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" 
ULTIMATE STRENGTH OF CONCRETE-FILLED 

STEEL TUBULAR BEAM-COLUMNS 

by 

Glenn P. Rentschlerl and WaiF. Chen2 

1. INTRODUCTION 

In analysis of concrete-filled steel tubular beam-columns, 

several procedures have been introduced. Knowles and Park (7) presented 

a method for determining the buckling load of axially loaded columns 

by adding the tangent modulus loads of the concrete core and steel 

tube directly by assuming each to act as independent columns. However, 

no real column is perfectly straight, without material imperfection 

or concentrically loaded. Hence, all column problems must be treated 

as beam-columns (deflection problems), not as straight columns (eigen-

value problems, tangent modulus method). The 1971 ACI Building Code (1) 

now requires a minimum eccentricity of thrust for the design of all 

concrete comp!'ession members. All columns, therefore, are really 

designed as beam-columns. 

For beam-columns several deflection approaches have been 

taken to determine more exact solutions. Neogi, Sen, and Chapman (8) 

used a Column Deflection Curve method where deflection as a variable 

to solve the more realistic beam-column problem. This theory was 

simplified by Chen and Atsuta (2) in the Column Curvature Curve method 

(with application toward concrete-filled steel tubular beam-columns 

by Chen and Chen (5)) where curvature is used as a variable. Both 

thesemethods, although providing accurate and reliable results, are 

cumbers0me in that extensive computer programs are required. 

lResearch Assistant of Fritz Laboratory, Lehigh University, Bethlehem, Pa. 
2Associate Professor of Civil Engineering, Fritz Laboratory, Lehigh Univ-
ersity, Bethlehem, Pa. 
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For actual design of concrete-filled steel tubular beam­

columns, a simple method of computing the relationship of maximum bending 

moment to maximum axial load for a given cross-section, length, loading, 

and end conditions is very important. Several researchers (6,7) have 

proposed over simplified bending moment-axial load interaction formulas. 

These interaction formulas, although most are on the conservatuve side, 

lean too far in that direction to be used as a basis of economical 

design. 

The work presented in this paper is an effort to present 

a simplified, yet sufficiently accurate, procedure, which may be used 

in design offices without extensive computer facilities, for deter­

mining the ultimate strength of concrete-filled steel tubular beam­

columns. This procedure is based on several assumptions related to 

concrete strength, steel strength, and moment-curvature-thrust rela­

tionship. 

The method presented here is related to work done by Chen 

and Atsuta (4) on sUmple interaction equations for steel beam-columns. 

The results computed using this procedure will be compared with the 

more exact computer based solution of Chen and Chen (5). 

2. BASfC CONCEPTS 

!.1 ~p·ete and Steel Property Idealizations 

In a report by Chen and Chen (5) concerning the analysis 

of concrete-filled steel tubular beam-columns by a computerized 

column curvature curve method, the effect of three different concrete 
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stress-strain relationships on the strength of these sections was 

investigated. These concrete relationships are shown in Fig. 1. 

In this figure, Curve 1 assumes the uniaxial state of stress; 

Curve 2 represent~ the triaxial state of stress, the effect being 

assumed to increase only the ductility and not the strength; Curve 3 

depicts also the triaxial state of stress, the effect being assumed 

to increase both the strength and ductility of the concrete. 

Based on the results of this previous research, it was 

concluded that there is no significant difference among the three 

assumed concrete curves on the ultimate strength of concrete-filled 

steel tubular beam-columns. On this basis, the concrete stress-strain 

relationship will be assumed to be the bilinear form shown in Figure 

2(a). This curve corresponds to a simplified triaxial state of stress 

where the effect is only to increase the ductility. The modulus of 

elasticity for concrete (E ) in the linear elastic range will be based 
c 

on the American Concret~ Institute (1) formula: 

E = 33W 1. 5 Jf I 
c c 

where w = the density of concrete in pounds per cubic foot and f' = 
c 

the compressive strength of standard concrete cylinders in pounds per 

square inch. It will be assumed that concrete exhibits no tensile 

For steel, the linear elastic-perfectly plastic form shown 

in Figure 2(b) will be assumed. The modulus of elasticity (E ) up 
s 

to the yield stress (f ) for steel will be taken to be 31,000,000 
y 

pounds per square inch. 

(1) 
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2.2 Generalized Moment-Curvature-Thrust Relationship 

A general moment-curvature-thrust curve of a concrete-filled 

steel tubular beam-column section has the shape shown diagrammatically 

in Figure 3. The curve presents the relationship between bending moment 

and curvature for a constant value of axial force on a column segment. 

The precise values associated with this curve can be computed exactly 

by computer and this has been done for several composite sections by 

Chen and Chen (5). 

The curve in Figure 3 has been non-dimensionalized with 

respect to the quantities M , P , and p • M is the ultimate bending 
0 0 0 0 

moment when no axial thrust is present; P is the ultimate axial force 
0 

when there is no bending moment present; p is the maximum curvature 
0 

present when M is achieved in a section. 
0 

Thus, the following identities are defined: 

m p 
p 

p ' 
0 

=...!._ cp 

where M, P, and p are respectively the bending moment, axial thrust 

and curvature present in a section at any given time. 

(2) 

The m-p-cp curve of Figure 3 can be divided into two different 

regions. They are an elastic region and a plastic or work hardening 

region. The two regions are separated by the point (m
1

, cp
1
). The 

ultimate bending moment and ultimate curvature are called m and pc cppc 

respectively. The value of m is theoretically only attained at pc 

infinite curvature. However, due to strain hardening of steel tube 

and confinement of concrete, m will be attained at a finite curvature 
pc cppc· 
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The elastic portion of the m-p- <p curve varies linea~ly from 

zero to (m
1

, cp
1
), which is the point of initial yield in the cross­

section. Initial yield is defined as the value of moment and curvature 

for a given axial thrust at which the stress in either the steel or 

concrete fiber farthest from the neutral axis first reaches its yield 

value, considering only the compressive fiber for concrete. The slope 

of this linear elastic portion is called the stiffness of the com-

po·site section and is defined as 

EI (3) 

or in nondimensionalized form as 

(4) 

From this point, the rate of change of curvature with respect 

to bending moment in the ~lastic region is increasing due to further 

yielding of the cross,-section, the rate being near infinity when m pc 

is achieved. 'l!h.e te.rm m is defined as the moment when the entire 
];>€ 

cross-section ha.s fully yielded. 

Two differ-ent c·ros.s sections will be utilized in this paper. 

They are the squru::e an!l eit''?ular tubular sections shown respectively 

i:n Figure 6 and lH.gro;:e 7. also shp.wn ~;tre properties associated with 

By; ~qa,.i>D:g trh.e m-·p-<p curves, it is evident that the points 

m.., rn , m , ~mil._ $ll'·e ~trictly a function of p. Noticing this 
-1li '~"1 pc "~'J,'l:.@ 
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possible relationship, Chen and Chen (5) have derived equations for each 

of the above four quantities. For example, the equation for m1 for 

the square section of Figure 6 is 

m
1 

= (1.0 - p) (0.84 + 2.086p - 4.857~) for p < 0.3 

and m
1 

= 1.03 (1.0 - p) for p ;::: 0.3 

These equations are based on using the concrete stress-strain diagram 

of Curve 1 in Figure 1. 

Similar relationships to Equation 5 have been derived for 

the other quantities of both the square and the circular sections and 

(5) 

are presented in Table 1. These equations are valid only for the parti-

cular square and circular sections shown in Figures 6 and 7. The 

equations in Table 1 will be used as examples in a later portion of this 

paper in predicting the ultimate strength of concrete-filled steel 

tubular beam-columns. 

2.3 Idealized Moment-Curvature-Thrust Relationship 

For a constant thrust, the moment-curvature relationship 

is assumed to be linear up to a certain level m , called the average me 

flow moment. At this point, the section is assumed to flow plastically 

at the constant bending moment m me The idealized and non-dimensionalized 

moment-curvature-thrust relationship is shown in Figure 3 superimposed 

t.lpon the exact m-p-cp curve. This assumption was used successfully by 

Chen and Atsuta (4) in solving interaction equations for steel columns. 

By using the assumed bilinear moment-curvature-thrust rela-

tionship, the maximum bending moment of the m-p-~ curve is now considered 
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to be equal to m 
me 

The significance of this is that by equating the 

maximum moment in the beam-column to the average flow moment m , the 
me 

beam-column is assumed to fail by elastic buckling which greatly simpli-

fies, but does not deter greatly from the accuracy of, the solution 

for ultimate strength. 

2.4 Upper and Lower Bounds on Ultimate Strength 

The ultimate strength of the composite beam-column is directly 

related to the value of m which lies somewhere between the lower me 

limit m
1 

and the upper limit m • The satisfactory selection of the 
pc 

average flow moment will lead to an excellent prediction of the beam-

column ultimate strength. 

2.5 Estimation of the Average Flow Moment 

Since the value of the average flow moment m must be 
me 

between m
1 

and m for all beam-columns, it may be expressed as 
pc 

m me (6) 

where f is a parameter used to account for boundary conditions, slender-

ness effect t/t, and the thrust ratio p. If f = 0, the expression 

reduces to m = m which is the upper bound solution. If f = 1, me pc 

the expression is m = m
1

, which corresponds to the lower bound solu­
mc 

tion. 

The parameter f will be considered to be a function of three 

different variables. They are p, tft, and boundary conditions. This 

can be expressed as 
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f = f 1 (p, t/t) f 2 (B.C.) (7) 

where f
1 

combines the effects of p and t/t and f
2 

accounts for boundary 

conditions. The choice of the function f will be described later. 

3. EXAMPLES 

In order to further explain the concept set forth in the 

previous section,the beam-column with hinged ends having axial force P 

and equal and o.ppo·site end moments M will be described (see Fig. 4). 
e 

The ~eaeral solution of this type of beam-column problem 

giving the ultt~te nondimensionalized moment m which may be applied 
e 

at the ends is giveR by the following formulas (4) 

m 
e 

m 
me 

(8) 

ifk" 21: coskt 

o·r 

p 

EI 

sinkt (9) 

(10) 

(ll) 

~ is tbe ratio of t~e smaller to the larger end moment with a positive 

V!a-l.ue indicatim;g single curvature. 

The vah!>es o-f P M and ~ used in calculations are taken 
o' o o 

from Reference 5. Th-e values for m1 , cp1 , and rope are taken from Table 1. 
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It will be shown later how these section property dependent values may 

be derived directly by hand calculation. 

The upper bound (f ~ 0) and lower bound (f = 1) solutions 

are obtained by substituting m and m
1

, for m in turn into Equation pc me 

8 or 9. This is done for t/t = 20 and the square composite section 

in Figure 4. 

Considering the effect of the axial load ratio : = p, if 
0 

p = 0, the problem reduces to a beam problem and the fully plastic 

moment m = m will control the ultimate strength, i.e., f = 0. 
pc me 

If p = 1, the problem is one of an axially loaded short column and the 

initial yield moment m
1 

= m will be the controlling value, i.e., me 

f = 1. Thus the real solution form should be near m for small me pc 

values of p and approach m
1 

for larger values of p. The exact solution 

plotted in Figure 4 depicts this fact clearly. 

Therefore, the solution of f, will be assumed to be of the 

form 

Initially a simple 

From this plot, it 

the exact solution 

values of N, it was 

value of N 1 

is evident that 

but is slightly 

for 

N 
p 

tit= 20 

this curve 

in error. 

found that a value of N = 

in Figure 4 

has the same 

After further 

0.63 obtained 

which are in very close agreement to the exact solution. 

(12) 

was tried. 

shape as 

trials of 

results 
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This same curve fitting procedure was used for several values 

of t/t to find which value of N provided the most precise results 

when compared with the exact solution for that particular t/t· From 

this procedure, it was found that there existed a relationship between 

N and t/t. The relationship is 

N 
460.0 

(t/t)2.a 

This function is presented graphically in Figure 5. Also shown in 

Figure 5 are the other two trial functions of N. Although the three 

functions appear to differ significantly, the functions N = 1 and 

(13) 

N = 1.0 - 0.02 t/t give interaction curves which do not differ appre-

ciably from the true curves. This has been illustrated in Figure 4 

and later in Figure 6 (the curves corresponding toN= 1.0 - 0.02 t/t 

are very close to the exact curves. For clarity, the curves are not 

plotted in the figures). This shows that although Equation 13 provides 

the most precise solution, the simpler functions of N = 1 or N = 1.0 -

0.02 t/t may be used if accuracy may be slightly sacrificed. 

In applying the same procedure described above for the circular 

section, it was found that the same function of N as given by Equation 13 

also provided very good agreement with the exact solution (see Fig. 7). 

Throughout the above analysis, it was assumed that f
2 

= 1.0. 

A proof that this assumption was valid for hinge-ended columns will now 

be demonstrated. This parameter is a function of boundary conditions. 

Take, for example, the uniformly loaded beam-columns in Figure 8. If 

a beam-column has fixed ends as shown in Figure 8(b), plastic hinges 



-11 

will form first at the ends as shown. The third and last plastic hinge 

will form at C but until this is accomplished, large rotations will be 

experienced at A and B, the previously formed plastic hinges. At the 

ultimate state, the moments at the ends A and B will be close to m 
pc 

and the moment at the center C will be close to m
1

. Therefore m 
me 

may be taken as the mean value of rope and m1 and therefore f 2 (fixed) 

will be taken to be 0.5. However, if the beam-column is simply supportro 

as in Figure 8(a), the only hinge to form occurs at the center and 

therefore the initial yield moment m
1

, will be taken as the governing 

flow moment or f 2 (hinged) = 1.0. 

4. THEORETICAL DERIVATIONS 

To accurately calculate the ultimate strength of concrete-

filled steel tubular beam-columns, several quantities which are depen-

dent on cross-section properties are needed as shown in the previous 

sections. These quantities are m1, m , M , P , and EI. Values of 
pc o o 

these quantities used in the preceding examples were taken from Ref-

erence 5 where they were calculated by computer techniques. 

Herein, the calculation of m1 , m M P and EI by pc' o' o' 

simplified procedures will be explained. Involved in this computa-

tion will be the use of the material property assumptions as shown 

in Figu~e 2. Both rectangular (square) and circular cases will be 

discussed as these are the two primary geometric shapes used in concrete-

filled steel tubular beam-columns. Two specific sections along with 

properties of the sections are given in Figures 9 and 10. Hereafter, 
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the term rectangle will be used for Figure 9(a) as a square is a parti-

cular case of a rectangle. 

4.1 Calculation of Po 

The quantity P is the ultimate axial force on the composite 
0 

beam-column when there is no bending moment present and instability 

effects are neglected. This quantity may be expressed as 

where A and 
s 

equal to the 

p = f A + 0. 85 f I A 
0 y s c c 

(14) 

A are the steel and concrete areas respectively and are c 

following for the particular section involved: 

Rectangular: 

Circular: 

A s = bl dl - b2 d2 (lSa) 

A c 

A s 

A 
c 

b2 d2 (lSb) 

= TT (r 2 - r 2) (16a) 
0 i 

= TT r.2 (16b) 
l. 

and r. are defined in Figs. 9 and 10. 
l. 

4.2 Calculation of mpc and Mo 

The quantity m is the ultimate bending moment on a cross­
pc 

section with vauying amounts of axial force under the condition that 

all material are fully yielded, whether in tension or compression. 

Rectang1,.1lar Se,P.t.ion 

The rectangular composite section of Figure 9(a) will be 

tre~t?e.d to be ~q,uivalent to the s.um of the section components as shown 

in Fi,g,ures 9(b,c, and d). This procedure greatly simplifies computation 
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as the composite section is now decomposed into simple solid rectangles. 

Each of these components may be treated as shown in Figure 9(e), 

depicting the neutral axis and the compressive and tensile areas for 

each of the three components. 

The term A
1 

of Figure 9(e) refers to the compressive area 

of the total steel area shown in Figure 9(a), while A
2 

refers to the 

compressive area of either the steel or concrete areas shown in Figures 

9(c and d). The terms e
1 

and e
1 

refer to the location of the neutral 

axis and the centroid of the compressive area respectively of the total 

area shown in Figure 9(b), while e2 and e
2 

are similarly defined for 

areas of Figure 9(c and d). All values of e are measured from point 

o as shown in Figure 9(e) with regard to sign. 

The quantities e
1 

and 

of the neutral axis from 

remains a constant value 

o does 

d2 
of z· 

e2 are the same as long 
d2 

not exceed :z· When e 1 

as the distance 
d2 

exceeds :2' e 2 

The resultant axial force and bending moment on the composite 

section can now be expressed as 

in which 

M 
pc 

(17) 

(18) 

(19) 

(20) 
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The term a is a factor used to account for the confining effects of the 

concrete and to approximate the stress distribution for easier computa-

tion. This term a is related to the location of the neutral axis as 

follows 

0.60 for I ell 
d2 

a = < 2 
(19a) 

0.60 + (0.85 -
I ell - (d22l 

for 
d2 

I ell 
dl 

a = 0.60) d -< <-

( 21) - (d22) 
2 - - 2 (19b) 

To find M , which is the plastic limit moment when P equals 
0 

zero, P in Equation 17 is set equal to zero and the location of the 

neutral axis is found. Once the location is found, these values of 

e1 and e2 are used in Equation 18 to solve for M
0

• 

Having found M and P , the quantities M and P may be non-
a o pc 

dimensionalized by Equation 2 yielding the quantities m and p. 
pc 

Circular Section 

The circular composite section will' be assumed to be equi-

valent to the sum of the section components as shown in Figures 10 

(b,c and d). 

The quantities AT, A
1

, A2 , e 1 and e2 for the circular section of 

Figure lO(e) are now equal to 

TT r 2 
0 

(20a) 

(20b) 
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r2 1 sin 2e.) (20c) A2 = <ei - 2 i ]_ 

sin 
1 

sin 3e 1 e - 3 0 0 (20d) el =2 r 
1 0 sin 2e e - 2 0 0 

sin 
1 

sin 3e. 1 8i - 3 ]_ (20e) e2 =2 r. 
1 . 2 ]_ 

ei - 2 sw ei 

where 

-1 el 
for 

el 
1 eo = cos -< r r - (2la) 

0 0 

-1 e2 
for 

e2 
1 ei = cos -< r. r. -

]_ ]_ 

(2lb) 

Having computed these quantities, they may be substituted 

into Equations 17 and 18 giving P and M as a function of the neutral 
pc 

axis location. 

However, fo.r the circular section, Ot takes the following form 

ct. = 0.45 (22a) 

!e1 1 - 0.9 ri 
Ot = 0.45 + (0.85 - 0.45) -- r _ 0 . 9r. for 0.9 ri ~ !e 11 ~ r

0 
(22b) 

0 ]_ 

Figures 11 and 12 show the relationship of p to m calculated from 
pc 

equations 17 and 18 ~d from Equations in Table 1. Good agreement is 

Calcula,tipn of ml 

The qlt1'E!.n.tity, ll'll, called the initial yield moment, is defined 

as the va1me of mom~~ n@~ a given axial thrust at which the stress 
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in either the steel or concrete fiber farthest from the neutral axis 

first reaches its yield value, considering only the compressive fiber 

for concrete. 

The method of computing ml as a function of p is straight-

forward but the procedure may become quite tedious. To simplify the 

procedure, a factor S• defined as a modified shape factor, will be 

introduced as 

(23) 

This term S is analogous to the shape ~actor in plastic design 

of steel. However, here S is not constant for a section but is a function 

of p. The values of S vs. p for both the rectangular and circular 

concrete-filled steel tubular beam-column are shown in Figure 13. 

These values are obtained by using the values of m and m
1 

from 
pc 

Table 1. It can be seen that the value of S may be approximated by the 

following straight line equation for both rectangular and circular 

sections: 

s = 1.20 + 0.40p 

Calculation of EI 

where I 
g 

The quantity EI may be based on the ACI Formula (1): 

E I 
EI = (_£__& + E I ) 

5 s s 

moment of inertia of concrete in a cross section 

I = moment of inertia of steel in a cross section 
s 

(24) 

(25) 
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5. ACCURACY OF THEORETICAL METHOD 

5.1 Comparison with Experimental Results 

As a basis for establishing confidence, existing experi-

mental data on ultimate strength of concrete-filled steel tubular beam-

columns will be compared with calculations using the procedure described 

in this paper. The experimental data used for comparison is from tests 

conducted by Neogi, Sen, and Chapman which are reported in Ref. 8. 

The properties of the tested composite columns are given in 

Table 2. All beam-columns are hinged ended and eccentrically loaded 

at the ends, with both ends having equal eccentricity bending the beam-

column in single curvature. 

The tested and computed beam-column strengths are based on 

both beam-columns having the same bending moment at the hinged ends 

at failure. The tested ultimate axial load is then compared with the 

computed axial load. This comparison is shown in Table 2. The computed 

values are in fairly good agreement with test values and in most cases, 

the experimental values are on the safe side by achieving value greater 

than computed. 

5.2 Comparison with ACI Moment Amplification Formula 

From the ACI Building Code, compression members shall be 

d:e·si:g.mJed f(;)'lr a computed axial load and for a maximum moment equal to 

a magnification factor multiplied by the maximum end moment. The 

magnification factor 5 . is of the form (Ref. 1) 
ac~ 



where C 
m 

M a 

p 
c 

p 

M a 
= 0.6 + 0.4 ~ 

c 
__ m::;__ > 1. 0 
1 - p 

~ pc 

= value of smaller end moment 

= value of larger end moment (Ma and Mb are positive if 

bent in single curvature) 

rf EI 
(klt)2 

= design axial load 

reduction factor equal to .75 for concrete-filled tubular 

beam-columns 

k
1
t = effective length of member between hinges 

A similar factor, called 5, may be calculated using the 

-18 

(26) 

principals described in this paper. The dimensionalized average flow 

moment, M is the maximum moment anywhere along the beam-column length. 
me 

The term o may be expressed as 

0 = 
M 

me 
M 

e 
(27) 

In Table 3 a cqmparison is given of o with o . for the beam­
ac~ 

columns described in Table 2. For both computations, the same axial 

load was use~with o computed on the resulting theoretical end 

moment, M , and average flow moment M • It is evident that both values 
e me 

are in good agreement, with the 5 . being on the safe side. 
ac~ 
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6. SUMMARY AND CONCLUSIONS 

A simplified method for calculating the ultimate strength 

of concrete-filled steel tubular beam-columns has been developed. 

This method lends itself to usage without computer facili-

ties and can be subdivided into two distinct computations. The first 

computation deals strictly with cross-section properties (m , m1 , M , pc o 

P and EI) and is not concerned with loading conditions, end conditions, 
0 

or length. The second computation is concerned with the particular 

beam-column loading condition, end conditions, and length. To account 

for these effects, the average flow moment m is computed for symmetrical me 

or near symmetrical loading. For significantly unsymmetrical loading 

cases, m is calculated according to Appendix I. The results obtained me 

py the approximate approach are found to be very similar to the computer 

solution ih all cases. 

From the comparisons given in Table 2 with experimental 

results, the procedure for calculating the ultlinate strength of concrete-

filled steel tubular beam-columns described in this paper besides being 

simple, is both accurate and safe. 

Also, it has been shown that the moment magnification factor 

given by ACI is a very acceptable and safe method of obtaining the 

ma•x>imu!J.l b#,am.-eolu.tn.n b.e.:.ruling moment given the end moment. Thus, once 

the maximum end moment is computed by the method discussed in this 

paper, the maximum moment anywhere in the beam-column may be obtained 

by using M , or conservatively, by using the ACI magnification factor. me 
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7. APPENDICES 

Appendix I COLUMNS WITH ONLY ONE END MOMENT--LACK OF SYMMETRY 

For the unsymmetrically loaded column shown in Figs. 14 or 15, 

the values of f 1 are found to be 

r 
0 0 < p < p - - a 

p - Pa 
fl = Pa ~ P ~ Pb (28) 

pb - Pa 
' l 

1 pb ~ p ~ 1 ''--

where r 1 t/t < 15 
J pa = 

51000 
(t/t)4 t/t > 15 

-

_I 1 t/t < 18 

pb 1 ~> -c 0. 005 (~) 2 (~) 
18 

- 0.17 + 2.45 
t ~ 

t 

for square cross sections 

and I 1 ~< 12 
I t 
I 

pa = • 
I 1900 ~> 12 'l (t/t)3 t-

(30) 

1 ~< 
t 16 

pb 
595 ~> 

:.(t/t)2.2 16 t-

(31) 

for circular cross sections 

Using the values of f
1 

in Eq. 28 and f
2 

= 1 for hinged-ended 

columns, the interaction diagrams for ultimate strength of the square 

and circular sections are sho~n in Figs. 14 and 15, respectively. They 

are seen to be compared favorably with the exact solutions. 
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Appendix II APPLICATIONS TO VARIOUS BEAM-COLUMN PROBLEMS 

Although the discussion presented dealt only with two different 

beam-columns, application of the concept presented to laterally loaded 

ream-columns is possible (4). 

As was found previously for the symmetric case, the value 

of m for both hinged and fixed ends is me 

m me 

m = m - 0.5 pN (m - m1) me pc pc 

where N is given by Equation 13. 

Type 1 (Fig. 16a) 

hinged 

fixed 

(32a) 

(32b) 

The ultimate load w of this beam-column is given by the formula: 

Q = wL kM 
me 

kL 
A + cos 2 

kL ----=­kL 
2 1 - cos 

where k2 is as defined by Equation 10 where 

A = 0 for hinged ends 

A = 1 for fixed ends 

Type 2 (Fig. 16b) 

The ultimate load Q is given by: 

Q 2k M 
·me 

kL 
A + cos 2 

. kL 
s~n 2 

(33) 

(34) 
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Type 3 (Fig. 16c) 

The ultimate load for this case of beam-column with partially 

distributed load is: 

Q = we = 2k M 
me 

kC kL 
4 A.+ cos 2 

sin kC sin (kL kC) 
4 \ 2 4 

(35) 

As is evident, the previous two types of beam-columns defined 

by Equations 33 and 34 are particular cases of Equation 35. 

In the following two types of beam-columns where there is 

a lack of symmetry, it is assumed that this unsymmetricity is not very 

large. Thus, M defined previously may still be used. me 

Type 4 (Fig. 16d) 

The ultimate concentrated load applied as shown in Figure 

16(d) is computed by assuming that the last plastic hinge is formed 

under the load. It has the form 

Q 

kLA - kLB kL 
. kL A cos 2 + cos 2 

2k M s~n 2 ----------~----------~-me sin kLA sin kLB 

Type 5 (Fig. 16e) 

The ultimate load for this beam-column is 

kC 
A 

kLA - kLB kL 
4 (kL kC\ 

cos 2 + cos 2 
Q = wC = 2k M kC sin 2- 4) (kL kC) . (kL kC) me sin- sin \ A - 4 s~n B - 4 4 

(36) 

(37) 



C,Q,w 

E ,E 
c s 

EI 

f' f c' y 

I , I 
g s 

k 

.t,L 

M,m 

M 
0 

N 

P,p 

p 
c 

p 
0 

r. ,r 
1 0 

8. NOMENCLATURE 

area 

dimensions of rectangular composite section 
(Fig. 9) 

= load parameters 

modulus of elasticity of concrete and steel 
respectively 

sectional rigidity (Eq. 25) 

distance from centroid to neutral axis and 
compressive area respectively (Figs. 9 and 10) 

parameters defining relationship of m to 
m

1 
and m me 

pc 

concrete compressive strength and steel yield 
strength 

= moment of inertia of concrete and steel 

effective length 

beam-column length 

moment (m = M/M ) 
0 

= ultimate moment when no axial thrust is present 

= beam-column end moments 

= parameter relating beam-column length to f 1 
(Eqs. 12 and 13) 

axial force (p = P/P ) 
0 

axial force (Appendix I) 

critical axial load 

= ultimate axial force when no moment is present 
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dimensions of circular composite section (Fig. 10) 



t 

()( 

e., e 
~ 0 

~0 

w 

= outside diameter of circular composite sections 
and outside length of side perpendicular to axis 
of bending for rectangular sections 
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= factor accounting for confining effect of concrete 

shape factor (Eqs. 23 and 24) 

= concrete and steel strain 

magnification factor 

percentage of end moment 

= factor specifying beam-column end conditions 

=angle between y axis and r. orr (Fig. 10) 
~ 0 

= curvature (~ = ~~~ ) 
0 

= nondimensionalized curvature at initial yield 
and ultimate 

= ultimate curvature when no axial thrust is present 

reduction factor 

concrete density 
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Table 1 

PARAMETER FUNCTIONS FOR CONCRETE-FILLED SECTIONS 

(a) Square Section (M = 81.5 in-K, P = 107 K) 
0 0 

(b) 

p $. 0.3 

m1 = ( 1. 0 - p) (0. 84 + 2. 086 - 4. 85 7 p2) 

co 1 = (1.0- p) (0.27 + 0.676p- 1.762 p2) 

m pc 

cope 

= (1.0- p) (1.00 + 1.553 p- 0.732 p2) 

= ·1. o I ( 1. o + 3 . 2 17 p - o . 04 8 p2 ) 

p ~ 0.3 

m1 = 1.03 (1.0 - p) 

~1 = 0.31 (1.0 - p) 

m = (1.0- p) (1.195 + 0.883 p- 0.667 p2) pc 

~pc = 0.64 0.433 p 

Circular Section (M = 146.1 in-K, P = 173.4 K) 
0 0 

p $. 0.1 

m
1 

= 0.84 + 0.1 p 

p ~ 0.1 

~1 = 0.44 

m1 = 0.944 (1.0 - p) ~1 = 0.489 (1.0 - p) 

p $. 0.3 

m = (1.0- p) (1.0 + 1.178 p- 0.829 p2) pc 

~pc = 1. 0 I ( 1. 0 + 2 . 05 8 p - 0. 7 46 p2 ) 

m pc 

~pc 

p ~ 0.3 

= (1.0- p) (1.212 + 0.16 p + 0.179 p2) 

1.01(1.642 - 1.398 p + 3.641 p2) 
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TABLE 2 

COMPARISON OF EXPER]MENTAL AND COMPUTED STRENGTHS 

Steel Concrete p p p 
Speci- Length Diameter Thickness End f E Cube test comp COffiJ2 

in in in Eccentri- y s Strength kips kips p men 
ksi ksi test 

city psi 

1 131 6.67 0.201 1.875 44.8 30016 8060 139.8 111.5 .80 

2 131 6.66 0.207 1.500 44.8 30016 7840 157.7 120.1 .76 

3 131 6.65 0.223 1.875 42.78 30016 6160 134.9 110.2 .82 

4 131 6.63 0.258 1.875 43.23 30016 5510 140.5 124.8 .89 

5 131 6.66 0.283 1.875 45.25 30016 4640 146.7 141.0 .96 

6 131 6.66 0.287 1.500 45.25 30016 4810 166.0 155.0 .93 

7 130 6.65 0.347 1.875 46.82 30016 4790 170.2 175.0 1.03 

8 131 5.52 0.378 1.250 39.65 30576 6030 123.2 145.6 1.18 

9 131 5.52 0.384 1.250 39.65 . 30576 3920 123.2 136.6 1.11 

10 131 5.55 0.197 1.250 42.56 30016 6180 93.6 80.0 .86 
----------~ ---
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TABLE 3 

COMPARISON OF 5 WITH ACI CODE MAGNIFICATION FACTOR 

---------·- ... - ·--------~ 

Specimen 5 . 
ac~ 

5 ; 
-5-. ' 

--- - ·- ·----------
_______ acL __ _ 

1 1.812 1.631 .90 

2 1.988 1. 741 .88 

3 1.688 1.548 .92 

4 1.624 1.503 .93 

5 1.586 1.477 .93 

6 1.705 1.560 .92 

7 1.566 1.462 .93 

8 1.800 1.623 .90 

9 1. 791 1. 617 . 90 

10 2.266 1.901 .84 

----··------ -----·-- ·--·- --. -·--·--------··--·-··-1 
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Fig. 10· · Composite Circular Section Characteristics 
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