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ABSTRACT

Accurate prediction of the fatigue life of structural de-
tails primarily depends on knowledge of the range of stress intensity
factor during crack growth. Sttessrintensity, in turn, dgpehds on
.stress distribution, crack shape and léngth, énd3cfaﬁk ﬁip ﬁssition
in the detail. The main thrusﬁ of this dissertation is the determi—
pation of the stress concentration at typical weided detail termina-
tions and the evalua;ion of how this a1Fered stress distribution

affects stress intensity.

Both fillet- and groove-~welded details are studied. Thé
findings show that stiffeners welded to flanges have a ﬁaximum stress
concentration factor between three and four. Cover plates with
tfansverse end welds have a maximum concen;rétion factor,between.six

and eight. Gusset plates groove-welded to flange tips and possessing

circular transitions at their ends generally exhibit a maximum concen-

tration factor below three. Lap-welded gussets are similar to cover
plates which have a greater width than the flange. Longitudina1>
stiffeners with circular transitions are comparable to groove~welded

gussets with circular transitions. Longitudinal stiffeners and



groove-welded gussets without circular transitions -are roughly analo-

gous to stiffeners with the weld angle depending on taper.
\ _

The stress concentration distribution along theAprospéctive
crack path is translated into a stress intensity cofrection factor,
dependihg.on crack length, through use.of the Gfeen's Function pro-
posed by Albrecht. The resulting correctionAcurve for each geometry
is correlated with stress concentration facfor decay from either axis
end of an elliptical hole in an infinite plafe. Formulas for proper
.ellipsé shape and size are subsequently developéd whiéh depend upon
detaiivtype and specific values of geometric parameters, and permit
ﬁhe prediction of the stress_intensity correction for'arbitrary
geometries.

The interactions of,the.stress\distributi&n correction _ f
factor with the corrections for crack shape and free surfaces are
evaluated. New stress intensity expressions are devised which unify
the various corrections. These expressionsiare then used to predict
the fatigue lives of experimentally tested details. The life results
are typically on the high side of thg experimental findings élthough

well below the upper 95 percent confidence limit.

Several by-products of the stress concentration investiga-
tion are quite impéftant. Crack coalescence is considered for the
first time in the estimation of crack shape during growth. Also, it
seems cleér that the fatigue limits currently set in AASHTO should be

reexamined for several variable geometric parameters.

-2-



1. INTRODUCTION

1.1 Problem and Solution Approach

Fatigue failure of steel highway bridges has received much
research attention in the past decade for several reasons. First,
there has been a steady rise in vehicle frequency over the years and
gross weight has also increased, thereby'cauéing the remaining fatigue
life of many existing structures to be seriously questioned. Second,

welded details have become quite common in bridges and ones with a

'high'accumulation of stress cycles have shown fatigue distress.

Welded details are more susceptible to fatigue crack growth than are
riveted and bolted ones due to the nature of load transfer in a welded
joint and the fact that all welds have inherent, initial discontinui-

ties. Finally, spectacular fracture failures of the Point Pleasant

68

"Silver" Bridge in West Virginia®° and the King's Bridge in

Australia®? have focused interest on fracture's sister characteristic,

namely fatigue performance, as well as fracture itself.

' The 1974 Interim AASHTO Bridge Specifications® incorporate

the findings of two major research programslg,zo. Through extensive

testing, it was found that stress range, Sr’ and category of detail

are the parameters which are most influential on fatigue life. The
allowable stress range values in Table 1.1 (AASHTO Table 1.7.3B%) are
simply extracted'from the Fisher experimental Sr—N curves of

Fig. 1.1%'. These curves represent 95 percent confidenge 1imi§s (in

cycles) for 97.5 percent survival at a given stress range.

—3-.



Recent years have also seen great strides in the development
of techniques to analytically predict fatigue life. It was Paris who,
in considering only propagation, recognized that within limits fatigue

crack growth per cycle, da/dN¥, can be empirically related to stress

intensity factor, K, from linear fracture mechanics35, as follows®?:

(1-1)
where AK is the range of stress inteﬁsity factor and C and n afe based .
on materialtproperties. By rearranging Eq. l—l and integrating be-
twegn‘the initial and fiqal crack sizes:‘(ai ana af; feépe;tively),»thé
nﬁﬁber~of cycles, N, éan be predictedras:

a

1 £ 4 . N
=1 — da _
N—CJ‘ ~(/_\.K)n » (1-2)
a . .

i

If stress range is included in the expression, it takes on the fol-

lowing form: af

1 ' - - '
N={= —l—-—n da |S_ T - as 7R ‘ (1-3)
(AK/S ) r
a. r

1

A represents the paraméter which Fisher experimentally found chaﬁgéd
value fof different t&pes of details aﬁd therefore resulted in the
variéus category curves (Fig. 1.1)21; The slope of tﬁese log-log
curves, -n, is approximately constant at -3.0 for all categories??232,
C can be taken as constant for typiéal bridge steels (A36, A441,
A514)2%,32 Tpitial crack size, éi’ is known approximately for common

20,32

welded details and ac, being much larger than a,, is of little

-l



consequence. Thus, fatigue life prediction for crack propagation
squarely rests on the evaluation of the stress intensity factor range

for the detail.

The range of stress intensity factor is often expressed as

AK for a central through crack in an infinite plate under uniaxial

"stress, adjusted by numerous (superimposed) correction

factors?>39,52,65,

AK = CF*S_vma = F F F F_*S_V/ma (1-4)
T sweg r

.CF.is the combined correction factor as a function of crack length-

\

plate width ratio %-, crack shape fatio %-, and geometry: Fs is the
correction associated with a free surfaée at the crack origin (the
front free surface), Fw accounts for a free surface at some finite
length of crack growth (also called the back surface or finite width
correction), and Fe adjusts for shépe.of crack front (often assumed to
be elliptical with major semidiameter b and minor semidiameter a).
While in fracture problems stress intensity often includes'a‘plastié
zone correction factor, Fp, such is usually disregarded in.fatigue

analyses since small stress ranges and reversed yielding cause the.

crack tip plastic zome to be small (Art. 4.4)5%°%.

Fg is the.factor which accounts for either a nonuniform
applied stress (such as bending) or a stress éoncentration effected
by the detail geometry. This stress gradient should not be confused
with that which occurs at the crack tip, regardless of dpplied stress

field or detail geometry. Fg corrects for a more global condition

-5-



than exists at the crack tip. Yét, for stress concentration éitua~
tions Fg corrects for a more local conditionAthan thg'nominal stress
(strength of materials ty?e) at the detail. Whether the applied
stress is nonuniform or a stress concentration exists, Sr represents
an arbitrarily selected stress range (usually the nominal maximum
value at the detail). Therefore, Fg is inseparably linked to the

choice of S_.
r

Values of the various correction factors are dependent on
jthe'specific oyerall'geométry, crack shape,:and_distribhtionvoff
applied stress. Solutions for CF of hany idealized problemsAare

62,76,81,82

available However, practical bridge details present

distinct analytical difficulties -~ ﬁarticularly in evaluating Fg.
Cracks normally emaﬁate from wéld toesl_é’20 near which varying de-.
grees of stress concentration exist. “Féf some geometries the crack
quickly grows out of fhis concentration region; for other geometries
the effect of concentration is sustaiped over a broad range ofbcrack
sizes. Fillet-welded connectiéns have the added difficulty that
thgy present a thebretically singular stress condition (neglecting
yieiding) right at the weld toe. .Therefore,.Fg-has been impossible
to obtain in a closed-form fashion. Numerical techniques such as the
finite eélement (F.E.) method normally must be employed. In short,
existing solutions don't account for the geometric variables or con-
centratiop effects encountered in real life details. Yet, Fg is

considered of great importance in predicting fatigue failure of

20
bridges .




Based on Eq. 1-2 life prediction involves summing the cycle
lives for increments of crack growth. Fg as well as other correction
factors must be known for each increment. Two approaches are avail-—
able for determining Fg for varying crack.size; both involve finite
element analyses. The first, normally terﬁed a compliance analyéis,
necessitates analyzing the détail for different lengths of embedded
crack. The strain energy release rate, G, isifound as'a'function of

the slope of the compliance-crack length curve®“. Irwin showed that

there is.a direct relationship between G and the stress intensity

factor 3338

. -Thus, K can be found and compared, if desired, with
some base K for a specimen lacking the influence of a stress gradient

(i.e. Fg = 1.0). The ratio of the two stress intensity factors yields

Fg for the actual detail under investigation.

Method one can be very expensive ip terms of computer usage
and can easily require extensive personnel time to revise F.E. mesh
data for each crack length of each detail. Method one also presents
accuracy difficglties at very small and very lgrge crack defths.' For-~
tunately, a more reasonable alternative exists which requires only
one stress analysis for a given detail géometry.. Bueckner and Hayes
showed that G can be found from the stresses in the créck free body

which act on the plane where the crack is to exist!3»3!

. 'Irwin im~-

plied the same poiﬁt when he found G by considering the energy needed
to reclose a crack’®®. Based on this concept (often called superposi-
tion or difference state) it is possible to deécribe known stréss in—>

tensity solutions-for stresses or concentrated loads applied directly
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to crack surfaces as Green's Functions for loading remote from the

k82:81582  The stress or concentrated load is simply adjusted to

crac
suit the stress diétribution along that plane with the crack absent.
(A concentrated load is represented by étress applied to an incre-~
mental area. Through integration, numerical_or closed-form, any
stress distribution can be repreéented.) Depending on which Green's’
Function is usea,;Fg alone or avcombinatibn Qf'corFectiOn factors éan
be evaluated.

The versatility and-rela;?ve ease of method»two are
.app;rehﬁ. The only reqqireﬁeﬁt iS~thatntﬁéAcréck‘pétﬁ‘befknown.
Sincé actual te;té have ﬁrovided-inférmétiﬁn on crécﬁ pﬁfhs

(Art. 3.1)2%%»21522  pothod two is employed in the dissertation.

1.2 Objectives and Scope

The principal objeétive of this study is the deveiopment
of an Fg prediction for welded details common to-bridge structures.
The ébjective is reached in four steps. First, two- or three-
dimensional stress analyses, using finite elements, are made of-
details. with par;iculaf geometi’iesf The stress distribution and -
maximum stress concentrgtiqn factor, SCF, along the eventual crack
path are determined. Sécond; these distributions of stress are
transformed into distributions of Fg by application of an appropriate
Green's Function. Third, the Fg distributions are correlated with
stress decay curves for the end of an elliptical hole in an uni-

axially stressed, infinite plate. The ellipse size is based on the
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correlation. Finally, empirical formulas are developed to predict
the proper ellipse size (and therefore Fg) for arbitrary detail

geometries.

Three other objectives are paft of the investigation; each
ié affected by the local stress field found for the principal objec-
tive. First, correction factors o;her than Fg are modified for'the
presence of é nonuniform stress as well as.varying crack shape.

Next, unified stress intensity expressions are deVeloped for the
nonuniform.stress fields by the supérposition (of stresé inténsities)

procedureal’ez.

Lastly, the new stress intensity relationships are
~used to predict fatigue lives of several laboratory specimens and one

actual bridge structure.

In this.dissertation details are placed into two broad
categories - fillet-welded and groove-welded. Within the fillet-
welded category are cover plates and transvérse stiffeners. Both
are connected to flanges with fillet welds. The grqove—wélded cate-
gory contains gusset plates with circular tr&nsitions and groove-
welded to flange tips, and longitudinal stiffeners groove- or filiet—

welded to a web or flange.

Several important assumptions are made for all details.
 First, they are considered to be symmetrically positioned about the
beam/girder web. Second, the beam/girder is assumed to have a

small flange thickness-to-member depth ratio so that little nominal



stress gradient exists through the flange thickness. Thus, uniform

stress may be used as input in the analysis without significant error.
In actual bridge members the nominal shear stress in the flange is

small and is therefore neglected in this study.

An existing finite element computer program, SAP‘IVB, is
used for the stiess analysis. .The program is intended for linear
'elastic systems and does not provide special elements for stress
vsingularity‘;onditiohs. Nevertheless, sufficient elastic étress
acéufacy can be'attéined, even in regions of.high stress concentra-

" tion, through proper selection of mesh size,

1.3 Suﬁmary of Previous Work

>It has long been recognized that structural details oY any
sudden.changes-in'geometry produce a stress concentration effect.
Strength of materials.and elasticity texts abound with solutions
(closed-form and otherwise) to plates with holes and notches and
other configurations. Peterson summarizes the stress concentration
studies of particular importance in'machinery design and some strﬁq—

63

tural applications””. Many of these solutions resulted from photo-

elastic investigations.

Certain fillet-welded joiﬁts, particularly the lap type,
have also undergone photoelastic analysis for stress distribu-

tion!%>38:7%  Thege investigations indicated the influence of joint
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geometry on stress concentration for the particular joints involved.
However, no unified approach was developed to predict stress concentra-

tion in common bridge details, Further, the accuracy of the previous

results is somewhat questionable since the photoelasticity technique

is difficult to apply to regions of high stress gradient.

Fatigue strength of welded bridgé joints became a topic of
serious investigation in the latter part of the 1950's. The results
of many early experimental studies are summarized in Ref. 25. More
recent work expanded the inveétiga;ions expefihentally and, for thg
first time, employed frécture nechanics to explain fatigue behav-

iopl9:26,29;47

i Yet, reasonable estimates of,Fg were not available

and crude assumptions for K had to be made. Reliable prediction of

fatigue life was not really possible..

Accurate analysis of the influence of stress concentration
on stress intensity stems from Bowie's work on cracks emanating from‘
circular holes%l.l Since then good estimates of K have been deter-
mied for cracks growing from elliptical holes, rectanguiar cutouts;

and all sorts of notchesg’%>58>78:81

. With regard to fillet-welded
connections, Frank's work on cruciform joints marks an early inten—
sive effort to develop an expression for ngz. A similar study was

pursued by Hayes and Maddox shortly thereafter3°

. Unfortunately, the
numerical conclusions of these two investigations weren't in agree-

ment. Further, the accuracy of each was questionable at very small

crack sizes. Gurney later tried to resolve the differences and did
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succeed in producing eeveral helpful graphs involving the geometric
variables?’. However, no general formulas were developed and values
at very small crack sizes were left in doubt. Moreover, there was no
aséurance that graphs or expressions developed by any of the three

studies could be applied to other, more complex, fillet-welded bridge

details.

. The analytical approach .used Fo fin& Fé in Refs. 22, 27,
and 30 was that of a compliance analysis based on finite element dis-
creﬁizetion of tﬁe,joint. The Green's Function technique recently
ibeceme'populafiied by Kobeyashikz, Qho suceessfully-estiﬁeted'ﬁewie's

©2,82  Albrecht was apparently the first inves-

reeults, end othere
tigator eo have sought Fg for fillet-welded joints using a Green's
Function?. Yet, this reference only supplies the method of_solution,
not a range of solutions. Condensed expgessions for Fg for bridge
details, fillet-or groove-welded, simply don't exist. Heretofore,
accurate fatigue life prediction for bridge details, without finite

element or other refined stress investigation of each one, has not-

been possible.

Other correction factors for stress intensity have often
relied on known solutions for uniform stress applied to the

crack??,8?

. Tada and Irwin have reviewed the variability of the
correction values with crack shape and stress distribution®?. These

authors have also suggested development of overall stress intensity

factors by adding the K factors associated with the uniform and
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variable portions of the stress field. Given this superposition ap-
proach, it is possible to make a more fealistic appraisal of stress
intensity for any detail where the local uncracked stress distribu-
tion is known. General correction factor expressions are also pos-

sible for each detail type.

Past estimates of fatigue lives of welded details have
usually had less than acceptable accuracy - particularly for cover-

plated detailszo’27.

Since the range of stress-intensity is normally
cubed in Eq. l—Z (i.e. n=3), small errors in correction factors
_cause large changeé‘in cycle life. Occasionally the.errbfs are self-
.compensating and the results appear reasonable for tertéin details,
-but not for others. The lack of aéreemént between analytical and
observed lives has led some investigators to suggest an initiation

27,5370 1t is therefore important to

phase in the fatigue process
demonstrate the degree of accuracy attained by using the new correc—

tion factor expressions and considering only crack propagation.
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2, STRESS CONCENTRATION - SCF

It is well known that stress concentration plays a signifi-
cant role in distinguishing the details of the various AASHTO

fatigue categoriesa’zo. Fatigue cracks tend to propagate from geo-

. . . 20,64 ,85 .
metrical stress raiser regions™ >  ’. " as well as locations where

initial discontinuities exist. Any condition which raises the stress
intensity K, increases the likelihood of crack growth. Since welded

detail terminations usually combine high stress with weld disconti-

‘nuities, cracks should form there first. This prediction'has been

20

borne out in actual tests'®? and has resulted in detail termina-~

tions being classified with greatest severity?®’?!;

Correction factor Fg incorporates the influence of stress
gradient or stress concentratioh‘in the stress intenéity expression
(Eq. 1-4). Fg is based upon the stress concentration distribﬁtion
along the path where the crack eventually prapagates (Art. 3.2).
Therefore, the stress concentration, Kt’ at any point in the un-
cracked section must be determined by some method in order to esti;
mafe Fg' The finite element technique is employed in this study.
Of special interest is the stress concentration factor, SCF, at the
crack origin. Usually SCF represents the maximuﬁ value of Kt and F

(Art. 3.2).

Most texts define stress concentration factor as the actual

stress at a point in a given direction divided by the nominal stress
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at the same point and in the same direction®3,8%,71,85 1, many in-

stances the nominal stress results from taking the total force on the
section containing the point and dividing by the section's area.
Hence, the nominal stress is that found by strength of materials
formulas. |

Several modifications of the stress concentration factor
definition are warranted for general fatigue studies. First, the
critical st;ess at a point is in a direétion perpendicular to the
crack path (opening mode-Mode I®?) and may or may not be in the same
direction as the nomiﬁal stress (Art. .3.1). The details investigated
in this study are attached to a beam/girder flange; nominal stress is
‘taken as parallel to the'fiangé'centerline. Second,jrlthe event that
the crack path is not perpendicular to the flange, the nominal stress
is still assumed to be.defined by the:cfdss—sectional flange area and
not the actual érea along the crack path. This also implies the
locations of the two stresses are hotrnecessarily identical since a
wandering crack path might lead to a region whére the perpendicular
cross-section includes the attachment along with the flange.
Finally, even in cases where»moré than one kind of stress is input to
the detail (such as a load directly on the attachment), the nominal
stress is that which is in the flange, parallel to the lengtﬁ; and
caused by forces in the.girder alone. These qualifications of the
stress concentration simplify the application of Eq. 1-4. Stress
range, Sr’ is always the nominal vélue and does not require any

abnormal calculations (e.g. Mohr's circle) for its determinatiom.
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The nominal stress or stress range is assumed to'be uni-
form across the flange width and through its thickness. This is rea—
sonable fqr relatively deep members with ﬁypical flange widths and
no torsion. 1In order to perform a stress analysis on a given detail
the nominal stress must be input at some distahce from the defaii's
extremity. (The strength of materials generalized stress — moment
is assumed constant over this length.) It is.desirable to go far

enough away from the detail to eliminate stress gradient conditions

and yet remain as close as possible to restrict the dimension of the

finite element stiffness matrix.

The question is, "How far is far enough?" ' This query is
obviously an attempt to quantify Saint-Venant's Principle. Some

guidance is provided by Ref. 84 where the problem shown in Fig. 2.1la

"is considered. With concentrated loading it can be shown that the

stress in the plate becomes uniform.at a distance, e, equal to about

‘2w from either end. However, the concentrated load situation is not

representative of structural details. One is more interested in the -
configuration in Fig. 2.1b and the distance from the fixed end be&ond
which uniform stress exists. A dissertation pilot study of this pro-
blem using finite elements has shown that e should be tgken as

roughly 2.5w.

The assumptions of other investigators provide useful com-

parison with the above distances. Gurney studied symmetrical cruci-
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form joints and used a distance of 2.4w(w represents half of the plate

thickness in lieu of'width) from the weld toe for uniform stress in-

27

put®’. Frank also investigated cruciform joints but chose e to be 6w?2

Frank's value appears larger than necessary but nevertheless safe.

Structural details present a problem in determining dimen-
sion w. By definition Saint-Venant's Principle applies to both
linear dimensions of the'surface on which the stresses are changed.

'But in the case of details there is a,predomiﬁant change in sfress
pétﬁern along one dimension'rather than in both diréétions at.énce.'
- Hence, for details fillet-welded to flange surfaces the dimension of
interest is the flange thickness while for details groove-welded to
flange tips the flange width isiimportant. The aétual value of w
depends on whether the detail is symmetr;cal with respect to-a plane
perpendicular to the direction of interest - the one with the major
stress gradient. Fillet-welded details are usually one-sided and can
Be envisioned as one-half of a symmetrical configuration. Dimension
w is then the flange thickness. On the_other hand, for two-sided,
groove-welded gusset plates attached to fiange tips w is equated to

one-half of the flange width.

Details which are not symmetricalvinducg flange bending.
Therefore, the bending graaient may extend the region of nonuniform
stress.beyond 2.4w or 2.5w. However, the cover plate studies of
Ref. 59 show this is not a necessary worry. Only four percent error

in predicted versus measured stress was found 50 mm from the cover
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plate end or 34 mm from the weld toe. Since the flange thickness was

14.5 mm, the value of e was 2.34w.

In general, attachments and the welds connecting them to
flanges do not present the uncompromiéing, fixed end condition shown
in Fig. 2.1b. Poisson type merment occurs in the flange at.the
attachment termination; the amount of such movement depends on the
attachment geometry. Dimeﬁsion e decreases as more movement is per-
mitted or, put differently, the attachment is leés néticeable. Stiff-
Téﬁefs May have a émailef distance than coVer'piateé.A:The_véiue'ofv
e'edﬁal to 2.4w appears reasonable when modéling details, but

slightly smaller values may also be acéeptable.

One ramification of the e distance evaluation is that it
acts as a guide fof placing of strain éaéés for experimental pur-
poses. If the experimenter Wénfs to avpid‘stress.concentration éf—
fects near a welded detail, he should place the gage(s) atileast 2.4w

away from the detail termination.

Finite element stress analyses require assumptions on
material properties. In all subsequent work the material is con-—-
sidered to be linear, isotropic, and homogeneous — including even

the weld region. Young's modulus, E,.is taken as 204,000 MPa.

Poisson's ratio, v, is set at 0.30.
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2.1 Fillet-Welded Details

Figure 2.2 describes the type of fillet-welded detail of.
major interest in this disse;tation.: Attachments of various types
are commonly connected‘to flanges of beams or girders with trans-
verse fillet welds. The welds themselves are idealized as having
a flat uﬁper surfaceﬂﬁhich meets the flange-surface>at én angle of

m/4. The applied stress is assumed to be in the flange only.

Several references make a distinction between load-carrying

and non-load-carrying joints when no longitudinal welds exist22:27,

The weld in Fig. 2.2 would be classified as non-load-carrying since

" the plate with the applied stress is continuous through the joint.
However, the degree with which a joint is load-carrying must depend '
on the attachment involved. ReferenééSHQZ énd 27 treat cruciform
joints where the attachments are all stiffener-like (i.e. short
dimension in the direction of applied stress). On the other hand,
cover plates, with large diménsion in the direction of applied
stress, are certainly load—cérrying (Art. 2.1.2.2). Thus, classi-
fication as load-carrying and non-load carryiné is somewhat mis-

leading for the general detail.

Research has shown that the critical location for fatigue
crack growth at the detail shown in Fig. 2.2 is the weld toe2?222:25

(The weld root may also be a potential crack origin if the joint

'is load-carrying in the sense of a discontinuous flange or when a
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small end weld is used27.)

The idealized sharp geométry change at the
weld toe means that elastic stress and stress concentration factor
theoretically rise to infinity. This féct can be verified by first
assuming thére is curvature to the weld surface:right at the toe.
Peterson has shown that concentration increases more and more rapidly
as.thé radius of curvature decreases®?. Therefore, the weld toe of

the idealized geometry represents a point of singular (elastic)

stress conditon.

Chapter 1 noted thatASAP.IV? the.finite element computer
program used for the analysis work, is only intended for élééﬁic
systemse. Hence, points of stress singularity présent a special
problem in determining the necessary mesh size. With decreasing size
the concentration factor at the toe (based onAsome sort.of an extra-—.
polation of adjacent elemeﬁt values) éoﬁéinually rises toward infin—
it&. Thereforé, comparison of hypothetical stress concentration
factors of various researchers is generally impossible due to varying

mesh sizes. This is true whether the results stem from a compliance

or a Green's Function approach to a stress intensity solution.

Fortunately, when considering fatigue crack propagation one
always begins with an initial crack size. Therefore,-what happens
right at the weld toe is not important. SCF is merely a point to
begin the Fg decay curve. The analyst is really only coﬁcefned about

the accuracy of Fg at and beyond the initial crack length, a.
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Fg does depend on stress concentration at lengths smaller than the

initial crack depth (Art. 3.2), but the Kt decay curve tends to vary
less as the mesh size becomes progressively smaller. Such is the
case even though SCF (i.e. Kt at the weld toe) rises more rapidly

with decreasing size.

Figure 2.3 indicates the schematic trend observed in the

Kt curve with changing mesh size. There are two ways to view this.
plot. First, each individdal curve represents an equilibrium condi-
tidﬁ Qitﬁ balanéed areas on either sidejof 1.0. Second, two curveé
taken together are in equilibrium with each other; they cross once
and again have equal areas on opposite sides. However, the key fact
for mesh size discussioﬁs is that curve 3 is closer to curve 2 ﬁhan
curve 2 is to curve 1. Furthermore, the position at which' the curves
ﬁerge moves pfogressively closer to the singular point as the mesh

size decreases. ’

Based on the above obsérvatipns and to ensure'reasonable
accuracy in Fg at the initial crack size, the mesh size in the
vicinity of the'weld,toé shogld not exceed ai. .HOWever,bdifficulty_
arises when the results of a study are related to nondimensional
geometry. Under those conditions initial Frack size is nondimen-
sionalized by flange thickness - the dimensiqn in the direction of
crack growth27. A larger flange thickness, then, implies a larger

initial crack size. Yet, current evidence does not support this
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_ideé7“; iﬁitial crack size does not vary with flange thickness.
Hence, a dilemma exists. The mesh size in the actual study may be
comparable to initial crack size, but noﬁdimensionalized results mean
the mesh size would have to be changed proportionally'to reach the
same results for a different absolute geometry. If the initial créck
size doesn't change too, the principle of feiéting mesh and initial

crack sizes is not observed.

A reasonable compromise on the mesh size problem is ;o se~
~lect an actual flangé thiéknéss for the spudy which is'negr the aver-
age of real beams/girders. The mesh size is then related to initial
crack size as sfated. Results are approximately applicable for some-

what larger and smaller flange thicknesses.

One other point about the idealized joint geometry in
Fig. 2.2 concerns weld penetration at the root. Obviously, no pene-
tration is shown although under and over penetration are both clearly

14,25 Frank found that over penetration would have a -

possible
worsening effect onAthe stress intensity at a stiffener (mon-load-
carrying) type of jointzz. Somewhat conversely, Cherry noted litgle
variance in $stiffener weld toe stress concentraton due.to penetration
pfovided the stiffeners are not abnormally thick!*. 1In anj case, the-
"effect for typical weld sizes should not be great. Moreover, since
éver penetration tends to have the same effect as increasing the weld

leg, one might expect the trend to reverse itself for longer attach-

ments like cover plates (Art. 2.1.2.2).
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2.1.1 Transverse Stiffeners Fillet-Welded to Flanges

2.1.1.1 Geometry and Modeling

The discussion on joint terminology (load-carrying versus
non-load-carrying) indicated that length of attachment in the di-~
rection of applied stress is an important parametérZO; In‘fact,
current categories in AASHTO are largely based on detail 1éngth3’21.
Transverse stiffeners obviously fall at the short end of the spec-
trum of length values. The length of the stifféner'iskaétually,its
'thickness;Ts, which typically.equates to ‘about one—quértef éf the

£

it can be treated as though it were zero.. (The stiffener height is

flange thickness, T_. Since this attachment dimension is quite small

unimportant in any case.) In this study, the transverse stiffener
investigation centers on the effect of back-to-back fillet welds on
a flange surface. The only length involved is that of two fillet

weld legs, 2Z.

Figure 2.4 shows the detail geometry (one-quarter of it) to
be used for the transverse stiffener investigation. The detail is
assumed to exist on both sides of the beam/girder web which, theré—
fore, marks a plane of symmetry. Based on the aﬁove assumption of
zero stiffener thickness, the back surface of the fillet weld also.
represents a plane of symmetry. The flange width is seen to be over
eight fimes the flange thickness but well within an expected limit on

aspect ratio®. The distance from the weld toe to the point of uni-
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form stress input is over fhree times the fiange thickness and well
beyon& the requiremént of 2.4 stated earlier. Stiffener cope.ié
neglected in the modeling with the assurance that the reéults without
tﬂe cope are upper bound.(See later discussion Art. 2.111.1 and Arts.

2.1.2.2 and 2.1.3.2.)

The variable under study in Fig. 2.4 is the weld leg, Z.
Due to the typical stiffener size and Provision 1.7.2b in the AASHTO

Code*, Z can be expected to range between 0.25T_. and 1.00T

f £

2.1 lists the three specific values of Z selected for this study;.

Table

they are 0.3205T,,-0.6410T,, and 0.9615T . A stress concentration

£’ f
analysis is required for each value. The actual flange thickness

used in the analysis work is 19.812 mm.

Figure 2.4 emphasizes that the stiffener problem is beiﬁg,
treated as.three—dimensional. The procedure used is the finite ele-
ment stress concentration analysis diagramed in Fig. 2.5. First,
uniform stress is input to a coarse, thrée—diméﬁsiqnal mesh thch
makes use of the eight-node brick element of the SAP IV library?.
Next, a two-dimensional fine mesh analysis of the weld region is
made with planar elements and displacement input from the coarse mesh
results. Then, a two-dimensional, ultra fine meshvanélysis is
carried out for the local weld toe area. The elements are égain_the
planar type and displacement input stems from the fine mesh output.
Finally, the element stress concentrationAfactors from the ultra fine
lmesh are e#trapoiated to give a hypothetical maximum value;.SCF, fight

at the weld toe.
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This incremental analysis procedure has two distinct ad-

vantages. First, no one finite element problem becomes so large that
costs are prohibitive or computer limitations are exceeded. Planar
elements are normally chgaper to use than three-~-dimensional onés so
it is important to reduce the problem in dimensions as soon as pos--
sible. Two planar meshes are employed at the weld toe region since
the combined cost is less than that for one, extensive, very fine
mesh. (The synergiém effect exhibited by the one,‘extensive mesh can
bé attribgted to a muqh_lgrge bandwidth and many more blocks of equa-
“tions to be moved in and out of the cbﬁpﬁter core.) Second, the

fine and ultra fine meshes are usable for problems where the overall -
geometry varies, but the local weld geometry is constant. In fact,
the two finer meshes can be employed even if the coarse mesh is two-

rather than three~dimensional.

Figures 2.6 and 2.7 show the coarse mesh used for.the
transverse stiffenef investigation. Figure 2.6 gives the mesh sizes
and demonstrates how the different weld leg dimensions are treatéd;
The dashed lines indicate another plane of elements are merely added
to accommodate the increasing Z. Other parts of the mesh remain un-
changed. Figure 2.7 presents a key sampling of boundary conditions
imposed on the coarse mesh. Displacements at and perﬁendicular to
planes of symmetry are invariably prevented. Vertical displacement
is prevented where the web meets the flange, and wherever the fillet

weld meets the web and stiffener surfaces.v Thus, both the stiffener
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and the web are considered to inhibit movement of the detail perpen-

dicular to the flange surface.

In order to make the transition between three- and two-
dimensional meshes (Fig. 2.5), it is necessary to select a vertical
section in Fig. 2.6 for further investigation. Both fine and ultra
fine mesh results invariablé show that weld toe stress concentration
decreases slightly as section moves away from‘the web. Fbr examble,
the stress concentration.féctor extrapolated from the fine mesh
_ﬂ?gsults for Z/Tf_equal to 0.3205'dropp¢d from 2.726 at the er line
to 2.586 one node line away (0;6410Tftin Fig. 2.6). Ektrabolétéd fine
mesh results for Z/Tf equal to 0.9615 dropped from 3.515 to 3.464
over the same.distance. This trend agrees with that of Albrecht® and
can be explained on the basis of less bending effect. (ﬁehding due
to lack of joint symmetry reduces thehsﬁfess concentration at the
weld toe. However, the amount of bending is small since the stiff-
ener causes little interruption of stress flow in the flange.)
Thereforé, the vertical plane to be treated two-dimensionally is

taken as the one on the web line.

Figures 2.8 and 2.9 address the fine mesh common‘to both
the stiffener‘and cover plate investigations. The heavy lines in
Fig. 2.8 denote the outline of the coarse mesh elements. These
borders have been incorporated in the fine mesh. This mesh shows

its finest gradation in the region of the weld toe. Figure 2.9
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indicates the input to the fine mesh is based on the displacement

output of the coarse mesh, (Stress output could'ﬂave also been
used.) Displacements in the direction of applied stress are most im—
portant, Therefore, such displacements at new nodes (nbt part of the
coarse mesh) Qn opposing sides of the fine mesh.are found by lingar
interpolation of displacements at old nodes. (Linear intérpolation
is reasonabie since the displacements involved are close in numerical
value.) Displacements perpendiqular to the applied stress are less
important; thus,. only a few vertical values from the coarse mesh out-
H ) 7
put are'ingluded..,Ihé described set.of'coarse mesh displacements,
when. imposed on the original plane of three—dimensidnai elemeﬁts, are
found to generate essentially the same stresses as found in'the_aﬁ—_

tual coarse output. Displacements-Out—of—plane»have little effect

on element stresses in the direction of applied stress.

The question naturally arises as_to whether the pianar ele-
ments of the finer meshes should be assumed to have‘a plane stress
or plane strain elasticity matrix. Many researchers have usgd plane
strain elementsz’27; indeed, Sih has shown that plain strain condi-
tions usually exist when a crack is present75. Without the.créck the
decision on plane stress or strain for the detail as a.whole rests
primarily on the attachment geometry. However, by first solving the
three-dimensional problem, the attachment is properly takeﬁ into ac-

count. Displacement input to the fine mesh should be reasonably cor-

rect regardless of the approximate planar conditions.
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Some idea of the difference between plane stress and plane
strain can be estimated by rough approximation of the two elasticity

matrices®?®

. Assuming all strainsperpendicular to the direction of
applied stress are small and can be neglected, the stress, ¢, and

strain, €, in the direction of applied stress are defined as:

Plane Stress:

g = 57 * € A (2-1a)

Plane Strain:

E (1-v)
(1+v) (1-2v)

o= " (2-1b)

Since only displacements are input tovthg finer meshes.tﬁé strains in
Egqs. 2-la and 2-1b can be taken as equal. Assuming'Poisson's ratio
ito_ be 0.3,the ratio of plane stress to plane strain stress in a given
element would be 0.816.‘ Actual comparison runs for éover'piate de-
tails have yielded a ratio of 0.900 (Art. 2.1.2.2). This ratio only
applies to the results of the ultra fine mesh- since displ§cements
(which are about équal for the plane stress and strain cases), not
stresses, are taken from the fine mesh output. (There is essentially

no accumulation of error.) The high ratio means that the decision on

plane stress or strain is not overly important.

Nevertheless, a dissertation pilot study was undertaken to

reveal which assumption gave closest agreement with the "correct" value.
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This "correct" value wés found by solving a three-dimensional mesh of
fineness equal to the fwo—dimensional mesh and with all interpolated
displacements from the coarse mesh imposed. As might be expectéd the
"correct" value fell between the plane stress and plane stfaiﬁ re-
sults (lower and higher, respectively). The "correct" value was

closer to the plane stress result than that of the plane strain

analysis. Thus, plane stress is assumed for both finer meshes.
(Note that the selection of element thickness is unimportant as long

as the same assumption is made for all elements of a given mesh.) -

Figures 2.10 and 2.11 shéw the ultrafiﬁé meshand'positions
of imposed boundary displacement derived from the fine mesh oufput.
Again, displacements at new nodes aqd in the direction of applied
stress are found by linear interpolation. (Here, linear interpola-
tion is réasonablelsince the nodeé with known displacement are nu-
merous and close together.) It is appafent that the smallest mesh
dimension - right at the weid toe - is 0.00lBTf.. For an assumgd Tf
of 19.812 mm the absolute size of mesh is 0.0258 ﬁm. This dimension
is near the minimum initial crack (flaw) size for fillet weld

t08520,7l+,86.

Since the average initial crack size is about 0.075
mm, the flange thickness could increase to 60 mm and still yield rea-

sonable accuracy in Fg during the early stages of crack growth

(Art. 2.1).

The fourth and final step of the analysis procedure (Fig.

2.5) is the extrapolation of the stress concentration results of the

-29-



ultra fine mesh to give SCF at the weld toe. Several extrapolation
schemes are possible. Gurney has made a line fit of the butput of

elements adjacent to the flange surface?’ while Fisher employed a

surface fit for the output of elements in both directions away from

the weld toe?’. However, in this study extrapolation of values along

"the prospective crack path is used. Article 3.1 concludes that the

path can be assumed to rum vertical from the weld toe down through
the section. Hence, extrapolation involves averaging the element

output on either side of the assumed path and fitting a polynomial

(4th order) through the points. Due to boundary irregularities the

bottom two points from the ultra fine mesh (Fig. 2.10) are neglected.

2.1.1.2 Results

Figure 2.12 presents a typical:examﬁle of stress concentra-
tion factor variation along the prospecfive crack path. Since this
crack path is perpendicular to the direction of.applied stress, the
concentration factors are‘for stresses in the same diréction. The
variation curve is plotted with respect to relative distance from the
weld toe. )

Figures 2.12 reinforces several points of discussion.
First, the stiffener does indeed cause little disruption of the
stress flow in the flange. Only five percent of the flange thickness
exhibits a éizeable increase in stress for this parﬁicular weld ggo;

metry. Second, the fine and ultra fine meshes compare in the same

manner as meshes two and three in Fig. 2.3. Finally, equilibrium is.
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satisfied since the concentration decay curve passes below 1.0. The
equilibrium is not necessarily precise since the problem originated
as a three-dimensional one and the force per unit width of flange

along the weld toe is not exactly constant.

The.maximﬁm stress concentration'factors, SCF, for the
stiffeners are tabulated in Table 2.lAand plotted in Fig. 2.13.
Obviously, the trend is increasing SCF at a decreasing fate; This is
precisely the same trend predicted by_Curney for non—-load-carrying
-filiet welds at cruciform joint§27. -The Vériation.of SCF.déeé.notv

agree with Ref. 20. Exactly the opposite trend is predicted'tﬁefe.'.

The conflict with Ref. 20 can be explained on the basis of‘
mesh size. In Ref. 20 the weld leg aqd mesh around the weld toe were
maintained at a constant absolute size while the flange ﬁhickness var-
ied. To obtain comparable accuracy at singuiar details, the mesh size
must be in a constant proportion to flangevthickness. ﬁenéé, the
absolute mesh size changes. Due to the constant absolute size main-
tained in Ref. 20, accuracy increases with flahge thickness. Thgre~
fore, higher SCF are expected and, indeed, found at 1argerlf1ange
thicknesses, which result in lower values of Z/Tf. This trend is

definitely misleading.

The maximum stress concentration factor can be related to

the variable Z/Tf by the following least squares curve fit:

SCF = 1.621 log (TZ——>+ 3.963- (2-2)
£ _ .

-31-



The standard error of estimate, s, for Eq. 2-2 is negligible at
0.0019.

The thickness (length) of stiffener has been éssumed to be
zero for the development of Eq. 2-2. The cover pla£é study described
later shows that the increase of SCF with length is-most fapid_at the
smaller length magnitudes (Art. 2.1.2.2). The average for the studied
rénge of weld sizes is a 13 peréent increase in SCF for L/Tf varying
from 0 to 1. Since the constant of Eq. 2-2 glearly dominates the
res#lt for typical weld sizes, one can estimate SCF aﬁ finite stiff-

ener thicknesses,,Ts, as follows:

N\ 2.\ |

SCF = 1.621 log<_—> + 3.963 {1+0.13 __s_/ 4 o (2-3)

T T
f \ . f

Typically SCF from Eq. 2-3 is less than five percent greater than SCF

from Eq. 2-2.

One final observation on the stiffener detail reflecté the
aegree of importance associated with the three—dimensional ;oarse mesh.
Z/Tf equal to 0.6410 has also been solved with a two-dimensional
‘plane stress coarse mesh (other meshes remaining the same). SCF
turned out to be 3.998 rather than 3.651,v (Note that use of plane
strain rather than plane stress in the coarse mesh would have led to
an SCF below 3.998 unless the finer meshes also used plane strain ele-
ments.) This is understandable since the two—dimensional coarsé mesh
had the same boundary conditions as along the web (Fig. 2.7). .Thus,

no bending effects, due to lack of joint symmetry, were introduced.

-32-



(Bending is also absent in cruciform joints.) Since bending tends to

reduce stress concentration aé the weld toe, the two-dimensional
coarse mesh provides an upper_bound for real stiffener details. The
difference with actual values is on the order of ten percent. The
closeness of the values leads to the cpnclusion that stifféner results
~can be reasonably compared with those of non—load—carfying cfuciférm.

22,27,30

joints Also, use of a two-dimensional coarse mesh to repre-

sent stiffener details is acceptablez.

-2.1.2 Cover Plates With Transverse End Welds

2.1.2.1 Geometry and Modeling

Figure 2.14 shows one-quarter of the detail geometry to be
used for the cover plate investigation. “Similar to thé stiffener
case, thevweb'and midlength of covef plate mark planes of symﬁetry.
The flange width is also the same as‘that used for the stiffener
investigation. The cover plate is assumed to be smaller in width;
ch, than the flange. Hence, the fillet always ha§ one leg on thg
flange surface and the other on the side of the cover plate. The

length of cover plate is set at over 2.chp (Art. 2.1.2.2).

Two variables are under study. The first is the weld leg,
2, which assumes the same specific values used for the stiffener de-

tail. The second variable is the cover plate thickness, TC . Pro-

y

vision 1.7.67 in the AASHTO Code limits Tcp to a maximum of 2Tf
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Therefore, three values of Tcp are selected to cover the permissible

range; they are 0.6410Tf, 1.4360Tf, and 2.000Tf. The gorresponding
values of Z and TCp for a particular case are listed in Table 2.1.
" In all, five different cases are investigated. The actual flange

thickness used is again 19.812 mm.

The same stepped analysis procedure is ﬁsed for the cover
plate details as was used for the stiffener'details (Fig. 2.5). 1In
fact, the very same fine and ultra fine meshes are employed (Figs.
2.8 and 2.10, respectively). Only the coarse nesh needs.to;éhange
and the one devised is shown in Fig. 2.15; Like the gfiffenéf‘de—
tail the cover piate is initially treated three-dimensionally. The
elements are all the solid, eight-node bfickltype of the SAP v

librarye.

Special explanation of Fig. 2.15 is required regarding the
treatment of the weld. Unlike the stiffener‘coarse mesh (Fig. 2.6)
the total length of the detail is always constant. When the weld
leg size is changed extra elements are merely added (dashed lines).
Among other things this addition pushes the weld toe closer to the
point of uniform stress input. However, at the maximum size the toe
is still about 2.9T_ from the stress input end.- This dimension is

f
well beyond the 2.4’1‘f or 2.5Tf required.

The cover plate thickness is always as great as the weld

leg size. Based on the TCp selected, at least two layers of elements
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-are always necessary. As the weld leg is increased the number of C

layers in the cover plate is increased. The maximum nuﬁber of la?ers
(4) occurs for the one case at a weld leg size of 0.9615Tf-. Chang-~
ing the number of element layers in the cover pléte is assumed to
have a negligible effect on stress concentration cdnditidns at the

weld toe.

A change in weld leg size also affects the flange_dié—
cretization aléng the longitudinal.side of the coye:‘plate..‘For the
',h éma1iest wela leg the line between the two'da$hed.1inés ié:the'ﬁéﬁnd;

o afy.:betweeﬁ‘ eiement rovs. However, forzﬁhe‘nexg.iafge% vél;é.of z,
The solid line position is replaced by the inner (closestﬁo the webj
dashed line. The largest Z requireé the addition of a sécond dashed
line nearer the flange tip. These modifications to the flange dis-—
cretiza;ion afe of little concern when comparisons between results
are made. By.Saint—Venant's Principle, ﬁodifications well removed
from the section of interest should haye no éffect on the behavior
theré;”While the variation of stress concentration along the trans—
vefse weld toe of a cover plate is greater than for a stiffener,

the maximum still exists over the web (Art. 2.1.2.2).

One last remark regarding the discretization concerns the
weld elements at the corner of the cover plate. Figure 2;16 shows
a séhematic isometric of the "corner weld" asvdiscretized for the
.smallest weld leg. Notice that angles of 7/4 are maintained én the

exposed sides which are coplanar with the transverse and longitu-
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dinal fillet welds. This shape is, of course, a rough assumption,"
but it is not too important when a transverse end weld exists. (As
stated above, the section of interest is well removed from the cor-

ner position.) Only six nodes are given in the isometric, implying

that two nodes act in a dual capacity to reach the eight total.

Figure 2.17 presents an isometric of the boundary condi-
tions associated with the coarse mesh (Fig. 2.15). Like the gtiff-
ener coarse mesh boundary conditions'(Figw_2.7), displacements
pe:pendicular to planes of symmetry are>inv#riab1y’preven;gd. -How-
.eéé;, two differenées beﬁween Figs. 2.7 and 2fi7:6céhf in the case
of vertical displacements. First, a difference is observed along
the web line where, due to a change in the actual rglative posi~-
tions of the attachment and web, vert%ca% displacement in Figs. 2.17
is prevented along the bottom nodes of the flange as shown. This
change in position was found to have little effect on the final re~
sults although it 1s more realistic. Second, no vertical displace- "
ment is prevented on the other plane of symmetry since the cover
plate and flange undergo considerablé ﬁending and displacement per-
pendicular to the flange surface due to lack of joint symmetry per~
pendicular to the flange plane. Such movement is not inhibited ex-

cept along the web line.
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2.1.2.2 Results

The selection of length for the cover plate geometries
(Fig. 2.14) is worthy of amplified discussion. Actual cover plates
obviously represent the upper bound of attachment length mentioned in
Art. 2.1.1.1. Research has shown that stress concentratioﬁ aﬁd? con-
sequently, detail severity increase Qith attaehment length in the
directien of applied stress??. Fortunately, additionel length incre-
ments are expected to have a diminishihg effect until a stress con-
cenpfation.plateeu isjfinally reached??. Thus, it is not neeessary.
_torievestigate a_deteil with extfemely,ioﬁg attachﬁene length in

- order to properly represent a cover plate. The question is, "How

long is long enough?" | _ y

Tﬁe results of a pilot study on attachment iength are given
in Fig..2.18. Here,ithe variation of maximum stress concentration
factor, SCf' (as extrapolated from output of tBe fine mesh -~ not
ultra fine mesh), is plotted against nondimensionalized cover plate
length, L/WCP. The trends shown are expected to be representative of
both fine mesh and ultra.fine‘mesh extrapolatiohs; only the actual

magnitudes of concentration change, not the relative magnitudes.

The starting point of each curve in Fig. 2.18 is the zero
length attachment where only the end fillet welds are present. This
position is comparable to the assumed stiffener condition although

the boundary conditions of Fig. 2.17 are not exactly the same as in
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Fig. 2.7. The curves rise at a decreasing rate ﬁntil a plateau is
reached in the neighborhood of L = 2.5wcp. Any length above this
value can be expected to give an adequate representation of a real
life cover plate. Fig. 2.14 shows a slightly longer length was, in

fact, used in the model.

The piateau concept is related (al;hough not exactly) to a
minimum length for full effectiveness of the cover plate or confor-
mance to the theory of flexure. It has been shown that such coﬁfor—
Zmange is reached at a Qistance of gbout chp'when a tranéyerse wéld
‘exists®?, :(Provisidn 1.7.67 oflthe AASHTO Code suggests a terminal -
distance of 1.5Wcp for designing the weld beyond the cover plate's
theoretical end®.) The minimum total length of coﬁer plate required to
obtain full effectiveness at midlength ig 4Wép. Since this lengﬁh is
much greater than 2.5wcp, it can be_deduced that end weld reaches full
capacity well before the cover plate is fully effective. The'longi-

tudinal fillet welds transfer the extra force needed for conformance.

The stiffener discussion asserted that the section with
highest stress concentration is over the web (Art. 2.1.1.1). Fiéure
2.19 demonstrates that this conclusion also holds for éover.plates..
Using the extrapolated fine mesh results, the variation of SCF' aiong
the transverse weld toe is plotted. As the attachment length in-
creases the change in stress concentration from point to point is

more distinct. Bending increases with length, thereby causing cover
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plates to have a more pronounced variation than stiffeners, regard-
less of differences in assumed boundary conditions. In all cases
where the attachment position does not exceed the flange tip, the

maximum concentration is at the web line.

While the web line has -the highest stresé‘concentration,
. fatigue crack growth can easily occur at other weld toe positioné.
Growth depends on the range of stress intensity (Chap. 1) which is
affected by crack size as well as stress range and the various cor-
rection factors. Initial diSCQnﬁinuitié§-aré.not.neqessarily largést -
over the er. Hence, cracks tend to grow albng the-entiré.weid toes
éf both‘stiffeners and cover plates. AThe.web line is here selected
since it represents the worst concentration cohdition'and is there-

fore conservative in that respect.

The assumed crack patﬁ is taken to be‘identical_to that fér.
stiffeners (Arts. 2.1.1.1 and 3.1). vTherefore, stress concentration
for local §tress in-thé direction of apﬁlied stress is of interest.
Figure 2.20 presents such stress ;oncenfration factor contours for a
sample cover-plate detail. (The actual geometric parameters are
unimportgnt.) High stress concentration is qﬁite localized although

redistribution from the uniform state occurs over a broad range in

either direction from the weld toe.

Figure 2.21 gives a particular stress concentration factor

decay curve along the assumed crack path. By comparing Fig. 2.21 with
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Fig. 2.12 it is apparent that the cover plate detail causeé much more
disruption of the stress flow in the flange. About 15 percent of thé
flange thickness exhibits sizable increase in stress compared &ith 5
percent for stiffeners. (Different geometrical values would make
these percentages vary somewhat.) This difference.is primarily due to
the fact that significant force is developed in covér platés and a
relatively large change occurs in the position of the overall force
centroid of the detail section. . Conéiderable local, longitudinal bend-
ing stems from the centroid shift;bending increases with distance.from
‘the web. |

Tablé 2.1 records the SCF values for each combinatioﬁ of
geometrical parameters studied. These results are plotted in |
Figs. 2.13 and 2.22. Figure 2.13 shows the SCF trend is downward at a
decreasing rate as Z increases. Conversely, Fig. 2.22 indicates SCFi.
ipcreases at a decreasing rate of Tcp increases. (This second trend
is opposite that evident in fillet-welded lap joints where the
"flange" is not continuous through the joint2°. SCF increases in such
joints as "Tcp" decreases.) A least squares curve fit of the values

leads to the following equation:

T .
SCF = -3.539 log EZ— +1.981 log( 2| + 5.798 C(2-4)
£ £

The standard error of estimate, s, for Eq. 2-4 is 0.0922. While this
error is much greater than that for stiffeners, it is still not Sig—

nificant. The increase in error is explainable on the basis of two
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rather than one independent variables., Due to the value of the co-
efficients, weld leg, Z, is more important in determining SCF than

thickness,>T .
CP

Several aspects of Fig., 2.13 deserve further comment. The
trend in SCF_with rgépect to-Z is seen to be opposite fér stiffeners
~and cover plates., Interestingly, Gurney's curve fo; load~carrying
fillet welds?’ is of thé same shape as the curves for covér plates,
Apparently, a transition from non4load-carrying to load-carrying
occurs és the length of the attaéhmen; increases. This finding is
'suéported by Fig; 2.18 where the cﬁrves with different-ﬁeid leg sizes
are seen to cross over each other at a length of about O.Sﬁcp. An
attachment with length 0.8wcp could be expected to ?esult in a h&ti—
zontal line in Fig. 2.13, thé value of SCF depending on cover plate

thickness.

Figure 2.13 also acts as a guide to tﬁe effects of varying
weld penetration. Since SCF increases with Z in stiffeners, one‘
would expect SCF to increase with over penetration. Frénk, indeed,
found such a ﬁrénd for‘non—load—carrying jointszz. Ffank22 and
Gurney27 both note an opposite trend for'loadféarrying joints.
Again, Fig, 2,13 is helpful sinqe SCF decreases with increasing Z
in cover platés. Moreover, it is aéparent that the effect of pene-
tration depends upon the nominal weld leg size. For small values of

Z the increment in SCF with an increment in Z is more significant,
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whether the joint is load-carrying or non-load-carrying. Frank?2? and

7

Gurney's2 studies are compatible with this observation.

The stiffener study mentioned the differenée between -a two-
and three-dimensional approach at the coarse mesh level (Art.
2.1.1.2). The conclusion was that the two-dimensional coarse mesh
always leads to an upper bound on SCF., Unfortunately, the same
statement can not be made for cover plates. The case of.Z/Tf equal
~to 0.6410 and TCp equal to 0f6410 was solyed with a two—dimensional,.
plane stress (constant elemeﬁt.thickness), coarse mesh (lqngit@dinal
fillets neglected and other meshes remaining the same). The result-
ing SCf was 5.991 versus 6.040 when the three—dimensional analysis
was used at step one (Table 2.1). If the planar elements of the cover
pléte had been assigned lesser thickness than the.flange elements to
account for the difference in cover plates and flange widths, SCF

would have been less than 5.991.

The reversed relationship with the two-dimensional. result
can be attributed to the joint being load-carrying rather than non-
load-carrying. Figures 2.23 and 2.24 help to explain this point. A

specific detail geometry was selected (Z/T. = 0.6410, Tcp/Tf =

f
0.6410) for investigation. Figure 2,23 shows a plan view of points
near the cover plate termination where stress output from the coarse

mesh analysis has been used. The results at these points were used

to plot the stress concentration factor distribution across the

42—



flange and cover plate. In general the average conceﬁtration factor
(with respect to the input stress) through the flange or cover plate
thickness is recorded. However, since the SAP IV solid elements
field stress results on the element surfaces as well as at the cen-
troid, the distribution of tﬁe flange top surface concentration fac—
tor.is recorded for line 1 too. Distributian of the cover plate top

surface concentration is noted for lines 2 and 3.

Figure 2.24 plots the various stress concentration factor
distributions at the three sections. tiﬁé 1 is represented by a
’ éﬁfvé'for concenﬁration through the flange thickness as wéll aéla
curve for the flangé surface. " Lines-Z and 3 are represented by the
'éﬁrves for average concentration through the flahge and cover—~plate
thicknessés,'and the curve_for,thevcover plate supface. The curve of
particular interest is ZC? which, by féé;rding avérage stress, gives
an indication of force transferred through the transverse end weld..
Obviously, the force (per unit width) is significantly greater ét the
web-cénterline, which agrees with Albrecht's findingz. This distri-
‘ butional aspect of load transfer is not taken into account by a two-
dimensional, coarse mesh model. Note also that 3CP, when compared to
2CP, shows the initial contribution of‘load trénéfer through the lon-
gitudinal fillét weld. The cover plate edge has been brought up to
the same concentration as the cénterline position. One could-predict
that sections further removed from the covef plate end, but before
the point of flexural confbrmance, would demonstrate higher concéntra-

tion at the cover plate edge than at the web line..
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The flange surface results (curve 1F*) are misleading
éince line 1 does noﬁ accurately represent the weld toe. Fine
mesh analyses have consistentiy demonstrated that the concentra-
tion at the web centerline is greater than concentrétion elsewvhere
along the wéld toe (Fig. 2.19). Curve 2CP* tends to support this
contention by giving some indication of the amoun£ of bending in the
cover plate. Since the entire curve is in the negativé zone, longi-
tudinal bending is.significant across the entire cover plate width.
(The boundary conditions in Fig. 2.17 only restrict local bending of
the flange along_ﬁhe web;) The negative aspegt infers tﬁé'bendihg
of the flange at the weld toe‘(except over.the web) would reduce
stress even though there is a singularity condition. (Stress rises
to infinity more slowly.) Apparently, considerable changes in stress

distribution occur within a very small distance from the weld toe.

Local flange bending occurs, -although in different magni-
tudes, whether the detail is a stiffener or a cover plate. .This
causes the web centerline position pf the weld to be most critical
and the two-dimensional coarse mesh model yields an adequate upper
bound SCF. However, given the load—carryiné requirement the web is
still the worst position, but the two-dimensional model doesn't
necessarily lead to an upper bound SCF. Hence, analysis of fillet-
welded, load-carrying joints should generaliy commence on a three-
dimensional basis. The closeness of the two results for the case

studied is by chance; the separation could be far more pronounced in

other geometries.
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One other fruitful comparison stems from Fig. 2.24. Ozell

and Conyers investigated transfer of stress into cover plates by
experiment®® and the findings had influence on Provision 1.7.67 of
the current AASHTO Code®. Based on strain gage feadings, Ozell and
Conyers plotted strain distribution across the cover plate at varioué
sections. The curves appear much like 3CP*, The curves would have
appeared quite different if the gage lines ﬁad been.CIOSer to‘the
covér plate end (curve 2CP*). Curves such as 3CP* doﬁ't necéssarily
reflect the average stress distribution thfough the covéf plate
:thicknéés}' (Coﬁpare cﬁrve.3CP% Qith 3CP.) Locai beﬁdiﬁg>makes sur-'
face stress results near the cover'plate end ratﬁer misléading. How~
ever, the Ozell and Conyers conclusions with regard to.conformance

length are not in question.

The main cover plate investigation has held the cover plate
and flange widths constant (Fig. 2.14) and was only concerned with
variable weld leg size and covér plate thickness. However, a pilot
study on the effects of‘cgver plate and flange widths was also con-
ducted. The associated auxiliary detail géometries are given in
Table 2.2 along with fesulting SCF. The coarse mesh for each geome—
try is similar in element size although of differént extent than
Fig. 2.15. No changes have occurred in coarse mesh boundary condi-
tions or either of the finer meshes. In all cases SCF has been eval-

uated at the web line.
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The first case in Table 2.2'has the reference geometrical
parameters from the main investigation (Fig. 2.14 and Table 2.1l) con-
nected with lines. Theeffect of a shorter cover plate length is also
noted; this trend coincides with that in Fig. 2.18. The second case .
doubles both plate widths withouf changing any other parameters.
Therefore, the length-to-width ratios of the covér plate have beenv
eut in half. While such a‘reductipn éhould lead to smaller SCF, the
reduction is more than negated by additionai force transfer distri-
bution to the web line (Fig. 2.24). épparently,'higher flange and
cover plate aspect ratios lead to higher SCF. Nate also fﬁét the
ratio of plane stress to plane strain results for the one set of.

parameters is 0.900.

. The third case in Table 2.2 addresses a small cerr plate-
to—flange width ratio. The results are below Case 2 even though
the cover plate length-to-width ratios are considerably larger. It
seems that SCF decreases as the cover plate-to-flange width ratio
decreases. However, comparison with Case 1 results proves even
more enlightening. If the slight difference in SCF's is mostly at-—
tfibutéd to the slight differences iP L/WC§, an interesting picturg.
emerges. The effect of a rise in the flange aspect ratio is almost
exactly balanced by the effect of a decline in the ratio of the two
widths., Multiplication of the two parameters together suggests that
the governing variable is the rétio of cover plate width to flange

thickness (W /T_). Case 2 indicates that SCF increases as W /Tf
cp ' f cp

increases.
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Finally, the fourth and last case in Table 2.2 deals with

a cover plate which is wider than the flange. 1In light of the com-
‘ments for Case 3, one might expect results identical to those of
Case 2. However, a cover plate wider than the flange introduces two
new aspects to the problem. First, the.longitudinal fillet weld is
no longer adjacent to the cover plate‘edge. Rather, the weld runs
along the flange tiﬁ. This positioning tends to reduce flange bend-
ing induced by lack of symmetry. Secondlf, the force transfer dis-
ﬁribution in the transverse end weld is no longer as concentrated at
the web line. in fact, for an even wider-cover plaﬁe a Bigher SCF
‘would occur at the flange tip (Art. 2.1.3.2). v(SCF at the flange
tip is not greater than at the web line for the specific geometry
studied although the values are cloée.) Therefore, SCF ét the web

line drops when ch/wf exceeds 1,00 (Art. 2.1.3.2). *

The results for the auxiliary geometries are reasonably
close to each other'and to the findings of the basic geometries.
From a practical point-of-view the flange and cover plate widfﬁs
are much less important than weld size and the flange and cover
plate thicknesses. Equation 2-4 is a good approximation for all

width conditions.

The results of the single cover plate investigation should
be approximately applicable to multiple cover plate situations. It
is assumed the various cover plate terminations are stepped back far

enough from each other that each lower cover plate has sufficient
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conformance distance from its termination before the next cover
plate begins. Under these conditions the sum of lower cover plate
and the original flange thicknessescan be treated as equivalent Tf

at any'detail. Tcp is the thickness of the secondary plate.

" While the stress concentration results are reasonably ap-
plied to multiple cover-plate details, fatigue crack growth will
be somewhat different. After growing through one lower cover plate
a crack would tend to be arrested except at weld points. >Assuﬁp—

tion of continuous material through the new T_ would yield a. lower

f

bound on fatigue life.

2.1.3 Related Cases

Pilot studiés have been conducted on two other details
which are related to the cover plate detail qf Art. 2.1.2. One of
the related cases is the cover plate without the transverse end weld.
The other case is the lap-welded gusset pléte. These results shéuld
give some idea of the details' comparative fatigue performance.and

provide a foundation for future research.

2.1.3.1 Cover Plates Without Transverse End Welds

One of the geometries of Table 2.1 (Z/Tf = 0.6410, Tcp/Tf=
1.4360) was used to investigate stress concentration when the trans-
verse end weld is absent., AASHTO prohibits elimination of the weld

when W/Cp/wf is greater than 1.0 since fatigue tests of this detail
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yielded less fatigue strength. Therefore, the overall geometry and

coarse mesh of Figs. 2.14 and 2.15 are well suited for the study..
Only the weld from the web centerline to the cover-plate corner needs
to be discarded. However, the corner weld or weld termination in

Fig. 2.16 is maintained.

The section of interest for fine mesh analysis is coiﬁéi—'
. dent with the outside edge of the cover plate. The specific point

~ where stresé_concentration.is evaluatéd isvthe key node in Fig..2.l6
where the above éeétioﬁ meet$ the transverse weid toe. ' The investi-
gation has only been carried to the fine mesh‘level althbugh these
stress concentration factors have been extrapolated - just as for the
data points on Fig.. 2.18. The resulting SCF' at the weld toe are

plotted in Fig. 2.25.

Figure 2.25jsuggests that ;he plateau of stress concentra-
tion is not reached as'rapidly if the cover plate isvwithout a trans-—
verse end weld. Whereas the plateau for the "with" case is at about
L/wcp = 2.5, the plateau for the "without"‘daée is nearer L/Wcp =
3.5. The general trend of these numbers is in agreement with the
investigation on development length by Ozell and Conyers®?. They
found conformance is reached at a distance of about 3wcp from the

cover~plate end when the end weld is absent. 1In order to reach con-

formance at midlength the cover plate must have a total length of at

least 6W
, cp
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The relative magnitudes of SCF' for the two curves shown
in Fig. 2.25 is misleading. One problem is that the emphasis of
the "without" case rests on the shape of the corner weld (Fig. 2.16).
Such a smooth and steep profile is rarely found at real longitudinal
fillet terminations — particularly with the end weld absent!?. A
smaller angle to the flange surface would lead to a smaller stress

concentration factor??:27,

A'second problem with the "without" results centers on the
'pianar,.fine mesh analysié. Plane stress elements of uniﬁorm'thick—
ness were used as in the bther co&er plate studies. However, this
assumption is certainly erroneous since the flange is very much
wider than the weld. Perhaps plane strain for the flange and.plane‘
stress for the weld would have been bgttg;'choices. Alternatively,
using plane stress elements throughout, but with different thick~
nesses for flange and weld elements, would provide a more accurate
measure of relative stiffness. This second possibility has been ex-
plored for a particular cover plate length and the results are plot-

ted in Fig. 2.26.

Figure 2.26 shows SCF' declines sharply as the assumed ratio
of thicknesses (or stiffnesses) is reduced. (The curve does not
extrapolate ‘to SCFf = 1.0 at a thickness ratié of zero since the
coarse mesh analysis already introduced a gradient into the flange.)
For a thickness ratio below 3/4, SCF' for the "without" case falls

below that for the "with'" case. Hence, even though the shape of the
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"without" curve in Fig. 2.25 is probably correct, its vertical pési—
tion may not deviate as much from the "with" curve as impiied. The
plotted position is an upper bound. The true position is~probably
lower due to weld shape and/or relative stiffness between weld and

flange.

A final problem of the witﬁout end weld case centers on the
crack path. A typical example of crack path at a corner weld is giv-
en in Fig. 2,279, ©Note that due to a common cold lap condition the
“erack firstlfollow3'tﬁe.fléngevsurface'in a:"éheéredéoff";maﬁnef;
Eventﬁally; the crack turns'downwafd at a éignifiéaﬁfnanglé aﬁd final-
l& becomes perpendicular to the applied stress. SCF' at the weld toe,
then, is not an accurate measure of the severity of the detail. It
appears desirable to investigate stress concentration at the end of
the cold lap.” Based on the initial stress distribution the stress
concentration under the weld.is less than at the weld toe. However,
the redisfribution of stresses when the crack surpasses thé cold lap

is-important and should-be considered in the analysis.

Article 4.5 contains additional comments on cover plates
without transverse end welds and their comparison with cover plates
which are end-welded. 1In general, the tyo'details have been found to

19

have comparable fatigue lives'®, If anything, the "without" case is

‘slightly less severe.
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2,1.3.2 Lap-Welded Gusset Plates

Figure 2.28 presents the detail geometry used -for the lap-
welded gusset plate investigation. The geometry is similaf to that
used for one of the cover plates (Fig. 2.14) with a few notable
excepﬁions. The gusset plate does-not reach the ﬁeb centerline;
rather, it is seﬁ off some distance to permit.welding éll around.
Since symmetrical gussets are assumed, only one—quarter of the detail
is studied. The .variables involved are the gusset plate width

W

= 3,85T
gpl.

£ ngz = 9.62Tf) and length.

The coarse mesh discretization emploYed is very close to
that shown in Fig. 2.15. Of course, the mesh for the gusset plate is
shifted several rows beyond the flange tip. For ngz additional rows

are added. But the size of mesh — particularly in the transverse end

weld ~ is directly comparable, Fine and ultra fine meshes (Figs. 2.8.

and 2.10) are totally unchanged.

Two points along the transverse weld toe are of interest.
One (denotea "inner edge'") is where the line of the inner edge of the
gusset plate meets the transverse weld toe. The second point (de--
noted '"flange tip') is at the intersection of the transverse weld toe
and the flange tip. Thé objective is to determine how SCF varies at

these two points with changes in gusset plate width and length.

Figure 2.29 indicates the SCF variation with the gusset

plate length-to-flange thickness ratio. It is observed that after
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‘a certain length the flange tip position becomes more critical for

both gusset plate widths. The curve representing'the inner edges
moves vertically as this position changes relative to the web line.
(Discussion of Case 4 of the auxiliary cover plate geometries -
Table 2.2 - stated the web is always worse than the flange_tip for
those particular geometrical parameters.) Note the wider gusset
plate does not have quite as hlgh a plateau at the 1nner edge posi-~ _
tlon as the smaller width plate. However, at. the flange tip the
w1der plate curve dlverges 31gn1f1cantly from the smaller w1dth
fcurve as length 1hcreases. .The»longer length glves the stress flomp

'a chance to make use of the wider plate.

Article 2.1.2 linked conformance length and length for the

SCF-plateau to width of cover plate. A comparable parameter for I

symmetrical, lap-welded gussets is the effective width, W*, from

. outer plate edge on one side to outer plate_edge on the other side
(i.e. twice the distance from web line to outer gusset plate edge).
Effective width permits comparison of gusset plates of different
width as well as plates with different proximity of their inner
edges to the web line. The variation of SCF with thé length-to-
effective width ratio of the gusset plates is plotted in Fig.v2.30.
While the inner edge of the wider plate_appears to reach its plateau
more quickly than the inner edge of the smaller width plate, the
situation at the flange tip is distinctly reversed. Clearly, the
second gusset plate must be much longer than the first plate in order

to reach the SCF plateau.
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The lap-welded gusset plate investigation indicates that
the flange tip position can easily be more critical for crack growth
than the inner edge location. Both length and width are important in
determining the SCF value and critical position. Experimental evi-

dence is supportive of this conclusion??.

2.2 Groove-Welded Details

References 3 and.21 point out that the groove-welded de-
fails of greatest concern (worst category) are those whefg the weld
is parallel to the direction of applied stress. The weld in this
case is normally intended to connect some sort of attachment whose
greatest dimension is along the weld. The length is typically suffi-
cient to cause the detail's end rating to fall into Category E%.
Therefore, the details subsequently investigated are chosen for their

potential severity and greater concern to bridge designers.

2.2.1 Gusset Plates Groove-Welded to Flange Tips

One class of details which is particularly common in bridge
structures is the groove-welded gusset plate. Such plates are often
welded to flange tips or webs and may or may not possess a smooth
circular transition at the ends. The transition can reduce the
severity of the detail although‘clearly the radius involved is

crucial.
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The intent here is»to study stress concentration near the
‘ends of gusset plates which are groove—weldéd to flange tips and .’
exhibit a circular transition at eaéh end. The geometry of the en-
tire plate, including the radius, is varied in order to yield the
stress concentration trend. The results are compared, where pos-
sible, with those recorded by Peterson for stepped, flat tension.Bars
with shoulder fillets®?3. (The Peterson results stem from photo-
elastic_studies by others.) = However, the'Petéfson findings are ex-—
éandéd to pafametrig.véiue$A§Qmmon‘in gusset»plates,_Uéqch ¢xpansion
inelﬁdes gusset.blate;td-fléhgé thickness ratios léss tﬁaﬁ 1.0;
Also, a few pilot cases are analyzed to sense the effect of secon-

dary stress directly input from bracing members to the gusset plates.

The fact that a transition radius (magnitude other than
zero) is assumed greatly simplifies the finite elemenﬁ investigétion.
A radius means singularity doesn't exist and, as a result, very fine
mesh sizes are unnecessary. However, as the radius deéreases SCF
canvbe expected to rise and the emphasis on mesh size is correspond-
ingly increased. In oﬁher words, a coarse mesh albne.may be ade=
quate for some geometries but not for others. Unlike the fillet- -
welded details, results from different mesh sizes are obviously com-
parable provided each mesh is at least fine enough to capture the

maximum concentration.

Several assumptions are made concerning the weld. Full

penetration is the only case considered; the weld depth is taken as
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constant and equal to the gusset plate thickness. The termination .
of the weld atthe circulartransition point of tangency is assumed to
be ground smooth to maintain the intended contour. The weld thick-

ness in the plane of the flange and gusset is unimportant.

2,2.1.1 Geometry and Modeling

The general detail geometry for the gusset plate investi-
gation is shown in Fig. 2.31. Symmgtrical gussets are assumed for
two reasons. First, inner bridge girders often have cross bracing
attached at:oppdéite flange tips at a given position along thé gird—
er length.. Seéond, symmetriéal gussets prevent cross bending_of
thé flange. Gurney notes such bending leads to lower values of
SCF2%, Therefore, the symmetrical gusset plate assumption leads to

an upper bound stress concentration and a lower bound fatigue life.

A few dimensional aspects of Fig. 2.31 need amplifica-.
tion. The distance from uniform stress input to the point of transi-
tion tangency is slightly greater than 2.4w (w equals Wf/Z in this
case ~ Fig. 2.1) as recommended in earlier discussion. The gusset
plété width, wgp, is measured from the flange tip outward, thereb&
including any groove weld thickﬁess. Finally, the length of gusset.
is measured from the point of transition tangency, not the outer corf

ner of the gusset plate as used in Peterson®3,

The above decision on length measurement is advisable on

several counts. First, it is consistent with general fatigue cate-
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gorization on the basis of attachment.length3’2°. Hence, results can

“even be compared with those of tapered attachments such as longitu-
dinal stiffeners (Art. 2.2.2). Second, transition radius, R, can be
greater than wgp, making a quarter~circular transition impossible.
Figure 2.32 demonstrates that uﬁder'this condition the total length
of attachment, L, can not be simply equated to the outer edge length,
L', plus two transition radii. Thus, a str‘esé concentration factor
based on L' would not follow the same trend as SCF based on L once R

.'exceeds Wgﬁ;' In fact, changes in SCF for Flg 2.32 should be due to

only changes in R since the‘other parameters (excludlng L ') have not -

changed. Therefore, the length is consistently measured from the
'point'of tangency without regard to the outer gusset plate edge

length.

Four variables were studied. They are the transition
radius, R, the attachment length, L, the guseet plate width, wgp, and
the gusset plate thickness, Tgp' AASHTO places few limitations on
these parameters so a rather broad range investigation is required.
Table 2.3 lists the parametric combinations.acrually studied. Eaeh
of the gusset plate veriables is nondimensionalized by either the
flange width or flange thickness.' The actual flange width useq is
typically 305 mm. Since all problems are treated as two-dimensional,
only the relative plate thicknesses are important. Thus, eccentri-
city of the gusset plate's centroidal plane at midthickness relative

to the flange centroidal plane is neglected.
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The stress concentration analysis procedure for gusset
plates follows Fig. 2.33. This flow diagram is obviously more simpli-
fied than the one for stiffeners aﬁd cover plates (Fig. 2.5). The
}procedure begins with uniform stress input to a two dimensional
coarse mesh which uses plane stress elementé from SAP IVS. (A1l out-
of-plane effects are neglected.) For gussets with large transition
~radii (R/wf.i 0.5), the element with the maximum stress concentration
factor is located and that value represents SCF. For gussets-witb
smd;l»transi;ion radii (B/Wf_< O.S),lit.is necesgary to go.to a~finé
mesh (plane sffess elements) which makes use of nodal displacemenﬁs
from the coarse ﬁesh. Since R is not zero, SCF is simply the maximum
centroidal concentration factor found in any of. the fine elements. No

extrapolation is required.

A sample coarse mesh is given in Fig. 2.34.. The boundafy
conditions prevent nodal displacments at and perpendicular to lines
of symmetry'(Fig. 2.31). In general, tﬁe flange discretization is un-
affected by the various parametric changeé (Table 2.3). 1In fact,
the discretization of the gusset plate is also basically constang
except the extent varies with the parametric values. Other discre-
tization can be developed by sketching the‘perimeter of the other
gusset plates on Fig. 2.34 and observing the mesh pattern with the
boundaries. Should extension of the width be required, the element
sizes are identical to those in the current outer row. In the tran-

sition zone the mesh for a small radius is found by simply extending
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the given mesh lines. The rule of thumb for the triangular elements
is to al&ays extend the lines perpendicular to the flange edgé
straight to the circular border. The lines parallel to the flange
edgé are normally stopped one mesh line before the circular border and

a skewed connection is made with a point on the border.

The coarse mesh does contain some error due to the inac-
curate représentation of the circulér transition with straight lines
_(chords) betweeﬁ-nqdes.f The.nodes—themsélves have been boéifioned
"diréctly,on tﬁevcurve; Qnefway'tq measure the geo@étrical érfor isﬁ' 
L-by'the.iargést deviationvof“any,chord frém tﬁe.éur§e, as é'percent of
the radius’. Figure 2.34 shows this error can be estimatédAfrom the
chord length and the curve radiﬁs. The maximum chord length can vary
significantly from rédius to radius sin;g the larger radii reach the
larger mesh sizes. However, the largest error has been found for the
smallest radius and amounts to under five percent. 1Imn the crucial
tangency region the error is always less than one percent. Such
error in geometry is considered to have a negligible effect on re-
sults - particularly since the element's centroidal stress is used
for SCF without extrapolation., Theoretically, singular stress qoﬁ—
ditions do exist at the skewed intersections of chords, but the
angle difference between chords is élways Qery slight and the inter-

sections themselves receive no special finite element treatment.

The region of interest for highest stress concentration is

in the vicinity of the point of transition tangency (Fig..2.31).
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~cisely at the point of tangency

Many references suggest that the maximum concentration occurs ﬁre~
55263571585 yoyever, the findings

of this study indicate the worst condition is slighﬁly away from this
point., The basis of the results in the cited references is photo-
élastic studies, Although photoelasticity can't reélly be termed
precise, the deviation of the point of maximum concentration from the

point of transition tangency was thought to be caused by the chord

approximation of the smooth curve.

 ‘-'In ordér to éxamiﬁe ﬁhis.préﬁigé,.the results f;émlt;o
&ifferéht céafsé ﬁesh diécreﬁizations we£¢>cbmpared;_ One mesh size
was equal to that in Fig. 2.34 while the other was twice as large
in the region of interest. The résplting position of SCF from the
point of tangency was found to increase Vith the radius and thé dis-

tance was roughly R/5 for both discretizations. (This approximation

seems to be reasonable no matter what the gusset plate length, widtb,
or thickness.) Therefore, it does not'appear that the chord approxi-
mation was the cause. 1In any case, the value of SCF is typically .
less than two percent greater than the stress concentration at the

point of tangency.

One conclusion of Art. 3.1 is thaf the crack path can be
assumed perpendicular to the flange tip or the direction of stress
input. Hence, SCF represents stress in the direction of applied

stress but not generally right at the point of tangency.
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Nevertheless, the nominal stress used to evaluate SCF is that which

is input (i.e. that across the flange width prior to the transition). -

Figures 2.36 and 2.37 present a ﬁypicai fine mesh discreti-
‘zation and imposed boundary displa;ementé derived_by linear inﬁerpo—
lation from the output.of the coarse mesh (Fig. 2.34). The mesh size
is typical of fine discretization for other radii. Since the.maxiﬁum
stress concentration is normally away f;om thé point of tangency, the
fine mesh usually dOesn't'stréddle‘tha; 16catioﬂ; .However,vthé_césésiﬁ
- of R < 0.1V |

p are exceptions to this rule since SCF is close ‘to the

-';téhgency point. -

2.2.1.2 Results

Figure 2.38 presents stress: concentration factor éontours
for one of the gusset plate aetails. _It-is useful to compare this
' figure with the sample cover plate detail (Fig. 2.20). Basicélly,.
the two figﬁres are quite similar. The only'major-differencé is.the
sharp rise in concentration near the singular point in Fig. 2.20. If
the fillet weld toes of stiffeners and cover plates were.somewhaf |
réunded by grinding or ther means, the contours for a giveﬁ R/W£
(ggsset.platg) would be almost identical to those for the same R/2Tf
(stiffener or cover plate). Small differences would still exist,

however, due to the other geometrical parameters.
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1.0 at a distance of about 0.14 W

The stress concentration factor decay for the mesh geometry
shown in Figs. 2.34 and 2.36 is plotted in Fig. 2.39. (Division of

distance by W_. is approximate since the element with SCF is a small

f
distance from the flange tip. The error in total width to the.cen—
troid of the element is less than onelpercent.) This curve exhibits.
the saﬁe pattern established by the stiffeners and cover plates

(Figs. 2.12 gqnd 2.21, respectively). Since SCF is lower, the rate

of decay is more gradual. The stress concentration factor reaches

£ Wf ;s‘comparable to ZTf‘51nce

© symmetrical gﬁéset plateé'wéré used. Thus; Kt equal to 1.0 is

réached at a compéfable disténéé of ébgﬁt 6.28Tf. For the covér
plate detail plotted in Fig. 2.21, Kt equal to 1.0 is reached at
O.23Tf while the stiffener shown in Fig. 2.12 crosses this level at
0.10Tf. The actual distances vary with geometry althouéh the gep—

eral trend exhibited here is typical.

The SCF value resulting from each combination of geométri—
cal parameters is given in Table 2.3. The trend of each of the para-
meters is more clearly visible in Figs. 2;40 through 2.43. Basi-
cally, SCF increases with increasing length, width, and thickness of
gusset plate. As expected, SC? increases with degreasing'transition
radius.

Also plotted in Figs. 2.40 through 2.42 are curves.derived.
by interpolation of Peterson's findingss3. (No data are available

in Peterson or elsewhere for varying thickness ratios ~ Fig. 2.43.)
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In all cases the results of this study have the same trend as those

recorded by Peterson, but exceed them somewhat. The increase is gen-

_erally on the order of 10 percent.

A least squares curve fit of the values summarized in

Table 2.3 yieldrthe following SCF equation:

SCF ==1.115 1og(§i + 0.537 log +

Qﬂf | , | Wf -
_ - S (2-5)
o A% : T o T -
0.138 log 752 + O.285<?§R +0.680

f f

The standard error of estimate, s; for Eq. 2-5 is 0.1322;'“This error
is somewhat larger than that for cover plates due to the two addi-

tional variables involved. However, the error is still quite small.

The form of Eq. 2-5 permits a comparative rating of the
importance of different variables._ Tﬁe coefficients indicate that
radius, R, is more critical than length, L, which is moré critical
than the width, ng. The thickness ratio does not appeaf in the equa-
tion in 1ogarithﬁic form so an exaét comparison with othef variaﬁles :
is not possible. However, thé indication is that thickness has

importance comparable to the length.

The singulér case of R = 0 is of special interest. While
not a part of the basic gusset plate investigation, a pilot study
was conducted for the sets of parameters listed in Table 2.4. The

coarse mesh used in the investigation had a gradation identical to
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. the point of interest is"oniyiO.bOO8wfl ‘Since W

the previous'gusset plates (Fig. 2.34). However, the fine mesh was
altered to that shown in Fig. 2.44.- The kind of displacement inpuf
to this mesh was comparable to that of the other gusset plates (Fig.
2.37). SCF was found by extrapolating the element stress concentra-

tion factors to the gusset plate end.

Table 2.4 indicates the trends in SCF with regard to the

Alength; width, and thickness variables are‘unchangea by the Singular:_
condition. But the SCF magnitudes are all exceptionally high and,.

‘therefore, of particular concern. Note that the element size near

£ is'comparablé to

2Tf from the stiffener and cover plate investigations, the size can .
be considered equivalent to 0.0016Tf in thése studies.. The fiﬁest
mesh size used at the weld toe of stiffenérs and cover plates was
0.0013Tf. Hence, the fillet-welded details had a slightly fingr
diécretization_adjacent to the singular point than the above gusset

plates, but the resulting SCF for gusset plates are much larger for

most geometries (compare Tables 2.1 and 2.4).

The main instigator of the comparatively high SCF in.the
singular gussets is the angle between the plate end and the flange
tip. Gurney27, Frankzz, and others have indicated SCF increases
significantly with the weld toe angle of both loadfcar¥ying and non-
load-carrying joints. Iﬁ fact,'fhe SCF-weld angle relationship is

approximately linear?’

. Therefore, in changing from a weld angle
(in the fillet-welded details) of 7/4 to m/2, SCF would be expected

to double.
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A useful exercise is to "equate' parameters of the gus—

set plate detail to those of the stiffener. (The stiffener is used
rather than the cover plate since the gusset plaﬁe is connected all
along_its length.) The analogy, then, is that the gusset plate

length, L, equates to twice the weld leg size, Z, and flange width,

Wf, equates to twice the flange thickness, T The thickness ratio

£
 in the_gusseﬁ'detail:is assuﬁed_tp be I.OQ:sihgeAthe symmetficalf'
'=s£§#feqer§lspan Lhe fiénge width. Alsp; thé gléments of the fiﬁér

: 'ﬁesﬁeéf(Figs. 2:8”aﬁd 2.105 were assumed to have uniform thicknessés,

.Iﬁe 9n1y Qafiabie_rem#iﬁing is ;Eevgpéset_p1§ﬁe widthf_iit‘ghould be

raskiérge-é; éoééiﬁlébsiﬁcéiéﬂé fi1i;£ Qéia;é Qeffiéal‘ieg'increaseé
with an increase in the horizontal leg and/or aﬁ increase in the weld

toe angle.

Given the preceding "equalities', Eq. 2-2 (multiplied by‘
2) is used to predict SCF for several of the geometries in TaBle 2.4,
The results are given in Table 2.5. It.cén be seen that in spite of
the slight difference in mesh size, Eq. 2-2 gives a very gobd pre-
digtién of SCF whep the gusset plate length:is small.  However, the |
predictions are on the low side for lengths gfeater than the flange ‘{
|
width. Of course, Eq. 2-2 isn't really intended,fo? weld legs much 1

greater than the flange thickness. ' |

The comparison in Table 2.5 confirms the reason for the

high stress concentrations for singular gusset plates. But from a
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practical point-of-view fabricated gﬁsset plate connections don't
usually have the abrupt right angle idealized for the-singular'condi—
tion. Weld runout is typically observed, théreby reducing the angle
at the singular point. Experimental results acquired to date show
the singular, groove-welded gusset plates of common length are comF
parable to cover-plateszo. Nevertheless, it seems clear that gus-
set plates should possess a transition if at éll possible. Eyeq a

' small radius formed by grinding the groove weld termination can,

‘pheqrétiCa1iy?.substantially re&uce fatigue susceptibility.

To gﬁié ﬁoihtaéﬁ; only féréétihpﬁf té ﬁhe-guéset blate Ae—
tail has been located in the flange (Fig. 2.31). Naturally, force
may also be imposed on an actual joint by the bracing member(s) con-
nected to the gusset. The queétion arises as to whether these secon-
dary forces have a significant effect on the stress concentraﬁioh as

given by Eq. 2-5.

A pilot study into geometry and secondary force effects was
conducted by making use of the two loading schemes in Fig. 2.45. It
has been assumed that the force input to the gusset plate is main-
tained at a co;stant proportion of the force input to the flange.

Two different distributions of force are employed. One distributioﬁ
(termed Digtribution 1) is in the form of uniform streés'along the

outer edge of the gusset. The magnitude of this stress depends on

gusset length and thickness. The second force distribution (termed
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Distribution 2) is in the form of two concentrated forces (simulating
bolts) at the midlength of the gusset. The force is taken to be
equally divided between the two positions. (The forces are divided

by two again due to symmetry about the midlength.)

The secondary force effect is measured at the previous

point of maximum concentration for each geometry. The concentration

factor, as before, relates local stress in the direction of flange L

stress- to nominal'stressfinput'to the flange. ' For the given force
ratio of 1/12, the point of maximum concentration thus defined is

.actually unchanged for the range of geometries studied._“Howéver,

stress concentration factors for other directions of local stress at

other locations increase. These concentration factors are usually

much smaller than the one evaluated here. One exception is the singu-

lar juncture (in section) of the gussét élate and flange tip when the
tﬂickness ratio is less than 1.0. Study of the singuiar location

requires a three-dimensional coérse since the stress gradient of con-
cern is through gusset pla;e fhicknéss.. Such a study is beyond the -
scope of this dissertation although SCF estimates could be made from

one of the fillet weld equations (Eq. 2-2 or 2-4).

The percentage change in concentration factor for selected
- geometries is givén in Fig. 2.46. 1t can be seen tﬁat ;he percentage
only becomes'significant when both the transition radius and the
length are small. This trend with regard to length is opposite to

the trend in the basic SCF (Fig. 1.41). Although the percentage
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becomes large at small L; the percentage is applied to a relativgly
small SCF. In terms of absolute change in SCF, the curve would not

be as steep over the range of length plotted.

Gqsset plate thickness and the manner'of'seCOndéry loading
are not particularly important variables. However, even though the
percentages for the two thicknesses are about. equal af small length,
}_the percentage for. the higher thickness is more meaningful since it .
ié‘applied to’a‘higher.bése SCF. (Recall that the uniform stress
inbhﬁ:vériés'yith.piéte>thiékness.)._As expected, the two sécondary
lééd:distribu;iéﬁs are equi&alént’wheﬁ fhe,lengtﬁ'ié-émall. -At iarge
lengths a separation occurs since the uniform stress continues to .
influence the concentration in a positive manner while the concentra-
ted loads yield a Poisson effect (negative for secondary tension).

For large transition radii, all effects are of the Poisson type.

The general conclusion with regard to secondary effects is
that they can be ignored unless the gusset t;ansition radius and
iength are both small. A rule of thumb suggests that secondary ef-
fects are negligible unless R is less than 0.1W_ and L is less than

f

l.wa. These two values are specifically related to the assumed

force ratio. For a lesser ratio the limits could be even smaller.

One other possible point of concern for the gusset plates
is the change from local stress (concentration) in the direction of

applied flange stress to local principal stress (concentration).

-68-



-As mentioned earlier, stress pefpendicular-to the crack is the’oniy
stress of importance. It is of interest to examine the.stress con—
centration assuming the crack follows the minimum pfincipal.stress
trajectory (Art. 3.1). Figure 2.47 indicates the éhange in base SCF
(Eq. 2-5) required to reach the principal stress concentration factor.
Figure 2.47 includes curves fo; the caseé of no secondary force and
the secondary forces as defined in Fig. 2.47. Therefqre,'the curves
for Distributiqn 1 and 2 can.be viewed a$ thé ;#fvéAfor nb‘Seéohdary
-forég;ﬁi;h an additiénal modificatioh forréégbndafy loading;VHAgain,_
'..g11 p£inéipa1 coﬁpéﬁtfatibn:factors ére{at“the previﬁus'points of

maximum concentration.

Principal stress only becomes critical when the radius is

small (say less thén l.OWf). A check of changes for R = O.SWf has

shown values always less than 2.0 percent. \\_

2.2.2 Longitudinal Stiffeners

The gusset piate findings can provide insight to thé stress
concentration at other details. For example, consider the case of
longitudinal stiffenefs. These attachments are connected to plate
girder webs or box girder flanges and webs with either fillet or

" groove welds. The region of greatest intefest for fatigue susceptif
bility is the attachment's termination. The stiffener may or may not
be tapered at its end and the weldbtermination may or may not be

ground into .a smooth transition.
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Consider the tapered longitudinal stiffener with smooth
transition in Fig. 2.48. For this study it is assumed that the stiff-
ener is attached to a flange and that the stress concentration anél—
ysis can be viewed as two-dimensional. . (Strictly speaking there is
minor three-dimensional action - particularly if fillet welds are
used and full peﬁetration doesn't exist.) The objective is to ana-
lyze this detail and see how the results compére with the gusset

plate findings.

Fof‘such a 1arge,,nondiﬁensiqhél radiué ﬁﬁe finite elemenF
mesh is‘not crucial. Howéﬁef, mesh éizes comparable t§ thése in Fig.
2.34 are used. The only variance beyond the change in the gusset
dimensions is that flange thickness in Fig. 2.47 is assumed to re-

present half of the flange width in Fig. 2.34%.

Boundary conditions for the stiffener problem deserve
special attention. Displacements at and éerpendicular to the liné
of symmetry (at midlength)are prevented. However, consideration
must also be given to displacement perpendicular to the flange. Such
displacement must be prevented for at least one node to insure stabi-
lity. Other nodes can be left free to move. Limited vertical move-
ment must occur in flanges at stiffeners, cerr plates, and other

_nonsymmetrical details.

An upper bound value of SCF can be determined by assuming

bending or vertical movement of the flange is prevented. Trials on
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the detail in Fig. 2.48 without restraint led to negative SCF. Thus,

restriction of vertical displacement at all nodes along the flange
bottom provides the other extreme. Note that this assumption‘is com~—
parable to assuming the detail is symmetrical aboﬁt the flange bot-
tom. Hence, the longitudinal stiffener detail becomes comparable to

a gusset plate detail provided there is a circular transition.

The last modeling proSlem is what to assume for planar con-
diﬁions - plane eeress er plaee.straln The stlffener should logl—-
e_cally use plane. stress eleﬁents with the proper stlffener thlckness._e
.The flange elemeets mlght be eakeﬁ as piene strain or plaee stress
with large thickness.. The flange is typically stiffer than the stiff-
ener and relative stiffness affects SCF (Art. 2.1.3.1). Assumption-
of plane stress conditions permits direct. comparison with the gusset
plate results (Eq. 2-5). Further, assumption of thickness equal to

that of the stiffener leads to an‘upper bound solution.

The lengitudinal stiffener problem was solved with two dif-
ferent assumptibns for the planar elements in the flange. First,
assuming plain strain conditions in the flange and a stiffener thick-
ness of‘6i35nmh the resulting SCF is 1.05. Second, assuming plain
stress for the flange and thickness equal to the stiffener,>the SCF

{(in

is 1.20. The prediction by Eq. 2-5 for equal thicknesses and wf

Eq. 2-5) equated to 2Tf (in Fig. 2.48) is 1.62.
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The overestimate of Eq. 2-5 is partially attributable to
the fact that very long lengths or wide guésets were not included in

83 place the expected value

the supporting data. Peterson's graphs
for equal thicknesses at about 1.28. Since the gusset results from
the finite element investigation exceed the Peterson values by
10 percent, one would expect an SCF near 1.20. In any case, it
appears the taper»has a favorable influence on streés cencentration.
Equation 2.5 and Peterson's graphs for non-tapered specimens lead to

upper bound solutions. Also, the plane stress approach to the prob-

lem is more severe than plane strain.

For stiffeners without a circular_tfansition the taper is
more important. The intersection of the taper andvthe flange sur-
faces is a singular poinf in any event. . :But since the hypothetical
SCF is proportional to the angle (Art. 2.2.1.2), the taper becomes a
crucial factor. The upper bound stress concentration factor for
singular, longitudinal stiffeners can be estimated in a manner simi-
lar to singular gusset plates (Art. 2.2.1.2)Vwith an appropriape
reduction for relative stiffness. The number by which Eq. 2-2 is

multiplied depends on the ratio of the taper angle to m/4.
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3. STRESS GRADIENT CORRECTION FACTOR - Fg

3.1 Crack Path

Chapter 1 noted that the Green's Function approach to a
stress intensity solution requires that the crack path be known.
(Actually, the crack path must also be known for'the compliance
technique.) Stress perpendicular to the crack plane is evaluated and
used to prg&ict Fg at any crack length.. Thus, Fg relates only to the
crack opening mode of displacement (Mode I)®%. Shearing stfeéses in

the plane of the crack (if present) resulting in Mode II and Mode III

displacements are neglected.

In considering potential crack paths it is helpful to

recall crack patterns in concrete beams'®. There, cracks form per-

pendicular to the temsile (principal) stress trajectories. In other
words, the crack paths tend to follow the compressive (principal)
stress trajectories. More'generally, a crack originates firstvat the
location of maximum tensile stress and propagates along the minimum

(algebraic) principal stress trajectory through that origin.

"~ Figures 3.1 and 3.2 present maximum_(algebraic) principal
stréss concentration factor contours for sample cover plate and gus-
set plate details. (The specific geometriés used in these figures are
unimportant.) Such contours do not represent stress trajectories (or

)6‘0

isostatics although they do provide insight on how the principal
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stress is changing in thg vicinity of maximum concentration. Also,
it is interesting to compare these contouré with those representing
local stress in the direction of applied stress (Figs. 2.20 and 2f38).
The comparison shows the contours for a spécific detail have the same

general shape, but for principal stress they are further apart.

By using thé finite element output it is poséible to define
stress trajectories. The minimum principal stress trajectory which
passes through the point éf maximum stress concentration of each de-
tail has been superimposed on the principal concentration factor con-
tours in Figs. 3.1 and 3.2. (Since the contours are not tﬁe same as
trajectories, mutual orthogonality with the minimum principal stress
trajectory is purely coincidental.) It can be seen that the Erajec—
tory for the gusset plate meets the free surface at a right angle in
the same fashion as an equipotential line in a fluid flow net. How-
ever, due to the abrupt change in geometry at a fillet weld toe, the
trajectory splits the total angle (as required for symmetry) between
 the intersecting surfaces. Given a weld angleiof m/4, the trajectory
ini;ially has an angle of 7/8 to the vertical direction. The trajec-
tory for each detail turns perpendicular to the applied stress direc-

tion with increasing distance from the maximum concentration point.

The minimum principal stress trajectories represent pro-
bable crack paths in cases where propagation is of the unstable, cata-
strophic variety. 1In fatigue crack propagation, the stress field has

time to redistribute itself with each increment of crack growth.
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Thus, the minimum principal stress trajectory based»on_the initial
stress field gives a distorted view of actual crack path. Frank
noted frdm actual measurements that the crack angle to the vertical .
avéraged about m/1l4 in cruciform jointszz. He took this angle to be
‘constant. On the other hand, Albrecht notes that for stiffeners and
cover plates the deviation from-a vertical plane is barély noticeable
and can be néglectedz. This conélﬁsion seems to be supported by the
.visual evidence in Refs;'19 and 20. Indeed, most investigators dis-
regard any angle in crack growth and base stress intensity estimates

on stresses perpendicular to the vertical plane27’“5’5°.

‘'The minimum principal stress trajectory and a érack line
constantly perpendicular to the applied stress represent the,phyéical
limits of the path. However, the position of the minimum principal
stress trajectory may be altered slightly‘from that shdwn in Figs.
3.1 and»3.2 if the weld angle or transition varies from the idealized
geometry. In any case, the distance over which deviation from a
straight perpépdicular path occurs is likely to be sﬁall compared to
other geometrical parameters. . Further, the difference in perpendicu-
lar stress fo; the actual and perpendicular path at any given dis-

tance is not gréat.

Based on the preceding arguments the assumed crack path is
the straight line through the point of maximum concentration and per-
pendicular to the direction of applied stress. Hence, local stress

in the direction of applied stress (Figs. 2.20 and 2.38) is of
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interest and shear stress is disregarded. (There would be no shear
stress, of course, if the minimum principal stress trajectory were

assumed as the crack path.)

3.2 Green's Function

The relationship between sﬁress intensity and stresses on

the prospective crack plgne with the crack absent is clarified by

:fié;‘5;3us' fihe sﬁreéé.iﬁfénéity f;; dase,B is.qééiréd.. in,;fdéfﬂl
.. -to éyaluate it; tyo otﬁgr'load cases a;e‘conside;ed aﬁd sqpérposition
‘feéults in the actual 16ad ;ase. Thus;‘the crack plaﬁé'tréctioné in
Cases 1 and 2 are equal and opposite. Furthermoré, the magnitude and
distribution of the tractions in Case 1 are such that the ﬁrack is
completely closed, as though it weren't even there, Thus, the magni-
tude and distribution of the crack plane tractions are equal to those
of the stress distribution on tﬁat plane with the crack absent. Giveﬂ
such traction only Case 2 has aﬁ associatea stress intensitvahich,

aa . . . s 81
according to linear fracture mechanics principles ., must equate to

the stress intensity for Case 3.

The'distribution of tractions in Case 2 (Fig. 3.3) is
usually irregular for real structural details‘and appropriate stress
intensity-solutions rarely appear in the various handbooks76’81;.
However, a solution can be developed by taking the solution for con-

centrated splitting forces on the crack, converting the force (per

unit thickness) into stress over an incremental distance, and
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integrating over the crack length. Thus, any solution for splitting

forces can be termed a Green's Function. (In mathematics a Green's
Function is one which satisfies the given boundary conditions and
represents the inverse of a differential operatorea. The solution of
a nonhomogeneous differential equation is found by multiplying its
right-hand side by the proper Green's.Function_and iﬁtegrating Between
vlimits. Therefore, in»fractﬁre_mechani;s”g Gréén's Function is_the
égfess-inten§ity solﬁéioﬁ’fér_splittihg'f§r¢eé.éf.;ni; magﬁitﬁde.)’L
| Aiﬁréchgjcﬁése;;dfwork.wﬁ£ﬁ tﬂg Greeﬁ's-Functi6ﬁ £e;ate&,;oA;
'?'_fﬁeléréck'loadiné_iﬁ Fig;t$:42-'.A tﬁrougﬁ.cr§¢k.ié'aséﬁmed‘to be
1o§ated in an'infinite plate of unit thickﬁess aﬁdvsubjécted to
symmetrical pairs of splitting forces. The stress intensity fbr.the

configuration in 'Fig. 3.4 is??8!:

2P a

K = (3-1)
YTa 2,2
a -2
2 a _ ' -
where — = Green's Function
VTa a2_22

While many érack configurations with splitting forcesﬂarg possible,
this particular one is favored because it isolates the influence of
gradient,(i.e; Fg).from the other stress intensity cofrection factors.
Ffeé surface and crack shape effects can_be imposed separatély

(Eq. 1-4). Thus, Fig. 3.4 purposely doesn't resemble the geometry at

a fillet weld toe or groove weld termination.
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Force P in Eq. 3-1 can be broken down into stress over an in-

cremental length.
P=o0,*d2 (3-2)

The stress intensity for stress along the entire crack length can then
be written as follows:

K = /ma* (3-3)

=N

a
J‘ ,de

. —

oV a2—22

0 .

If the nominal stress, 0, at the section (or the one input into the
:,finité élement‘mesh - Chap. 2) is ﬁow'infroduced into the fbrmula,

" the stréss'intensity becomes:

a-
[e) : ’
K = C)'/‘l—T;*% . -——-'Q'———* dg (3-4)
' (02% 32—22 ' '
5 _ v .

The stress ratio under the integral sign represents the stress concen-
tration factor, Kt. Since ovia is the stress intensity for a through

crack under uniform stress, the remainder of the equation equals Fg'

a
K
Fio™ % T (3-5)
% a2—22. :
. 0 :
where F__ = stress gradient correction as a function of crack size

ga

Fg is seen to be nondimensional aﬁd directly related to the stress con-
centration decay. Therefore, Fg is also related to the selection of
nominal stress (Chap. 1). Due to the general nature of Eq. 3-5, Kt
could represent an ihp;t of stress gradient, as in bending, or residual
stress just as easily as a detail stress concentration. In fact, Kt

could include all gradients at once.
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Several trial cases of stress distribution lend credibility

to Eq. 3-5. vaKt is unity. for all.l, then Eq. 3-5 is integrated to

the form:
2 2 |
_2 .—1(~)]_ . }
Fga == [}1n S = 1 for any a _ (3 6)
0
If K, has the gradient form <l - %) (making 0 the maximum stress at
a = 0), Eq. 3-5 gives the following result:
_‘2 ' ) 2 o - : -
ga T [2 ] f 1 3= fo? any a | | (3 7)
“Both of the pfeceding answers agree with‘publisﬁed results76’81’82,
although the stress distributions involved are obviously special _
cases.
A more general solution to Eq. 3-5 is found by assuming Ktv
can be equated to the maximum concentration factor, SCF, multiplied

by ‘a decay polynbmiélzo’zz.

K .
tl _ 2 3 4
SCF =1+ A% + BL” + CL7 + D2 (3-8)
where A, B, C, D = decay constants (dimensional forms)
Substituting Eq. 3-8 into Eq. 3-5 yields:
Fj3—1+2‘A +§2+i§-a3+—3-ga4 (3-9)
- av?® T3y )

SCF m

Equation 3-9 can be applied to polyncmials of lesser order by merely

equating the appropriate decay constants to zero.
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It is possible that certain instances require two polyno-

mials linked end-to-end (at 2=L) in order to accurately describe the

gstress concentration factor decay.

K .

tL1 2 34 _
ScF - 1+ Alz + Blz + Clg + Dll SL‘ <L (3-10a)
Kt22=E+AR+B22+C23+D24'2,>L (3-10b)
SCF 2 2 2 2 z
where | .E - 1+ [A-A ‘L-'>+- 8- \t2 + /C.-C.\L> + (D.-D Ll*‘
S (Al 2) ( 1 2) ( 1 2) . 172

- Assuming a > L, the int:egral of Eq. 3-5 must be broken into two parts.

Lo

s .
K .
Fga=%j_t_&L*dg+f_ﬂ'3_*dg ‘ (3-11)
" O v a2—2.2 i v _az-l,z . o » =

Substituting Eqs. 3-10 into Eq. 3-11 gives: .

F 24 Z(A —A) B
—&SC; = E + ———Z(T]r' E) sin 1 (-g-) + ﬁla + zTr 1 v a2—L2 +T2—2-'a2 +

. 3
<B—B)_- (B-—B) 4C.a
—2 1r1 LY a2--L2 + ——1—2—a2 sin-1 (§)~+ 1

T 37 +
’ (3-12)

2(0 —c > 3D
A2 1 Y a2~-L2 (Lz + 2a2)_ + —2a4 +

3 . 8
3<D -D ) (D -D ) 2

172 4 , -1 L V271 3, 3a7L. 2 .2
——_—lm a sin (a) + “om [L +-—2— a .—L
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For the case of a £ L the equation for Fg reduces to Eq. 3-9 with the

constants represented by the first set.

Kt depends on position, £, while Fg‘dependé on crack length,
a. When using polynomials the connecﬁion between the twovdecays is
provided by the polynomial constants. As an example of the compari-
son of the two curves, suppose that iﬁ Egs. 3-8 and 3-9Aconstants A
.and-Biafe ~.13 and +.006, respéctivelj; while C and D are both’Zero;_:_
g Asé;miﬁé a épd'l are in miiliméters; the plots of Fé éﬁdAKﬁ a}é giyen
, in:Fig. 3.5., Iﬁ_is noted thaﬁ.both decays'beginvat the samé léVéI_vw
v‘-?(fg aquKt.both'eéual‘SCFj aﬁé inifially'diQétgeai'T£e5étré359concep;
tration factor at the crack tip (&=a) is(élwayé iéss thén the stress
~gradient correction for that crack length provided stress concentra-—
tion is decaying rather than rising. '(Note that the constants se;
lected.for the example cause Kt to rise when £ is éreater than about
11 mm. Kt actually crosses over Fg when R-= a=15.75 mm.) If the
stress concentration factor decéy reaches a lower plateau and levels .
off, the ngcurve converges asymptoticallyAto the same plateau.
Hence, for crack lengths well into the plateau region the difference -
between Fg for a given crack length and Kt at the crack tip can.be
neglected. (A case in point is Bowie's solution for a double crack
emanating from a circular hole in an infinite plate pﬁder uniaxial

2,11,42

stress®? Both Kt and Fg decay to 1.0 when the distance from

the hole and crack size become large compared to the hole radius.)
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Based on the forgoing concepts of Fg - Kt relationships and
knowledge of stress concentration'decay at typical structural details
V(Figs. 2.12, 2.21, and 2.39), Fig. 3.6 shows the predicted trend of
the stress gradient correction for real details. Kt itself drops
sharply to a sort of plateau below 1.0, as required for equilibrium.
Meanwhile, Fg also decays but not as rapidly as Kt' Eventﬁally Fg
becomes less than 1.0 and slowly converges to'Kt. The separation'of
thentwq curves at aﬁy pointvobviously_dependé én detail geometryl

except at the}origin'where the curves always converge.

.Thé ﬁéiynbﬁial'apppbaqh to én ngéolution‘h;s severa} inhér%
ent disadvéntéges; First, the decéy coﬁstants muét.bé éstabiished
and, no doubt, they will vary with the'detail.geOmetry. SeCoﬁd, due
to the shape of the Kt curve, at.leas§'tvo polynomials (perhaps both
fourth order - eight independent.constants ﬁust be defined) would be
fequired to accurately déscribe the decay overkthé entire range of
length. Of course, other forms of the Kt equation are'possible,be—
sides a polynomial. However, the closed form integration in Eq. 3-5

is then usually impossible.

It. is not really necessary to establish an equation for the

stress concentration factor decay. Equation 3-5 can be scolved numeri- .

) (3-13)

cally as suggested by Albrecht?.

. 0 _ . | '
F -2 z K . sin_l (——J-’-—l)—sin—l(
ga T Tt a

j=1

deﬁ
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where K = stress concentration factor in element j of the

t]
finite element analysis or the average between two
adjacent elements, both of equal distance along
the decay line
2j distance from crack origin to the near and far
£j+l sides éf f1n1teve;ement ]
‘m° .= number of elements to crack length a -

Eqﬁaﬁian"3—13 aéﬁhq;ly rééfésénts a mixed‘numgriéal/clbéeé fofm éélﬁ—_

.ﬁiaﬁ.sin;é witﬁin'a éiveﬁ elgmentvtﬁé conéeﬁﬁréﬁion is-aS§umed.con—“'
stant and integration of the remainder of Eq. 3-5 is carried out oyér
the element length. This approach is considered superior to the

purely numerical representation, given as follows:

¢

:llN

i .
z ——J——*Az o (3-14)

S22

J

3.3 Geometry Influences

Equation 3-13 has been employed to find the Fg decay curves
for each set of geometrical parameters in.Chapter 1. The trend of the -

results is clarified by Figs. 3.7 and 3.8.

Generally speaking, it is apparent that the detail geométry

can have a significant influence on F 27. The more geometrical
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parameters involved, the wider the possible range of Fg curves.

- Even details with equivalent SCF and lengths over which decay occurs
can have quite different values of Fg at a common point. Likewise,

details with similar Fg/SCF curves usually have dis;imilar Fg curﬁgs
due-to varied SCF. However, it is possible that different combina-
tions of geometrical parameters héve'equal SCF values and Fg decay

curves.

Figﬁre 3.7 presen;s standafdiZed Fg‘decay curves-(Fg/SCF)
1:>f§f sample sﬁifféner aﬁé cQVer'plafe‘details"_Seve;él éqnciuéionsV
cég be drawn Sf comparingithe geometfiéal paramete?s.. For stiffeners
the curve is lower Qhen the weld lgg—flange thickneés ratio (Z/Tf) is .
~higher. This is reasonable since SCF for stiffeners rises with in-
creasing Z/Tf (Fig. 2.13). The trend also agrees with Gurney's find-
ings for cruciform jointsg7. . In the case of cover plate details

f

contrary to stiffeners, SCF decreases with increasing Z/Tf (Fig.'2.13).

the curve is lower when Z/T_ is lower. . This too is plausible because,

The Fg/SCF curve is also lower for higher cover plate-flange = .

thickness ratios (Tcp/Tf) due to increasing SCF (Fig. 2.22).

Standardized Fg curves for samplé gusset'plate configura-
tions are given in Fig. 3.8. The curves are only plotted'to half
flange width; thereafter they would actually begin rising again due
to the two-sided gusset plates assumed in the finite element analyses.

(This particular aspect is neglected later in the dissertation since
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'iittle fatigue ‘1life remains when half the flaﬁge is cracked.) The
curves show the same basic relationship exemplified by the stiffener/
cover plate curves. When the combination of geome;ric parameters is
such that SCF rises, the standardized Fg curve tends to‘drop. How-
ever, the sharpness of.thé decay cannot be attributed purely to»SCF.
Note that the curve with thé second higheét SCF actually.decays more

slowly than two geometries with lower SCF.

- It is ééfa%ent tﬁag SCFiplays an importan; role'in'Fg

: cu;ﬁeé;ﬁhgthérLorEhét_they‘are_standardi;éd. The séﬁematié.coﬁpari;.
: §én'p£‘ﬁqnstahdardized.Fg éurves in Fig; 3.9 helps putvpﬁe findiﬁgs _
of Figgns.7 and‘3.8-into perspectivé. ﬁighér SCF usuélly meaﬁs thaﬁ
Fg is larger at small crack sizes but smaller’ at large érack sizes.
(Recall that the stress concentratioﬁ:faqtor decay curvg,.from which
Fg is derived, must provide for equilibrium. Higher on éne end meagé
lower somewhere else.) .Thus, actual Fg curves for two different
geometries cross each other in a manner similar to the stress éoncen—
tration factor decay curves of the fine and ultra fine finite elemént

meshes (Figé; 2.3 and 2.12).

3.4 Ellipse Correlations

Ultimately, the fatigue analyst needs a way of predicting
the entire Fg decay curve without going through a time- and money-
consuming finite element study. Some sort of equations are necessary

which reflect the entire influence of geometry (not just SCF -
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Art. 3.3). Ohe possibility is the development of expressions for
each decay coefficient in the polynomial equations (Egs. 3-8 and 3-9).
However, four or moré such expressions would.be required depending.on
the number of terms and number of different polynomials linked to-
gether. Obviously, polynomials are not particularly well suited to
representation of stress decay at singﬁlar details or any situation
where_the cqncentration rises shaiply_ovér a small range but is

:félétively flat elsewhere.

'5ﬁ f;~The?ché¥a;peristiés of.thé Fg“decay curve'(andAKt cur§e
.ftpo)iat.st:uctufal details até actually quite similar to features of
stress concentration factor decay (based on gross section stress)
from the.end of an elliptical hole in an infinite, unaxially stressed

>. Each curve begins at a maximum concentration factor, SCF,

plateg’5
and decays to a value near 1.0. (The asymptote for fg at details is
close to 1.0 - Fig. 3.6. The asymptote for stress concentration
factor decay from an arbitrarily shaped hole in an infinite plate is
exactly 1.) Therefore, it would seem a&vantageous to correlate a
hypothetical elliptical hole to‘actual Fg decay curves (ArF. 3;3)

such that any curve could be estimated from knowledge of the appro-

priate hole shape and size.

The proper hole shape is based upon the maximum stress con-
centration factor at the detail (Chap. 2). Figure 3.10 shows that the
maximum stress concentration factor at an elliptical hole, including

the special case of a circular hole, is a function of the ratio of
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the semidiameters, h/g. Hence, knowledge of the SCF (Chap. 2) sets
the shape of the ellipse.  Since SCF can vary from 1.0 to over 6.0,
it is necessary to consider stress concentration at both the.minof
and major axis ends of the ellipse. The éircular hole provides the

link between the two axis possibilities.

Kno@ledge of the correct ellipse shape does not.by itself
estéSiish the reQuired:decéy.c&ffglagion.  figﬁre 3.il'demogstrates.
that two stéps.afe.ﬁggessary éince elliéses4Qith equivalénf sﬁapes
véb/g)_cén héve very different @géay éurveé;, Strésé cdngenfratién aé.

any point x (or'y if decay is in the direétion of the minor axis) is

a function of both h/g and x/g (or y/h). As the absolute size of the

ellipse increases, the Kt decay over absolute distance becomes more

gradual (Fig. 3.11b). Therefore, once the ellipse shape is set so as

to give the necessary SCF, either the major or minor semidiameter
must be established to set the ellipse size and associated decay

curve. This second step is also necessary if the hole is circular.

3.4.1 Stress Concentration Decay from Cixrcular

and Elliptical Holes

The stress concentration decay from a circular hole is

readily available in the literature’!

. If the hole radius is denoted
by g and the distance from the hole center by x, the concentration

factor for x 2 g is as follows:

-87-

L



K =1+ %(5)2 + 2(5) | | (3-15)

An equation for stress concentration decay from either axis
end of an elliptical hole is not often cited in elasticity texts since
the expressions are relatively complicated and normally involve ellip-

tical coordinates!,%3,8%,

Elliptical coordihates imply an orthégonal
system of confocal ellipses?_u, and hyperbolés, v, thrpugh which the
pbsigion of'ény point in é plane can be.established tin the éame man-—

‘ner as a squa;e:grid with values of x and y. establish a pbsigiqn in |

4Aiféégéngpiaff;o§£dinatesj; :Hbﬁevéf,bd§e to fhe féct ﬁﬁaff&e;%y occuré

-;iong ﬁhelm;jdr or minor axis‘of.the elliéées where v is conéﬁant at 1
or 0, respectively, it is only necessary to consider tHe value of u in

establishing a position. Figure 3.12 shows the system of confocal

ellipses which is of interest.

There are several ways of éxpressing the equation of an
ellipse. One useful form contains a mixture of rectangular and ellip-

tical coordinate parameters.

2 2

e 1 | (3-16).

fzu fZ(u2—1)=

]

where f focal distance

(=4
il

elliptical coordinate 1 < u <

An alternative set of elliptical coordinates, n and , are related to

the initial set, u and v, as follows:
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(=
It

cosh () S : (3-17a)

<.
I

cos (Z) _ (3—17b)

Substituting Eq. 3-17a into Eq. 3-16 and using a hyperbolic function

identity gives another important form of the ellipse equation:

2 2 o
I PR T P o (3-18)
A f_cqsh $)) f sinh™ (n) . »

Equation 3-18 can.be:used to eStablish‘thevrelationship be-
tween rectangular and elliptical coordinates when the point in ques-
tion is on the major or minor (x or y) axis

!

Major Axis: . cosh (n) =-% (3-19a)
Minor Axis:  sinh (n) =% ©.(3-19b)

For the specific case of the elliptical hole with semidiameters_g'énd'

h, let n = v and Eqs. 3-19 become:

Major Axis: cosh (Y) =‘%’ (3-20a)
Minor Axis: sinh (Y)_=-% (3-20b)

Both sets of equations (3-19 and 3-20) involve the focal

distance, f, which is constant for confocal ellipses by definition.

72 -

Thus, £ can be established from the elliptical hole semidiameters

f =Y g°~h ' (3-21)
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Substituting Eq. 3-21 into Eqs. 3-20 gives the following expression:

1/2 1/2

(3-22)

As étated previosuly, the ellipse shape (h/g or g/h) is espablished by
the maximum stréss'concentrapion factor, SCF(Fig. 3.10). Therefore, Y
_ .gaﬁ'Be'fdund fof,éases of SCF less than 3.0 (minor -axis decay)as weli_
. éstsCF greatef‘tﬁaﬁ 3.0 Cnajaf axis decéy). At precisely 3.0 (a'circle)
a'gingularity develoﬁs.’ Hencé; it is éxpeaient; particularly when

using the computer, to make use of Eq. 3-15 for the singular case.

R

Equation 3-21 can also be substituted directly into
Eqs. 3-19. However, with Y known it's simpler to define £ in terms

of Eq. 3-20a or 3-20b and use this form in Egs. 3-19.

. - . - = 2{_ - 25 . fa_ .
Major Axis: cosh (n) 2 cosh (y) h 51nh‘(Y) (3-23a)
Minor Axis: sinh (n) = é-cosh €] =-% sinh (Y) '(3-23b)

In these forms it is apparent n depends on theAfatio of the x or’y
coordinate to semidiameter g or h as well as v, wﬁich depends on the
ratio of semidiameters. Assuming the stress concentration factor decay
depends only on Y and n, the functional relationship of Fig. 3.11 is
verified. Moreover, it is seen that if the exact size of the ellipse
is known through the stress concentration factor (Chap. 2) and qorre—>

lation equations (Art. 3.4.2), K_ can be found for any assumed point

t

X or y. 7
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References 55 and 9 lead to solutions for Kt'in terms of Y ‘

and n. First, for uniaxial tension in the minor axis direction and
decay in the major axis direction, two equivalent forms of the Kt

equation are presented.

Ref. 55:
K _ =1+ 1 cosh (y) eY(ezY—3)( lﬁnl (:ot:h(n).)e—2n + cosh(Y)coth(n)]
t;m. - 2, .2 . 2 TN , A T
o . sinh"(n) / A . R e
C ,..vn 32y
-Ref;.9§'.
.gtnif»[s {1 12§_ -+é : 3--5? -fe -3 e»ﬁ‘: v+.,‘ : (3-25)

2
sinh(2n) lcosh(Zn)in%’cosh(ZY)-%-”/«cosh(Zn)—l)

Second, for uniaxial tension in the major axis direction and decay in . |

the minor axis direction, only one Kt equation is derived.
Ref. 9:

K, = [% {1 + 2e2Y+e4Yl 'l3 +4e 2N 4 74D } +

(3-26)

« ! | 3 | 2
sinh(2n) [cosh(Zn) +E cosh (2Y) +—2-U/(cosh(2n) + 1)

While Eqs. 3-24, 3-25, and 3-26 are somewhat tedious to solve by hand

b}

they present no difficulty whatever for the computer.
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3.4.2 Correlation Equations

Now that equations have been developed to evaluate stress
concentrationvfactor decay from either axis end of an elliptical hole,
the idea is to formulate equations for optimum ellipse siée. The
basis assumed for this optimization is equal'cycle life for a certain
amount of crack growth, depending on the type of detail. In other
~ words, the life using the Green's'Fuﬁction'Fg.ggrye (Art{ 3;3) is'conr

"pared with.life predicted using the étfess cohéentratioﬁ factor decay
’fromvan_elliptic hole in plggg of Fg- The-sigg'of thg héle is.éd—-
«_1ju$;edlusing:a_biéedtioh épﬁrpaéh until the li?és»are~eduélA(ﬁaximum

. relative errbr - 0.05 percent).

Life predictions require knowledge of AK (Eq. 1-3) which,
in turn, requires values for other correction factors és well as Fg
(Eq. 1-4 and Chap. 4). AK also requires an input of stresévraqge, Sr;
However, ;hé extensiﬁe:correlation study for all de;ails”in Chapter 2A
has shown that the form of the othe; correction factors has negiigible
effect on the correlation results. Furthermore, the choice of S;

makes no difference since it is constant and does not need to be

included in the integration process (Eq. 1-3).

It is necessafy to consider the dimensionless geometrical
parameters incorporated in the SCF equations (Chap. 2) wheh formulat-
ing the correlation (optimization) equations. Sﬁch equations are_ﬁot
developed in terms of SCF since SCF alone does not dictate the shape

of the decay curve, even when it is presented in terms of
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nondimensional distance. (Note that certain details in Figs. 3.7 and
3.8 with nearly equal SCF have dissimilar decay curves.) Fortunately,
the ellipse stress concentration decay concept is .versatile and the

ellipse size can be made to suit all circumstances.

One additional geometrical parametér which enters intd the
correlation process is initial crack size, a,- The optimized stress
~ concentration factor decayfcurve fOr-;herelliptical1holerdoé§?notAnec_
esSarily coinéide with the.actual'fg cur§e'a£ e§éry poéifibnrviit'é |
- j&stftﬁat.théir'effect on éicertaiﬁ'émouhr:of:craék‘grbwrﬁ isnﬁéde_
,'i..’qua1{ Therefore', the optimum cgryé ls'lhif_t_:_s"Pos‘it_i.dt{ 'sbm‘ew?rat:: as al

- varies.

3;4.2.1:4Stiffeners énd'Cover Piateé.Attééhéd to -

Flanges with Transverse Fillet Weldé

Generally, SCF for stiffener and cover—plated details ex-
_xcgeds 3.0 (Fig. 2.13)." Tbus,,stressjcohcentratioprféétor”de;aﬁ is
tgken from the ﬁajor axis end of:the.élliﬁrical“hbie-(ﬁq;:j—?A';r-
3425). ‘While rhe.decay can Be'evaluatéd‘in terms;afrx/grorig/h‘

(Eq..3423a),x/gis preferred since X equates to g plqucrack length.é."

For both stiffeners and covér plateé thé.eiiipse correlation
is made for growth through the flange thickness. Figure 3.13 compares
a typical Fg approximation curve (from the ellipse) with the actual F
curve (from the Green's Fantion-—Art. 3.2) and the original stress
concentration factor decay at the detéilf It is aéparent that the ap-

‘proximate Fg curve is in close agreement with the actual Fg curve and
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.-g(_)pt

both are above the Kt curve from the finite element analysis. Com-

monly, the two Fg lines cross each other twice.

It has already been mentioned that initial crack size has a
bearing on the correlation results. Figure 3.14 indicates the kind of
variance in optimum ellipse size, gopt’ which is typical of all de-

tails. The trend is somewhat parabolic. This shape is understand-

able since for very small initial cracks the twovFg curves Cross over

one -another at two points (Fig. 3.13). Naturally, the lower limit-of

is zero and occurs when the initial crack size is so large. (in

'ZtHé}?icinitynof a.-i/Tf = 0.4) that’ correlation is-no longer‘pdssible;.
.'jHQwe?er,”at>this and larger éraékilengths’Fg can be assumed to:be 1.0

without significant error. '

The optimum ellipse sizes found by correlation study of the

geometries in Chapter 2 can be related to the geometrical parameters

' in&olved'by least squares curve fits.nghe resulting relationships for

 Stiffeners-and cover plates are as follows:

Stiffeners:

go | yARTS i z 2
—TP— = -0.002755 + 0.1103(,[— - 0.02580 (T—) +
£ £ £

2

. a. .
)— 7.165(?) T (3-27)
£

[N

0.6305(

.

-94—



Cover Plates:

~a

go t | Z YA 2
_ER_;= 0.2679 +0.07530(55J -0.08013 (Er- +
£ f. f (3-28)

2

m .

T ‘ . a_
0.2002 log (TCR) + 1.391 (T—l) - 11.74(T—1)
| . : )

’The standard errors of estlmate for the stlffener and cover plate

equatlons are 0 0041 and O 0055, respectlvely

One'remote possibility for stiffeners is that SCF will drop ' R
:.h;below,S;O. Then,”the.approximation ovag'should“no loneer be taken
: from stress concentratlon factor decay from the maJor ax1s end of an, ’ fp - “y

‘-,elllptlcal hole. The questlon arlses.as,to_what_to,do;about Eq 3-27.?;

by h_ and employ . h> i

An approximate procedure'is simply to(replace g opt opt

Eq. 3-26 rather than Eq. 3-24 or 3-25. Elllptlcal coordinate n would ‘

" be ‘established bylﬁq..3—23b where y is h plns the’crackvlength,'a.

R The optlmum elllpse 51ze equatlons canube usedto predlcth
';for values of geometr1cal.parameters not>spec1f1cally‘stud1ed 1n '
hChapter 2. Knowledge of SCF (Chap 2) sets the elllpse shape-‘

(F1g 3.10) and elllptlc parameter Y (Eq 3 22) A glven crack length
opt1mum ellipse size, and Y yield elliptic coordinate n (Eq. 3-23a).
Both n:and Yy fix the value of Kt (Eq. 3—24 or 3—25)_which has been

t

correlated to Fg. " Thus, Fg at the given crack length is approximated_

A useful comparison of Fg curves for a cruciform joint is

presented in Fig. 3.15. (For the ellipse correlation the joint is
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treated as a stiffener with B equal to twice Tf.) Gurney's decay

27

stems from a finite element compliance analysis and is seen to be

generally higher than the correlated ellipse decay. The Hayes and

Maddox curve?®

is in good agreement with the ellipse approximation.
While the Hayes.and Maddox Fg also resulted from a finite element com—

pliance analysis, it involved loading the crack surface directly with

the crack free stresses’! in the same manner as the Green's Function

_Ebﬁéépt (Art. 3:2); >AISO,,Hayes and Maddox had bnly a one-sided

_crack which caused plate bending of increasing magnitude with increas-

ing crack length.

"~ One reason for the lack of agreement with Gurney's results

~ is the difference in_meéh size.”’ While_Gurnéy dbes'nbt_prgsent_his'

- mesh in real units (everything is relative to B), it is probable that

the size was considerably larger than that in- Chapter 2. From a com-

';parisonvéf resﬁlts of fine and ultra fine meshes it is known that SCF’
- rises as mesh size decreasés.'Howevér, the stress.¢oncentfatibn factor .
- decays less sharply for the fine mesh leading td-highéf'véiueS-of'Fg

',:ép?the-larger.érack.lehgﬁhéqf o

Anotﬁef source of discrepanéy betweeﬁ theAGﬁrﬁey'and eilipse
correlation curves is Gurney's calculation of Fg from the compliance
results. Chapter 1 noted that a compliance analysis 1eads to stress
intensity, K. In order to find Fg; assumptions must be made for the
other correction factors. Gurney simply assumed K for a double edge

cracked plate under uniform tension is representative of K for the
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actual joint divided by Fg' (Gurney does admit, however, that the
assumption is weak at large crack sizes since, for symmetry, four
cracks are implied by the finite element modeling - Fig. 3.15.)
Chapter 4 shows that the front free surface correction, Fs’ rises when

there is a stress concentration at the crack origin. Therefore,

Gurney's curve appears to include some amplification for FS as well as

-

3.4.2.2 Gusset Plates Groove-Welded to Flange lips

Since SCF for gusset plates with circular transitions rarely

: exceeds 3.0,”stress conCentration factor decay is taken frbm'the

'mlnor ax1s end of the elllptlcal hole (Eq. 3- 26) The decay 1s evalu—f

ﬁ'ated in ‘terns Of Y/h rather than y/° (Eq 3 23b) because coordlnate y Llf;*&

is equal to h plus the crack length a.

Elllpse correlatlon is. made for crack growth across halt of.
-i>the‘flange w1dth to the web llne._ Fg beglns to rlse.shortlyAafter
' ;that p01nt 51nce KA rises for a two—51ded detall. Uelng the corre-
lated elllpse decay beyond tne.yeb is. tnen actually erroneous.i“Howe_~
.ever; sc-llttle-llfe remains ‘that thelerror-le nnlmpprtant.‘ The
ellinsedcdrrelatien cdrve ls also too.hign lf thevdetaillis only one-
" sided although it leads to a_conservative'cycle life estimate
(Chap. 2).

Correlation studies of the gusset plate geometries in
Chapter 2 nroduce optimum ellipse sizes, h . As in the cases of the

opt

stiffeners and cover plates, the ellipse size can be related to the
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various geometrical parameters and initial crack size by a least

squares curve fit. The resulting equation is as follows:

Gusset Plates:

Ropt R R |2 o L
—9P~ - _0.01620 - 0.1105 + 0.03307 | =] +:0.02821(—=| -
We We Vel We

L\2 v\ W\
-——> - 0.008776 (—EP- + 0.004437 (—53 +
R : ' £

0. 002436
( W W W |
. . )
(T \ /T \ a1> (ai>;
0.08587 EP | _ 0 03291 —ER | 4 l 673 —] - 43 49 | —]
A Te/ \ e/ oo\, T

- (3-29)

The standard error of estimate for Eq. 3;29 is 0.0107. This is about_.
double those values for Eqs. 3-27 and 3-28 due primarily to the

. greater number of variables involved.

l:?TTA:Eéuééi;ﬁ‘3-29 ié:i&tendédjfbfﬁfiahgé thicknéésés‘iégg théﬁ B
': ;OrTé§uéii£o 25f6£iiimetefs uflange thlckﬁess has é spécial effect due

. to 1ts relatlonshlp to crack shape (Art 4 5). Flgure 3.16 emphasizes
that tﬁe crack shape reglons.dellneatlng_the trend in shape Qith crack
growth depend on flange thickness as well as initial crack size.
Therefore, flange thickness affects the number and phases of crack
shapes which are exhibited. For thicknesses up to 25 mm h is

opt
unaffected by crack shape considerations.
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Flange thicknesses greater than 25 mm require a modification

to Eq. 3-29. The amplification factor by which Eq. 3-29 should be .

multiplied is as follows:

25 mm £ T, £ 50 mm:

£
1.0 + E - | S (?’_;30) |
- 34.54 log (2) R ' '
S _ w..oo
I S
Lo o Tf o
ovhere Bt 0
1.0 + : T - (3-31)
-+ 34.54 log (ﬁ ) o ' .

: f:

'JiTyﬁiéaliy, this factof‘reéultSTiﬁ a.éhahgéidf less than_ls.percent. '

- Tﬁé érqégdufe qu‘pfeéiét;ﬁéjf;:fpr'arbitfary guséet plate
geometries is similar to thaf oﬁtlined fqr étiffeners aﬁd'covef
. plates. SCF can be found from Eq. 2-5 and used to fix the eilipse
shépe (Fig. 3.10) and parameter Y (Eq. 3-22). Eliiptical coordinate n is
evaluated (Eq. 3-23b) using Yy, ellipse size h (Eq. 3-29, amplified if

required), and an assumed crack length. Substitution of n and Yy into
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Eq. 3-26 gives the stress concentration factor at the assumed crack

length. This stress concentration factor corresponds to Fg'

In the unlikely event that SCF exceeds 3.0, hopt in
Eq. 3-29 can be treated as gopt' Then, Eq. 3-23a should be employed
to find n and substituted into one of the equations for stress concen- °

tration factor decay'from the major axis end (Eq. 3-24 or 3-25). The

resulting value of K, is taken as Fg'
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4. OTHER CORRECTION FACTORS

The compliance épproach to evaluating stress intensity
(Chap. ‘1) has the distinct advantage that the combination of correc-
tion factors, CF, is that which is output. An individual correction
factor can be evaluated from this combination by making assumptions
for the remaining individual factorsf But since it is the total cor-
rection at any crack length which is important in fatigue life predic-
tion, accuracy of the assumptions is not overly important unless
several of the individual corrections are to be reused in an unrelated
problem. Such reuse is encouraged because fatigue life investigators
rarely have the time and funds to run a complete compliance analysig

on each new detail configuration.

Albrecht's method of evaluatiza Fg isolates this correction
factor from all others by solving a problem different from the one at
hand. Thus, it is necessary to make decisions on the other correction
factors before.fatigue life can be estimated. However, it is impor-
tant to recognize that these other corrections are affected by the
nonuniform stress distribution®!. Likewise, allicorrections are.
affected by cfack shape62 even thoughvone correction, Fe, is speci-
fically intended for this purpose. Therefore, any assumptions on

correction factors must consider the influence of stress distribution

and crack shape.
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Some hesitation exists in using solutions for correction

factors-?particularly Fs f.which are related to idealized plate geo-
metries. Geometries at real bridge details are often irregﬁlar; per-
haps the form of each cor;ection from an idealized geometry is not
‘precise. Nevertheless,-the staﬁe—of—the—art in stress intensity
evaluation is such that most actual details have not been solved.
Approximate solutions from idealized cases are inevitable. Moreéver,
the cumulative validity of these approximations can be judged on the
basis of correlations between estimated and actual fatigue.lives

. (Chap. 6).

4.1 Crack Shape Correction - Fe

Based on the work of Green -and Sneddon??

the effect of crack -
shape on stress intensity is dependent upon the complete elliptic

integral of the second kind.

m/2 .
| 2 . 2112
E(k) = [l - k"sin B] dg S (4-1)
0 -
| a2
where k =1- (E)
a = minor axis semidiameter
b = major axis semi@iameter

For any given position along the crack front, described by angle ¢ to

the major axis, Fe is given by the equation?®,
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1/4 v
_ 1. 2 2 ] _

) [1. K2cos? (4-2)
Generally, interest is directed to the minor axis end of the ellipse

where ¢ = /2. For this particular position:

=1 ' _
Fo = E(k) (4-3)

The'limits of Fe are readily detgrmined by inspection of the
ratio a/b. - When‘the two semidiameters are equal the ratio a/b is 1.0.
Thus, k is zero. Fe by.either Eq. 4-2 or 4-3 is thegefore 2/m. How-
ever, when b is much larger than a as in a through crack-configura—
tion, the ratio approaches zero and k goes to 1.0. E(k) also

approaches 1.0 and Fe by Eq. 4-2 reduces to

F, = [sin¢]l/2 oo (4-4)

For ¢ = /2, F obviously is 1.0. Thus, for ¢ = m/2, F_ varies be-
tween 1.0 and 2/T as the ratio a/b varies between zero and 1.0. At ¢
~equal to zero, F_ varies between zero and 2/m as the ratio.a/b varies

between zero and 1.0.

Fe is seen to be maximized at the minor axis end of the
ellipse, thereby maximizing‘stresé intensity (neglecting the vari-
ation of other correction factors). Thus, surface cracks tend to
grow more répidly at their minor axis ends - approaching semicirculaf
conditions. Minor axis length, a; then corresponds to the critical

crack length parameter, a. Unless otherwise indicated it is assumed
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plate

that the stress intensity at the minor axis end of the crack front
(¢ = m/2) is desired and Eq. 4-3 is used to evaluate the crack shape

correction factor.

4.2 Front Free Surface Cbrrection - FS

Whether or not a free surface correction is necessary (is

~other than 1.0) depends upon the boundary condition at the crack

origin. In an early study on stress intensity Irwin considered
Westergaard's periodic array'of'through cracks across an infinite
e35,62,87  The through crack permits no Poisson type displaéement

along lines perpendicular to the cracks and cutting them in half.

Thus, no free surface correction was required.

- For edge cracks F; is genérally necessary since stress, not
displacement,.is zero on the free boundary. Attachments like stiff-
eners, cover plates, and gussets, as well as webs do provide some
restrction to displacement at weld toes or terminations. The magni-
tude of such réétriction is not known to-any specifié degree although
it is estimated to Be quite modest. At least it is often omn oniy one
side of the crack. Thus, in this dissertation Pbisson type displace-

ment restriction by attachments is disregarded completely and FS is

related to simple edge crack specimens.

The approach with this correction factor is to determine the

values for the extreme conditions of through (a/b = 0) and circular
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(a/b = 1) crack fronts. The circular fronts are further divided into
half-circles and quarter-circles since stiffeners and cover plates
have half-elliptical éurface cracks while groove-welded gusset plates
tend to have quérter—ellipticalVsurfacé cracks (i.e. The crack origi-
nates from the corner of a.flange cross—section rather than along

the side - Art. 4.5).

4.2.1 Through Crack

Tada and Iryin have tabulated the variability of Fs with the
distribution of streés applied to the craékal’ez. Figure 4.la shows
this variability for the types of stress distributions common to'
bridge details. If the streés is uniform over the crack 1eng;h,

.FS is 1.122. 1If the stress varies lipea;ly to zero at the crack tip,
FS is 1.210. And if a concentrated load exists at the crack origin,
FS is 1.300. Hence, if the stress distribution decreases from the
crack origin more rapidly than the linear condition, FS musﬁ have a

value between 1.210 and 1.300.

4.2.2 Half-Circular Crack

Reference 82 also directs attention to the half~circular
crack (Fig. 4.1b). For a uniform stress over the entire crack plan
area, FS is 1.025. For a sfre;s which varies linearlyito zero at the
crack tip, Fs'is 1.085. The'solution for a line load'over_length 2b

at the crack origin is not known. FS for this condition is estimated
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at 1.145 which incorporates twice the increment increase as is present

in changing from a uniform to a linear stress pattern.

4.2.3 Quarter-Circular Crack

Less is known about free surface correction for quarter—cir-
cular cracks than for the previous crack geometries. The stress
intensity is desired at one of the free surfaces (¢ = ﬁ/2 in Ref. 82),
.and existing solutions are\not accurate there. FS must aétually
account for both free surfaces as well as stress distribution. Based
on extrapolation of solutions for positions other than the free sur-
faces,.Fs is estimated to be 1.380 for uniform stress (see also
Rgf. 17) and 1.067 for linearly varying stress. ,{Note that 1.380 is
- not merely the square qf FS for the halgjcircular or through crack
case. Tada and Irwin also state it is not -the product of Fs (b =0)

- and FS (¢ = m/2) for the half circle.} As with the half-circular
crack a solution ié unknown for a line load over.length b at the
crack qrigin. ‘Thus, the limiting FS is estiﬁated,at 0.754. The man-

ner of deriving this estimation is identical to that in the

half-circle.

Comparison of. the quarter—cifcular case with the half-
circular and through crack cases provides one interesting conclusion.
For through and half-circular cracks FS increases as more stress is
concentrated at the crack origin. However, FS declines sharply for

quarter-circular cracks as concentration increases. Apparently the
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free surface directly adjacent to the crack tip tends to relieve more
and more of the stress condition as the applied loading becomes more

remote. Plane stress exists at the crack tip rather than plane strain.

4.3 Back Free Surface Correction - Fw

The solutions for Fs consider infinite half or infinite
quarter spaces. When the space is not infinite, thought must be
given to tﬁe back surface correction, Fw. Once again thé fqrm of the
correction depends on stress distribution and crack shape. Howeﬁer,
Fw also is qdite sensitive to whether or not the section is permitted
to bend as crack growth occurs. The bending tendency is natural for
any strip in which crack growth is not symmetrical withArespect'to'

 the strip centerline. S

The literature often cites two forms of Fw (almost inter-
changeably) for the symmetricai cfack cases presented in
Fig..4.252;76’81’82. These two expressions are also applicable to
nonsymmetrical crack configurations where bending is prevented by
imposéd boundary conditions. Thus, the strips in Fig. 4.3 are com-
parable to those in Fig. 4.2. In real structural details the roller

supports might be provided By a web and/or stiffener.

Bending amplifies the back surface correction - particularly
at high values of a/w where more bending occurs. If the rollers on
either strip of Fig. 4.3 are removed, the back surface correction

takes on the following form!®>!7:
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F =Q*(L can (E))I/Z o | : (4_5)' o

w T

3
0.752 _ 2.02a + 0.37 (l—sin(ﬂTa))’

where

Lo
|

1.122cos (%%)

a=2
w

The coefficient by which the tangent correction is modified, Q, is
plotted in Fig. 4.4. While it is true thaf the change only becomes
very large at high o values, actual life predictions have shown fhe
bending coefficient to have significant influence on fhe results -

. particularly when stress range‘is small and early fracture unlikely
(Chap. 6). Since stress intensity range is raised fo the third power
~in order to predict life, evéﬁ small changes in correction factors

are important.

Tada and Irwin mention that‘it is possible to have an in-
between situation where loéal bending of the strip at the‘crack is
possible but rgpote bending is restrainedez. In Fig. 4.3 this consti-
tutes removing thosé rollers near the crack position. For such a

condition a reasonable expression for the back surface correction is:

¢ . 1.122 - 0.56lo + 0.0850% + 0.1800° (4-6)
v 1.122 /1 - a

Equation 4-6 can be divided by the normal tangent correction to
determine the amount of amplification. This amplification coeffi-

cient is also plotted in Fig. 4.4.
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It is readily appa:ent that little difference exists be-
tween Eq; 4-6 and the tangent correction. Removing only the local
rollers in.Fig. 4.3 has no effect on Fw. However, when such restraint
is removed from the crack origin, Fs changes from l.O.to 1.122.

Stress rather than displacement becomes zero locally.

The choice between bending and no bending depends on the
structural detail as well as how the crack is growing; Fér both
-cover plates and stiffeners fillet-welded to flanges, cracks originate
at weld toes and grow through the flangé thickness. (Flange thickness
is then equated with strip width, w, in Figs. 4.2 and 4.3 and
ﬁq. 4-5.) Yet, the two details are believed to be different as far

. as bending is concerned.

The stiffener and web combine to restrict flange bending,
which is caused by the presence of cracks across the entire flange
width. .However, cover plates are much more flexible than stiffeners
(depending primarily on thickness) and longitudinal flange bending
due to cracks is really only prevented along the web line. Therefore,
stiffener details are assumed to have bending prevented while cover
plates are téken to have unrestricted bending. The fact that longi-
tudinal bending is prevented directly over the web in both cases is
not a dominant factor since cracks ofiginate at many sites acrosé fhe

flange width (Art. 4.5).

It is possible to have small plate attachments fillet-

welded in an upright position across a flange. Series AQB in
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Ref. 20, for example, is representative of this sort of detail.
Stress concentration is again related to the weld-flange thickness
ratio, and even thopgh the attachments are not connected to the web,
little local flange bending is induced or permitted. Therefore,
‘while not precisely the same as a stiffener, fatigue performance

shoule be, and indeed was similar.

Gusset plate details have been fognd to exhibit considerable
flange bending during crack growth!?. Such is true even if plates of
‘identical geometry ére symmétrically positioned on opposite flange
tips. ‘Some crack growth may occur ét both details, bﬁt soon one side
dominates and bendinglcéuses the crack at the other side to close..
For praétical purposes such dgtails are comparable to cover plates>as

- far as back surface corrections are concerned. Strip width, w, should

i

be taken as the full flange width, not simply half of it. (Half
flange width would be used if a symmetrical double edge crack truly

exists, but then there wouid be no bending.)

Figure 4.5 presents the back surface corrections for through
cracks with and without bending. Without bending the familiar secant
corrgétion is used for a uniform stréss while the secant is amplified
as sﬁress concentration occurs at the crack origin. This amplifica-
tion has maximum value.1.297 V7/2 for a concentrated load at the crack’
origin and o =1.0. Both no bending solutions stem from a finite width
plate ﬁith a central through crackal. The linearly varying stress

case 1is assumed to be the average of the two extremes. A sharper
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stress decline has a correction somewhere between the concentrated

load and the linearly varying stress values.

The back surface corrections associated with bending show
significant amplification of the secant correctién. Figure 4.4 plots
the uniform stress correction divided by the tangent correction.

Since the tangent and secant corrections are.similar, the plot gives
a good indication of the uniform stress amplification as defined here.
(e.g. At @ = 0.9 the uniform stress amplification is 12.29 while the
concentrated load amplification if 29.78.) These back surfaces solu-
tions are directly linked to front surface corrections since bending
demands lack of symmetry. The combined correction factors fér through

cracks found in Refs. 81 and 82 were divided by the associated front

~surface corrections (Fig. 4.1) to isolate the back surface correction

factors.

fo this point all discussion of back free surface correction
factors has centered on the through crack configuration (a/b = 0).
Maddox®?! recently condensed the work of numerous res’earcherszl""1’.77’83
and estimated how Fw varies for crack shape ratios and(iyaluesbeﬁween
zero and 1.0. Uniform stress and unrestricted bending were assumed.
His results eésentially agree with Fig. 4.5b when a/b equals zero, but
vary nonlinearly to almost 1.0 for any o value when a/b equals 1.0.
In other words, Fw might well be disregarded for.the half—circﬁlar

crack. The net ligament on either side of the crack inhibits bending

and even restricts the crack from "seeing" the upcoming free surface.
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The_curves Maddox produced are approximations since‘few
data points éxist for.crack shape ratios between zero and 1.0. Never-
theless, it is reasonable.to_assign Fw a value of 1.0 fof any o if the
crack shape is half—circular, regardless of the bending and stress

distribution considerations!®s73,

4.4 Plastic Zone Correction - FP

Earlier studies have indicated that the plastic zone cor-
rection, Fp, is normally small for fatigué problems and can be disre-
garded (Chap. 1). While a.detailed investigation of this premise is
not intended, a brief outline ofbthe basis of the decision is war-
ranted. Interest is particula;ly centered on how the other correctibn

factors affect the magnitude of Fp.

Stress intensity factors stem from the elastic stress dis-
tribution near a crack tip. The stress ahead of the crack tip and

normal to the crack plane has the following form.

K

g = ,(6=7)

27T

where T = distance from crack tip

" Obviously, 0 increases as r decreases and eventually reaches the yield

stress Oy. The distance, ry, to where the yield condition ends is

’ 2
-1 /K
. - (0) o (4-8)
where Oy = yield stress of material from standard tensile test
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Factor omega (§2) is used in lieu of 27 in Eq. 4-8 since the
yield stress of the material, Oy;'as defined by a standard uniaxial
tensile test, is elevated when plastic flow is restricted. This re-
striction is provided by the elastic regions a&ay from the crack tip.
The amount of restriction and the effect on yield depends on whether a
two—-.or three-dimensional stress state is created. Thus, the Q associ-~
ated with plane stress differs from that required for plane strain
conditionse

Some redistribution of elastic stress must occur to accommo-
date the yield zone. This redistribution can be viewed as a simple

increase in effective crack lengths. Irwin estimated the additional

length to equal ryas. The effective stress intensity, Keff’ is then:
= CF'*g/ .
Kegg = CF'*0/m(atr ) 5 (4-9)
atr a+r
where CF' = CF' —aﬁx, " geometry

F 'F'F 'F!
s 'w e’'g

Since ry depends on K (i.e. Keff) whicﬁ, in turn, depends on
ry, an iteration process between Egqs. 4-8 and 4-9 is requiredvfor a
stress intensity solution. However, the additional accuracy garnered
may not be worth the iteration effort. One intermediate suggestion is
to use material toughness, KC, if available, in place of K in
Eq. 4-8'2, This would maximize the zone size and, as far as Eq. 4-9

is concerned, have maximum effect at small crack sizes.
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Another possibility in lieu of iteration is to leave the

correction factors in Eq. 4-9 unmodified for zone size‘and only modify
the crack length under the radical.. This approach is essentially the

same one takén by Irwin when he employed only two correction factors,
Fs and"Fe, and considered them both con;taﬁts37.' The effectivg stress

intensity equation is then:

Rogr = FoF*o/m(atr ) | (4-10)

Using Keff in Eq. 4-8, substituting Eq. 4-8 into Eq. 4—9,band rear-

ranging gives:

Fs*c/ﬁ
Kofs 73 (4-11)
“F “mo’
1 __s
F 2 - Qo 2
= y

Irwin used ¢ in lieu of %—; 4/2m in place of Q and_let FS2 equél 1.2,

: e
Thus, Eq. 4-11 appeared as follows®®:
o 1.1 o/ma _ '/ﬂa :
Keff = - - 5 L= 1.10 o q (4-12)
% - 0.212 =
g
y

It is apparent that crack tip plasticity was treated as a modification
of the crack shape cdrrection, Fe' The ratio a/Q was termed the nor-
malized crack depth. Curves of Q versus crack shape ratio, a/b, have

been developed for various ratios -of applied stress to yield stress®®.
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Equation 4-11 can also be expressed .as:

= * —
K ;s FstFe ov/ma (4-13)

where F = L i
P s

™ FeFSO ?
-9 o
y

In considering the general case of all correction factors, the Irwin

method leads to the following formula for effective stress intensity.

K g = CFp*c/ﬁ ' (4-14) |

where CF Fp*CF

1

1
l_'_zr_ CF*g 2
Q o
y

There is another possibility for solving Eq. 4-9 without

iteration. That is to include ry in the correction factors, but use

unmodified K instead of Ke in Eq. 4-8. K would only be used in

ff

Eq. 4-8 when modifjing crack length, a, under the radical. The re-

eff

sulting equation, similar to Eq. 4-14, would be:
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(o]
g
I

" atr ' atr '
cr" b4 Y geometry
w b > _

Whether Kc’ Eq. 4-14, Eq. 4-15, or thé original iterative
technique is favored depends on the.problem and accuracy néeds. In
light of uncertainities in other corfécéion factors for real struc-
tural details, iteration is generally not warranted. Equation 4—15,
being somewhat moré accurate than Eq. 4-14, is favored in fracture
problems where the applied stress, o, and‘plastic zone are often
large. The fsgﬁat.of Eq. 4-14 (with correction factors unmodified
for effective crack length) seems sufficient for most fatigue pro-
blems. Howevér, two further modifications to the equation are
required,
Paris noted that it ;s necessary to replace stress, ¢, with

stress range, Sr’ and the yield stress, Oy,.with Zoy when a fatigue

problem is encountered®!. The latter adjustment is required since for

alternating plasticity the elastic stress must reach twice the static
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yield stress. Therefore, the size of successive yield zones in
fatigue is one-quarter that found in fracture problems. The resulting

expression for effective stress intensity is:
K = CF__*S vma - (4-16)
pf r _

where Cpr = prACF

F
pf 2‘/2

E
N
40 o]
Yy

The factor Q has been investigated by Irwin®7s3%, Liu"®,

Schijvesg, and Rice®%°%7. Due to the influence of the crack itself,
plane strain conditions are predominant at the tip, even with very

thin plates75. Maddox records that Rice's latest solution for plane
strain ( = 2.82 ) is probably the most accurate solution available

for that category®. Making the substitution for Q results in the

‘following plastic zone correction for fatigue.

Fos ' - (4-17)

 [cFxs_
1 -13360 /|
b/

It is obvious that the plastic zone correction increases

with the other correction factors. Fp also increases with stress

range but decreases with the yield streéss of the material. If Fp had
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significant importance in fatigue, Eq. 4-17 leads to the conclusion

that the log-log Sr—N curves of Ref; 21 would not be stfaight lines,
and the various category curves would not necessarily be parailel to
each other. _However,experimental data on structural members of all
common yield strengths is the basis of the essentially parallel Sr
lines and Code provisions in the first place3»>19,20, Yield strength
in the range normélly encountered (210-760 MPa) was found to be

statistically unimportant'®.

Since the combined correction factor, CF, varies with crack
growth, FP is largest where CF is largest. Regardless of thé form
-of the individual-corrections, the maxiﬁum CF occurs at either the
crack origin or at the back free surface. Little fatigue life is
" associated with relatively large crack sizes. Thus, it hardl? mat-
ters whe;her or not Fp is included for the back surface. (In somé'
cases the ratio (CF?Sr)/(3.36 Gy) exceéds 1.0 at the back surface,
thereby making Eq. 4-17 useless. Of course, gross plasticity also
. makes linear fracture mechanics useless. Foftunately, the.life in-
crement at back surfaces is very small.) The origin may prove of
~ greater importance if ngs high (cover plates), stress range is high,
and yield stress is low. In fact, the theoretically singular stress
condition associated with an idealized weld toe would itself cause
stress redistribution without thé presence of a crack. However, the

extremely rapid decay of the stress concentration effect means the

plastic zone correction is important over a very small distance of
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crack growth. The larger the initial crack size, the less important

F becomnes.
P

A fatigue life estimate using Eq. 4-17 was compared with
one made without a plastic zonme correction (Art. 6.2). The results
differed by only a minor amount. Therefore, neglect of Fp is consid-

ered to be normally justified.

4.5 Crack Shape VariationsDuring Growth

Of the various decisions affecting correction factors none
is so important as the crack shape during growth. Gurney has found
that the importance increases (has more effect on life) as the stress
concentration or detail éevetity increases (Art. 6.2)27. All four
of the individual corrections comprisipgmphe parameter CF are affec-

ted by the crack shape ratio, a/b. The fact that investigators des-

.ignate the shape as an ellipse (with limits of circular and through

cracks) is itself a significant approximation. Experimenters have

recognized that many if not most cracks are actually irregular in

shape®3,80,

Crack shape ratio, a/b, is not splely dependent on the
crack length-to-plate width ratib, a/w, although the relative posi-
tipns of all free surfaces have an effect. Plates of différent
width (or thickness if the crack is growing in that direction) can
have different overall correction factors,'CF, at the same relative

position of crack growth, a/w. Stress intensity at a common relative
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position of two geometries varies due to crack shape as well as the

fact that crack length, a, appears in dimensional form under the
radical. Therefore, fatigue performance of proportional geometries
can be quite different. Since existing Code guidelines are based

. . v 3,19,20 .
upon flange thicknesses in the range of 10 to 13 mm s Ccaution
is warranted when these regulations are applied to larger thick-
nesses. Large thickness can also cause layering80 and changes in
residual stress patterns, thereby affecting crack shape variation

equations.

In order to establish a crack shape equation it is.neces—
‘séry to rely on actual physical measurements of érack size during
'growth. Unfortunately, these measurements can-only'be pefformed
.accuratély by breaking apart structural ‘details at different stages
of’érack growth. 'Thé situation is made ﬁuch worse by the réalization
that growth characteristics are not tﬁe same for éll details.. The
coﬁplexity and economics involved make it easy to understand why only
a limited amount of data is available.oh crack shape variation during
growthi2’2°’5i. Data are particularly sparse ét very small crack -

sizes.

4.5.1 Crack Shape Variation Characteristics

Figures 4.6, 4.7, 4.8, 4.9, 4.11, and 4.12 identify several
of the different types of crack shépe variation which can be expected

at welded details. (The reference for each picture indicates the
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. . 7
non-circular shape

experimental prograﬁ within which the picture was taken. The refer—
ence does not mean the picture can actually be found in the final
report.) The simplest sort of growth is one which is essentially
constant in a penny-shape configuration. Such is shown in Fig. 4.6
for a web-to-flange fillet. (Other examples of penny—shapé growth
at welded details are shown in Ref. 32 as well as Ref..19.) Theo-
retically, the stress intensity along the crack front varies dug to
free surface effects, thereby intimating equilibrium in a slightly
8. However, the real crack front shoﬁs the penny-
shape to be a good assumption, regardless of the irregularity of the
initial flaw. Apparently the regular correction factors tend to be

self compensating and/or the elastic regions in the web and flange‘

tips make the crack sense it's in an infinite solid32.

Figure 4.7 shows the growth of a crack from the termination
of a longitudinal cover plate weld. (The cover plate has no trans—
verse end weld.) Any weld with short dimension pérpgndicular to the
applied stress direction shows similar characteristics. vThe'créckl
orginates in the flange as a shallow surféce flaw and grows through
tﬁe flange as a semiellipse. TFor very thick flanges the shape would
approach semicircular, but perhaps not attain it precisely (as ex-
plained above), before penetrating the back flange éurface and becom-
ing a through crack. About 90 percent of fatigue life of an attach-
ment fillet-welded 1ongitudinaily to a flange is consumed while a

semiellipselg.
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Figure_4.8 shows that fatigue cracks originate at wéld
terminations for stiffeners welded only to webs. It is possiﬂle that
cracks will originate at several sites along the weld toe."ﬁowéVer;
the tensile stress range gradient in the web places greatest emphasis
on the ;ermination region. Therefore, the fatigue surface is domi—r
nated by a single elliptical crack in much the same manner as
Fig. 4.7. Growth through thé web is not as serioué as thrqugh thé"
flaﬁge; only 80 percent of the fatigue life is thereby consuméd2°f
A total life prediction has to include subsequent growth as a two;
ended through crack in the web. Growth as a three—ended'through_
crack, after thevflange has been fully penetrated, is of little

importance, just as for the cover-plated details.

When a transverse fiilet weld is placed on a flange for
either stiffener of cover plate detaiis“(even-covér plates wider than
the flange), Fig. 4.9 shows that multiple fatigue cracks usually
occur. (This assumes esseﬁtially nominal uniform tension in the
flange. If a significant stress gradient exists due to warping; as
in_curved girders, a single crack may be.predominant as in Fig: 4.8;)
The cracks begin at individual sites along the weld toe and eventually
coalesce. The number of sites and thus the rapidity of coalescence
depénds on the straiéhtness of the weld toe and the uniformity of
weld profile®’. The more irregular the weld along ips leﬁgth, the
more separated the ipitial cracks énd the léter the coalescence.
(Reference 57 shows the same trend for tée cracks at transverse butt

welds.) MéchineAwelds are more uniform and straighter:than hand welds
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although almost all transverse welds of this kind are made by hand.
‘The sooner coalescence commences, the more fatigue crack growth is

enhanced due to increased FS.

Crack coalescence is expected to occur sevéral times during
the growth process. Since initial craéks are neither equally spaced
nor of equal size, coalescence continues during much of ﬁhe time the
crack is semielliptical. Thus, the trend of é given crack toward
semicircula? shape is constantly interrupted by unification.with
another crack. The crack shape ratio of this combined crack is usu-
ally small - closer to a through (edge) crack than a semicircle.

Schematically, the crack shape variation is represented by Fig. 4.10.

When theAcombined crack finally reaches‘the baﬁk surface
96 percent of the fatigue life is gonézat It is eagy to understand
this precentaée because, unlike the single crack of Fig. 4.7, most
of the flangé width has'alfeady been consumed. This pointbalso helps
explain why cover plates (of smaller width than the flange) with oﬁly
longitudinal wéids tend fo have slightly longer lives than similar
details with transverse end welds". The life coﬁparison ié‘also ex-—

plained on the basis that the smaller crack shape ratios associated

with coalescence increase CF and therefore AK.

Fatigue crack growth at groove-welded gusset plates is more
complex than many of the foregoing situations. Cracks originate near

the gusset plates' circular transitions where they meet the flange.
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tipslz. Regardless of the gusset plate-flange fhickness ratio, the
initial crack tends to be quarter;elliptical. Figufe 4.11 shows that
the crack shape is transformed from quarter-—elliptical to quarter-
circular (provided the flange is thick enough - Fig. 3.16) and final-
-1y to an edge crack. Vertification of this growth pattern is provi-
ded by Ref. 33. The predominant crack growth is across the flange

width rather than through the thickness as in previous details.

Cfack gfowth at groove-welded gusset plate details sheds '
light on the behavior expected from cover plates wider than the
flange. Such attachments have longitudinal welds which connect the
cover plate to the flange tip. If a transverse end weld also exists, | l
craéks would grow in the manner of Fig. 4.9 (i.e. little different
‘than cover>p1ates of smalier'widths than the flange). Howevef with | : |
only longitudinal flange tip welds, cracks would likely begin aé
quarfer~ellipses and, depending on'flangevthickness; soon become edge
cracks growing across the flange width. The front free sufface cor-
recﬁion factors are generally’highgr for quarterfellipsés and edge
cracks than for semiellipses. Thus, shorter life would be predicted
without the transversé end weld; ReferenceA19 experimentally deter-

mined that such is indeed the case. ’ ‘

Lap-welded gusset plates provide an even more complicated
crack growth pattern than the groove-welded variety. Figure 4.12

shows that cracks originate along the transverse fillet weld toe. ' ‘
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The early growth is semielliptical and cqalescence may or may not be a
factor, depending on the weld length. The crack length is that dimen-

sion measured in the thickness direction.

Since the cracks often originate near the flange tip, the
end of the crack soon penetrates the flange tip and growth continues
quarter—elliptically. However, unlike the groove—welded‘detail the
minor axis of the ellipse is in the thickness rather than ﬁidth di-
rection. Thus, the predominant ‘growth continues through theiihickness.
It is possible that .the crack shape will become quarter-circular if
the flange is thick enough and if little coalescence occurs. In any
pése, the crack eventuélly reaches the back surface of thg flange and
becomes an edge crack growing-across the width; The life remaining

varies with the flange aspect ratio and the length of lap weld.

4.5.2 Crack Shape Variation Equations

4.5.2.1 Stiffeners and Cover Plates Attached to

Flanges with Transverse Fillet Welds

Reference 20 provides numerous measurements on the size
of cracks growing from stiffener fillet weld toes. The curve fitting

equation derived to relate b to a (both in mm) is given as follows:

b = 1.296 a0 246 (4-17)

It is apparent that the shape ratio gets closer to 1.0 as growth
occurs and theoretically.reaches half-circular when the crack size is

121 mm.
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Unfortunatelfiit is . not at all cleaf.that Eq. 4-17 accu-
rately represents any one of the types of shape variation diécussed
in Art. 4.5.1. The data are comprised of measurements at stiffeners
weided to the web and flange as shown in Fig. 4.8 and 4.9. While.
multiple craék sizes (after some degree of coalescence) appear in the
reference, they were not used in deriving the equation. However,
data used in developing Eq..4—l7 did include measurements taken at
compression as well as tension flanges. These two positions gould
be expected to have similar‘shape variation characteristics while the
crack remains in the residual tensile zone. AfterAleaving the zone
.the shape ratio for cdmpression flange cracks would probably decline

faster with coalescence than the ratio for tension flange cracks.

The smallest crack depth found :in Ref. 20 is 0.2286 mm, but
very few measurements are less than 0.635 mm. Crack coalescence for
stiffeners welded to flanges is recorded as beginning when the depth

reached the 1.27 mm mark.

If only the data associated with stiffeners welded to
flanges are used in equation development, quite a different picture

emerges. Single cracks in the compression or tension flange yield the

least squares equation:

b = 1.300 at-090 (4-18)

Now ' the shape becomes more elliptical with crack growth and is only

half-circular when the depth is 0.054 mm. This apparent elliptical
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tendency by single cracks is considered the outfall of few data points
(9) rather than actual behavior. -Also, measurement techniques are

more strained at small (single) crack depths.

The shape trend of Eq. 4-18 is amplified by considering both
single and multiple cracks for stiffeners welded to flanges. Using

both compression and tension flange data:

b= 1506 al-241 3 (4-19)

Using only tension flange data:

1.212

b = 1.431 a (4-20)

In both instances the crack shape is half-circular when the depth is

about 0.183 mm.

'fhe_shallow‘ellipse shape trendlrepresented by either Eq.
4-19 or 4-20 is explainable on the basis of crack coalescence. The
difference between the two equations reflects the influence of the |
comﬁression flange crack data. But since these data are comprised of
large crack depths compared to the tensidn flange, it is not certain
whether the residual stress zone limit or additional crack coalescence
is responsible. Nevertheless, the equations are close to each other.

Eq. 4-19 is favored due to the extra data points included.

The only other extensive investigation in the literature
on crack shape variation from welds is due to Maddox®!. He investi-

gated a gusset plate which was fillet-welded on its side (not lap-
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welded) to the face of a plate as shown in Fig. 4.13. Single cracks

grew from the toe of the short transverse fillet at either end of
the gusset. Based on many data points Maddox developed the following

equation.
= 3.355 + 1.29 a _(4f21)

Interestingly, the équation is a straight line where a half-circular
shape is approacﬁed but never reached. The upper bound crack shape
ratio is 0.775. This value is at the high end of what might be con-
sidered the equilibrium position when the free surface correction
factor and its variation along the crack front are conéidered 78.1
(Ref. 78 is not preciée since stress gradient and back surface cor-

rections haven't been considered. However, it is probably close.)

Equation 4-21 characterizes :single surfacé crack growth in
a flange when only a short transverse weld length e#ists. vKdation
4-17 is intended for single_qrack growth when a relativelyvlong
vtransverse weld leﬁgth ié pfesent. 6ne would expect that the longer
traﬁsverse weld length wduld produce shallower cracks since the
stress concentration along the weld toe héstens growth in that direc-
tion. Yet, such a shape trend is not evidenced by the two equations.
Startlng at initial crack sizes, Eq. 4-17 yields shapes whlch are
almost semicircular while Eq. 4-21 predicts shaﬁes which are much

more elliptical.

. Support of Maddox's crack shape equation is provided by

Ref. 70. A longitudinal fillet weld with short transverse dimension

-
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was found té produce a shape_(a/b) which was roughly consﬁant at
0.50 up to relatively large crack depths (at least 9.5 mm). At a
depth of 9.5 mm Eq. 4-21 predicts a ratio of 0.61 while Eq; 4-17
yields 0.87. The support data for Ref. 70 were not extensive

although the results obviously favor the shallower shape.

None of the mentioned studies provides extensive data
at very small crack sizes. Yet, this is the range in which single
rather than multiple cracks exist. Regardless of the length of
transverse weld the various equations should merge into one common
shape prediction at the smaller crack sizes. Since Eq; 4-17 and
4-21 are so much at odds with eachAother, it is necessary to select

the one which seems to most accurately describe the early shapes.

-Maddox's equation is chosen because the data are numerous and

relatively far ranging, making the trend more accurately extrapolated
to small crack levels. Also, all data represent growth in a flange~

like plate as opposed to the mixture of flange and web for Eq. 4-17.

- Two equations have beeh defined to describe crack shape
variétion from transverse weld toes; When cracks are very small they
are individﬁal ones (single) and are represented by Eq. 4-21. After
some crack growth coalescence begins the continued shape varia- -
tion is represented by Eq. 4—19. Even though the data stem from
different tests, it is proposedlto combine the equations in deécrib—

ing crack shape while growing through the flange. ‘Figure 4.14 plots
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both curves and shows the intersection to be at a crack depth of
roughly 4 mm. This dimension is more than three times greater

than that recorded in Ref. 20 as the éarliest commencement of coales~
cence observed. Yet, the statistical trend is probablj closer to the

higher figure; lack of data makes a conclusive decision impossible.

The two equations will be applied to cracks at transverse
fillet welds regardless of whether they connect stiffeners or cover

plates to the flange. Some error may exist in this generalization

due to higher stress gradients at the weld toes of cover plates. The

variation of the free surface correction factor along the crack front

is dependent on the stress gradient. The higher the gradient the

greater the tendency to remain a shallow semiellipse, resisting -

 growth toward a semicircle®2. Such a point is beyond the scope of

the dissertation, but deserves later investigation. Little quantita-
tive data on crack shape variation at the transverse weld toes of
cover plates are known to exist in the literature although the quali—

tative findings at large crack sizes in Refs. 19 and 20 indicate

shallower cracks than at stiffeners.

4.5.2..2 Gusset Plates Groove-Welded to Flange Tips

Very little data on shape variation at gusset plate connec—
tions are available. However, one recent experimental program in-
cluded groove-welded gussetplates with circular transitions and sever-

, 2
al rough crack shape measurements on the fatigue surface were made? .

-130-



The resulting equation for quarter-elliptical crack growth is as

follows:

0.202

b = 10.36 a (4-22)

Equation 4-22 is used in this s#udy to describe the
crack shape relationship for.groove—welded gussets. The equation
shows the crack grows toward a quarter-circular shape and actually
reaches it provided the flange thickness is at least 41 mm. ‘For
crack depths greater than 41 mm the érack is assumed to grow as a
quarter—circle until b is equivalent to the flange thickneés. At
- this point edge crack conditions are .immediately used without special
consideration of the insignificant transition period. If the flange
thickness is less than 41 mm edge crack conditions are again imme-

diately used when b equals Tf.-
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5. UNIFIED STRESS INTENSITY EXPRESSIONS .

Chapter 4 summafizes the limits on stress intensity correc-
tion factors. Civen this information it is possible to develop uni-
fied stress intensity factors which account for the real stress dis-
tribution and crack shape. The approach usedvis to first develop
stress intensity expressions for the crack shape limits (O and 1) and
then combine them (by ihterpolation of individual correction factors)

to provide for intermediate crack shapes.

' Tﬁe-initial step involves finding the stress intensity for a
nﬁnuniform stress distribution. Figure 5.1 shows the type of local
stress gradient which is common to stress concentrétion regions
(maximum concengration at the crack oyigin). This distribution may
be separated into uniform and variable constituents. Since stresé
intensity is linear in O, superposition appliés pro&ided the crack

displacement mode is unchangedal»az

. Hence, the actual stress inten-
sity can be fogpd by adding the stress integsities, Ku and Kv’ for two
"sub" stress distributions which sum to the actual stress distribution.
The stress intensity correction factors for the uniform subdistribu-

tion are already known (Figs. 4.1 and 4.5); correction factors for the

variable subdistribution can be estimated.
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5.1 Stiffeners Fillet-Welded to Flanges | ' ' : {

5.1.1 Through Crack - (a/b = 0)

Using the correction factors of Figs. 4.1 and 4.5 (no

bending) the stress intensity for uniform stress can be written as:
— e 1/2 :
= 1. AK  *0V/Ta% = -
K, = 1.122%K _ *0/7a [sec ‘(2 )] . . | (5-1)

- Since this is a through crack, Fe is 1.0. ©Note that for uniform

stress the only stress gradient correction is that which relates -

. actual stress at the crack tip to nominal stress. Obviously, it has

onstant value .
c Tu Kuu

, Development of the stress intensity for varying stress is
more complex. Figure 4.1 shows that F; is somewhere between 1.300 and
1.210. The correct intermediate value depends on the shape of the ac-
tual stress eoncentration faetor decay curve(Kt) relative to'a linear
decay line. Figure 5.2a demonstrates that the.proximity to a linear
condition varies with aa. As o increases_Fs increases from 1.210 toAa

value near 1.300.
If TERM1 represents the desired value of Fs, then:
TERM1 = 1.300-FACTOR(1.300-1.210) = 1.30-0.09*FACTOR (5-2)

where FACTOR = measure of proximity to linearity; has value 1.0 if

actually linear
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FACTOR may be evaluated on the basis of Fig. 5.2b. §& fepresents that
value of A at which the slope of the stress concentration decay curve
equéis the slope of a hypothetical straight .decay line from SCF to «a.
The lower limit of £ is zero while the upper limit is o/2. Thus,
FACTOR is taken as:

- .8 _2 . , =
FACTOR = 7= % (5-3)

Proper resolution of Eq. 5-3 depends on knowiedge of the .
cgnceﬁtratibn factor decay curve whi&h varies for each detail geome-
try. However, since the change in TERM1l is small over the full
sbectrum of FACTOR values, reasonable accuracy is attéined by using

an equation of the following form for all cases: .

K

tA 1

o = | (5-4)
SoF "L 1P

il

L/w

where A

position in the crack growth direction

- L

il

If the stress gradient results for an average stiffener geometry from
Chapter 2 are used, values of ¢ and p are evaluated as 0.3546 and

0.1543, respectively. These results are summarized in Table 5.1. .

Equation 5-4 (in its present and differentiated forms) can
be used to evaluate the slopes at A = o and A = §. A nonlinear

"characteristic" equation results (Eq. 5-5) which must be solved for £,
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The solution of Eq. 5-5 is readily obtained for any given a by the bi-

section method. Thué, FACTOR can be calculated and TERM1 defined.

FACTOR is also employed in calculating the appropriate back
free surface correction, Fw’ for the variable stress subdistribution.

Figure 4.5a indicates that Fw is:

' may] /2
= * —_— ! )
F_ = COEF1 l:sec ( > )J (5-6)
‘where  COEFL = (1-%— FACTOR) [1.29,7—0::297cos (229)] *[fzﬁcosec ("70‘)] + (
3 FACTOR

The stress gradient correction factor for the subdistribu-

tion, Fga’ is related to'Fga calculated for the whole distribution

(Chap. 3). Albrecht's Green's Function in nondimensional form yields:

o ,
. o | .
K = /ﬁ*% —2 o (5-7)
/2.2
0 o - .

h = -
where %y cv(Ktl Kta) for the subdistribution
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Thus » o

¥ =3f£w' d)\- - . A(s-s)

g T

.Equation 5-8 produces the foilowing relationship:
Foo = Fon ™ Ko (5-9)
The stress intensity expression for the variable stress sub-
distribution can now be estimated using Eqs. 5-2, 5-6, and 5-9.

. 1/2
j1{e3 :
= * - * * Poidad -
KV TERM1 (ng Kta) ovTa*COEF1 [sec (2 ﬂ (5-10)

Combining Eqs. 5-1 and 5-10 yields the stress intensity expression,

K for stiffeners with through cracks.

total’®
Kootal = [1.122*Kta*[sec(%%ﬂ +-TERMl*(Fga—Kta)*COEFl[?ecC%lﬂ ]*OVEE
(5-11)

It is helpful to rearrangé Eq. 5-11 in the following form:

K . = [TERM1%*COEF1 + (1.122-TERMI*COEF1)*X]*F *gv/ma* sec(ﬂg)
total go

~

where X = to

7|

go

The leading expression in brackets is assumed to be the combined front
free surface correction and the unmodified secant radical is assumed

to be the combined back free surface correction.
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I
Evaluation of X in Eq.  5~12 can be perfofmed with the stress
gradient correction provided by the artificial ellipse correlation
given in Art. 3.4. However? it is also possiBle to define an approxi-
mate equation for Fg’ similar to Eq. 5-4, which sacrifices little
accuracy in the bracketed expréssion. This equation is given as:

Flo i
SCF

S (5-13)
1+'5C!.
For an average stiffener geometry, d and q were evaluated to be 0.3602
and 0.2487, respectivély (Table 5.1). Therefore, combining Eqs. 5-4
and 5-13, X is given as follows:
1+

(5-14)
1+

RIS

Equation 5-13 provides a reasonable means.to determine X
since the entire bracketed term of Eq. 5-12 varies little over a wide
range of ¢, d, p, and q values. However, Eq. 5-13 ié‘not applicable
to the stress gradient correction outside the brackets. There the

artificial ellipse correlation should be employed.

5.1.2 Half-Circular Crack (a/b = 1)

The stress intensity for the uniform stress subdistribution

of é half-circular crack can be defined as (Fig. 4.1):
K, = 1.025%K x2%g/ma (5-15)

-137-



Crack shape correction, Fe’ is represented by 2/ and Fw is assumed to

be 1.0 (Art. 4.3).

For the varying stress condition FS is represented by TERM2
as follows: : :
TERM2 = 1.145 - 0.06*FACTOR (5-16)

FACTOR is the same term calculated for the through crack case.

The stress gradient correction associated with the circular

crack front,'Féa, is defined as:

v ot o -
Fga = Fga Kia : (5-17)

It'is important to recognize that Féa is not of the identical numeri-
cal value as Fga calculated for the through crack Green's Function.
Using a circular crack (infinite solid) Green's Function®?, Table 5.2
shows thaf Féa and Fga diverge as the stress becomes less and less

uniform. The limiting ratio of Féa/F for a line load at the crack

ga
origin is estimated to be 0.548,which deviates from 1.000 by twice the
change recorded between the uniform and linear stress cases. The

ratio of circular to through crack stress gradient correction factors

is summarized in Fig. 5.3.

Equations 5-16 and 5-17 can be used to develop the stress
intensity factor for the variable stress subdistribution. This

yields: . 9
= * r *—=% -
K, = TERM2 (Fga K)* s ov/na (5-18)
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for the half-circular crack

Adding Kv to K (Eq. 5-15) gives Ko

tal

shape. .

L2 : : 2]. :
_ % %< % (F' - * 2| % gy -
Kiotal [1.02_5 Kta — + TERM2 (Fga Key) ¥| *ovma (5-19)

Rearranging Eq. 5-19 gives:

Ktotal

mkow
Q.

where Y =
ga
Evaluation of ratio Y is assisted by Fig. 5;3. ﬁoweve;, it
must be borne in mind that Fg and Fé are evaluated for the total
stréss distribution, not just the variable subdistribution. The Y
ratio for the total distribuﬁion is depgndent on the relative influe-
ence of the variable stress SUbdistriguEEOn és’cbmpared with the uni-

form stress subdistribution. Thus, Y is taken as the sum of two parts.

Y =W*xY' + (1-W) *Y" (5-21)
where Y' = 0.548 + 0.226 * FACTOR
Y" = 1.000
W = weighting factor of variable stress subdistribution

relative to the uniform stress subdistribution

Factor W may be based upon the relative areas of stress
subdistribution up to crack length ¢. This amounts to determining

the ratio of the two shaded areas under the concentration decay curve

in Fig. 5.4.
' . -139-
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a

a
_ Ay _ JO(Ktk_Kta) ik _ foKtk d -1 (5-22)
A K __*a K _*a
u to to
Substituting Eq. 5-4 into 5-22 gives
o
1
di
jol +%>\p -
W= = -1 | (5-23)
1+ 3 0P
Cc

The integral in the numerator can be evaluated numerically; therefore,
factor W is easily obtained. However, note that W decreases with
increasing relative crack length, 0, and must be reevaluated for each

crack position. Also, W is affected by decay constants c and p.

For the benefit of later célcﬁiations it is worthwhile mak-
ing one adjustment to Eq. 5-20. ‘Multiplying and dividing by the

secant radical gives the following form:

/2
_| TERM2AY + (1.025-TERM2)*x], P #Zxo/ras [Sec(nz_a)] (5-24)

Keotal = [sec(%%)]llz j

5.1.3 Interpolation for Half-Elliptical Cracks (0 < %‘S l)

An intermediate (unified) position between Eqs. 5-12 and
5~24 is necessary for half-elliptical crack shapes. Comparison of the
two equations reveals that each contains the Fga factor and the secant .

radical. In unified terminology these will henceforth be known as the
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stress gradient and back free surface correction factors,reépecti?ely.
It is also apparent: that each equation coﬁtains the appropriate,
isolated,crack shape corréction factor, Fe. (Fe = 1.0 is implied in
Eq. 5~12.) Therefore, use of the normal elliptical intégral.(Art. 4.1,
Eq. 4-3) for the unified crack shape correction is warranted. This

integral automatically provides a nonlinear interpolatiom.

Only the leading bracketed expréssions in each equation dif-
fer and requifé adjustment. The simplest appréach ié a straight |
linear interpolation based on the crack shapé fatio, a/b. The inter-
polated value represents the unified front free surface correction,
FS.. The resulting Fs is:

F_ = (1 - %)*{TERMl*COEFl’+ (1.122 - TERML * COEF1) *X} + -

a, JTERM2 *Y + (1.025 - TERM2) * X

]_) [éec (:zg)] 172

The unified stress intensity correction factors for stiff-

(5-25)

eners are summarized in Table 5.3.

5.2 Cover Plates with Transverse End Weld§

5.2.1 Through Crack (a/b = 0)

The major difference between the stiffeners and cover plates
occurs in the back surface correction, Fw’ for the individual subdis-

tributions. The stress intensity for uniform stress subdistribution
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(Eq. 5-1) has to be modified by COEF2 (Fig. 4.5) which accounts for

bending.

1/2
K = 1.122%K__ % o/7a * COEF2 | sec[ = : (5-26)
u ta 2 : _
. fmay3

0.752 + 2.02a + 0.37 | 1-sin (™) L

2 /) 2 . ([T

where COEF2 = — sin{—

1o} T 2

1.122 COS(?T)

Likewise, the stress intensity for the variable stress subdistribution

(Eq. 5-10) is modified by coefficient COEF3 replacing COEFl (Fig. 4.5).

\ oL
= * - * * — —_
K, = TERML (Fga Kyy) * 072 * COEF3 [sec(z)] B2
where COEF3 = [1-—;- FACTOR] 3'52/2 - 4'3i/2 +
‘ (1-c (1-o)

[ may] 12
cos(z) 1

- % - % =

2.13 (1 a)] 130 + COEF2 > FA(?TOR

The decay constants in Egs. 5-4 and 5-13 also change; The

constants are summarized in.Table 5.1 for an average cover plate
geometry.
-Combining Eqs. 5-26 and 5-27 yields the total stress inten-

sity for a through crack.

K, ,ap = [TERML* COEF3 + (1.122 COEF2 - TERMI * COEF3) * X]

(5-28)

\11/2
?)

F _*o/ma* [éec(399
go
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Equation 5-28 is seen to be quite similar to Eq. 5-12.

5.2.2 Half-Circular Crack (a/b = 1)

Equation 5-24 applies directly to the half-circular crack
since the back surface correction as well as other corrections are
unchanged from the stiffener case. However, the decay constants in

Table 5.1 must be taken from the covér plate column.

5.2.3 Interpolation for Half-Elliptical Cracks '(6 < % < 1>

The unified crack shape, back free surface, and stress.
gradient correction factors are seen to be unchanged from the stiff-

ener case. Only the front free surface correction needs modification.

Fs = (l —%) * {TERMl * COEF3 + (1.122 COEF2 - TERM1 * COEFB)' * X} +

TERM2 *Y + (1.025- TERM2) * X

[secl)]

The unified correction factors for cover plates are summarized in

*

(5-27)

ol

Table 5.4.

5.3 Gusset Plates Groove-Welded to Flange Tips

5.3.1 Through Crack (a/b = 0)

No changes occur from the cover plate case except for the

stress concentration factor and gradient correction decay constants
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(Table 5.1). Also, relative crack length, &, is crack length divided

by flange width rather than flange thickness.

5.3.2 Quarter-Circular Crack (a/b = 1)

Change from the cover plate and stiffener cases occurs due
to differences in the front free surface correction, Fs (Fig. 4.1).
In Eq. 5-24 the number 1.025 must be replaced by 1.380 and TERM3 is

substituted for TERM2.
TERM3 = 0.754 + 0.313 * FACTOR o (5-29)

The total stress intensity can be written as follows:

2

e / | 1/2
* -
K _JIERM3 *Y + (1.380- TERM3) *X % F % 2% ovTa * (sec ﬂ)
total Ta 1/2 - - '
[sec(T)‘] i ' e
/ . (5-30)

5.3.3 Interpolation for Quarter Elliptical (o < % < 1)

~Fe’ Fw’ and F_ are still unchanged from the other two

details. Fs now has the following expression:

Fs = (1 - -E-) * {TERMI * COEF3 + (1.122 COEF2 - TERML * COEF3) * X}+ '

a, |TERM3 * Y + (1.380 - TERM3) * x) |
5 — 73 (5-31)
[sec(%q)] '

The unified correction factors for gusset plates are summarized in °
Table 5.5.
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5.4 Comparisons of Unified Correction Factors

Figure 5.5 summarizes the comparative magnitudes of unified
front free surface corrections in Tables 5.3, 5.4, and 5.5. Samplev
detail geometries were arbitrarily selected and.the resulting values
of FS plotted. .Crack shape variation was defined by Egs. 4-21 and
4-19 for the stiffener and cover plate while Eq. 4-22 was used for the
gusset plate up to the pointvwhen edge crack conditions existed.
Figure 5.5 demonstrates the pronounced effect of bending. The dif-
ference betwéen the gusset plate and cover plate primarily reflects
the influence of quarter-elliptical and tthugh (edge)Acrack shape
versus half-elliptical crack shape. The choice of shape variation

equation (Art. 4.5.2) also plays a role in Fs values.

Gurney and Maddox have noted that the collective crack
shape, front free_surface, and back free surface‘correction can be
taken as 1.0 for semielliptical cracks at cruciform joint527’28;5%.
The collective correctioﬁ for each detail shown in Fig. 5.5 is plotted
in Fig. 5.6. The Gurney-Maddox assumption of 1.0 éppears reasonable
only for the stiffener case. (Most fatigue life is consumed at
o < 0.5; hence, errors in correction factors for ¢ > 0.5 has littie
consequence on fatigue behavior.) While the non-load-carrying cruci-
form joint is indeed siﬁilaf to a stiffener detail, it is interesting
to recall that'Fw proposed by ﬁaddox includes bendingv(Art. 4.3).51

As in the case of symmetrical gusset plates, bending would depend on

whether or not symmetrical cracks existed. If bending were
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incorporated in the unified stiffener stress intensity expression

(Table 5.3), the resulting curve in Fig. 5.6 would be close to the
cover plate. The Gurney—Maddox aésumption does ﬁot consider crack
coalescence. Elimination of coalescence (Eq. 4-19) from the crack
shape relationship ﬁould lower the curve at highef o values. Thus,

the modifications tend to compensate. -
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6. FATIGUE LIFE CORRELATIONS

The unified correction factors developed in Cﬁapter 5
(Tables 5.3, 5.4, and 5.5)_can be used in fatigue life’prediﬁtions.
After replacing stress, O, with stress range, Sr’ in the stress inten-
sity expressions, the resulting range of streés intensity is inserted
in Eq. 1-2. It is rare that this equation canlbé solved closed-form
- particularly when the combined correction'factor; CF, is a complex
function of crack length, a. Therefore,.the,cycle life is commonlf

estimated on the basis of the following numerical integration:

m
- N=1 z 1l . (6-1)
. C (AK )n i 4 .
_ -13 11/2
where C = 1.21%*10
' N cycles (Refs. 20,32)

n = 3.0
. . N ¢

AK = range of stress intensity, 377

Aa = crack length increment, mm

The fact that both C and n change value at high growth rates (when
the crack growth mode changes from plare strain to plane stressso)is
of little consequence since most life is consumed at growth rates

below 25%10 ° mm/cycle?®232,
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The manner of evaluation of AKj in Eq. 6-1 is of some inter-—
est. Since AK changes over the interval, a crude.assumption would be
to use some intermediate crack length in calculating an average AK.
Given this procedure the investigator would be obliged to use very

small growth increments in order to assure reasonable accuracy.

An alternate proposal is to treat the combined terms behind
the summation sign as an integral of itself. One is looking for the .
area under the curve representing l/(AK)nbetween.the two crack limits
of the interval. Evaluation - can be.effected by sevefal approaches -
among them the 32-point Gauss quadrature formulé““.‘ The accuracy of
this approach permits use of larger crack increments in the summétion
.process. Thus, the Gauss quadrature formula is applied in all subéé—

quent life estimates.

A sense of the relative_importance of stress range and
- initial and final crack sizes in life estimates may be developed by
agaiﬁ considering Eq. 1-2. If the combined correction factor is
assumed (for this exercise) to be coﬁstapt, the_cycle life is pre-

dictable in closed-form fashion.

N = 3 2 3, 3/2 ai_llz - af—1/2] (6-2)
CACF™*S ~*7 .
T
where ai = jnitial crack size
af = final crack size
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Since stress range is cuﬁed and both crack lengths have a square root
sign attached, error in .the nominal stress range is more important
than errors in the initial and final cfack sizes. Likewise, error in
the correction factor, CF, is more important than crack size. Even
though CF in realitfdepends on crack size, added importance is ob-
viously attached to establishment of the éorrect form.of.each indivi~

dual correction factor.

The negative radical associated with each crack leﬁgth
typically places the weighted importance on initial crack size. Ex~
perimental work outlined in Refs. 19 and 20 used an excessive deflec—
tion (net section yielding) criterion for fatigue failure and the

establishment of a A more recent study terminated fatigue life with

£
fracture, although this life was close to that found using a general-

12
ized yielding condition . Both definitions of failure generally

cause a_ to be much larger than a,. The greater the difference be-

f

tween a; and a the greater the importance of a;.

f’

There is a link between the felatiﬁe importance of crack
éize and the various correction factors. Inclusion of %g in the .
stress intensity expresgion increases the percentage of fatigue life
at the larger crack sizes., Yet, incorporation of bending (as for
cover‘plates) in the unified Fs.acts to reduce the importance of the
larger cracks.A In general, the correction factors tend to enforce or

diminish the significance of a; relative to a_, depending on the

f,
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detail involved and the various expressions for correction factors.
(The crack shape variation equation obviously plays a role here too.)
However, regardless of these secondary relationships the initial crack

size dominates the fatigue life of practical bridge details.

In light of the relative importance of ass it is indeed
unfortunaté that a; i§~much more difficult to estimate than a. Such
is even true for a test specimen where the crack surface is exposed
after failufe (af is usually clearly evident). Nevertheless, several
investigations have established lower and upper limits of initial
_ crack size for weld toes of a stiffener and cruciform joint at ab&ut

20,74 ,86

0.025 mm and 0.50 mm, respectively . The average a; is be-

tween .076 mm and .10 mm.
Initial crack size studies to date have been primarily
directed at the size of nonmetallic inclusions and defects at weld-

74,88 No particular concern has been expressed

‘base metal interfaces
at‘possible changes in initial size with the type of detail, weld
size, weld electrode and proéess, or-eved different éteel streﬁgths.
While fatigue evidence doesn‘t clearly suggest a variation‘ih initial
érack size, it is.difficult to be sure without further fesearch-at

the microscopic level.

Initial crack size for groove-welded gﬁssét plates has not

yet been discussed in the literature. Cracks normally originate at
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the weld termination which could exhibit initial flaw sizes similar
to the fillet weld: toe. The crack shape, being quarter—elliptical
rather than quarter-circular, may have a deviating effect. " In any
case, it is unlikely the initial size would be of the magnitude

(1.0 mm) found at an average internal gas pore (Fig. 4.6)32._ There;

fore, the initial crack size limits of 0.025 mm and 0.50 mm will be:

used for the gusset plate life estimates,

Given the expression for stress intensity, the life integra-
tion technique, and information on initial crack sizes, the analyst
is in a position to make fatigue life (cycle) estimates. Severai
sample details are subsequently investigated and ;heir lives are éomf

pared with those found under actual fatigue test conditions.

6.1 Stiffeners Fillet-Welded to Flanges

Reference 20 provides a Broéd experimental base for fatigue'

failure at stiffeners, Stiffeners fillet-welded to flanges afe '
therein designated Type 3. One particula? series (in this‘casé the
SGB-SBB combined series) is selected for investigation and values of
the crucial geometric variables are tabulated in Table 6.1.
(Appendix E of Ref. 20 notes that the éctual weld size was closer to
6.35 mm rather than the 4.76 dimension specified.) The objective is
to assess how accurately the results of various estimate approaches,
N s, predict the actual cycle lifé, Nact’ All lives afe also

est

recofded in Table 6.1.
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The actual cycle life in Table 6.1 rélates to the loga-
rithmic average of data points for the given series and stress range
(Table E-3 of Ref. 20). ZLogarithmic average means that variable N is
assumed log-normally distributed (base 10) and theAmean.is approxi-
"mated by the éverage logarithm of the data points. TFor this particu-
lar sefies and stress range, eight data points are aQailable- On
average, failuie occurred after the crack had fully penetrated the
flange and was growing in a through crack configuration. Since the
unified life estimates are based on cycle life for growthrthrough the
‘ flange,’96 percent (Art. 4.5.1) of the actual iife found by the

logarithmic average is recorded.

Three estimated lives were‘derived from the unifiéd stress
intensity relationships (Chap. 5). The first two represent approxi-
mate average and maximum initial crack sizes and both aré plotteﬁ in.'
Fig. 6.1. The third unified estimate uses the average initial crack
size aﬁdvarbitrarily increases the overall correction factor, CF, at
all crack lengths by five percent. (This five percent can be con-

sidered a calibration correction not accounted for elsewhere.)

N In comparison with Nact’ it is recognized that the unified
expression gives a high (unconservative) estimate at the average
initial crack size but a low (conservative) estimate at the upper

bound of initial crack size. However, both estimates are reasonably

close for a fatigue analysis. A combined error tolerance of five
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percent on CF is seen to provide excellent agreement with Nact at

the average initial crack size.

It is worthwhile considering the implications of two other
unified estimates which are not given in Table 6.1. First, if bend-
ing had been. included in the stiffener stress intensity, the estimate .
aﬁ.the average initial crack size would have been l.216_million cycles.
Second, if ;he initial crack shape variation equation had been taken
as Eq. 4-17 rather than Eq. 4-21, the estimate at the average initial
créck size would have been 2.388 million cycles. Obviously, bending

and crack shape assumptions have a pronounced effect on life estimates.

Reference 20 provides two regression equations which can be
used to estimate life. The mean equation for all stiffeners (mot

just those connected to the flange) is as follows:
log N = 12.6821 - 3.097 log Sr : (6-3).
where Sr = stress range, MPa

Since 96 percent of N is to be used for comparison purposes, Eq. 6-3

can be modified accordingly.
- log (.96N) = 12.6644 - 3.097 log 5. (6-4)
The mean equation for Type 3 stiffeners only (all series) is:

log N = 13.5342 - 3.505 log §_ - (6-5)
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For 96 percent of N the regression equation appears as follows:
log (.96N) = 13.5165 ~ 3.505 log 5_ (6-6)

It\is noted that neither regressibn equation has a slope of
exactlyA;3.O. However, the discrepancy is minor. 1In fact, the esti-
matesvby Eq. 6-3 and 6-5 or 6~4 and 6-6 ére normally quite close due
to the adjustment provided by the equation constants (Fig. 6.1). A_
common-slope of -3.0 guided the AASHTO Specifiéations3’ 21'although
found off of stress range valueé left the slopé sligh;ly off of the

mark. Regardless, equating n to 3.0 is reasonable in life integral

procedure (Eq. 6-1).

Sincé both of the abové regression equations are based upon
the specific series under study here, close agreement between pre-
ditted an& actual cycle life is expected and, indeed, found (Table
6.1 and Fig. 6.1). However, it is algo fruitfui to compare the value
at ;He (approximate) upper 95 confidence 1imi£. Again assﬁming log=
normal distribution and»incorporating the standard deviation (s =
0.1024) from the Type 3 regression analysis, Eq. 6~6 is adjusted to

the upper 95 percent confidence limit.

log (.96N) = 13.5165 ~ 3.505 log S+ 2s
B (6-7)

13.7213 - 3.505 1og'sr
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The large separation between the upper confidence limit and
the mean value emphasizes the wide variability of results (Table 6.1
and Fig. 6.1). This separation thereby gives a measure of accuracy

of the unified estimate at the average initial crack size.

Chapters 4 and 5 noted that the fatigue performance of
cruciform (non-load-carrying) joints should be reasonably comparable
to stiffeners welded to flanges. A recent study on cruciform joints
by Gurney offers an opportunity to evaluate this premise27. The
stress range, geometry, and various life estimates are recofded in
Table 6.1. (Flénge thickness must be taken as one-half of the fﬁll
plate thickness since the joint is sjmmetrical with respect to the

plate's centroidal plane and symmetrical cracks - no bending - are

assumed.)

Gurney provided an actual cycle life which is assumed to be
that corresponding to growth of symmetrical cracks to middepth of the
plate. Thus, his figure can be related directly to the unified life
estimates without need for the 96 percent correction. The initial
crack sizes were taken to be those Gurney assumed which, like those
of the stiffeéers, were based upon the work of Signes’“.. 1In the
manner of the stiffener unified life estimatgs, the one correspondingA
to the smaller initial crack size was slightly higher than the actual

value. However, a larger initial crack size or a five percent toler-

ance on the overall correction at all crack sizes leads to excellent
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agreement between predicted and actual cycle life. -

The éstimatesvrésulting from Egs. 6;4 and 6-6 are not
nearly as good as thé unified estimate (Table 6.1). Equation 6~6 now
 yields a value larger than Eq. 6-4; they have reve;sed their relative
positions exhibited for the stiffeﬁer, due to the differing slopes.
Yet, the estimates are still close to each other while jointly further
removed (significantiy unconservative) from‘the real value. The
probable reason for this trend is the abnormally high weld leg-flange
thickness ratio Z/Tf ". The lack of agreement between Refs. 20 and
27 is further justification for future study on the effect of geometry
on fatigue performance. In the unified approach the Fe énd Fs factors a

. are automatically adjusted for varying geometry; thus, reasonable

agreement is found for both the stiffener and cruciform joint cases.

Gurney produced an estimate of life which is also given in
Table;6.1. He made the assumption that the collective crack éhape,»
front free surface, and back free surface cah fé taken as 1.0, which
is reasonable for cruciform joints (Art. 5.4). But his stress
gradient correction wasbgfeater than that evaluated in Chapter 3.
Thus, the lifé predicted was quite conservative and led to the
thought that a period of crack initiation should be added to the

propagation life.
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The concept of crack initiation has been sﬁpporﬁed by other
53, 70 A

recent work . However, the fact that all unified estimates
(see also Arts, 6.2, 6.3, and 6.4) turned out greater than actual
cycle lives leads one to conclude that initiation is relatively non-
existent-and can be disregarded. Obviously, the burden of the de-
cision partly regts on the expressions for the various correction
factors, the crack shape variation equations, and the various ma-
terial constants assumed for crack growth (Eq. 6-1). In any éase,
there is reluctance to increase analysis difficulties by including
some initiation calculation requirements before many aspects of crack
propagation at real structural details are reéélved (Art. 6.5)._ Also,
initiation estimates tend to be highly empirical and arbitréry since

it is difficult to prove what happens at microscopic defects and in-

clusions..

6.2 Cover Plates With Transverse End Welds

Reference 19 is a source of considerable.data on cover
plates. Combined series CWB-CWC was selected for investigation and
the important geometrical parameters are Summérized in Table 6.1.
(Series CWA had a slightly different flange thickness, Table D-2 of
Ref. 19, and was therefore omitted from the combination;) The stress
range assumed is 110 MPa. Thus, using the logarithmic average of the
12 available data points (Tables F-2 and F-3 of Ref. 19), the 96

percent life is set at 0.356 million cycles.
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The unified life estiﬁates for the aVerége and maximum
initial crack sizes are given in Table 6.1 and Fig. 6.2. Unlike the
stiffener the estimate at the expected maximum initial crack size
slightly surpasses the actual life. Nevertheless, the deviation be-
.tween the estimated and actual life at the average initial crack size
is about equal to‘that found_for the stiffener. If the overall
correction factor is increased by 15 percent (as a calibration) at
all crack sizes, the unified estimate atAthe average.initial crack

size is nearly equal to the average life.

Several other unified estimates prqvide informative compari-
son with Table 6.1. If bending were not included, the estimate'at
the average initial crack size would be 0.976 million cycles, If the
initial crack shape variation equation were taken as Eq. 4-17 as
opposed to Eq. 4-21, the estimate at the average initial crack size
would be 1,036 million cycles. Finally, if a plastic zone correction
were included (Art. 4.4) and the yield stress were successively
assumed to be 385 ﬁPa and 760 MPalg, the corresponding estimates at
.the average initial crack size would be 0.509 million and 0.529
million cycles, réspectively. Here again the importance of bending

and crack shape variation is emphasized while the plastic zone cor-

rection at the given stress range is seen to have a minor effect.

Reference 19 gives the following regression equation for

all cover plates with transverse end welds:
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log N = 11.8873 - 3.095 log Sr : (6-8).

Incorporationlof the 96 percent life for crack growth through the

flange modifies Eq. 6-~8 as follows:
log (i96N) = 11.8695 ~ 3.095 log Sr (6-9)

For the specific stress range in Table 6.1, it can be seen that the
estimated 1ife from Eq. 6~9 (by chance) precisely equals the actual
life for the particular series being studied. By making use of the
"standard error for Eq. 6-8 (s = 0.101), it is again possible to de-

fine the equation for the upper 95 percent confidence limit.

log (.96N) 11.8695 - 3.095 log Sr + 2s

12.0715 - 3.095 16g_ s'r' (6~10)

The result of Eq. 6-10 is also given in Table 6.1 and Eqs. 6-9 and
6-10 are both plotted in Fig. 6.2. As with stiffeners the value
corresponding to the upper 95 percent confidence limit surpasses all
of the unified estimates. Thus, even the unified estimate at the
average initial crack size is not considered too far removed from the

actual life.

Gurney makes the observation that the smaller the SCF the
greater is the reduction in life as a result of an increase in
27

initial crack size , He derives this conclusion from studies on

different joints with identical changes in the ratio of initial crack
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size, ass to plate thickness, Tf (b in Ref. 27). The ratio of 1life at

the larger value of ai/Tf-to life and the smaller ai/Tf was found to
increase asymptotically toward 1.0 as SCF increased. (Nominal stress
range has no effect on the life ratio.j Hence, the smallest life
ratio or biggest effect of initial crack size Qccurred at the smaller

SCF.

The flange thicknesses of the stiffener and cover plate
‘examples (Table 6.1) aré not precisely equal. Thus, even though the
initial crack sizes are equal an exact comparison is not possible.
However, unified estimates can be made at equal.a’i/Tf ratios'for both
details and typical results are recordéd in Table 6.2. It is seen

that initial crack size does indeed have more importance in the case

of the stiffener detail, where SCF is much smaller, than for a cover

plate.

Gurney notes that the above-revelation with regard to
initial crack size places emphasis on reducing initial size‘é: those
details with less severe stress concentrétion27. Yet, this suggestion
has somewhat false ecohomy.since the details with highest stress con-
centration (Cétegory E ~ cover plates, etec.) usually control the de-
sign of a typical bridge structure. (The stress ranges at higher
catégory details are often below the fatigue limits.) Worry about

less severe details such as stiffeners (Category C) may divert

attention away from the weakest links in the fatigue design.
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- Article 4.5 mentions that the choice of crack shape varia-
tion equation has more effect on iife for details with higher stress
cbncentration27. This point is supported by the results of changing
from Eq. 4-21 to Eq. 4-17 for early crack growth at both the stiffener

and cover plate. Even though the ai/T ratio is not exactly constant;_

f
the life ratio for the stiffener was 1.484 while the ratio for the
cover plate was 1.933. Realizing the questionable nature of the

crack shape variation equations, it is easy to understand the larger

.relative error for cover plates at the average initial crack size.

6.3 Gusset Plates Groove-Welded to Flange Tips

Several'test results exist for groove-welded gusset plates
12, 16, 33
-with circular transitions . All of the data points are for
small radii. Hence, life comparisons for a full spectrum of geome-
tries is not yet possible; generalized regression equations haven't
been derived., Still, it is interesting to see how unified life

estimates (Chap. 5) fare for those particular geometries which have

already undergone testing.

The specific sample details_seleéted for analysis are re-
corded in Table 6.3. The actual lives and associated unified esti-
mates are presented in Table 6.4.' One contrasting aspect of this

. table versus Table 6.1 is the gddition of final crack sizes. These

lengths don't necessarily relate to failure in the sense discussed
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for stiffenérs and cover plates; However, if the actual life is
known at a specific crack size, a life estimate can be made to that
point. (As noted earlier the final crack éize is not too important'
when it is large -~ but some ag in Table 6.4 are not excessive. Thus,

.the final crack size is considered of interest.)

Looking first at the.ﬁef. 12 details, it is_seen“that.the
unified estiﬁates‘at the average initial crack size are roughly
twice the actual lives. For both detail types the initial crack size
'would have to be much larger in order to yield the actual life pre—
&iction. However, the required initial crack size is dependent upon
the final crack sizé. This dependencybéan be seen in Fig. 6.3. Using
other final crack sizes from Ref. 12; the necessary initial crack
sizes for a life of two million cycles were calculated. Obviously,
the data cover a broad spectrum of crack sizes and the estimating

process for new details is subsequently rather tenuous.

The fatigue life estimate for Ref. 33 is comparable to
thése for Ref. 12. Again, the initial crack size would have had to
be quite large (at the maximum expected initial sizg) in order for
the éstimate énd actual lives to be equal. Only one other data point
is given by Reff 33. It would suggest an initial crack size. of about
the same magnitude (0.5 mm) for equality of actual and estimated

lives.
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The analytical results for the Ref., 16 details reflect a
marked contrast with.the estimating success for the previous refer-
ences. The actual lives experienced are comparable to the average
initial crack size or smaller., While regression equations and
associated confidence limi;s are not évailable, the estimates at fhe
given initial crack sizes can be approximately used in their steadzo.
Thus, Figs. 6.4 and 6.5 show the regréssion lines for various initial
crack sizes, Impqsed on the éraphs are all data points (actual lives)
in Ref. 16 (not just the ones in Table 6.4) and category 1imit$ from

Refs. 3 and 21. (The category lines do not have precise 51ope -3.0 -

Art. 6.1).

Comparison of Fig. 6.4 and 6.5 reveals that Ca£egory D
(as it now exists) might be adequate for geometry A, but Category E
is surely-necessary for geometry B. This differentiatioﬁ is inter-
esting since both geometries have thevsame transition radius. Refer-
‘ence 21 places both geometries in Category E based on radius albhe.
However, it is apparent that length of‘dgtail also plays a role in
detail severity. The_length for geometry B is twice that of A,
making B more severe. In general, all variébles described in Art.
2.2 affect the fatigue perfofmance. Thus, future research effort
could well be directed at sorﬁing out the category limits for various

combinations of the geometrical (dimensionless) variables.
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Figure 6.6 makes a comparison between all results in the

three cited references and the category limits. For purposes of this
piot the last recorded number of cycles was used for cycle life even
though the definitions of failure vary. (For Ref. 12, N at the point
of fracture was used rather than the two million cycles bn,which the
analytical comparison in Table 6.4 was Based.) 'Regardless, Ref, 12.
gusset plates appear most fatigue prone, folléwed by Ref. 16 and Ref.
33 details, in that order.. In light of the comparative vélues of
geometric variables, this relative positioniﬁg af the details appears

justified.

The lack of success in reasonably predicting the fatigue
lives of certain of the gusset plate details is explainable. The
range of stress intensity predicted at the smaller crack sizes waé
quite low.for'detéils in Refs. 12 and 33, leading to very large life
estimates. In fact, early AK valués were below what might be con-
sidgred a threshéld value for fatigﬁe crack growth (AKth
/E; 28).»However, the rapidity of fatigug failure can be attributed

< 104 MPa

to local irregularities in geometry which amplified AK. ' Reference 12
shows a picture of a circular transition which can hardly be termed

smooth. Reference 33 diagrams a transition which is purposely not

tangent to the flange tip. While the intent of such a design is not .
understood (perhaps easier fabrication), it is clear Ref. 33 details

began with a stress singularity condition at the weld terminations.
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The difficulty in fatigue life prediction for certain gué—
-set plates underscores the importance of careful detail preparation.
For circular transitions where weld terminations have been gound
smooth and (for large radii) where the plate has been cautiously cut
out, prediction of fatigue life based on average initial crack
size is possible. Unfortunately, such careful preparation can't be
expected in real life bridge fabrication - particularly where the

radius is small and formed by grinding.

The difference between acfual and idealized geometries can
be taken into account in the cycle life prediétion process. While it
is possible to introduce a local (additional) gradient effect.into
AK, the simplest approach is probably just an increase in the initial
crack size. In fact, inspection of several specimens from Ref. 12
showed a starter notch where grinding occurred. Based on Table 3,4,
aniaverage initial crack size of 0.5 mm is recommended for cases
where strict coﬁtrols are not impose@ on detail fabrication.  The
choice of initial crack size is particulgrly important for setting

the above proposed category limits for variations in the geometric

variables. Two sets of recommendations appear warranted.

6.4 Yellow Mill Pond Bridge

In the early 1970's fatigue cracking was detected in the
steel (simple span) beams of the Yellow Mill Pond Bridge servicing

Interstate Route 95 near Bridgeport, Connecticut. Subsequent stress
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10, 40 : .
3 . ’ . )
history studies led to the conclusion that fatigue crack growth

should not have occurred since measured stress ranges were well below .
: . .19, 20
the fatigue limits developed from small scale beams . Hence,
the Yellow Mill Pond Bridge has been a constant question mark; it has
demonstrated worrisome contradiction with basic experimental findings
3, 19
. It is therefore appropriate to determine if the analytical

approach of this dissertation sheds new light on the failure -

particularly the fatigue limit positioning.

The most serious crack occurred at the end of a.cover Plate
detail in one of the eastbbund spans. Between the bridge erection in
1958 and 1970 the crack completely penetrated one beam flange and even
propagated 400 mm up the web. The detail dimeﬁsions of interest are

given in Fig. 6.7.

The variance in thé stress range fatigue limit, E;, is
plotted in Fig. 6.8 using a threshold AK of 104 MPa /EE. The fétigue
limit is seén to have a géneral dowvnward trend with inéreasing crack.»
size. " However, due to the sharp drop in’Fg a shért Plateau occurs
around the 20 MPa level, temporarily interrupting the decline of E;.
While this pafticular fatigue limit curve was developed with the
additionai 15 percent correction factor (Art. 6.2), with 6r without
the 15 percent the entire curve félls well below the (lower confideﬁce)

19, 20
fatigue limit observed on smaller scale beams .
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Figure 6.8 also positions two stress range levels of
interest. First, the maximum stréss from the étress history study
is indicated. Second, the upper bound stress range for almost all
recorded stress ranges is given. The fatigué limit curve is seen to
fall between the two levels. It is noteworthy that these levels:
aren't associated with stress ranges recorded at thé épecific detail
investigated here since it had already failed. The stress history
data was collected at a similar detail on a different span. Thus,
some vertical shift in the iines for the actual detail in questionn

could be expected.

The crack length in Fig. 6.8 can be viewed as either initial
size or size at some point during crack propagatioﬁ. Using the-
maximum stress range and assuming the initial crack size to be
0.076 mm (average expected), the life estimate for growth to 0.5 mm
is nearly ohe million cycles. iifé fér groﬁth from 0.076 mm through
the flange is estimated at 19 million cycles. Both of these figures_'
are in marked contrast to the 20 thousand cycles estimated for stress

10

ranges above 20 MPa . (Traffic surveys accompanied the stress

history studies.)

Invlight of the preceding findings the analysis of the
Yellow Mill Pond Bridge failure can be considered a partial success.
On the positive side it is clear that the fatigue limits for certain

3
geometries might be well below the existing AASHTO regulations . This
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does not necessarily mean new detail categories are required; perhaps

‘ only a choice of runout levels (as for Category C) is sufficient.
Future research appears warranted in order to accomﬁodate.the'full
spectrum of detail geometries invAASHTO. Also, while resetting the
fatigue limits on a geometrical basis, consideration should be given
to the drop in the limits as cracks propagaté,,thereby making more of
the stress range histogram (and associated cycles) effective in

28
causing growth .,

The negative side of the Yellow Mill Pond analysis picture
is obviously the discrepancy in life cyclé éstimates. Even alloﬁiné
for a very large initial crack size and/or occasional o&erloads; the
estimated and actual cycles are far out of line. Errors are, of
course, possible in the development of the stress inteﬁsity expreé—
sions (in‘addition to the 15 percent) and material constants (Art.
6.5). However, it appears the greétest discrepancy is associated
with the stress hisfory study. Certainly there would h;ve to be a
great number of cycles near the 20 MPa level which could be con-
sidered the root-mean-square or Miner stress range required for
sustained crack growth7o. In this case the two stress range limits

in Fig. 6.8 would be substantially higher.

6.5 Sources of Error

Given the preceding results of various fatigue life

corrélations it is worthwhile collectively highlighting the potential
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sources of discrepancy between estimated and actual lives. These
sources or "pitfalls'" in the analytical pfdceduré may be grouped
under the headings of stress gradient correction, other correction
factors, and life integration. Knowledge of weak assumptions can

and hopefully will‘lead to research which wiil streﬁgthen-the fatigue
analysis capability of all investigators. However, it should be
undefstood that variability in the actual lives makes precise esti-

mating in all instances a virtual impossibility.

.. 6.5.1 Stress Gradient Correction

Chaﬁters 2 and 3 were devoted exclusively to coming to grips
with Fg. Yet, froﬁ the start important assumptions were made. First,
the geometry of the detail was idealigedf Fillet weld angles were
taken as T/4 radians although the angle at the toe often exceeds this
value - particularly for handmade welds. Gurney has shown that stress
concentration increases with weld angle and Fg at small craék sizes is
significantly affected®’, The geometry also has great impprtance for
groove~welded guéset plates where the transition radius results from
grinding the weld termination. Lack of careful tranmsition fabrication

can seriously increase the rapidity of early crack growthlz.

Important decisions for the stiffeners and cover plates were
the section used for two-~dimensional analysis and subsequent SCF and

Fg calculations, the distance from the weld toe for input of uniform
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stress, the length of cover plate beyond which conditions at the weld
toe do not change, and the plane stress versus plane strain contro-
versy when switching from the three-dimensional to the two-"
dimensional anélysis. But perhaps the key decision for any géometry
with a singular (eleastic) stress distribution is the mesh size. The
contention in this diésertation is that the size near the singular
point‘must be smaller than the expected initial crack size. Vari-
ation in mesh size makes comparison of results of different investi-

gators of singular geometries very difficult at small crack sizes.

If the geometry were truly singular it would imply
localized yielding. The éssociated redistribution of stress would
raiée_the stress concentration and Fg correction at crackQIengths
just beyond the plastic zone. (Within Fhe zone Kt and Fg would, of
course, be constant.) The size of the zone depends on stress or
stress range in a ﬁanner similar to that presented for crack tip
plastic éone correction, Fp. However, like Fp a modification for
geometric singularity yielding was assumed to be small and thus

neglected. If yielding had been included the estimated life would

have been closer to the actual life.

The gusset plate geometries only underwent two-dimensional
analysis. Since the middepth of the piate is not normally coincident
with the middepth of the adjacent flange, some out-of-plane bending

will occur. This bending is neglected by the two-dimensional approach
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although the bending is probably responsible-for early growth as a

corner crack.

The gusset plates presented difficulty in developing SCF
and ellipse decay correlation equations. The equations do not demon-
strate the same goodness of fit that was exhibited for cover plates
and stiffeners. ObQiously, tﬁe number of variables was partially re-
sponsible for this condition. Application of the correlation is also
questipned'for crack growth beyond the web line. Fg would actually
begin rising rather than continuing the decay. Regardless, the gen-—
erally low Fg for gusset plates reduces the concern about equation
inaccuracies. Cycle iife for growth beyond the web is so small a
percentage of total life that error in correction factors can be con-

sidered to have neglibible importance.

Applicafion of Albrecht's Green's Function requirés that
the crack path be known in advance. It was assumed that the path
exteﬁded from the weld toe in the direqtion of the flange thickqess
(stiffeners and cover plates) or from the circular transition point
of tangency in the diréction of the flange width (gusset pléteé)}
Actual tests have shown slight deviation from these directions in the

)12,22

very early stages of crack growth (Art. 3.1 . Use of the proper

direction does raise Fg somewhat.

The ellipse decay correlation equations for stiffeners,

cover plates, and gusset pates are most valid when the dimensionless
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geometrical parameters are within the limits used in the equations' o

development. Use of the equations for excessive parametric values
should be done with caution even though the trend indicated by the

equations is correct.

6.5.2 Other Correction Factors

Evaluation of the‘limits of the Fs and Fw correcﬁioﬁ fac-
fors (Chapter 4) involved some judgment. This is particularly trﬁe
in the case of the quarter-circular érack for which existing solu-
tions are rather tenuous. Application of these factors, whiéh stem
from simple plate specimens, to details where changes in cross-
section océur is questionable. Unknown is how the detail affects"
Poisson displacement parallel to the crack #t its origin. If such
displaéement is restricﬁed to a significant degree, FS must be
reduced. Fs.also is less if growth along‘the minimum stress tra-
jectory is considered rather than perpendicular to the applied stress '
(Fig. 3.1)82. The gap between estimated and actual lifeﬁwould then
widen. However, stress perpendicular td‘the crack is higher when
growth is along the trajectory and the rise in Fg would tend to

balance the drop in Fs.

Yielding due to the crack tip was discussed and incorporated
in the plastic zone correction, Fp (Art. 4.4). This factor is small
for reversed yielding conditions, as in fatigue, where the alternating

plastic zone is one quarter that of a noncyclic stress. Fp is also
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.low due to low stress ranges in reai bridges and a modern tendency
~ toward steels with increased yield strength. However, Fp is affected
by detail type and increases for those attachments (Category E) which
result in a high overall correction factor, CF. While Fp is generally
neglected in the dissertation, it brings actual and estimated lives

closer together (Art. 6.2).

A very important decision for every detail is whether or not
bending occurs as a crack grows (Art. 4.3). Cover and gusset plates
are considered to exhibit bending while stiffeners do not. Obviously,.
though, geométry can affect the degree with which either limiﬁ is.
attained. Bending can easily reduce ghe estimated life by several

hundred thousand cycles (Arts. 6.1 and 6.2).

" Even if the form of all thelcofrection factors is properly
ascertained, the crack shape variation during growth must be known for
an accurate life estimate (Art. 4.5). The stiffener detail has been
studied for crack shapeAvariation although results by different inves-
~ tigators are in_considerable disagreement. ' There are the further
comﬁlications of crack coalescence and, for thick flanges, an eventual
dominance by corner cracks.(rather than semielliptical ones) grdwing
in the thickness direction (comparable to Fig. 4.12). Shape variation
equations are unknown for cover plates although the shape ratio, a/b,
may remain small due to a higher stress gradient. In any case the

stiffener equations were used for cover plates in the present study.
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The equatioﬁ used for gusset plates was based 6n crude, limited data
in Ref. 12 and, quite.likely, will undergo modificationlin the
future. Depending on the magnitude of stress concentration, the
shape variation decision can affect the life estimate by as muchAas

100 percent (Art. 6.2) or possibly more?®’.

6.5.3 Life Integration

In the numefiéal integration process se&eral decisions must
be made. Naturally, the method of integration and the crack incre-
ments have somé'small influence on the results; However, much more

'important is the initial crack size. Tables 6;1 and 6.4 show a
marked difference in results wheﬁ the initial size is permittgd to

vary within expected limits?%,7%

. The limits themselves are in qués—
tion for different.types of details, different weld leg sizes, and

even different strength steels.

C and n in Eqs. 1-1 and 6-1 are primarily material»con—
stants, but they are also affected by eﬁvironment, frequency, an&
temperature (air and room temperature as;umed here). Barsqm has séf.
an upper bound.on the crack growth-réte for ferfite-pearlite steels |
(e.g. A36 and A44i) as follows®:

13 3.0

%a— = 2.18%10  (AK) | (6-11)
N )
where da _ mm/cycle

dN y

AK = MPa vmm
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C to be 1.21%10

The upper bound was intended to limit the growth rate in weld metal
and the heat affected zone (HAZ).as well as the parent plate. With

the same.inclusive approach Maddox has set upper and lower limits of

3 49,550

C at 3.0*10_l and 0.9*10-13, respectively . Exponent n was very

close to 3.0 and was taken as such. Meanwhile, Hirt and Fisher found
13 and n again 3.032; It is safe to concludethaf the
findings of all of these investigators show good agreement and the C
value by Hirt and Fisher is-a reasonable intermediate assumption;

Exponent n is taken as 3.0 although certain regression equatioﬁs like_

the Type 3 stiffener one (Art, 6.1) show some deviation from this

value.

Controversy arises, however, when assuming grdwth rate
constants for martensitic steels (e.g. A514). Barsom's upper bound
for these steels is

£2 - o.40%107 () (6-12)

Naturally, an assumption of equal initial crack sizes and range of
stress intensity expressions would cause the life estimates from
Egs. 6-11 and 6-12 to differ considerably"®. Yet, test results from

actual structural details have shown the regression curves of A36 and

A514 specimens fall almost on top of each other®’19220,

The paradox is not resolved by consideration of a crack

initiation phase. Barsom notes that the observed difference in
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fatigue life of steels having different tensile strengths decreases {

as stress concentration increases®. Stress concentration negates

differences associated with crack initiation in various steels,

thereby relegating the total useful fatigue life to fatigue crack

" propagation behavior. .Thus, crack initiation is disregarded on

two counts. First, life estimates are generally higher than actual
fatigue lives and presumption of an initiation phase would only widen
the gap. Second, high stress concentration at details makes an

initiation phase nonexistent for all common bridge steels..

The disagfeement between Egs. 6-11 and 6-12 can ndt be : ‘
fully explained at this time.  However, based»on the testing expé;i—
ence on real structural details, Eq. 6-11 suggests the performance
trend expected for all steels. The Hirt and Fisher value of C is

taken as the statistical mode.
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7. SUMMARY, CONCLUSIONS, AND RECOMMENDED RESEARCH

The intent of this study hés been to improve the accuracy
associated with fatigue life estimates for typical structural, welded
details. A large measure of the improvement stems from détermination
of the Stress gradient correction factor, Fg, which modifies
the stress intensity at any given crack length. Also, development of
stress intensity expressions which properly consider differences in
crack shape as well as the influence of the variable stress field has
aided the fatigue estimate correlations. The more important steps
and findings of the dissertation and recommendations for further work

may be itemized as follows:

(1) Stress concentration factors have been established for
fillet weld toes of transvérseistiffeners and cover plates
with end welds by use of the finite element technique. For
each idealized geometry a singular elastic stfess condition
exists at the weld toe. Thus, local stress concentration '
continues to rise as the mesh size is reduced. Reasonable
accuracy of the stress gradient correction at small crack
lengths requires that the mesh size adjacent to the weld toe
be less than the expected initial crack size.

(2) Stress concentration at weld toes increases at a decreasing‘
rate as attachment length increases. Concentration for the

limits of length represented by stiffeners and cover plates
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is primarily related to weld leg size, flange thickness,
and attachment thickness. (Attachment thickness for stiff-
eners is represented by the stiffener height and, for such
large magnitudes, the stress concentration has attained
constant value for the variable involved.) Typicalvstiff—
eners were found to have concentration factofs between
three and four while cover plates with end welds,have.con—
centration factors between six and eight.

(3) Stress concentration for groove-welded gusset plates with
circular transitions is not affected by a singular geometry
but the mesh size required does decrease for smaller tran-
sition fadii. Gusset plates with circular transiti&ns nor-
mally have concentration factors between one and fhree de-
pending on gusset plate and:fiénge dimensions. However, as
the radius decreases below 0.1W., the theorétical SCF rises
rapidly and can reach vélues well above those of cover

~plates. Use of gusset plates without circular.fransigions is
therefore discouraged. In general, the concentration factors

3 although

show reasonable agreemeht with Peferson values®
additionalinfofmationis here provided on variable thickness
ratiosvand thg effect of imposed secondary stress.

(4) The results for cover plates with transverse end welds rep-

resent an upper bound for cover plates without transverse

end welds and some lap-welded gusset plates, depending on
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(5)

(6)

width. Fillet- or groove-welded longitudinal stiffenérs
with slight cifcular transitions at the ends (by weld ter-
mination grinding) can be>conservative1y treated as gfoove—
welded gusset plates. Such solutions also reasonably apply
to longitudinal stiffeners with circular transitions when
the stiffener end is.tapered.

Given the stréss concentration factor distribution along
the prospective crack path (prior to insertion of the
crack), the stress gradient correction factor, Fg’ is
evéluated gsing the Green's Function proposed by Albrecht?.
The stress gradient correction curve (with maximum value
SCF) is always ébove the stress concentration faqtor decay
curve for strpétural details. However,~at large distances
from the point of maximum donééntration’the two curves
conQerge.

The stress gradient correction factor’curves derived from
Albrecht's Green's Function are correlated with éxpressions

for stress concentration factor decay from an elliptical

hole in a plate. The relative size of the ellipse and

appropriate axis are established by the stress concentra-
tion factor for the detail. The absolute size of the

ellipse ‘is determined by geometry with particular emphasis
on the dimension ovef which decay occurs. The correlated
ellipse is used to predict the Fg correction at any crack

size for fatigue life estimate purposes.
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(7).

(8)

9

All correction factors stem from stress intensity solutions

for simple plate specimens’®?8!?82

. Usé of these solutions
for structural details where fapid changes in cross-sectional
geometry occur is questionable. Future study should be di-
rected at determining the error involved in assuﬁing the
simple plate correction faétors are applicable. Particular
attention should be given to FS.

Front free surface correction factors are established for
thr§ugh, half-circular, and quarter-circular crack shapes
with variable stress distributionms. However, additional
theoretical work should be directed at the quarter-circular
cracks since values at fhe crack tip for the various stress
distributions are only approximate.

A major decision affecting Lhé:back free surface correction
factor for each detail is whether or not cross sectioq.
bending occurs with increasing crack length. Cover plates
exhibit considerable bending due tdlongitudinalflexibility.
Gusset plate details also exhiEit bending (in plane) even
if identical details are symmetrically positioned with
respect to the web. Usually different crack lengths at the
two transitions negate symmetry. Contrary to cover and
gusset plates, stiffepers are assumed to lack bending since

those joints are comparably stiff.
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(10)

(11)

(12)

Regardless of the bending situation, little is known about
Fw for crack shapes between zero and 1.0. Lineaf interpola-
tion is used in this dissertation although Maddox predicts
a nonlinear relationship between Fw and craék shapeSI. More

analytical effort should be directed at Fw for variable

crack shape and variable proximity to the back free surface.

Crack growth generally originates at several locations

along transverse weld toes. Hénce, for stiffener and cover
plates with transverse welds, crack coalescencé'occurs and
is considered in the decision on crack shape. At early
stages of growth the shape variation equation reflects a
tendency to a circular shape. A second equation for later
growth incorporates coalescence and a trend toward a flat,
through shape.

Crack shaée has a pronounced influence on cycle life pre-
dictions. Whether or ndt coalescence is considered, all
crack shape equations are questionable. Exténsive,research
is required to determine the crack shape variation at dif-
ferent details and how shape relates to correction factofs
Fé, Fs’ and Fw' Stiffeners>fiilet-welded to flanges ex-
hibit more circular cracks than cover plates with trans—
verse end welds. For botﬁ details the shape also appears
related to flange thickness although the data base is

sparse. The data base is even more sparse for groove-

welded gusset plates.
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(13)

(14)

(15)

Expressions for stress intensity due to an arbitrary stress

field are developed by'dividing the stress distributibn for
a given crack length into uniform and variable (decreasing
to zero at the crack tiﬁ) subdistributions. The stress
intensi;ies for the subdiétributions are superimposed
(added together) to give the uﬁifiéd stress intensity
factor. Crack shape is taken into account by developing
unified Fs expressions for both extremes of crack,shape

and linearly interpolating between them for-the specific
shape predicted by the crack shape variation equation.
Initial crack (disconﬁinuity) size is quite important to
the cycle life prediction. Yet, the extent of study on
discontinuities at weld toes is rather limited. Current
estimates put the average size:betwéen 0.075 and-

0.10 mm2%°7%°88  Fyture study should resolve if:and how the
discontiﬁuity size variés for different types of details,
different wéld sizes, different weld electrodes and pro-=
cesses, and even different steel strengths.

Correlations between estimated and acﬁual fatigue livés for
stiffeners and cover plates show the estimated values to be
on the high (Unconéervative) side. The estimated lives are
within the upper 95 percent confidence limits. Estimates
for stiffeners with an average initial crack size can be

brought into more accurate agreement with the mean regression
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(16)

oY)

line by increasing the overall stress intenéity correction
factor by five pereent. Cover plates require a 15 perceﬁt
correction.

Fatigue life correlations for groove-welded gusset plates
are quite sensitive to the tolerancé permitted in fabriéa—
tion of the circular transitions. Careful fabrication
results in good agreement between actual life and life
estimated from the averagé initial crack size. Crude fab-
rication reduces the actual fatiguellife considerably and
an adjustment must be made in the estimating procedure. |
While the stress intensity expressions could be appropri—‘
ately modified to reflect geometric irregularities, a

simpler approach is to increase the initial crack size from

- the average value to the upper limit expected.

AASHTO fatigue categories for groove-welded gusset plates
with circular transitions are now based on dimensional
21

radius alone"»?!, New provisions currently being con-

sidered are as follows:

Categogz
RS 51 mm E
51 < R < 152 mm - D
152 S R < 610 mm S
610 < R . B
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(18)

(19)

- These provisions appear conservative for practical detail

geometries, even in light of potential fabrication problems.

However, the correct AASHTO category should depend on

nondimensionalized radius as well as other nondimensional-
ized, geometric variables. Newinvestigativegffortshouldbe
directed at bounding the category "kérnels" for all possible
variations in detail geometry. Consideration must also be
given to differences caused by the fabrication tolerance
required.

Detail geometry affects the stress cdncentration and stress
gradient correction factors and ultimately influences
fatigue limits. Details with high F, at the initial crack
size can ﬁave fatigue limits well below those published in

3. ﬁew research should be directed

the AASHTO Specifications
at fepositioning the fatigue limits to more properly reflect
the extremes of detail geometriés. This reéearch should
also consider the variability of the fatigue limits with
crack growth and the eventual effectiveness of lower values
in the typical bridge detail; stress range spectrum.

Crack initiation appears to play a neéligible role in the
fatigue life of aAbridge detail, Since life estimates based
on propagation alone are greater than actual lives, crack
initiation estimates wogld only increase . the magnitude of
disagreement. Also, high stress concentration at fillet-

welded details seriously curtails any possible initiation

activity.
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CF

CF
p

E (k)

NOMENCLATURE

crack size; minor semidiameter of elliptical crack
initial crack size
final crack size

number of cycles when stress range equals 1.0; stress
concentration factor decay polynomial coefficient

area of uniform stress subdistribution
area of variable stress subdistribution
major semidiameter of elliptical crack

stress concentration factor decay polynomial coefficient;
plate thickness in cruciform joint

stress concentration factor decay coefficient

crack growth coefficient; stress concentration
factor decay polynomial coefficient

combined total correction factor for stress intensity

total correction factor including factor including
plastic zone

total correction factor for fatigue incldding plastic zone
stress gradient correction factor decay coefficient

stress concentration factor decay polynomial coefficient;
constant in characteristic equation for &; chord length

on gusset plate circular transition:

distance from detail at which stress concentration is
negligible

Young's modulus; stress concentration factor decay
polynomial constant

complete elliptic integral of the second kind
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eff

th

=R RSLSS

focal distance of ellipse

crack shape correction factor
stress gradient correction factor

stress gradient correction factor for variable stress
subdistribution

plastic zone correction factor

plastic zone correction factor for fatigue

front free surfacé correction factor

back free surface correction factor

major semidiameter of elliptic hole in an infinite plate

optimum major semidiameter of elliptic hole for repre-~
senting the stress gradient correction factor decay

strain energy release rate
minor semidiameter of elliptic hole in an infinite plate

optimum minor semidiameter of elliptic hole for repre-
senting the stress gradient correction factor decay

stress intensity factor
material toughness

effective stress intensity factor after stress redistribu~
tion due to crack tip plasticity

stress concentration factor
stress intensity factor for uniform stréssISubdistribution
stress intensity factor for vériable stress subdistribution
range of stress-intensity factor |

stress intensity range.at crack growth threshold

distance along crack path from origin
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log - logarithm to base 10

L. attachment length; length to division of two stress
concentration factor decay polynomials

L' outer edge length of groove-welded gusset plate
m number of finite elements to crack length a; maximum

distance between gusset plate circular transition and
chord approximation

n crack growth exponent; negative slope of log-log Sr-N curve

N fatigue life

P ‘ stress concentration factor decay exponent

ff total force directly input to flange

ng total force directly input to gusset plate

q stress gradient.correction factor decay exponent

Q coefficient for back surface tangent correction to account
for bending; crack shape correction modified for crack tip
plasticity S

r - diStaﬂée from crack tip

ry distance from crack tip to where yield condition ends

R radius of circular transition at end of groove-welded

gusset plate

s standard error of estimate
Sr nominal stress range
B nominal stress range representing fatigue limit
r
SCF maximum stress concentration factor; stress concentration
factor for the crack origin
tf thickness of planar finite elements representing flange
tw thickness of planar finite elements representing weld
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TCp cover plate thickness

Tf flange thickness

Tgp gusset plate thickness

TS stiffener thickness

u elliptical coordinate representiﬁg confocal ellipses

U flange thickness in inches minus 1.0

v elliptic coordinate representing confocal hyperbolas

\ crack length at which rate of growth becomes infinite

W ‘ratio of area of.variable stress subdistribution to area
of uniform stress subdistribution, A.V/Au

W cover plate width

cp ,

Wf flange width

W gusset plate width

. 8P .

W* effective width of symmetrical lap-welded gussets,
measured from outer edge to outer edge

X distance from ellipse center in major axis direction

X ratio of stress concentration factor at o to stress
gradient correction factor for o

y distance from ellipse center in minor axis direction

1 .

Y ratio of Fg for circular crack to Fg for through crack

z weld leg size

o nondimensionalized crack length, a/w

B dummy angle variable for integration purposes

Y -value of elliptic coordinate n representing elliptic hole

perimeter
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strain .
alternative elliptic coordinate related to v
alternative elliptic coordinate related to u

half of angle delineating chord length of gusset plate
circular transition

nondimensionalized distance, %/w
Poisson's ratio

value of A at which slope of decay curve equals slope of
straight line from SCF to Kt at o

stress

yield stress

angle from major axis of elliptic crack
inverse of Fe |

crack yield zone size factor depending on planar conditions
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Table 1.1 AASHTO Allowable Range of Stress for Fatigue?®

Cycles
Detail over
Category || 100,000 500,000 2,000,000 2,000,000
A 413.7 MPa 248.2 . 165.5 165.5
(60 ksi) (36) (24) (24)
B 310.3 189.6 124.1 110.3
(45) (27.5) (18) (16)
c 220.6 131.0 189.6 69.0, 82.7%
(32) (19) (13) (10, 12%)
D 186.2 110.3 69.0 48.3
27 (16) (10) )
E 144.8 86.2 55.2 34.5
(21) (12.5) (8) (5)
F 103.4 82.7 62.1 55.2
(15) (12) 9 (8)

* TFor transverse stiffener welds on webs or flanges
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Table 2.1 Summary of Maximum Stress Concentration Factors
: for Stiffener and Cover Plate Geometries

T
jL cp
Detail T¢ T¢ SCF
‘Stiffener 0.3205 . 3.161
N
\\ /
0.6410 Ny 3.651
(
a |
0.9615 a 3.934
Cover Plate 0.3205 0.6410 7.198
0.6410 0.6410 6.040
1.4360 6.762
Y 2.0000 7.014
\4 0.9615 2.0000 6.542
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Table 2.2 Auxiliary Geometries for Cover Plate
and Flange Width Effects :

W W W .
CASE o ?%R 752-- e SCF -
f f f cp
1.778 | 6.557
1 8.64 —— 0.667 ——— 5.76 —_
: ™~ 2.667 —— 6.762
0.889. | 6.921
2 17.28 0.667 11.52
1.333 7.418
(8.242) %
. 2.000 6.690
3 17.28 0.296 5.11
3.000 © 6.818
o 0.889 |  6.480
4 8.64 1.333 11.52 -
. 1.333 . 6.945
For all geometries in this table:
Z Tc
£ = 0.6410 —P - 1.4360
T, T,

* Plane strain conditions assumed for finer meshes
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Table 2.3 Summary of Maximum Stress Concentration
Factors for Gusset Plate Geometries

R L S scr
W, W W T, -
0.056 0.44 0.67 | 1.00 1.987
v 0.50 1.496
0.67 1.00 2.114
il 10.50 1.803
1.11 1.00 2.457
" 0.50 2.245
2.89 1.00 3.216
v v 4 0.50 2.787
0.083 0.67 1.00 1.00 2.022
0.75 . 1.924
0.50 1.770 -
v | 0.25 1.642
1.00 o 1.00 2.277
0.75 2,137
0.50 1.922
v 0.25 . 1.852
1.67 - a 1.00 2.554
0.75 C2.371
0.50 2.163
0.25 2.110
4.33 | 1.00 2.737
0.75 2.570
0.50 2.519
¥ v v 0.25 2.431
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Table 2.3 Summary of Maximum Stress Concentration

(Cont.) Factors for Gusset Plate Geometries
W T
R L _8gp 8P SCF
Wf Wf Wf Tf
0.167 1.33 - 2.00 1.00 1.967
2.00 2.101
3.33 2.189
8.67 v 2.229
0.250 ©1.00 1.00 1.00 1.658
v 0.50 1.492
1.67 1.00 1.790
v 0.50 © 1.638
4.33 . 1.00 "1.870
_ ¢ v ~0.50 ©1.789
0.417 1.67 1.00 1.00 1.536
v _ 0.50 1.392
©4.33 1.00 . 1.580
; 0.50 1.425
1.50 1.00 1.579
0.50 ; 1.562
0.500 1.67 1.00 1.00 - 1.440
, 0.50 1.305
2.33 1.00 1.461
4.33 v 1.465
L ©0.50 1.1386
1.000 ' 4.33 1.00 1.00 1.254
¢ ¢ - 0.50 . 1.189
v
1.500 4.33 1.00 1.00 1.179
¢ ¢ ¢ ; 0.50 1.117
2.000  |°  4.33 1.00 - 1.00 1132
¢ - ¢, _ ¢ 0.50 1.097
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Table 2.4 Summary of Maximum Stress Concentration

Factors for Singular Gusset Plate Geometries

W
R L —8p _8P SCF
W W W T
£ £ £ £
0.0 0.33 1.00 1.00 6.311
0.67 l 8.469
v . .
l | 0.50 5.515
1.00 1.00 10.058
1.67 l 12.226
| , 0.50 7.530
v
2.33 1.00 '13.658
4.33 l 14.786
L v 0.50 .9.032
0.67 0.50 1.00 8.466
1.67 $12.019
v 4.33 v 13.325
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Table 2.5 Prediction of Maximum Stress Concentration

Factors for Singular Gusset Plate Geometries

L Z SCF ‘ SCF

Ve 0Ty Table 2.4 -~ Eq. 2.2
0.33 6.311 6365
0.67 8.469 ' 7.362
1.00  10.058 7.926
1.67 1é.226: o 8.648t
2.33 ~ 13.658 9.119
4.33 14.786 11.719

For all geometries in this table:

N W T
=~ = 0.0 -8 = 1,00 —£2 = 1. 00
We ¥ - Tg
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Table 5.1

Decay Constants of Approximate Stress
- Concentration and Stress Gradient

Correction Factor Curve Formulas

Kc;\ - 1 Fga - 1
SCE 4+ Lye SCF 1 4149
_ e d

: Cover ' Gusset
Constant Stiffener Plate Plate
c 0.3546 0.1159 0.9623
p 0.1543 " 0.3838 0.5077
d 0.3602 .0.1473 1.1579
q 0.2487 0.4348 0.6051

-198-



Table 5.2 Comparison of Stress Gradient Corrections
for Through and Circular Crack Shapes

Keg

Assume t* . 1 - A(%) + B(Z)

SCF

2

a

F a/SCF
Stress Distribution g Ratio, Y
’ Through Circular
Uniform A=B=0 1.000 1.000 1.000
| ELTTTY Y |
3 ]
a ]
Linear 0.363 0.281 0.774
Parabolic 0.329 0.251 0.763
Parabolic 0.227 0.162 0.714
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Table 5.3 Summary of Correction Factors for
Unified Stress Intensity Expressions

for Stiffeners

Correction Factor

Expression

Front Free Surface, FS

(1 - %) [TERMl*COEFlﬁ-(l .122-
TERMl*COEFl)*X] * % *

TERM2*Y+(1.025-TERM2) *X

[Sec@g)] 1/2

Crack Shape, Fe

E(k)

Back Free Surface, Fw

L)

Stress Gradient, Fg

 as evaluated by the correlated

stress decay from an elliptical
hole in an infinite plate
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Table 5.4 Summary of Correction Factors for
Unified Stress Intensity Expressions
for Cover Plates

Correction Factor ' Expression

v

(1 - i‘—) [TERMI*COEF3+(1 .122COEF2-

TERMl*COEFZi)*X] + % *

Front Free Surface, Fs

TERM2#*Y+(1.025-TERM2) *X

[Sec(ﬂ%)] 1/2

1

Crack Shape, Fe . _ ETET
\ o 11/2
Back Free Surface, F sec(——
w - 2 J

as evaluated by the correlated
Stress Gradient, Fg stress decay from an elliptical

hole in an infinite plate
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TABLE 5.5 Summary of Correction Factoré for
Unified Stress Intensity Expressions

for Gusset Plates

Correction Factor

Expression

Front Free Surface, FS

(1 - %) { TERM1*COEF3+(1.122COEF2-
TERMl*COEFB)*X} + % *

TERM3*Y+(1.380-TERM3) *X |

[rec(2)]” 2

Crack Shape, Fe

Back Free Surface, Fw

oecftg)]

Stress Gradient, F

as evaluated by the correlated
stress decay from an elliptical
hole in an infinite plate
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Table 6.1 Cycle Life Comparisons for Sample Stiffener

and Cover Plate Details

Detail S_-MPa | T .-mm Z-mm | T_ -mm | N__ % Unified N Other N
r £ cp act est est
Stiffener 1.609 1.409
Fillet-Welded (ai= .076mm) (Eq. 6-4)
to Flange
127. 12.3 6.35 - 1.346 1.195 1.389
(ai= .508mm) (Eq. 6-6)
(Ref. 20, 1.390 2.226
Series SGB- a,=,076mn (Eq. 6-7)
SBB) i
1.05%CF
Cruciform 158 2.954
Fillet-Welded (ai= «125mm) (Eq. 6~4)
Joint ‘
100. 12.5 20.0 - 1.842 1.871 3.210
' ' (ai= .500mm) - (Eq. 6-6)
(Ref. 27, Non- 1.865 0.979
load-carrying ai=2.125mm) a, = .125mm
fillet weld) ( 1.05*CF Gurney mean

* All cycle lives in millions
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Table 6.1 Cycle Life Comparisons for Sample Stiffener and

Cover Plate Details

(Cont.)
Detail S ~MPa | T.-mm Z-mm T -mm N % Unified N Other N
T £ cp act est : est
. Cover Plate 0.536 .0.356
With Trans- (ai==.076mm) (Eq. 6-9)
verse End
Weld
110. 9.98 6.35 14.0 0.356 0.444 0.567
: (ai==.508mm) _(Eq. 6-10)
(Ref. 19, 0.353
Series CWB- a = .076mm
CWC) 1.15*CrF

* All cycle lives in millions




Table 6.2 Effect of Initial Crack Size on
‘Cycle Life for Different Details

" Detail

a./T
i

0.0076

0.0509.

Life
Ratio

Stiffener
Fillet-Welded
to Flange

(Ref. 20,
Series SGB-SBB)

1.574%

1.106

0.703

Cover Plate
With Transverse
End Weld

(Ref. 19,
Series CWB-CWC)

0.536

0.444

0.828

* All cycle lives in millions
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Table 6.3 Sample Groove-Welded Gusset Plate Geometries

_ Detail W -mm T -mm R-mm L—mm W -mm T —-mm
Ref. | Desig. ' &P g?
A 156. 39.6 19.1 343. 305 25.4
12 —
B 178. 51,2 19.1 343, 305. 25.4
33 - 170. 12.0 70.0 200. 50. 8.0
A 200. 20.0 20.0 240. 100. 20.0
16 :
B 200. 120.0 20.0 440. 125. 20.0




Table 6.4 Cycle Life Comparisons for Sample Gusset Plate Details

Detail

_ _ % s
Sr MPa ag-mm 'Nact » Unified Nest

Ref. | Desig.

4.623
: (a, = .076mm)
A 60. - 22.2 1.983 * |
1.983
(ai = , 800mm)

12

3.655
: (a, = .076mm)
B 62. 9.5 2.015 -t

' ' - 2.015
(ai = ,269mm)

2.126

{a. = .076mm)

33 — 120. 67.0 0.798 n
. 0.798

(ai = .503mm) -

0.466
(ai = .025mm)

A 153. 95.0 0.407 0.293
' ~ (ai = .076mm) .

0.146
(ai = .508mm)

16
0.084"
(a:.L = ,025mm)

B 253. | 130.0 0.054 0.053 -
: (ai = _076mm)

0.027
(ai = ,508mm)

oo
~

All cycle lives in millions

-207-




FIGURES

-208-




~60¢-

STRESS RANGE S, MPa

600
400
300

- N
o . o
O o

@)
o

10

) I LI S I I { I lll—llll— I i

»Category
A

B

C (Stiffeners)

f‘\‘~\;, . .
. C (Other Attachments) -
~—
D
\ ~—
- E -
! L1l L i) L
|0° | | 0° 107

Fig.

CYCLE LIFE

1.1 Design Stress Range Curves for Detail Categories A to E?I



4P - - YFixed End

=012~

?P . o o, LLU—*}U

a. Plate Under:Cd'ncentroted. . b. Fixed-Ended Plate Under
Loads (84) . ‘-, Uniform Stress
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Fig. 4.6 Fatigue Crack Growth from Gas Pore in
Web-to-Tension Flange Fillet Weld!®

Fig. 4.7 Fatigue Crack Growth from Termination of
Longitudinal Cover Plate-to-Flange Fillet Weld!'®
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Fig. 4.8 Fatigue Crack Growth at Termination of
Stiffener-to-Web Fillet Weld?®

Fig. 4.9 Multiple Fatigue Crack Growth at Toe of
Stiffener-to-Tension Flange Fillet Weld?®
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Fig. 4.10 Schematic Crack Shape Variation for Details
With and Without Coalescence of Surface Cracks
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Fig. 4.11 Fatigue Crack Growth from Circular Transition
of Groove-Welded Gusset Plate’?

Fig. 4.12 Fatigue Crack Growth from Fillet Weld Toe
of Lap-Welded Gusset Plate!?
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Fig. 4.13 Maddox Gusset Detail for Developmént

of Crack Shape Variation Equation51
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