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ABSTRACT · 

Accurate prediction of the fatigue life of structural de

tails primarily depends on knowledge of the range of stress intensity 

factor during crack growth. Stress intensity, in turn, depends on 

stress distribution, crack shape and length, and crack ~ip position 

in the detail. The main thrust of this dissertation is the determi

nation of the stress concentration at typical welded detail termina

tions and the evaluation of how this altered stress distribution 

affects stress intensity. 

Both fillet- and groove-welded details are studied. The 

findings show that stiffeners welded to flanges have a maximum stress 

concentration factor between three and four. Cover plates with 

transverse end welqs have a maximum concentration factor between six 

and eight. Gusset plates groove-welded to flange tips and possessing 

circular transitions at their ends generally exhibita maximum concen

tration factor below three. Lap-welded gussets are similar to cover 

plates which have a greater width than the flange. Longitudinal 

stiffeners with circular transitions are comparable to groove-welded 

gussets with circular transitions. Longitudinal stiffeners and 
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groove-welded gussets without circular transitions are roughly analo

gous to stiffeners with the weld angle depending on taper. 

The stress concentration distribution along the prospective 

crack path is translated into a stress intensity correction factor, 

depending on crack length, through use of the Green's Function pro

posed by Albrecht. The resulting correction curve for each geometry 

is correlated with stress concentration factor decay from either axis 

end of an elliptical hole in an infinite plate. Formulas for proper 

ellipse shape and size are subsequently developed Hhich depend upon 

detail type and specific values of geometric parameters, and permit 

the prediction of th~ stress intensity eorrection for arbitrary 

geometries. 

The interactions of the stress distribution correction 

factor with the corrections for crack shape and free surfaces are 

evaluated. New stress intensity expressions are devised which unify 

the various corrections. These expressions are then used to predict 

the fatigue lives of experimentally tested details. The life results 

are typically on the high side of the experimental findings although 

well below the upper 95 percent confidence limit. 

Several by-products of the stress concentration investiga-. 

tion are quite important. Crack coalescence is considered for the 

first time in the estimation of crack ·shape during growth. Also, it 

seems clear that the fatigue limits currently set in AASHTO should be 

reexamined for several variable geometric parameters. 
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1. INTRODUCTION 

1.1 Problem and Solution Approach 

Fatigue failure of steel high,vay bridges has received much 

research attention in the past decade for several reasons. First, 

there has been a steady rise in vehicle frequency over the years and 

gross weight has also increased, thereby causing the remaining fatigue 

life of many existing structures to be seriously questioned. Second, 

welded details have become quite common in bridges and ones with a 

high ·accumulation of stress cycles.have shown fatigue distress. 

Welded details are more susceptible to fatigue crack growth than are 

riveted and bolted ones due to the nature of load transfer in a \velded 

joint and the fact that all welds have inherent, initial discontinui-

ties. Finally, spectacular fracture faitures of the Point Pleasant 

"Silver" Bridge in West Virginia 68 arid the King's Bridge in 

Australia 52 have focused interest on fracture's sister characteristic, 

namely fatigue performance, as well as fracture itself. 

The 1974. Interim AASHTO Bridge Specifications 3 incorporate 

the findings of two major research programs 19
,

20
• Through extensive 

testing, it was found that stress range, S , and category of detail 
r 

are the parameters which are most influential on fatigue life. The 

allowable stress range values in Table 1.1 (AASHTO Table 1.7.3B3
) are 

simply extracted from the Fisher experimental S -N curv~s of 
r 

Fig. 1.1 21
• These curves represent 95 percent confidence limits (in 

cycles) for 97.5 percent survival at a given stress range. 
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Recent years have also seen great strides in the development 

of techniques to analytically predict fatigue life. It was Paris who, 

in considering only propagation, recognized that within limits fatigue 

crack growth per cycle, da/dN, can be empirically related to stress 

intensity factor, K, from linear fracture mechanics 35 , as follows 60 : 

da 
dN 

C (L1K)n (1-1) 

where L1K is the range of stress intensity factor and C and n are based 

on material properties. By rearranging Eq. 1-1 and integrating be-

tween the initial and final crack sizes (ai and af' respectively), the 

number of cycles, N, can be predicted as: 

1 
da 

(ilK) i1 (1-2) 

If stress range is included in the expression, it takes on the fol-

lowing form: 

[ "£ 
N ~ i J.i 1 ] -n AS -n (1-3) 

(L1K/Sr)n da Sr . = r 

A represents the parameter which Fisher experimentally found changed 

value for different types of details and therefore resulted in the 

various category curves (Fig. 1.1) 21 • The slope of these log-log 

curves, -n, is approximately constant at -3.0 for all categories 20 • 32 • 

C can be taken as constant for typical bridge steels (A36, A441, 

A514)
20

•
32

• Initial crack size, a., is kno~~ approximately for common 
~ 

welded details 20
•

32 and af, being much larger than ai' is of little 
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consequence. Thus, fatigue life prediction for crack propagation 

squarely rests on the evaluation of the stress intensity factor range 

for the detail. 

The range of stress int~nsity factor is often expressed as 

~K for a central through crack in an infinite plate under uniaxial 

·stress, adjusted by numerous (superimposed) correction 

factors2,s0,62,65. 

CF*S ~ = F F F F *S ~ 
r s w e g r (1-4) 

CF is the combined correction factor as a function of crack length-

, plate width ratio 
a - , crack shape ratio 
w 

a b , and geometry. F is the 
s 

corre~tion associated with a free surface at the crack origin (the 

front free surface), F accounts for a free surface at some finite 
w 

length of crack growth (also called the back surface or finite width 

correction), and F adjusts for shape of crack front (often assumed to 
e 

be elliptical with major semidiameter band minor semidiameter a). 

While in fracture problems stress intensity often includes a plastic 

zone correction factor, F , such is usually disregarded in fatigue 
p 

analyses since small stress ranges and reversed yielding cause the 

crack tip plastic zone to be small (Art. 4.4) 66
• 

F is the factor which accounts for either a nonuniform 
g 

applied stress (such as bending) or a stress concentration effected 

by the detail geometry. This stress gradient should not be confused 

with that which occurs at the crack tip, regardless of applied stress 

field or detail geometry. F corrects for a more global condition 
g 
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than exists at the crack tip. Yet, for stress concentration situa-

tions F corrects for a more local condition than the nominal stress 
g 

(strength of materials type) at the detail. Whether the applied 

stress is nonuniform or a stress concentration exists, s represents . r 

an arbitrarily selected stress range (usually the nominal maximum 

value at the detail). 

choice of S . 
r 

Therefore, F is inseparably linked to the g 

Values of the various correction factors are dependent on 

·the specific overall.geometry, crack shape, and distribution of· 

applied stress •. Solutions for CF of many idealized problems are 

"1 bl 62,76,81,82 ava1 a e • However, practical bridge details present 

distinct analytical difficulties particularly in evaluating F • 
g 

19 20 
Cracks normally emanate from >veld toes ' near which varying de.-

grees of stress concentration exist. For some geometries the crack 

quickly grows out of this concentration region; for other geometries 

the effect of concentration is sustained over a broad range of crack 

sizes. Fillet-welded connections have the added difficulty that 

they present a theoretically singular stress condition (neglecting 

yielding) right at the weld toe. Therefore, F has been impossible 
g 

to obtain in a closed-form fashion. Numerical techniques such as the 

finite element (F.E.) method normally must be employed. In short, 

existing solutions don't account for the geometric variables or con-

centration effects encountered in real life details. Yet, F is 
g 

considered of great importance in predicting fatigue failure of 

• 2 0 
br1dges • 
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Based on Eq. 1-2 life prediction involves summing the cycle 

lives for increments of crack growth. F as well as other correction 
g 

factors must be knmvn for each increment. Two approaches are avail-

able for determining F for varying crack size; both involve finite 
g 

element analyses. The first, normally termed a compliance analysis, 

necessitates analyzing the detail for different lengths of embedded 

crack. The strain energy release rate, G, is found as a function of 

the slope of the compliance-crack length curve 34 • In..rin showed that 

there is a direct relationship between G and the stress intensity 

factor 35
• 36 • ·Thus, K can be.found and compared, if desired, with 

some base K for a specimen lacking the influence of a stress gradient 

(i.e. F = 1.0). 
g 

The ratio of the two stress intensity factors yields 

F for the actual detail under investigation. 
g 

Method one can be very expensive in terms of computer usage 

and can easily require extensive personnel time to revise F.E. mesh 

data for each crack length of each detail. Method one also presents 

accuracy difficulties at very small and very large crack depths. For-

tunately, a more reasonable alternative exists which requires only 

one stress analysis for a given detail geometry. Bueckner and Hayes 

showed that G can be found from the stresses in the crack free body 

which act on the plane where the crack is to exist 13
.>

31 • Irwin im-

plied the same point ~..rhen he found G by considering the energy needed 

to reclose a crack 35
• Based on this concept (often called superposi-

tion or difference state) it is possible to describe knotvn stress in-

tensity solutions-for stresses or concentrated loads ·applied directly 
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to crack surfaces as Green's Functions for loading remote from the 

crack62
•

81
•

82
• The stress or concentrated load is simply adjusted to 

suit the stress distribution along that plane with the crack absent. 

(A concentrated load is represented by stress applied to an incre-

mental area. Through integration, numerical or closed-form, any 

stress distribution can be represented.) Depending on which Green's 

Function is used, F alone or a combination of correction factors can 
g 

be evaluated. 

The versatility and relative ease of method .two are 

apparent. The only requirement is that the cr~ck path be known. 

Since actual tests have provided information on crack paths 

(Art. 3.1) 20
•

21
•

22
, method two is employed in the.dissertation. 

1.2 Objectives and Scope 

The_principal objective of this study is the development 

of an F prediction for welded details common to bridge structures. 
g 

The objective is reached in four steps. First, two- or three-

dimensional stress analyses, using finite elements, are made of 

detailswith particular geometries. _The stress distribution and 

maximum stress concentration factor, SCF, along the eventual crack 

path are determined. Second, these distributions of stress are 

transformed into distributions of F by application of an appropriate 
g 

Green's Function. Third, the F distributions are correlated with 
g 

stress decay curves for the end of an elliptical hole in an uni-

axially stressed, infinite plate. The ellipse size is based on the 
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correlation. Finally, empirical formulas are developed to predict 

the proper ellipse size (and therefore F ) for arbitrary detail 
g 

geometries. 

Three other objectives are part of the investigation; each 

is affected by the local stress field found for the principal objec-

tive. First, correction factors other than F are modified for the g 

presence of a nonuniform stress as well as varying crack shape. 

Next, unified stress intensity expressions are developed for the 

nonuniform stress fields by the superposition (of stress intensities) 

procedure 81
•

82
• Lastly, the new stress intensity relationships are 

used to predict fatigue lives of several laboratory specimens and one 

actual bridge structure. 

In this dissertation details are placed into two broad 

categories - fillet-welded and groove-welded. Within the fillet-

welded category are cover plates and transverse stiffeners. Both 

are connected to flanges with fillet welds. The groove-welded cate-. 

gory contains gusset plates with circular transitions and groove-

welded to flange tips, and longitudinal stiffeners groove- or fillet-

welded to a web or flange. 

Several important assumptions are made for all details. 

First, they are considered to be symmetrically positioned about the 

beam/girder web. Second, the beam/girder is assumed to have a 

small flange thickness-to-member depth ratio so that little nominal 
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stress gradient exists through the flange thickness. Thus, uniform 

stress may be used as input in the analysis without significant error. 

In actual bridge members the nominal shear stress in the flange is 

small and is therefore neglected in this study. 

An existing finite element computer program, SAP IV8, is 

used for the stress analysis. The program is intended for linear 

elastic systems and does not provide special elements for stress 

singularity conditions. Nevertheless, sufficient elastic stress 

accuracy can be attained, even in regions of high stress concentra-

. tion, through proper selection of mesh size. 

1.3 Summary of Previous Work 

It has long been recognized that structural details or any 

sudden changes in geometry produce a stress concentration effect. 

Strength of materials and elasticity texts abound with solutions 

(closed-form and otherwise) to plates >vith holes and notches and 

other configurations. Peterson summarizes the stress concentration 

studies of particular importance in machinery design and some struc

tural applications 63
• }mny of these solutions resulted from photo

elastic investigations. 

Certain fillet-welded joints, particularly the lap type, 

have also undergone photoelastic analysis for stress distribu

tion1~•58•79. These investigations indicated the influence of joint 
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geometry on stress concentration for the particular joints involved. 

However, no unified approach was developed to predict stress concentra-

tion in common bridge details. Further, the accuracy of the previous 

results is somewhat questionable since the photoelasticity technique 

is difficult to apply to regions of high stress gradient. 

Fatigue strength of welded bridge joints became a topic of 

serious investigation in the latter part of the 1950's. The results 

of many early experimental studies are summarized in Ref. 25. More 

recent work expanded the investigations experimentally and, for the 

first time, employed f~acture mechanics to explain fatigue behav-

ior 19 • 26 • 29 '~ 7 • Yet, reasonable estimates ofF were not available 
g 

and crude assumptions for K had to be made. Reliable prediction of 

fatigue life was not really possible. 

Accurate analysis of the influence of stress concentration 

on stress intensity stems from Bowie's work on cracks emanating from 

circular holes 11
• Since then good estimates of K have been deter-

mied for cracks growing from elliptical holes, rectangular cutouts, 

and all sorts of notches 5 ~• 56 ' 76 ' 81 • With regard to fillet-welded 

connections, Frank's work on cruciform joints marks an early inten-

sive effort to develop an expression for F 22
• A similar study was 

g 

pursued by Hayes and }fuddox shortly ther~after 30 • Unfortunately, the 

numerical conclusions of these two investigations weren't in agree-

ment. Further, the accuracy of each was questionable at very small 

crack sizes. Gurney later tried to resolve the differences and did 
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succeed in producing several helpful graphs involving the geometric 

variables 27
• However, no general formulas were developed and values 

at very small crack sizes were left in doubt. ~Ioreover, there was no 

assurance that graphs or expressions developed by any of the three 

studies could be applied to other, more complex, fillet-welded bridge 

details. 

The analytical approach used to find F in Refs. 22, 27, 
g 

and 30 was that of a compliance analysis based on finite element dis-

cretization of the.joint. The Green's Function technique recently 

. became popularized by Kobayashi:. 2 , who succ·essfully estim~ted Bowie's 

results, and others 62
•

82
• Albrecht was apparently the first inves-

tigator to have sought F for fillet-welded joints using a Green's 
g 

Function 2
• Yet, this reference only supplies the method of solution, 

not a range of solutions. Condensed expressions for F for bridge 
g 

details, fillet-or groove-welded, simply don't exist. Heretofore, 

accurate fatigue life prediction for bridge details, without finite 

element or other refined stress investigation of each one, has not 

been possible. 

Other correction factors for stress intensity have often 

relied on kno\~ solutions for uniform stress applied to the 

crack20
•

62
• Tada and Irwin have reviewed the variability of the 

correction values with crack shape and stress distribution82
• These 

authors have also suggested development of overall stress intensity 

factors by adding the K factors associated with the uniform and 
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variable portions of the stress field. Given this superposition ap

proach, it is possible to make a more realistic appraisal of stress 

intensity for any detail '"here the local uncracked stress distribu

tion is knmm. General correction factor expressions are also pos

sible for each detail type. 

Past estimates of fatigue lives of welded details have 

usually had less than acceptable accuracy - particularly for cover-

plated details 20
•

27
• Since the range of stress intensity is normally 

cubed in Eq. 1-2 (i.e. n = 3), small' errors in correction factors 

cause large changes'in cycle life. Occasionally the errors are self

compensating and the results appear reasonable for certain details, 

but not for others. The lack of agreement between analytical and 

observed lives has led some investigators to suggeit an initiation 

phase in the fatigue process 27
•

53
•

70
• It is therefore important to 

demonstrate the degree of accuracy attained by using the new correc

tion factor expressions and considering only crack propagation. 
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2. STRESS CONCENTRATION - SCF 

It is well known that stress concentration plays a signifi-

cant role in distinguishing the details of the various AASHTO 

fatigue categories 3
'

20
• Fatigue cracks tend to propagate from geo-

t . 1 . . 2 0 , 6 4 , 8 5 11 1 . h me r1ca stress ra1ser reg1ons . as we as ocat1ons w ere 

initial discontinuities exist. Any condition which raises the stress 

intensity K, increases the likelihood of crack growth. Since welded 

detail terminations usually combine high stress w·ith weld disconti-

. nuities, cracks should form there first. This prediction has been 

b . 1 19 20 d h 1 d . d "1 . . orne out 1n actua tests ' an as resu te 1n eta1 term1na-

tions being classified with greatest severity 3 • 21 ~ 

Correction factor F incorporates the influence of stress 
g 

gradient or stress concentration in the stress intensity expression 

(Eq. 1-4). F is based upon the stress concentration distribution 
g 

along the path where the crack eventually propagates (Art. 3.2). 

Therefore, the stress concentration, K , at any point in the un
t 

cracked section must be determined by some method in order to esti-

mate F • The finite element technique is employed in this study. 
g 

Of special interest is the stress concentration factor, SCF, at the 

crack origin. Usually SCF represents the maximum value of Kt and F
8 

(Art. 3.2). 

Most texts define stress concentration factor as the actual 

stress at a point in a given direction divided by the nominal stress 
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at the same point and in the same direction63 • 6 ~• 71 • 85 • In many in-

stances the nominal stress results from taking the total force on the 

section containing the point and dividing by the section's area. 

Hence, the nominal stress is that found by strength of materials 

formulas. 

Several modifications of the stress concentration factor 

definition are warranted for general fatigue studies. First, the 

critical stress at a point is in a direction perpendicular to the 

crack path (opening mode-Mode 162
) and may or may not be in the same 

direction as the nominal stress (Art. 3.1). The details investigated 

in this study are attached to a beam/girder flange; nominal stress is 

taken as parallel to the flange·centerline. Second, in the event that 

the crack path is not perpendicular to the flange, the nominal stress 

is still assumed to be defined by the·. cross-sectional flange area and 

not the actual area along the crack path. This also implies the 

locations of the two stresses are not necessarily identical since a 

wandering crack path might lead to a region where the perpendicular 

cross-section includes the attachment along with the flange. 

Finally, even in cases where more than one kind of stress is input to 

the detail (such as a load directly on the attachment), the nominal 

stress is that which is in the flange, parallel to the length, and 

caused by forces in the girder alone. These qualifications of the 

stress concentration simplify the application of Eq. 1-4. Stress 

range, S , is always the nominal value and does not require any r 

abnormal calculations (e.g. Mohr's circle) for its determination. 
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The nominal stress or stress range is assumed to be uni-

form across the flange width and through its thickness. This is rea-

sonable for relatively deep members with typical flange widths and 

no torsion. In order to perform a stress analysis on a given detail 

the nominal stress must be input at some distance from the detail's 

extremity. (The strength of materials generalized stress - moment 

is assumed constant over this length.) It is desirable to go far 

enough away from the detail to eliminate stress gradient conditions 

and yet remain as close as.possible to restrict the dimension of the 

finite element stiffness matrix. 

The question is, "How far is far enough?" This query is 

obviously an attempt to quantify Saint-Venant's Principle. Some 

guidance is provided by Ref. 84 where the problem shown in Fig. 2.la 

is considered. With concentrated loading it can be shown that the 

stress in the plate becomes uniform at a distance, e, equal to about 

2w from either end. However, the concentrated load situation is not 

representative of structural details. One is more interested in the 

configuration in Fig. 2.lb and the distance from the fixed end beyond 

wnich uniform stress exists. A dissertation pilot study of this pro-

blem using finite elements has shown that e should be taken as 

roughly 2.5w. 

I The assumptions of other investigators provide useful com-

I parison with the above distances. Gurney studied symmetrical cruci-

I 
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form joints and used a distance of 2.4w(w represents halfof the plate 

thickness in lieu of \vtdth) from the '"eld toe for uniform stress in:

put2 7 • Frank also investigated cruciform joints but chose e to be 6w2 2• 

Frank's value appears larger than necessary but nevertheless safe. 

Structural details present a problem in determining dimen

sion w. By definition Saint-Venant's Principle applies to both 

linear dimensions of the surface on which the stresses are changed. 

But in the case of details there is a predominant change in stress 

pattern along one dimension rather than in both directions at. once. 

Hence, for details fillet-welded to flange surfaces the dimension of 

interest is the flange thickness while for details groove-\velded to 

flange tips the flange width is important. The actual value of w 

depends on whether the detail is Symi!letrical with respect to a plane 

perpendicular to the direction of interest - the one with the major 

stress gradient. Fillet-welded details are usually one-sided and can 

be envisioned as one-half of a symmetrical configuration. Dimension 

w is then the flange thickness. On the other hand, for two-sided, 

groove-welded gusset plates attached to flange tips w is equated to 

one-half of the flange width. 

Details which are not symmetrical induce flange bending. 

Therefore, the bending gradient may extend the region of nonuniform 

stress beyond 2.4w or 2.5\v. Hm.;rever, the cover plate studies of 

Ref. 59 show this is not a necessary worry. Only four percent error 

in predicted versus measured stress was found 50 mm from the cover 
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plate end or 34 mm from the weld toe. Since the flange thickness was 

14.5 mm, the value of e ,.,as 2. 34w. 

In general, attachments and the welds connecting them to 

flanges do not present the uncompromising, fixed end condition shown 

in Fig. 2.lb. Poisson type reovement occurs in the flange at the 

attachment termination; the amount of such movement depends on the 

attachment geometry. Dimension e decreases as more movement is per-

mitted or, put differently, the attachment is less noticeable. Stiff-

. e~ers u{ay have a smaller distance than cover plates. The value of 

e. equal to 2.4w appears reasonable when modeling details, but 

slightly smaller values may also be acceptable. 

One ramification of the e distance evaluation is that it 

acts as a guide for placing of strain gages for experimental pur-

poses. If the experimenter wants to avoid stress concentration ef-

fects near a welded detail, he should place the gage(s) at least 2.4w 

away from the detail termination. 

Finite element stress analyses require assumptions on 

material properties. In all subsequent work the material is con-

sidered to be linear, isotropic, and homogeneous - including even 

the weld region. Young's modulus, E, is taken as 204,000 MPa. 

Poisson's ratio, v, is set at 0.30. 
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2.1 Fillet-Welded Details 

Figure 2.2 describes the type of fillet-welded detail of 

major interest in this dissertation. Attachments of various types 

are commonly connected to flanges of beams or girders with trans

verse fillet ·Helds. The welds themselves are idealized as having 

a flat upper surface which meets the flange surface at an angle of 

n/4. The applied stress is assumed to be in the flange only. 

Several references make a distinction between load-carrying 

and non-load-carrying joints >vhen no longitudinal welds exist22
• 

2 7
• 

The weld in Fig. 2.2 would be classified as non-load-carrying since 

the plate with the applied stress is continuous through the joint. 

However, the degree with which a joint is load-carrying must depend 

on the attachment involved. References 22 and 27 treat cruciform 

joints where the attachments are all stiffener-like (i.e. short 

dimension in the direction of applied stress). On the other hand, 

cover plates, with large dimension in the direction of applied 

stress, are certainly load-carrying (Art. 2.1.2.2). Thus, classi

fication as load-carrying and non-load carrying is somewhat mis

leading for the general detail. 

Research has shown that the critical location for fatigue 

crack growth at the detail sho~1 in Fig. 2.2 is the weld toe 20 • 22 • 25 • 

(The weld root may also be a potential crack origin if the joint 

·is load-carrying in the sense of a discontinuous flange or when a 
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small end weld is used 27
.) The idealized sharp geometry change at the 

weld toe means that elastic stress and stress concentration factor 

theoretically rise to infinity. This fact can be verified by first 

assuming there is curvature to the weld surface right at the toe. 

Peterson has sho~m that concentration increases more and more rapidly 

as the radius of curvature decreases 6 ~. Therefore, the weld toe of 

the idealized geometry represents a point of Bingular (elastic) 

stress conditon. 

Chapter 1 noted that SAP IV, the finite element computer 

program used for the an~lysis work, is only intended for elastic 

systems 8 • Hence, points of stress singularity present a special 

problem in determining the necessary mesh size. With decreasing size 

the concentration factor at the toe (based on some sort of an extra-

polation of adjacent element values) continually rises toward infin-

ity. Therefore, comparison of hypothetical stress concentration 

factors of various researchers is generally impossible due to varying 

mesh sizes. This is true whether the results stem from a compliance 

or a Green's Function approach to a stress intensity solution. 

Fortunately, when considering fatigue crack propagation one 

always begins with an initial crack size. Therefore, what happens 

right at the weld toe is not important. SCF is merely a point to 

begin the F decay curve. The analyst is really only concerned about 
g 

the accuracy ofF at and beyond the initial crack length, a .• 
g l. 
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F does depend on stress concentration at lengths smaller than the g 

initial crack depth (Art. 3.2), but the K decay curve tends to vary 
t 

less as the mesh size becomes progressively smaller. Such is the 

case even though SCF (i.e. K at the weld toe) rises more rapidly 
t 

with decreasing size. 

figure 2.3 indicates the schematic trend observed in the 

K curve with changing mesh size. There are two ways to view this t 

plot. First, each individual curve represents an equilibrium condi-

tion with balanced areas on either side of 1.0. Second, two curves 

taken together are in equilibrium with each other; they cross once 

and again have equal areas on opposite sides. However, the key fact 

for mesh size discussions is that curve 3 is closer to .curve 2 than 

curve 2 is to curve 1. Furthermore, the po~ition at which the curves 

merge moves progressively closer to the singular point as the mesh 

size decreases. 

Based on the above observations and to ensure reasonable 

accuracy in F at the initial crack size, the mesh size in the g 

vicinity of the weld .toe sho~ld not exceed ai. However, difficulty 

arises '~hen the results of a study are related to nondimensional 

geometry. Under those conditions initial crack size is nondimen-

sionalized by fl~nge thickness - the dimension in the direction of 

crack growth
27

• A larger flange thickness, then, implies a larger 

initial crack size. Yet, current evidence does not support this 
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idea 74
; initial crack size does not vary with flange thickness. 

Hence, a dilemma exists. The mesh size in the actual study may be 

comparable to initial crack size, but nondimensionalized results mean 

the mesh size would have to be changed proportionally to reach the 

same results for a different absolute geometry. If the initial crack 

size doesn't change too, the principle of relating mesh and initial 

crack sizes is not observed. 

A reasonable compromise on the mesh size problem is to se

lect an actual flange thickness for the study which is near the aver

age of real beams/girders. The mesh size is then related to initial 

crack size as stated. Results are approximately applicable for some

what larger and smaller flange thicknesses. 

One other point about the idealized joint geometry in 

Fig. 2.2 concerns weld penetration at. the root. Obviously, no pene

tration is shown although under and over penetration are both clearly 

· possible 14 , 25 • Frank found that over penetration would have a 

wor'sening effect on the stress intensity at a stiffener {non-load

carrying) type of joint 22 • Somewhat conversely, Cherry noted little 

variance in stiffener weld toe stress concentraton due to penetration 

provided the stiffeners are not abnormally thick14
• In any case, the 

effect for typical weld sizes should not be great. Moreover, since 

over penetration tends to have the same effect as increasing the weld 

leg, one might expect the trend to reverse itself for longer attach

ments like cover plates (Art. 2.1.2.2). 
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2.1.1 Transverse Stiffeners Fillet-Helded to Flanges 

2 .1.1.1 Geometry and Hodeling 

The discussion on joint terminology (load-carrying versus 

non-load-carrying) indicated that length of attachment in the di

rection of applied stress is an important paramet~r 20 • In fact, 

current categories in AASHTO are largely based on detail length 3
,

21
• 

Transverse stiffeners obviously fall at the short end of the spec-

trum of length values. The length of the stiffener is_ actually its 

thickness, T , which typically equates to about one-quarter of the 
s 

flange thickness, Tf. Since this attachment dimension is quite small 

it can be treated as though it were zero. (The stiffener height is 

unimportant in any case.) In this study, the transverse stiffener 

investigation centers on the effect of back-to-back fillet welds on 

a flange surface. The only length involved is that of two fillet 

weld legs, 2Z. 

Figure 2.4 shows the detail geometry (one-quarter of it) to 

be used for the transverse stiffener investigation. The detail i"s 

assumed to exist on both sides of the beam/girder web which, there-

fore, marks a plane of symmetry. Based on the above assumption of 

zero stiffener thickness, the back surface of the fillet weld also 

represents a plane of symmetry. The flange width is seen to be over 

eight times the flange thickness but well within an expected limit on 

aspect ratio 4
• The distance from the weld toe to the point of uni-
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I . 

form stress input is over three times the flange thickness and well 

beyond the requirement of 2.4 stated earlier. Stiffener cope is 

neglected in the modeling ~~ith the assurance that the results without 

the cope are upper bound. (See later discussion Art. 2.1.1.1 and Arts. 

2.1.2.2 and 2.1.3.2.) 

The variable under study in Fig. 2.4 is the weld leg, Z. 

Due to the typical stiffener size and Provision 1.7.2b in the AASHTO 

. 4 
Code , Z can be expected to range between 0.25Tf and l.OOTf. Table 

.2.1 lists the three specific values of Z selected for this study; 

they are 0.3205Tf, -0.6410Tf, and 0.9615Tf~ A st~ess concentration 

analysis is required for each value. The actual flange thickness 

used in the analysis ~vork is 19.812 mm. 

Figure 2.4 emphasizes that the stiffener problem is being 

treated as three-dimensional. The procedure used is the finite ele-

ment stress concentration analysis diagramed in Fig. 2.5. First, 

uniform stress is input to a coarse, three-dim.ensional mesh which 

makes use of the eight-node brick element of the SAP IV library8
• 

Next, .a t\oTO-dimensional fine mesh analysis of the ~veld region is 

made with planar elements and displacement input from the coarse mesh 

results. Then, a two-dimensional, ultra fine mesh analysis is 

carried out for the local weld toe area. The elements are again the 

planar type and displacement input stems from the fine mesh output. 

Finally, the element stress concentration factors from the ultra fine 

mesh are extrapolated to give a hypothetical maximum value, SCF, right 

at the ~~eld toe. 
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This incremental analysis procedure has two distinct ad

vantages. First, no one finite element problem becomes so large that 

costs are prohibitive or computer limitations are exceeded. Planar 

elements are normally cheaper to use than three-dimensional ones so 

it is important to reduce the problem in dimensions as soon as pos

sible. Two planar meshes are employed at the weld toe region since 

the combined cost is less than that for one, extensive, very fine 

mesh. (The synergism effect exhibited by the one, extensive mesh can 

be attributed to a much large band•ridth and many more blocks of equa-

·. tions to be moved in and out. of the computer core.) Second, the 

fine and ultra fine meshes are usable for problems where the overall 

geometry varies, but the local weld geometry is constant. In fact, 

the two finer meshes can be employed even if the coarse mesh is two

rather than three-dimensional. 

Figures 2.6 and 2.7 show the coarse mesh used for the 

transverse stiffener investigation. Figure 2.6 gives the mesh sizes 

and demonstrates how the different weld leg dimensions are treated. 

The dashed lines indicate another plane of elements are merely added 

to accommodate the increasing Z. Other parts of the mesh remain un

changed. Figure 2.7 presents a key sampling of boundary conditions 

imposed on the coarse mesh. Displacements at and perpendicular to 

planes of symmetry are invariably prevented. Vertical displacement 

is prevented where the web meets the flange, and wherever the fillet 

weld meets the web and stiffener surfaces. Thus, both the stiffener 
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and the web are considered to inhibit movement of the detail perpen

dicular to the flange surface. 

In order to make the transition between three- and two

dimensional meshes (Fig. 2.5), it is necessary to select a vertical 

section in Fig. 2.6 for further investigation. Both fine and ultra 

fine mesh results invariable show that weld toe stress concentration 

decreases slightly as section moves away from the web. For example, 

the stress concentration factor extrapolated from the fine mesh 

_results for Z/Tf equal to 0.3205 dropped from 2.726 at the web line 

to 2.586 one node line away (0.6410Tf in Fig; 2.6). Extrapolated fine 

mesh results for Z/Tf equal to 0.9615 dropped from 3.515 to 3.464 

over the same distance. This trend agrees with that of Albrecht 2 and 

can be explained on the basis of less bending effect. (Bending due 

to lack of joint symmetry reduces the stress concentration at the 

weld toe. However, the amount of bending is small since the stiff

ener causes little interruption of stress flow in the flange.) 

Therefore, the vertical plane to be treated two-dimensionally is 

taken as the one on the web line. 

Figures 2.8 and 2.9 address the fine mesh common to both 

the stiffener and cover plate investigations. The heavy lines in 

Fig. 2.8 denote the outline of the coarse mesh elements. These 

borders have been incorporated in the fine mesh. This mesh shows 

its finest gradation in the region of the weld toe. Figure 2.9 
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indicates the input to the fine mesh is based on the displacement 

output of the coarse mesh. (Stress output could have also been 

used.) Displacements in the direction of applied stress are most im

portant. Therefore, such displacements at ne>.,r nodes (not part of the 

coarse mesh) on opposing sides of the fine mesh are found by linear 

interpolation of displacements at old nodes. (Linear interpolation 

is reasonable since the displacements involved are close in numerical 

value.) Displacements perpendicular to the applied stress are less 

important; thus, only a few vertical values from the coarse.mesh out

put are included. The described set of co~rse mesh displacements, 

when imposed on the original plane of three-dimensional elements, are 

found to generate essentially the same stresses as found in the ac

tual coarse output. Displacements out-of-plane have little effect 

on element stresses in the direction of applied stress. 

The question naturally arises as to whether the planar ele

ments of the finer meshes should be assumed to have a plane stress 

or plane strain elasticity matrix. }funy researchers have used plane 

strain elements 2
•

27
; indeed, Sih has shown that plain strain condi

tions usually exist when a crack is present 7 5
• l.J'ithout the crack the 

decision on plane stress or strain for the detail as a whole rests 

primarily on the attachment geometry. However, by first solving the 

three-dimensional problem, the attachment is properly taken into ac

count. Displacement input to the fine mesh should be reasonably cor

rect regardless of the approximate planar conditions. 
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Some idea of the difference between plane stress and plane 

strain can be estimated by rough approximation of the two elasticity 

matrices 89 • Assuming all strainsperpendicular to the direction of 

applied stress are small and can be neglected, the stress, a, and 

strain, E, in the direction of applied stress are defined as: 

Plane Stress: 

Plane Strain: 

a 

E a = --=--,-
2 

1 - \) 

E (1-v) 

* E 

(l+v) (l-2v) * E 

(2-la) 

(2-lb) 

Since only displacements are input to the finer meshes the strains in 

Eqs. 2-la and 2-lb can be taken as equal. Assuming Poisson's ratio 

to be 0.3,the ratio of plane stress to plane strain stress in a given 

element would be 0.816. Actual comparison runs for cover plate de-

tails have yielded a ratio of 0.900 (Art. 2.1.2.2). This ratio only 

applies to the results of the ultra fine mesh since displacements· 

(which are about equal for the plane stress and strain cases), not 

stresses, are taken from the fine mesh output. (There is essentially 

no accumulation of error.) The high ratio means that the decision on 

plane stress or strain is not overly important. 

Nevertheless, a dissertation pilot study was undertaken to 

reveal \vhich assumption gave closest agreement with the "correct" value. 
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This "correct" value was found by solving a three-dimensional mesh of 

fineness equal to the two-dimensional mesh and with all interpolated 

displacements £rom the coarse mesh imposed. As might be expected the 

"correct 11 value fell bet\veen the plane stress and plane strain re-

sults (lower and higher, respectively). The "correct" value was 

closer to the plane stress result than that of the plane strain 

analysis. Thus, plane stress is assumed for both finer meshes. 

(Note that the selection of element thiclaless is unimportant as long 

as the same assumption is made for all elements of a given mesh.) · 

Figures 2.10 and 2.11 shm• the ultra fine mesh and positions 

of imposed boundary displacement derived from the fine mesh output. 

Again, displacements at new nodes and in the direction of applied 

stress are found by linear interpolation. (Here, linear interpola-

tion is reasonable since the nodes with knmvn displacement are nu-

merous and close together.) It is apparent that the smallest mesh 

dimension - right at the weld toe - is 0.0013Tf. For an assumed Tf 

of 19.812 mm the absolute size of mesh is 0.0258 mm. This dimension 

is near the minimum initial crack (flaw) size for fillet weld 

toes 20
•

74
•

86
• Since the average initial crack size is about 0.075 

mm, the flange thickness could increase to 60 mm and still yield rea-

sonable accuracy in F during the early stages of crack growth 
g 

(Art. 2 .1). 

The fourth and final step of the analysis procedure (Fig. 

2.5) is the extrapolation of the stress concentration results of the 

-29-



ultra fine mesh to give SCF at the weld toe. Several extrapolation 

schemes are possible. Gurney has made a line fit of the output of 

elements adjacent to the flange surface 27 while Fisher employed a 

surface fit for the output of elements in both directions away from 

. 20 
the weld toe . However, in this study extrapolation of values along 

·the prospective crack path is used. Article 3.1 concludes that the 

path can be assumed to run vertical from the weld toe dmvn through 

the section. Hence, extrapolation involves averaging the element 

output on either side of the assumed path and fitting a polynomial 

(4th order) through the points. Due to boundary irregularities the 

bottom two points from the ultra fine mesh (Fig. 2.10) are neglected. 

2 .1.1. 2 Results 

Figure 2.12 presents a typical example of stress concentra-

tion factor variation along the prospective crack path.' Since this 

crack path is perpendicular to the direction of applied stress, the 

concentration factors are for stresses in the same direction. The 

variation curve is plotted with respect to relative distance from the 

weld toe. 

Figures 2.12 reinforces several points of discussion. 

First, the stiffener does indeed cause little disruption of the 

stress flow in the flange. Only five percent of the flange thickness 

exhibits a sizeable increase in stress for this particular weld geo-

metry. Second, the fine and ultra fine meshes compare in the same 

manner as meshes two and three in Fig. 2.3. Finally, equilibrium is 
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satisfied since the concentration decay ·curve passes below 1.0. The 

equilibrium is not necessarily precise since the problem originated 

as a three-dimensional one· and the force per unit width of flange 

along the weld toe is not exactly constant. 

The maximum stress concentration factors, SCF, for the 

stiffeners are tabulated in Table 2.1 and plotted in Fig. 2.13. 

Obviously, the trend is increasing SCF at a decreasing rate. This is 

precisely the same trend predicted by Gurney for non-load-carrying 

fillet welds at cruciform joints27
• The variation of SCF does not 

agree with Ref. 20. Exactly the opposit~ trend is predicted there. 

The conflict with Ref. 20 can be explained on the basis of 

mesh size. In Ref. 20 the weld leg and mesh around the weld toe were 

maintained at a constant absolute size while the flange thickness var

ied. To obtain comparable accuracy at singular details, the mesh size 

must be in a constant proportion to flange thickness. Hence, the 

absolute mesh size changes. Due to the constant absolute size main~ 

tained in Ref. 20, accuracy increases with flange thickness. There

fore, higher SCF are expected and, indeed, found at larger flange 

thicknesses, which result in lower values of Z/Tf. This trend is 

definitely misleading. 

The maximum stress concentration factor can be related to 

the variable Z/Tf by the following least squares curve fit: 

SCF = 1.621 log (T~)+ 3.963 (2-2) 
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I 

The standard error of estimate, s, for Eq. 2-2 is negligible at 

0.0019. 

The thickness (length) of stiffener has been assumed to be 

zero for the development of Eq. 2-2. The cover plate study described 

later shows that the increase of SCF with length is most rapid at the 

smaller length magnitudes (Art. 2.1.2.2). The average for the studied 

range of weld sizes is a 13 percent increase in SCF for L/Tf varying 

from 0 to 1. Since the constant of Eq. 2-2 clearly dominates the 

result for typical weld sizes, one can estimate SCF at finite stiff-

ener thicknesses, T , as follows: 
s . 

SCF = 1. 621 
I T \ 

+ 3.963 (1+0.13 Ts) 
\ . f 

(2-3) 

Typically SCF from Eq. 2-3 is less than five percent greater than SCF 

from Eq. 2-2. 

One final observation on the stiffener detail reflects the 

degree of importance associated with the three-dimensional coarse mesh. 

Z/Tf equal to 0.6410 has also been solved with a two-dimensional 

plane stress coarse mesh (other meshes remaining the same). SCF 

turned out to be 3.998 rather than 3.65lw (Note that use of plane 

strain rather than plane stress in the coarse mesh would have led to 

an SCF below 3.998 unless the finer meshes also used plane strain ele-

ments.) This is understandable since the two-dimensional coarse mesh 

had the same boundary conditions as along the web (Fig. 2.7). Thus, 

no bending effects, due to lack of joint symmetry, were introduced. 
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(Bending is also absent in cruciform joints.) Since bending tends to 

reduce stress concentration at the weld toe, the two-dimensional 

coarse mesh provides an upper bound for real stiffener details. The 

difference with actual values is on the order of ten percent~ The 

closeness of the values leads to the conclusion that stiffener results 

can be reasonably compared with those of non-load-carrying cruciform 

joints22
•

27
•

30
• Also, use of a two-dimensional coarse mesh to repre-

sent stiffener details is acceptable2 • 

2 .1. 2 Cover Plates. ~>lith Transverse End Helds 

2.1.2.1 Geometry and Modeling 

Figure 2.14 shows one-quarter of the detail geometry to be 

used for the cover plate investigation. ~~imilar to the stiffener 

case, the web and midlength of cover plate mark planes of symmetry. 

The flange width is also the same as that used for the stiffener 

investigation. The cover plate is assumed to be smaller in width, 

H , than the flange. Hence, the fillet always has one leg on the cp 

flange surface and the other on the side of the cover plate. The 

length of cover plate is set at over 2.5H (Art. 2.1.2.2). 
cp 

Two variables are under study. The first is the ~.;reld leg, 

Z, which assumes the same specific values used for the stiffener de-

tail. The second variable is the cover plate thickness, T Pro-
cp 

vision 1.7.67 in the AASHTO Code limits T to a maximum of 2Tf 4 
cp 
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Therefore, three values of T are selected to cover the permissible 
cp 

range; they are 0.6410Tf, 1.4360Tf' and 2.000Tf. The corresponding 

values of Z and T for a particular case are listed in Table 2.1. 
cp 

. In all, five different cases are investigated. The actual flange 

thickness used is again 19.812 mm. 

The same stepped analysis procedure is used for the cover 

plate details as was used for the stiffener details (Fig. 2.5). In 

fact, the very same fine and ultra fine meshes are employed (Figs. 

2.8 and 2.10, respectively). Only the coarse mesh needs to change 

and the one devised is sho•m in Fig. 2.15. Like the stiffener de-

tail the cover plate is initially treated three-dimensionally. The 

elements are all. the solid, eight-node brick type of the SAP IV 

library 8
• 

Special explanation of Fig. 2.15 is requi'red regarding the 

treatment of the weld. Unlike the stiffener coarse mesh (Fig. 2.6) 

the total length of the detail is ahmys constant. When the weld 

leg size is changed extra elements are merely added (dashed lines). 

Among other things this addition pushes the weld toe closer to the 

point of uniform stress input. However, at the maximum size the toe 

is still about 2.9Tf from the stress input end. This dimension is 

well beyond the 2.4Tf or 2.5Tf required. 

leg size. 

The cover plate thickness is ahvays as great as the weld 

Based on the T selected, at least two layers of elements 
cp 
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are always necessary. As the 'tveld leg is increased the number of 

layers in the cover plate is increased. The maximum number of layers 

(4) occurs for the one case at a weld leg size of 0.9615Tf. Chang

ing the number of element layers in the cover plate is assumed to 

have a negligible effect on stress concentration c6nditions at the 

weld toe. 

A change in weld leg size also affects the flange dis

cretization along the longitudinal side of .the cover plate. For the 

smallest weld leg the line between the two dashed lines is the·bound

ary ·between element rows.. However, for the next larger value of Z, 

The solid line position is replaced by the inner {closestto the web) 

dashed line. The largest Z requires the addition of a second dashed 

line nearer the flange tip. These modifications to the flange dis

cretization are of little concern when comparisons between results 

are made. By Saint-Venant's Principle, modifications well removed 

from the section of interest should have no affect on the behavior 

there. While the variation of stress concentration along the trans

verse weld toe of a cover plate is greater than for a stiffener, 

the maximum still exists over the web (Art. 2.1.2.2). 

One last remark regarding the discretization concerns the 

weld elements at the corner of the cover plate. Figure 2.16 shm.,rs 

a schematic isometric of the "corner weld" as discretized for the 

smallest weld leg. Notice that angles of rr/4 are maintained on the 

exposed sides which are coplanar with the transverse and longitu-
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dinal fillet ~velds. This shape is, of course, a rough assumption, · 

but it is not too important when a transverse end weld exists. (As 

stated above, the section of interest is well removed from the cor

ner position.) Only six nodes are given in the isometric, implying 

that two nodes act in a dual capacity to reach the eight total. 

Figure 2.17 presents an isometric of the boundary condi

tions associated with the coarse mesh (Fig. 2.15). Like the stiff

ener coarse mesh boundary condi tfons (Fig. .. 2. 7), displacements 

perpendicular to planes of symmetry are invariably prevented. How~ 

ever, two differences bet~veen Figs. 2.7 and 2.17 occur in the case 

of vertical displacements. First, a difference is observed along 

the web line where, due to a change in the actual relative posi

tions of the attachment and web, vertical displacement in Figs. 2.17 

is prevented along the bottom nodes of the flange as sho\vn. This 

change in position was found to have little effect on the final re

sults although it is more realistic. Second, no vertical displace

ment is prevented on the other plane of symmetry since the cover 

plate and flange undergo considerable bending and displacement per

pendicular to the flange surface due to lack of joint symmetry per

pendicular to the flange plane. Such movement is not inhibited ex

cept along the web line. 
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2.1.2.2 Results 

The selection of length for the cover plate geometries 

(Fig. 2.14) is worthy of amplified discussion. Actual cover plates 

obviously represent the upper bound of attachment length mentioned in 

Art. 2.1.1.1. Research has shown that stress concentration and, con-

sequently, detail severity increase with attachment length in the 

direction of applied stress20
• Fortunately, additional length incre-

ments are expected to have a diminishing effect until a stress con-

cen~ration.plateau is finally reached 20
• Thus, it is not necessary 

to investigate a detail with extremely long attachment length in 

order to properly represent a cover plate. The question is, "How 

long is long enough?" 

The results of a pilot study ori attachment length are given 

in Fig. 2.18. Here, the variation of maximum stress concentration 

factor, SCF' (as extrapolated from output of the fine mesh - not 

ultra fine mesh), is plotted against nondimensionalized cover plate 

length, L/W . The trends shown are expected to be representative of cp 

both fine mesh and ultra fine mesh extrapolations; only the actual 

magnitudes of concentration change, not the relative magnitudes. 

The starting point of each curve in Fig. 2.18 is the zero 

length attachment where only the end fillet welds are present. This 

position is comparable to the assumed stiffener condition although 

the boundary conditions of Fig. 2.17 are not exactly the same as in 

-37-



Fig. 2.7. The curves rise at a decreasing rate until a plateau is 

reached in the neighborhood of L = 2. 5H • 
cp 

Any length above this 

value can be expected to give an adequate representation of a real 

life cover plate. Fig. 2.14 shows a slightly longer length was, in 

fact, used in the model. 

The plateau concept is related (although not exactly) to a 

minimum length for full effectiveness of the cover plate or confor-

mance to the theory of flexure. It has been shown that such confer-

mance is reached at a distance of about 2H' lvhen a transverse weld cp 

exists 5 9
• (Provision 1.7.67of the AASHTO Code suggests a terminal 

distance of 1.5W for designing the weld beyond the cover plate's 
cp 

theoretical end 4
.) The minimum total length of cover plate required to 

obtain full effectiveness at midlength is 4W . Since this length is 
.· cp 

much greater than 2.5W , it can be deduced that end weld reaches full 
cp 

capacity well before the cover plate is fully effective. The longi-

tudinal fillet welds transfer the extra force needed for conformance. 

The stiffener discussion asserted that the section with 

highest stress concentration is over the web (Art. 2.1.1.1). Figure 

2.19 demonstrates that this conclusion also holds for cover plates. 

Using the extrapolated fine mesh results, the variation of SCF' along 

the transverse weld toe is plotted. As the attachment length in-

creases the change in stress concentration from point to point is 

more distinct. Bending increases with length, thereby causing cover 
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plates to have a more pronounced variation than stiffeners, regard

less of differences in assumed boundary conditions. In all cases 

where the attachment position does not exceed the flange tip, the 

maximum concentration is at the \veb line. 

~fuile the web line has the highest stress concentration, 

fatigue crack growth can easily occur at other weld toe positions. 

Growth depends on the range of stress intensity (Chap. 1) \vhich is 

affected by crack size as well as stress range and the various cor

rection factors. Initial discontinuities Are not nec~ssarily )argest 

over the \veb. Hence, cracks tend to grow along the entire weld toes 

of both stiffeners and cover plates. The web line is here selected 

since it represents the worst concentration condition and is there

fore conservative in that respect. 

The assumed crack path is taken to be identical to that for 

stiffeners (Arts. 2.1.1.1 and 3.1). Therefore, stress conc~ntration 

for local stress in the direction of applied stress is of interest. 

Figure 2.20 presents such stress concentration factor contours for a 

sampl~ cover-plate detail. (The actual geometric parameters are 

unimportant.) High stress concentration is quite localized although 

redistribution from the uniform state occurs over a broad range in 

either direction from the weld toe. 

Figure 2.21 gives a particular stress concentratioi factor 

decay curve along the assumed crack path. By comparing Fig. 2. 21 with 
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Fig. 2.12 it is apparent that the cover plate detail causes much more 

disruption of the stress flow in the flange. About 15 percent of the 

flange thickness exhibits sizable increase in stress compared with 5 

percent for stiffeners. (Different geometrical values \vOuld make 

these percentages vary some\vhat.) This difference is primarily due to 

the fact that significant force is developed in cover plates and a 

relatively large change occurs in the position of the overall force 

centroid of the detail section. Considerable local, longitudinal bend-

ing stems from the centroid shift;bending increases with distance from 

the web. 

Table 2.1 records the SCF values for each combination of 

geometrical parameters studied. These results are plotted in 

Figs. 2.13 and 2.22. Figure 2.13 shows the SCF trend is dowmvard at a 

decreasing rate as Z increases. Conversely, Fig. 2.22 indicates SCF 

increases at a decreasing rate of T increases. (This second trend . cp 

is opposite that evident in fillet-welded lap joints where the 

"flange" is not continuous through the joint25
• SCF increases in such 

joints as "T " decreases.) A least squares curve fit of the values 
cp 

leads to the following equation: 

SCF -3.539 log~;)+ 1.98llog~Tc~ + 5.798 (2-4) 

The standard error of estimate, s, for Eq. 2-4 is 0.0922. While this 

error is much greater than that for stiffeners, it is still not sig-

nificant. The increase in error is explainable on the basis of two 
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rather than one independent variables. Due to the value of the co-

efficients, weld leg, Z, is more important in determining SCF than 

thickness, T 
cp 

Several aspects of Fig. 2.13 deserve further comment. The 

trend in SCF with respect to Z is seen to be opposite for stiffeners 

and cover plates. Interestingly, Gurney's curve for load-carrying 

fillet welds 27 is of the same shape as the curves for cover plates. 

Apparently, a transition from non~load-carrying to load-carrying 

occurs as the length of the attachment increases~ This finding is 

·supported by Fig. 2.18 where the curves with different weld leg sizes 

are seen to cross over each other at a length of about O.SW An 
cp 

attachment with length O.SW could be expected to result in a hori
cp 

zontal line in Fig. 2.13, the value of SCF depending on cover plate 

thickness. 

Figure 2.13 also acts as a guide to the effects of varying 

weld penetration. Since SCF increases with Z in stiffeners, one 

would expect SCF to increase with over penetration. Frank, inde~d, 

found such a trend for non-load-carrying joints22 • Frank22 and 

Gurney27 both note an opposite trend for load-carrying joints. 

Again, Fig. 2.13 is ~elpful since SCF decreases with increasing Z 

in cover plates. Moreover, it is apparent that the effect of pene-

tration depends upon the nominal weld leg size. For small values of 

Z the increment in SCF with an increment in Z is more significant, 

-41-

( 
l 



whether the joint is load-carrying or non-load-carrying. Frank22 and 

Gurney's27 studies are compatible with this observation. 

The stiffener study :nentioned the difference between a two-

and three-dimensional approach at the coarse mesh level (Art. 

2.1.1.2). The conclusion was that the two-dimensional coarse mesh 

always leads to an upper bound on SCF. Unfortunately, the same 

statement can not be made for cover plates. The case of Z/Tf equal 

to 0.6410 and T. equal to 0.6410 ~.,ras solved with a two-dimensional, 
cp 

plane stress (constant element thickness), coarse mesh (longitudinal 

fillets neglected and other meshes remaining the same). The result-

ing SCF was 5.991 versus 6.040 when the three-dimensional analysis 

was used at step one (Table 2.1). If the planar elements of the cover 

plate had been assigned lesser thickness .than the flange elements to 

account for the difference in cover plates and flange widths, SCF 

would have been less than 5.991. 

The reversed relationship w·ith the two-dimensional result 

can be attributed to the joint being load-carrying rather than non-

load-carrying. Figures 2.23 and 2.24 help to explain this point. A 

specific detail geometry was selected (Z/Tf = 0.6410, Tcp/Tf = 

0.6410) for investigation. Figure 2.23 shows a plan view of points 

near the cover plate termination where stress output from the coarse 

mesh analysis has been used. The results at these points were used 

to plot the stress concentration factor distribution across the 
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flange and cover plate. In general the average concentration factor 

(with respect to the input stress) through the flange or cover plate 

thickness is recorded. However, since the SAP IV solid elements 

yield stress results on the element surfaces as well as at the cen

troid, the distribution of the flange top surface concentration fac

tor is recorded for line 1 too. Distribution of the cover plate top 

surface concentration is noted for lines 2 and 3. 

Figure 2.24 plots the various stress concentration factor 

distributions at the three sections. Line 1 is represented by a· 

curve for concentration through the flange thickness as well as a 

curve for the flange surface. Lines 2 and 3 are represented by the 

curves for average concentration through the flange and cover-plate 

thicknesses, and the curve for the cover plate surface. The curve of 

particular interest is 2CP which, by recording average stress, gives 

an indication of force transferred through the transverse end weld .. 

Obviously, the force (per unit width) is significantly greater at the 

web centerline, which agrees with Albrecht's finding 2
• This distri

butional aspect of load transfer is not taken into account by a tyo

dimensional, coarse mesh model. Note also that 3CP, when compared to 

2CP, shows the initial contribution of load transfer through the lon

gitudinal fillet weld. The cover plate edge has been brought up to 

the same concentration as the centerline position. One could predict 

that sections further removed from the cover plate end, but before 

the point of flexural conformance, would demonstrate higher concentra

tion at the cover plate edge than at the web line .. 
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The flange surface results (curve lF*) are misleading 

since line 1 does not accurately represent the weld toe. Fine 

mesh analyses have consistently demonstrated that the concentra-

tion at the web centerline is greater than concentration elsewhere 

along the weld toe (Fig. 2.19). Curve 2CP* tends to support this 

contention by giving some indication of the amount of bending in the 

cover plate. Since the entire curve is in the negative zone, longi

tudinal bending is significant across the entire cover plate width. 

(The boundary conditions in Fig. 2.17 only restrict local bending of 

the flange along the web.) The negative aspect infers the bending 

of the flange at the ~veld toe (except over the web) would reduce 

stress even though there is a singularity condition. (Stress rises 

to infinity more slowly.) Apparently, considerable changes in stress 

distribution occur within a very small distance from the weld toe. 

Local flange bending occurs, although in different magni

tudes, whether the detail is a stiffener or a cover plate. This 

causes the web centerline position of the weld to be most critical 

and the two-dimensional coarse mesh model yields an adequate upper 

bound SCF. However, given the load-carrying requirement the web is 

still the ~verst position, but the two-dimensional model doesn 1 t 

necessarily lead to an upper bound SCF. Hence, analysis of fillet

welded, load-carrying joints should generally commence on a three

dimensional basis. The closeness of the t~vo results for the case 

studied is by chance; the separation could be far more pronounced in 

other geometries. 
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One other fruitful comparison stems from Fig. 2.24. Ozell 

and Conyers investigated transfer of stress into cover plates by 

experiment 59 and the findings had influence on Provision 1.7.67 of 

the current AASHTO Code~. Based on strain gage readings, Ozell and 

Conyers plotted strain distribution across the cover plate at various 

sections. The curves appear much like 3CP*. The curves would have 

appeared quite different if the gage lines had been closer to the 

cover plate end (curve 2CP*). Curves such as 3CP* don't necessarily 

reflect the average stress distribution through the cover plate 

.. thickness. (Compare curve 3CP* with 3CP.) Local bending makes sur-

face stress results near the cover plate end rather misleading. How-

ever, the Ozell and Conyers conclusions with regard to conformance 

length are not in question. 

The main cover plate investigation has held the cover plate 

and flange widths constant (Fig. 2.14) and ~vas only concerned with 

variable ~veld leg size and cover plate thickness. Hmvever, a pilot 

study on the effects of c?ver plate and flange ~.;idths 'tvas also con-

ducted. The associated auxiliary detail geometries are given in 

Table 2.2 along with resulting SCF. The coarse mesh for each geome-

try is similar in element size although of different extent than 

Fig. 2.15. No changes have occurred in coarse mesh boundary condi-

tions or either of the finer meshes. In all cases SCF has been eval-

ua ted at the ~veb line. 
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The first case in Table 2.2 has the reference geometrical 

parameters from the main investigation (Fig. 2.14 and Table 2.1) con-

nected with lines. Theeffect of a shorter cover plate length is also 

noted; this trend coincides with that in Fig. 2.18. The second case 

doubles both plate widths without changing any other parameters. 

Therefore, the length-to-width ratios of the cover plate have been 

cut in half. While such a reduction should lead to smaller SCF, the 

reduction is more than negated by additional force transfer distri-

bution to the web line (Fig. 2.24). Apparently, higher flange and 

cover plate aspect ratios lead to higher SCF. Note also that the 

ratio of plane stress to plane strain results for the one set of 

parameters is 0.900. 

The third case in Table 2.2 addresses a small cover plate-

to-flange width ratio. The results are below Case 2 even though 

the cover plate length-to-width rati6s are considerably larger. It 

seems that SCF decreases as the cover plate-to-flange width ratio 

decreases. However, comparison with Case 1 results proves even 

more enlightening. If the slight difference in SCF's is mostly at-

tributed to the slight differences in L/W , an interesting picture 
cp 

emerges. The effect of a rise in the flange aspect ratio is almost 

exactly balanced by the effect of a decline in the ratio of the two 

widths. Multiplication of the two parameters together suggests that 

the goverr.ing variable is the ratio of cover plate width to flange 

thickness (W /Tf). Case 2 indicates that SCF increases as l-1 IT f 
cp cp 

increases. 
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Finally, the fourth and last case in Table 2.2 deals with 

a cover plate ~.Jhich is wider than the flange. In light of the com-

ments for Case 3, one might expect results identical to those of 

Case 2. However, a cover plate wider than the flange introduces two 

new aspects to the problem. First, the longitudinal fillet weld is 

no longer adjacent to the cover plate edge. Rather, the weld runs 

along the flange tip. This positioning tends to reduce flange bend-

ing induced by lack of symmetry. Secondly, the force transfer dis-

- tribution in the transverse end weld is no longer as concentrated at 

the web line. In fact, for an even wider cover plate a higher SCF 

would occur at the flange tip (Art. 2.1.3.2). (SCF at the flange 

tip is not greater than at the web line for the specific geometry 

studied although the values are close.) Therefore, SCF at the web 

line drops Hhen W /Hf exceeds 1.00 (Art~ 2.1.3.2). cp 

The results for the auxiliary geometries are reasonably 

close to each other and to the findings of the basic geometries. 

From a practical point-of-view the flange and cover plate widths 

are much less important than weld size and the flange and cover 

plate thicknesses. Equation 2,4 is a good approximation for all 

width conditions. 

The results of the single cover plate investigation should 

be approximately applicable to multiple cover plate situations. It 

is assumed the various cover plate terminations are stepped back far 

enough from each other that each lower cover plate has sufficient 
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conformance distance from its termination before the next cover 

plate begins. Under these conditions the sum of lower cover plate 

and the original flange thicknessescanbe treated as equivalent Tf 

at any detail. T is the thickness of the secondary plate. 
cp 

While the stress concentration results are reasonably ap-

plied to multiple cover-plate details, fatigue crack growth will 

be somewhat different. After groHing through one lower cover plate 

a crack would tend to be arrested except at weld points. Assump-

tion of continuous material through the new Tf \vould yield a. lower 

bound on fatigue life. 

2.1.3 Related Cases 

Pilot studies have been conducted on two other details 

which are related to the cover plate detail of Art. 2.1.2. One of 

the related cases is the cover ~late without the transverse end weld. 

The other case is the lap-welded gusset plate. These results should 

give some idea of the details' comparative fatigue performance and 

provide a foundation for future research. 

2.1.3.1 Cover Plates Without Transverse End Welds 

One of the geometries of Table 2.1 (Z/Tf = 0.6410, Tcp/Tf= 

1.4360) was used to investigate stress concentration when the trans-

verse end weld is absent. AASHTO prohibits elimination of the weld 

when W/ /Wf is greater than 1. 0 since fatigue tests of this detail 
cp 

-48-



yielded less fatigue strength. Therefore, the overall geometry and 

coarse mesh of Figs. 2.14 and 2.15 are ~•ell sui ted for the study. 

Only the weld from the web centerline to the cover-plate corner needs 

to be discarded. However, the corner weld or weld termination in 

Fig. 2.16 is maintained. 

The section of interest for fine mesh analysis is coinci-

dent with the outside edge of the cover plate. The specific point 

where stress- concentration is evaluated is the key node in Fig. 2.16 

where the above section ineet.s the transverse ~veld toe. The investi-

gation h~s only been carried to the fine mesh level although these 

stress concentration factors have been extrapolated - just as for the 

data points on Fig .. 2.18. The resulting SCF' at the weld toe are 

plotted in Fig. 2.25. 

Figure 2.25 suggests that the plateau of stress concentra-

tion is not reached as rapidly if the cover plate is without a trans-

verse end we:I.d. Hhereas the plateau for the "with" case is at about 

L/W = 2. 5, the plateau for the "without" case is nearer L/\{ 
cp cp 

3.5. The general trend of these numbers is in agreement with the 

investigation on development length by Ozell and Conyers 59 • They 

found conformance is reached at a distance of about 3H from the 
cp 

cover-plate end when the end weld is absent. In order to reach con-

formance at midlength the cover plate must have a total length of at 

least 6H 
cp 
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The relative magnitudes of SCF' for the two curves shown 

in Fig. 2.25 is misleading. One problem is that the emphasis of 

the "without" case rests on the shape of the corner weld (Fig. 2.16). 

Such a smooth and steep profile is rarely found at real longitudinal 

fillet terminations- particularly with the end weld absent 19 • A 

smaller angle to the flange surface would lead to a smaller stress 

concentration factor 22
•

27
• 

A second problem with the "without" results centers on the 

planar, fine mesh analysis. Plane stress elements of uniform thick

ness were used as in the other cover plate ~tudies. However, this 

assumption is certainly erroneous since the flange is very much 

wider than the weld. Perhaps plane strain for the flange and plane 

stress for the weld would have been better choices. Alternatively, 

using plane stress elements throughout, but \vith different thick

nesses for flange and weld elements, would provide a more accurate 

measure of relative stiffness. This second possibility has been ex

plored for a particular cover plate length and the results are plot

ted in Fig. 2.26. 

Figure 2.26 shows SCF' declines sharply as the assumed ratio 

of thicknesses (or stiffnesses) is reduced. (The curve does not 

extrapolate to SCF' = 1.0 at a thickness ratio of zero since the 

coarse mesh analysis already introduced a gradient into the flange.) 

For a thickness ratio below 3/4, SCF' for the 11\vi thout" case falls 

below that for the "with" case. Hence, even though the shape of the 
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"without" curve in Fig. 2.25 is probably correct, its vertical posi

tion may not deviate as much from the "with" curve as implied. The 

plotted position is an upper bound. The true position is probably 

lower due to weld shape and/or relative stiffness between weld and 

flange. 

A final problem of the '"i thout end weld case centers on the 

crack path. A typical example of crack path at a corner weld is giv

en in Fig. 2,27 19 • Note that due to a common cold lap condition the 

crack first follmvs the flange surface in a "sheared ·off"· ma~mer. 

Eventually, the crack turns dm·m'·lard at a significant angle and final

ly becomes perpendicular to the applied stress. SCF' at the weld toe, 

then, is not an accurate measure of the severity of the detail. It 

appears desirable to investigate stress concentration at the end of 

the cold lap. Based on the initial stress distribution the stress 

concentration under the weld is less than at the weld toe. However, 

the redistribution of stresses when the crack surpasses the cold lap 

is-important and should·be considered in the analysis. 

Article 4.5 contains additional comments on cover plates 

without transverse end welds and their comparison with cover plates 

which are end-welded. In general, the two details have been found to 

have comparable fatigue lives 19 , If anything, the "without" case is 

'slightly less severe. 
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2.1.3.2 Lap-Welded Gusset Plates 

Figure 2.28 presents the detail geometry used for the lap-

welded gusset plate investigation. The geometry is similar to that 

used for one of the cover plates (Fig. 2.14) with a few notable 

exceptions. The gusset plate does not reach the web centerline; 

rather, it is set off some distance to permit welding all around. 

Since symmetrical gussets are assumed, only one-quarter of the detail 

is studied. The variables involved are the gusset plate width 

The coarse mesh discretization employed is very close to 

that shown in Fig. 2.15. Of course, the mesh for the gusset plate is 

shifted several rmvs beyond the flange tip. For W 
2 

additional rows 
gp 

are added. But the size of mesh - particularly in the transverse end 

weld - is directly comparable. Fine and ultra fine meshes (Figs. 2.8. 

and 2.10) are totally unchanged. 

Two points along the transverse weld toe are of interest. 

One (denoted "inner edge") is where. the line of the inner edge of· the 

gusset plate meets the transverse weld .toe. The second point (de-· 

noted "flange tip") is at the intersection of the transverse weld toe 

and the flange tip. The objective is to determine how SCF varies at 

these two points with changes in gusset plate width and length. 

Figure 2.29 indicates the SCF variation with the gusset 

plate length-to-flange thickness ratio. It is observed that after 
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a certain length the flange tip position becomes more critical for 

both gusset plate widths. The curve representing the inner edges 

moves vertically as this position changes relative to the web line. 

(Discussion of Case 4 of the auxiliary cover plate geometries 

Table 2.2 - stated the web is always worse than the flange tip for 

those particular geometrical parameters.) Note the wider gusset 

plate does not have quite as high a plateau a~ the inner edge posi

tion as the smaller width plate. However, at the flange tip the 

wider plate curve diverges significantly from the smaller width 

curve as length increases. The longer length gives the stress flow 

a chance to make use of the wider plate. 

Article 2.1.2 linked conformance length and length for the 

SCF-plateau to width of cover plate. A comparable parameter for 

symmetrical, lap-welded gussets is the effective width, l~*, from 

outer plate edge on one side to outer plate edge on the other side 

(i.e. twice the distance from web line to outer gusset plate edge). 

Effective width permits comparison of gusset plates of different 

width as well as plates with different proximity of their inner 

edges to the web line. The variation of SCF \vith the ·length-to

effective width ratio of the gusset plates is plotted ih Fig. 2.30. 

While the inner edge of the wider plate appears to reach its plateau 

more quickly than the inner edge of the smaller width plate, the 

situation at the flange tip is distinctly reversed. Clearly, the 

second gusset plate must be much longer than the first plate in order 

to reach the SCF plateau. 
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The lap-welded gusset plate investigation indicates that 

the flange tip position can easily be more critical for crack growth 

than the inner edge location. Both length and width are important in 

determining the SCF value and critical position. Experimental evi

dence is supportive of this conclusion 20
• 

2.2 Groove-Welded Details 

References 3 and 21 point out that the groove-welded de

tails of greatest concern (worst category) are those where the weld 

is parallel to the direction of applied stress. The weld in this 

case is normally intended to ~onnect some sort of attachment whose 

greatest dimension is along the weld. The length is typically suffi

cient to cause the detail's end rating to fall into Category E3
• 

Therefore, the details subsequently investigated are chosen for their 

potential severity and greater concern to bridge designers. 

2.2.1 Gusset Plates Groove-Welded to Flange Tips 

One class of details which. is particularly common in bridge 

structures is the groove-welded gusset plate. Such plates are often 

welded to flange tips or webs and may or may not possess a smooth 

circular transition at the ends. The transition can reduce the 

severity of the detail although clearly the radius involved is 

crucial. 

-54-



The intent here is to study stress concentration near the 

ends of gusset plates which are groove-welded to flange tips and 

exhibit a circular transition at each end. The geometry of the en

tire plate, including the radius, is varied in order to yield the 

stress concentration trend. The results are compared, where pos

sible, with those recorded by Peterson for stepped, flat tension bars 

with shoulder fillets 63
• (The Peterson results stem from photo

elastic studies by others.) However, the Peterson findings are ex

panded to par.ametric values common in gusset plates. Such expansion 

includes gusset plate-to-flange thickness ratios less than 1.0. 

Also, a few pilot cases are analyzed to sense the effect of secon

dary stress directly input from bracing members to the gusset plates. 

The fact that a transition radius (magnitude other than 

zero) is assumed greatly simplifies the finite element investigation. 

A radius means singularity doesn't exist and, as a result, very fine 

mesh sizes are unnecessary. However, as the radius decreases SCF 

can be expected to rise and the emphasis on mesh size is correspond

ingly increased. In other words, a coarse mesh alone may be ade~ 

quate for some geometries but not for others. Unlike the fillet- · 

welded details, results from different mesh sizes are obviously com

parable provided each mesh is at least fine enough to capture the 

maximum concentration. 

Several assumptions are made concerning the weld. Full 

penetration is the only case considered; the weld depth is taken as 
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constant and equal to the gusset plate thickness. The termination 

of the weld at the circular transition point of tangency is assumed to 

be ground smooth to maintain the intended contour. The weld thick-

ness in the plane of the flange and gusset is unimportant. 

2. 2 .1.1 Geometry and Node ling 

The general detail geometry for the gusset plate investi-

gation is shown in Fig. 2.31. Symmetrical gussets are assumed for 

two reasons. First, inner bridge girders often have cross bracing 

attached at·opposite flange tips at a given position along the gird-

er length.. Second, symmetrical gussets prevent cross bending of 

the flange. Gurney notes such bending leads to lower values of 

Therefore, the symmetrical gusset plate assumption leads to 

an upper bound stress concentration and a lower bound fatigue life. 

A few dimensional aspects of Fig. 2.31 need amplifica-. 

tion. The distance from uniform stress input to the point of transi-

tion tangency is slightly greater than 2.4w (w equals Wf/2 in this 

case - Fig. 2.1) as recommended in earlier discussion. The gusset 

plate width, W , is measured from the flange tip outward, thereby 
gp 

including any groove weld thickness. Finally, the length of gusset 

is measured from the point of transition tangency, not the outer cor-

ner of the gusset plate as used in Peterson63
• 

The above decision on length measurement is advisable on 

several counts. First, it is consistent with general fatigue cate-
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gorization on the basis of attachment length 3 ' 20 • Hence, results can ( 

even be compared ~vith those of tapered attachments such as longitu-

dinal stiffeners (Art. 2.2.2). · Second, transition radius, R, can be 

greater than W , making a quarter-circular transition impossible. gp 

Figure 2.32 demonstrates that under this condition the total length 

of attachment, L, can not be simply equated to the outer edge length, 

L' , plus two transition radii. Thus, a stress concentration factor 

based on L' would not follmv the ·same trend as SCF based on L once R 

exceeds W 
gp In fact, changes in SCF for Fig. 2.32 should be due to 

only changes 1h R since the·other para~eters (excludi~g L;) have not 

changed. Therefore, the length is consistently measured from the 

point of tangency without regard to the outer gusset plate edge 

length. 

Four variables were studied. They are the transition 

radius, R, the attachment length, L, the gusset plate ~vidth, \v , and 
gp 

the gusset plate thickness, T • AASHTO places few limitations on gp 

these parameters so a rather broad range investigation is required. 

Table 2.3 lists the parametric combinations actually studied. Each 

of the gusset plate variables is nondimensionalized by either the 

flange width or flange thickness. The actual flange width used is 

typically 305 mm. Since all problems are treated as two-dimensional, 

only the relative plate thicknesses are important. Thus, eccentri-

city of the gusset plate's centroidal plane at midthickness relative 

to the flange centroidal plane is neglected. 
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The stress concentration analysis procedure for gusset 

plates follows Fig. 2.33. This flow diagram is obviously more simpli-

fied than the one for stiffeners and cover plates (Fig. 2.5). The 

procedure begins with uniform stress input to a two dimensional 

coarse mesh which uses plane stress elements from SAP IV8
• (All out-

of-plane effects are neglected.) For gussets with large transition 

radii (R/Wf ~ 0.5), the element with the maximum stress concentration 

factor is located and that value represents SCF. For gussets with 

small transition radii (R/Wf< 0.5), it is necessary to go to a- fine 
. . 

mesh (plane stress elements) which makes use of nodal displacements 

from the coarse mesh. Since R is not zero, SCF is simply the maximum 

centroidal concentration factor found in any of the fine elements. No 

extrapolation is required. 

A sample coarse mesh is given in Fig. 2.34 .. The boundary 

conditions prevent nodal displacments at and perpendicular to lines 

of symmetry (Fig. 2.31.). In general, the flange discretization is un-

affected by the various parametric changes (Table 2.3). In fact, 

the discretization of the gusset plate is also basically constant 

except the extent varies ,.;rith the parametric values. Other discre-

tization can be developed by sketching the perimeter of the other 

gusset plates on Fig. 2.34 and observing the mesh pattern with the 

boundaries. Should extension of the width be required, the element 

sizes are identical to those in the current outer row. In the tran-

sition zone the mesh for a small radius is found by simply extending 
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the given mesh lines. The rule of thumb for the triangular elements 

is to always extend the lines perpendicular to the flange edge 

straight to the circular border. The lines parallel to· the flange 

edge are normally stopped one mesh line before the circular border and 

a skewed connection is made with a point on the border. 

The coarse mesh does contain some error due to the inac

curate representation of the circular transition with straight lines 

(chords) between nodes. The nodes themselves have been positioned 

directly on the curve. One way to measure the geometrical error is 

by the largest deviation of· any. chord from the curve, as a percent of 

the radius 7
• Figure 2.34 shows this error can be estimated from the 

chord length and the curve radius. The maximum chord length can vary 

significantly from radius to radius since the larger radii reach the 

larger mesh sizes. However, the largest error has been found for the 

smallest radius and amounts to under five percent. In the crucial 

tangency region the error is always less than one percent. Such 

error in geometry is considered to have a negligible effect on re-

sults particularly since the element's centroidal stress is used 

for SCF without extrapolation. Theoretically, singular stress con

ditions do exist at the skewed intersections of chords, but the 

angle difference bet,-Teen chords is ahrays very slight and the inter

sections themselves receive no special finite element treatment. 

The region of interest for highest stress concentration is 

in the vicinity of the point of transition tangency (Fig. 2.31). 
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Many references suggest that the maximum concentration occurs pre

cisely at the point of tangency 55
' 63 ' 7 b 85 • However, the findings 

of this study indicate the worst condition is slightly away from this 

point. The basis of the results in the cited references is photo

elastic studies. Although photoelasticity can't really be termed 

precise, the deviation of the point of maximum concentration from the 

point of transition tangency was thought to be caused by the chord. 

approximation of the smooth curve. 

In order to examine this premise, the results from two 

different coarse mesh discretizations were compared. One mesh size 

was equal to that in Fig. 2.34 while the other was twice as large 

in the region of interest. The resulting position of SCF from the 

point· of tangency was found to increase with the radius and the dis-

tance was roughly R/5 for both discretizations. (This approximation -----
seems to be reasonable no matter what the gusset plate length, width, 

or thickness.) Therefore, it does not appear that the chord approxi-

mat ion \.,as the cause. In any case, the value of SCF is typically . 

less than two percent greater than the stress concentration at the 

point of tangency. 

One conclusion of Art. 3.1 is that the crack path can be 

assumed perpendicular to the flange tip or the direction of stress 

input. Hence, SCF represents stress in the direction of applied 

stress but not generally right at the point of tangency. 
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Nevertheless, the nominal stress used to evaluate SCF is that which 

is input (i.e. that across the flange width prior to the transition). 

Figures 2.36 and 2.37 present a typical fine mesh discreti

zation and imposed boundary displacements derived by linear interpo

lation from the output of the coarse mesh (Fig. 2.34). The mesh size 

is typical of fine discretization for other radii. Since the maximum 

stress concentration is normally away from the point of tangency, the 

fine mesh usually doesn't straddle that location. However, the cases 

of R 5 0. HJ' f are exceptions to this rule since SCF is close to 'the 

_tangency point. 

2.2.1.2 Results 

Figure 2.38 presents stress concentration factor contours 

for one of the gusset plate details. It is useful to compare this 

figure with the sample cover plate detaii (Fig. 2.20). Basically, 

the two figures are quite similar. The only major difference is the 

sharp rise in concentration near the singular point in Fig. 2.20. If 

the fillet weld toes of stiffeners and cover plates were somewhat 

rounded by grinding or other means, the contours for a given R/Wf 

(gusset plate) would be almost identical to those for the same R/2Tf 

(stiffener or cover plate). Small differences would still exist, 

however, due to the other geometrical parameters. 

-61-



The stress concentration facto.r decay for the mesh geometry 

shown in Figs. 2.34 and 2.36 is plotted in Fig. 2.39. (Division of 

distance by l~f is approximate since the element with SCF is a small 

distance from the flange tip. The error in total width to the cen

troid of the element is less than one percent.) This curve exhibits 

the same pattern established by the stiffeners and cover plates 

(Figs. 2.12 qnd 2.21, respectively). Since SCF is lower, the rate 

of decay is more gradual. The stress concentration factor reaches 

1. 0 at a distance of about 0.14 Wf. Wf is comparable to 2T f since 

symmetrical gusset plates were used. Thus, Kt equal to 1.0 is 

reached at a comparable distance of about 0.28Tf. For the cover 

plate detail plotted in Fig. 2.21, Kt equal to 1.0 is reached at 

0.23Tf while the stiffener shown in Fig. 2.12 crosses this level at 

O.lOTf. The actual distances vary with geometry although the gen

eral trend exhibited here is typical. 

The SCF value resulting from each combination of geometri

cal parameters is given in Table 2.3. The trend of each of the para

meters is more clearly visible in Figs. 2.40 through 2.43. Basi-. 

cally, SCF increases with increasing length, width, and thickness of 

gusset plate. As expected, SCF increases with decreasing transition 

radius. 

Also plotted in Figs. 2.40 through 2.42 are curves derived 

by interpolation of Peterson's findings 63
• (No data are available 

in Peterson or else~.;here for varying thickness ratios - Fig. 2.43.) 

-62-



In all cases the results of this study have the same trend as those 

recorded by Peterson, but exceed them somewhat. The increase is gen-

erally on the order of 10 percent. 

A least squares curve fit of the values summarized in 

Table 2.3 yield the following SCF equation: 

SCF =-1.115 log(,:f) + 0.537 log(;f) + 

(2-5) 

. 0.138 log~~)+ 0:285(Tlf~ + 0. 680 

The standard error of estimate, s, for Eq. 2-5 is 0.1322. This error 

is somewhat larger than that for cover plates due to the two addi-

tiona! variables involved. However, the error is still quite small. 

The form of Eq. 2-5 permits a comparative rating of the 

importance of different variables. The coefficients indicate that 

radius, R, is more critical than length, L, which is more critical 

than the width, W . The thickness ratio does not appear in the equa
gp 

tion in logarithmic form so an exact comparison with other variables 

is not possible. Uowever, the indication is that thickness has 

importance comparable to the length. 

The singular case of R = 0 is of special interest. While 

not a part of the basic gusset plate investigation, a pilot study 

was conducted for the sets of parameters listed in Table 2.4. The 

coarse mesh used in the investigation had a gradation identical to 
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the previous gusset plates (Fig. 2.34). However, the fine mesh was 

altered to that shown in Fig. 2.44. The kind of displacement input 

to this mesh was comparable to that of the other gusset plates (Fig. 

2.37). SCF was found by extrapolating the element stress concentra-

~ion factors to the gusset plate end. 

Table 2.4 indicates the trends in SCF with regard to the 

.length, width, and thickness variables are unchanged by the singular· 

condition. But the SCF magnitudes are all exceptionally high and, 

therefore, of particular concern. Note that the element size near 
. ·. 

the point of interest is only 0.00081-lf" Since Wf is comparable to 

2Tf from the stiffener and cover plate investigations, the size can 

be considered equivalent to 0.0016Tf in those studies. The finest 

mesh size used at the weld toe of stiffeners and cover plates was 

0.0013Tf. Hence, the fillet-welded details had_a slightly finer 

discretization adjacent to the singular point than the above gusset 

plates, but the resulting SCF for gusset plates are much larger for 

most geometries (compare Tables 2.1 and 2.4). 

The main instigator of the comparatively high SCF in the 

singular gussets is the angle between the plate end and the flange 

tip. Gurney27
, Frank22

, and others have indicated SCF increases 

significantly with the weld toe angle of both load-carrying and non-

load-carrying joints. In fact, the SCF-weld angle relationship is 

approximately linear 2 7
• Therefore, in changing .from a weld angle 

(in the fillet-welded details) of ~/4 to ~/2, SCF would be expected 

to double. 
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A useful exercise is to "equate" parameters of the gus

set plate detail to those of the stiffener: (The stiffener is used 

rather than the cover plate since the gusset plate is connected all 

along its length.) The analogy, then, is that the gusset plate 

length, L, equates to twice the weld leg size, Z, and flange width, 

Wf, equates to twice the flange thickness, Tf. _ The thickness ratio 

. in the gusset detail is assumed to be 1. 00 since the symmetrical· 

· .. stiffeners span the flange width. Also, the elements of the finer 

meshes (Figs. 2.8 and 2.10) were assumed to have uniform thicknesses. 

The only variable remaining is the gusset plate width~ .It should be 

as large as possible since the fillet weld's vertical leg increases 

with an increase in the horizontal leg and/or an increase in the weld 

toe angle. 

Given the preceding "equalities", Eq. 2-2 (multiplied by 

2) is used to predict SCF for several of the geometries in Table 2.4. 

The results are given in Table 2.5. It can be seen that in spite of 

the slight difference in mesh size, Eq. 2-2 gives a very good pre

diction of SCF when the gusset plate length is small. However, the 

predictions are on the low side for lengths greater than the flange 

width. Of course, Eq. 2-2 isn't really intended for weld legs much 

greater than the flange thickness. 

The comparison in Table 2.5 confirms the reason for the 

high stress concentrations for singular gusset plates. But from a 
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practical point-of-vie~v fabricated gusset plate COnnectionS don It 

usually have the abrupt right angle idealized for the singular condi

tion. Weld runout is typically observe~ thereby reducing the angle 

at the singular point. Experimental results acquired io date show 

the singular, groove-welded gusset plates of common length are com

parable to cover plates 20
• Nevertheless, it seems clear that gus

set plates should possess a transition if at all possible. Even a 

small radius formed by grinding the groove weld termination can, 

theo.retically, substantially reduce fatigue susceptibility. 

To this point the only force input to the gusset plate de

tail has been located in the flange (Fig. 2.31). Naturally, force 

may also be imposed on an actual joint by the bracing member(s) con

nected to the gusset. The question arises as to whether these secon

dary forces have a significant effect on the stress concentration as 

given by Eq. 2-5. 

A pilot study into geometry and secondary force effects was 

conducted by making use of the tvlO loading schemes in Fig. 2. 45. It 

has been assumed that the force input to the gusset plate is main

tained at a constant proportion of the force input to the flange. 

Two different distributions of force are employed. One distribution 

(termed Distribution 1) is in the form of uniform stress along the 

outer edge of the gusset. The magnitude of this stress depends on 

gusset length and thickness. The second force distribution (termed 
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Distribution 2) is in the form of two concentrated forces (simulating 
( 

bolts) at the midlength of the gusset. The force is taken to be 

equally divided between the two positions. (The forces are divided 

by two again due to symmetry about the midlength.) 

The secondary force effect is measured at the previous 

point of maximum concentration for each geometry. The concentration 

. factor, as before, relate~ local_ stress in the direction of flange 

stress to nominal stress input to the flange. For the given force 
. . 

ratio of 1/12, the point of maximum concentration thus defined is 

actually unchanged for the range of geometries studied. However, 

stress concentration factors for other directions of local stress at 

other locations increase. These concentration factors are usually 

much smaller than the one evaluated here. One exception is the singu-

lar juncture (in section) of the gusset plate and flange tip when the 

thickness ratio is less than 1.0. Study of the singular location 

requires a three-dimensional coarse since the stress gradient of con-

cern is through gusset plate thickness. Such a study is beyond the 

scope of this dissertation although SCF estimates could be made ~rom 

one of the fillet weld equations (Eq. 2-2 or 2-4). 

The percentage change in concentration factor for selected 

geometries is given in Fig. 2.46. It can be seen that the percentage 

only becomes significant when both the transition radius and the 

length are small. This trend with regard to length is opposite to 

the trend in the basic SCF (Fig. 1.41). Although the percentage 
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becomes large at small L, the percentage is applied to a relatively 

small SCF. In terms of absolute change in SCF, the curve would not 

be as steep over the range of length plotted. 

Gusset plate thickness and the manner of.sec6ndary loading 

are not particularly important variables. However, even though the 

percentages for the two thicknesses are about equal at small length, 

the percentage for the higher.thickness is more meaningful since it 

is applied to a higher base SCF. (Recall that the uniform stress 

input _varies with pla.te. thickness.) · .. As expected, the two _secondary 

load distributions are equivalent when the. length is small. At large 

lengths a separation occurs since the uniform stress continues to 

influence the concentration in a positive manner while the concentra

ted loads yield a Poisson effect (negative for se~ondary tension). 

For large transition radii, all effects are of the Poiason type. 

The general conclusion with regard to secondary effects is 

that they can be ignored unless the gusset transition radius and 

length are both small. A rule of thumb suggests that secondary e~

fects are negligible unless R is less than 0.11vf and L is less than 

l.OWf. These two values are specifically related to the assumed 

force ratio. For a lesser ratio the limits could be even smaller. 

One other possible point of concern for the gusset plates 

is the change from local stress (concentration) in the direction of 

applied flange stress to local principal stress (concentration). 
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As mentioned earlier, stress perpendicular to the crack is the only 

stress of importance. It is of interest to examine the stress con-

centration assuming the crack follm.;s the minimum principal stress 

trajectory (Art. 3.1). Figure 2.47 indicates the change in base SCF 

(Eq. 2-5) required to reach the principal stress concentration factor. 

Figure 2.47 includes curves for the cases of no secondary force and 

the secondary forces as defined in Fig. 2.47. Therefore, the curves 

for Distribution 1 and 2 can be viewed as the curve for no secondary 

force with an additional modi~ication for secondary loading. Again, 

all principal concentration factors are at 'the previous points of 

maximum concentration. 

Principal stress only becomes critical when the radius is 

small (say less than l.OWf). A check of changes for R = 0.5Wf has 

shown values always less than 2.0 percent. 
·~ 

2.2.2 Longitudinal Stiffeners 

The gusset plate findings can provide insight to the stress 

concentration at other details. For example, consider the case of 

longitudinal stiffeners. These attachments are connected to plate 

girder webs or box girder flanges and webs with either fillet or 

groove welds. The region of greatest interest for fatigue suscepti-

bility is the attachment's termination. The stiffener may or may not 

be tapered at its end and the weld termination may .or may not be 

ground into a smooth transition. 
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Consider the tapered longitudinal stiffener with smooth 

transition in Fig. 2.48. For this study it is assumed that the stiff

ener is attached to a flang~ and that the stress concentration anal

ysis can be viewed as two-dimensional .. (Strictly speaking there is 

minor three-dimensional action - particularly if fillet welds are 

used and full penetration doesn't exist.) The objective is to ana

lyze this detail and see how the results compare with the gusset 

plate findings. 

For· such a large, nondimensional radius the finite element 

mesh is not crucial. However, mesh sizes comparable to those in Fig. 

2.34 are used. The only variance beyond the change in the gusset 

dimensions is that flange thickness in Fig. 2.47 is assumed to re

present half of the flange width in Fig. 2.34. 

Boundary conditions for the stiffener problem deserve 

special attention. Displacements at and perpendicular to the line 

of symmetry (at midlength)are .prevented. Hmvever, consideration 

must also be given to displacement perpendicular to the flange. Such 

displacement must be prevented for at least one node to insure stabi

lity. Other nodes can be left free to move. Limited vertical move

ment must occur in flanges at stiffeners, cover plates, and other 

nonsyrnmetrical details. 

An upper bound value of SCF can be determined by assuming 

bending or vertical movement of the flange is prevented. Trials on 
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the detail in Fig. 2.48 without restraint led to negative SCF. Thus, 

restriction of vertical displacement at all nodes along the flange 

bottom provides the other extreme. Note that this assumption is com-

parable to assuming the detail is symmetrical about the flange bot-

tom. Hence, the longitudinal stiffener detail becomes comparable to 

a gusset plate detail provided there is a circular transition. · 

The last modeling problem is what to assume for planar con-

ditions- plane stress or plane strain. The.stiffener should logi-

cally. use plane.stress elements with the proper stiffener thickness. 
. . ._ . . . . . . ,· .... 

The flange eleme~t~-might be t~ken as· plan·e strain or plane stress 

with large thickness. The flange is typically stiffer than the stiff-

ener and relative stiffness affects SCF (Art. 2.1.3.1). Assumption· 

of plane stress conditions permits direct. comp.arison with the gusset 

plate results (Eq. 2-5). Further, assumption of thickness equal to 

that of the stiffener leads to an upper bound solution. 

The longitudinal stiffener problem was solved with tt.;ro dif-

ferent assumptions for the planar elements in the flange. First, 

assuming plain strain conditions in the flange and a stiffener thick-

ness of 6.35mm, the resulting SCF is 1.05. Second, assuming plain 
' . 

stress for the flange and thickness equal to the stiffener, the SCF 

is 1.20. The prediction by Eq. 2-5 for equal thicknesses and Wf (in 

Eq. 2-5) equated to 2Tf (in Fig. 2.48) is 1.62. 
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The overestimate of Eq. 2-5 is partially attributable to 

the fact that very long lengths or wide gussets were not included in 

the supporting data. Peterson's graphs 63 place the eh~ected value 

for equal thicknesses at about 1.28. Since the gusset results from 

the finite element investigation exceed the Peterson values by 

10 percent, one would expect an SCF near 1.20. In any case, it 

appears the taper has a favorable influence on stress concentration. 

Equation 2.5 and Peterson's graphs for non-tapered specimens lead to 

upper bound solutions. Also, the plane stress approach to the prob~ 

lem is more severe than plane strain. 

For stiffeners without a circular transition the taper is 

more important. The intersection of the taper and the flange sur

faces is a singular point in any event. But since the hypothetical 

SCF is proportional to the angle (Art. 2.2.1.2), the taper becomes a 

crucial factor. The upper bound stress concentration factor for 

singular, longitudinal stiffeners can be estimated in a manner simi

lar to singular gusset plates (Art. 2.2.1.2) with an appropriate 

reduction for relative stiffness. The number by which Eq. 2-2 is 

multiplied depends on the ratio of the taper angle to TI/4. 

-72-



3. 

3.1 Crack Path 

STRESS GRADIENT CORRECTION FACTOR - F 
g 

Chapter 1 noted that the Green's Function approach to a 

stress intensity solution requires that the crack path be known. 

(Actually, the crack path must also be known for the compliance 

technique.) Stress perpendicular to the crack plane is evaluated and 

used to predict F at any crack length. Thus, F relates only to the g g 

crack opening mode of displacement (Mode !) 62
• Shearing stresses in 

the plane of the crack (if present) resulting in Mode II and Mode III 

displacements are neglected. 

In considering potential crack paths it is helpful to 

recall crack patterns in concrete beams 18
• There, cracks form per-

pendicular to the tensile (principal) stress trajectories. In other 

words, the crack paths tend to follow the compressive (principal) 

stress trajectories. More generally, a crack originates first at the 

location of maximum tensile stress and propagates along the minimum 

(algebraic) principal stress trajectory through that origin. 

Figures 3.1 and 3.2 present maximum (algebraic) principal 

stress concentration factor contours for sample cover plate and gus-

set plate details. (The specific geometries used in these figures are 

unimportant.) Such contours do not represent stress trajectories (or 

isostatics) 6 ~ although they do provide insight on how the principal 
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stress is changing in the vicinity of maximum concentration. Also, 

it is interesting to compare these contours with those representing 

local stress in the direction of applied stress (Figs. 2.20 and 2.38). 

The comparison shows the contours for a specific detail have the same 

general shape, but for principal stress they are further apart. 

By using the finite element output it is possible to define 

stress trajectories. The minimum principal stress trajectory which 

passes through the point of maximum stress concentration of each de

tail has been superimposed on the principal concentration factor con

tours in Figs. 3.1 and 3.2. (Since the contours are not the same as 

trajectories, mutual orthogonality with the minimum principal stress 

trajectory is purely coincidental.) .It can be seen that the trajec

tory for the gusset plate meets the free surface at a right angle in 

the same fashion as an equipotential line in a fluid flow net. How

ever, due to the abrupt change in geometry at a fillet weld toe, the 

trajectory splits the total angle (as required for symmetry) between 

the intersecting surfaces. Given a weld angle of TI/4, the trajec~ory 

initially has an angle of TI/8 to the vertical direction. The trajec

tory for each detail turns perpendicular to the applied stress direc

tion with increasing distance from the maximum concentration point. 

The minimum principal stress trajectories represent pro

bable crack paths in cases where propagation is of the unstable, cata

strophic variety. In fatigue crack propagation, the stress field has 

time to redistribute itself with each increment of crack growth. 
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Thus, the minimum principal stress trajectory based on the initial 

stress field gives a distorted view of actual crack path. Frank 

noted from actual measurements that the crack angle to the vertical 

averaged about TI/14 in cruciform joints 22 • He took this angle to be 

constant. On the other hand, Albrecht notes that for stiffeners and 

cover plates the deviation from a vertical plane is barely noticeable 

. 2 
and can be neglected • This conclusion seems to be supported by the 

visual evidence in Refs. 19 and 20. Indeed, most investigators dis-

regard any angle in crack growth and base stress intensity estimates 

on stresses perpendicular to the vertical plane27
•

45
•

50
• 

The minimum principal stress trajectory and a crack line 

constantly perpendicular to the applied stress represent the physical 

limits of the path. However, the position of the minimum principal 

stress trajectory may be altered slightly from that shown in Figs. 

3.1 and 3.2 if the weld angle or transition varies from the i~ealized 

geometry. In any case, the distance over which deviation from a 

straight perpendicular path occurs is likely to be small compared to 

other geometrical parameters. Further, the difference in perpendicu-

lar stress for the actual and perpendicular path at any given dis-

tance is not great. 

Based on the preceding arguments the assumed crack path is 

the straight line through the point of maximum concentration and per-

pendicular to the direction of applied stress. Hence, local stress 

in the direction of applied stress (Figs. 2.20 and 2.38) is of 
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interest and shear stress is disregarded. (There would be no shear 

stress, of course, if the minimum principal stress trajectory were 

assumed as the crack path.) 

3.2 Green's Function 

The relationship between stress intensity and stresses on 

the prospective· crack plane with the crack absent is clarified by 
<' · .. · .. 45 
F~g. 3.3 • The stress intensity for Case. 3 is desired. In .order . 

-to evaluate it, two other·load cases are considered and superposition 

·results in the actual load case. Thus, the crack plane tractions in 

Cases 1 and 2 are equal and opposite. Furthermore, the magnitude and 

distribution of the tractions in Case 1 are such that the crack is 

completely closed, as though it weren't even there. Thus, the magni-

tude and distribution of the crack plane tractions are equal to those 

of the stress distribution on that plane with the crack absent. Given 

such traction only Case 2 has an associated stress intensity which, 

according to linear fracture mechanics principles
81

, must equate to 

the stress intensity for Case 3. 

The distribution of tractions in Case 2 (Fig. 3.3) is 

usually irregular for real structural details and appropriate stress 

• 7 6 B 1 intensity solutions rarely appear in the var~ous handbooks ' .. 

However, a solution can be developed by taking the solution for con-

centrated splitting forces on the crack, converting the force (per 

unit thickness) into stress over an incremental distance, and 
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integrating over the crack length. Thus, any solution for splitting 

forces can be termed a Green's Function. (In mathematics a Green's 

Function is one which satisfies the given boundary conditions and 

represents the inverse of a differential operator 88 • The solution of 

a nonhomogeneous differential equation is found by multiplying its 

right-hand side by the proper Green's Function and integrating bet,veen 

limits. Therefore, in fracture mechanics a Green's Function is the 

stress intensity solution for splitting forces of ~nit magnit~de.) · . 

Albrecht chcise~,to work with the Green's Function related to 

the crack loading in Fig. 3. 4 2 • A through crack is assumed to be 

located in an infinite plate of unit thickness and subjected to 

symmetrical pairs of splitting forces. The stress intensity for the 

configuration in·Fig. 3.4 is 2 ' 81 : 

where 

2P 
K=-

ha 

[ 
a ] -Green's Function 

Ja2_~2 -

(3-1) 

While many crack configurations ,.,ith splitting forces .are possible, 

this particular one is favored because it isolates the influence of 

gradient.(i.e. Fg).from the other stress intensity correction factors. 

Free surface and crack shape effects can be imposed separately 

(Eq. 1-4). Thus, Fig. 3.4 purposely doesn't resemble the geometry at 

a fillet weld toe or groove weld termination. 
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Force P in Eq. 3-1 can be broken down into stress over an in-

cremental length. 
P = a * dt t 

(3-2) 

The stress intensity for stress along the entire crack length can then 

be written as follows: a 

K = 11Ta*l J Ti 
(3-3) 

0 

If the nominal stress, a, at the section (or the one input into the 

finite element mesh - Chap. 2) is now introduced into the formula, 
. . 

the stress intensity becomes: 

a .. 

(3-4) 

The stress ratio under the integral sign represents the stress concen-

tration factor, Kt. Since al~ is the stress intensity for a through 

crack under uniform stress, the remainder of the· equation equals Fg. 

a 

where F ga 

F 
ga ;J 

0 

(3-5) 

stress gradient correction as a function of crack size 

F is seen to be nondimensional and directly related to the stress cong 

centration decay. Therefore, F is also related to the selection of 
g 

nominal stress (Chap. 1). Due to the general nature of Eq. 3-5, K 
t 

' 
could represent an input of stress gradient, as in bending, or residual 

stress just as easily as a detail stress concentration. In fact, Kt 

could include all gradients at once. 
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Several trial cases of stress distribution-lend credibility 

to Eq. 3-5. If Kt is unity for all t, then Eq. 3-5 is integrated to 

the form: 

F 
ga (3-6) 

If ~t has the gradient form (1 - !) (making a the maximum stress at 

a = 0), Eq. 3-5 gives the follmving result: 

. . . 

2 
for any a 

'IT 

' . -

(3-7) 

. Both of the preceding ans,vers agree '..rith published results 7 6 • 81 • 8 2 , 

although the stress distributions involved are obviously special 

cases. 

A more general solution to Eq .. 3-5 is fo~nd by assuming Kt 

can be equated to the maximum concentration factor, SCF, multiplied 

by a decay polynomial 20 • 22 • 

(3-8) 

where A, B, C, D = decay constants (dimensional forms) 

Substituting Eq. 3-8 into Eq. 3-5 yields: 

(3-9) 

Equation 3-9 can be applied to polynomials of lesser order by merely 

equating the appropriate decay constants to zero. 
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It is possible that certain instances require two polyno-

mials linked end-to-end (at £=1) in order to accurately describe the 

stress concentration factor decay. 

Kt£1 2 c £3 + D £4 £.::; L --= 1 + A
1

£ + B1£ + SCF 1 1 
(3-lOa) 

Kt22 2 c 23 + D £4 2 > --= E + A22 + B22 + L SCF 2 2 
(3-10b) 

where 

. . 

Assuming a > L, the integral of Eq. 3-5 must be broken into t\vO parts. 

a 

* d£ + J 
L 

Substituting Eqs. 3-10 into Eq. 3-11 gives: 

-1 ( L) sin a + 
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For the case of a 5 L the equation for F reduces to Eq. 3-9 with the g 

constants represented by the first set. 

Kt depends on position, t, while Fg depends on crack length, 

a. tfuen using polynomials the connection between the two decays is 

provided by the polynomial constants. As an example of the compari-

son of the two curves, suppose that in Eqs. 3-8 and 3-9 constants A 

and B are -.13 and +.006, respectively, ~.;hile C and D are both zero·. 

Assuming a and t are in millimeters, the plots of F and Kt are given 
. . g 

in Fig. 3. 5.. It_ is noted that both decays begin at the same level_ 

. · (F and K both equal SCF) and initially diverge. The- stress concen:.... 
- g t 

tration factor at the crack tip (t=a) is always less than the stress 

gradient correction for that crack length provided stress concentra-

tion is decaying rather than rising. (Note that the constants se-

lected for the example cause Kt to rise ~.;hen t is greater than about 

11 nim. Kt actually crosses over Fg when t =a= 15.75 mm.) If the 

stress concentration factor decay reaches a lower plateau and levels 

off, the F curve converges asymptotically to the same plateau. 
g 

Hence, for crack lengths well into the plateau region the difference 

between Fg for a given crack length and Kt at the crack tip can be 

neglected. (A case in point is Bowie's solution for a double crack 

emanating from a circular hole in an infinite plate under uniaxial 

stress 2 • 11
•

42
• Both Kt and Fg decay to 1.0 when the distance from 

the hole and crack size become large compared to the hole radius.) 
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Based on the forgoing concepts of F - K relationships and 
g t 

knowledge of stress concentration decay at typical structural details 

(Figs. 2.12, 2.21, and 2.39), Fig. 3.6 shows the predicted trend of 

the stress gradient correction for real details. Kt itself drops 

sharply to a sort of plateau belowi.O, as required for equilibrium. 

Meanwhile, Fg also decays but not as rapidly as Kt. Eventually F . g 

becomes less than 1.0 and slowly converges to Kt. The separation of 

the two curves at any point obviously depends on detail geometry 

except at the origin where the curves ah~ays converge. 

The polynomial approach to an F solution has several inher
g_ 

ent disadvantages. First, the decay constants must be established 

and, no doubt, they will vary ~vith the detail geometry. Second, due 

to the shape of the Kt curve, at least two polynomials (perhaps both 

fourth order - eight independent constants must be defined) would be 

required to accurately describe the decay over the entire range of 

length. Of course, other forms of the Kt equation are possible be

sides a polynomial. However, the closed form integration in Eq. 3-5 

is then usually impossible. 

It. is not really-necessary to establish an equation for the 

stress concentration factor decay. Equation 3-5 can be solved numeri-

cally as suggested by Albrecht 2
• 

F 
ga 

m 

j=l 

I -1 (Q. . + 1' - i ( L 'l 
Lin --;?-j -sin ~) J 
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where = stress concentration factor in element j of the 

finite element analysis or the average between two 

adjacent elements, both of equal distance along 

the decay line 

(

distance from crack origin to the near and far 

= sides of finite_ element j 

number of elements to crack length a 

Equation 3-13 actually represents a mixed numerical/closed form solu-

. tion since within: a given element the concentration is assumed con-· 

stant and integration of the remainder of Eq. 3-5 is carried out over 

the element length. This approach is considered superior to the 

purely numerical representation, given as follows: 

m 
Ktj 

F 2 I * 1::/l. ga Tr 

/ a
2-i: 2 J 

j=l 
J 

(3-14) 

3.3 Geometry Influences 

Equation 3-13 has been employed to find the F decay curves 
g 

for each set of geometrical parameters in Chapter 1. The trend of the 

results is clarified by Figs. 3.7 and 3.8. 

Generally speaking, it is apparent that the detail geometry 

can have a significant influence on F 27 • The more geometrical 
g 
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parameters involved, the \vider the possible range of F curves. 
g 

Even details with equivalent SCF and lengths over which decay occurs 

can have quite different values of F at a common point. Likewise, 
g 

details with similar F /SCF curves usually have dissimilar F curves 
g g 

due to varied SCF. However, it is possible that different combina-

tions of geometrical parameters have equal SCF values and F decay 
g 

curves. 

Figure 3.7 presents standardized F decay curves (F /SCF) 
. g g 

for sample stiffener and cover plate details. Several conclusiot_J.s 

can be drmvn by comparing the geometrical parameters. For stiffeners 

the curve is lower when the weld leg-flange thickness ratio (Z/Tf) is 

higher. This is reasonable since SCF for stiffeners rises with in-

creasing Z/Tf (Fig. 2.13). The trend also agrees with Gurney's find

ings for cruciform joints 27 •. In the case of cover plate details 

the curve is lower when Z/Tf is lower. This too is plausible because, 

contrary to stiffeners, SCF decrea~;>es with increasing Z/Tf (Fig. 2 .13). 

The F /SCF curve is also lower for higher cover plate-flange 
g 

thickness ratios (T /Tf) due to increasing SCF (Fig. 2.22). cp 

Standardized F curves for sample gusset plate configura
g 

tions are given in Fig. 3.8. The curves are only plotted to half 

flange width; thereafter they would actually begin rising again due 

to the two-sided gusset plates assumed in the finite element analyses. 

(This particular aspect is neglected later in the dissertation since 
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little fatigue life remains when half the flange is cracked.) The 

curves show the same basic relationship exemplified by the stiffener/ 

cover plate curves. ~fhen the combination of geometric parameters is 

such that SCF rises, the standardized F curve tends to drop. How
g 

ever, the sharpness of the decay cannot be attributed purely to SCF. 

Note that the curve with the second highest SCF actually decays more 

slowly than two geometries with lower SCF. 

It is apparent that SCF plays an important role in F . . . g 

curves whether or not tl~ey are standardized. The schematic compari-

son of nonstandardized F curves in Fig. 3.9 helps put the findings 
g . ..· . . 

of Fig. 3.7 and 3.8 into perspective. Higher SCF usually means that 

F is larger at small crack sizes but smaller at large crack sizes. g 

(Recall that the stress concentration factor decay curve, from which 

Fg is derived, must provide for equilibrium. Higher on one end means 

lower somewhere else.) .Thus, actual F curves for t\vo different 
g 

geometries cross each other in a manner similar to the stress concen-

tration factor decay curves of the fine and ultra fine finite element 

meshes (Figs. 2.3 and 2.12). 

3.4 Ellipse Correlations 

Ultimately, the fatigue analyst needs a way of predicting 

the entire F decay curve without going through a time- and money
g 

consuming finite element study. Some sort of equations are necessary 

which reflect the entire influence of geometry (not just SCF -

-85-

I 
. ~ 

I 



Art. 3.3). One possibility is the development of expressions for 

each decay coefficient in the polynomia~ equations (Eqs. 3-8 and 3-9). 

However, four or more such expressions would be required depending on 

the number of terms and number of different polynomials linked to-

gether. Obviously, polynomials are not particularly well suited to 

representation of .stress decay at singular details or any situation 

where the concentration rises sharply over a small range but is 

.relatively flat elsewhere. 

The characteristics of the Fg decay curve (and Kt curve 

. too) at structural details are actually quite similar to features of 

stress concentration factor decay (based on gross section stress) 

from the end of an elliptical hole in an infinite, unaxially stressed 

plate9
•

55
• Each curve begins at a maximum concentration factor, SCF, 

and decays to a value near 1.0. (The asymptote for F at details is . g 

close to 1.0 - Fig. 3. 6. The asymptote for stress concentration 

factor decay from an arbitrarily shaped hole in an infinite plate is 

exactly 1.) Therefore, it would seem advantageous to correlate a 

hypothetical elliptical hole to actual F decay curves (Art. 3.3) 
g . 

such that any curve could be estimated from knowledge of the appro-

priate hole shape and size. 

The proper hole shape is based upon the maximum stress con-

centration factor at the detail (Chap. 2). Figure 3.10 shows that the 

maximum stress concentration factor at an elliptical hole, including 

the special case of a circular hole, is a function of the ratio of 
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the semidiameters, h/g. Hence, knowledge of the SCF (Chap. 2) sets 

the shape of the ellipse. Since SCF can vary from 1.0 to over 6.0, 

it is necessary to consider stress concentration at both the minor 

and major axis ends of the ellipse. The circular hole provides the 

link between the two axis possibilities. 

Knowledge of the correct ellipse shape does not by itself 

establish the req~ired decay correlation. Figure 3.11 demonstrates 

that two steps are necessary since ellipses with equivalent shapes 

(h/g) can have veiy different d~cay curves- Stress concentration at 

any point x (or y if decay is in the direction of the minor axis) is 

a function of both h/g and x/g (or y/h). As the absolute size of the 

ellipse increases, the Kt decay over absolute distance becomes more 

gradual (Fig. 3.llb). Therefore, once the ellipse shape is set so as 

to give the necessary SCF, either the major or minor semidiameter 

must be established to set the ellipse size and associated decay 

curve. This second step is also necessary if the hole is circular. 

3.4.1 Stress Concentration Decay from Circular 

and Elliptical Holes 

The stress concentration decay from a circular hole is 

readily available in the literature71
• If the hole radius is denoted 

by g and the distance from the hole center by x, the concentration 

factor for x ~ g is as follows: 
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l 

2 4 
1 + t(~) + t(~) (3-15) 

An equation for stress concentration decay from either axis 

end of an elliptical hole is not often cited in elasticity texts since 

the expressions are relatively complicated and normally involve ellip-

tical coordinates 1
•l!

3
,

84
• Elliptical coordinates imply an orthogonal 

system of confocal ellipses, u, and hyperbolas, v, through which the 

position of any point in a plane can be established (in the same man-

ner as a square grid with values of x andy establi~~a position in 

rectangular coordinates)_. ·However~ due to the fact that decay occurs 

along the major or minor axis of the ellipses where v is constant at 1 

or 0, respectively, it is only necessary to consider the value of u in 

establishing a position. Figure 3.12 shows the system of confocal 

ellipses which is of interest. 

There are several ways of expressing the equation of an 

ellipse. One useful form contains a mixture of rectangular and ellip-

tical coordinate parameters. 

where 

2 
X 

22+ 
f u 

f = focal distance 

u = elliptical coordinate 1 < u < oo 

(3-16) 

An alternative set of elliptical coordinates, n and ~. are related to 

the initial set, u and v, as follows: 
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u = cosh (T)) (3-17a) 

v cos (I;;) (3-17b) 

Substituting Eq. 3-17a into Eq. 3-16 and using a hyperbolic function 

identity gives another important form of the ellipse equation: 

2 2 

2 2 + 2 2 = 1 
f cosh (n) f sinh (n) 

X 
(3-18) 

Equation 3:...18 can be used to establish the relationship be-

tween rectangular and elliptical coordinates when the point in ques-

tion is on the major or minor (x or y) axis 

Major Axis: 

Minor Axis: 

X 
cosh (n) = I 

sinh (n) = Y 
f 

(3-19a) 

.(3-19b) 

For the specific case of the elliptical hole with semidiameters_ g and -

h, let T) = y and Eqs. 3-19 become: 

Major Axis: 

Minor Axis: 

cosh (y) = .B. 
f 

h sinh (y) = I 

(3-20a) 

(3-20b) 

Both sets of equations (3-19 and 3-20) involve the focal 

distance, f, which is constant for confocal ellipses by definition. 

Thus, f can be established from the elliptical hole semidiameters72 • 

(3-21) 
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Substituting Eq. 3-21 into Eqs. 3-20 gives the following expression: 

(3-22) 

As stated previosuly, the ellipse shape (h/g or g/h) is established by 

the maximum stress concentration factor, SCF (Fig. 3.10). Therefore, Y 

can be found for cases of SCF less than 3.0 (minor' axis decay) as well 

as SCF greater than 3.0 (major axis decay). At precisely 3.0 (a circle) 

a·singularity develops. Hence, it is expedient, particularly when 

using the computer, to make use of Eq. 3-15 for the singular case. 

Equation 3-21 can also be substituted directly into 

Eqs. 3-19. However, with y known it's simpler to define f in terms 

of Eq. 3-20a or 3-20b and use this form in Eqs. 3-19. 

Major Axis: cosh (n) = x cosh (y) = x sinh (y) 
g h 

(3-23a) 

Minor Axis: sinh (n) = Y cosh (y) = Y sinh (y) 
g . . h 

(3-23b) 

In these forms it is apparent n depends on the ratio of the x or y 

coordinate to semidiameter g or h as well as y, which depends on the 

ratio of semidiameters. Assuming the stress concentration factor decay 

depends only on y and n, the functional relationship of Fig. 3.11 is 

verified. Moreover, it is seen that if the exact size of the ellipse 

is known through the stress concentration factor (Chap. 2) and corre-

lation equations (Art. 3.4.2), Kt can be found for any assumed point 

x or y. 
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References 55 and 9 lead to solutions for Kt in terms of y 

and n. First, for uniaxial tension in the minor axis direction and 

decay in the major axis direction, two equivalent forms of the Kt 

equation are presented. 

Ref. 55: 

K = 1 +..!cosh (y) (eY(e 2Y~3J ( 1+--~ coth(n})e-2_n + cosh(y)_ coth(n)] 
. tn . 2 sinr?(n) 

(3-24) 

K: =_[.!.{l-2e2Y+e4Yj. {3-4e-211 +e-.- 411 l 1 4 <Y-n) + 
.. tn 8 . · ·. · f - 8 e (3-25) 

sinh(2n) I cosh(2n) +t cosh(2Y) -t 1]/(cosh(2n)-lr 

Second, for uniaxial tension in the major axis direction and decay in 

the minor axis direction, only one K equation is derived. . t 

Ref. 9: 

sinh (2n) I cosh (2n) +t cosh (2y) + i ~~~cosh (2n) + 1) 2 

(3-26) 

While Eqs. 3-24, 3-25, and 3-26 are somewhat tedious to solve by hand, 

they present no difficulty whatever for the computer. 
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3.4.2 Correlation Equations 

Nmv that equations have been developed to evaluate stress 

concentration factor decay from either axis end of an elliptical hole, 

the idea is to formulate equations for optimum ellipse size. The 

basis assumed for this optimization is equal cycle life for a certain 

amount of crack growth, depending on the type of detail. In other 

words, the life using the Green's Function .Fg .. ct1rve (Art. 3;3) is com

pared with life predicted using the stress concentration factor decay 

from an elliptic hole in place of F • The size of the hole is ad
g 

justed using a bisection approach until the lives are equal (maximum 

relative error- 0.05 percent). 

Life predictions require knowledge of 6K (Eq. 1-3) which, 

in turn, requires values for other correction factors as well as F 
g 

(Eq. 1-4 and Chap. 4). 6K also requires an input of stress range, S ~ . r 

However, the extensive correlation study for all details in Chapter 2 

has shown that the form of the other. correction factors has negligible 

effect on the correlation results. Furthermore, the choice of S 
r 

makes no difference since it is constant and does not need to be 

included in the integration process (Eq. 1-3). 

It is necessary to consider the dimensionless geometrical 

parameters incorporated in the SCF equations (Chap. 2) when formulat-

ing the correlation (optimization) equations. Such equations are not 

developed in terms of SCF since SCF alone does not dictate the shape 

of the decay curve, even when it is presented in terms of 
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nondimensional distance. (Note that certain details in Figs. 3.7 and 

3.8 with nearly equal SCF have dissimilar decay curves.) Fortunately, 

the ellipse stress concentration decay concept is versatile and the 

ellipse size can be made to suit all circumstances. 

One additional geometrical paramete·r <..rhich enters into the 

correlation process is initial crack size, a .. The optimized stress 
1· 

·concentration factor decay curve for .the elliptical·hole.does-not.nec-

essarily coincide with the actual Fgcurve at every position. It's 

just that their· effect on a certain amount of crack grm..rth is made 

'equal~ 

·Varies. 

Therefore, the optimum curve shifts position somewhat as a. 
1 

, .. _,·-

·I . 

3.4.2.1 Stiffeneri and Co~er Plates Attached to 

Flanges with Transverse Fillet Welds 

Generally, SCF for stiffener and cover-plated details ex-

ceeds 3.0 (Fig. 2.13). Thus, stress concentration factor decay is 

taken from the major axis end of the elliptical hole (Eq~ 3-24 or 

3-25). While the decay can be evaluated in terms of x/g or x/h 
. . . 

(Eq. 3-23a), x/g is preferred since x equates to g plus crack length a. 

For both stiffeners and cover plates the ellipse correlation 

is made for growth through the flange thickness. Figure 3.13 compares 

a typical F approximation curve (from the ellipse) with the actual F 
g g 

curve_ (from the Green's Function- Art. 3. 2) and the original stress 

concentration factor decay at the detail. It is apparent that the ap-

proximate F curve is in close agreement with the actual F curve and 
g g 
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both are above the Kt curve from the finite element analysis. Com

monly, the t\vo F lines cross each other twice. 
g 

It has already been mentioned that initial crack size has a 

bearing on the correlation results. Figure 3.14 indicates the kind of 

variance in optimum ellipse size, g , which is typical of all de
opt 

tails. The trend is somewhat parabolic. This shape is understand-

able since for very small initial cracks the t\vo F curves· cross over 
g 

one another at two points (Fig. 3.13). Naturally, the lower limit of 

g is zero and occurs when the. initial crack size is so large. (in .·opt · 

-~.the vicinity of a./T :.:. 0.4) that correlation is no longer ·po"ssible . 
. . · ~ f 

However, at this and larger crack lengths F can be assumed to· be 1. 0 
.· .. ·. . g 

without .significant error. 

The optimum ellipse sizes found by correlation study of the 

geometries in Chapter 2 can be related to the geometrical parameters . 

involved by least squares curve fits. The resulting relationships for 

stiffeners- and cover plates are as follmvs: 

Stiffeners: 

g~:t = -o. 002755 + 0.1103 ( Tzf) ~ o. 02580 ( ;f ( + 

2 

0.6305 ( ;~) - 7.165 ( ;~) (3-27) 
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Cover Plates: 

0.2679 +0.07530( .:f J -0.08013 ( .:f r + 
(3-28) 

0. 2002 log ( TT~~) + 1. 391 ( ;~) - 11.74 ( ;~) 
2 

The standard errors of estimate for the stiffener and cover plate 

equations are 0.0041 and 0~0055, respectively. 

One remote possibility for stiffeners is that SCF will drop 

below 3.0. Then,_ the approximation of. F should no longer be taken . . '. -. ' g_ . ·-

·from stre$S concentration fac.tor decay from .the 1llaj or. axis end of an 
. - . . . . 

elliptical hole~ The question arises as to what. to.do ~b~ut Eq. 3-27. 

An' approximate procedure is simply to replace gopt by hopt and employ 

Eq. 3-26 rather than Eq. 3-24 or 3-25. Elliptical coordinate n would 

·. be established by. Eq. 3-23b where y is h plus the· crack length, a. 

The optimum ellipse size equations can be tised to predict F 
g 

. \ . . . . 
for: values of geometrical parameters not specifically studied in 

Chapter 2. Knowledge of SCF (Chap. 2) sets the ellipse shape 

(Fig. 3.10) and elliptic parameter y (Eq. 3-22). A given crack length, 

optimum ellipse size, andy yield elliptic coordinate n (Eq. 3-23a). 

Both n 'and y fix the value of Kt (Eq. 3-24 or 3-25) which has been 

correlated to F . · Thus, F at the given crack length is approximated. g g 

A useful comparison of F curves for a cruciform joint is 
g 

presented in Fig. 3.15. (For the ellipse correlation the joint is 
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I '. '· .·.:-. 

treated as a stiffener with B equal to t-o;vice Tf.) Gurney's decay 

stems from a finite element compliance analysis 27 and is seen to be 

generally higher than the correlated ellipse decay. The Hayes and 

Maddox curve 30 is in good agreement with the ellipse approximation. 

While the Hayes and Maddox F also resulted from a finite element com
g 

pliance analysis, it involved loading the crack surface directly with 

the crack free stresses 31 in the same manner as the Green's Function 

~oncept (Art. 3 :2). Also,. Hayes and Haddox had only a one-sided 

crack which caused plate bending of increasing magnitude with increas-

ing crack length. 

·One reason for the lack of agreement with Gurneyrs results 

is the difference in mesh size .. '~ile Gur~ey does. not present his 

·.mesh in reai units (everything is relative to B), it is probable that 

the size was considerably larger than that in Chapter 2. From a com-

parison of results of fine andultra.fine meshes it is known tl)at SCF 

·:·rises as mesh size decreases. However, the stress. concentration factor 

decays less sharply for the fine mesh leading to higher values ·Of F 
g 

at·the larger crack lengths. 

Another source of discrepancy between the Gurney and ellipse 

correlation curves is Gurney's calculation of F from the compliance 
g . 

results. Chapter 1 noted that a compliance analysis leads to stress 

intensity, K. In order to find F , assumptions must be made for the 
g 

other correction factors. Gurney simply assumed K for a double edge 

cracked plate under uniform tension is representative of K for the 
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actual joint divided by F . (Gurney does admit, however, that the 
g 

assumption is weak at large crack sizes since, for symmetry, four 

cracks are implied by the finite element modeling - Fig. 3.15.) 

Chapter 4 shows that the front free surface correction, F , rises when s 

there is a stress concentration at the crack origin. Therefore, 

Gurney's curve appears to include some amplification for F as well as 
s 

F . 
g 

3.4.2.2 Gusset Plates Groove-Welded to Flange Tips 

Since SCF for gusset plates w-ith circular _transj.tions rarely 

exceeds 3.0, stress concentration factor decay is taken from the 
- . - -

min~r ~xis end of the .elliptical hole. (Eq.' 3~26). The decay is evalu-
._-,: ... · 

ated' in ·terms of y/h rather than y/g (Eq.- 3-23b) bec·ause coordinat·e y 

is equal to h plus the crack length, a. 

. . . . . . 

·Ellipse correlation is. made~for' crack _growth across h,alf of· 

the flange width .to the web line~ Fg • be·gins to rise shortly after 
. . . . . 

that point since K ·rises for a two..:.sided detail. ··.Using the corre
t 

lated ellipse.decay beyond the web is, tl:lenactually erroneous~ How-

ever~ so little life remains that the error -is unimportant. The 

ellipse correlation curve is also too high if the detail is only one-

sided although it leads to a conservative cycle life estimate 

(Chap. 2). 

Correlation studies of the gusset plate geometries in 

Chapter 2 produce optimum ellipse sizes, h opt As in the cases of the 

stiffeners and cover plates, the ellipse size can be related to the 
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various geometrical parameters and initial crack size by a least 

squares curve fit. The resulting equation is as follmo7S: 

Gusset Plates: 

h~~t = -0.01620 - 0.1105 ( ~~) + 0.03307 ( w:r + 0.02821 (;f)-

(
. L )2 

0.002436 Hf 
( \{ ) . ( \{ )2 . 

0.008776 \.\~ + 0,004437 -::- + .. 

. ~-l 
.. (T \ 

0.08587 Tf / 0.032911 :8£y + 1.673 (:i) 
. . \ f I · .. f 

. )2 
43.49(:~ . 

. . . . 

(3-29) 

The standard error of estimate for Eq. 3-29 is 0.0107. This is about 

double those values for Eqs. 3-27 and 3-28 due primarily to the 

. greater number of variables involved. 

·Equation 3-29 is intended for fiange_thicknesses less than 

or equal to 25 millimeters. Flange thickness has a special effect-due 
. . .... ~ · .... 

to :its relationship to crack ·shape (Art. 4. 5). ·Figure 3.16 emphasizes 

that the crack shape regions delineating the trend in shape with crack 

growth depend on flange thickness as well as initial crack size. 

Therefore, flange thickness affects the number and phases of crack 

shapes which are exhibited. For thicknesses up to 25 mm h is 
opt 

unaffected by crack shape considerations. 
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Flange thicknesses greater than 25 mm require a modification 

to Eq. 3-29. The amplification factor by which Eq. 3-29 should be 

multiplied is as follows: 

25 mm ~ Tf ~ 50 mm: 

1.0+ 

.·where 

.;·· 

1.0+ 

. ... . 
.... ,. 

u 
L 34.54 log (-) 
~-If 

1 

34.54 log (~) 
f 

(3-30) 

(3-31) 

Typically, this factor resultsfn a change of less than 15 percent. 

The procedure for predicting F for arbitrary gusset plate 
g 

geometries is similar to that outlined for stiffeners and cover 

plates. SCF can be found from Eq. 2-5 and used to fix the ellipse 

shape (Fig. 3.l0) and parameter y (Eq. 3-22). Elliptical coordinate n is 

evaluated (Eq. 3-23b) using y, ellipse size h (Eq. 3-29, amplified if 

required), and an assumed crack length. Substitution of nand y into 
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Eq. 3-26 gives the stress concentration factor at the assumed crack 

length. This stress concentration factor corresponds to F . 
g 

In the unlikely event that SCF exceeds 3.0, h in 
opt 

Eq. 3-29 can be treated as g 
opt Then, Eq. 3-23a should be employed 

to find n and substituted into one of the equations for stress concen-

tration factor decay from the major axis end (Eq. 3-24 or 3-25). The 

resulting value of K is taken as F . . t g 
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4. OTHER CORRECTION FACTORS 

The compliance approach to evaluating stress intensity 

(Chap. ·1) has the distinct advantage that the combination of correc-

tion factors, CF, is that which is output. An individual correction 

factor can be evaluated from this combination by making assumptions 

for the remaining individual factors. But since it is the total cor-

rection at any crack length which is important in fatigue life predic-

tion, accuracy of the assumptions is not overly important unless 

several of the individual corrections are to be reused in an unrelated 

problem. Such reuse is encouraged because fatigue life investigators 

rarely have the time and funds to run a complete compliance analysis 

on each new detail configuration. 

Albrecht's method of evaluati~ F isolates this correction g 

factor from all others by solving a problem different from the one at 

hand. Thus, it is necessary to make decisions on the other correction 

factors before fatigue life can be estimated. However, it is impor-

tant to recognize that these other corrections are affected by the 

nonuniform stress distribution81
• Likewise, all corrections are 

affected by crack shape62 even though one correction, F , is speci
e 

fically intended for this purpose. Therefore, any assumptions on 

correction factors must consider the influence of stress distribution 

and crack shape. 
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Some hesitation exists in using solutions for correction 

factors-particularly F -.which are related to idealized plate geo
s 

metries. Geometries at real bridge details are often irregular; per-

haps the form of each correction from an idealized geometry is not 

precise. Nevertheless, the state-of-the-art in stress intensity 

evaluation is such that most actual details have not been solved. 

Approximate solutions from idealized cases are inevitable. Moreover, 

the cumulative validity of these approximations can be judged on the 

basis of correlations between estimated and actual fatigue lives. 

(Chap. 6). 

4.1 Crack Shape Correction - F 
e 

Based on the work of Green and Sneddon23 the effect of crack 

shape on stress intensity is dependent upon the complete elliptic 

integral of the second kind. 

TI/2 

E(k) = J [ 2 2 ]1/2 1 - k sin S dS (4-1) 

0 
2 

where k = 1 - (t) 
a = minor axis semidiameter 

b = major axis semidiameter 

For any given position along the crack front, described by angle ~ to 

the major axis, F is given by the equation 38
: 

e 
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F 
e 

1 [ 2 2 J
114 

= E(k) 1 - k cos ~ (4-2) 

Generally, interest is directed to the minor axis end of the ellipse 

where ~ = n/2. For this particular position: 

F 
e 

(4-3) 

The limits of F are readily determined by inspection of the 
e 

ratio a/b. When the two semidiameters are equal the ratio a/b is 1.0. 

Thus, k is zero. F by either Eq. 4-2 or 4-3 is therefore 2/n. How
e 

ever, when b is much larger than a as in a through crack configura-

tion, the ratio approaches zero and k goes to 1.0. E(k) also 

approaches 1.0 and F by Eq. 4-2 reduces to e . 

F = [sin<f>] 112 
e 

•.I.·: (4-4) 

For ~ = n/2, F obviously is 1.0. 
e 

Thus, for ~ = n/2, F varies be-. e 

tween 1.0 and 2/TI as ~he ratio a/b varies between zero and 1.0. At ~ 

equal to zero, F varies between zero and 2/n as the ratio a/b varies 
-- e 

between zero and 1.0. 

F is seen to be maximized at the minor axis end of the 
e 

ellipse, thereby maximizing stress intensity (neglecting the vari-

ation of other correction factors). Thus, surface cracks tend to 

grow more rapidly at their minor axis ends - approaching semicircular 

conditions. Minor axis length, a, then corresponds to the critical 

crack length parameter, a. Unless otherwise indicated it is assumed 
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that the stress intensity at the minor axis end of the crack front 

(~ = n/2) is desired and Eq. 4-3 is used to evaluate the crack shape 

correction factor. 

4.2 Front Free Surface Correction - F 
s 

lflhether or not a free surface correction is necessary (is 

other than 1.0) depends upon the boundary condition at the crack 

origin. In an early study on stress intensity IrWin considered 

Westergaard's periodic array of through cracks across an infinite 

plate35 , 62 , 87 • The through crack permits no Poisson type displacement 

along lines perpendicular to the cracks and cutting them in half. 

Thus, no free surface correction was required. 

'·-" .. · 

For edge cracks F is generally necessary since stress, not 
s 

displacement, is zero on the free boundary. Attachments like stiff-

eners, cover plates, and gussets, as well as webs do provide some 

restrction to displacement at weld .. toes or terminations. The magni-

tude of such restriction is not known to-any specific degree although 

it is estimated to be quite modest. At least it is often on only one 

side of the crack. Thus, in this dissertation Poisson type displace-

ment restriction by attachments is disregarded completely and F is s 

related to simple edge crack specimens. 

The approach with this correction factor is to determine the 

values for the extreme conditions of through (a/b = 0) and circular 
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(a/b = 1) crack fronts. The circular fronts are further divided into 

half-circles and quarter-circles since stiffeners and cover plates 

have half-elliptical surface cracks while groove-welded gusset plates 

tend to have quarter-elliptical surface cracks (i.e. The crack origi-

nates from the corner of a flange cross-section rather than along 

the side - Art. 4.5). 

4.2.1 Through Crack 

Tada and Irwin have tabulated the variability of F with the 
. s 

distribution of stress applied to the crack91
'

82
• Figure 4.la shows 

this variability for the types of stress distributions common to 

bridge details. If the stress is uniform over the crack length, 

F is 1.122. If the stress varies linearly to zero at the crack tip, 
s 

F is 1. 210. And if a concentrated load exists at the crack origin, s 

F is 1. 300. Hence, if the stress distribution decreases from the s 

crack origin more rapidly than the linear condition, F must have a 
s 

value between 1.210 and 1.300. 

4.2.2 Half-Circular Crack 

Reference 82 also directs attention to the half-circular 

crack (Fig. 4.lb). For a uniform stress over the entire crack plan 

area, F is 1.025. For a stress which varies linearly to zero at the 
s 

crack tip, F is 1.085. The solution for a line load over length 2b s 

at th:e crack origin is not known. F for this condition is estimated 
s 
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at 1.145 which incorporates twice the increment increase as is present 

in changing from a uniform to a linear stress pattern. 

4.2.3 Quarter-Circular Crack 

Less is known about free surface correction for quarter~cir-

cular cracks than for the previous crack geometries. The stress 

intensity is desired at one of the free surfaces (</> = rr/2 in Ref. 82), 

and existing solutions are not accurate there. F must actually s 

account for both free surfaces as well as stress distribution. Based 

on extrapolation of solutions for positions other than the free sur-

faces, F is estimated to be 1.380 for uniform stress (see also s 

Ref. 17) and 1.067 for linearly varying stress. {Note that 1.380 is 

not merely the square of Fs for the half~circular or through crack 

case. Tada and Irwin also state it is not the product of F (</> = 0) 
s 

and F (</> = rr/2) for the half circle.} As with the half-circular 
s 

crack a solution is unknown for a line load over length b at the 

crack origin. Thus, the limiting F is estimated.at 0.754. 
s The man-

ner of deriving this estimation is identical to that in the 

half-circle. 

Comparison of the quarter-circular case with the half-

circular and through crack cases provides one interesting conclusion. 

For through and half-circular cracks F increases as more stress is 
s 

concentrated at the crack origin. However, F declines sharply for
s 

quarter-circular cracks as concentration increases. Apparently the 
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free surface directly adjacent to the crack tip tends to relieve more 

and more of the stress condition as the applied loading becomes more 

remote. Plane stress exists at the crack tip rather than plane strain. 

4.3 Back Free Surface Correction - F 
w 

The solutions for F consider infinite half or infinite 
s 

quarter spaces. When the space is. not infinite, thought must be 

given to the back surface correction, F . Once again the form of the 
w 

correction depends on stress distribution and crack shape. However, 

F also is quite sensitive to whether or not the section is permitted 
w 

to bend as crack growth occurs. The bending tendency is natural for 

any strip in which crack growth is not symmetrical with respect to 

the strip centerline. 

The literature often cites two forms of F (almost inter
w 

changeably) for the symmetrical crack cases presented in 

Fig. 4.2 62 ~ 76 , 81 • 82 • These two expressions are also applicable to 

nonsymmetrical crack configurations where bending is prevented by 

imposed boundary conditions. Thus, the strips in Fig. 4.3 are com-

parable to those in Fig. 4.2. In real structural details the roller 

supports might be provided by a web and/or stiffener. 

Bendi:tg amplifies the back surface correction- particularly 

at high values of a/w where more bending occurs. If the rollers on 

either strip of Fig. 4.3 are removed, the back surface correction 

takes on the following form15
• 17 : 
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where 
0.752 2.02a + 0.37 (1-sin('IT~) r 

Q = --------;-~----'-..::::c..!-.!.-
1.122cos (7r

2
a) 

a a=
w 

(4-5) 

The coefficient by which the tangent correction is modified, Q, is 

plotted in Fig. 4.4. While it is true that the change only becomes 

very large at high a values, actual life predictions have shown the 

bending coefficient to have significant influence on the results -

particularly when stress range is small and early fracture unlikely 

(Chap. 6). Since stress intensity range is raised to the. third power 

in order to predict life, even small changes in correction factors 
,.;_: 

are important. 

Tada and Irwin mention that it is possible to have an in-

between situation where local bending of the strip at the crack is 

possible but remote bending is restrained 82 • In Fig. 4.3 this consti~ 

tutes removing those rollers near the crack position. For such a 

condition a reasonable expression for the back surface correction is: 

F 
w 

1.122- 0.56la + 0.085a2 + 0.180a3 
= ~--------~~--------~------~~-

1.122 /1 - a 

Equation 4-6 can be divided by the normal tangent correction to 

(4-6) 

determine the amount of amplification. This amplification coeffi~ 

cient is also plotted in Fig. 4.4. 
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It is readily apparent that little difference exists be-

tween Eq. 4-6 and the tangent correction. Removing only the local 

rollers in Fig. q.3 has no effect on F . However, when such restraint 
w 

is removed from the crack origin, F changes from 1.0 to 1.122. 
s 

Stress rather than displacement becomes zero locally. 

The choice between bending and no bending depends on the 

structural detail as well as how the crack is growing. For both 

cover plates and stiffeners fillet-welded to flanges, cracks originate 

at weld toes and grow through the flange thickness. (Flange thickness 

is then equated with strip width, w, in Figs. 4.2 and 4.3 and 

Eq. 4-5.) Yet, the bvo details are believed to be different as far 

as bending is concerned. 

The stiffener and web combine to restrict flange bending, 

which is caused by the presence of cracks across the entire flange 

width. However, cover plates are much more flexible than stiffeners 

(depending primarily on thickness) and longitudinal flange bending 

due to cracks is really only prevented along the web line. Therefore, 

stiffener details are assumed to have bending prevented while cover 

plates are taken to have unrestricted bending. The fact that longi-

tudinal bending is prevented directly over the web in both cases is 

not a dominant factor since cracks originate at many sites across the 

flange width (Art. 4.5). 

It is possible to have small plate attachments fillet-

welded in an upright position across a flange. Series AQB in 
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Ref. 20, for example, is representative of this sort of detail. 

Stress concentration is again related to the weld-flange thickness 

ratio, and even though the attachments are not connected to the web, 

little local flange bending is induced or permitted. Therefore, 

while not precisely the same as a stiffener, fatigue performance 

shoule be, and indeed was similar. 

Gusset plate details have been found to exhibit considerable 

flange bending during crack growth12
• Such is true even if plates of 

identical geometry are symmetrically positioned on opposite flange 

tips. Some crack growth may occur at both details, but soon one side 

dominates and bending causes the crack at the other side to close. 

For practical purposes such details are comparable to cover plates as 

far as back surface corrections are concerned. Strip width, w, should 

be taken as the full flange width, not simply half of it. (Half 

flange width would be used if a symmetrical double edge crack truly 

exists, but then there would be no bending.) 

Figure 4.5 presents the back surface corrections for through 

cracks with and without bending. Without bending the familiar secant 

correction is used for a uniform stress while the secant is amplified 

as stress concentration occurs at the crack origin. This amplifica-

tion has maximum value. 1.297 lrr/2 for a concentrated load at the crack· 

origin and a= 1.0. Both no bending solutions stem from a finite width 

plate with a central through crack81
• The linearly varying stress 

case is assumed to be the average of the two extremes. A sharper 

-110-

/ 
i 



stress decline has a correction somewhere between the concentrated 

load and the linearly varying stress values. 

The back surface corrections associated with bending show 

significant amplification of the secant correction. Figure 4.4 plots 

the uniform stress correction divided by the tangent correction. 

Since the tangent and secant corrections are similar, the plot gives 

a good indication of the uniform stress amplification as defined here. 

(e.g. At a= 0.9 the uniform stress amplification is 12.29 while the 

concentrated load amplification if 29.78.) These back surfaces solu-

tions are directly linked to front surface corrections since bending 

demands lack of symmetry. The combined correction factors for through 

cracks found in Refs. 81 and 82 were divided by the associated front 

surface corrections (Fig. 4.1) to isolate the back surface correction 

factors. 

To this point all discussion of back free surface correction 

factors has centered on the through crack configuration (a/b = 0). 

Maddox51 recently condensed the work of numerous researchers 2 4•'+1 •7 7
•

8 3 

and estimated how F varies for crack shape ratios and a values betwe_en 
w 

zero and 1.0. Uniform stress and unrestricted bending were assumed. 

His results essentially agree with Fig. 4.Sb when a/b equals zero, but 

vary nonlinearly to almost 1.0 for any a value when a/b equals 1.0. 

In other words, Fw might well ~e disregarded for the half-circular 

crack. The net ligament on either side of the crack inhibits bending 

and even restricts the cracl< from "seeing" the upcoming free surface. 
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The curves Maddox produced are approximations since few 

data points exist for crack shape ratios between zero and 1.0. Never-

theless, it is reasonable to assign F a value of 1.0 for any a if the 
w 

crack shape is half-circular, regardless of the bending and stress 

distribution considerations 15
•

73
• 

4.4 Plastic Zone Correction- F 

Earlier studies have indicated that the plastic zone cor-

rection, F , is normally small for fatigue problems and can be disre
p 

garded (Chap. 1). While a detailed investigation of this premise is 

not intended, a brief outline of the basis of ,the decision is war-

ranted. Interest is particularly centered on how the other correction 

factors affect the magnitude of F • 
p "' 

Stress intensity factors stem from the elastic stress dis-

tribution near a crack tip. The stress ahe'ad of the crack tip and 

normal to the crack plane has the following form. 

K 
0' = --

12rrr 
. (4-7) 

where r = distance from crack tip 

Obviously, a increases as r decreases and eventually reaches the yield 

stress a . The distance, r , to where the yield condition ends is y y 

where 

(4-8) 

a = yield stress of material from .standard tensile test 
y 
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Factor omega (Q) is used in lieu of 2rr in Eq. 4-8 since the 

yield stress of the material, a ,·as defined by a standard uniaxial 
y 

tensile test, is elevated when plastic flow is restricted. This re-

striction is provided by the elastic regions away from the crack tip. 

The amount of restriction and the effect on yield depends on whether a 

two-.or three-dimensional stress state is created. Thus, the Q associ-

ated with plane stress differs from that required for plane strain 

conditions. 

Some redistribution of elastic stress must occur to accommo-

date the yield zone. This redistribution can be viewed as a simple 

increase in effective crack length 5
• Irwin estimated the additional 

length to equal ry 35
• The effective stress intensity, Keff' is then: 

where CF' = CF' 
( 

a+r a+r 
___J_ ___J_ 

w. ' b , 

= F 'F 'F 'F I 
s w e g 

(4-9) 

geometry) 

Since ry depends on K (i.e. Keff) which, in turn, depends on 

r , an iteration process between Eqs. 4-8 and 4-9 is required for a 
y 

stress intensity solution. However, the additional accuracy garnered 

may not be worth the iteration effort. One intermediate suggestion is 

to use material toughness, K , if available, in place of K in 
c 

Eq. 4-8 12
• This would maximize the zone size and, as far as Eq. 4-9 

is concerned, have maximum effect at small crack sizes. 
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Another possibility in lieu of iteration is to leave the 

correction factors in Eq. 4-9 unmodified for zone size and only modify 

the crack length under the radical.- This approach is essentially the 

same one taken by Irwin when he employed only t~vo correction factors, 

F and F, and considered them both constants 37
• The effective stress s e 

intensity equation is then: 

= F F *cr/rr (a+r ) s e y (4-10) 

Using Keff in Eq. 4-8, substituting Eq. 4-8 into Eq. 4-9, and rear-

ranging gives: 
F *a& 

s 
(4-11) 

Irwin used~ in lieu of~ ~ 412TI in place of Q and let Fs2 equal 1.2. 
e 

Thus, Eq. 4-11 appeared as follows 38 : 

1.1 cr& = =--=..:.-=-...::....;,...:.:..::_"=",..... 

~2 
- 0.212 ::~~ 

1.1ocr{f (4-12) 

It is apparent that crack tip plasticity was treated as a modification 

of the crack shape correction, F . The ratio a/Q was termed the nore 

malized crack depth. Curves of Q versus crack shape ratio, a/b, have 

been developed for various ratios of applied stress to yield stress 65 • 
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where 

Equation 4-ll can also be expressed as: 

F = p 
1 

F F F *cr/ila 
p s e 

(4-13) 

In considering the general case of all correction factors, the Irwin 

method leads to the following formula for effective stress intensity. 

where CF 
p 

F 
p 

F *CF 
p 

l 

K f~ e r 
CF *cr/ila 

p 
(4-14) 

There is another possibility for solving Eq. 4-9 without 

iteration. That·is to include r in the correction factors, but use 
y 

unmodified K instead of Keff in Eq. 4-8. · Keff would only be used in 

Eq. 4-8 when modifying crack length, a, under the radical. The re-

suiting equation, similar to Eq. 4-14, would be: 
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where CF " 
p 

F 
p 

CF " 

= F *CF " 
p 

1 

(

a+r ' 
= CF

11 
w y 

= CF II *a. ;n:;: 
p 

a+r ' \ 
by · , . geometry/ 

(4-15) 

Whether K , Eq. 4-14, Eq. 4-15, or the original iterative c 

technique is favored depends on the problem and accuracy needs. In 

light of uncertainities in other correction factors for ·real struc-

tural details, iteration is generally not warranted. Equation 4-15, 

being somewhat more accurate than Eq. 4-14, is favored in fracture 

problems where the applied stress, cr, and plastic zone are often 

large. The format of Eq. 4-14 (with correction factors unmodified 

for effective crack length) seems sufficient for most fatigue pro-

blems. However, two further modifications to the equation are 

required. 

Paris noted that it is necessary to replace stress, cr, with 

stress range, S , and the yield stress, a , with 2cr when a fatigue 
r . y y 

problem is encountered 61
• The latter adjustment is required since for 

alternating plasticity the elastic stress must reach twice the static 
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yield stress. Therefore, the size of successive yield zones in 

fatigue is one-quarter that found in fracture problems. The resulting 

expression for effective stress intensity is: 

where 

F 
pf 

= F *CF pf 

CF f*S & 
P r 

(4-16) 

The factor Q has been investigated by Irwin 37
• 39 , Liu 46 , 

Schijve 69
, and Rice 66

•
67

• Due to the influence of the crack itself, 

plane strain conditions are predominant at the tip, even with very 
. •.i::. 

thin plates 75
• Maddox records that Rice's latest solution for plane 

strain (Q = 2.82 ~) is probably the most accurate solution available 

for that category48
• Making the substitution for Q results in the 

following plastic zone correction for fatigue. 

1 

[
l _ (CF*Sr J2].~ 

3.36<J 
y, 

(4-17) 

It is obvious that the plastic zone correction increases 

with the other correction factors. F also increases with stress 
p 

range but decreases with the yield stress of the material. 
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significant importance in fatigue, Eq. 4-17 leads to the conclusion 

that the log-log S -N curves of Ref. 21 would not be straight lines, -r 

and the various category curves would not necessarily be parallel to 

each other. However,experimental data on structural members of all 

common yield strengths is the basis of the essentially parallel S 
r 

lines and Code provisions in the first place 3
• 19 • 20 • Yield strength 

in the range normally encountered (210-760 MPa) was found to be 

statistically unimportant 19 • 

Since the combined correction factor, CF, varies with crack 

growth, F is largest where CF is largest. Regardless of the form p 

of the individual corrections, the maximum CF occurs at either the 

crack origin or at the back free surface. Little fatigue life is 

associated with relatively large crack sizes. Thus, it hardly mat-

ters whether or not F 
p 

is included for the back surface. (In some 

cases the ratio (CF*S )/(3.36 a) 
·r y exceeds 1.0 at the back surface, 

thereby making Eq. 4-17 useless. Of course, gross plasticity also 

makes linear fracture mechanics useless. Fortunately, the life in-

crement at back surfaces is very small.) The origin may prove of 

greater importance ifF is high(cover plates), stress range is high, 
g 

and yield stress is low. In fact, the theoretically singular stress 

condition associated with an idealized weld toe would itself cause 

stress redistribution without the presence of a crack. However, the 

extremely rapid decay of the stress concentration effect means the 

plastic zone correction is important over a very small distance of 
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crack growth. The larger the initial crack size, the less important 

F becomes. 
p 

A fatigue life estimate using Eq. 4-17 was compared with 

one made without a plastic zone correction (Art. 6.2). The results 

differed by only a minor amount. 

ered to be normally justified. 

Therefore, neglect of F is consid
p 

4.5 Crack Shape VariationsDuring Growth 

Of the various decisions affecting correction factors none 

is so important as the crack shape during growth. Gurney has found 

that the importance increases (has more effect on life) as the stress 

concentration or detail severity increases (Art. 6.2) 27
• All four 

of the individual corrections comprising the parameter CF are affec

ted by the crack shape ratio, a/b. The fact that investigators des-

ignate the shape as an ellipse (with limits of circular and through 

cracks) is itself a significant approximation. Experimenters have 

recognized that many if not most cracks are actually irregular in 

shape6s,ao. 

Crack shape ratio, a/b, is not solely dependent on the 

crack length-to-plate width ratio, a/w, although the relative posi

tions of all free surfaces have an effect. Plates of different 

width (or thickness if the crack is growing in that direction) can 

have different overall correction factors, CF, at the same relative 

position of crack growth, a/w. Stress intensity at a common relative 
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position of two geometries varies due to crack shape as well as the 

fact that crack length, a, appears in dimensional form under the 

radical. Therefore, fatigue performance of proportional geometries 

can be quite different~ Since existing Code guidelines are based 

upon flange thicknesses in the range of 10 to 13 mm 3 • 19 • 20 , caution 

is warranted when these regulations are applied to larger thick-

nesses. L h . k 1 1 · 80 d h · arge t 1c ness can a so cause ayer1ng an c anges 1n 

~esidual stress patterns, thereby affecting crack shape variation 

equations. 

In order to establish a crac~ shape equation it is neces-

.sary to rely on actual physical measurements of crack size during 

growth. Unfortunately, these measurements can only be performed 

accurately by breaking apart structural details at different stages 

of crack growth. The situation is made much worse by the realization 

that growth characteristics are not the same for all details. The 

complexity and economics involved make it easy to understand why only 

a limited .amount of data is available on crack shape variation during 
I 

growth 12
•

20
•

51
• Data are particularly sparse at very small crack 

sizes. 

4.5.1 Crack Shape Variation Characteristics 

Figures 4.6, 4.7, 4.8, 4.9, 4.11, and 4.i2 identify several 

of the different types of crack shape variation which can be expected 

at welded details. (The reference for each picture indicates the 
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experimental program within which the picture was taken. The refer

ence does not mean the picture can actually be found in the final 

report.) The simplest sort of growth is one which is essentially 

constant in a penny-shape configuration. Such is shown in Fig. 4.6 

for a web-to-flange fillet. (Other examples of penny-shape growth 

at welded details are shown in Ref. 32 as well as Ref. 19.) Theo

retically, the stress intensity along the crack front varies due to 

free surface effects, thereby intimating equilibrium in a slightly 

non-circular shape 78
• However, the real crack front shows the penny

shape t.o be a good assumption, regardless of the irregularity of the 

initial flaw. Apparently the regular correction factors tend to be 

self compensating and/or the elastic regions in the web and flange 

tips make the crack sense it's in an infinite solid 32
• 

Figure 4.7 shows the growth of a crack from the termination 

of a longitudinal cover plate weld. (The cover plate has no trans

verse end weld.) Any weld with short dimension perpendicular to the 

applied stress direction shows similar characteristics. The crack 

orginates in the flange as a shallow surface flaw and grows through 

the flange as a semiellipse. For very thick flanges the shape would 

approach semicircular, but perhaps not attain it precisely (as ex

plained above), before penetrating the back flange surface and becom

ing a through crack. About 90 percent of fatigue life of an attach

ment fillet-welded longitudinally to a flange is consumed while a 

semiellipse19
• 
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Figure 4.8 shows that fatigue cracks originate at weld 

terminations for stiffeners welded only to webs. It is possible that 

cracks will originate at several sites along the weld toe. However, 

the tensile stress range gradient in the web places greatest emphasis 

on the termination region. Therefore, the fatigue surface is domi-

nated by a single elliptical crack in much the same manner as 

Fig. 4.7. Growth through the web is not as serious as through the 

2 0 . 
flange; only 80 percent of the fatigue life is thereby consumed . 

A total life prediction has to include subsequent growth as a two-

ended through crack in the web. Growth as a three-ended through 

crack, after the flange has been fully penetrated, is of little 

importance, just as for the cover-plated details. 

When a transverse fillet weld is placed on a flange for 

either stiffener or cover plate details (even cover plates wider thari 

the flange), Fig. 4.9 shows that multiple fatigue cracks usually 

occur. (This assumes essentially nominal uniform tension in the 

flange. If a significant stress gradient exists due to warping, as 

in curved girders, a single crack may be.predominant as in Fig. 4.8,) 

The cracks begin at individual sites along the weld toe and eventually 

coalesce. The number of sites and thus the rapidity of coalescence 

depends on the straightness of the weld toe and the uniformity of 

weld profile57
• The more irregular the weld along its length, the 

more separated the initial cracks and the later the coalescence. 

(Reference 57 shows the same trend for toe cracks at transverse butt 

welds.) Machine welds are more uniform and straighter· ~than hand welds 
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although almost all transverse welds of this kind are made by hand. 

The sooner coalescence commences, the more fatigue crack growth is 

enhanced due to increased F . 
s 

Crack coalescence is expected to occur several times during 

the growth process. Since initial cracks are neither equally spaced 

nor of equal size~ coalescence continues during much of the time the 

crack is semielliptical. Thus, the trend of a given crack toward 

semicircular shape is constantly interrupted by unification with 

another crack. The crack shape ratio of this combined crack is usu-

ally small - closer to a through (edge) crack than a semicircle. 

Schematically, the crack shape variation is represented by Fig. 4.10. 

When the combined crack finally reaches the back surface 

96 percent of the fatigue life is gone 20
• It is easy to understand 

this precentage because, unlike the single crack of Fig. 4.7, most 

of the flange width has already been consumed. This point also helps 

explain why cover plates (of smaller width than the flange) with only 

longitudinal welds tend to have slightly longer lives than similar 

details with transverse end welds~. The life comparison is also ex-

plained on the basis that the smaller crack shape ratios associated 

with coalescence increase CF and therefore ~K. 

Fatigue crack growth at groove-welded gusset plates is more 

complex than many of the foregoing situations. Cracks originate near 

the gusset plates' circular transitions where they meet the flange 
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tips 12
• Regardless of the gusset plate-flange thickness ratio, the ( 

initial crack tends to be quarter-elliptical. Figure 4.11 shows that 

the crack shape is transformed from quarter-elliptical to quarter-

circular (provided the flange is thick enough - Fig. 3.16) and final-

ly to an edge crack. Vertification of this growth pattern is provi-

ded by Ref. 33. The predominant crack growth is across the flange 

width rather than through the thickness as in previous details. 

Crack growth at groove-welded gusset plate details sheds 

light on the behavior expected from cover plates wider than the 

flange. Such attachments have longitudinal welds which connect the 

cover plate to the flange tip. If a transverse end weld also exists, 

cracks would grow in the manner of Fig. 4.9 (i.e. little. different 

than cover plates of smaller widths than. the flange). Hmvever with 

only longitudinal flange tip welds, cracks would likely begin as 

quarter~ellipses and, depending on flange thickness, soon become edge 

cracks growing across the flange width. The front free surface cor-

rection factors are generally higher for quarter-ellipses and edge 

cracks than for semiellipses. Thus, shorter l~fe would be predicted 

without the transverse end weld. Reference 19 experimentally deter-

mined that such is indeed the case. 
1 

I 

Lap-1:velded gusset plates provide an even more complicated 

crack growth pattern than the groove-welded variety. Figure 4.12 

shows that cracks originate along the transverse fillet weld toe. 
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The early growth is semielliptical and coalescence may or may not be a 

factor, depending on the weld length. The crack length is that dimen-

sian measured in the thickness direction. 

Since the cracks often originate near the flange t~p, the 

end of the crack soon penetrates the flange tip and growth continues 

quarter-elliptically. However, unlike the groove-welded detail the 

minor axis of the ellipse is·in the thickness rather than width di-

rection. Thus, the predoininant ·grmvth continues through the· thickness. 

It is possible that .the crack shape will become quarter-circular if 

the flange is thick enough and if little coalescence occurs. In any 

case, the crack eventually reaches the back surface of the flange and 

becomes an edge crack growing across the width. The life remaining 

varies with the flange aspect ratio and the length of lap weld. 

4.5.2 Crack Shape Variation Equations 

4.5.2.1 Stiffeners and Cover Plates Attached to 

Flanges with Transverse Fillet Welds 

Reference 20 provides numerous measurements on the size 

of cracks growing from stiffener fillet weld toes. The curve fitting 

equation derived to relate b to a (both in mm) is given as follows: 

b = L296 0.946 
a (4-17) 

It is apparent that the shape ratio gets closer to 1 .. 0 as growth 

occurs and theoretically.reaches half-circular when the crack size is 

121 mm. 
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Unfortunate!~ it is not at all clear that Eq. 4-17 accu

rately represents any one of the types of shape variation discussed 

in Art. 4.5.1. The data are comprised of measurements at stiffeners 

welded to the web and flange as shown in Fig. 4.8 and 4.9. While 

multiple crack sizes (after some degree of coalescence) appear in the 

reference, they were not used in deriving the equation. However, 

data used in developing Eq. 4-17 did include measurements taken at 

compression as well as tension flanges. These t\-70 positions could 

be expected to have similar shape variation characteristics while the 

crack remains in the residual tensile zone. After leaving the zone 

the shape ratio for compression flange cracks would probably decline 

faster with coalescence than the ratio for tension flange cracks. 

The smallest crack depth found in Ref. 20 is 0.2286 mm, but 

very few measurements are less than 0.635 mm. Crack coalescence for 

stiffeners welded to flanges is recorded as beginning when the depth 

reached the 1.27 rnm mark. 

If only the data associated with stiffeners welded to 

flanges are used in equation development, quite a different picture 

emerges. Single cracks in the compression or tension flange yield the 

least squares equation: 

b 1.300 a1. 090 (4-18) 

Now·the shape becomes more elliptical with crack growth and is only 

half-circular when the depth is 0.054 mm. This apparent elliptical 
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tendency by single cracks is considered the outfall of few data points 

(9) rather than actual behavior. Also, measurement techniques are 

more strained at small (single) crack depths. 

The shape trend of Eq. 4-18 is amplified 'by considering both 

single and multiple cracks for stiffeners welded to flanges. Using 

both compression and tension flange data: 

b = 1.506 

Using only tension flange data: 

1.241 
a 

b 1.431 a1 · 212 

(4-19) 

(4-20) 

In both instances the crack shape is half-circular when the depth is 

about 0.183 mm. 

·The shallow ellipse shape trend represented by either Eq. 

4-19 or 4-20 is explainable on the basis of crack coalescence. The 

difference between the two equations reflects the influence of the 

compression flange crack data .. But since these data are comprised of 

large crack depths compared to the tension flange, it is not certain 

whether the residual stress zone limit or additional crack coalescence 

is responsible. Nevertheless, the equations are close to each other. 

Eq. 4-19 is favored due to the extra data points included. 

The only other extensive investigation in the literature. 

on crack shape variation from welds is due to Maddox 51
• He investi

gated a gusset plate which was fillet-welded on its side (not lap-
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welded) to the face of a plate as shown in Fig. 4.13. Single cracks 

grew from the toe of the short transverse fillet at either end of 

the gusset. Based on many data points }~ddox developed the following 

equation. 

b = 3.355 + 1.29 a (4-21) 

Interestingly, the equation is a straight line where a half-circular 

shape is approached but never reached. The upper bound crack shape 

ratio is 0.775. This value is at the high end of what might be con

sidered the equilibrium position tvhen the free surface correction 

factor and its variation along the crack front are considered 78 • 

(Ref. 78 is not precise since stress gradient and back surface cor

rections haven't been considered. However, it is probably close.) 

Equation 4--21 characterizes single surface crack growth in 

a flange when only a short transverse weld length exists. Equation 

4-17 is intended for single crack growth tvhen a relatively long 

transverse weld length is present. One would expect that the longer 

transverse weld length would produce shallower cracks since the 

stress concentration along the weld toe hastens growth in that direc

tion. Yet, such a shape trend is not evidenced by the two equations. 

Starting at initial crack sizes, Eq. 4-17 yields shapes which are 

almost semicircular while Eq. 4-21 predicts shapes which are much 

more elliptical. 

Support of Haddox's crack shape equation is provided by 

Ref. 70. A longitudinal fillet weld toTith short transverse dimension 
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was found to produce a shape (a/b) which was roughly constant at 

0.50 up to relatively large crack depths (at least 9.5 mm). At a 

depth of 9.5 rom Eq. 4-21 predicts a ratio of 0.61 while Eq. 4-17 

yields 0.87. The support data for Ref. 70 were not extensive· 

although the results obviously favor the shallower shape. 

None of the mentioned studies provides extensive data 

at very small crack sizes. Yet, this is the range in which singie 

rather than multiple cracks exist. Regardless of the length of 

transverse weld the various equations should merge into one common 

shape prediction at the smaller crack sizes. Since Eq. 4-17 and 

4-21 are so much at odds with each other, it is necessary to select 

the one which seems to most accurately describe the early shapes. 

Maddox's equation is chosen because the data are numerous and 

relatively far ranging, making the trend more accurately extrapolated 

to small crack levels. Also, all data represent growth in a flange-

like plate as opposed to the mixture of flange and web for Eq. 4-17. 

Two equations have been defined to describe crack shape 

variation from transverse weld toes. When cracks are very small they 

are individual ones (single) and are represented by Eq. 4-21. After 

some crack growth coalescence begins the continued shape varia-

tion is represented by Eq. 4-19. Even though the data stem from 

different tests, it is proposed to combine the equations in describ-

ing crack shape while growing through the flange. Figure 4.14 plots 
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both curves and shows the intersection to be at a crack depth of 

roughly 4 mm. This dimension is more than three times greater 

than that recorded in Ref. 20 as the earliest commencement of coales-

cence observed. Yet, the statistical trend is probably closer to the 

higher figure; lack of data makes a conclusive decision impossible. 

The two equations will be applied to cracks at transverse 

fillet welds regardless of whether they connect stiffeners or cover 

plates to the flange. Some error may exist in this generalization 

due to higher stress gradients at the weld toes of cover plates. The 

variation of the free surface correction factor along the crack front 

is dependent on the stress gradient. The higher the gradient the 

greater the tendency to remain a shallow semiellipse, resisting 

growth toward a semicircle 82
• Such a point is beyond the scope of 

the dissertation, but deserves later investigation. Little quantita-

tive data on crack shape variation at the transverse weld toes of 

cover plates are known to exist in the literature although the quali-

tative findings at large crack sizes in Refs. 19 and 20 indicate 

shallower cracks than at stiffeners. 

4. 5. 2. 2 Gusset Plates Groove-Welded to Flange Tips 

Very little data on shape variation at gusset plate connec-

tions are available. However, one recent experimental program in-

eluded groove-welded gusset plates with" circular tr~nsitions and sever

al rough crack shape measurements on the fatigue surface were made 12 • 
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The resulting equation for quarter-elliptical crack growth is as 

follows: 

b = 10.36 0.202 
a 

Equation 4-22 is used in this study to describe the 

(4-22) 

crack shape relationship for groove-welded gussets. The equation 

shows the crack grows toward a quarter-circular shape and actually 

reaches it provided the flange thickness is at least 41 mm. For 

crack depths greater than 41 mm the crack is assumed to grow as a 

quarter-circle until b is equivalent to the flange thickness. At 

this point edge crack conditions are immediately used without special 

consideration of the insignificant transition period. If the flange 

thickness is less than 41 mm edge crack conditions are again imme

diately used when b equals Tf. 
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5. UNIFIED STRESS INTENSITY EXPRESSIONS 

Chapter 4 summarizes the limits on stress intensity correc-

tion factors. Given this information it is possible to develop uni-

fied stress intensity factors which account for the real stress dis-

tribution and crack shape. The approach used is to first develop 

stress intensity expressions for the crack shape limits (0 and 1) and 

then combine them (by interpolation of individual correction factors) 

to provide for intermediate crack shapes. 

The initial step involves finding the stress intensity for a 

nonuniform stress distribution. Figure 5.1 shows the type of local 

stress gradient which is common to stress concentration regions 

(maximum concentration at the crack origin). This distribution may 

be separated into uniform and variable constituents. Since stress 

intensity is linear in a, superposition applies provided the crack 

displacement mode is unchanged 81
•

82
• Hence, the actual stress inten-

sity can be found by adding the stress intensities, K and K , for two 
u v 

"sub" stress distributions which sum to the actual stress distribution. 

The stress intensity correction factors for. the uniform subdistribu-

tion are already known (Figs. 4.1 and 4.5); correction factors for the 

variable subdistribution can be estimated. 
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5.1 Stiffeners Fillet-Welded to Flanges 

5.1.1 Through Crack (a/b 0) 

Using the correction factors of Figs. 4.1 and 4.5 (no 

bending) the stress intensity for uniform stress can be written as: 

l ('ii20.)~ 1/2 K = 1.122*K *O~* sec u ta 

Since this is a through crack, F is 1.0. Note that for uniform 
e 

stress the only stress gradient correction is that which relates 

(5-1) 

actual stress at the crack tip to nominal stress. Obviously, it has 

constant value K . 
ta 

. Development of the stress intensity for varying stress is 

more complex. Figure 4.1 show·s that F is somewhere between 1. 300 and 
s 

1.210. The correct intermediate value depends on the shape of the ac-

tual stress concentration factor decay curve (Kt) relative to' a linear 

decay line. Figure 5.2a demonstrates that the proximity to a linear 

condition varies with a. As a increases F increases from 1.210 to a 
s 

value near 1.300. 

If TERM! ~epresents the desired value of F , then: 
s 

TERM! = 1.300-FACTOR(l.300-1.210) = 1.30-0.09*FACTOR (5-2) 

where FACTOR measure of proximity to linearity; has value 1.0 if 

actually linear 

-133-



FACTOR may be evaluated on the basis of Fig. 5.2b. ~ represents that 

value of A at which the slope of the stress concentration decay curve 

equals the slope of a hypothetical straight _decay line from SCF to a. 

The lower limit of ~ is zero while the upper limit is a/2. Thus, 

FACTOR is taken as: 

FACTOR = _s_ = ~ 
a/2 a 

Proper resolution of Eq. 5-3 depends on knowledge of the 

concentration factor decay curve which varies for each detail geqme:-

try. However, since the change in TERM! is small over the full 

spectrum of FACTOR values, reasonable accuracy is attained by using 

an equation of the follmving form for all cases: 

where A = i/w 

KtA 1 -. - = __ :::_ __ 

SCF l + .!. Ap -
c 

i = position in the crack growth direction 

(5-4) 

If the stress gradient results for an average stiffener geometry from 

Chapter 2 are used, values of c and p are evaluated as 0.3546 and 

0.1543, respectively. These results are summarized in Table 5.1., 

Equation 5-4 (i~ its present and differentiated forms) can 

be used to evaluate the slopes at A = a and A = ~. A nonlinear 

"characteristic".equation results (Eq. 5-5) which must be solved for(. 
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~ ~2p + ~ ~P - E ~p-1 + 1 
2 c D 

0 (5-5) 
c 

where D 

The solution of Eq. 5-5 is readily obtained for any given a by the bi-

section method. Thus, FACTOR can be calculated and TERMl defined. 

FACTOR is also employed in calculating the appropriate back 

free surface correction, F , for the variable stress subdistribution. 
w 

Figure 4.5a indicates that F is: 
w 

(5-6) 

where COEFl 
k 

( 1- ~ FACTOR) [1.297-0,.297cos (~a)] *[TI2a cosec (TI~ )] 2

+ 

~ FACTOR 

The stress gradient correction factor for the subdistribu-

tion, F is related to F calculated for the whole distribution ga' ga 

(Chap. 3). Albrecht's Green's Function in nondimensional form yields: 

where 

a 

K 2 J cr>.. /ITa*- dl.. 
'IT ; z 2 
0 a ->.. 

cr (K , - K ) for the subdistribution 
t/\ ta 

-135-

(5-7) 



Thus, 

F ga 

Equation 5-8 produces the following relationship: 

F 
gO'. 

F - K ga ta 

(5-8) 

(5-9) 

The stress intensity expression for the variable stress sub-

distribution can now be estimated using Eqs. 5-2, 5-6, and 5-9. 

(5-10) 

Combining Eqs. 5-l and 5-10 yields the stress intensity expression, 

Ktotal' for stiffeners with through cracks. 

Kt 0 tal = 11. 122 *K ta * [sec (n2"J J '< + . TERMl * (F ga -K ta) *COEFllsec ( n2a )] "I *cr /iTa 

(5-11) 

It is helpful to rearrange Eq. 5-11 in the following form: 

K . 
total [TERM1*COEF1 + (1.122-TERM1*COEF1)*X]*Fga*cr~* ~ec(~~~ ~ 

where 
Kta 

X=
F ga 

(5-12) 

The leading expression .in brackets is assumed to be the combined front 

free surface correction and the unmodified secant radical is assumed 

to be the combined back free surface correction. 
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Evaluation of X in Eq. 5-12 can be performed with the stress 

gradient correction provided by the artificial ellipse correlation 

given in Art. 3.4. However, it is also possible to define an approxi-

mate equation for F , similar to Eq. 5-4, which sacrifices little 
g 

accuracy in the bracketed expression. Tnis equation is given as: 

F 
~- 1 
SCF - l + .! a.q 

d 

(5-13) 

For an average stiffener geometry, d and q were evaluated to be 0.3602 

and 0.2487, respectively (Table 5.1). Tnerefore, combining Eqs. 5-4 

and ~-13, X is given as follows: 

1 + .! a.q 
d 

X=--~-

1 + .! a.P 
c 

(5-14) 

Equation 5-13 provides a reasonable means to determine X 

since the entire bracketed term of Eq. 5-12 varies little over a wide 

range of.c, d, p, and q values. However, Eq. 5-13 is not applicable 

to the stress gradient correction outside the brackets. There the 

artificial ellipse correlation should be employed. 

5.1.2 Half-Circular Crack (a/b 1) 

The stress intensity 'for the uniform stress subdistribution 

of a half-circular crack can be defined as (Fig. 4.1): 

K = 1.025 * K *l* a/iii' 
u ta ~ 

(5-15) 
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Crack shape correction, F , is represented by 2/n and F is assumed to 
e w 

be 1.0 (Art. 4.3). 

For the varying stress condition F is represented by TERM2 
s 

as follows: 
TERH2 = 1.145 - 0. 06*FACTOR (5-16) 

FACTOR is the same term calculated for the through crack case. 

The stress gradient correction associated with the circular 

crack front, F' is defined as: ga' 

-
F' = F' K go: go: to: 

lt'is important to recognize that F' 
go: 

(5-17) 

is not of the identical numeri-

cal value as F calculated for the through crack Green's Function. go: 

Using a circular crack (infinite solid) Green's Function82
, Table 5.2 

shows that F~ and Fga: diverge as the stress becomes less and less 

uniform. The limiting ratio of F' /F for a line load at the crack go: go: 

origin is estimated to be 0.548.which deviates from 1.000 by twice the 

change recorded between the uniform and linear stress cases. The 

ratio of circular to through crack stress gradient correction factors 

is summarized in Fig. 5.3. 

Equations 5-16 and 5-17 can be used to develop the stress 

intensity factor for the variable stress subdistribution. This 

yields: 
K 

v 
TEID-12 * (F' -K ) *~* cr/ITa go: w. n 
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Adding Kv to Ku (Eq. 5-15) gives Ktotal for the half-circular crack 

shape. 

K = [1.025 * K *~ + TERH2 * (F' -K ) *l] *d~ total ta rr ga ta rr (5-19) 

Rearranging Eq. 5-19 gives: 

K = [TERM2 *Y + (1.025-TER.H2) *X] * F * l* cr& total ga rr (5-20) 

where 

Evaluation of ratio Y is assisted by Fig. 5.3. However, it 

must be borne in mind that F and F' are evaluated for the total 
g g 

stress distribution, not just the variable subdistribution. The Y 

ratio for the total distribution is dependent on the relative influe-
.(·: 

ence of the variable stress subdistribution as -compared with the uni-

form stress subdistribution. Thus, Y is taken as the sum of two parts. 

Y = W*Y' + (1-W) *Y" (5-21) 

where Y' = 0.548 + 0.226 *FACTOR 

Y" = 1. 000 

W = weighting factor of variable stress subdistribution 

relative to the uniform stress subdistribution 

Factor W may be based upon the relative areas of stress 

subdistribution up to crack length a. This amounts to determining 

the ratio of the two shaded areas under the concentration decay curve 

in Fig. 5.4. 
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w = 
A 

v 
A 

u 

a 

J 0 (KtA -Kta) dA 
K *a ta 

Substituting Eq. 5-4 into 5-22 gives 

Cl. 

J 1 
d/. 

0 1 + ~ t.P 
w = -------------- - 1 a 

1 +laP 
c 

- 1 (5-22) 

(5-23) 

The integral in the numerator can be evaluated numerically; therefore, 

factor W is easily obtained. However, note that W decreases with 

increasing relative crack length, a, and must be reevaluated for each 

crack p,osition. Also, W is affected by decay constants c and p. 

For the benefit of later calculations it is worthwhile mak-

ing one adjustment to Eq. 5-20. Nultiplying and dividing by the 

secant radical gives the following form: 

K total 
[

TERM2*Y + (1. 025-TE&'12) *X .... F * 2 * ~ * [ (rra)~ l/2 
= ~ - avrra sec -

[ J 
1/2 &l 1T . 2 

(rra) . sec 2 

(5-24) 

5.1.3 Interpolation for Half-Elliptical Cracks ( 0 < ~ < 1) - b -

An intermediate (unified) position between Eqs. 5-12 and 

5-24 is necessary for half-elliptical crack shapes. Comparison of the 

two equations reveals that each contains the F factor and the secant ga 

radical. In unified terminology these will henceforth be known as the 
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stress gradient and back free surface correction factors, re'spectively. 

It is also apparent that each equation contains the appropriate, 

isolated,crack shape correction factor, F . (F = 1.0 is implied in 
e e 

Eq. 5-12.) Therefore, use of the normal elliptical integral (Art. 4.1, 

Eq. 4-:3) for the unified crack shape correction is warranted.. This 

integral automatically provides a nonlinear interpolation. 

Only the leading bracketed expressions in each equationdif-

fer and requite adjustment. The simplest approach is a straight 

linear interpolation based on the crack shape ratio, a/b. ·The inter-

polated value represents the unified front free surface correction, 

F . The resulting F is: s s 

F s = (1 - ~) * {TERHl * COEFl + (1.122 - TE&'il * COEFl) *X}+ 

~ •fERM2 * [s:c~)f~/; TE&~2) * J (5_25) 

The unified stress intensity correction factors for stiff-

eners are summarized in Table 5.3. 

5.2 Cover Plates with Transverse End \.J'elds 

5.2.1 Through Crack (a/b 0) 

The major difference between the stiffeners and cover plates 

occurs in the back surface correction, F , for the individual subdis
w 

tributions. The stress intensity for uniform stress subdistribution 
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(Eq. 5-l) has to be modified by COEF2 (Fig. 4.5) which accounts for 

bending. 

where 

K 
u 

1/2 
1.122 * Kta * a/iTa* COEF2 [ secC~ ~ . (5-26) 

. [a. 752 + 
COEF2 =l 2.02a + 

0.37 [ l-sin(:Y]

3 }* [_l_ sin(7Ta)1l ~ 
cos (7T~) 7Ta 2 J 1.122 

Likewise, the stress intensity for the variable stress subdistribution 

(Eq. 5-10) is modified by coefficient COEF3 replacing COEFl (Fig. 4.5). 

where 

. . ' 1/2 

Kv = TE~ll * (F ga -Kta) * cr/7fa * COEF3 [ sec c:) J 

COEF3 = [1 _1.2 FACTOR] [ 
3

. s;/2 -
4 

· 
3~/2 + . 

(1-a) · (1-a) 

. 1/2 

(1-a)] * [cos (-T)] + COEF2 * 1
2 

FACTOR 
1.30 

2.13 

(5-27) 

The decay constants in Eqs. 5-4 and 5-13 also change. The 

constants are summarized in.Table 5.1 for an average cover plate 

geometry. 

Combining Eqs. 5-26 and 5-27 yields the total stress inten-

sity for a through crack. · 

Ktotal = (TER.J.\fl * COEF3 + (1.122 COEF2- TERMl * COEF3) * X] 

F ga • a/ira* [sec(n2a) ]1/2 
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Equation 5-28 is seen to be quite similar to Eq. 5-12. 

5.2.2 Half-Circular Crack (a/b 1) 

Equation 5-24 applies directly to the half-circul~r crack 

since the back surface correction as well as other corrections are 

unchanged from the stiffener case. However, the decay constants in 

Table 5.1 must be taken from the cover plate column. 

5.2.3 Interpolation for Half-Elliptical Cracks ~ < 1) 
b -

The unified crack shape, back free surface, and stress 

gradient correction factors are seen to be unchanged from the stiff-

ener case. Only the front free surface correction needs modification. 

F s = (1- ~) * {TER.Ml * COEF3 + (1.122 COEF2- TERM!* COEF3). *X}+ 

~ •tERM2 * y [:.:(;)] ;,iERM2) *X} (S-Zl) 

The unified correction factors for cover plates are summarized in 

Table 5.4. 

5.3 Gusset Plates Groove-Welded to Flange Tips 

5.3.1 Through Crack (a/b = 0) 

No changes occur from the cover plate case except for the 

stress concentration factor and gradient correction decay constants 
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(Table 5.1). Also, relative crack length, a, is crack length divided 

by flange width rather than flange thickness. 

5.3.2 Quarter-Circular Crack (a/b = 1) 

Change from the cover plate and stiffener cases o.ccurs due 

to differences in the front free surface correction, F (Fig. 4.1). 
s 

In Eq. 5-24 the number 1.025 must be replaced by 1.380 and TERM3 is 

substituted for TERM2. 

TERM3 0. 754 + 0.313 *FACTOR (5-29) 

The total stress intensity can be written as follows: 

K total 
= {TERN3 * Y + (1. 380- TERM3) * ~* F . * 1. * L""" * / (7Ta)) l/

2 

1; 2 . 7T O"v7Ta \sec 2 
lsec("2a)J .. • 1!1' . (5-30) 

5.3.3 Interpolation for Quarter Elliptical (0 < a < 1) 
- b -

F , F , and F are still unchanged from the other two 
e w g 

details. F now has the following eh~ression: 
s 

Fs = (l-:)*{TERMl*COEF3 + (1.122 COEF2-TERMl*COEF3) *X}+ 

: ·fERM3. y[ :e:~;v~ERM3). 1 (5-31) 

The unified correction factors for gusset plates are summarized in 

Table 5.5. 
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5.4 Comparisons of Unified Correction Factors 

Figure 5.5 summarizes the comparative magnitudes of unified 

front free surface corrections in Tables 5.3, 5.4, and 5.5. Sample 

detail geometries were arbitrarily selected and the resulting values 

of F plotted .. Crack shape variation was defined by Eqs. 4-21 and 
s 

4-19 for the stiffener and cover plate while Eq. 4-22 was used for the 

gusset plate up to the point when edge crack conditions existed. 

Figure 5.5 demonstrates the pronounced effect of bending. The dif-

ference between the gusset plate and cover plate primarily reflects 

the influence of quarter-elliptical and through (edge) crack shape 

versus half-elliptical crack shape. The choice of shape variation 

equation (Art. 4.5.2) also plays a role in F values. s 

Gurney and Maddox have noted that the collective crack 

shape, front. free surface, and back free surface correction can be 

taken as 1.0 for semielliptical cracks at cruciform joints27
'

2 a,st. 

The collective correction for each detail shown in Fig. 5.5 is plotted 

in Fig. 5.6. The Gurney-Maddox assumption of 1.0 appears reasonable 

only for the stiffener case. (Host fatigue life is consumed at 

a < 0.5; hence, errors in correction factors for a > 0.5 has little 

consequence on fatigue behavior.) While the non-load-carrying cruci-

form joint is indeed similar to a stiffener detail, it is interesting 

to recall that F proposed by Maddox includes bending (Art. 4.3). 51 
w 

As in the case of symmetrical gusset plates, bending would depend on 

whether or not symmetrical cracks existed. If bending were 
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incorporated in the unified stiffener stress intensity expression 

(Table 5.3), the resulting curve in Fig. 5.6 would be close to the 

cover plate. The Gurney-Maddox assumption does not consider crack 

coalescence. Elimination of coalescence (Eq. 4-19) from the crack 

shape relationship would lower the curve at higher a values. Thus, 

the modifications tend to compensate. 
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6. FATIGUE LIFE CORRELATIONS 

The unified correction factors developed in Chapter 5 

(Tables 5.3, 5.4, and 5.5) can be used in fatigue lif~ predictions. 

After replacing stress, cr, with stress range, S , in the stress inten
r 

sity expressions, the resulting range of stress intensity is inserted 

in Eq. 1-2. It is rare that this equation can be solved closed-form 

- particularly when the combined correction factor, CF, is a complex 

function of crack length, a. Therefore, the cycle life is commonly 

estimated on the basis of the following numerical integration: 

m 

N 
1 I 1 

~a. (6-1) = c (~Kj)n J 
j=l 

1.21*10-13 
11/2 

where c mm 
3 N cycles (Refs. 20,32) 

n 3.0 

~K range of stress intensity, 
N 

= 
3/2 

mm 

~a = crack length increment, nun 

The fact that both C and n change value at high growth rates (when 

the crack growth mode changes from plane strain to plane stress 50 )is 

of little consequence since most life is consumed at growth rates 

below 25*10-6 mm/cycle 20
• 32 • 
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The manner of evaluation of ~. in Eq. 6-1 is of some inter
J 

est. Since ~ changes over the interval, a crude assumption would be 

to use some intermediate crack length in calculating an average ~K. 

Given this procedure the investigator would be obliged to use very 

small growth increments in order to assure reasonable accuracy. 

An alternate proposal is to treat the combined terms behind 

the summation sign as an integral of itself. One is looking for th~ 

area under the curve representing 1/ (llK) n between the two crack limits 

of the interval. Evaluation can be effected by several approaches -

among them the 32-point Gauss quadrature formula~'+. The accuracy of 

this approach permits use of larger crack increments in the summation 

process. Thus, the Gauss quadrature formula is applied in all subse-

quent life estimates. 
"-'".:· 

A sense of the relative importance of stress range and 

initial and final crack sizes in life estimates may be developed by 

again considering Eq~ 1-2. If the combined correction factor is 

assumed (for this exercise) to be constant, the cycle life is pre-

dictable in closed-form fashion. 

[ -1/2 -1/2] 
ai - af (6-2) 

where = initial crack size 

af = final crack size 
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Since stress range is cubed and both crack lengths have a square root 

sign attached, error in .the nominal stress range is more important 

than errors in the initial and final crack sizes. Likewise, error in 

the correction factor, CF, is more important than crack size. Even 

though CF in realitydepends on crack size, added importance is ob-

viously attached to establishment of the correct form of each indivi-

dual correction factor. 

The negative radical associated with each crack length 

typically places the weighted importance on initial crack size. Ex-

perimental work outlined in Refs. 19 and 20 used an excessive deflec-

tion (net section yielding) criterion for fatigue failure and the 

establishment of af. A more recent study terminated fatigue life with 

fracture, although this life was close to that found using a general-
12 

ized yielding condition Both definitions of failure generally 

cause a£ to be much larger than ai. The greater the difference be-

tween ai and af, the greater the importance of a. • 
]. 

There is a link between the relative importance of crack 

' size and the various correction factors. Inclusion of F in the 
g 

stress intensity expression increases the percentage of fatigue life 

at the larger crack sizes. Yet, incorporation of bending (as for 

cover plates) in the unified F . acts to reduce the importance of the 
s 

larger cracks. In general, the correction factors tend to enforce or 

diminish the significance of ai relative to af, depending on the 
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detail involved and the various expressions for correction factors. 

(The crack shape variation equation obviously plays a role here too.) 

However, regardless of these secondary relationships theinitial crack 

size dominates the fatigue life of practical bridge details. 

In light of the relative ~portance of a., it is indeed 
1 

unfortunate that a. is much more difficult to estimate than a Such 
1 f" 

is even true for a test specimen where the crack surface ·is exposed 

after failure (a£ is usually clearly evident). Nevertheless, several 

investigations have established lower and upper limits of initial 

crack size for weld toes of a stiffener and cruciform joint at about 

0.025 mm and 0.50 mm, respectively20 • 7 ~• 86 •. The average a. is be-
1 

tween .076 mm and .10 mm. 

Initial crack size studies to date have been primarily 

directed at the size of nonmetallic inclusions and defects at weld-

base metal interfaces 74
• 86 •. No particular concern has been expressed 

at possible changes in initial size with the type of detail, weld 

size, weld electrode and process, or even different steel strengths. 

While fatigue evidence doesn't clearly suggest a variation in initial 

crack size, it is difficult to be sure without further research at 

the microscopic level. 

Initial crack size for groove-welded gusset plates has not 

yet been discussed in the literature. Cracks normally originate at 
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the weld termination which could exhibit initial flaw sizes similar 

to the fillet weld· toe. The crack shape, being quarter-elliptical 

rather than quarter-circular,may have a deviating effect. In any 

case, it is unlikely the initial size would be of the magnitude 
32 

(1.0 mm) found at an average internal gas pore (Fig. 4.6) There-

fore, the initial crack size limits of 0.025 mm and 0.50 mm will be 

used for the gusset plate life estimates. 

Given the expression for stress intensity, the life integra-

tion technique, and information on initial crack sizes, the analyst 

is in a position to make fatigue life (cycle) estimates. Several 

sample details are subsequently investigated and their lives are com~ 

pared with those found under actual fatigue test conditions. 

6.1 Stiffeners Fillet-Welded to Flanges 

Reference 20 provides a bro·ad experimental base for fatigue 

failure at stiffeners. Stiffeners fillet-welded to flanges are 

therein designated Type 3. One particular series (in this case the 

SGB-SBB combined series) is selected for investigation and values of 

the crucial geometric variables are tabulated in Table 6.1. 

(Appendix E of Ref. 20 notes that the actual weld size was closer to 

6.35 mm rather than the 4.76 dimension specified.) The objective is 

to assess how accurately the results of various estimate approaches, 

N , predict the actual cycle life, N • All lives are also 
est act 

recorded in Table 6.1. 
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The actual cycle life in Table 6.1 relates to the loga-

rithmic average of data points for the given series and stress range 

(Table E-3 of Ref. 20). Logarithmic average means that variable N is 

assumed log-normally distributed (base 10) and the mean is approxi-

mated by the average logarithm of the data points. For this particu-

lar series and stress range, eight data points are available. On 

average, failure occurred after the crack had fully penetrated the 

flange and was growing in a through crack configuration. Since the 

unified life estimates are based on cycle life for growth through the 

flange, 96 percent (Art. 4.5.1) of the actual life found by the 

iogarithmic average is recorded. 

Three estimated lives were derived from the unified stress 

intensity relationships (Chap. 5). The first two represent approxi-

mate average and maximum initial crack sizes and both are plotted in 

Fig. 6.1. The third unified estimate uses the average initial crack 

size and arbitrarily increases the overall correction factor, CF, at 

all crack lengths by five percent. (This five percent can be con-

sidered a calibration correction not accounted for elsewhere.) 

In comparison with N , it is recognized that the unified act 

expression gives a high (unconservative) estimate at the average 

initial crack size but a low (cpnservative) estimate at the upper 

bound of initial crack size. However, both estimates are reasonably 

close for a fatigue analysis. A combined error tolerance of five 
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percent on CF is seen to provide excellent agreement with N at act 

the average initial crack size. 

It is worthwhile considering the implications of two other 

unified estimates which are not given in Table 6.1. First, if bend-

ing had been included in the stiffener stress intensity, the estimate 

at the average initial crack size would have been 1.216 million cycles. 

Second, if the initial crack shape variation equation had been taken 

as Eq. 4-17 rather than Eq. 4-21, the estimate at the average initial 

crack size would have been 2.388 million cycles. Obviously, bending 

and crack shape assumptions have a pronounced effect on life estimates. 

Reference 20 provides two regression equations which can be 

used to estimate life. The mean equation for all stiffeners (not 

just those connected to the flange) is as follows: 

log N = 12.6821 - 3.097 log S 
.r 

where S = stress range, MPa 
r 

(6-3) 

Since 96 percent of N is to be used for comparison purposes, Eq. 6-3 

can be modified accordingly. 

· log (. 96N) = 12.6644 - 3.097 log S 
r 

(6-4) 

The mean equation for Type 3 stiffeners only (all series) is: 

log H 13.5342 - 3.505 log S 
r 
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For 96 percent of N the regression equation appears as follows: 

log (.96N) = 13.5165 - 3.505 log S 
r 

(6-6) 

It i~ noted that neither regression equation has a slope of 

exactly -3.0. However, the discrepancy is minor. In fact, the esti-

mates by Eq. 6-3 and 6-5 or 6-4 and 6-6 are normally quite close due 

to the adjustment provided by the equation constants (Fig. 6.1). A 
3 21 

common slope of -3.0 guided the AASHTO Specifications ' although 

round off of stress range values left the slope slightly off of the 

mark. Regardless, equating n to 3.0 is reasonable in life integral 

procedure (Eq. 6-1). 

Since both of the above regression equations are based upon 

the specific series under study here, close agreement between pre-

dieted and actual cycle life is expected and, indeed, found (Table 

6.1 and Fig. 6.1). However, it is also fruitful to compare the value 

at the (approximate) upper 95 confidence limit. Again assuming log~ 

normal distribution and incorporating the standard deviation (s = 

0.1024) from the Type 3 regressio~ analysis, Eq. 6-6 is adjusted to 

the upper 95 percent confidence limit. 

log (.96N) - 13.5165 - 3.505 log S 
r 

= 13.7213- 3.505 log S 
r 

-154-

+ 2s 

(6-7) 

( 

1 



I 

I 
I 

The large separation between the upper confidence limit and 

the mean value emphasizes the wide variability of results (Table 6.1 

and Fig. 6.1). This separation thereby gives a measure of accuracy 

of the unified estimate at the average initial crack size. 

Chapters 4 and 5 noted that the fatigue performance of 

cruciform (non-load-carrying) joints should be reasonably comparable 

to stiffeners welded to flanges. A recent study on cruciform joints 
27 

by Gurney offers an opportunity to evaluate this premise The 

stress range, geometry, and various life estimates are recorded in 

Table 6.1. (Flange thickness must be taken as one-half of the full 

plate thickness since the joint is symmetrical with respect to the 

plate's centroidal plane and symmetrical cracks -no bending- are 

assumed.) 

Gurney provided an actual cycle life which is assumed to be 

that corresponding to growth of symmetrical cracks to middepth of the 

plate• Thus, his figure can be related directly to the unified life 

estimates without need for the 96 percent correction. The initial 

crack sizes were taken to be those Gurney assumed which, like those 

of the stiffeners, were based upon the work of Signes 7 ~.. In the 

manner of the stiffener unified life estimates, the one corresponding 

to the smaller initial crack size was slightly higher than the actual 

value. However, a larger initial crack size or a five percent toler-

ance on the overall correction at all.crack sizes leads to excellent 
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agreement between predicted and actual cycle life. 

The estimates resulting from Eqs. 6-4 and 6-6 are not 

nearly as good as the unified estimate (Table 6.1). Equation 6-6 now 

yields a value larger than Eq. 6-4; they have reversed their relative 

positions exhibited for the stiffener, due to the differing slopes. 

Yet, the estimates are still close to each other while jointly further 

removed (significantly unconservative) from the real value. The 

probable reason for this ·trend is the abnormally high weld leg-flange 
4 

thickness ratio Z/Tf The lack of agreement between Refs. 20 and 

27 is further justification for future study on the effect of geometry 

on fatigue performance. In the unified approach the F and F factors 
e · s 

are automatically adjusted for varying geometry; thus, reasonable 

agreement is found for both the stiffener and cruciform joint cases. 

Gurney produced an estimate of life which is also given in 

Table 6.1. He made the assumption that the collective crack shape, 

front free surface, and back free surface can be taken as 1.0, which 

is reasonable for cruciform joints (Art. "5.4). But his stress 

gradient correction was greater than that evaluated in Chapter 3. 

Thus, the life predicted was quite conservative and led to the 

thought that a period of crack initiation should be added to the 

propagation life. 
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The concept of crack initiation has been supported by other 
53' 7 0 

recent work However, the fact that all unified estimates 

(see also Arts. 6.2, 6.3; and 6.4) turned out greater than actual 

cycle lives leads one to conclude that initiation is relatively non-

existent and can be disregarded. Obviously, the burden of the de-

cision partly rests on the expressions for the various correction 

factors, the crack shape variation equations, and the various rna-

terial constants assumed for crack growth (Eq. 6-1). In any' case, 

there is reluctance t.o increase analysis difficulties by including 

some initiation calculation requirements before many aspects of crack 

propagation at real structural details are resolved (Art. 6.5). Also, 

initiation estimates tend to be highly empirical and arbitrary since 

it is difficult to prove what happens at microscopic defects and in-

elusions •. 

6.2 Cover Plates With Transverse End Welds 

Reference 19 is a source of considerable data on cover 

plates. Combined series CWB-O{C was selected for investigation and 

the important geometrical parameters are summarized in Table 6.1. 

(Series OvA had a slightly different flange thickness, Table D-2 of 

Ref. 1~ and was therefore omitted from the combination.) The stress 

range assumed is 110 }Wa. Thus, using the logarithmic average of the 

12 available data points (Tables F-2 and F-3 of Ref. 19), the 96 

percent life is set at 0.356 million cycles. 

-157-



The unified life estimates for the average and maximum 

initial crack sizes are given in Table 6.1 and Fig. 6.2. Unlike the 

stiffener the estimate at the expected maximum initial crack size 

slightly surpasses the actual life. Nevertheless, the deviation be-

tween the estimated and actual life at the average initial crack size 

is about equal to that found for the stiffener. If the overall 

correction factor is increased b~ 15 percent (as a calibration) at 

all crack sizes, the unified estimate at the average initial crack 

size is nearly equal to the average life. 

Several other unified estimates provide informative compari-

son with Table 6.1. If bending were not included, the estimate at 

the average initial crack size would be 0.976 million cycles. If the 

initial crack shape variation equation were taken as Eq. 4-17 as 

opposed to Eq. 4-21, the estimate at the average initial crack size 

would be 1.036 million cycles. Finally, if a plastic zone correction 

were included (Art. 4.4) and the yield stress were successively 
19 

assumed to be 385 MPa and 760 MPa , the corresponding estimates at 

the average initial crack size would be 0.509 million and 0.529 

million cycles, respectively. Here again the importance of. bending 

and crack shape variation is emphasized while the plastic zone cor-

rection at the given stress range is seen to have a minor effect. 

Reference 19 gives the following regression equation for 

all cover plates with transverse end welds: 

-158-

( 
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log N = 11.8873 - 3.095 log S 
. r 

(6-8) 

Incorporation of the 96 percent life for crack growth through the 

flange modifies Eq. 6-8 as follmvs: 

log (~ 96N) = 11.8695 - 3.095 log S 
r 

(6-9) 

For the specific stress range in Table 6.1, it can be seen that the 

estimated life from Eq. 6-9 (by chance) precisely equals the actual 

life for the particular series being studied. By making use of the 

standard error for Eq. 6-8 (s = 0.101), it is again possible to de-

fine the equation for the upper 95 percent confidence limit. 

log (.96N) = 11.8695 - 3.095 log S + 2s 
r 

= 12.0715 - 3.095 l~g ~ 
r 

(6-10) 

The result of Eq. 6-10 is also given in Table 6.1 and Eqs. 6-9 and 

6-10 are both plotted in Fig. 6.2. As with stiffeners the value 

corresponding to the upper 95 percent confidence limit surpasses all 

of the unified estimates. Thus, even the unified estimate at the 

average initial crack size is not considered too far removed from the 

actual life. 

Gurney makes the observation that the smaller the SCF the 

greater is the reduction in life-as a result of an increase in 
27 

initial crack size He derives this conclusion from studies on 

different joints with identical changes in the ratio of initial crack 
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size, ai, to plate thickness, Tf (bin Ref. 27). The ratio of life at 

the larger value of ai/Tf to life and the smaller ai/Tf was found to 

increase asymptotically toward 1.0 as SCF increased. (Nominal stress 

range has no effect on the life ratio.) Hence, the smallest life 

ratio or biggest effect of initial crack size occurred at the smaller 

SCF. 

The flange thicknesses of the stiffener and cover plate 

examples (Table 6.1) are not precisely equal. Thus, even though the 

initial crack sizes are equal an exact comparison is not possible. 

However, unified estimates can be made at equal ai/Tf ratios for both 

details and typical results are recorded in Table 6.2. It is seen 

that initial crack size does indeed have more importance in the case 

of the stiffener detail, where SCF ismuch smaller, than for a cover 

plate. 

Gurney notes that the above revelation with regard to 

initial crack size places emphasis on reducing initial size at those 
27 

details with less severe stress concentration Yet, this suggestion 

has somewhat false economy since the.details with highest stress con-. 

centration (Category E - cover plates, etc.) usually control the de-

sign of a typical bridge structure. (The stress ranges at higher 

category details are often oelmv the fatigue limits.) Worry about 

less severe details such as stiffeners (Category C) may divert 

attention away from the weakest links in the fatigue design. 
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Article 4.5 mentions that the choice of crack shape varia-

tion equation has more effect on life for details with higher stress 
27 

concentration This point is supported by the results of changing 

from Eq. 4-21 to Eq. 4-17 for early crack growth at both the stiffener 

and cover plate. Even though the ai/Tf ratio is not exactly constant, 

the life ratio for the stiffener was 1.484 while the ratio for the 

cover plate was 1.933. Realizing the questionable nature of the 

crack shape variation equations, it is. easy to understand the larger 

.relative error for cover plates at the average initial crack size. 

6.3 Gusset Plates Groove-Welded to Flange Tips 

Several ·test results exist for groove-welded gusset plates 
12, 16, 33 

with circular transitions All of the data points are for 

small radii. Hence, life comparisons for a full spectrum of geome-

tries is not yet possible; generalized regression equations haven't 

been derived. Still, it is interesting to see how unified life 

estimates (Chap. 5) fare for those particular geometries which have 

already undergone testing. 

The specific sample details selected for analysis are re-

corded in Table 6.3. Tiie actual lives and associated unified esti-

mates are presented in Table 6.4. One contrasting aspect of this 

table versus Table 6.1 is the addition of final crack sizes. These 

lengths don't necessarily relate to failure in the sense discussed 
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for stiffeners and cover plates. However, if the actual life is 

known at a specific crack size, a life estimate can be made to that 

point. (As noted earlier the final crack size is not too important 

when it is large - but some af in Table 6.4 are not excessive. Thus, 

.the final crack size is considered of interest.) 

Looking first at the Ref. 12 details, it is seen' that. the 

unified estimates at the average initial crack size are roughly 

twice the actual lives. For both detail types the initial crack size 

would have to be much larger in order to yield the actual life pre

diction. However, the required initial crack size is dependent upon 

the final crack size. This dependency can be seen in Fig. 6.3. Using 

other final crack sizes from Ref. 12, the necessary initial crack 

sizes for a life of two million cycles were calculated. Obviously, 

the data cover a broad spectrum of crack sizes and the estimating 

process for new details is subsequently rather tenuous. 

The fatigue life estimate for Ref. 33 is comparable to 

those for Ref. 12. Again, the initial crack size would have had to 

be quite large (at the maximum expected initial size) in order for 

the estimate and actual lives to be equal. Only one other data point 

is given by Ref. 33. It would suggest an initial crack size. of about 

the same magnitude (0.5 mm) for equality of actual and estimated 

lives. 
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The analytical results for the Ref. 16 details reflect a 

marked contrast with the estimating success for the previous refer-

ences. The actual lives experienced are comparable to the average 

initial crack size or smaller. While regression equations and 

associated confidence limits are not available, the estimates at the 
20 

given initial crack sizes can be approximately used in their stead 

Thus, Figs. 6.4 and 6.5 show the regression lines for various initial 

crack sizes. Imposed on the graphs are all data points (actual lives) 

in Ref. 16 (not just the ones in Table 6.4) and category limits from 

Refs. 3 and 21. (The category lines do not have precise slope -3.0 -

Art. 6.1). 

Comparison of Fig. 6.4 and 6.5 reveals that Category D 

(as ±t now exists) might be adequate for geometry A, but Category E 

is surely necessary for geometry B. This differentiation is inter-

esting since both geometries have the same transition radius. Refer-

ence 21 places both geometries in Category E based on radius alone. 

However, it is apparent that length of detail also plays a role in 

detail severity. The length for geometry B is twice that of A, 

making B more severe. In general, all variables described in Art. 

2.2 affect the fatigue performance. Thus, future research effort 

could well be directed at sorting out the category limits for various 

combinations of the geometrical (dimensionless) variables. 
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Figure 6.6 makes a comparison between all results in the 

three cited references and the category limits. For purposes of this 

plot the last recorded number of cycles was used for cycle life even 

though the definitions of failure vary. (For Ref. 12, N at the point 

of fracture was used rather than the two million cycles on which the 

analytical comparison in Table 6.4 was based.) Regardless, Ref. 12 

gusset plates appear most fatigue prone, followed by Ref. 16 and Ref. 

33 details, in that order •. In light of the comparative values of 

geometric variables, this relative positioning of the details appears 

justified. 

The lack of success in reasonably predicting the fatigue 

lives of certain of the gusset plate details is explainable. The 

range of stress intensity predicted at the smaller crack sizes was 

quite low for details in Refs. 12 and 33, leading to very large life· 

estimates. In fact, early ~K values were below what might be con-

sidered a threshold value for fatigue crack growth (~Kth : 104 MPa 
28 

~ ) •. However, the rapidity of fatigue failure can be attributed 

to local irregularities in geometry which amplified ~. Reference 12 

shows a picture of a circular transition which can hardly be termed 

smooth. Reference 33 diagrams a transition which is purposely not 

tangent to the flange tip. While the intent of such a design is not 

understood (perhaps easier fabrication), it is clear Ref. 33 details 

began with a stress singularity condition at the weld terminations. · 
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The difficulty in fatigue life prediction for certain gus-

~et plates underscores the importance of careful detail preparation. 

For circular transitions where weld terminations have been gound 

smooth and (for large radii) >vhere the plate has been cautiously cut 

out, prediction of fatigue life base~ on average initial crack 

size is possible. Unfortunately, such careful preparation can't be 

expected 'in real life bridge fabrication - particularly where the 

radius is small and formed by grin~ing. 

The difference between actual and idealized geometries can 

be taken into account in the cycle life prediction process. While it 

is possible to introduce a local (additional) gradient effect into 

~' the simplest approach is probably just an increase in the initial 

crack size. In fact, inspection of several specimens from Ref. 12 

" showed a starter notch where grinding occurred. Based on Table~.4, 

an' average initial crack size of 0.5 mm is recommended for cases 

where strict controls are not imposed on detail fabrication. The 

choice of initial crack size is particularly important for setting 

the above proposed category limits for variations in the geometric 

variables. Two sets of recommendations appear warranted. 

6.4 Yellow Mill Pond Bridge 

In the early 1970's fatigue cracking was detected in the 

steel (simple span) beams of the Yellm.;r Mill Pond Bridge servicing 

Interstate Route 95 near Bridgeport, Connecticut. Subsequent stress 
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10, ~0 

history studies led to the conclusion that fatigue crack growth 

should- not have occurred since measured stress ranges were well below 
19 20 

the fatigue limits developed from small scale beams ' Hence, 

the Yellow Mill Pond Bridge has been a constant question mark; it has 

demonstrated worrisome contradiction with basic experimental findings 
3, 19 

It is therefore appropriate to determine if the analytical 

approach of this dissertation sheds new light on the failure -

particularly the fatigue limit positioning. 

The most serious crack occurred at the end of a cover plate 

detail in one of the eastbound spans. Between the bridge erection in 

1958 and 1970 the crack completely penetrated one beam flange and even 

propagated 400 mm up the web. The detail dimensions of interest are 

given in Fig. 6.7. 

The variance in the stress range fatigue limit, S , is 
r 

Plotted in Fig. 6.8 using a threshold ~K of 104 MPa ;;;. The fatigue 

limit is seen to have a general downward trend with increasing crack 

size. However, due to the sharp drop in -F a short plateau occurs 
' g 

around the 20 MPa level, temporarily interrupting the decline of S • 
r 

While this particular fatigue limit curve was developed with the 

additional 15 percent correction factor (Art. 6.2), with or without 

the 15 percent the entire curve falls well below the (lower confidence) 
19, 20 

fatigue limit observed on smaller scale beams 
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Figure 6.8 also positions two stress range levels of 

interest. First, the maximum stress from the stress history study 

is indicated. Second, the upper bound stress range for almost all 

recorded stress ranges is given. The fatigue limit curve is seen to 

fall between the two levels. It is noteworthy that these levels 

aren't associated with stress ranges .recorded at the specific detail 

investigated here since it had already failed. The stress history 

data was collected at a similar detail on a different span. Thus, 

some vertical shift in the lines for the actual detail in question 

could be expected. 

The crack length in Fig. 6.8 can be viewed as either initial 

size or size at some point during crack propagation. Using the 

maximum stress range and assuming the initial crack size to be 

0.076 mm (average expected), the life estimate for growth to 0.5 mm 

is nearly one million cycles. Life for growth from 0.076 mm through 

the flange is estimated at 19 million cycles. Both of these figures 

are in marked contrast to the 20 thousand cycles estimated for stress 
10 

ranges above 20 }~a (Traffic surveys accompanied the stress 

history studies.) 

In light of the preceding findings the analysis of the 

Yellow Mill Pond Bridge failure can be considered a partial success. 

On the positive side it is clear that the fatigue limits for certain 
3 

geometries might be well below the existing AASHTO regulations • This 
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does not necessarily mean new detail categories are required; perhaps 

only a choice of runout levels (as for Category C) is sufficient. 

Future research appears warranted in order to accommodate the full 

spectrum of detail geometries in AASHTO. Also, while resetting the 

fatigue limits on a geometrical basis, consideration should be given 

to the drop in the limits as cracks propagate,. thereby making more of 

the stress range histogram (and associated cycles) effective in 
2.8 

causing growth 

The negative side of the Yellmv Mill Pond analysis picture 

is obviously the discrepancy in life cycle estimates. Even allowing 

for a very large initial crack size and/or occasional overloads, the 

estimated and actual cycles are far out of line. Errors are, of 

course, possible in the development of the stress intensity expres-

sions (in addition to the 15 percent) and material constants (Art. 

6.5). However, it appears the greatest discrepancy is associated 

with the stress history study. Certainly there would have to be a 

great number of cycles near the 20 }Wa level which could be con-

sidered the root-mean-square or Miner stress range required for 
.70 

sustained crack growth In this case the two stress range limits 

in Fig. 6.8 would be substantially higher. 

6.5 Sources of Error 

Given the preceding results of various fatigue life 

correlations it is worthwhile collectively highlighting the potential 
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sources of discrepancy between estimated and actual lives. These 

sources or "pitfalls" in the analytical procedure may be grouped 

under the headings of stress gradient correction, other correction 

factors, and life integration. Knowledge of weak assumptions can 

and hopefully will lead to research which will strengthen the fatigue 

analysis capability of all investigators. However, it should be 

understood that variability in the actual lives makes precise esti-

mating in all instances a virtual impossibility • 

. . 6.5.1 Stress Gradient Correction 

Chapters 2 and 3 were devoted exclusively to coming to grips 

with F • Yet, from the start important assumptions were made. First, 
g 

the geometry of the detail was idealized. Fillet \veld angles were 

taken as w/4 radians although the angle at the toe often exceeds this 

value - particularly for handmade welds. Gurney has shown that stress 

concentration increases with \veld angle and F at small crack sizes is 
g 

significantly affected27
• The geometry also has great importance for 

groove-welded gusset plates where the transition radius results from 

grinding the weld termination. Lack of careful transition fabrication 

can seriously increase the rapidity of early crack growth12
• 

Important decisions for the stiffeners and cover plates were 

the section used for two-dimensional analysis and subsequent SCF and 

F calculations, the distance from the weld toe for input of uniform 
g 
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stress, the length of cover plate beyond which conditions at the weld ( 

toe do not change, and the plane stress versus plane strain contro-

versy when switching from the three-dimensional to the two-· 

dimensional analysis. But perhaps the key decision for any geometry 

with a singular (eleastic) stress distribution is the mesh size. The 

contention in this dissertation is that the size near the singular 

point must be smaller than the expected initial crack size. Vari-

ation in mesh size makes comparison of results of different investi-

gators of singular geometries very difficult at small crack sizes. 

If the geometry were truly singular it would imply 

localized yielding. The associated redistribution of stress would 

raise the stress concentration and F correction at crack-lengths 
g 

just beyond the plastic zone. (\.Jithin the zone Kt and F g would, of 

course, be constant.) The size of the zone depends on stress or 

stress range in a manner similar to that presented for crack tip 

plastic zone correction, F • However, like F a modification for 
p p 

geometric singularity yielding was assumed to be small and thus 

neglected. If yielding had been included the estimated life would 

have been closer to the actual life. 

The gusset plate geometries only underwent two-dimensional 

analysis. Since the middepth of the plate is not normally coincident 

with the middepth of the adjacent flange, some out-of-plane bending 

will occur. This bending is neglected by the two-dimensional approach 
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although the bending is probably responsible for early growth as a 

corner crack. 

The gusset plates presented difficulty in developing SCF 

and ellipse decay correlation equations. The equations do not demon-

strate the same goodness of fit that was exhibited for cover plates 

and stiffeners. Obviously, the number of variables was partially re-

sponsible for this condition. Application of the correlation is also 

questioned for crack growth beyond the \veb line. F would actually 
g 

begin rising rather than continuing the decay. Regardless, the gen-

erally low F for gusset plates reduces the concern about equation 
g 

inaccuracies. Cycle life for growth beyond the web is so small a 

percentage of total life that error in correction factors can be con-

sidered to have neglibible importance~ 

Application of Albrecht's Green's Function requires that 

the crack path be known in advance. It was assumed that the path 

extended from the weld toe in the direction of the flange thickness 

(stiffeners and cover plates) or from the circular transition point 

of tangency in the direction of the flange width (gusset plates). 

Actual tests have shown slight deviation from these directions in the 

very early stages of crack growth (Art. 3.1) 12
• 22 • Use of the proper 

direction does raise F somewhat. 
g 

The ellipse decay correlation equations for stiffeners, 

cover plates, and gussetpates are most valid when the dimensionless 
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geometrical parameters are within the limits used in the equations' 

development. Use of the equations for excessive parametric values 

should be done with caution even though the trend indicated by the 

equations is correct. 

6.5.2 Other Correction Factors 

Evaluation of the limits of the F and F correction fac-
s w 

tors (Chapter 4) involved some judgment. This is particularly true 

in the case of the quarter-circular crack for which existing solu-

tions are rather tenuous. Application of these factors, which stem 

from simple plate specimens, to details where changes in cross-

section occur is questionable. Unkno\~ is how the detail affects 

Poisson displacement parallel to the crack at its origin. If such 

displacement is restricted to a significant degree, Fs must be 

reduced. F also is less if growth along the minimum stress tras 

jectory is considered rather than perpendicular to the applied stress 

(Fig. 3.1) 82
• The gap between estimated and actual life would then 

widen. However, stress perpendicular to the crack is higher when 

growth is along the trajectory and the rise in F would tend to 
g 

balance the drop in F . 
s 

Yielding due to the crack tip was discussed and incorporated 

in the plastic zone correction, F (Art. 4.4). This factor is small 
p 

for reversed yielding conditions, as in fatigue, where the alternating 

plastic zone is one quarter that of a noncyclic stress. F is also 
p 
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low due to low stress ranges in real bridges and a modern tendency 

toward steels with increased yield strength. However, F is affected 
p 

by detail type and increases for those attachments (Category E) which 

result in a high overall correction factor, CF. While F is generally 
p 

neglected in the dissertation, it brings actual and estimated lives 

closer together (Art. 6.2). 

A very important decision for every detail is whether or not 

bending occurs as a crack grows (Art. 4.3). Cover and gusset plates 

are considered to exhibit bending while stiffeners do not. Obviously, 

though, geometry can affect the degree with which either limit is. 

attained. Bending can easily reduce the estimated life by several 

hundred thousand cycles (Arts •. 6.1 and 6.2). 

Even if the form of all the correction factors is properly 

ascertained, the crack shape variation during growth must be known for 

an accurate life estimate (Art. 4.5). The stiffener detail has been 

studied for crack shape variation although results by different inves-

tigators are in considerable disagreement. There are the further 

complications of crack coalescence and, for thick flanges, an eventual 

dominance by corner cracks (rather than semielliptical ones) growing 

in the thickness direction (comparable to Fig. 4.12). Shape variation 

equations are unknown for cover plates although the shape ratio, a/b, 

may remain small due to a higher stress gradient. In any case the 

stiffener equations 'vere used for cover plates in the present study. 
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The equation used for gusset plates was based on crude, limited data 

in Ref. 12 and, quite likely, will undergo modification in the 

future. Depending on the magnitude of stress concentration, the 

shape variation decision can affect the life estimate by as much as 

100 percent (Art. 6.2) or possibly more27 • 

6.5.3 Life Integration 

In the numerical integration process several decisions must 

be made. Naturally, the method of integration and the crack incre-

ments have some· small influence on the results~ However, much more 

important is the initial crack size. Tables 6.1 and 6.4 show a 

marked difference in results when the initial size is permitted to 

vary within expected limits 20 • 7 ~. The limits themselves are in ques-

tion for different types of details, different weld leg sizes, and 

even different strength steels. 

C and n in Eqs. 1-1 and 6-1 are primarily material con-

stants, but they are also affected by environment, frequency, and 

temperature (air and room temperature assumed here). Barsom has set 

an upper bound on the crack growth rate for ferrite-pearlite steels 

(e.g. A36 and A441) as follows 6 : 

where 

da 2_18*10-13 (~)3.0 
dN= 

da 
dN = mm/cycle 
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The upper bound was intended to limit the growth rate in weld metal 

and the heat affected zone (HAZ) as well as the parent plate. With 

the same inclusive approach Maddox has set upper and lower limits of 

Cat 3.0*10-13 and 0.9*10-13 , respectively49
'

50
• Exponent n was very 

close to 3.0 and was taken as such. Meanwhile, Hirt and Fisher found 

C to be 1.21*10-13 and n again 3.0 32
• It is safe to conclude that the 

findings of all of these investigators show good agreement and the C 

value by Hirt and Fisher is a reasonable intermediate assumption. 

Exponent n is taken as 3.0 although certain regression equations like 

the Type 3 stiffener one (Art. 6.1) sho'~ some deviation from this 

value. 

Controversy arises, however, when assuming growth rate 

constants for martensitic steels (e.g. A514). Barsom's upper bound 

for these steels is 

da = 0 _40*10-11 (~K)2.25 
dN (6-12) 

Naturally, an assumption of equal initial crack sizes and range of 

stress intensity expressions would cause the life estimates from 

Eqs. 6-11 and 6-12 to differ considerably 45
• Yet, test results from 

actual structural details have shown the regression curves of A36 and 

A514 specimens fall almost on top of each other 6
'

19
'

20
• 

The paradox is not resolved by consideration of a crack 

initiation phase. Barsom notes that the observed difference in 
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fatigue life of steels having different tensile strengths decreases 

as stress concentration increases 6
• Stress concentration negates 

differences associated with crack initiation in various steels, 

thereby relegating the total useful fatigue life to fatigue crack 

propagation behavior. Thus, crack initiation is disregarded on 

two counts. First, life estimates are generally higher than actual 

fatigue lives and presumption of an initiation phase would only widen 

the gap. Second, high stress concentration at details makes an 

initiation phase nonexistent for all common bridge steels .. 

The disagreement between Eqs. 6-11 and 6-12 can not be 

fully explained at this time. However, based on the testing experi

ence on real structural details, Eq. 6-11 suggests the performance 

trend expected for all steels. The Hirt and Fisher value of C is 

taken as the statistical mode. 
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7. SUMMARY, CONCLUSIONS, ~~ RECO~frlliNDED RESEARCH 

The intent of this study has been to improve the accuracy 

associated with fatigue life estimates for typical structural, welded 

details. A large measure of the improvement stems from determination 

of the stress gradient correction factor, F , which modifies . g 

the stress intensity at any given crack length. Also, development of 

stress intensity expressions which properly consider differences in 

crack shape as well as the influence of the variable stress field has 

aided the fatigue estimate correlations. The more important steps 

and findings of the dissertation and recommendations for further work 

may be itemized as follows: 

(1) Stress concentration factors have been established for 

fillet weld toes of transverse stiffeners and cover plates 

with end_welds by use of the finite element technique. For 

each idealized geometry a singular elastic stress condition 

exists at the weld toe. Thus, local stress concentration 

continues to rise as the mesh size is reduced. Reasonable 

accuracy of the stress gradient correction at small crack 

lengths requires that the mesh size adjacent to the weld toe 

be less than the expected initial crack size. 

(2) Stress concentration at weld toes increases at a decreasing 

rate as attachment length increases. Concentration for the 

limits of length represented by stiffeners and cover plates 
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is primarily related to weld leg size, flange thickness, 1 

and attachment thickness. (Attachment thickness for stiff-

eners is represented by the stiffener height and, for such 

large magnitudes, the stress concentration has attained 

constant value for the variable involved.) Typical stiff-

eners were found to have concentration factors between 

three and four while cover plates with end welds have con-

centration factors between six and eight. 

(3) Stress concentration for groove-welded gusset plates with 

circular transitions is not affected by a singular geometry 

but the mesh size required does decrease for smaller tran-

sition radii. Gusset plates with circular transitions nor-

mally have concentration factors between one and three de

pending on gusset plate and fl~nge dimensions. However, as 

the radius decreases below 0. Hlf' the theoretical SCF rises 

rapidly and can reach values well above those of cover ·· 

plates. Use of gusset plates without circular. transitions is 
. .• 

therefore di~couraged. In general, the concentrationfactors 

show reasonable agreement with Peterson values 63 although 

additional information is here provided on variable thickness 

ratios and the effect of imposed secondary stress. 

(4) The results for cover plates with transverse end welds rep-

resent an upper bound for cover plates without transverse 

end welds and some lap-~velded gusset plates, depending on 
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width. Fillet- or groove-welded longitudinal stiffeners 

with slight circular transitions at the ends (by weld ter-

mination grinding) can be conservatively treated as groove-

welded gusset plates. Such solutions also reasonably apply 

to longitudinal stiffeners with circular transitions when 

the stiffener end is tapered. 

(5) Given the stress concentration factor distribution along 

the prospective crack path (prior to insertion of the 

crack), the stress gradient correction factor, F, is 
g 

evaluated using the Green's Function proposed by Albrecht 2
• 

The stress gradient correction curve (with maximum value 

SCF) is always above the stress concentration factor decay 

curve for structural details. However, at large distances 

from the point of maximum concentration the two curves 

converge. 

(6) The stress gradient correction factor curves derived from 

Albrecht's Green's Function are correlated with expressions 

for stress concentration factor decay from an elliptical 

hole in a plate. The relative size of the ellipse and 

appropriate axis are established by the stress concentra-

tion factor for the detail. The absolute size of the 

ellipse is determined by geometry with particular emphasis 

on the dimension over which decay occurs. The correlated 

ellipse is used to predict the F correction at any crack 
g 

size for fatigue life estimate purposes. 
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(7) All correction factors stem from stress intensity solutions 

for simple plate specimens 76
'

81
'

82
• Use of these solutions 

for structural details where rapid changes in cross-sectional 

geometry occur is questionable. Future study should be di-

rected at determining the error involved in assuming the 

simple plate correction factors are applicable. Particular 

attention should be given to F • 
s 

(8) Front free surface correction factors are established for 

through, half-circular, and quarter-circular crack shapes 

with variable stress distributions. However, additional 

theoretical work should be directed at the quarter-circular 

cracks since values at the crack tip for the various stress 

distributions are only approximate. 

(9) A major decision affecting the back free surface correction 

factor for each detail is whether or not cross section. 

bending occurs with increasing crack length. Cover plates 

exhibit considerable bending due to longitudinal flexibility .. 

Gusset plate details also exhibit bending (in plane) even 

if identical details are symmetrically positioned with 

respect to the web. Usually different crack lengths at the 

two transitions negate symmetry. Contrary to cover and 

gusset plates, stiffeners are assumed to lack bending since 

those joints are comparably stiff. 
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(10) Regardless of the bending situation, little is kno~vn about 

F for crack shapes between zero and 1.0. Linear interpola
w 

tion is used in this dissertation although Maddox predicts 

a nonlinear relationship between F and crack shape 51
• More 

w 

analytical effort should be directed at F for variable 
w 

crack shape and variable proximity to the back free surface. 

(11) Crack growth generally originates at several locations 

along transverse weld toes. Hence, for stiffener and cover 

plates with transverse welds, crack coalescence occurs and 

is considered in the decision on crack shape. At early 

stages of growth the shape variation equation reflects a 

tendency to a circular shape. A second equation for later 

growth incorporates coalescence and a trend toward a flat, 

through shape. 

(12) Crack shape has a pronoun~ed influence on cycle life pre-

dictions. Whether or not coalescence is con's ide red, all 

crack shape equations are questionable. Extensive research 

is required to determine the crack shape variation at dif-

ferent details and how shape relates to correction fa~tors 

F', F, and F. Stiffeners fillet-welded to flanges ex-
g s w 

hibit more circular cracks than cover plates with trans-

verse end welds. For both details the shape also appears 

related to flange thickness although the data base is 

sparse. The data base is even more sparse for groove-

welded gusset plates. 
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(13) Expressions for stress intensity due to an arbitrary stress 

field are developed by dividing the stress distribution for 

a given crack length into uniform and variable (decreasing 

to zero at the crack tip) subdistributions. The stress 

intensities for the subdistributions are superimposed 

(added together) to give the unified stress intensity 

factor. Crack shape is taken into account by developing 

unified F expressions for both extremes of crack_shape 
s 

and linearly interpolating between them for the specific 

shape predicted by the crack shape variation equation. 

(14) Initial crack (discontinuity) size is quite important to 

the cycle life prediction. Yet, the extent of study on 

discontinuities at weld toes is rather limited. Current 

estimates put the average size between 0.075 and 

0.10 mm 20
'

74
'

66
• Future study should resolve if and how the 

discontinuity size varies for different types of details, 

different weld sizes, different weld electrodes and pro~ 

cesses, and even different steel strengths. 

(15) Correlations between estimated and actual fatigue lives for 

stiffeners and cover plates show the estimated values to be 

on the high (unconservative) side. The estimated lives are 

within the upper 95 percent confidence limits. Estimates 

for stiffeners ,.,ith an average initial crack size. can be 

brought into more accurate agreement with the mean regression 
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line by increasing the overall stress intensity correction 

factor by five percent. Cover plates require a 15 percent 

correction. 

(16) Fatigue life correlations for groove-welded gusset plates 

are quite sensitive to the tolerance permitted in fabrica-

tion of the circular transitio~s. Careful fabrication 

results in good agreement between actual life and life 

estimated from the average initial crack size. Crude fab-

rication reduces the actual fatigue life considerably and 

an adjustment must be made in the estimating procedure. 

While the stress intensity expressions could be appropri-

ately modified to reflect geometric irregularities, a 

simpler approach is to increase the initial crack size from 

the average value to the upper limit expected. 

(17) AASHTO fatigue categories for groove-welded gusset plates 

with circular transitions are now based on dimensional 

• . 4 21 rad1us alone • • New provisions currently being con-

sidered are as follows: 

R < 51 mm 

51 < R < 152 mm 

152 ~ R < 610 mm 

610 < R 
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These provisions appear conservative for practical detail 

geometries, even iu light of potential fabrication problems.· 

However, the correct AASHTO category should depend on 

nondimensionalized radius as well as other nondimensional-

ized, geometric variables. Ne~v investigative effort should be 

directed at bounding the category "kernels" for all possible 

variations in detail geometry. Consideration must also be 

given to differences caused by the fabrication tolerance 

required. 

(18) Detail geometry affects the stress concentration and stress 

gradient correction factors and ultimately influences 

fatigue limits. Details with high F at the initial crack 
g 

size can have fatigue limits well below those published in 

the AASHTO Specifications 3
• New research should be directed 

at repositioning the fatigue limits to more properly reflect 

the extremes of detail geometries. This research should 

also consider the variability of the fatigue limits with 

crack growth and the eventual effectiveness of lower values 

in the typical bridge detail, stress range spectrum. 

(19) Crack initiation appears to play a negligible role in the 

fatigue life of a bridge detail. Since life estimates based 

on propagation alone are greater than actual lives, crack 

initiation estimates would only increase.the magnitude of 

disagreement. Also, high stress concentration at fillet-

welded details seriously curtails any possible initiation 

activity. 
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a 

a. 
1 

A 

A 
u 

A v 

b 

B 

c 

c 

CF 

CF 
p 

CF · 
pf 

d 

D 

e 

E 

E(k) 

NO}lliNCLATURE 

crack size; minor semidiameter of elliptical crack 

initial crack size 

final crack size 

number of cycles when stress range equals 1.0; stress 
concentration factor decay polynomial coefficient 

area of uniform stress subdistribution 

area of variable stress subdistribution 

major semidiameter of elliptical crack 

stress concentration factor decay polynomial coefficient; 
plate thickness in cruciform joint 

stress concentration factor decay coefficient 

crack growth coefficient; stress concentration 
factor decay polynomial coefficient 

combined total correction factor for stress intensity 

total correction factor including factor including 
plastic zone 

total correction factor for fatigue including plastic zone 

stress gradient correction factor decay coefficient 

stress concentration factor decay polynomial coefficient; 
constant in characteristic equation for s; chord length 
on gusset plate circular transition 

distance from detail at which stress concentration is 
negligible 

Young's modulus; stress concentration factor decay 
polynomial constant 

complete elliptic integral of the second kind 
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f 

F 
e 

F 
g 

F 
g 

F 
p 

Fpf 

F s 

F 
w 

g 

G 

h 

h opt 

K 

K c 

K 
v 

focal distance of ellipse 

crack shape correction factor 

stress gradient correction factor 

stress gradient correction factor for variable stress 
subdistribution 

plastic zone correction factor 

plastic zone correction factor for fatigue 

front free surface correction factor 

back free surface correction factor 

major semidiameter of elliptic hole in an infinite plate 

optimum major semidiameter of elliptic hole for repre
senting the stress gradient correction factor decay 

strain energy release rate 

minor semidiameter of elliptic hole in an infinite plate 

optimum minor semidiameter of elliptic hole for repre
senting the stress gradient correction factor decay 

stress intensity factor 

material toughness 

effective stress intensity factor after stress redistribu
tion due to crack tip plasticity 

stress concentration factor 

stress intensity factor for uniform stress subdistribution 

stress intensity factor for variable stress subdistribution 

range of stress·intensity factor 

stress intensity range at crack growth threshold 

distance along crack path from origin 
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log logarithm to base 10 

L attachment length; length to division of two stress 
concentration factor decay polynomials 

L' outer edge length of groove-welded gusset plate 

m number of finite elements to crack length a; maximum 
distance between gusset plate circular transition and 
chord approximation 

n crack growth exponent; negative slope of log-log Sr-N curve 

N fatigue life 

p stress concentration factor decay exponent 

Pf total force directly input to flange 

P total force directly input to gusset plate 
gp 

q stress gradient correction factor decay exponent 

Q coefficient for back surface tangent correction to account 
for bending; crack shape correction modified for crack tip 
plasticity 

r distance from crack tip 

r distance from crack tip to where yield condition ends 
y 

R radius of circular transition at end of groove-welded 
gusset plate 

s standard error of estimate 

S nominal stress range 
r 

S nominal stress range representing fatigue limit 
r 

SCF maximum stress concentration factor; stress concentration 
factor for the crack origin 

tf thickness of planar finite elements representing flange 

t thickness of planar finite elements representing weld 
w 
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T 
cp cover plate thickness 

Tf flange thickness 

T gusset plate thickness gp 

T stiffener thickness s 

u elliptical coordinate representing confocal ellipses 

U flange thickness in inches minus 1.0 

v elliptic coordinate representing confocal hyperbolas 

w crack length at which rate of growth becomes infinite 

w ratio of area of-variable stress subdistribution to area 
of uniform stress subdistribution, A /A 

v u 

W cover pla.te width 
cp 

wf flange width 

W gusset plate width gp 

W* effective width of symmetrical lap-welded gussets, 
measured. from outer edge to outer edge 

x distance from ellipse center in major axis direction 

X ratio of stress concentration factor at a to stress 
gradient correction factor for a 

y distance from ellipse center in minor axis direction 

I 
Y ratio of F for circular crack to F for through crack 

g g 

Z weld leg size 

---------------------------------------------------------------------
a 

y 

nondimensionalized crack length, a/w 

dummy angle variable for integration purposes 

value of elliptic coordinate n representing elliptic hole 
perimeter 
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e: 

n 

6 

\) 

cr 

cr 
y 

stra;ln . 

alternative· elliptic coordinate related to v 

alternative elliptic coordinate related to u 

half of angle delineating chord length of gusset plate 
circular transition 

nondimensionalized distance, ~/w 

Poisson's ratio 

value of A at which slope of decay curve equals slope of 
straight line from SCF to Kt at a 

stress 

yield stress 

angle from major axis of elliptic crack 

inverse of F 
e 

crack yield zone size factor depending on planar .conditions 
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Table 1.1 AASHTO Allowable Range of Stress for Fatigue 3 

Cycles 

Detail over 
Category 100,000 500,000 2,000,000 2,000,000 

A 413.7 MPa 248.2. 165.5 165.5 
(60 ksi) (36) (24) (24) 

B 310.3 189.6 124.1 110.3 
(45) (2 7. 5) (18) (16) 

c 220.6 131.0 89.6 69.0, 82.7* 
(32) (19) (13) (10, 12*) 

' 
D 186.2 110.3 69.0 48.3 

(27) (16) (10) (7) 

E 144.8 86.2 55.2 34.5 
(21) (12.5) (8) (5) 

F 103.4 82.7 62.1 55.2 
(15) (12) (9) (8) 

* For transverse stiffener welds on webs or flanges 
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Table 2.1 Summary of Haximum Stress Concentration Factors 
for Stiffener and Cover Plate Geometries 

z T 
_£E. 

Detail Tf Tf SCF 

Stiffener 0.3205 I'\ / 3.161 

1 
/ 

" '" /. 0.6410 '/ 3.651 

//\\ 0.9615 3.934 

Cover Plate 0.3205 0.6410 7.198 

0.6410 0.6410 6.040 

1.4360 6.762 , 
2.0000 7.014 , 

0.9615 2.0000 6.542 
-
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CASE 

1 

2 

3 

4 

Table 2.2 Auxiliary Geometries for Cover Plate 
and Flange Width Effects 

wf w \~ 
L 

T. _.£E. _.£E. --
wf Tf w f cp 

1. 778 
8.64-- 0.667 5. 76 ......... 

......_ 2. 667 

0.889 
17.28 0.667 11.52 

1.333 

.. .-: 

2.000 
17.28 0.296 5.11 

3.000 

0.889 
8.64 1.333 11.52 

1.333 

For all geometries in this table: 

z 
-= 0.6410 

T 
_.£E. = 1. 4360 
Tf 

I 

' 

* Plane strain conditions assumed for finer meshes 
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6.557 

6.762 

6.921 

7.418 

(8.242)* 

6.690 

6.818 

6.480 

6.945 



Table 2.3 Summary of Haximum Stress Concentration 
Factors for Gusset Plate Geometries 

R L 
w T 
_&E.. gp . 

wf wf wf Tf 

0.056 0.44 0.67 I 1.00 

• I 

j 
0.50 

I 
0.67 I 1.00 

t I 0.50 

1.11 I I 1.00 

• I 

I I 0.50 I 

I 
2.89 I 

I 1.00 I 
'q, t I ~, I 0.50 I 

I i 
I 

l j 
I 
I 

0. 083. 0.67 1.00 
I 

1.00 I 

I 

1 
I 0.75 

·•· I 
I 0.50 ! 
I 
! 0.25 
l 

1.00 I 1.00 
I 

l 
0.75 

0.50 

0.25 

1.67 1.00 

1 
0.75 

0.50 

0.25 

4.33 1.00 

0.75 

0.50 

~, , ,, 
0.25 
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SCF 

1.987 

1.496 

2.114 

1.803 

2.457 

2.245 

3.216 

2.787 

2.022 

1. 924 

1. 770 

1.642 

2.277 

2.137 

1.922 

1.852 

2.554 

2.371 

2.163 

2.110 

2.737 

2.570 

2.519 

2.431 



Table 2.3 Sunnnary of Haximum Stress Concentration 
(Cont.) Factors for Gusset Plate Geometries 

R L 
w T 
_8E. gp SCF 

wf tvf wf Tf 

0.167 1. 33 2.00 1.00 1. 967 

~ 
2.00 

~ I 
2.101 

3.33 2.189 
8.67 'V 2.229 

0.250 1~0 1.00 1. 00. 1.658 

1 
0.50 1.492 

1f7 1.00 1. 790 
0.50 1.638 

4.33 1.00 1.870 

+ ..,. 0.50 1. 789 

0.417 117 1.00 1.00 1.536 

1 l 0.50 1.392 
4.33 1.00 1.580 

l ' 
0.50 1.425 .. 

1.50 1.00 1. 579 
0.50 t 1.562 

0.500 1t7 1.00 1.00 1.440 

1 l 
0.50 1.305 

2.33 1.00 1.461 
4.33 .. 1.465 

~ 0.50 1.386 

. 

1.000 4.33 1.00 1.00 1.254 

t ~ I 0.50 1.189 
T 

1.500 4.33 1.00 1.00 . 1.179 

+ ~ t 0.50 1.117 

2.000 4.33 1.00 1.00 1.132 

~ ~ I 0.50 1.097 
T 
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Table 2.4 Summary of Maximum Stress Concentration 
Factors for Singular Gusset Plate Geometries 

R L 
w T 
JE. _&E. SCF 

wf wf wf Tf 

0.0 0.33 1.00 1.00 6. 311 

0.67 I 8.469 

l 
... 

0.50 5.515 

1.00 1.00 10.058 

1. 67 l 12.226 

I 0.50 7.530 
'Y 

2.33 1.00 13.658 

4.33 l 14.786 

t • 0.50 9.032 

0.67 0.50 1.00 8.466 

1. 67 l 12.019 

"~' 4.33 "" 13.325 
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Table 2.5 Prediction of Maximum Stress Concentration 
Factors for Singular Gusset Plate Geometries 

L z SCF SCF -or-
wf Tf Table 2.4 Eq. 2.2 

0.33 6.311 6.365 

0.67 8.469 7.362 

1.00 10.058 7.926 

1.67 12.226 8.648 
·.:.: 

2.33 13.658 9.119 

4.33 14.786 11.719 

For all geometries in this table: 

R 
l~ T 

-= 0.0 _&E.= 1.00 _&E.= 1.00 
w£ wf Tf 
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Table 5.1 Decay Constants of Approximate Stress 
Concentration and Stress Gradient 
Correction Factor Curve Formulas 

Cover Gusset 
Constant Stiffener Plate Plate 

c 0.3546 0.1159 0.9623 

.. 
p 0.1543 0.3838 0.5077 

d 0.3602 .0.11~73 1.1579 

q 0.2487 0.4348 0.6051 
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Table 5.2 Comparison of Stress Gradient Corrections 
for Through and Circular Crack Shapes 

K t2 Assume --= 
SCF 

F /SCF 
Stress Distribution 

ga 

Through .Circular 

Uniform A=B=O 1.000 1.000 

~~iitti 
CJ) +--------.!-a ' 

~ 
., 

Linear 0.363 0.281 

5 1 

Parabolic ~4 0.329 0.251 
J 

I 

Parabolic 
~B=l 

0.227 0.162 
I 

I 2 
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1.000 

o. 774 

0.763 

o. 714 



Table 5.3 Summary of Correction Factors for 
Unified Stress Intensity Expressions 

for Stiffeners 

Correction Factor 

Front Free Surface, F 
s 

Crack Shape, F 
e 

Back Free Surface, Fw 

Stress Gradient, F 
g 

Expression 

(1- ~) ITERNl*COEFl+(l.122-

TERM1 *COEFl) *X I + : * 

TERN2*Y+(l.025-TERM2)*X 

[sec(n:)] 1/2 

1 
E(k) 

[ 
rra ]1/2 

sec(z-) 

as evaluated by the correlated 
stress decay from an elliptical 
hole in an infinite plate 
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Table 5.4 Summary of Correction Factors for 
Unified Stress Intensity Expressions 

for Cover Plates 

Correction Factor 

Front Free Surface, F 
s 

Crack Shape, F 
e 

' Back Free Surface, F 
w 

Stress Gradient, F 
g 

Expression 

( 1 - ~) ITERM1 *C?EF3+ ( 1.12 2 COEF2-

TERM1*COEF3)*X) + ~ * 

TERN2*Y+(l.025-TERM2)*X 
. 1/2 

[sec (TI2a )] 

1 
E(k) 

as evaluated by the correlated 
stress decay from an elliptical 
hole in an infinite plate 

-201-



TABLE 5.5 Summary of Correction Factors for 
Unified Stress Intensity Expressions 

foi Gusset Plates 

Correction Factor 

Front Free Surface, F 
s 

Crack Shape, F 
e 

Back Free Surface, F 
w 

Stress Gradient, F 
g 

Expression 

(r-f) ITERHl*COEF3+(Ll22coEF2-

TERMl*COEF3l*xJ + t * 

TER}0*Y+(l.380-TE&~3)*X 

r J 112 
Lsec(TT;) 

1 
E(k) 

r ~11'2 
Lsec(TT;)j · 

as evaluated by the correlated 
stress decay from an elliptical 
hole in an infinite plate 
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I 
N 
0 
w 
I 

Table 6.1 Cycle Life Comparisons for Sample Stiffener and Cover Plate Details 

Detail S -MPa T-mm Z-mm T -rom N * Unified N Other N r f cp act est est 

Stiffener 1.609 1.409 
Fillet-Welded (ai = • 076mm) (Eq. 6-4) 
to Flange 

127. 12.3 6.35 -- 1.346 1.195 1.389 
(ai = • 508mm) (Eq. 6-6) 

·(Ref. 20, 1. 390 2.226 
Series SGB,- ("i = .076mm) (Eq. 6-7) 
SBB) 1. 051cCF 

·-----·· 

Cruciform 2.158 2.954 
Fillet-Welded (a. = .125mm) (Eq. 6-4) 
Joint ~ 

100. 12.5 20.0 -- 1. 842 1.871 3.210 
(a. = • 500mm) 

~ 
(Eq. 6-6) 

(Ref. 27, Non- 1.865 0.979 
load-carrying ( ai •• .125mm) (a. = .125mm ) 
fillet weld) 1. 05*CF G~rney mean I 

* All cycle lives in millions 



I 
N 
0 
~ 
I 

Table 6.1 Cycle Life Comparisons for Sample Stiffener and Cover Plate Details 
(Cont.) 

Detail S -MPa T -mm Z-mm T -mm N * Unified N r f cp act est 

. Cover Plate 0.536 
\-lith Trans- (a.= .076mm) 
verse End 1 

Weld 
110. 9.98 6.35 14.0 0.356 0.444 

(a. = . 508nnn) 
1 

(Ref. 19, 

L 
0.353 

Series CWB- ( ai = .076mm) ewe) 
1.15*CF 

Other N 
est 

0.356 
(Eq. 6-9) 

0.567 
(Eq. 6-10) 

-·- --·· -------·-- ·-·--··-·-·-·-··-··· 

* All cycle lives in millions 



Table 6.2 Effect of Initial Crack Size on 
Cycle Life for Different Details 

a/Tf 
Life 

Detail 0.0076 0.0509. Ratio 

Stiffener 
Fillet-l-lelded 
to Flange 1.574* 1.106 0.703 
(Ref. 20, 
Series SGB-SBB) 

Cover Plate 
l-lith Transverse 
End Weld 0.536 0.444 0.828 
(Ref. 19, 
Series CWB-CWC) 

* All cycle lives in millions 
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I 
N 
0 

"' I 

Detail 

Ref. Desig. 

A 
12 

B 

33 -

A 
16 

B 

Table 6.3 Sample Groove-Welded Gusset Plate Geometries 

W-mm T-mm R-mm 1-mm w T -mm -mm f f gp gp 

156. 39.6 19.1 343. 305. 25.4 
---------- -----··---- ------ --------·--

178. 51.2 19.1 3l,3. 305. 25.4 

----- ------ --·· ··-------···--

170. 12.0 70.0 200. 50. 8.0 

--- ·r-------------- -··------·--·-

200. 20.0 20.0 240. 100. 20.0 

200. 20.0 20.0 440. 125. 20.0 



Table 6.4 Cycle Life Comparisons for Sample Gusset Plate Details 

Detail S -MPa N * Unified N 
Ref. Desig. r af-mm act est 

4.623 

A 60. 22.2 1.983 
(a. = ;076rmn) 

l. 

1. 983 
(a. = • 800mm) 

l. 

12 

3.655 

B 62. 9.5 2.015 
(a. = • 076mm) 

l. 

2.015 

I 
(a. = . 269mm) 

l. 

I 2.126 
.(a.=.076mm) I 

33 120. 
I 

67.0 0.798 l. - I 
I 
I 0.798 

(a. = . 503mm) 
l. 

0.466 
(a. = . 025mm) 

l. 

A 153. 95.0 0.407 0.293 
(a. = . 076mm) 

l. 

0.146 
(a. = • 508mm) 

l. 

16 

0.084 
(a. = • 025mm) 

l. 

B 253. 130.0 0.054 0.053 -
(a. = • 076mm) 

l. 

0.027 
(a. = . 508mm) 

l. 

* All cycle lives in millions 
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Fig. 1.1 Design Stress Range Curves for Detail Categories A to E21 
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I 

w w - I 

I 

a. Plate Under. Concentrated 
Loads (84) 

f Fixed End 

e 

w w 

LLLLW 

b. Fixed -Ended Plate Under 
Uniform Stress 

Fig. 2.1 Configureations for Quantifying Saint-Venant's Principle 
. ' 



Attachment 

Weld Toe 

"' .. : 

Direction Of 
Applied Stress 

Fig. 2.2 Flange Attachment with Transverse Fillet Weld 
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Mesh I >Mesh 2 >Mesh 3 

l · RELATIVE DISTANCE- ~f 
Singular Point 

1.0 

Fig. 2.3 Schematic Variation of Stress Concentration Factor 
with Distance through Flange Thickness· 

for Different Mesh Sizes 
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z 3.53 Tf 

Fillet Weld Flange 

a .. Section 

\Web <t ____ -r--= 

'-Point of Interest 

\Flange Tip 

b. Plan View 

Fig. 2.4 Detail Geometry for Transverse 
Stiffener Investigation 
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3D Coarse Mesh 
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Displacements 

20 Fine Mesh 

, 
Node 
Displacements 

20 Ultra Fine Mesh 

Element 
Stress 
Concentrations. 

Extrapolation 

, 

SCF 

Fig. 2.5 Stress Concentration Analysis Procedure 
for Stiffeners and Cover Plates 
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b. Plan View 

Fig. 2.6 Coarse Nesh for Transverse Stiffener Investigation 
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Prevented ( typ.) 

Fig. 2.7 Schematic Isometric of Coarse Mesh Boundary 
Conditions for Elements Adjacent to 
Web at Transverse Stiffener Detail 
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Fig. 2.8 Fine Mesh for Stiffener and Cover Plate Investigations 
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Interpolated 
Displacement 
( typ.) 

I A....--Displacement From Coarse 
~ Mesh Output ( typ.) · 
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L~ 
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-

I I 

Fig. 2.9 Displacement Input to Fine Hesh from Coarse Mesh Output 
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Fig. 2.10 Ultra Fine Mesh for Stiffener 
· and Cover Plate Investigations 
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Fig. 4.6 Fatigue Crack Growth from Gas Pore in 
Web-to-Tension Flange Fillet Weld 19 

Fig. 4.7 Fatigue Crack Growth from Termination of 
Longitudinal Cover Plate-to-Flange Fillet Weld 19 
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Fig. 4.8 

Fig. 4.9 

Fatigue Crack Growth at Termination of 
Stiffener-to-Web Fillet Weld 20 

Multiple Fatigue Crack Growth at Toe of 
Stiffener-to-Tension Flange Fillet Weld 20 
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Fig. 4.11 

Fig. 4.12 

Fatigue Crack Growth from Circular Transition 
of Groove-Welded Gusset Plate 12 

Fatigue Crack Growth from Fillet Weld Toe 
of Lap-I.Jelded Gusset Plate 12 
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