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INTRODUCTION

As a portion éf the DOT project at Lehigh Unibersity entitled
"Tolerable Flaw Sizes in Full Séale Bridge Weldments", crack shapes
and structural complexities of varioﬁs cracks which ﬁay be ‘encoun-
tered in this project have been studied from the viewpoint of analy-
tical treatment. Exact analytical treatment of natural cracks in
service compongﬁts has never been possible. The first goal 6f the
analytical Qork is to predict k—values for the cracks studied in this:
project with enough accuracy to permit an understanding of the'fractﬁre
failués in ferms of failure load and fracture toughness. A second
goal of the'analyﬁical study is to develop simplified methods of
dealing with gge influences of structural complexities commonly as-
sociated with bridge structure cracks. It is believed that the
methods discussed in this report will prove satisfactory with regard
to the first objective. Since the two goals are related, some com-

ments on simplification of K-estimate methods will be included.

Two-dimensional problems involving one 6r two free edges and
various stress distributions are discussed first. These results are
of value for direct use in the case of through-the-thickness cracks.
 In addition they provide perspective with.regérd to the interaction
between free surface effects and stress distribution. Three~dimen-
sional crack proplems are much more complex. ,The half-elliptical

crack extending directly into a plate from a single free surface was
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first discussed in 1962 (1). Increased interest in this prcblem led
to enough analytical and experimeﬁtal results so that approximate K-
estimates for uniform tension and uniform bending can be made with

some confidence.

A useful proposal for making estimates of this kind in terms of
semi~empirical equations has been furnished by Merkle (2,3). 1In the
case of surface cracks which have a 1argelsurface length-to-depth
ratio (greater than 6), K-values for the central region of major

"interest can .usually be understood in terms of a two-dimensional
analysis. For Ehé cracks with smaller surface iength-to-depﬁh ratio,
the accuracy of Merkle's equation should be'on the order of +5%, én
adequate degree of preciéion for fhis project. In the case of.residual
stress fields which cannot be closely approximated as a combination
of uniform bending and uniform tension, use of Merkle's equation bé-
comes very comélex. Study has therefore been given to a weight factor
approach to K-value estimates for three-dimensional surface cracks of
ellipitical contour. This approach is based upon the exactly known
F~-value weight factors for the case of pairs of splitting forces
acting on the surfaces of a circular disc crack in an infinite plate.
Using these as é guide, approximéte weight factor functions ﬁére es-

- timated and explored fof pairs of splitting forces acting on thé ;ur-
faces of a flat elliptical crack in an infinite plate. A satisfactory
degree of accuracy was obtainable with a relatively simple Qeight
function when the ratio of the semi-axes of the crack was less than 3
(corresponding to surface length-to-depth ratio leés than 6 for a

surface-crack).‘ Calculations of K-values at sevéral points of.interestl
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on the crack boundary were made for a variety of stress distributions.
Comparison of these results to results obtained using the Merkle
equation and to K-value results otherwise available suggest approxi-
mate free surface influences for various free surface geometries.
Bgcéﬁse of the limited accuracy and limited nuﬁber of possible three-
dimensional comparisons, estimates of the interaction between the

free surface and stress digtribution;for three~dimensional cracks can

assisteq ' »

be agsigined for specific problems' and on an individual basis, by com-

parison to known two-dimensional results.

°
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1. TWO-DIMENSIONAL EDGE CRACK PROBLEMS

As was discussed in the introduction, when surface cracks have a
large surface length-to-depth ratio, solutions for two-dimensional
edge crack problems provide approximate stress intensity factors for

the region near the deepest crack edge.

One of the objectives of this section would be to provide infor-
mation about free surface effects on stress intensity factors in two-
dimensional crack problems. Some useful solutions for various geome-

tric and loading configurations are illustrated.

A. An Edge Crack in Half-Plane (Straight Free Boundary)

fiéure la. . .
Sfress intensity factors for various
loading conditions aré known for this
geometry. Only approximate forﬁulae

and their estimated accuracies
will be presented for several basic

stress distributions. For more infor-

mation see Ref. 4, pp. 8.1-8.8.

Figure la



o . (A-1) Uniform Tension, Fig. 1b.
K= 1.122 ¢ /ma (1)

(accurate)

The factor representing free

surface influence is 1.122.

Figure b (A-2) Linearly Varying Stress

(In-Plane Bending), Fig. lc.
0.439 o/Ta

1.210 (1 - —f—g o/ G

K D
- (2).

H

(accurate)

The factor representing free

surface influences is 1.210.

Figure lc
(A-3) ‘Partially Distributed Constant
Pressure, Fig. 1ld.
K =2 o/F (sin" " D)
g | LT a a
. _ (3)
b ) b 5/2
¢ F(— ~ 1. 0 - O. —
@ 1.3 18 (D)
o ' (Better than 2% for any b/a)
b l
g F(b/a) is the free surface
correction factor.
Figure 1d



Figure le

Y

(A-4) Concentrated Splitting Forces

- (A-5)

Residual
Stress

Eq. (5)

Eq. (6)

—
//

(o/cY = 0.4)

\L///'I/
—
o
/’.

— T K =1.122 o/7a@

b
Figure 1f

— (-

-6-

K

g

(Green's Function), Fig. le.

2P 1
/i 1=

XK =

b
a

by ~ -
F(2) < 1.30 - 0.30 ()

. F(5b>

3/2

(&)

(Better than 2% for ahy.b/a)

F(b/a) is the free surface

correction factor.

Example:

Consider a crack extending

stress field (equal to yield

stress GY) under uniform

tension, as shown in Fig, 1f

- through a tensile residual

]

When @ < b, from Equation (i)

K= 1,122 oy J/Ta

)

When ¢ > b, from Equations

(1) and (3),

K = 1.122 g/7a

+Z(oy-0) /7a (sin” ! 2

 Where F(b/g) is given

Equation (3).



1. For any non-uniform Stresg'distributions, stress intensity
factors are obtained by integration of Equation (&).
2. Equation (4) shows that the correction factor for a single
free surface
K/R_ < 1.30 (7

for any normal stress distribution

" as long as the normal stress has

the same sign over the entire

crack length.

‘K; is the solution for the infin-

ite plane with geometry and loading

configuration reflected across the

free boundary, Fig. 2.

' For the infinite plane prob-

Figure 2

lem, the exact Green's function
is known (in Eq.(4), F(b/g) = 1) and K_ calculations are con-
siderably simpler.

3. In engineering practice, when only the rough idea with ac-

ceptable accuracy will suffice, one can simply estimate K as

K ~1.15K (8)
(v
" without causing substantial error. The error is never beyond
15% and usually much less. (When the normal stress has the
same sign over the entire crack.) A complicated, more

rigorous analysis may not be justified.



1.30

11.122 <

11,210 <

1.072 <

K

1.0 <=

K

o©

?‘il?‘i 7<|7<1
8

?‘11‘7‘1

< 1.210

< 1.310-

8

< 1.122

oo}

<1.072

When a more accurate value is desirable, K estimate is improved
by separating non-uniform stress into uniform stress and non-

uniform stress as shown in Fig. 4.

From Equations (1) through

(4), the ranges of free sur-

face correction factors K/Kw>

for various non-uniform stress
distributions are known

(Figure 3) and the values at

the middle of the range are

within 47 accuracy. For the
example shown in Figure 4, K
is estimated as

K ~ 1.122 g, /7@ + 1.255 K_

(9
and the accuracy improves as
oo/c increases. (Even when
o, = 0, accuracy is within

&%) .

Although this metﬁod
applies to the case ﬁhere the
stress distribution changes
its sign over the crack length,
the acéuracy is not expected

to be as good.



B. " An Edge Crack in Half-Plane (Free Boundary Consists .of Two

Straight Lines), Figure 6a.

.

Crack

Figure 5 .

Figure 6a

Q
@
]

' St

-,

Figure 6b

In welded structures or components, sur-
face cracks often initiate in the re-~
sidual stress zone near the welding as

shown in Figure 5. When the crack is

. relatively small, the solutions for the

configuration shown in Figure 6 may have
some value for estimating stress in-

tensity factors.

Approximate formuias for stress
intensity factors and their estimated
accuracies are given for several 1oad;ng
conditions. These formulas were es;
tabliéhed based on an interpoiation.

method.

(B~1) Uniform Normal Stress, Figure 6b.

K = o /Ta F(S)

0.175 + 0.266S -+ 0.3735% + 0.126S
S3/2

3
F(S)=

(10)

(Better than 1% for any S)



(B~2) Linearly Varying Stress (In-Plane
Bending), Figure 6c.

K =0 /ma F(S)

2

0.117 + 0.022S + 0.055S" + O 10659

S3/2

F(S)=

(11)

(Better than 1% for any S)

Figure 6¢ (B~3) Concentrated Splitting Forces .
(Green's Function), Figure 6d.

P

D S b
/T (@ - b) F(a > 8)

_A+BS+ cs? + ps>

s3/2

F(= , S)

Q.o

(12).

>
I

f (b/a)

-3.54 - 4£(b/a) + g(b/a)

e~
i

(@]
I

= 9,19 + 5f(b/a) - 2g(bl/a)

Figure 6d

D= - 4.24 -~ 2£(b/a) + g(b/a)

£(b/a) 3/2

1.10 (1 - b/a)

+7.35 - 1.70(b/a) >’ 2

J1 + b/a

(Much better than 5%; better than

i

g{b/a)

2% for S =0.5)

When b = 0

P 3
F(0,S) = 1.10 - 0.60S + 0.0357+0.898

S3/2
(12a)

(Better than 2% for any S)
-10- ' .



C. An Edge Crack in a Long Strip, Figure 7a.

—-\_/f~;\,—/’" . S;reés intensity factor solutions are
known for various loading conditions for
this geometry. Only approximate formulés

and their accuracies are given for

pm———
e a-a4 _ several basic cases. For more informa-
- —] . tion see Ref. &4, pp. 2.10 -.2.21 and
2,25 - 2.29.
L—’\_../\-._—:
Figure 7a |
o (C-1) Uniform Tension, Figures 7b, 7c
poA  K=o/m Flalw
W N
- [2w 1a,
F(a/w) =Yg 20 2y
: 0.752 + 2.02 € + 0.37(1-sin 1@)3
—_ . — Trw T 2w
] o =
) _ cos =
A 2w
fet—— 7 ——— : ' (13)
_,,___/—~\.§—\ (Better than 0.5% for any a/w)
o}
Figure 7
———
g A} \

]

Figure 7c
-11-



(C-2) Uniform Bending, Figure 7d

M . _&mn
N | °T 2
. K = o /7@ Flalw) (14)
.’\_""“—’“‘—‘PC
2w TQ
F(a/w) =/ tan --

a
' A TQ 2w

4
0.923 + 0.199 (1-31%)

p.<

cos &
| 2w

(Better than 0.5% for any a/w)

-c (C-3) Concentrated Splitting Forces

&/i/éi:l)d : : (Green's Function), Figure 7e
. c M . R M ) .

T _ 2P
" Figure 7d K= i F(b/a, alw)

3.52 (1 - b/a)
3/2

| " F(bla,alw) =
\,a\\,/\\“_/’T (- al/w

_ 4.35 - 5.28 b/a

- amtl?
P
+{1.30 - 0.30(b/a)3/2
f ‘Q1 - w2
P . ' :
'y ‘ i +-0.83 - 1.76 b/'a} {1-(1-b/a)a/w}
— ’ .
' (15)
e W ' (Better than 2% for any b/g and g/w)

Figure 7e

-12-



(C~4) Example:

f‘\_’/—‘\~ﬂ~’/\\___/’/\“~—,~“/// Consider an edge crack extending

Residual

Y in a residual stress field, as

Stress

shown in Figure 8a.

b 1. .2

,-__£_£_J t L I When g < b
al 7 ¥ V¥ VY K=o, /fa Fla/w) (16)
- - o O .
b ¥ b
_2b When b < g (w - b)
(a = w - Zb)
v K = Q) Oy /Ta Fl(b/a , alw)
Figure 8a T a gY /Ta Flalv) an

Where F(g/w) is given by

1.0

0.5-

\

\ -

X/F——'Eq.
«E;ZE———B— Eq.

(16)
(17)

ol

Figure 8b

Equation (13) and Fl(b/a, alw)
is free surface correction‘for

the uniform pressure distributed

on a portion of the crack.

Numerical values of Fl(b/a,a/w)

up to a/w ~ 0.62 are read from

. the curves given by Emery, et

al.5 (Figure 3- in Ref. 5)

a 2w - b is not considered.

In Figure 8b, numerical values of Equations (16) and (17) are

plotted. It is noticed that the value of the stress intensity ~

factor rapidly decreases as the crackvextendS'beyond.the tensile

residual stress zone,

-13-



It should be noted that the solutions illustrated above_are valid -

only when the displacement of the strip is free from constraint. In

actual structures, any connected structural member is under constraints

imposed by the connections.

When a crack occurs in a certain component,

its compliance increases and load and deformation are redistributed

between members.

free but displacement-limited.

Thus, the boundary condition is not displacement~-

If the change in compliance of the

cracked member is known as a function of the crack size, such stat-

ically indeterminate problems will be solved by usual methods of

structure analysis.

The fracture mechanics method is helpful to es-

‘tablish the relationship between compliance and crack size of the

component.

| T

Figure 9a

(C-5) Examples of displacement constrained
strip with a single edge crack are
given in Figure 9. The in~plane

transverse displacement at infinity

is restrained.

The stress intensity factors

are given by the following formulas

K =0 /ma Fla/w)
Where:
a. When the local in-plane trans-

verse displacement near the
cracked section is not re--

strained {(Figure 9a)

-14-




2 3
1.122 - 0.561 & + 0.085(%) + 0.180)

| [y F ()=

=iQ

1 -

(18)

(Better than 2% for any a/w)

b. When the local transverse displace-

ment-is also restrained (Figure 9b)
1
Dy o 2W na
F(w) YJ p tan e (19)

(Exact)

Figure 9b

Equation (18) is 12 to 30 percent larger than Equation (19). When
the strip has attachments such as stiffeners, Equation (19) is ex-
pected to give reasonable estimates for stress intensity factors. An
edge crack in the flange plate of a beam is a typical example in

practical structures.

~15-



2. THE HALF-CIRCLE AND QUARTER-CIRCIE SURFACE CRACKS

A. A Circular Crack in an Infinite Body

Corresponding to a policy of treating the influence of free sur-
faces as a superimposed correction factor (see Section 14), the K cal-
culations for surface cracks of half-circle and quarter-circle shape
depend in a basic way upon the K values for a circular (penny-shaped).

crack in an infinite body subjected to various normal stress distri-

butions.

(A-1) When the normal stress distributions have circular symmetry,
the K is independent of positién along the crack bordef.
furthermgre, the analytical simplicity thus obtained permits
computation of K for any normal stress distribution, p(r),

from the following equation.
a

.K= f p(r) £(x) dr
- o (20)

£(r) = 2 T
JTa ,[aZ _ r2'

where g is the radius of the circular crack.

Results for a number of. such stress distributions are given

in Reference 4.

(A-2) when the normal stress distributions are not circular, the
stress intensity factor which is dependent on position along the
crack border can be calculated using the solution fcr con-

centrated splitting force problems.
-16-



Splitting
Forces P

Figure 10

A(X,Y) or
Ala, ®

Figure 11

When a pair of splitting forces P are
applied at point B, the stress in-

tensity factor at point A (see Figure

' 10) is given by (&)

K = e zr (21)

For any normal stress distribution
p (x, y) or p (r,9), the stress in-

tensity factor at point A, R(X, Y)

~or K (), is calculated by

Equation (21) as follows (see

Figure 11)

KX, D) =[[p(x,y) £ (X, ¥5x,y) dxdy

over

xory? g’ ' (222)

where ’ 2 2 9
Q =X -y

} |
fl(X,Y, X,Yy) ey

2 2
(X-x) "+ (Y-y)
or a 2T
XK(3)= j. .fp(r,e)fz(@;r,G)r de dr
r=0 B=o0
where

@2 rr2=20r cos(-6)

. o1
fz(é’r’g)_TvGﬁi

(22b)

Some examples are given in Ref. 4.

-17-



(A-3)

uniform bending field are special cases of (A-2).

by

Two-dimensional normal stress fields, p(x,y)

a
/,///’—__‘\\\\Eﬁ(x,Y)

—
P
P SO N ,/'A
s T
7 rTW F\
1__! LL_L_Y 3
D
Figure 12~
LY .
/////”"Q\\\\QQX,Y), Y>c
P hll
y=-¢c
> x
a £2
|
by
a

AX,Y), Y< ¢

%igure‘13

= p(y), such as
To analyze
problems of this type, it is helpful
to establish.the solution for con-
stant line load problem, Figure 12.
When a constant line load ; is ap-
pliéd along y = c, the stress in-
tensity factor at A, K(X,Y) is cﬁl-

culéted from Equation (21) or (22)

as follows, see Figure 12.

K(X,Y) = B Vbl - o dx
VTS (xen? 4 (1-0)?
(23)
where b = az - c2

Equation (23) is reduced to the fol-

lowing simple form

K(X,Y) = Ve 7 - (24)
or
K(X-,Y) %(ﬁ - >when Y>ec
o
K(X,Y) = %(Q a- 1. 1)wh‘en Y<ec
| (25)°

See Figure 13.

-18-




The stress intensity factors for any two-dimensional normal

stress distributions, p(y), are calculated by Equation (25) as follows:
L 4 , .
K(X,Y) = f p(y) £,(y,¥) dy +f p(y) £,(y,¥) dy - (26)
-a . Y

where

_ 1 fa + Y !
_fl(y’Y) T/ (VY-y- 1)

f(Y)~= 1. ‘a,'-Y_l
28 /e y - ¥

For an example, the stress intensity factor at point A, for a '"tent-

shaped" two-dimensional normal stress distribution p(y) = p(1 —'~%§ﬁ
.. as shown in Figure 14, is calcul=~

ated by Equation (26).

]y _ 2-D Stress . - |
. R(X,Y) =f (1 - J—?:L) £,(y,¥)dy
N\A(X,Y) e a ' : _
a : Il
s\ +f<1 - D) £,(y,Ndy
— %
P .
For Y >0
)
= Y
. y/f (1 + a) fl(Y>Y)dy
) 2 ‘
. Figure 14 v
: + (1 - a) fl(Y>Y)dY
. o .
- Yy
Y.
The final expression is -
3/2
_2 5_4 % Y Y -
k) =2y mi2- 2 d <1+(Z \f;)é (272)
or ' amm—
K(&) = % P /ﬁﬁ?'% -‘% (sin §)3/2( 1+ sin ¢ - %/Sln & > % (27b)



K is symmetric with respect to x axis (y = 0). This is the

exact solution of the problem and K(&) is plotted in Figure 18.

B. The Half-Circle Surface Crack and the Quarter-Circle Cormer Crack

For a half-circle surface crack and a quarter~circle corner crack,
fhe influences of free surfaces are treated as corrections to the
solution for the circular crack with the normal stress distribution
reflected across the free surfaces. The free surface corrections

are defined in Figure 15,

Stress
Crack Normal Stress Intensity Free Surface
Geometry Distribution Factor at A Correction Factor
Half-Circular
Surface Crack
K, (&)
e F, (2)
= K, (2)-F, (&)
A K.o (&)
Circular
Crack
Quarter-Circular
Corner Crack
y _ '
A P(x,y) K (® F ()
a = £(x,y) = X, (8)Fy (8) Q
VA —x '
y :
P(XsY) Ko(é) bt
x = f(lxl,'yl) »
Circular
Crack .
Figure 15

-20-



‘Discussions will be made for the following two cases where the
exact solutions for the circuia; érack,_KO(@), and the numerical vaiues
for the half-circle crack, KH(é), and the quarter-circle crack,

KQ(Q?, are available.
(1) Uniform Tension

(2) Linearly Varying Stress

Approximate formulas for free surface correction factors will be pre-

sented for these cases.

(B~1) Uniform Tension p(x,y).= o

For a circular crack, the-exact solution is

k(3 =% o/ ' (28)

For a half-circle surface crack, an approximate formula for

the free surface correction factor, FH(@) is available.

K, (2) = 2 o /G F(8) | " (29)

F(8) = 1.211 - 0.186 /5in &
(2 > 10°)
This FH(é) formula was obtained by Merkle2 based on the anal-

ytical results by F. W. Smith et 316. "FH(Q).iS.shown in

Figure 16.

For a quarter-circle corner'crack, there are Tracy's
numerical result by a finite element method7 and tﬁe result of
Kobayashi et 318 by the alternating procedure. There is some
discrepancy between these rgsults. Since Kobayashi et al

-2]-



Uniform Tension o

0(¢’) Circular Crack
Ko(4) = 2ov7a

Ha]f—Cifcu]ar Surface Crack

Ky(o) = Zovma-Fy (o)

Quarter-Circular Corner Crack

Ko(#) = Zavaa-Fole)

Kobayashi et al ‘ '

\\ - /(Ref. 8) . -

M /// FQ(¢) for Quarter- /

/ . —~
— Elliptical Crack 7
Z1.3 : \Q\ with Aspect Ratio Z{ 3
© \ 0.98 .
55 - ' //-FQ(¢) v . .
=N w-\\\ / 4 (80°-6)6( ¢i// /

’:] 2N 7/
=y \ /
= ~\\X FH(¢)FH(90°.-¢)////—
SIS i

7

N

F -
(o) \\\*\\>-~—f? (90°-9)

G(¢) N

0.9

0° 15° 30° 45° 60° 75° 80°

.._.e,....¢

Figure 16 Free Surface Corréct1on.Factors for Half-Circular
Surface Crack and Quarter- C1rcu1ar Corner Crack
Under Uniform Tension

-22=



estimated the accuracy of their result at better than 2%, except
for the regions of the créck border near the free surfaces, their
result is used as KQ(é). The crack shape in their'analysis is
;lightly different from a quarter-circle (a quarter-ellipticai
crack with aspect ratio of 0.98),Atherefore'their result was ad-
justed slightly. ' An approximate formula is given by

k(@ = A F'Q(CI;) ' (30)

m

where

FQ(é) = 1,38 - 0.29 sin 2%

(10° < & < 80°)

F_(3) is shown in Figure 16.

Q

In Figure 16, the valﬁes of the'proéuct of tﬁe correction factor
“to the half-circle for each surfaces FH(é) . FH(9OO - &) are also
shown for comparison. Itlis éuggested that the free surface cor-
rection to a corner crack is not given by the product of the cor=

rection factor for each surface, but given by the following form

R o 5 - '
Fo(®) = Fy(®) Fy(90° = &) - 6(9) (31)

" For a special case of uniform ténsion G(%) is approximately given
by the formula

G(®) = 1.17 - 0.19 sin 29 i | .(32)

| (10° < & < 80%)
However, in the middle region of thé crack border (2504< $ < 650),

the difference between FQ(Q) and FH(@) FH(9Oo - &) is within 2%.
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(B-2) Linearly Varying Stress: p(x,y) =p (1 - JgL)

1 ¢ ' : . The stress intensity
A ‘ | factor in the bending stress
a 5 field for the half-circular
#__X P surface crack and the quarter-.
circular corner can be dis-
y cussed by the solution for the
N - linearly varying two-dimension~
al normal stress distributions
g 5 shown in Figﬁre 17.
Ay x p For the circular crack,
.
A .the exact stress intensity
a \ factor is given by Equation
®
3 > 27).
Figure 17 .
K (&) =2 p /fa £, (9 (33)
where

— —_—
fo'(é) = —2— - % (sin @)3/2(\/ I1+sind -\/siné)
fo(é) is shown in Figure 18.

For the half-circular surface crack, there is an approxi-
mate formula given by Merkle2 based on the results of F. W.

Smith et al6, which is expressed as follows.

2l



Circular Crack
.KO(¢).

f0(¢) = g-- %(sin¢)%5(/1+sin¢ - /sing)

]

2
;p/“_é'fo(‘i’)

Half-Circular Surface Crack

Kylo) = Lpvra-f,(4)

Quarter-Circular Corner Crack

K(#) = Zpvma-fy(6)

1.0(%

o \_
! e
0.2
0 o o o [ o o
0 15 30 45 60 75 80°
T b

Figure 18 Stress Intensity Factors for Circular Crack, Half-
Circular Surface Crack and Quarter-Circular Corner
Crack Under Linearly Varying Stress Fields
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=L

Ky(® = 2P/ EE A (36)

where

fH(@) = 1.031 - 0.186 /sin & - 0.54 sin &
(10° < 8° < 90°)

fH(é) is. shown iﬁ Figure 18.

For the quarter-circular corner crack, there is the result
. . 8 .
of Kobayashi et al by the alternating procedure . Their result

is approximated by the following formula

@ -

Al

p /@ fQ(é) ‘ _ (35)

where

£4(8) = 1 - 0.72 sin & + 0.11 (sin 8)2

(10° < & < 80°)
fQ(@) oBtained by Kobayashi et al is shown in Figﬁre 18 and

compared with the approximate formula Equation (35).

It is notea that Eq&ations (34) and (35) are not expres-
sed in terms of the free surféce corrections. The free sur-
face corrections are not fH(é) and fQ(é) but FH(é) = fH(é)/fo(é)
and FQ(é) = fQ(é)/fO(é), respgbt;vely. It seems that no dis-
cussions have been made in terms of the free bﬁﬁndary cor-
rections for the case of linearly varying normal stress dis-
tribution, because the exact solution for the circulér crack
under two-diﬁensional "tent-shaped" stress field, fo(é), had

not been known.
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Circular Crack
! _ _ 2 .
A | Ko(8) = Zpvaa-f (o)

fole)

1]

Half-Circular Surface Crack

—= FH(¢)’ FQ_(‘?)v FQ/.FH

Figure 19

;3 '. i | 1
| ' ,///

.0

KH(¢) =YK0(¢)'FH(¢)

Quarter-Circular Corner Crack

Kel#) = Ko(?)'FQ(¢)

Fol Fiy
e
\
i \\\ / | )
~—_ |
| 74?@7;7’ -

~ / :

e em———

0° 15° 30° 45° 60° 75° 90°

— $

Free Surface Correction Factors for Half-Circular
Surface Crack and Quarter-Circular Corner Crack
Under Linearly Varying Stress Field
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Since fo(@) is given by Equation (33) the surfaée cor-
rection factors FH(Q) and FQ(é) are calculated. The values of
FH(Q) and FQ(Q) are shown in Figure 19. The approximate formulas

<

for FH(é) and F, (8) are expressed as follows:

Q

%H(@) = 1.17 - 0.31 sin & + 0.32 (sin §)° (36)
(10° < 8 < 5 90% '

and | |

Fo(®) = 1.22 - 0.56 sin & + 0.70 (sin 82 (37)

(10° < 5 < 80°)

Corresponding to Equation (31), FQ(é) is expressed as the

following product

N - ! o] | | ’
Fg(® = Fy(® - By (90° - ) « F(3) (38)

. ,
y where FH (3) is the free sur-
’ B 2-D stress

I} . : face correction factor for the

circular crack shown in Figure

20. Howevef, since FH'(é) is

¥

not known for this case'G(é)

‘xi
o

3 '~ can not be separated. The

LA’\’~_-,} : cﬁrve for FH'(9OO - 8- G =

FQ(Q)/FH(Q) is shown in Figure

KH(Q) = Ko(é) -,FH'(Q) 19, which is approximated by
Figure 20 ) the following formula.

FH'(9OO -3 * G(&) = 1.03 - 0.17 sin & + 0.39 (sin é)z

(10° < 8.< 800)
' . (39)

~28-"



(B-3) Estimates of Stress Intensity Factors for the Half-Circular

Surface Crack and the Quarter-Circular Corner Crack under

Arbitrary Two-Dimensional Normal Stress Distribution:

p(x,y) = p(y).

Y

K, (2)

e

| y 2-D Stress Any non-uniform

stress distributions,

as

p(y), can be separated
p(y)

-
Dol

Figure 21

I

p(y) éo

Figure 22

P(y) = py * P (v)  (40)

where'po is uniform

) stress component and
P

’Pl(y)'is the non-uniform

stress components as

shown in Figure 22,

B,

P,

For the uniform stress component, the stress intensity factors

for the half-circular and the quarter-circular cracks are given

by Equations (29) and (30), respecfively.
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In engineering, when a rigorous analysis is not justified,
the contribution of pl(y) to K values is reasonably estimated

in the following way.

When the non-uniform stress component, pi(y), can be
approximated by a linear stress distribution, the approximate K
values are given by Equations (34) and (35), respectively.

Thus the total stress intensity-factors are obtained by super-

position.

Wﬁen pl(ys is not approximated by a linear stress field,
the stress intensity faétor for the circular crack, Ko(é), under
the normal stress distribution pl(lyl), Figure 23, is readily
obtained by the simple

Ly -2-D Stress
, integral, Equation (26),

K. (3) where p(y) = Pl(lYl). Thus

p, Uy D) it is now only necessary to

fiell

X ' ~ estimate the free surface

corrections, FH(Q) and

FQ(Q), for the stress
field, pl(y).

Figure 23

From Figures 16 and 19, in the middle region of the crack
border (30o <9 < 900) for the half-circular surface créck and
(300 £ 9 < 60?) for the quarter-circular cornér crack), these
correction factors are roughly

Fi(2) ~1.05 ' . (41)

FQ(@>'~/1.15 | (42)
. : :



Therefore the total stress intensity factors are estimated as
follows:

For the half-circular surface crack

RKp(®) ~Kpp(@) + 1.05 Ky (8) (43)
(30° < ¢ < 90°)

and for the quérter—circular corner crack

KQ(Q) ::KQU(Q) + 1-15'K0(§) (44)
(30° < & < 60%)

where KHU(Q) and KQU(Q) are the K components for the

uniform stress (given by Equations (29) and (30) with

Ko(é) is the stress intensity factor for the cir-
‘cular crack for the non-uniform stress component (given

by Equation (26) with p(y) = pl(iy[)).

Examinations of service fracture failures in which rapid frac~
turing started from a surface crack have rarely, ifxever, shown e§i~
déﬁce that the initial instability occurred close to a free surface.

On the contréry, the ffacture surface markings usually indicated that
the instability was nearly simultaneous along a substantial segment

of the internal (embedded) portion of the crack. It can be noted that
the expected elevation of resistance to crack extension near the free
surface would tend to offset the increase of X in such regions. Since
the numerical calculations tend to lose accuracy near free surfaces,
and in view of the primary ;egién.qf instability suggested by fracture .
surface markings, an averaging of the numerical calculation of K across
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a substantial portion of the deep region of the crack would be expected

to provide the most appropriate value of K for purposes of comparison

to KIcf
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3. ELLIPTICAL SURFACE CRACKS

Methods of finite element analysis for three-dimensional cracks
have been developed to a sufficient degree so that values of K for half
or quarter elliptical surface cracks can be computed by this method
with a potential accuracy of about 5 pércent. However, this.capa~
bility is localized and the calculations require substantial time and
expense, In the case of cracks in weldéd'bridge components, generally
the reéiduai dtress from welding Will contribute a large fraction of
the total XK for a crack and will be known with onlyAlimited accuracy.
In addition, displacement constraint influences due to attachments
are often present which are difficult to prdperly répresent even in a

-r

- sophisticated finite element K value computation. Thus methods of
estimating K for elliptical surface cracks based on plausible engine~

ering estimates seem most appropriate for this project.

It will be assumed that the trace of the leading edge of a
surface crack can be represented as either one~quarter of an ellipse
(for a crack extending from a corner region) or one-half of an ellipse.

drefwssel
The methods of K value estimation to be dvvlrab%e will center attentlon
first on the value of K which is applicable to the completely embedded

crack disregarding free surfaces. The influences of free surfaces

will be treated as correction factors.

Generally the part-through surface cracks which develop in welded
steel bridge components occur in regions of metallurgical damage and
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stress elevation due to welding. An engineer attempting to estimate the
significant K value for such a éréck must first establish a best judg-
ment estimate of the normal stress across the plane of the crack which
 would be acting if the crack were not preéent. This will be termed

the “crack-absent'" distribution of tensile stress. In a real structure,
estimation of the influence of residual stress due to welding on the
crack-absent stress distribution can be assisted by study of reports

of residual stress measurements across weldmenté of various kinds.

In the interests of galculation simplicity and considering the uncer-
tainties of estimates of welding residual stréss, the influence of
welding might be regardea a2s having elevated the stress to the 1eve1

of the static tensile yield point of the material across a region

comparable in size to the weldment. Outside of this region, although

some .allowance might be made for the balancing residual compressive

<=
L

stress, mainlyvéhe stress 1eve1_woﬁ1d be that du%«gead load and live
load acting on the bridge structure component. This type of crack-
absent stress pattern differé considerably from the non-uniform stress
patterns which have received most attention in.ﬁrevious analysis of
flat-elliptical cracks. The two K value estimation methods, termed A
and B, discussed next appear to be suitable for the bridge coﬁponent
surface cracks of main interest in the current Lehigh-DOT project.

In method A, the crack;absent stress pattern must be regarded as having
a special kind of symmetry feiative-to thg ellipticai conﬁour of the

crack. Method B is more general.
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A. Method A
In the case of remote uniform tension, the XK values around the

perimeter of a flat-elliptical crack are well known. The equation is

Kz = Z ga ?J 1 - k2 cos2 o (45)

where Ek is the complete elliptic integral of the second kind, ¢ is
the remote uniform tensile stress qormél to the.crack, and ¢ is the
smaller of the two semi-axes of the elliptical crack. The values of k
and & are given as follows. Assuﬁe the boundary curve of the crack is

given By the parametric equations, (see Figure 24).

y

Figure 24 .
X = ¢ cos 9, y =g sin & . (46)
where c is the major semi-axes. Thus ¢ is equal to or larger than g.
The Cartesian coordinate z is normal to the plane of the crack. k is
defined by the equation

k2 = 1 - (alc)? | (47)

From the equation for Ek
n/2

Ek'i/‘%[ 1 - k2 éosz udu : (48)
0 ' '
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it can be seen that Ek approaches /2 as ¢ approaches g and k approaches

zero, and that Ek approaches unity as g/c approaches zero and k approaches

unity.

Assume next that the tension which would act across the plane oflthe
crack, with the crack absent, is not uniform. Several service cbmpénent
‘situations are known for which it would be a reasonable approximation to
assume that the stress cz, across the crack plane, which must be removed
to establish free surfaces within the crack boundaries, is constant
along the elliptical lines similar to the perimeter of the crack. These
lines aré defined by a parameter o as (see Figure 25).

x = ¢ .c cos B, y = o q sin & (49)

0 <<l

As an approximation, the depen~

dancy of X upon % can be assumed

x
to be nearly the same as in
Equation (45) when & is in the
o, = o, ()
2 2 range from 60° to 1209.
0 <=l :
Figure 25 . Assume next that ¢ has a
certain constant value cl‘within
y : . i
the elliptical line corresponding
to @ = ap in Equation (49), (See
Figure 26). If g = c, then the K
< :
value is known to be given by the
equation
g, (@ = o) ‘ 2
' "K2 _ 4 o 2 {1 - _— 2} 50)
o < Ql : 7 91 a {i i oy (
Figure 26



as d/c appfoaches zero, the value of XK near ¢ = 90° (which is of main

s 4
interest) is known to be given by

2

2 012 a {arc sin al} (51)

K =

=P

A plausible approximation for values of @/c between unity and

zero is given by the expression _ . :
2 _ 4 g2 3,2, 3.2 2
X =00 CE) {1 -41- dl } + k f {arc sin dl} ] :

x ﬁJ 1 - k2 cos2 $ : (52)

As indicated p;eviouSIy, the metbod does not anticipate use of Equation
(52) exéept for values of & in the range from 60° to 120°. Equation
(52) approaches correct values in the limits of k = 0 and k = 1. As

oy approaches unity, the K values given by EQuationv(SZ) are éorrect

to abopt'one percent. Compérisons to determine the accuracy of the

equation for o, values less than unity are not available at the present

1
time. However, from general considerations, thé accuracy of the
equation should be adequate for practical si?dations such that the
cra;k-absent stress pattern seems appropriate for usé of this approxi-
ma;ion method. Methods of exfending ﬁse of Equation (52) to situations

" where the crack~absent value o, changes continuously as a function of

o are well known and need not be detailed here.

B. Method B

As indicated in Sectiqn 2.A, an exact weight function method i§
available for an arbitrary "“no-crack normal stréss field; > in the
special case where the flat-elliﬁtical crack is circular. For the

circular crack, the complete elastic solution is available for the
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problem where a pair of splitting forces of magnitude P are applied at
a point B on the crack surfaces as shown in Figure 10 or Figure 279.

H
The normal stress Oz at A on the

A'B =y
Ll A' Splitting plane of the crack is written as
Forces P at
L A B follows:
2 2
. . _r1 V4 (53)
x _zat A' ‘lT2 .@ZV L]_ Lz
1 where the lengths £, £4,, 4,, L.,
22 12 72 1
and L2 are shown in Figure 27.
i .The stress intensity factor at A
Figure 27 '

'given.by Equation (21) was ob-

tained from Equation (53).

As a method for obtaining a plausible éstimate éf K for an ellip-
-tical ‘crack, tbgmfoilowing procedure can be used. Assume the expres-
sion for o, > given by Equation (53), remains nearly valid if Figure 27
is expanded uniformly in the x direction so that the perimeter of the-
crack has the shape of an ellipse. The length factors in Equation (53)

A'B = ~are straight line segments shown

Splitting

4 in Figure 28 after such a modi-
Forces P at .

fication of the figure. Assume
next that the K value at the new

location A for splitting forces

. P at the new location B can be

1 - derived in tHe usual manner using

2 Equation (53) and the definition
equation:

Figure 28
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K = Limit o, 27!
. 1
r - 0

(54)

where the limit process represents
'
movement of point A toward co-
- . - ' »
incidence with point A, r 1is the

! 1
distance between A and A , and AA

L is normal to the ellipse at poi -
Splitting _ ps point

Forces P

at B A as shown in Figure 29.

. Figure 29

The details of this derivation can be omitted here. The resulting

value for K at a boundary point A corresponding to a parametric angle

. 1 . .
—_— 1 .
| % o (55)
{1 - 2 cos’ §}1/4

% was found to be given by

‘x- 24/ [T

- 3/2 2 VR
S )

The lengths 4, r; and R are shown in Figure 29. The parameter o des-

ignates an ellipse, similar in shape to the perimeter of the crack,

which passes through the point B. In other words, from Equation (49);

the location, B, of the splitting forces is designated by values of o

and él in the equations

7

x=qccos d, y-= o @ sin =H (56)

The parameters k and @ have the same meaning as in Method A (see

Figpfe 24, Equations (46) and (47)).

The accuracy of Equation (55) is exact for ¢ = ¢ and k = 0, and
the loss of accuracy for moderate increases of k would be expected
to be relatively small. Numerical integration trials were made for
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the conétant no-crack normal stress, o, = ¢, so that exact answers
would be available for comparison. -When ¢ = 2 was assumed, the K
values resulting from Equation (55) turned out to be, on average,

) o) o o) . .
about 7 percent high for & = 0, 60, and 90 . Additional numerical

estimates were made using a linear decrease of the no-crack two-

dimensional normal stress oz in the form
I a1 | -
c,=0 (1 . ) (57)

The only available comparison estimates for this stress distribution

are in the form of rough estimates by Merkle™’

which assume the line
y = 0 is a free boundary and include a free surface correction. Al-
lowing for the free surfaég correction, the comparison at ¢ = 90°
showed aéproximate agreement. The compaéisons at ¢ = 66° and at.

& = 0® suggested thét the results ffom Equétion (55) were increaéingly

high (by comparison with Merkle) as.the parametric angle  decreased

from 900.

Considering the nature of the calculations which can be made usiné
Methods A and B, these two methods appear suitable for making leower
bouqd and upper bound estimates of K for a rather extreme type of
stress non-uniformity as represented by Equation (57). 1In practical
applications, a smaller.degree ofAstfess non—uniformity is expected
and the angle ¢ of main interest will ugually be close to the value

s = 90°.
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C. Free Surface Correction Factors

The K values from Methods A aﬁd B rgquire application of f;eg sur-
face correction factors. With regard to free surfaces intersected by
‘the leading edge of the crack, the K value detrived by the methods dis-
cusse& above essentially assume zero normal displacements on the free
suffaces. In other words, the free surfaces are assumed to be planes
of symmetry (Ty ;= 0) relative to the stress pattern of the completely
embedded crack. To allow for zero normal stress rather than zero nor-
mal displacements on the free surfaces, the K value derived assuming
zZero no;mal displacements should be multiplied by a factor moderately
larger than unity. From such calculations as are available, the range
of this free surface correction is from 1.0 to 1.3. This correction
factor can be estimated uniformly as 1.15 with assurance that the
estimate will rarely be in error by more than 5 percent. The éorrection
factor tends to increase with the degree of concentration of the no-
crack stress c, close to the free surface. .However, situations of
this kind sufficiently extreme to justify usevof a correction factor
larger than 1.2 are rare and should nct be present for cracks of
interest in welded steel bridge components. From these considerations,
it is believed that the task of selecting an appropriate free Sﬁrface
correction factor can be settled in a simple and convenient manner by
consistent use of the 15 percent elevation provided by the correctioﬁ

factor, 1.15, as noted above.

When a surface crack in a plate becomes deep and the net ligament
becomes less than the crack depth, consideration can be given to a
second kind of free surface correction factor. This factor is
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sometimes referred to as the correction factor for the "back" free
surface. An approximate estimate of the back free surface correction

factor, FB’ can be made by the equation

FB = A/, tan op (58)

where g is the crack depth and B is the plate thickness. However, the
correction factor FB given by Equation (58) should be used with caution.
When the k value for the elliptical shape of the crack is not far from

unity, Equation (58) will provide an overestimate of F In addition,

B
attention must be given to situations such that the net ligament is
small enough so that general yielding occurs. In such cases a different

 approach using a plasticity type characterization of the crack tip

region should be used.

In the case of surface cracks at one end of a coverplate, at a
web-£flange junction, or at one eﬁd of a lateral attachment to a fiénge,
the free 'surface intersected by the leading eage of the crack are
‘usually restrained by the stiffness of a member attached to the flange
by fillet welding. In such cases exercise of judgment in application
of free surface correction factbrs is desirable. It is possible that,
after consideration of the balance between displacement restraints and

free surface effects, the best estimate of F, might be unity.

B
Assuming that a reasonable number of gbrupt fractures occur
during this project from part-througﬁvsurface cracks, the work of this

project provides a valuable 1earping period on methods of K value
estimation.. During this le;rning period, use of upper and lower bound

estimates along with additional study of estimatibn methods will be
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of'special value. Although a capability for making appropriate estimates
of K for the various expected surface crack is available, additional

study is needed to develop and select estimation methods which possess

optinum combinations of accuracy and convenience.
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4. SUMMARY

In this report, analytical studies were ﬁade for cracks with
vafious geometric and loading configurations which may be encountered
in bridge structures. The crack geometries treated in this ;éport
include two-dimensional edge Eracks in half-plane and in a long strip,
three-dimensional half-circular énd quarter circular surface cracks,

and quarter-circular and quarter-elliptical corner cracks.

To assist an understanding of the fracture fazilures in ferms of
failure load and fracture toughness, methods for estimating X wvalues
for thesevcracks with sufficient éccuracy were discussed. For conven-~
ience of practical épplications, approximate formulas for K weré pre-
sented for many cases. Simplification of K-~estimation methodsAwas

also discussed.

References which seem to be helpful for the surface crack analysis
were listed at the end of the report following the direct references

used in ‘the present study.
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