 y ~ <a) 1 + a - a (27a) 

or 
2 l 5 4 (sin._§) 

312
( ~ 1 

I ) I K(~) = - p jTia - - - + sin ~ - ~sin Q (27b) 
TI 6 3 
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K is symmetric with respect to x axis (y = 0). This is the 

exact solution of the problem and K(~) is plotted in Figure 18. 

B. The Half-Circle Surface Crack and the Quarter-Circle Corner Crack 

For a half-circle surface crack and a quarter-circle corner crack, 

the influences of free surfaces are treated as corrections to the 

solution for the circular crack ~<lith the normal stress distribution 

reflected across the free surfaces. 

are defined in Figur~ 15. 

Crack 
Geometry 

Half-Circular 
Surface Crack 

Quarter-Circular 
Corner Crack 

. 

-x 
y 

Normal Stress 
Distribution 

p(x,y) 

= f(x,y) 

p(x,y) 

= f(x, IYI) 

. p (x,y) 

= f (x,y) 

p (x,y) 

= f(lxl,iy!} 

The free surface corrections 

Stress 
Intensity Free Surface 

Factor at A Correction Factor 

KH(~) 

= KO ( §) . F H ( ¢) 

K (tP) 
0 

KQ(~) 

= K0 (~) ·FQ(~) 

Figure 15 
-20-



·Discussions will be made for the follo-.;..ring tHo cases where the 

exact solutions for the circular crack, K
0

(g), and the numerical values 

for the half-circle crack, KH(~), and the quarter-circle crack, 

KQ(~~' are available. 

(1) Uniform Tension 

(2) L~nearly Varying Stress 

Approximate formulas for free surface correction factors will be pre-

sented for· these cases. 

(B-1) Uniform Tension p(x,y) = a 

For a circular crack, the exact solution is 

(28) 

For a half-circle surface crack, an approximate formula for 

the free surface correction factor, FH(g) is available. 

where 

1.211- 0.186 /sin Q 

(~ > 10°) 

"(29) 

2 This FH(§) formula was obtained by Nerkle based on the anal-

ytical results by F. W. Smith et al
6

• FH( §) is. shown in 

Figure 16. 

For a quarter-circle corner crack, there are Tracy's 

numerical result by a finite element method 7 and the result of 

Kobayashi 
8 

by the alternating procedure. There et al is some 

discrepancy between these results. Since Kobayashi et al 

..;21-



- . 

. .. 

1.4 

c:r 
LJ.. 

:c 
LJ.. 

Uniform Tension a 

Circular Crack 

K 0 ( ~ ) = ~a /;a 

Half-Circular Surface Crack 

KH(~) = ~a/;a·FH(~) 

Quarter-Circular Corner Crack 

et al 

FQ{~) for Quarter-· 
Elliptical Crack 
with Aspect Ratio 
o. ·gs 
FQ(~) or 

FH(~)FH(90°-~)G(¢) 

G(~) 

I 
I 

0.9L-----~------~----~------J-----~------~ 

0° 15° 30° 45° 60° 75° 90° 
---G-_ cp 

Figure 16 Free Surface Correction Factors for Half-Circular 
Surface Crack and Quarter- Circula~ Corner Crack 
Under Uniform Tension 
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estimated the accuracy of their result at better than 2%, except 

for the regions of the crack botder near the free surfaces, their 

result is used as KQ(g). The crack shape in their analysis is 

slightly different from a quarter-circle (a quarter-elliptical 

crack with aspect ratio of 0.98), therefore their result was ad-

justed slightly. · An approximate formula is given by 

where 

FQ(~) = 1.38 - 0.29 sin 2p 

(10° < Q < 80°) 

FQ(9?) is shmm in Figure 16. 

(30) 

In Figure 16, the values of the product of the correction factor 

to the half-circle for each surfaces FH(p) • FH(90° - Q) are also 

shown for comparison. It is suggested that the free surface cor-

rection to a corner crack is not given by the product of the cor• 

rection factor for each surface, but given by the following form 

(31) 

For a special case of uniform tension G(p) is approximately given 

by the formula 

G(~) 1.17- 0.19 sin 29/ 

(10° < p < 80°) 

. (32) 

0 ...0 However, in the middle region of the crack border (25 < 9 < 6.) ) , 

the difference between FQ(§) and FH(p) FH(90° - §) is within 2%. 
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(B-2) .Linearly Varying Stress: p(x,y) 

y 
The stress intensity 

factor in the bending stress 

field for th~ half-circular 

X p surface crack and the quarter-. 

circular corner can be dis-

y 
cussed by the solution for the 

linearly varying two-dimension-

al normal stress distributions 

shown in Figure 17. 

~y X p For the circular crack, 

the exact stress intensity 

factor is given by Equation 

(27). 
X p 

Figure 17 

K
0 

( ;p) = ~ p .,ITICi £ C §) 
11 0 

(33) 

where 
f ·c;;.) 5 4 ( . ;;.) 3/2 (\}r l+ . 

1
;:; _ 1---:---:-,) 

0 
~ = 6-3 s~n ~ . s~n~ -~s~nQ 

£ (<I>) is shown in Figure 18. 
0 

For the half-circular surface crack, there is an a·pproxi-

2 
mate formula given by Herkle based on the results of F. W. 

6 Smith et al , which is expressed as follows. 
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Circular Crack 

Half-Circular Surface Crack 

Quarter-Circular Corner Crack 

p 

~ 0.6r------+----~~~~-+------+------+----~ 
...-.. 

:r: 
~ 

~ 

~ 0.4 
~ 

t 

Figure 18 Stress Intensity Factors for Circular Crack, Half­
Circular Surface Crack and Quarter-Circular Corner 
Crack Under Linearly Varying Stress Fields 
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where 

fH(~) = 1.031- 0.186 /sin ~ - 0.54 sin Q 

(10° < ~0 ~ 90°) 

fH(<P) is. shown in Figure 18. 

(34). 

For the quarter-circular corner crack, there is the·result 

8 of Kobayashi et al by the alternating procedure • Their result 

is approximated by the following formula 

(35) 

where 

0.72 sin Q + 0.11 (sin ~) 2 

fQ(~) obtained by Kobayashi et al is shown in Figure 18 and 

compared with the approximate formula Equation·(35). 

It is noted that Equations (34) and (35) are not expres-

sed in terms of the free surface corrections. The free sur-

face corrections are not fH(g) and fQ(~) but FH(cp) ~ fH(9)/f0 (9) 

and FQ(Q) = fQ(~)/f0 (~), respe~tive1y. It seems that no dis-

cussions have been made in terms of the free boundary cor-

rections for the case of linearly varying normal stress· dis-

tribution, because the exact solution for the circular crack 

under two-dimensional "tent-shaped" stress field, f
0

(ii?), had 

not been known. 
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Circular Crack 

2 
= ;rP !iTa • f O ( ~ ) 

= ~ - j-(sincp)%(/l+sin¢ - /sin¢) 

Half-Circular Surface Crack 

Quarter-Circular Corner Crack 

1.4 

' ::r: 1.3 ' Ll... 

' 0' 
Ll... 

-e-..._.. 
c:i 1.2 

...... 
Ll... 

\. 

' -e-..._.. 
::r: 

LL... 

t 1.1 

1.0~----~------~----~------~------~----~ 

0° 15° 30° 45° 60° 75° 90° 

----- ¢ 

Figure 19 Free Surface Correction Factors for Half-Circular 
Surface Crack and Quarter-Circular Corner Crack 
Under Linearly Varying Stress Field 
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Since f
0

(2) is given by Equation (33) the surface cor­

rection factors FH(§) and FQ(g) are calculated. Tne values of 

FH(Q) and FQ(Q) are shown in Figure 19. Th~ approximate formulas 

for FH(§) and FQ(§) are expressed as follows: 

FH(Q) = 1.17- 0.31 sin Q + 0.32 (sin Q) 2 

{10° < i < s 90°) 

and 

FQ(2) = 1.22- 0.56 sin Q + 0.70 (sin 2) 2 

(10° < 2 < 80°) 

(36) 

(37) 

Corresponding to Equation (31), FQ(§) is expressed as the 

following product 

(38) 

I 

where FH (2) is the free sur-
2-D stress 

face correction factor for the 

circular crack shown in Figure 

20. 
1 

However, since FH (Q) is 

p not knovm for this case G(§) 

.. 

can not be separated. The 

c~rve for FH
1
(90°- Q)· G(2) = 

FQ(2)/FH(p) is shown in Figure 

19, which is approximated by 

Figure 20 

FH I (900 

the follm.;ing formula. 

g) • G(2) = 1.03 - 0.17 sin 2 + 0.39 (sin Q) 2 

(10° < 2 < 80°) 

. (39) 
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(B-3) Esti~tes of Stress Intensity Factors for the Half-Circular 

Surface Crack and the Quarte~-Circular Corner Crack under 

Arbitrary nvo-Dimensional Normal Stress Distribution: 

p(x,y) == p(y). 

y 2-D Stress Any non-uniform 

stress distributions, 

X 

Figure 21 

y 

+ 
p(y) pl (y) 

Figure 22 

p(y), can be separated 

as 

p(y) :: p + pl(y) 
·0 

where.p0 is uniform 

stress component and 

(40) 

p
1

(y) is the non-uniform 

stress components as 

shown in Figure 22. 

For the uniform stress component, the stress intensity factors 

for the half-circular and the quarter-circular cracks are given 

by Equations (29) and (30), respectively. 
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In engineering, ~.;hen a rigorous analysis is not justified, 

the contribution of p
1

(y) to K values is ·reasonably estimated 

in the follm.;ing way. 

When the non-uniform stress component, p
1

(y), can be 

approximated by a linear stress distribution, the approximate K 

values are give·n by Equations (34) and (35), respectively. 

Thus the total stress intensity factors are obtained by super-

position. 

When p
1

(y) is not approximated by a linear stress field, 

the stress intensity factor for the circular crack, K0 (~), under 

the normal stress distribution p1 (!yl), Figure 23, is readily 

obtained by the simple 
y 2-D Stress 

Figure 23 

integra~ Equation (26), 

where p(y) = p
1

(1yl). Thus 

it is now only necessary to 

estimate the free surface 

corrections, FH(§) and 

FQ(~), f6r the stress 

field, p
1 
(y). 

From Figur'es 16 and 19, in the middle region of the crack 

border (30° s § s 90°) for the half-circular surface crack and 

(30° s Q s 60°) for the quarter-circular corner crack), these 

correction factors are roughly 

FH(g?) ,..., 1.05 

F Q (9) ,..., 1.15 

-30-
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'. 
Therefore the total stress intensity factors are estimated as 

fo llm-1s: 

For the half-circular surface crack 

~(<p) ::: KHU(~) + 1.05 K
0 

(2) 

(30° ::;; ~ ::;; 90°) 

and for the quarter-circular corner crack 

KQ(Q) ~ KQU(2) + 1.15 ·K0 (§) 

(30° ::;; ~ ::;; ,60°) 

(43) 

(44) 

where ~U(Q) and KQU(~) are the K components for the 

uniform stress (given by Equations (29) and (30) with 

K0 (~) is the stress intensity factor for the cir-

cular crack for tl1e non-uniform stress component (given 

by Equation (26) with p(y) = p
1

Ciy!)). 

Examinations of service fracture failures in which rapid frac-

turing started from a surface crack have rarely, if ever, shown evi-

dence that the initial instability occurred close to a free surface. 

On the contrary, the fracture surface markings usually indicated that 

the instability was nearly simultaneous along a substantial segment 

of the internal (embedded) portion of the crack. It can be noted that 

the expected elevation of resistance to crack extension near the free 

surface would tend to offset the increase of K in such regions. Since 

the numerical calculations tend to lose accuracy near free surfaces, 

and in view of the primary ~egion _of instability suggested by fracture 

surface markings, an averaging of the numerical calculation of·K across 
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a substantial portion of the deep region of the crack would be expected 

to provide the most appropriate value of K for purposes of comparison 

to K1 . c. 
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3. ELLIPTICAL SURFACE CRACKS 

Methods.of finite element analysis for three-di~ensional cracks 

have been developed to a sufficient degree so that values of K for half 

or quarter elliptical surface cracks can be computed by this method 

with a potential accuracy of about 5 percent. However, this capa-

bility is localized and the calculations require substantial time and 

expenseo In the case of cracks in welded bridge components, generally .. 
the residual stress from welding will contribute a large fraction of 

the total K for a crack and will be kno-.;m with only limited accuracy. 

In addition, displacement constr~int influences due to attachments 

are often present which are difficult to properly represent even in a 

sophisticated finite element K value computation. Thus methods of 

estimating K for elliptical surface cracks based on plausible engine-

ering estimates seem most appropriate for this project. 

It will be assuw.ed that the trace of the leading edge of a 

surface crack can be represented as· either one-quarter of an ellipse 

(for a crack extending from a corner region) or one-half of an: ellipse. 
I ,' c (" ,1 .;_ <7 ,:;. I 
a~""~ v .- ...... ..: \.....:... 

The methods of K value estimation to be d~~~l~ will center attention 

first on the value of K v7hich is applicable to the completely embedded 

crack disregarding free surfaces. The influences of free surfaces 

will be treated as correction factors. 

Generally the part-through surface cracks which develop in welded 

steel bricige components occur in r·egions of metallurgical damage and 
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stress elevation due to welding. An engineer attempting to estimate the 

significant K value for such a crack must first establish a best judg-

ment estimate of the normal stress across the plane of the crac~ which 

would be acting if the crack were not present. This will be termed 

the ''crack-absent" distribution of tensile stress. In a real structure, 

estili'.ation of the influence of residual stress due to welding on the 

crack-absent stress distribution can be assisted by study of reports 

of residual stress measurements across weldments of various kinds. 

In the interests of calculation simplicity and considering the uncer-

tainties of estimates of welding residual stress, the influence of 

welding might be regarded as having elevated the stress to the level 

of the static tensile yield point of the material across a region 

comparable in size to the weldment. Outside of this region, although 

some .allowance might be made for the balancing residual compressive 
-r-r...c, 

stress> mainly the stress level _would be that du~,~ead load and live 

load acting on the bridge structure component. This type of crack-

absent stress pattern differs c~:msiderably from the non-uniform stress 

patterns which have received most attention in previous analysis of 

flat-elliptical cracks. The h~o K value estimation ~ethods, termed A 

and B, discussed next appear to be suitable for the bridge component 

surface cracks of main interest in the current Lehigh·DOT project. 

In method A, the crack-absent stress pattern must be regarded as having 

a special kind of symmetry relative to the elliptical contour of the 

crack. Method B is more general. 
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A. Hethod A 

In the case of remote uniform tension, the K values around the 

perimeter of a flat-elliptical crack are well known. The equation is 

(45) 

'tvhere Ek is the complete elliptic integral of the second kind, a is 

the remote uniform tensile stress normal to the.crack, and a is the 

.smaller of the t\·70 semi-axes of the elliptical crack. The values of k 

and Q are given as follows. Assume the boundary curve of the crack is 

given by the parametric equations, (see Figure 24). 

y 

c X 

Figure 24 

X = C COS Q, y = a sin cp (46) 

where c is the major semi-axes. Thus c is equal to or larger than a. 

The Cartesian coordinate z is normal to the plane of the crack. k is 

defined by the equation 

From the equation for Ek 
n/2 

2 
(a/c) 

E~ = f ·~r--1---. k_2_c_o_s_2-.., u d u 

0 
-35-
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it can be seen that Ek approaches n/2 as c approaches a and k approaches 

zero, and that Ek approaches unity as ale approaches zero and k approaches 

unity. 

Assume next that the tension which would act across the plane of the 

crack, >vith the crack absent, is not uniform. Several service component 

situations are kno1vn for which it would be a reasonable approximation to 

assume that the stress cr , across the crack plane, which must be removed 
z 

to establish free surfaces within the crack boundaries, is constant 

along 

lines 

the elliptical 

are defined by 

y 

a 

cr = cr (a) z z 
0 $a$ 1 

Figure 25 

y 

~ 

cr (a) = cr 
z 1 

ct $ Q'l 

Figure 26 

lines similar 

a parameter a 

C X 

C X 

to 

as 

the perimeter of the crack. These 

(see Figure 25). 

X= a c cos §, y = a a sin p (49) 

(0 $ a $ 1) 

As an approximation, the depen-

clancy of K upon Q can be assumed 

to be nearly the same as in 

Equation (45) when ~ is in the 

f 60° 120° range rom to .• 

Assume next that a has a 
z 

certain constant value cr
1 

within 

the elliptical .line corresponding 

to a = a
1 

in Equation (49), (See 

Figure 2@. If a= c, then the K 

value is known to be given by the 

. 4 equat1.on 

. 4 . 2 ~ 
-cr a{l- l 
n 1 

2 2 
a

1 
} (50) 
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as ale app~oaches zero,.the value of K near~= 90° (which is of main 

interest) is knmm to be given by4 

K2 4 2 
2 

= C'l a [arc sin al} n 
(51) 

: 
A plausible approximation for values of afc between unity and 

zero is given by the expression 

4 
[ 

3. 2 vr-------:::-2 2 3 2 
- (J a (g) [1 - 1 . } + k • [arc n 1 c al . sin 

x ~ 1 - k
2 

cos
2 ~ (52) 

As indicated previously, the method does not anticipate use of Equation 

(52) except for values of Q in the range from 60° to 120°. Equation 

(52) approaches correct values in the limits of k 0 and k = 1. As 

a
1 

approaches unity, the K values given by Equation (52) are correct 

to about one percent. Comparisons to determine the accuracy of the 

equation for al values less than unity are not available at the present 

time. However, from general considerations, the accuracy of the 

equation should be adequate for practical situations such that the 

crack-absent stress pattern seems appropriate for use of this approxi-

mation method. Methods of extending use of Equation (52) to situations 

where the crack-absent value cr changes continuously as a function of 
z . 

a are well known and need not be detailed here. 

B. Nethod B 

As indicated in Section 2.A, an exact weight function method is 

available for an arbitrary 11 no-crack11 normal stress field, crz, in the 

special case wher~ the flat-elliptical crack is circtilar. For the 

circular crack, the complete elastic solution is available for the 
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problem where a pair of splitting forces of magnitude P 4re applied at 

a point Bon the crack surfaces as shown in Figure 10 or Figure 279 . 

Figure 27 

A'B == L 
The normal stress cr 

z ' at A on the 

Splitting plane of ~he crack is written as 
Forces P at 
B follows: 

(53) 

where the lengths £, £1, £
2

, L1, 

and L
2 

are shown in Figure 27 • 

. The s·tress intensity factor at A 

given by Equation (21) was ob-

tained from Equation (53). 

As a method for obtaining a plausible estimate of K for an ellip-

tical ·crack, the following procedure can be used. Assume the expres-

sian for cr, given by Equation (53), remains nearly valid if Figure 27 
z 

is expanded uniformly in the x direction so that the perimeter of the· 

crack has the shape of an ellipse. Tne length factors in Equation (53) 

A'B = L are straight line segments shown 

at 
in Figure 28 after such a modi-

B fication of the figure. Assume 

next that the K value at the ne~v 

location A for splitting forces 
X 

P at the new location B can be 

derived in the usual manner using 

Equation (53) and the definition 

equation: 
Figure 28 
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a 

Figure 29 

AB = J, 

= r 

c 

Splitting 
Forces P 
. at B 

K = Limit a 
I 

r -tO 

z 
I 

TT r (54) 

where the limit process represents 

I 
movement of point A toward co-

I 
incidence with point A, r is the 

I I 

distance between A and A , and AA 

is normal to the ellipse at point 

A as shown in Figure 29 • 

Tne details of this derivation can be omitted here. The resulting 

value for K at a boundary point A corresponding to a parametric angle 

2 was found to be given by 

~ 1 - - ·1 

_ P/a ~ 
2 (55) K a 

- · 3/2 2 R 
[1 k2 2 Q}l/4 -· i1 f., cos ' 

Tne lengths t, r, and Rare shown in Figure 29. The parameter a des-

ignates an ellipse, similar in shape to the perimeter of the crack, 

which passes through the point B. In other words, from Equation (49); 

the location, B, of the splitting forces is designated by values of a 

and 91 in the equations 

x = a c cos ?>
1

, y (56) 

The parameters k and Q have the same meaning as in Nethod A (see 

Figure 24, Equations (46) and (47)). 

n1e accuracy of Equation (55) is exact for a = c and k = 0, and 

the loss of accuracy for moderate increases of k would be e)~ected 

to be relatively small. Numerical integration trials Here made for 
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the constant no-crack normal stress, a = a, so that exact answers 
z 

would be available for comparison. -~fuen c = 2a was assumed, the K 

values resulting from Equation (55) turned out to be, on average, 

about 7 percent high for Q = 0°, 60°, and 90°. Additional numerical 

estimates were made using a linear decrease of the no-crack two-

dimensional normal stress a in the form z 

a z 
. (57) 

The only available comparison estimates for this stress distribution 

. 2 3 
are in .the form of rough estimates by Merkle ' which assume the line 

y = 0 is a free boundary and include a free surface correction. Al-

loving for the free surface correction, the comparison at ~ = 90° 

shoved approximate agreement. The comparisons at 2 ~ 60° and at 

0 2 = 0· suggested that the results from Equation (55) were increasingly 

high (by· comparison vith Merkle) _as the parametric angle §decreased 

from 90°. 

Considering the nature of the calculations w·hich can be made using 

Methods A and B, these two methods appear suitable for making lower 

bound and upper bound estimates of K for a rather extreme type of 

stress non-uniformity as represented by Equation (57). In practical 

applications; a smaller degree of stress non-uniformity is expected 

and the angle 2 of main interest will usually be close to the value 
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C. Free Surface Correction Factors 

The K values from Methods A and B require application of free sur-

face correction factors. lvith regard to free surfaces intersected by 

the leading edge of the crack, the K value derived by the methods dis-

cussed above essentially assume zero normal displacements on the free 

surfaces. In other words, the free surfaces are assumed to be planes 

o·f symmetry ( T = 0) relative to the. stress pattern of the completely 
y z 

embedded crack. To allow for zero normal stress rather than zero nor-

mal displacements on the free surfaces, the K value derived assuming 

zero normal displacements should be multiplied by a factor moderately 

larger than unity. From such calculations as are available, the range 

of this free surface correction is from 1.0 to 1.3. This correction 

factor can be estimated uniformly as 1.15 with assurance that the 

estiroqte. will rarely be in error by more than 5 percent. Tne correction 

factor tends to increase with the degree of concentration of the no-

crack stress cr close to the free surface. However, situations of 
z 

this kind sufficiently extreme to justify use of a correction factor 

larger than 1. 2 are rare and should not be present for cracks of 

interest in welded steel bridge components. From these considerations, 

it is believed that the task of selecting an appropriate free surface 

correction factor can be settled in a simple and convenient manner by 

consistent use of the 15 percent elevation provided by the correction 

factor, 1.15, as noted above. 

When a surface crack·in a plate becomes deep and the net ligament 

becomes less than the crack depth, consideration can be given to a 

. . 
second kind of free surface correction factor. This factor is 

-41-
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sometimes referred to as the correction factor for the "back" free 

su.rface. An approximate estimate of the back free surface correction 

factor, FB, can be made by the equation 

2B na 
na tan 2B (58) 

,• , where a is the crack depth and B is the plate thickness. However, the 

correction factor FB given by Equation (58) should be used with caution. 

When the k value for the elliptical shape of the crack is not far from 

unity, Equation (58) will provide an overestimate of FB. In addition, 

attention must be given to situations such that the net ligament is 

small enough so that general yielding occurs. In such cases a different 

approach using a plasticity type characterization of the crack tip 

region should be used. 

In the cas~ of surface cracks at one end of a coverplate, at a 

web-flange junction, or at one end of a lateral attachment to a flange, 

the free surface intersected by the leading edge of the crack are 

usually restraine~ by the stiffness of a member attached to the flange 

by fillet welding. In such cases exercise of judgment in application 

of free surface correction factors is desirable. It is possible that, 

after consideration of the balance between displacement restraints and 

free surface effects, the best estimate of FB might be unity. 

Assuming that a reasonable number of abrupt fractures occur 

during this project from part-through surface cracks, the work of this 

project provides a valuable learning period on methods of K value 

estimation. During this learning period, use of upper and lower bound 

estimates along with additional study of estimation methods wili be 
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of special value. Although a capability for making appropriate estimates 

of K for the various eh~ected surface crack is available> additional 

study is needed to develop and select estimation methods which possess 

optinum combinations of accuracy and convenience. 
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4. SU}~RY 

In this report, analytical studies were made for cracks with 

various geometric and loading configurations which may be encountered 

in bridge structures. The crack geometries treated in this ~eport 

include two-dimensional edge cracks in half~plane and in a long strip, 

three-dimensional half-circular and quarter circular surface cracks, 

and quarter-circular and quarter-elliptical corner cracks. 

To assist an understanding of the fracture failures in terms of 

failure load and fracture toughness, methods for estimating K values 

for these cracks with sufficient accuracy were discussed. For conven­

ience·of practical applications, approximate formulas forK were pre­

sented for many cases. Simplification of K-estimation methods was 

also discussed. 

References which seem to be helpful for the surface crack analysis 

were listed at the end of the report following the direct references 

used in ·the present study . 
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