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ABSTRACT 

This is the fourth report on the research investigation 

entitled "Development and Refinement of Load Distribution Provisions 

for Prestressed Concrete Beam-Slab Bridges: (PennDOT 72-4). The 

effects of skew on the design moments and on the lateral distributions 

of statically applied vehicular loads are examined for prestressed 

concrete I-beam and prestressed concrete spread box-beam bridge 

superstructures. The finite element method is utilized to analyze 

120 I-beam superstructures and 72 box-beam superstructures ranging in 

length from 34 ft. to 128 ft. and in roadway width from 24 ft. to 

72 ft. Skew effects are correlated for bridges of different widths, 

span lengths, number of beams, and number of design lanes, and em

pirical expressions are developed to facilitate computation of 

lateral load distribution factors for interior and exterior beams. 

The proposed skew distribution factors are actually based upon ap

propriate modifications to the distribution factors for right bridges. 

In general, the skew correction factor reduces the distribution 

factor for interior beams and increases the distribution factor for 

exterior beams. The magnitude of the skew effect is primarily a 

function of skew angle and of bridge span and beam spacing. 
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1. INTRODUCTION 

1.1 General 

The structural behavior of prestressed concrete beam-slab 

highway bridge superstructures subjected to design vehicle loading 

conditions has been the subject of extensive research conducted at 

Lehigh University and sponsored by the Pennsylvania Department of 

Transportation. The bridge superstructures, which were considered 

during this investigation, consisted basically of equally spaced, 

longitudinal, precast, prestressed concrete beams with cast-in-place 

composite reinforced concrete deck slabs. Field tests of in-service 

bridges of this type indicated the need for refinement of the spec

ification provisions governing live load distribution for right 

bridges (Refs. 7,8,16,21,22,31,57), and for development of similar 

specification provisions for skew bridges (Ref. 51). 

The overall research program was initially directed towards 

the study of prestressed concrete spread box-beam superstructures and 

resulted in the development of new specification provisions governing 

the lateral distribution of live loads for right bridges of this 

type (Refs. 2,38). A similar study was then undertaken to develop 

load distribution criteria for right bridges with prestressed concrete 

I-beams (Ref. 62). 

Despite the fact that skewed beam-slab bridges are quite 

common in modern highway bridge construction, specific provisions for 

live load distribution for such bridges are not included in current 

-1-



design specifications (Ref. 2,3). Prior to the study discussed in this 

report very little work had been done on skewed bridges, and virtually 

no work had been done on skewed beam-slab bridges with prestressed 

concrete I-beams or with prestressed con~rete box-beams (Ref. 63). 

1.2 Objectives and Scope 

The research discussed in this report expands the live load 

distribution concepts previously developed for right prestressed 

concrete I-beam or box-beam bridges to include the effects of skew. 

Design recommendations are proposed for bdth types of superstructures 

based upon the analysis of numerous bridges with varying width, 

spacing, span, number of beams, and angle of skew. The design 

recommendations are based upon empirical expressions which were for

mulated utilizing the results of analytical experiments, and which 

cover interior and exterior beams for both I-beam and box-beam super

structures. 

The two basic beam-slab bridge sections utilized in this 

study are shown in Fig. 1. Figure la shows a typical cross-section 

of a bridge with prestressed concrete !-beams. Figure lb shows a 

typical section with prestressed concrete box-beams. As shown in 

Fig. 2, the beams are equally spaced, and are parallel to the direc

tion of traffic. The design loading on the bridge is the HS20-44 

standard truck shown in Fig. 3 and described in Ref. 2. The vehicle 

used in the field testing of bridges is also shown in Fig. 3. This 

test vehicle simulates the HS20-44 design vehicle, and is employed 

in the correlation of field test results with analytical formulations. 

-2-
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The angle of skew (skew angle) referred to in this study is 

defined as the acute angle between the support line and the longi

tudinal axis of the beams (Fig. 2b). A skew angle of 90 degrees 

indicates that the structure is a right bridge (Fig. 2a). It is 

important, however, to distinguish between the skewness and the 

angle of skew of a bridge. For example, a bridge with a relatively 

large skew angle (say 60 degrees) has comparatively less skewness 

than a 30 degree skew bridge, which exhibits significant skewness 

but has a relatively small skew angle. 

This is the fourth report in a series of five reports 

included within PennDOT Research Project No. 72-4, entitled 

"Development and Refinement of Load Distribution for Prestressed 

Concrete Beam-Slab Bridges". The final report will discuss: 

(1) the effects of curbs and parapets on the load distribution be

havior of right I-beam bridges, (2) the effects of midspan or 

multiple diaphragms and (3) the extension of the overall study to 

include continuous bridges. 

1.3 Previous Studies 

Lateral load distribution in bridges has been the subject of 

numerous previous investigation~. A summary of completed research 

with bibliography is reported in Ref. 63. A detailed description 

of studies related to beam-slab bridges, including various methods 

of analysis, is given by Sanders and Elleby in Ref. 49, by Motarjemi 

and VanHorn in Ref. 38, and by Wegmuller and Kostem in Ref. 58. 

-3-



Sanders and Elleby discussed various methods of load distri-

bution analysis employed by previous investigators, and their cor

responding results (Ref. 49). Using the theoretical methods and test 

results of these investigators, Sanders and Elleby proposed load 

distribution criteria for highway bridges. The resulting proposals 

for distribution of live load in highway bridges were complicated and 

were not practical for design applications. The study did not 

include skew bridges. 

Motarjemi and VanHorn developed a method of analysis suit

able for spread box-beam slab type bridges (Ref. 38). In this method, 

the bridge superstructure is reduced to an articulated structure by 

introducing a series of beam and plate elements. Using the flexi

bility approach, the bridge superstructure is solved for stresses 

and displacement. This method of analysis was used to develop the 

newly accepted specification provision on load distribution for 

spread box-beam bridges (Ref. 2). 

Wegmuller and Kostem used the finite element method to 

analyze prestressed concrete I-beam bridges (Ref. 58). In this 

method, the bridge superstructure is discretized into plate and 

eccentrically attached stiffener elements. The method was applied 

to field tested beam-slab type highway bridges constructed with pre

stressed concrete I-beams. A study was made of several variables 

which affect load distribution. The authors showed that a stiffened 

plate superstructure could be adequately idealized by the given 

model and analyzed using the finite element method. The analytical 

modeling technique for the above approach is given by Kostem (Ref. 29). 

-4-
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The finite element approach, utilizing plate and eccentri

cally attached stiffener elements as applied to highway bridges, was 

reported by deCastro and Kostem (Ref. 13). Zellin, Kostem and VanHorn 

used this method of analysis to determine live load distribution 

factors for prestressed concrete !-beam bridges (Ref. 62). Distribution 

factors were determined for several bridge configurations with varying 

width, spacing, number of beams and span length under the critical 

HS20-44 vehicular loadings. Based on the results, simplified distri-

bution factor equations were obtained for the interior beams and 

exterior beams of right bridges. 

Very little experimental data is available on skewed beam

slab bridges (Ref. 63). A field test of a 45° skew spread box-beam 

bridge was compared with a field test of a right bridge of nearly 

identical dimensions and is reported by Schaffer and VanHorn in Ref. 

51. A laboratory test of a 60° skew composite bridge with steel !

beams is reported by Hondros and Marsh in Ref. 25. 

The field test results for the 45° skew spread box-beam 

bridge indicated that the experimental distribution factor for interior 

girders was considerably less than the design distribution factor 

(Refs. 42,51); whereas, for exterior girders, the experimental values 

were greater than the design values. In the same study, the authors 

indicated the desirability of including the influence curbs and 

parapets in future design considerations. The test results from the 

60° skew composite bridge with steel !-beams indicated that the skew 

caused a general reduction in the beam strains of about 17 percent 

(Ref. 25). 

-5-



The work by Chen, Newmark and Siess (Ref. 9) and the work by 

Gustafson and Wright (Ref. 23) contributed significantly to the anal

ytical study of skewed beam-slab structures. 

Chen, Newmark and Siess used the finite difference method to 

analyze skewed bridges. Finite difference operators in skewed co

ordinates were generated and the system of difference equations was 

solved by computer. The major assumptions employed, in addition to 

those usually made for plates, were (Ref. 9): 

1. There is no composite action between the beam and the 

slab; 

2. Diaphragms and their effects are negligible; 

3. The beam acts on the slab along a line and is not 

distributed over a finite width; 

4. There is no overhang at the edge of the bridge; the edge 

beams are located at the sides of the bridge; and 

5. The value of Poisson's ratio is assumed to be zero. 

Influence values for moments and deflections were computed 

for various ratios of spacing and length, for various relative stiff

nesses of the beam to the slab, and for different angles of skew. 

Influence surfaces for moments and deflections were then derived for 

some of the structures studied. Moment coefficients for skew bridges 

subjected to standard truck loadings were determined and some general 

relationships pertaining to design were derived. 

Because of the assumptions, the analytical procedure and the 

subsequent results are applicable only to noncomposite steel I-beam 

-6-
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bridges. The procedure could be adapted to composite bridges by 

using the composite section in the beam stiffness computation. 

However, the accuracy of the results with this approach cannot be 

assessed. Moreover, because of the third assumption, the width of 

the beam which affects the load distribution in prestressed concrete 

I-beam bridges as reported in Ref. 62, cannot be taken into account. 

Finally this analytical procedure was carried out only for five-

beam bridges. 

Gustafson and Wright (Ref. 23) presented a finite element 

method of analysis employing parallelogram plate elements and ec-

centric beam elements. Two typical composite skew bridges with steel 

I-beams were analyzed and the behavior due to the skew as well as 

the effects of midspan diaphragms, were illustrated. The parallelo-

gram plate elements which were used did not satisfy slope compati-

bility requirements at element boundaries, and, therefore, relative 

accuracy could not be ascertained. The work was not expanded to 

include load distribution analysis of general skewed beam-slab 

structures. 

Additional research on skew bridges is summarized in Ref. 63. 

These reports deal primarily with sk~w slab bridges, skew cellular 

bridges, and skew bridges with only edge beams, and are not directly 

applicable to this particular study. 

1.4 Analytical Approach 

The finite element method was chosen as the analytical basis 

for this research to facilitate realistic modeling of skew bridge 

-7-



structures. Using the finite element method, design vehicular loads 

can easily be applied anywhere on the bridge structure, and beam and 

slab moments can be readily computed at critical sections. 

There are two basic approaches to the ~inite element method 

of analysis: (1) the stiffness approach, and (2) the flexibility ap

proach. It has been found that for complex structures of arbitrary 

form, the displacement method provides a more systematic formulation 

(Ref. 65). Consequently the computer programming can be simplified 

and an efficient solution of large and complex structural systems can 

be obtained. The displacement approach was therefore adopted in this 

study. 

The basic concepts and steps necessary for a finite element 

analysis are discussed in general terms in this section, and in more 

specific terms in Refs. 5,17,18,33,58,64,65. The extension of this 

analytical procedure to the elements used in beam-slab bridge super

structures is discussed in subsequent chapters of this report. 

1.4.1 The Finite Element Method of Analysis 

The basic concept of the finite element method is that the 

structure may be idealized into an assemblage of individual structural 

components, or elements. The structure consists of a finite number 

of joints, or nodal points (Ref. 65). 

The finite element method of analysis may be divided into 

the following basic steps: (1) structural idealization, (2) evaluation 

of element properties, (3) assembly of the force displacement equations, 

and (4) structural analysis. 

-8-
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Structural idealization is the subdivision of the original 

structure into an assemblage of discrete elements. These elements are 

generally simple structural components of sizes and shape that retain 

the material and physical properties of the original structure. The 

proper structure idealization is obtained by using element shapes that 

follow the shape and boundaries of the original structure. 

Typical structural idealizations for the beam-slab bridge 

structures considered in this research are shown in Figs. 4 and 5. 

Figure 4 illustrates the discretization of a prestressed concrete I

beam-slab bridge utilizing plate elements and eccentric beam elements. 

The plates are general in shape and follow the beam delineation and 

structural boundaries. The beams are eccentrically attached to the 

plate elements along the element boundaries. 

Figure 5 illustrates the structural idealization of a spread 

box-beam bridge. Plate finite elements model the deck and the top 

and bottom plate of the box-beams. Web elements model the web of the 

box-beams and interconnect the top and bottom plate elements. 

The finite element idealization requires that each element 

deform similarly to the deformations developed in the corresponding 

region of the original continuum. This is accomplished by prescribing 

deformation patterns which provide internal compatibility within the 

elements and at the same time achieve full compatibility of displace

ments along the boundacy (Ref. 65). 

Since the elements are interconnected only at the nodes, the 

elastic characteristics of the element must be adequately represented 

-9-



by the relationship between forces applied to a limited number of 

nodal points and deflections resulting therefrom. The force deflec

tion relationship is expressed conveniently by the stiffness proper

ties of the finite element. 

Once the element properties have been defined, the analysis 

of stresses and deflections becomes a standard structural problem. As 

in any structural analysis, the requirements of equilibrium, compati

bility and the force displacement relationship must be satisfied by 

the solution. In the finite element model, internal element forces 

must equilibrate externally applied forces at the nodes, and element 

deformations must be such that they are compatible at the nodes and 

boundaries before and after the loads are applied. It should be noted 

that this analysis procedure does not insure equilibrium of stresses 

along element boundaries. In general stresses in adjacent elements 

are not similar. Intuitively, however, finite elements that satisfy 

compatibility along the boundaries should give better results. 

1.4.2 Development of Bridge Design Criteria 

The 1969 AASHO Bridge Specification (Ref. 1) provides the 

live load distribution factor equation for which the interior and 

exterior beams of beam-slab bridges ~ust be designed. The expres

sions are different for different types of bridges, and are functions 

of the center-to-center spacing of the beams only. In 1973 AASHTO 

adopted a new specification provision which included the width, 

length, number of lanes, and number of beams among the parameters 

governing the load distribution in spread box-beam bridges (Ref. 2). 

-10-

I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I· 
I 
I 
I 
I 
I 



I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

A similar refinement to the specification provisions for prestressed 

concrete I-beams is given in Ref. 62. 

The research discussed in this report was directed towards 

developing specification provisions which will reflect the influence 

of skew in load distribution criteria. Three major steps were in

volved: (1) the theoretical development of an analysis procedure 

suitable for general skew beam-slab structures subjected to vehicular 

loadings, (2) the application of the method of analysis to highway 

bridges that represent general beam-slab bridge configurations; and 

(3) the development of simple expressions for the determination of 

the design load for interior and exterior beams. 

The basic theoretical developments for a finite element 

analysis of skewed bridges is presented in Chapter 2. The application 

of these developments to highway bridges with prestressed concrete 

I-beam bridges is presented in Chapter 3 along with the development 

of simplified design equations. Additional theoretical development 

required for the analysis of box-beam bridges, the analysis of highway 

bridges with spread box-beams, and the development of generalized 

design equations for such structures are presented in Chapter 4. 
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2. ELASTIC ANALYSIS OF SKEW STIFFENED PLATES AND BRIDGES 

2.1 Introduction 

The finite element procedures necessary for the analysis of 

a generalized stiffened structure are discussed in this chapter. As 

was done for rectangular stiffened plate problems by Wegmuller and 

Kostem (Ref. 58), the structure is discretized into deck plates and 

stiffener elements (Fig. 4). General skewed elastic plate finite 

elements with in-plane and out-of-plane plate behavior are used to 

model the deck slab. An eccentric beam finite element with shear 

deformation properties is introduced to represent the beam and the 

spacers or diaphragms. 

The finite element method is used to analyze skew and right 

bridges. Comparisons are made with available solutions and field 

tests. The applicability of the method of analysis to beam-slab 

highway bridge superstructures is demonstrated. 

2.2 Analysis of Skewed Elastic Plates 

Plate problems with arbitrary geometrical boundaries are 

invariably complex and difficult to analyze. Their solution, however, 

is of considerable importance to the safe and efficient construction 

of skewed slabs, floor systems, or bridges. The classical theory of 

elasticity solutions for these problems are limited and are, in 

general, restricted to only the very simple cases. However, the finite 

element method is a powerful analytical tool which can easily handle 
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arbitrary geometry, boundary conditions, and loading configurations. 

The finite element approach to these types of problems has been 

previously demonstrated on numerous occasions (Refs. 10,11,18,35, 

56,64). 

A finite element analysis technique for skewed plates is pre

sented in Appendix A. The formulation has been kept general enough 

to facilitate its extension to skew, eccentrically stiffened 

structures such as beam-slab bridge superstructures. Because of the 

eccentricity of the beams to the plate in such structures, the plate 

develops in-plane and plate bending response, and both behaviors are 

considered in the analysis. The elements developed in Appendix A, 

which represent the in-plane and out-of-plane behavior of elastic 

thin plates, will be utilized to model and analyze general stiffened 

plates, skew bridges with prestressed concrete !-beams, and skew 

bridges with prestressed concrete spread box-beams. 

2.3 Analysis of Stiffened Structures 

A brief survey of the methods of analyzing plates with stiffeners 

is given by Wegmuller and Kostem in Ref. 58. In general, the methods 

of analysis may be classified according to the following structural 

idealizations: (1) orthotropic plate model, (2) equivalent grid 

model, (3) plate and stiffeners model, and (4) folded plate model. 

Each method has limitations imposed on it because of the associated 

modeling scheme (Refs. 58,59). 
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I 
The equivalent plate model idealizes the behavior of stif- I 

fened plates by plate bending action. In this method the properties 

I of the stiffeners are "smeared" throughout the plate, and the re-

suiting structure is analyzed as a plate problem. I 
In the equivalent grid model the structure is idealized as 

I a grillage of beam elements. In cases where the slab is the only con-

nection between longitudinal stiffeners, the slab is modeled by trans- I 
verse beam elements at sufficient intervals. The analysis follows 

standard structural analysis procedures. I 
Two major difficulties are associated with the equivalent 

plate or equivalent grid mode. First, plate and beam properties must 

be adequately determined so as to accurately represent the actual 

structure. Second, the actual stresses in the beams and the slab 

must be computed from the analyzed equivalent structure. 

The plate with stiffeners model and the folded plate model 

have gained full acceptance in the analysis of stiffened plates 

(Refs. 23,58,60). The actual properties of the plate and the stif-

feners are used, and the actual stresses are derived directly from 

the analysis. In this investigation, the plate and stiffeners model 

is used for I-beam bridges and the folded plate model is used for 

box-beam bridges. 

The analysis of stiffened plate structures can be formulated 

by combining the classi"c~l plate and beam theories (Ref. 58). The 

standard assumptions for plate analysis are listed in Appendix A. 

For the beam, the assumption is made that all deformations can be 
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described in terms of the vertical displacement of the longitudinal 

axis and the rotation of the beam cross-section. This assumption 

neglects the deformation of the cross-section of the beam, and hence 

strains normal to the longitudinal axis of the beam are not considered. 

The classical approach, however, results in a system of equations 

which is not easily solved except for very simple loads and boundary 

conditions. The problem becomes even more complex for skewed structures. 

The overall objectives of this study dictate that the method 

of analysis must be sufficiently general so that design details may be 

considered separately without using "smearing" techniques. The method 

should also be readily adaptable to a variety of structural configura

tions and loading considerations. Since the finite element method of 

analysis meets these requirements, it was chosen for this investigation. 

A detailed development of the finite element analytical technique as 

applied to skewed stiffened plates is included in Appendix B. 

2.4 Numerical Examples and Comparisons 

The combined beam and plate elements previously described 

were used to analyze various structures and the results of such analyses 

were compared with available solutions and with field test data. Gen

eralized struGtural behavior of various bridges was investigated to 

validate the analytical technique, and to provide insight which would 

facilitate load distribution studies. The procedure discussed in ·this 

section is the analytical basis for the lateral load distribution 

analysis of prestressed concrete I-beam bridges which will be presented 

in Chapter 3. 
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I 
2.4.1 Beam Moments in Skewed Non-Composite Bridges I 

One of the beam-slab bridge configurations analyzed in Ref. I 
9 was investigated utilizing the finite element method of analysis and 

results were compared. The bridge is assumed to be non-composite as I 
discussed in the reported solution (section 1. 3). The structure is a 

five-beam bridge with spacing to span ratio of 0.1. The plate-to-beam I 
stiffness ratio H, defined as the ratio of beam rigidity to the plate I 
rigidity, is equal to 5. Poisson's ratio and the beam eccentricity 

are taken as zero. II 
0 The beam slab structure, as a right bridge (90 skew), and 

as a 30° skew bridge, is shown in Fig. 6. The same bridge with 60° 

and 45° skew is shown in Fig. 7. The right bridge and the 30° skew 

bridge are shown in the same figure to illustrate the change in 

geometry due to the skew. A single concentrated load P is placed at 

midspan on Beam C. The discretization, as shown in Figs. 6 and 7 

includes two plate elements between the beams and eight plate elements 

along the span. The figures also show the location of maximum moment 

as determined by the finite element analysis. 

The moment coefficients for each beam as-determined by the 

analysis, the reported results from Ref. 9, and another finite element 

solution (Ref. 23) are shown in Fig. 8. 

The finite difference analysis underestimates the two finite 

element solutions. The following observations can be made from the 

finite element results: 
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1. There is a decrease in the moment coefficients of the 

2. 

0 interior beams as the skew angle changes from 90 to 

30°. A slight increase in the exterior beam moment 

can be noted. 

0 0 The rate of decrease is gradual from 90 to 45 skew 

0 but abrupt beyond 45 • The rate of change is relatively 

constant for the exterior beam. 

3. The location of maximum moment response is towards 

the obtuse angle corner of the structure. The 

section of maximum response is not the skew centerline 

but varies for different angles of skew. 

The decrease in the total beam moments in a bridge super-

structure, as.the skew angle is changed, is reflected in the above 

results. For the same width and span, the skew bridge transfers the 

load more efficiently to the supports. The interior beam moment is 

further reduced by the increase in the participation of the exterior 

beams. 

2.4.2. Beam Moments in Composite Skew Bridges 

The beams in composite bridge structures are eccentrically· 

attached to the slab, and it is necessary to include such eccentricity 

to achieve a realistic analysis. In the following example, the effect 

of considering eccentricity is demonstrated through comparison with 

the analysis discussed in the previous example. 

The five-beam structure in the previous comparison was anal-

yzed as a composite bridge. An eccentricity of 28 inches corresponding 
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to a beam moment of inertia of 126584.0 in.
4 

and area of 576.0 in.
2 

was introduced. A torsional ratio GKT/EI = 0.035 was also included to 

achieve a more representative bridge analysis. The principal ratios 

and the beam slab dimensions were comparable to those of the Bartons

ville Bridge (Ref. 7). 

The difference between composite and non-composite analysis 

is shown in Fig. 9~ The following observations can be deduced from 

the figure: 

1. The beam directly under the load carries a major portion 

of the total load in a composite structure. The increase 

in moment coefficients of beams B and C is balanced by 

the decrease in the moment coefficient of beam A. 

2. The reduction and the. rate of reduction in moment coef

ficients for the interior beam seems to be almost the 

same for both composite and non-composite analyses. 

The above example demonstrates the necessity of considering 

beam eccentricity when the beams are integrally and eccentrically con

nected to the slab. 

The effect of constraining the supports to rotate about the 

line of support can be seen in Table 1 for the case of a 95° skew 

bridge. For this problem, it can be seen that the effect of such 

constraint is quire negligible. 
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2.4.3 Load Distribution in a Reinforced Concrete Skew Bridge 

An actual reinforced concrete skew bridge has been tested 

under static loads (Ref. 6). The bridge has a 60° skew, simple span, 

and is supported by four reinforced concrete beams which are monolithic 

with the deck slab. The field tests were done by the team of Burdette 

and Goodpasture of the University of Tennessee (Ref. 6). The bridge 

is located on U. S. 41A over Elk River, and has a span of 50 ft. and 

beam spacing of 6 ft. 10 in. center-to-center. 

The loads are applied as shown in Fig. 10 and the distribution 

of load is shown in Table 2. Good agreement between field test and 

analytical results can be observed. 

2.4.4 Composite Versus Non-Composite Behavior 

For the purpose of comparison, the bridges tested by AASHO in 

the AASHO road test series (Ref. 24) can be analyzed using the method 

previously discussed. The composite bridges, designated 2B and 3B in 

the report, are shown in Fig. 11. The bridges have three beams, 15 ft. 

width and 50 ft. span length. Bridges 2B and 3B have different beam 

section properties as indicated in Fig. 11. The steel I-beams are con

nected to the slab by shear connectors designed for full composite 

action. The structure is loaded by a test vehicle with a front axle 

load of 6.8 kips and a rear axle load of 14.3 kips. The vehicle is 

initially positioned with the drive wheel at midspan in the longitudinal 

direction and at the center of the width in the transverse direction. 

The structure is then analyzed as a composite bridge and as a non

composite bridge. The percent of the total moment carried by the beams 
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as indicated by the field test data and the finite element analyses 

are listed in the second column of Table 3. The following observa

tions can be made: 

1. The finite element results predicted that a higher 

percentage of the load would be carried by the beams 

in the composite structure. The values are comparable 

with field test results. 

2. As expected, a higher percentage of the total moment 

is carried by the beams when acting compositely with 

the slab. 

3. The load carried by the beams is higher for the stiffer 

beam sections. 

4. For this type of loading, there is very little 

difference in the percent of load carried by each 

beam as shown in Table 3. 

The design moments for each beam can also be computed and 

compared to the 1953 AASHO provisions. The drive wheels are placed 

at midspan and the truck is positioned across the width so as to 

produce the critical loading condition. The structure is then 

analyzed as a composite and non-composite bridge. The distribution 

factors computed for each case are compared in Fig. 12. The com

parison shows that the distribution factor for the center beams is 

overestimated by the AASHO specification provision, and that the 

distribution factor for the exterior beams is substantially under

estimated. 
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3. LATERAL LOAD DISTRIBUTION IN SKEWED I-BEAM BRIDGES 

3.1 Introduction 

In the design of beam-slab highway bridges, the live load 

bending moments are determined with the use of load distribution 

factors. The distribution factor determines the fraction of the 

wheel loads that is applied to a longitudinal beam. The applicable 

distribution factor is given by AASHTO in the Standard Specifica-

tions for highway bridges for right bridges (Section 1.4.2 and Ref. 3). 

However, as discussed in Section 1.1, load distribution factors are 

not given for skew bridges. 

This chapter presents the lateral load distribution analysis 

of skewed beam-slab bridges with prestressed concrete I-beams. Skew 

bridges of various widths, spacing, span length and number of beams 

are analyzed using the finite element method of analysis presented in 

Chapter 2. Live load distribution factors are computed for interior 

and exterior beams for design vehicle loading. Distribution factors 

resulting from the critical combination of vehicular loadings are 

selected and correlated with bridge parameters to arrive at a sim

plified design equation for computing distribution factors. 

3..2 Beam Moments in Skewed·I..;.Beam Bridges 

The HS20-44 design vehicle as defined in Section 1.2 is used 

in the following lateral load distribution study (Ref. 2). The moment 
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in a particular beam produced by one design vehicle placed anywhere 

on the bridge is expressed in terms of the moment coefficient. This 

coefficient is defined as the ratio of the composite beam moment to 

the total right bridge moment, which is numerically equal to the 

moment produced by the given load on a simple beam of equal span. 

For convenience, the coefficient is expressed as a percent. A plot 

of moment coefficients against the lateral position of the load re

presents the moment influence line of the beam under consideration. 

3.2.1 Computation of Load Distribution Factors 

The load distribution factor is applied to the wheel loads 

in the design of the beams in beam-slab bridges (Ref. 3). This 

factor can be determined from the plot of the moment coefficients, 

i.e., influence lines, following the requirements of the AASHTO 

Specifications (Ref. 3). According to the specification provisions 

governing live load distribution, the design traffic lane must be 

12ft. wide (Fig. 13). The design truck, which occupies 6ft. of the 

lane, should be positioned in the lane, and the lane should be 

positioned on the bridge, such that the loading will produce the 

maximum moment response for the beam being considered. The same 

·definition of loading applies to bridges with two or more lanes, 

except that the lanes should not overlap (Ref. 3 and Fig. 13). A 

minimum distance of 2 ft. is specified between the edges of the lane 

and the wheel of the design vehicle. The sum of the moment coef

ficients for the beam at the specified positions of the trucks gives 

the distribution factor for the particular beam. Thus, 
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D. F. 

for axle loading, and 

D.F. 

for wheel loading. 

E moment coefficients (%) 
100% 

2 E moment coefficients (%) 
100% 

(3.1) 

(3.2) 

Truck loads must be positioned so as to arrive at the maximum 

distribution factor. To ensure appropriate positioning, ~ 12 ft. lane 

is placed on the structure at x = 0, where x is the distance of the 

leftmost boundary of the lane from the leftmost curb (Fig. 13a). A 

truck load is then positioned within the lane so as to obtain the 

highest moment coefficient from the moment influence line of the beam. 

The position of the truck in the lane is determined by the distance 

x
1

, which is greater than or equal to 2ft., but is less than or equal 

to 4 ft. so as to maintain a 2 ft. clearance between the line of 

wheels and the boundaries of the lane. Finally, the lane is moved to 

a new value of x, e.g. x =1, and the truck is repositioned again within 

the lane so as to obtain the highest moment coefficient for this new 

lane position. The procedure is repeated until the lane has covered 

the entire width of the bridge. The maximum moment coefficient value 

obtained in the above process is used in the distribution factor cal-

culation in Eq. 3.2. For two or more design lanes, the coFresponding 

number of lanes are placed on the bridge (Fig. 13b). The second step 

is repeated for all lanes until all trucks are positioned in each lane 

in such a manner that the sum of the moment coefficients is a maximum. 

The lanes are then moved to a new position on the bridge and the 
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procedure of positioning the rrucks in each lane is repeated. The 

largest sum of the moment coefficients obtained in the above process 

is used in the distribution factor calculation in Eq. 3.2. 

3.2.2 -Maximum Beam Moments 

The maximum moment caused by the HS20-44 truck on a simple 

span right bridge occurs under the drive wheels, when the center of 

gravity of the wheel loads and the drive wheels are equiddistant from 

the center of the span (Ref. 19). Consequently, in the lateral load 

distribution analysis of right bridges, the design truck load is 

placed on the bridge so that the drive wheels are at d/2 distance from 

midspan where d is the distance from the centroid of the wheel loads 

to the drive wheels (Ref. 62). The beam moments in the distribution 

factor calculations are also computed at the section under the drive 

wheels. 

For skew bridges, however, the position of the load that pro

duces the maximum response in a beam, and the location of the beam 

section where the maximum moment occurs are not known. Moreover, for 

the same beam, the location of the maximum moment section can differ 

for different lane positions of the truck. The position of the load 

which produces the maximum moment response, and the location of the 

maximum moment section in a beam of a skew bridge, are different from 

those of a right bridge. This point can be illustrated by the fol

lowing example. 

The structure is a five-beam bridge, 24 ft. wide and 60 ft. 

long, with a ~elative beam-to-slab stiffness ratio of 5. The beams 
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are equally spaced at 6ft., and the slab is 7-1/2 in. throughout. 

The HS20-44 truck loads are placed one at a time at five positions 

across the width of the bridge, so that the.distance of the centroid 

of each truck from its consecutive position is 4.5 ft. In each of the 

~ane positions, the longitudinal position of the truck is varied until 

the maximum moment is obtained for each beam. The distance of the 

centroid of the truck between longitudinal positions is d/2 = 2.33 ft. 

This distance is selected primarily for convenience, and because the 

change in the computed moments near the midspan between two ~onsecutive 

longitudinal positions is less than 1%. The above loading procedure is 

carried out for each beam of the bridge at skew angles of 90° (right 

bridge), 45°, and 30° (Figs. 14 through 18)·. The direction of the 

truck is always with the front wheels towards the right (Fig. 3). The 

computed moments are based on the averaged nodal moments. 

The positions of the truck centroid and the location of maxi-

mum moment in beam A are shown in Fig. 14 for the bridge with skews of 

0 0 0 90 , 45 , and 30 • While the maximum moment section occurs at d/2 from 

midspan for all angles of skew, the positions of the truck differ for 

each case. Similar observations can be made for beams B and C (Figs. 

15 and 16). For beams D and E, the positions of the truck centroid 

and the location of the maximum beam moment section are shown in Figs. 

17 and 18. In these cases the maximum moment section and the positions 

of the load are different for different angles of skew. Based on these 

results, one would expect the critical load position and the location 

of the maximum beam moment section, to be different for another skew 

bridge with a different number of beams, spacing or span length. 
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Obviously, significant difficulty would be encountered in 

carrying out the above procedure for all of the beams of bridges which 

must be minimized if the maximum moment can be approximated by the 

moment produced in the beam with the load centroids at midspan. 

3.2.3 Beam Moments with Load Centroid at Midspan 

In this section, the beam moments in the skew bridge of 

Section 3.2.2 caused by the HS20-44 truck loads are determined for 

load centroids located at midspan. These moments are computed at the 

beam section d/2 from midspan and in the direction of the obtuse angle 

corner at the supports. The object of this procedure is to determine 

if there is a significant difference between these moments and the 

maximum moments as determined in the previous section. 

The moments for beam C with the load centroid at midspan, and 

the moments from the procedure in Section 3.2.2, are shown in Fig. 19. 

Moments are shown for the five lane positions across the width at skew 

angles of 45° and 30°. The figure shows that there is a small dif

ference in the moments between the two load positions. The larger 

difference occurs at larger skews and at lane loads away from beam C. 

It is also of interest to compare the moments in beam C resulting 

from loads on lanes 1 and 5. It can be seen that the larger moment 

is produced yith the truck going in the direction of the acute angle 

corner of the support, i.e., lane 5 (Figs. 16.and 19). 

The above investigation indicates that placing the load cen

troid at midspan will aproximately produce the maximum moment response 

in a beam without significant loss in accuracy. Also, the desired 
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moment for the lateral load distribution study can be computed at the 

beam section at d/2 from midspan and in the direction of the obtuse 

angle corner. 

It should be noted, however, that in general the distance 

from the midspan of the beam to the section of maximum moment will not 

be d/2 for other bridges. A study of the beam moments in the skew 

bridges analyzed in Section 3.4 shows that the moment at d/2, if dif

ferent from the maximum moment, can be in error by 2% for the shorter 

bridges and by less than 1% for the longer bridges. However, such 

error is within practical design limits and is acceptable. 

3.3 Effect of Skew on Load Distribution 

In order to gain an initial insight into the behavior of skew 

bridges and to determine the important parameters that must be con

sidered in load distribution studies, an analytical investigation was 

carried out for two basic bridge widths. This section presents 

findings based on the analyses of thirty bridges with curb-to-curb 

widths of 24 ft. and 42 ft. 

3.3.1 Effect of Skew on Beam Moments 

The effect of skew on the individual beam moments is shown in 

Fig. 20. The bridge analyzed was a five-beam bridge, 60 ft. long and 

24 ft. wide with beam spacing of 6 ft. The truck was placed on the 

skew bridge similar to the manner in which it would be placed on a 

right bridge to produce the maximum moment. The skew angle was then 

varied and the moment percentages were computed for each case. 
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The two load positions indicated in Fig. 20 illustrate the 

shift in distribution of the load as the skew angle changes. The 

results indicate a more uniform distribution of load with decreasing 

angle of skew. The angle of skew did not have a significant effect 

on the exterior beam directly under the load. The load distribution 

in a 60° skew bridge was also not significantly different from that 

in a right bridge. 

3.3.2 Effect of Skew and Number of Beams 

A 24 ft. wide bridge with a span of 60 ft. was analyzed 

with two design lanes. The truck loads were placed near the center 

of the bridge section as close as possible to each other in accor-

dance with the 1973 AASHTO Specification (Ref. 3). Beginning with 

four beams, the number of beams was increased to five and then to 

six to establish two new sets of bridges with constant span lengths. 

Consequently, the beam spacing changed from 8 ft. to 6 ft. and 

4.75 ft., respectively. For each set the skew angles investigated 

0 0 0 0 were 90 (right bridge), 60 , 45 , and 30 . Thus a total of twelve 

bridges was analyzed. 

Figure 21 shows the distribution factors resulting from the 

analysis. Also shown for comparison is the current AASHTO distri-

bution factor of S/5.5 (Ref. 3). The distribution factor decreased 

as the angle of skew decreased. The decrease in the distribution 

0 0 factor was gradual from 90 to 45 . The number of beams and spacing 

did not seem to affect the rate of reduction. 
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3.3.3 Effect of Skew with Span Length 

The five-beam bridge, 24 ft. wide with 6 ft. beam spacing, 

was analyzed with a span of 30 ft. and 120 ft. The appropriate beam 

sizes in accordance with the standards for Bridge Design BD-201 

(Ref. 43) were used. For each length the skew angles considered were 

90°, 45°, and 30°. Distribution factors for the beams were computed 

based on the critical location of one or two HS20-44 design vehicle(s) 

positioned across the width of the bridge. For this initial study the 

vehicle was posi~ioned in the longitudinal direction, similar to the 

manner in which it would be placed on the right bridge to produce the 

maximum moment. 

The distribution factors for the beams are shown in Fig. 22. 

Beams B and C of the 30 ft. series with skews are not shown. For these 

configurations, one rear wheel and one front wheel were off of the 

bridge so that load distribution comparison with longer bridges was 

not practical. 

In beam C, the amount of reduction in the distribution factor 

was marginal from 90° to 45° skew for the lengths considered. However, 

a considerable change in the rate of reduction was observed for skew 

0 angles less than 45 . Also, for the long span bridges, the rate of 

reduction decreased as the skew angle decreased. 

Exterior beam A had practically no reduction in the distri-

ution factor as the angle of skew decreased, except for the 30 ft. case. 

It should be noted that for the 30 ft. span with small skew angles 

some of the wheels of the vehicle were off of the bridge. 
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3.3.4 Effect of Skew on Distribution Factor versus S/L 

The plots of the distribution factors versus S/L for the 

24 ft. wide bridges with five beams and at skew angles of 90°, 45°, 

and 30° are shown in Fig. 23. Similar plots for the 42 ft. wide 

bridges with six beams are shown in Fig. 24. The span lengths inves-

tigated were 30ft., 60ft., and 120ft. for the 24ft. wide bridges; 

and 42ft., 59 ft., and 101ft. for the 42ft. wide bridges. These 

dimensions correspond toW /L ratio of 0.80, 0.40, and 0.20 for the 
c 

24ft. wide bridges and 1.0, 0.70, and 0.42 for the 42ft. wide 

bridges. 

The two figures indicate that at a high S/L ratio there is a 

larger decrease in the distribution factor as the skew angle de-

creases. Furthermore, the decrease in the distribution factor is 

larger at smaller skew angles for the wider bridge. The above results 

imply that the aspect ratio of the bridge is an important parameter 

governing the skew reduction of load distribution factors. 

3.4 Load Distribution Factors for Skewed I-Beam Bridges 

In the development of the distribution factor formula for 

right bridges about 300 bridges were investigated (Ref. 62). These 

bridges varied in width, number of beams, and span length to cover 

the bridge configurations encountered in practive. In this section, 

thirty of these representative right bridges were selected and each 

one was analyzed for skew angles of 90° (right bridge), 60°, 45°, and 

30°. Thus, in effect, a total of 120 bridges were analyzed. 
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3.4.1 Design of the Experiment 

The bridges analyzed with different skew angles are listed in 

Table 4. The basic widths considered were 24, 48, and 72ft., curb

to-curb. The number of beams were varied from 4 to 16, and consequent

ly, the beam spacings varied from 4'-10" to 9'-6". Different lengths 

ranging from 30 ft. to 120 ft. inclusive were used. Detailed descrip

tions of the bridges employed in this investigation are presented in 

Refs. 12 and 66. Reference 12 also contains the graphic presentation 

of the influence lines developed for the bridges considered herein. 

Reference 43 was used in the determination of beam properties. 

3.4.2. Distribution Factors in Skew Bridges 

With the use of the procedure outlined in Section 3.2.1, 

distribution factors were computed for all interior and exterior beams. 

In determining distribution factors, consideration was given to the 

maximum number of design lanes that could be placed on a given bridge 

width. The maximum interior and exterior beam distribution factors 

for each bridge were selected and are listed in Tables 5 and 6 

respectively. The full list of distribution factors for different 

design lanes can be found in Ref. 12. 

The interior beam distribution factors for the 24 ft. wide 

bridges with four, five, and six beams are plotted against S/L in Fig. 

25. Similar plots are presented for the 48 ft. wide bridges with 

six, nine, and eleven beams in Fig. 26, and for the 72 ft. wide 

bridges with nine, twelve, and sixteen beams in Fig. 27. In addition 

to the observations made in Section 3.3, the following can be observed 

from the figures: 
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1. The rate of reduction is usually larger for larger 

spacing, for wider bridges, and at smaller angles 

of skew. 

2. There is, however, a limit to the increase in the 

rate of reduction. 

The second observation may be interpreted as follows. At 

large spacing and short spans the lateral distribution of the load is 

small and hence the distribution factor is small. At narrow beam 

spacing, the distribution factor is also small. Consequently, the 

amount of reduction because of the skew is found to be relatively 

smaller for these cases. The influence line plots for moments in the 

individual beams in this study are given in Ref. 12. 

The plots of the maximum distribution factors for the ex

terior beams against the S/L ratio are shown in Figs. 28, 29, and 30 

for the three bridge widths. Compared to the interior beams, a 

similar but smaller reduction in the distribution factor was observed 

for the shorter bridges. However, an increase in the distribution 

factor was observed for longer bridge spans. The increase in the 

distribution factor may be attributed to the greater participation 

of the exterior beams when the bridge has a skew. 

3.4.3 Development of the Distribution Factor Equations 

Determination of factors for prestressed concrete I-beam 

bridges with no skew is the subject of a comprehensive study in Ref. 

62. It is therefore the aim of this section to provide only the re

duction factor for such bridges with a given angle of skew. 
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The reduction factor for interior beams in a given skewed 

bridge is computed utilizing the beam distribution factor for a right 

bridge (90° skew) with the same width, number of beams and span length 

as the base. These reduction factors are expressed as percent re-

ductions, and are always zero for right bridges. With the use of the 

Lehigh University Amalgamated Package for Statistics, LEAPS (Ref. 30), 

the percent reduction in distribution factor was correlated with com-

binations of such varieales as skew angle, span length, number of · 

beams, number of loaded lanes, and bridge width. The variables found 

to have good correlation with the percent reduction were the spacing-

to-length ratio S/L and the bridge width-to-span ratio W /L in com
e 

bination with the square of the cotangent of the skew angle. A regres-

sion analysis of the percent reduction against these variables resulted 

in the following equation: 

where PCTR 

s 

w c 

L 

¢ 

PCTR = (45 ~ + 2 W c) 
\ L L 

2 
cot ¢ 

= reduction factor in percent which is to be applied 

to the distribution factor for an interior beam of 

a right bridge with givenS, W , and L. c 

= beam spacing 

= curb-to-curb width 

= span length 

= skew angle 
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For the exterior beams, a simplified equation was determined 

by trial and error and is proposed as follows: 

PCTR(EXT) = 50 ~t- 0.12~ cot $ (3. 4) 

where PCTR(EXT) = reduction (positive) or amplification (negative) 

which is to be applied to the distribution factor 

for an exterior beam of a right bridge with given 

S, W , and L. 
c 

The above equations are limited to the following bridge 

dimensions: 

4'-6" < s < 9'-0" 

48'-0" < L < 120'-0" 

The computed distribution factors, the percent reductions 

based on the above equations, and the analytical results for the 

bridges investigated are listed in Ref. 12. The equations are found 

to be conservative in most cases except in the case of the large 

. 30° k d h spac1ng, s ew, an very s ort span. The plots of the proposed 

equation for interior beams are shown in Figs. 31, 32, and 33 for the 

bridges investigated. 

3.5 Design Recommendations 

From the results of this study, the following simplified pro-

cedures are recommended for the determination of the live load dis-

tribution factors in prestressed concrete I-beam bridges with skew: 
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1. 

2. 

The load distribution factor for interior beams may 

be determined by applying to the distribution factor, 

for interior beams of the bridge without the skew, a 

reduction specified by the following formula: 

DF = DF90 (1.0 - pi~) (3.5) 

where DF = distribution factor for the interior 

beam of the bridge with skew angle 

DF
90 

= distribution factor for the interior 

beam of the bridge without skew, and 

PCTR = reduction in percent as specified by 

Eq. 3. 3. 

The load distribution factor for exterior beams may 

be determined by applying to the distribution factor, 

for exterior beams of the bridge without the skew, a 

factor specified by the following formula: 

( 
PCTR(EXT)\ 

DF(EXT) = DF90(EXT) l.O- 100 j (3.6) 

where DF(EXT) = distribution factor in the exterior 

beam of the bridge with skew angle 

DF90(EXT) = distribution factor in the exterior 

beam of the bridge without skew, and 

PCTR = amplification or reduction factor as 

specified by Eq. 3.4. 
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A plot of the smallest and the largest percent reduction in 

the distribution factors for interior beams using the proposed equa-

tion and the bridge dimensions investigated in this study is shown in 

Fig. 34. A similar plot for exterior beams is shown in Fig. 35. 

3.6 Summary 

The load distribution behavior of skewed I-beam bridges under 

design vehicular loads has been discussed. Load distribution factors 

were computed for the interior and exterior beams of bridges con-

structed with prestressed concrete I-beams. The skew angles investi-

0 0 0 0 
gated were 90 , 60 , 45 , and 30 . The following observations were 

made: 

1. The load distribution factor decreases with decreasing 

angle of skew. 

2. The rate of reduction in the distribution factor is 

gradual from 90° to 45° but is abrupt from 45° to 30°. 

3. The rate of reduction in the distribution factor 

decreases with increasing span length. 

4. The bridge width-to-span ratio and beam spacing-to-

. span ratio, and the skew angle significantly affect 

the amount of reduction. 

Based on a statistical correlation of bridge parameters with 

numerical results, simplified distribution factor equations were 

obtained for interior and exterior beams. 
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. 4. 

4.1 Introduction 

LATERAL LOAD DISTRIBUTION IN SKEWED SPREAD 

BOX-BEAM BRIDGES 

The design and construction of spread box-beam bridges (Fig. 

l(b) isa relatively recent development, and the load distribution 

characteristics for this type of bridge have been the subject of 

several investigations (Section 1.1.2 of Ref. 63). Extensive field 

investigations of spread box-be~m bridges have been carried out at 

Lehigh University (Refs. 16,21,22,31,51,57), however, with the ex

ception of Ref. 51, all of these investigations have been for right 

bridges. 

The field investigations confirmed the need for a realistic 

procedure for determining live load distribution for spread box-beam 

bridges with and without skew. The theoretical analysis developed by 

Motarjemi and VanHorn (Ref. 38) provided a new specification pro

vision for lateral load distribution for right bridges with prestressed 

concrete spread box-beams (Ref. 2). The analysis of right and skewed 

box-beam bridges is discussed in this chapter and design equations 

are developed for use in determining the lateral load distribution in 

skewed spread box-beam bridges. The design equations are similar in 

form to the previous expressions for lateral load distribution in 

skewed I-beam bridges and are actually the product of two terms. The 

first term is the distribution factor for an identical right (no skew) 
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bridge. The second term is a modification factor which accounts for 

the effect of the skew. 

A total of 72 bridges of various widths, spans, number of 

beams and skew angle were analyzed and a computerized process was 

developed to calculate distribution factors for each particular bridge. 

A combination of three computer programs (PRESAP, SAPIV, and POSTSAP) 

was used for overall bridge analysis. PRESAP produced input required 

by SAPIV utilizing simple bridge dimensions. Program SAPIV (Ref. 4) 

was used to analyze the discretized bridge structure by means of the 

finite element method. Program POSTSAP utilized the stresses computed 

by SAPIV to calculate the required lateral distribution factors. 

Finally, a regression analysis was carried out on the distribution 

factors which were calculated by POSTSAP. Utilizing program LEAPS 

(Ref. 30), design equations, which delineate the requ~red skew mod

ifications, were developed. 

4.2 Method of Analysis 

4.2.1 General 

The analysis of spread box-beam bridges is a complex problem 

where relative solution accuracy can often be constrained by available 

computer storage. Because of the large differences in the node 

numbers of the assembled elements, the size of the bandwidth, which 

determines the amount of computer storage required, can become ex

cessively large. The total number of elements and the resulting 

system of equations are also larger than for a corresponding I-beam 
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bridge with an equal number of beams. Consequently, the computa

tional effort required for a given analysis is substantial, and it 

is therefore necessary to use a minimum number of elements while at 

the same time obtaining results with a reasonable degree of accuracy. 

4.2.2 Assumptions 

The beam-slab bridge configuration utilized in this in

vestigation consisted of a concrete deck of constant thickness, sup

ported on equally spaced prismatic box-beams (Fig. lb). The deck acts 

compositely with the simply supported beams. Although the 

Pennsylvania Department of Transportation (PennDOT) specifications 

would require diaphragms for the majority of the bridges analyzed, 

diaphragms were not considered. Previous work involving the 

Philadelphia Bridge (Ref. 31) indicated that diaphragms have only 

limited effect on distribution factors, thus supporting this 

simplifying assumption. The concrete in both the slab and the beams 

was assumed to respond to service loads as a linear elastic, homo

geneous, isotropic material. 

Boundary conditions for the finite element model were 

specified in the global coordinate system, and consequently support 

nodes were not cOnstrained to rotat-e about the skewed line of support. 

The effect of such an assumption on maximum beam moments was dis

cussed in Section 2.4.2 and was found to be of negligible concern. 

4.2.3 Modeling Procedure 

The pre-processor PRESAP Modeling Procedure which creates 

the input required by program SAPIV, was used to model the bridge 
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structures. A general discretization, identical for all bridge 

configurations, was chosen for the parametric study. Consequently, a 

coarser discretization was utilized for longer bridges than for 

shorter bridges; however, such an approach greatly simplified the 

parametric study and did not adversely effect the accuracy of the 

analysis of overall bridge behavior. The actual discretization was 

optimized for a bridge of average span, and an attempt was made to 

achieve a favorable aspect ratio (approximately equal to 1.0) for the 

elements at the skew midspan of each bridge. The elements extending 

from the ends of the bridges toward midspan were long and narrow with 

relatively poor aspect ratios (up to 18.0). Since the intent of this 

investigation was to determine the stresses at ·the skew midspan only, 

a poor aspect ratio was acceptable for elements which were not in 

close proximity to the midspan. 

The typical discretization utilized for the analysis of 

skewed, spread box-beam bridges is shown in Fig. 36 for a 3-beam 

bridge. The longitudinal discretization consisted of eight elements, 

including two elements at midspan with an aspect ratio of one, and 

six additional elements with aspect ratios which varied with bridge 

span. Laterally, the overhangs and beam flanges were modeled with 

single elements, while two elements were used to model the deck 

between each beam. The deck and top flange of the beam were modeled 

with plate bending elements, which exhibit plane stress and flexural 

response (Ref. 4). The webs artd bottom flange of the beams were 

modeled with plane stress elements since any out-of-plane behavior 

of these members has negligible effect on overall bridge behavior. 
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In effect, the St. Venant torsional stiffness of the box-beams was 

modeled by the in-plane behavior of their components, whereas the 

minor effects of warping torsion, resulting from out-of-plane 

distortion of the web or bottom flange, were neglected (Ref. 58). 

4.2.4 Calculation of Distribution Factors 

The post-processor POSTSAP used the output from SAPIV to 

calculate lateral load distribution factors. Values of stresses were 

obtained from the SAP IV output through direct reading, or through 

interpolation, for the points along the bridge cross-section as 

shown in Fig. 37. Straight line distributions were assumed between 

these stress points, and the resulting stress distributions were 

integrated to compute the forces acting on the cross-section. The 

neutral axis for each beam was obtained by locating the point of 

zero stress for each stress distribution. Assuming that the effective 

width of the slab for each beam was the center-to-center beam spacing, 

the bending moment for each beam was computed about its neutral axis. 

The lateral load distribution factor was then obtained by dividing 

the resulting moment in each beam by the maximum simple-span moment 

which would be produced in a similar beam by one line of wheel loads. 

4.3 Validation of the Analytical Method 

4.3.1 Comparison with Field Test Results 

The Brookville Bridge (Fig. 38) which has a skew of 45° 

was modeled using the procedure previously discussed. All reported 

moments were presented as the product of a number multiplied by the 
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modulus of elasticity (Ref. 51), and no information was available 

which would permit determination of the actual modulus of elasticity 

of the bridge. Consequently, all comparisons were based upon the 

percentage of total moment in the bridge which was resisted by each 

girder. Table 7 compares the field test data with the results 

obtained from the finite element model. The largest difference 

between the two values is only 3% and is quite acceptable for the 

purposes of this investigation. 

4.3.2 Comparison with an Alternate Analytical Method 

Further model validation was carried out by comparing results 

obtained from a SAP IV finite element analysis with results computed 

for right bridges utilizing a finite strip analysis, as reported by 

Motarjami (Ref. 38). The comparisons were made on bridges having a 

typical 7-beam cross-section with a curb-to-curb width of 54 ft. 

Five different bridge lengths were used, with S/L ratios varying 

from 1/4 to 1/10. The distribution factors obtained from the SAP IV 

analyses were approximately 8% greater than the results reported by 

Motarjemi (Table 8). This difference was due to the fact that a 

different lane definition was used for each analysis. In the 

Motarjemi analysis, the 54 ft. roadway was divided into four traffic 

lanes, each 13 ft.-6 in. in width. The vehicles, considered to be 

10 feet in width, were then shifted within each of the lanes to 

produce the maximum distribution factor. This method was consistent 

with AASHTO provisions in effect at that time. However, the SAP IV 

analysis, included in this study, was based on the current AASHTO 
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provisions, which specify load lane widths of 12 ft. The current 

provisions allow the positioning of load lanes across the roadway 

width, as well as the positioning of load vehicles within the load 

lanes. The movement of vehicles within the lanes gives use to more 

critical loading conditions. 

4.4 Load Distribution Factors for Skewed Box-Beam Bridges 

4.4.1 Design of the Experiment 

To effectively develop a design equation which will accurately 

predict the lateral load distribution in spread box-beam bridges, the 

analytical experiment must include a representative sampling of bridge 

configurations, and must seek to determine the specific parameters 

which significantly influence overall bridge behavior. The general 

behavior of skewed, spread box-beam bridges was modeled in this in-

vestigation by 72 bridges of different widths, number of beams, span 

length, and skew angle. 

The box-beam bridges selected for this study are listed in 

Table 9. Each of the 18 bridges listed in Table 9 was investigated 

0 0 0 0 at skew angles of 90 , 60 , 45 , and 30 . As a result of the new 

lane width definition included in the current AASHTO specifications 

(Ref. 3), the bridge widths, which were considered, are different 

from those used in Ref. 38 for the study of right bridges. The 

widths considered are 24ft., 48ft., and 72ft. corresponding to 12 

foot lane widths for 2, 4, and 6 design lanes respectively (Ref. 3). 

These bridge widths are from curb-to-curb and do not include the 

overhang of 2 ft. on each side of the bridge. 
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A uniform thickness of 7-1/2 inches was used for the deck slab. 

Curbs, parapets and diaphragms were not considered. A 48/48 prestressed 

concrete box-beam (Ref. 43) (48" wide and 48" high) was used for all 

beams in all bridges. The selection of this particular beam size was made 

in order to have the stiffest possible beams. Thus, the beams under the 

load carried a large percentage of the vehicular loading. This has re

sulted in high distribution factors; consequently the reported results are 

consistently on the conservative side. Young's modulus was held constant 

for all bridge. configurations and for all elements of each bridge. 

Two general loading schemes were utilized to determine distri

bution factors for both interior and exterior box-beams. Five load 

conditions, using HS20-44 standard trucks, were applied whenever possible 

(when the bridge was wide enough); however, the positioning of the design 

lanes, and of the vehicles within the lanes, was varied depending upon 

whether interior or exterior beams were being analyzed. For the case of 

interior beams, lanes and vehicles were crowded as closely as possible 

to the interior beam. For analysis of exterior beams, the 12 ft. wide 

traffic lanes and design vehicles were laterally crowded towards an 

exterior beam. Longitudinally, the design vehicles were positioned in 

each lane in such a manner that all drive axles fell on the bridge's 

skew midspan. The rear axles of the design vehicle were placed towards 

the obtuse angle at the supports. This longitudinal placement produced 

a very close approximation of the absolute maximum moment in each beam. 

4.4.2 Distribution Factors 

The maximum distribution factors for the 18 bridges listed in 

Table 9 with skews of 90°, 60°, 45°, and 30° are listed in Table 10 
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for interior beam8 and in Table 11 for exterior beams. Distribution 

factors were calculated using the procedure previously discussed and 

indicate that a decrease in the angle of skew results in a significant 

reduction in the distribution factor for both interior and exterior 

beams. This reduction can be attributed to the fact that the principal 

bending of the bridge is in the direction of the skew and is not in 

the direction of the span. Additionally the cross-sectional geometry 

of a skewed, spread box-beam bridge provides a better lateral distri

bution of the loads and consequently results in better participation 

of all beams in the overall response of the structure. 

The larger reduction in the distribution factors at shorter 

span lengths for the interior beams can be attributed to the fact 

that, at large skews, some of the design vehicle's wheels were either 

off of the bridge or very close to the supports. The observed 

reduction in the distribution factors was, however, considerably 

larger than that experienced by similar prestressed concrete !-beam 

bridges. It was further observed that as the length of the bridge 

span increased, the distribution factor for exterior box-beams also 

increased. 

In the case of interior box-beams, the maximum distribution 

factor was generally achieved when the bridge was fully loaded. For 

exterior box-beams, the maximum distribution factors occurred under 

different load configurations for each of the various bridges. In 

two-lane bridges maximum moments were achieved when the bridge was 

fully loaded with two design vehicles. For a four-lane bridge the 
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governing load condition was found to occur when either three or four 

vehicles were on the span. The three vehicle load condition created 

a maximum moment for shorter, less skewed bridges, whereas the four 

vehicle condition governed for longer, more skewed bridges. The 

critical load pattern for a six-lane bridge followed the same trend as 

that of a four-lane bridge with the exception that either four or five 

design vehicles resulted in maximum moments in exterior box-beams. 

4.4.3 Development of the Distribution Factor Equations 

The line load bending moments in the interior or exterior 

beams of skewed, spread box-beam bridges may be determined by applying 

to the beams the fraction of the wheel load specified by the following 

formula: 

where PR 

(4.1) 

= the percentage reduction appropriate for either 

interior or exterior box-beams in a skewed bridge 

= the distribution factor for an interior or exterior 

beam of a similar right bridge (i.e., same span, 

width, and beam spacing) 

= the distribution factor for the interior or exterior 

beam of a bridge with skew angle ¢ 

~fuximum percentage reductions for interior and exterior box

beams are listed in Tables 12 and 13 for the various bridges analyzed 

in this study. A regression analysis was carried out on these values, 

utilizing the Lehigh Amalgamated Package for Statistics (LEAPS) 
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computer program (Ref. 30), to determine appropriate design equations 

for the percentage reduction (PR) factor included in Eq. 4.1. 

The following forms of equations were regressed: 

X w y z 
PR = K(E_) (__£) (cot ¢) (4.2) 

L L 

X y 
PR = K(~) (cot ¢) (4.3) 

L 

X y 
PR = K(~) (cot ¢) (4. 4) L 

These equations consider various combinations of the critical para-

meters of span length (L), beam spacing (S), and curb-to-curb 

width (W ). Specific results are discussed in the following section; 
c 

however, it was generally found that an expression in the form of 

Eq. 4.2 most accurately represented the data obtained from the 

analytical experiment. This observation emphasizes the influence of 

bridge aspect ratio (W /L) on overall structural behavior. However, 
c 

it was also observed that Eq. 4.3, which has a simpler form, ade-

quately approximated the experimental data. This observation indicated 

that the influence of bridge aspect ratio was less significant than 

that of spacing to length (S/L) ratio or skew angle. 

4.5 Design Recommendations 

Distribution factors for skewed, spread box-beam bridges 

may be determined from Eq. 4.1 utilizing the following expressions 

for the percentage reduction (PR) factor for interior or exterior 

box-beams. 
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Interior Box-Beams 

( 

w ) 1/10 1/2 3/2 

PR = 29.0 ~ ( t) (coq) (4.5) 

or 

( s r'2 PR = 33.0 L (cot ~) (4.6) 

Exterior Box-Beams 

(II )1/3 1/5 
PR = 19.5 Lc (f) (cot ¢)

413 

(4. 7) 

or 

PR = 30.0 (t) 112 (cot ¢) (4.8) 

Figures 39 through 50 present comparisons between the results of the 

analytical experiment and the proposed empirical expression for skew 

distribution factors (Eq. 4.1). As previously discussed, Eqs. 4.5 and 

4.7 more accurately represent the experimental data; however, Eqs. 4.6 

and 4.8 have a much simpler form, can be readily adopted for design 

application, and provide an adequate approximation of overall bridge 

behavior. Although the more sophisticated expressions are preferred 

on the basis of their improved accuracy, the simpler expressions are 

adequate for routine bridge design. 

All of the above expressions are limited by the following 

bridge dimensions: 

24 1 < W < 72 I 
c 

42 I < L < 128 I 
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4.6 Suliiiilary 

The load distribution behavior of skewed, spread box-beam 

bridges under design vehicular loads has been discussed. Load distri-

bution factors were computed for the interior and exterior beams of 

bridges constructed with prestressed concrete box-beams. The skew 

0 0 0 0 angles investigated were 90 , 60 , 45 , and 30 • The following 

observations were made: 

1. The load distribution factor decreases with 

decreasing angle of skew. 

2. The reduction factor is largest at shorter span 

lengths for interior beams and at longer span 

lengths for exterior beams. This behavior is 

primarily the result of increased participation 

of the exterior beams in longer spans. 

3. The bridge width~to-span ratio, the beam 

spacing-to-span ratio, and the skew angle 

sufficiently affect the magnitude of the 

percentage reduction factor. 

Based upon a statistical correlation of bridge parameters with numer-

ical results, simplified equations for computing distribution factors 

for interior and exterior box-beams were developed. 
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5 . SUMMARY AND RECOMMENDATION 

This report describes the development of skew-effect cor

rection factors which are to be applied to the live-load distribution 

factors in beam-slab highway bridge superstructures supported by pre

stressed concrete I-beams or box-beams. 

Initially, an analytical procedure utilizing the finite 

element method was developed to evaluate the response of skewed-

bridge superstructures to design-vehicle loading. The analytical 

technique was validated through comparisons with previous field test 

results of in-service bridges and by comparisons with alternate anal

ytical solutions. An analytical experiment was then designed for each 

type of bridge to study the effects of various parameters on live-load 

distribution. A total of 120 I-beam and 72 box-beam superstructures 

were analyzed under numerous loading conditions. The results of these 

analyses provided a data base which was utilized to develop appropriate 

design equations for both interior and exterior beams. The design 

equations were based upon formulating appropriate corrections to the 

distribution factors for similar right bridges to account for skew, 

and yielded the live-load distribution factors required for the_design 

of skewed bridge superstructures. 

Based upon the results of this study, it is recommended that 

the expressions governing live-load distribution in skewed beam-slab 

bridges, as presented in Sections 3.5 and 4.5 of this report, be 
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adopted as modifications to the specification provisions currently 

governing live-load distribution in right beam-slab bridges. The 

proposed expressions are relatively simple in form and clearly yield 

values which accurately represent the behavior of skewed beam-slab 

bridges. 
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TABLE 1 

MOMENT COEFFICIENTS AND REACTIONS IN A 45° 
SKEW BRIDGE WITH CHANGE IN BOUNDARY CONDITIONS 

Beam Moment Coefficients Reactions at Left Support 
XL X P xP 

s.s. 1 Skew S.S. 2 s.s. 1 

A 0.00232 0.0233 0.0614 

B 0.0437 0.0439 0. 0371 

c 0.0922 0.0918 0.1085 

D 0.0437 0.0439 0.2545 

E 0.00232 0.0233 0.0385 

1simply supported. 
2simply supported and constrained to rotate about 

skew line of support, ~ = 45°. 

TABLE 1 

LOAD DISTRIBUTION COEFFICIENTS - BRIDGE 3
1 

Skew S.S. 

0.0600 

0.0412 

0 •. 028 

0.2254 

0.0706 

Ratio of Bending MOments (%) 

2 

Interior Girders Exterior Girders 

Field Test 60 40 

Analytical Results 59 41 

1 Ref. 6 
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Bridge 

Field Test 

(Ref. 24) 

2B Finite Element 

(composite) 

Finite Element 

(non-composite) 

Field Test 

(Ref. 24) 

3B Finite Element 

(composite) 

Finite Element 

(non-composite~ 

-. ·~--~--- .. ·~·····-

TABLE 3 

MOMENT PERCENTAGES • 

I: Beam Moment Beam Moment/I: Beam Moment 

Truck Moment Interior Center Exterior 

89.30 34.0 32.0 34.0 

93.57 32.6 34.0 33.2 

92.13 33.2 33.8 33.0 

92.10 33.8 .33.4 29.2 

94.50 32.7 34.3 33.0 

83.95 33.2 33.8 33.0 
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TABLE 4 

I LIST OF BRIDGES ANALYZED 

Bridge Number 

I No. Width of Beams Spacing Length Beam Size S/L 
~ft.2 ~in.2 ~ft.2 

1 24.00 6 57.60 120.00 AASHO-VI .0400 

I 2 24.00 6 57.60 72.00 24/42 .0667 

3 24.00 6 57.60 38.40 20/30 .1250 

I 4 24.00 5 72.00 120.00 .AASHO-VI .0500 

5 24.00 5 72.00 60.00 20/39 .1000 

I 6 24.00 5 72.00 42.00 20/30 .1429 

7 . 24.00 4 96.00 120.00 AASHO-VI .0667 

I 8 24.00 4 96.00 64.00 24/45 .1250 

9 24.00 4 96.00 40.00 20/30 .2000 

I 
10 48.00 11 57.60 120.00 AASHO-VI .0400 

11 48.00 11 57.60 84.00 24/48 .0571 

12 48.00 11 57.60 48.00 20/30 .1000 

I 13 48.00 9 72.00 105.00 28/63 .0571 

14 48.00 9 72.00 60.00 20/39 .1000 

I 15 48.00 . 9 72.00 42.00 20/30 .1429 

16 48.00 6 115.20 96.00 AASHO-VI .1000 

I 17 48.00 6 115.20 57.60 24/45 .1667 

18 48.00 6 115.20 48.00 20/33 .2000 

I 19 72.00 16 57.60 120.00 ASSHO-VI .0400 

20 72.00 16 57.60 57.60 20/36 .0833 

I 
21 72.00 16 57.60 38.40 AASHO-I .1250 

22 72.00 14 66.50 110.80 AASHO-VI .0500 

23 72.00 14 66.50 66.50 24/42 .0833 

I 24 72.00 14 66.50 38.80 AASHO-I .1429 

25 72.00 12 78.50 114.50 AASHO-VI .0571 

I 26 72.00 12 78.50 65.50 24/42 .1000 

27 72.00 12 78.50 39.30 20/30 .1667 

I 28 72.00 9 108.00 108.00 AASHO-VI .0833 

29 72.00 9 108.00 54.00 24/42 .1667 

I 30 72.00 9 108.00 45.00 24/36 .2000 
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'IABLE 5 · I 

MAXIMUM DISTRIBUTION FACTORS - INTERIOR BEAMS 

I Bridge NUMBER OF LOADED lANES AND SKEW ANGLE 
No. ~ . '**!:ILL ~ NLL _6.<t. m..L ~ NLL ~ 

1 2 2 .81 2 • 79 2 .77 2 .71 I 
2 2 2 .84 2 .81 2 • 77 2 .66 . 

3 2 2 .96 2 .94 2 .93 2 .86 I 4 2 2 .96 2 .92 2 .88 2 .82 

5 2 2 1.05 2 .99 2 .92 2 • 78 I 6 2 2 1.17 2 1.07 2 .95 2 .76 

7 2 2 1.23 2 1.20 2 1.18 2 1.08 

I 8 2 2 1.30 2 1.24 2 1.17 2 .99 

9 2 2 1.32 2 1.23 2 1.14 2 .88 

I 10 4 4 .94 4 .91 4 .87 4 • 79 

11 4 4 .94 4 .90 4 ~87 4 • 75 

12 4 2 1.03 3 .98 3 .94 3 .87 I 
13 4 4 1.17 4 1.13 4 1.09 4 .97 

14 4 4 1.20 4 1.14 4 1.08 4 .89 I 
15 4 4 1.24 3 1.13 3 1.07 3 .83 

16 4 4 1.84 4 1. 79 4 1.74 4 1.59 I 17 4 4 1.83 4 1.·77 4 1.70 4 1.45 

18 4 4 1.86 4 1.72 4 1.58 3 1.24 I 19 6 5 .94 5 .92 5 .90 5 .84 

20 6 4 .95 4 .91 4 .87 5 • 75 

I 21 6 4 .97 4 .91 4 .96 5 .72 

22 6 5 1.07 5 1.05 5 1.04 5 .98 

23 6 4 1.07 4 1.04 4 1.01 5 .89 I 
24 6 4 1.09 4 1.02 5 .96 5 • 77 

25 6 5 1.23 5 1.21 5 1.19 5 1.11 I 
26 6 4 1.24 5 1.20 5 1.16 5 1.03 

27 6 4 1.30 4 1.21 5 1.12 5 .89 I 
28 6 5 1. 72 5 1.68 5 1.65 6 1.51 

29 6 4 1.74 5 1.68 5 1.61 5 1.33 I 30 6 4 l. 77 5 1.68 5 1. 60 5 1.23 

Number of Lanes I **Number of Loaded Lanes 
-56-
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I TABLE 6 

I 
MAXIMUM DISTRIBUTION FACTORS ~ EXTERIOR BEAMS 

~ Bridge NUMBER OF LOADED lANES AND SKE\-7 ANGLE 
No. *NL '"**NLL 90° NLL 60° NLL 45° NLL 30° 

I 1 2 2 .69 2 • 70 2 • 70 2 .72 

2 3 2 .67 2 • 67 2 .67 2 .64 

I 3 2 2 .56 1 .57 1 .57 2 .58 

4 2 2 .80 2 .81 2 .82 2 .83 

I 5 2 2 • 75 2 .77 2 .78 2 .73 

6 2 2 .73 2 .73 2 .72 2 .62 

I 
7 2 2 1.01 2 1.02 2 1.02 2 1.01 

8 2 2 .95 2 .95 2 .94 2 .88 

9 2 2 .87 2 .87 2 .86 2 ~74 

I 10 4 2 .71 2 .72 2 .73 3 .73 

11 4 4 .68 2 • 68 2 • 68 4 .65 

I 12 4 1 • 62 1 .• 61 1 .61 2 .59 

13 4 2 .83 2 .83 2 .84 4 .83 

I 14 4 2 • 78 2 .76 2 .76 4 0 70 

15 4 2 .72 2 .74 4 .71 4 .62 

I 16 4 2 1.10 2 1.10 2 1.11 4 1.09 

17 4 2 1.02 2 1.01 2 1.00 4 .92 

I 18 4 2 1.08 2 1.03 4 .99 4 .85 

19 6 2 f> 70 2 .71 2 .72 3 .72 

I 
20 6 6 .65 2 .64 2 • 63 2 .58 

21 6 1 .61 1 .60 2 • 60 2 .53 

22 6 2 .78 2 • 78 2 .79 2" 0 78 

I 23 6 2 0 74 2 .72 2 .73 2 ~67 

24 6 1 .68 2 .·66 2 .67 6 .58. I. 25 6 2 .88 2 .89 2 .91 3 .91 

26 6 2 .83 2 .85 2 .86 6 .so 

I 27 6 1 .74 2 .75 2 .75 2 .63 

28 6 2 1.09 2 1.10 2 1.11 3 1.09 

.I 29 6 2 .97 2 .96 2 .• 95 6 .86 

30" 6 2 . .• 95 •. 2 .93 2 .91 6 .80 

I Number of Lanes 
**Number of Loaded Lanes 
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TABLE 7 

BROOKVILLE BRIDGE COMPARISON 

Percentage of Total Moment Taken by Each Girder (Fig. 38) 

Girder 

Method 

Field Test 

Model 

A B c 

44% 31% 15% 

47% 32% 14% 

TABLE 8 

MOTARJEMI COMPARISON 

D 

10% 

7% 

Load Distribution Factors as Reported by Motarjemi and by 

Model Analysis 

S/L Motarjemi Model 

1/4 1.08 1.16 

1/5 1.12 1.20 

1/6 1.13 1.21 

1/8 1.15 1.23 

1/10 1.15 1.24 
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I TABLE 9 

I LIST OF SPREAD BOX-B~ BRIDGES 

I 
Bridge Number 

No. Width of Beams Spacing Length Beam Size S/L 
~ft.2 ~in.} ~ft. 2 

I 
1 24.00 3 122.50 40.83 3-48/48 .2500 

2 24.00 3 122.50 71.46 3-48/48 .1430 

I 
3 24.00 3 122.50 122.50 3-48/48 .0830 

4 24.00 4 81.67 34.03 4-48/48 .2000 

5 24.00 4 81.67 47.64 4-48/48 .1430 

I 6 24.00 4 81.67 102.08 4-48/48 .0670 

7 48.00 5 133.25 44.42 5-48/48 .2500 

I 8 48.00 5 133.25 88.83 5-48/48 .1250 

9 48.00 s 133.25 11.04 5-48/48 .1000 

I 10 48.00 7 88.83 37.01 7-48/48 .2000 

11 48.00 7 88.83 59.22 7-48/48 .1250 

ll 12 48.00 7 88.83 111.03 7-48/48 .0670 

13 72.00 8 117.29 39.10 8-48/48 .2500 

I 
14 72.00 8 117.29 78.19 8-48/48 .1250 

15 72.00 8 117.29 97.74 8-48/48 .1000 

I 
16 72.00 9 102.62 42.75 9-48/48 .2000 

17 72.00 9 102.62 68.42 9-48/48 .1250 

18 

I 
72.00 9_ 102.62 128.25 9-48/48 .0670 

I 
I 
I. 

I 
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TABLE 10 

MAXIMUM DISTRIBUTION FACTOR - INTERIOR BEAMS I 
Bridge 90° 60° 45° 30° 

I 
Number 

1 1. 73 1.62 1.45 1.12 I 
2 1.63 1.56 1.46 1. 22 I 
3 1.51 1.47 1.40 1.23 

4 1.17 1.07 0.96 0.79 I 
5 1.13 1.07 0.98 0.80 

I 6 1.07 1.04 0.99 0.86 

7 1.92 1.82 1.66 1.32 I 
8 1.87 1.80 1.69 1.42 

I 9 1.85 1. 79 1.69 1.43 

10 1.39 1.27 1.12 0.86 I 
11 1.32 1.25 1.16 0.95 

12 1.27 1.22 1.16 0.98 I 
13 1.72 1.61 ' 1.46 1.18 I 
14 1.67 1.60 1.51 1.25 

15 1.66 1.61 1.52 1.27 I 
16 1.55 1.46 . 1. 33 1.04 I 
17 1.51 1.44 1.35 1.12 

18 1.47 1.42 1.35 1.14 I 
I 
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TABLE 11 

I MAXIMUM DISTRIBUTION FACTOR - EXTERIOR BEAMS 

I Bridge 90° 60° 45° 30° NL 
Number NLL DF NLL DF NLL DF NLL DF 

I 1 2 2 1.30 2 1.21 2 1.12 2 0.93 

I 2 2 2 1. 34 2 1.28 2 1. 22 2 1.08 

3 2 2 1. 36 2 1. 32 2 1.27 2 1.16 

I 4 2 2 1.01 2 0.94 2 0.87 2 0.72 

I 
5 2 2 1.03 2 0.98 2 0.91 2 0.79 

6 2 2 1.05 2 1.02 2 0.99 2 0.90 

I 7 4 3 1.45 3 1.34 3 1.22 4 1.01 

I 
8 4 3 1.48 4 1.40 4 1. 34 4 1.17 

9 4 3 1.50 4 1.43 4 1.37 4 1.21 

I 10 4 3 1.09 3 1.01 3 0.91 4 0.75 

11 4 3 1.13 3 1.05 4 0.98 4 0.85 

I 12 4 3 1.15 4 1.09 4 1.05 4 0.93 

I 13 6 4 1.32 4 1.·22 4 1.11 4 0.92 

14 6 4 1.39 4 1.31 5 1. 22 5 1.05 

I 15 6 5 1.40 5 1.32 5 1.24 5 1.08 

I 16 6 4 1.22 4 1.13 4 1.03 4 0.86 

17 6 4 1. 26 4 1.19 5 1.10 5 0.95 

I 18 6 5 1.29 5 1.22 5 1.15 5 1.00 

I 
I -61-
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TABLE 12 

I MAXIMUM PERCENTAGE REDUCTION - INTERIOR BEAMS 

Bridge I 
Number 90° 60° 45° 30° 

1 0.00 6.36 16.18 35.26 I 
2 4.29 10.43 25.15 I 
3 2.65 7.28 18.54 

4 8.55 17.95 32.48 I 
5 5.31 13.27 29.20 I 
6 2.80 7.48 19.63 

7 5.21 13.54 31.25 I 
8 3.74 9.63 24.06 I 
9 3.24 8.65 22.70 

10 8.63 19.42 38.13 I 
11 5.30 12.12 28.03 I 
12 3.94 8.66 22.83 

13 6.40 15.12 31.40 I 
14 4.19 9.58 25.15 

I 
15 3.01 8.43 23.49 

16 5.81 14.20 32.90 I 
17 4.64 10.60 25.83 

I 18 0.00 3.40 8.16 22.45 

I 
-62- I 
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TABLE 13 

I MAXIMUM PERCENTAGE REDUCTION - EXTERIOR BEAMS 

I Bridge 
90° 60° 45° 30° Number 

I 1 0.00 6.92 13.85 28.46 

I 2 4.48 8.96 19.40 

3 2.94 6.62 14.71 

I 4 6.93 13.86 28.71 

I 5 4.85 11.65 23.30 

6 2.86 5. 71 14.29 

I 7 7.59 15.86 30.34 

I 8 5.41 9.46 20.95 

9 .4.67 8.67 19.33 

I 10 7.34 16.51 31.19 

I 11 7.08 13.27 24.78 

12 5.22 8.70 19.13 

I 13 7.58 15.91 30.30 

I 
14 5.76 12.23 24.46 

15 5. 71 11.43 22.86 

I 16 7.38 15.57 29.51 

I 
17 5.56 12.70 24.60 

18 0.00 5.43 10.85 22.48 

I 
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APPENDIX A 

FINITE ELEMENT AN~YSIS OF SKEWED ELASTIC PLATES 

A.l Ske~y Plate In-Plane Analysis 

The skew~late also known as a parallelogram is a special 

case of a quadrilateral plate 't¥hen opposite sides are para_llel 

(Fig. Al). The acute angle between two adjacent sides is called the 

skew angle as shown in the figure. The rectangular plate is a special 

case of·. the skew plate when the skew angle is 90°. 

A.l.l Methods of Solutions 

The solutions to skew in-plane problems have been arrived at 

by using the theory of elasticity in rectangular~oblique and polar co-

ordinate systems (Ref. 37). As reported by Horley in Ref. 37, solu-

tions in rectangular and oblique coordinates have been obtained by 

Hemp, Favre, Lardy and Theodorescu; and solutions in the polar coordi-

nate system have been obtained by Coker and Filon, Williams, and 

Mansfield. Solutions in terms of the Airy stress function expressed 

in complex variables, trigonometric series, and infinite series have 

been obtained by Green and Zerna (Ref. 20) and Pickett (Ref. 44). 

A.l. 2 Assumptions and Basic Equations 

The skew plate under any in-plane forces is assumed to be a 

plane stress problem. Stresses a , a and 1" and the generalized 
X y xy .. 

forces N , N and N in an infinitesimal element are shcnm in Fig. A2. 
X y xy 

The components of stress and generalized forces shown in the figure 

indicate the assumed positive direction. The generalized forces are 

the stresses integrated over the thickness of the element. 
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The .displacement at any 'point of the plate is defined by the 

components of the vector field {v}: 

{v}= {:} ~.1) 

where- u and v are in the x and y directions respectively. Th~ ·strain 

field at ~ny point is defined from the displacement field by the 

relationship: 

e: au 
XX ax 

{e:} = av 
e: = 
yy ay 

Yxy 
au+ av 
ay ax 

where e:xx, e:yy' Yxy are the well known components of strain. 

The usual stress-strain relationship ({cr} T [D] {e:}) 

for the general orthotropic case is given by Ref. 64: 

cr 
X 

a 
y 

T 

E 
= 

. xy 

where E 
- ,_-- n = _.1.. _ ... :: E. 

2 

G 
m=~ 

E 
2 

.:: ... 
'.:. 

n n\,1 2 0 

0\,1 
2 

1 0 

0 0 m(l - n"' 2) 
2 
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I . 

.. 

in which E and E are the principal elastic moduli in the x and y 
1 2 

direction, v is the Poisson's ratio, and G is the shear modulus. 
. 2 2 

For the isotropic case, E 
1 

= E ' 'J 
2 2 

1 = v, and m = 2 (1 + v)' 

A.2 In-Plane Finite Element Analysis of Skew Plates 

A.2.1 Geometry and Displacement Field 

Consider a quadrilate~al in-lane finite element as shown in 

Fig. A3.. The local coordinate system with the origin at the centroid of 

the element is indicated by ' and 11· The nodes are numbered counter-

clockwise with the node at the centroid being the fifth node. The 

edges 1-2 and 3-4 of the quadrilateral are represented by ' = -1 and 

z; = 1. The edges 2-3 and 4-1 are represented by 11 = -1 and 11 = 1. 

The in-plane element has eight external and three internal 

degrees of freedom (Fig. A3). The external degrees of freedom are the 

displacements ui and vi specified at the external nodes i, 1 = 1 to 4. 

The three internal degrees of freedom are the displacements u and v s 5 

and the strain y • xy 

fifth node while the 

The displacement u . and v are specified at the 
5 s 

strain y is assumed to be constant throughout 
xy 

the element. This element was originated by Doherty who designed the 

element based on physical concepts and was derived by Williams using 
l; 

concise variational formulation "(Ref. 59) • 

The geometrical relationships between the global3coord~ates 
and the local coordinates can be expressed in matrix form by the fol-

lowing expressions: . 
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CJ (A.4) 

where ~ = 1 (1 + ~~ ) (1 + nni) 
X 4 i 

in which xi and yi are the global coordinates of node i, and ni and ~i 

are the local coordinates of node i. 

The displacement function for the element is assumed to be a 

linear shape function for the corner points and a quadratic interpola-

tion function for the interior point. The internal shape function 

selected is the quadratic interpolation scheme with vanishing values at 

the boundaries (Ref. 59). Thus, the equation {v} = [<P] {v.}, .for this 
1. 

element, can be written as follows 

where, 
., 
' 

0 f 0 f 
2 3 

£ 0 f 0 
1 2 

v 
1 

u v v 
2 2 ! 

0 

f 
! 

f 
It 

0 

v u 
s It 
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(A.5a) 



and, f 1 
(1 - n) = - (1 - I;) (A. Sb) 

1 4 

f =.!. (1 + I;) 
2 4 

(1 - n) (A.Sc) 

1 (1 + n) f = - (1 + I;) (A.Sd) 
3 4 

f 1 (1+ n) (A. Se) =- (1 - I;) .. . 4 

f = (1 - 1',;2) (1 - n2) (A. Sf) 
5 

A.2.2 Derivation of Element Stiffness Matrix 

'The strain field can be derived from the standard strain dis-

placement relationship. With the assumption of constant shear strain 

and with the additional strain degree of freedom, the strain components 

can be written (Ref. 59) 

e: u 0 0 
XX: 

e: = 0 v 0 (A.6) 
YY 

yxy 0 0 1 a 

where 3fi 
u =ax (A.6a) 

3fi 
V=-

3y 

·., :· 

(A6-:-b) 

and a is the generalized coordinate associated with the constant shear 

strain degree of freedom. The derivatives of the functions in 

Eqs. A.6a and A.6hcan be written with the help of the chain rule 

(Ref. 45): 
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' a£ 
h 3£ 

k 
a£i 

i i 
.~· an - an • az; 

-= (A. 7) ax ax Ez ax Ez 
az; an an ar; 

a f. ax afi ax 
afi 

l. an • an - an • az; 
ay = ax h ax h (A. 8) 

-az; an an az; 

The evaluation of the element stiffness for the resulting 

finite element model is given in Appendix Al. The final stiffness 

matrix is obtained by the application of the static condensation proce-

dure on the interior node as described in Refs. ·17 an-1 18. The element 

is known as Q8Dll. 

The explicit integration of the stiffness matrix integral is 

a lengthy process and difficult. The usual procedure in this case is 

to use the numerical integration procedure (Refs. 45,59,64). 

In the procedure, the terms of the matrices are evaluated at 

several points call integration points. The Gaussian quadrature formu-

lation is found to be most useful for the present problem. In the 

formulation, the polynomial function is integrated as the s~ of the 

weighted values at specified points. 

1 
Thus, a function /_

1 
f(<;)d<; can be replaced by a summation 

.. ~ :: .. : . n 
J 

1 
f(<;)d<; = E wj f(a.) 

-1 . j=1 J 
(A. 9) 
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where W. are the weight coefficients and a. are the values of the 
J J 

function at the n specified points. 

The double integral of the form 

1 l 

·I = J J £ (,,~) d' dn (A.lO) 
-1 -1 

can be replaced by the following summation (Ref. 64): 

n n 
I = ~ ~ W. W. f (a., b

1
) 

i=l j=l J l. J 
(A.ll) 

The numerical values of the coordinates at the integration 

points and the weight coefficients for ~ifferent values_of n are 

given by Zienkiewicz (Ref. 64). For this element, William has shown 

that the 2 x 2 Gaussian quadrature formula provides better results 

in stiffness than the improved 3 x 3 Gaussian integration scheme 

(Ref. 59). The coordinates of the integration points are shown in 

Fig. A4 and the weight coefficients are equal to 1 (Ref. 64). 

The following should be noted in connection with this 

element. First, since a different shape function is used to describe 

individual displacement and strain components, the variation of 

displacement is not homogeneous. The stiffness property of'the 

element is therefore directional. Secondly, monotonic convergence 

and boundedness is lost according to the Melosh crlt~riori (R~f. 34). 

This c;iterion requires that interpolation function ot' .int"ern.k-1 nodes 
::·•.'· 

must be lower than the external.node. However, this element has 

been shown to give more flexible and better results among the 8 

degree of freedom family. ~isplacement models (Ref. 59). 
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The Q8Dll element has been testea and compared with other 

finite elements by William (Ref. 59). The same study showed_ the 

efficiency and accuracy of the element among the other finite 

elements. This element will be combined with the plate bending 

element in Section A.4 to make up the basic plate element used in 

this study. Numerical examples are provided to illustrate the 

accuracy of the element. 

A.2.3 Numerical Examples and Comparisons 

The accuracy of the finite element solution for rectangular 

plate problems as compared with theoretically exact answers has been 

reported and shown by Zienkiewicz, and Tottenham and Brebbia (Refs. 

56,64). Unfortunately, very little data is available for skew plate 

problems except for the very simple cases. 

The method of analysis must be applicable for all angles of 

skew. Therefore, the first test example is a rectangular plate under 

uniform edge loading and under pure shear loading. The plate proper-

ties and dimensions are shown in Fig. A.S. The skew angle is 90° and 

the exact solution can be found from the theory of elasticity. The 

results. are tabulated in Tables Al and A2. · It can be noted that uni-
~ ; ·.: -· :· 

form strain for these loadings is accurately predicted by the element • . ·. ·..: ' 

The CST, that is, constant strain triangle (Ref. 52), finite element 
' . :: ~ > -
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solution ~s also shown in Tables Al and A2 for comparison. The CST dis

cretization in this example was with the use of 8 triangular elements 

formed by connecting two opposite corner nodes of the complete plate 

and connecting the midpoints of opposite sides. 

The second example is a skew plate under uniform edge loading 

as shown in Fig. A6. The state of stress for this problem is uniform 

throughout the element and can be found directly from equilibrium. The 

example illustrates the applicability of the element to plate problems 

with a parallelogram shape. The discretization into four rhombic ele

ments is shown in Fig. A6b. The discretization into eight triangular 

elements for the CST analysis follows the same procedure as the first 

example. The numerical results are tabulated in Table A3. Since the 

exact solution is that of constant strain, the analytical results veri

fied the analytical model. 

The third example is a skew plate under in-plane concentrated 

loads. The plate shown in Fig.A7 is fixed at the supports and sub-

jected to two concentrated loads near midspan. This problem is chosen 

to illustrate the accuracy of the element under this type of loading. 

There is no exact solution for this problem. The solutions are pro

vided by using linear strain equilateral -LSE (Ref •. 60), constant 

strain triangle -CST (Ref. 52), and the reported values from. Ref. 59. 

The results are tabulated in Table A4. 

r• .,! -. . 

·.: ' Q8D8 refers to the quadrilateral element with only four nodes 

and twc~(degrees of freedom at each node. Q8Dll(3) refers to the de

rived finite element using the 3 x 3 integration rule. The Q8Dl1(2) 
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refers to the element formulation using the 2 x 2 integration rule. 

The accuracy of the element using the relaxed integration rule 

can be seen from the table. 

The final example is the problem of the beam with inclined 

faces under a concentrated load at midspan. The structure is showntn 

Fig. A8a and the two selected discretizations are shown in Figs~ A8b 

and A8c. The analytical solution is compared to the solution by 

Sisodiya and Cheung (Ref. 53) who used a higher order element that 

gives good results for the given type of structure and loading. The 

results are tabulated in Table AS. The advantage of the element over 

the standard Q8D8 is made obvious in this example. 

It should be emphasized that this example is the most severe 

case the element will be subjected to. In the application of this 

element to the beam slab problem, the element will represent the 

in-plane behavior of the deck slab. As such, the typical type of load-

ing would be in-plane loads in the direction of span thus producing 

column behavior rather than beam behavior. The results of this example 

are the reasons for the choice of another element to represent the 

in-plane behavior of webs for box-beam bridges in Chapter 4. 

... . :-~ 

A.3 Skew Plate Bending Analysis 

A. 3.1 Methods of Solutions 

The- exact solution to the differential equation of skew 

plates in bending is difficult to obtain if at all possible. F?f the 
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simple cases, the problem is solved by direct integration of the dif

ferential equation under associated boundary conditions~ or by the 

application of conformal mapping (Ref. 27). Subsequently, a number of 

studies have been concerned with investigations of the methods of solu

tion, the most common being the series solutions and the method of 

finite difference (Ref. 26). Solutions iri oblique coordinates, trigo

nometric series, and finite difference solutions by several authors are 

listed and referenced by Morley in Ref. 37. Solutions by polynomials 

and trigonometric functions have been obtained by Jumppanem (Ref. 27) 

and Kennedy and Simon (Ref. 28) • 

Based on model tests Rusch (Ref. 48} produced design data in 

the form of influence surfaces for bending and torsional moments of 

simply-supported slabs with various angles of skew. A series of thir

teen skew slab models of different side to length ratio were investi

gated. The slab models tested were all simple span structures and made 

of gypsum plaster. As in any model study, it was not possible to inves

tigate all parameters. 

One of the earliest solutions using the finite difference 

methods was made by Jensen (Ref. 26). This was followed by Chen et al. 

in 1957 and by Robinson in 1959 (Refs. 9, 47). 

Within the past decade, the finite element technique has been 

employed successfully to analyze plates of arbitrary shape (Refs. 5,10, 

18). Zienkiewicz and Cheung, and Melosh used the technique to analyze 

plates in bending (Refs. 34,64) using rectangular elements. Based on 

the same deformation pattern used in the rectangular plate element 
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Dawe (Ref. 11) developed the stiffness matrices for parallelogram ele

ments. Subsequently triangular elements were introduced, the most com

mon being those by Zienkiewicz and Cheung (Ref. 64) and by Clough and 

Tocher (Ref. 10). Further improvements in accuracy were subsequently 

obtained by Felippa and Clough (Ref. 18) , and Bogner et al. ·(Ref. 5) 

with the ·use of refined and higher order elements. 

A.j.2 Assumptions and Basic Equations 

A typical element from a skew plate structure is shown in 

Fig. A9. The element is of differential dimensions whose sides are 

parallel to the orthogonal x-y system of coordinates. The reference 

plane is assumed ~o lie on t.he mid-plane of the plate. Forces, dis

placements and the adopted sign conventions are shown in the positive 

directions in Fig. A9. The plate is assumed to be elastic, homogeneous, 

orthotropic and of uniform thickness, t. The standard assumptions in 

small deflection theory of plates are employed: 

1. Stresses normal to the plate are negligible 

2. Deflections are small relative to the plate thickness 

3. Deflection in the z direction is a function of x and y only 

4. Shear strains yxz, yYz in the x andy fac~s ·of the element 

and·iri the direction of z are equal to zero. 

The consequence of the above assumptions is that normals to 

the plate remain normal after deformation. 

-133-



From the above assumptions, the displacement· equations may be 

written as: 
U(z) = u - z ~ (A.12a) 

V(z) = v- z ~ (A.l2b) 

where U(z) and V(z) are the displacement components of the point at 

distance z from the reference plane; and u, v, and w are the displace-

meut components of the point on the reference plane. 

Equations A.12a and A. 2b can be differentiated to obtain the 

relationship of the strains to displacements: 

au a2w 
€ ax - z-· 

X 3:x2 

av 32w (A.13) 
€ = ay - z-
y az2 

au + av - a2w 
Yxy 

2z-
ay ax axay 

The ~tress-strain relationship given by Eq. A.3 in Section A.1.2 can 

'then be rewritten explicitly by substituting the above expressions for 

€ ' 
E and y : 

X y :xy 

c ( au a2w ) +C ( av a'w J 
a = ax - z -- -- z--

X 11 ax2 12 ay ay2 
(A.14a) 

( au . 32w ) +C ( av a2
w ) 

a = c ax - z- 3y - z--
y 21 ax~ 

22 3y2 
(A.14b) 
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v = c· ( dU + dV _ Zz 3
2
w ) 

1rj 33 . Cly dX dXdY (A.l4c) 

where C , C , C , C are the material constants evaluated free 
11 12 21 33 

Eq. A.3. 

The stress resultants per unit of the plate shown in Fig. A.9b 

are found by integrating over the thickness. 

Thus, 

M f t/
2 

a z dz 
X "" -t/2 X (A.l5a) 

M f t/2 z dz 
Y .. ~t/2. cry (A.l5b) 

.. I t/.2 M a: a zdz 
rj -t/2 xy (A.l5c) 

Using Eq.A.l4 and the assumption of plane sections, the 

above equations can be iotegrated easily resulting to the following 

equations in matrix fo~: 

M l D D 0 
a2v 

X 11 12 dX2 

M. D D 0 
a~ = (A.l6) ; Y. 21 22 3y2 

i:' 

M 0 0 ·D 2 a>w J 
xy 33 - 3x3y 
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where c t3 
D = 11 

11 12 

c t3 
D = D = l2 

12 21 12 

c t' 
D Cl 33 

53 12 

Equation· A.l6 is the explicit form of the equation {cr} = [D]{£} 

applied to plate bending. 

A.4 A Finite Element Analysis of Skew Plates in Bending 

In this section, the general quadrilateral element is pre-

sented. The elament is developed by Felippa and reported in Ref. 18. 

This element is employed in the reported investigation. The element 

has been tested \mder a variety of boundary conditions and the results 

compare favorably with the theory of elasticity solutions (Ref. 18). 

The quadrilateral element is a confoDming element formed from 

four triangular elements whiCh satisfy deflection and slope continuity 

along the boundaries. Each one of the triangular elements is known as 

the LCCT-11 or the linear curvature compatible triangle with eleven 

fundamental degrees of freedom. The LCCT-11 is a simplified form of 
;.:::: .. 

the triangular element LCCT~12 which has twelve degrees of freedom. 
. . ~ 

The LCCT-11 is obtained from LCCT-12 by imposing the linear variation 

of the slope normal to one side of the triangle. 
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·The elem~nt formulation is outlined in the following sec-

tions. Detailed derivations can be found in Refs. 17, 46 and SO. 

A.4.1 Element Coordinate Systems 

'Ihe geometry of a triangular element can be expressed by the 

projected dimensions in cartesian coordinate system (Fig •. AlO), by 

intrinsic dimensions (Fig. All), or by dimensions in the natural coordi-

nate system (Fig. Al2). 

In Fig. A12,A , A , A are the three subtriangles subtended 
1 2 1 

by point P such that 

(A.17) 

where the index i = 1, 2, or 3 designates the number of the corner 

opposite to Ai and A is the total area of the complete triangle. 

From Fig. All, Eq. A.l7 can also be written as 

(A.l8) 

where n. is the normal distance of point P and h. is the height of 
~ ~ 

node i from side i. These relationships are used to simplify the 

expressions in ·the element stiffness formulations. 

The relationship between cartesian and natural coordinates 

is expressed as follows (Ref. 33): 
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1 1 1 1 1;;1 

X = X X X ?;; 
1 2 s 2 (A.l9) 

·• ·. . ~..y y1 y2 y! ?;; 
! 

where x
1 

·and y
1 

are the coordinates of the nodes i, i=l, 2, 3. 

The inverse relationship can be obtained by solving·for 1;;1, 

z;2, and?; from Eq. A.l9: 
3 

1;;1 2A b a 1 
1 1 1 

1;;2 
1 2A b =- a X (A. 20) 
2A 2 2 2 

?;;· 2A b" a y 
3 s 3 3 

where ai and bi are the proje~ted dimensions shown in Fig. AJO. 

The derivatives of a function f(1; , 1; , ?;; ) with respect to 
1 2 s 

the x, andy axes and a normal n. can be obtained by the chain rule 
I l. 

(Ref. 33): 

3f 1 ( 3£ b + 2L b + 3£. b ) 
ax =-2A 3?;; 1 ()?;; 2 3?;; 3 

1 2 ' 

(A. 22) 

(A. 23) 3£ 1 ( 3£ 
3f 3£ ) 

3y = 2A 31;;1 a1 +~a2 + 3?;;s a3 
1 
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where coordinates di and ti are shown in Fig. All. 

The above relationships are used in the formula~ion of the 

element displacement field and stiffness properties in Se:ctions A.4.2 
f. 

and A.4. 3. 

A.4.2 Construction of the Element Displacement Field 

The twelve fundamental degrees of freedom for the LCCT-12 

element at the external nodes of the triangular element are shown in 

Fig.Al3. These can be expressed as components of the nodal displaca

ment vector. {r}: 

. { r} T = . { w 8 8 w 8 8 . w
3 

8 .. 8 
3 

6, 8 
5 

8 
6 

} 
.1 Xl y1 · 2 x2 y2 x~ y ~ 

(A.24) 

where wi, exi and eyi are the transverse displacement, rotation about 

the x-axis~ and rotation about the y-axis respectively of node i. e , 
~ 

e and e are normal slopes at the midside nodes of the element 
s 6 

botmdar.ies. 

As proposed by Felippa (Ref. 17) the element is subdivided 

into three sub triangles or subelements as shown in Fig. Al3. Each sub-

element has three displacement components at each node and one rotation 

component at the. midpoint of the outer side (Fig. Al3). Point 0 is 

located at the centroid of the complete triangular element. Indepen-

dent cubic displacement functions.are then assumed for each subelement. 

The nodal displacements for each triangle can be listed as 

foll~s: 
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T 
{r(1)} = {w e e w e e w e e e } 

2 X2 Y2 3 X3 Y3 0 xo yo s (A. 25a) · 

{r(2)}T = {w 9 e w e e w e e e l 
3 X3 y3 1 X1 Y1 0 xo yo 6 (A. 25b) 

{r(3)}T = {w 8 e w e e w e e e } 
1 Xl Yl 2 X2 Y2 0 xo yo 7 (A. 25c) 

Since each subelement has ten degrees of freedom a complete 

cubic polynomial expression can be used (Ref. 18). Thus for sub element i: 

(A. 26) 

where [~(i)] is the interpolating polynomial that relates displacements 

within the element to the nodal displacements by {v} = [~] {v.} .. . 1. 

The explicit expression for ~(i) for i=l has been derived and presented 

by Felippa in Ref~ 18: 

r,; 2 (3 - 2r,; ) + 6ll (
1

) r,; r,; r,; 
1 1 3 1 2 3 

r,;2 (b ( 1) r,; - b ( 1) r,; ) + (b ( 1) ll ( 1) ~ b ( 1)) ' ~ l,; 1; 
1 3 2 2 3 3 3 1 123 

~2 (a(1)~ - a(1)~ ) + (a(1)ll(l) - a (1)) ~ 1; l,; 

1 3 2 2 3 3 3 1 1 2 3 

7,;2 (3- 21;) + 6A(
1

) ~ ~ r,; 
2 2 3 1 2 3 

T (b (1) r,; - b(1)l,;) + (b(l) - b( 1)A (1)) ~ (1) = r,;2 ~ l,; l,; (A. 27) 
2 .3 3 1 2. 3 3 1 2 3 

r,; 2 (3 - 2r,; ) 
3 3 

r,;2 (b(l)~ - b(l)~) 
3 2 1 1 2. 
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where, 

and, 

di 
A =. i R. . 

i 

lli = 1 - A . i 

The above interpolation function is a complete polynomial 

based on ·the choice of nodal system for n=3, i.e. cubic polynomial 

(Refs. 17,33). 

The subscripts used in the above correspond to the renumbered 

node in Fig. A14; and therefore the function is the same for the other 

elements except for the·superscript. 

The vector of all the nqda1 displacements is expressed 

in the order given by Eq.A.25. The displacement w of the complete tri-

angular element can then be expressed by: 

w 
(1) 

~ ~ ·e 0 

(2) r 
~ ~ 

e 
w = (A. 28) e 0 

w(3.) 
r 

~ ~ 
0 

e 0 

where the superscripts refer to th~ subelement number and 

~ refers to the interPolation polynomial associated with 
e 

the displacements {re} at the external nodes,. and 

~ refers to the interpolation polynomial associated with 
.o 

the displacements. {r } at the internal node 
0 
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Transverse displacement of two adjacent subeiements are iden-

tical along the juncture line. However, along this line their normal 

slopes differ. To impose slope compatibility along the internal edges, 

additional nodes 7, 8 and 9 are located at midpoint of these edges 

(Fig. Al5). The normal slopes are computed from Eq. A..21 and evaluated 

at nodes 7, 8 and 9. The resulting compatibility equations are then 

used to evaluate the displacements at the internal node. {r } in terms 
0 

of the displacements at the external nodes. {r }. e 

The final displacement field is then written only in terms of 

the external degrees of freedom: 

w 
(1) 

w 
(2) 

= (A. 29) 

w 
(3) 

"'(i) The explicit expression for ~ is given in Appendix A2 for 

ready reference. 

A.4.3 Derivation of the Element Stiffness Matrix 

The stiffness matrix for each subelement can be derived fol-

lowing th~ procedure outlined in Ref. 65 Uogether with the dis-

placement function given in Eq. A.2&~ 

From Eq. A.l6 {€} is defined to be: 
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.. {E:} = 
(A.30) 

and is known as the curvature field. 

For subelement i, the curvature field can be obtained by pro-

per differentiation of the displacement function given by Eq. A. 28, and 

the use of Eqs. A.22 and A.23 

a2$(i) 
- 2 ~ax=-=a-y-

(A. 31) 

The nodal values of the curvature can be obtained by evalu-

ating Eq. A.30 .at the nodes. Thus 

.(A.32) · 

where {€(i)} is the vector of nodal curvatures and [~(i)] is the matrix 
c B 

[T(i)] evaluated at the node points of element i. 
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The linear curvature variation within the subelement can now 

be expressed in terms of the nodal curvatures by a linear interpolating 

function [~E] such that 

. {E (i)} = [~ (i)] {E (i)} (A. 33) 
E c 

where 
z;l z; z; 0 0 0 0 0 o. 

2. 3 

[~ (i)] = 0 o. 0 z; z; z; 0 0 0 
E 1 2. 3 

0 0 0 0 0 0 z; z; z; 
1 1 3 

With Eqs. A.l6 and A.32, the stiffness matrix can 

be evaluated: 

(A. 34) 

Since the stiffness matrix of a subelement is expressed in 

terms of the same set of nodal coordinates, the stiffness matrix of the 

complete triangular element is obtained by adding the contributions of 

the three subelements, thus, 

(A. 35) 

Four of these triangular elements are assembled to form the 

quadrilateral. The midpoint nodes at the outermost side of the quadri-

lateral are however undesireable. These nodes require special program-

ming procedures for identification in input and in the calculation of 

the global stiffness matrix. Moreover, these nodes increase the band 
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The first example is the square plate shown in Fig. Al7. The 

dimensions of the plate are shown in Fig. Al7a. Due to symmetry only a 

quarter of the plate is analyzed. The discretization schemes used for 

this problem are illustrated in Figs .. Al7b to Al7f. The three cases con-

sidered for this problem are: (1) concentrated load at the center of 

the plate with completely fixed supports, (2) concentrated load at the 

center of the plate with simple supports, and (3) uniform load through-

out the plate with simple supports. For all these cases Poisson's 

ratio is assumed to be equal to 0.3. 

The error in percent of deflection at the center of the plate 

resulting from the analyses and those reported in literature are shown 

in Figs. Al8 and Al9 and Tables A6 and A7 for the first two cases. In 

these figures, the lines corresponding to elements developed by 

Wegmuller-Kostem (WK), Adini, Clough and Melosh (ACM), Melosh (M), and 

Pappenfuss (P) are taken from Ref. 58. The bending moments M and M 
X y 

for the third case are shown in Fig. A20. Shown also in this figure are 

the theoretical moments from Ref. 55. The above example shows the good 

convergence of the displacements and moments. 

The second problem is a skew plate with uniform load and 

simply supported on all sides. The plate is ideally a rhombic plate, 

all sides of which are equal, and whose skew angle is varied (Fig. A21, 

inset). The plate is discretized into 64 equal skew elements. Rotation 

about the skew supports is allowed except at the corners which are com

pletely fixed. The reduction in the deflection at the center of a skew 

plate due to the increase of skew is depicted in Fig. A21. The change 
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width of the assembled equations. In order to avoid this difficulty, 

without violating compatibility requirements, the midside node can be 

eliminated by imposing the normal slope to vary linearly along the side 

(Ref. 18) • For example 9 in Fig. A13 can be expressed as the average 
It 

of the corresponding slope at nodes 1 and 2. Since e is expressed nON 
It 

in terms of 9 and 9 at nodes 1 and 2, Eq. A. 28 is reduced to eleven 
X y . 

components. The resulting element is the LCCT-11. 

The partially constrained elements are assembled to a quadri-

lateral element such that there are no midside nodes at the exterior 

edges (Fig. A15). The resulting general quadrilateral has nineteen 

degrees of freedom and more commonly known as Q-19. The seven internal 

degrees of freedom are eliminated by a static condensation procedure as 

discussed in Refs-. 17 and 18 .Thus the final qcadrilateral is fully com-

patible, with linear variation of normal slopes at the edges. The ele-

ment has twelve degrees of freedom: one translation and two rotations 

at each of the corner nodes. 

-A. 4-. 4 Numerical Examples and Comparisons 

Several example problems are presented to illustrate the ap-

plication of the quadrilateral element to plate bending problems. Dif-

ferent discretization schemes are used in some of the problems to com-
':~ '._;: 

pare the accuracy and convergence of the solution with tests and other 

reported solutions. The different cases studied for each problem are 

depicted in Fig. A16. 
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• • 

in the pr~ncipal moments M as the skew angle is varied is shown in 
~ . 

Fig. K..22. For comparison, the finite difference and series solutions 

from Ref. 37 are also shown. The large decrease in deflection and in 

. 0 
moment especial!~ at skew angles beyond 60 can be observed. 

The third example is a 45° skew plate which is simply sup-

ported on two sides. The plate is subjected to a concentr:a_ted load P at 

the center. Plate dimensions, material properties and the discretiza

tion for this problem are illustrated in Fig. A23. The theoretical re-

sults for the deflection and principal moments using finite difference, 

finite element and experimental values are listed in Table AS. The fi-

nite element results are comparable with the numerical values of the ex-

periment. In most cases, the finite element results are between the ex

perimental and the finite differenc~ solution employing the finer mesh. 

The fourth example is a skew slab model made of gypsum plas-

ter. Two cases are studied: one with uniform load throughout the slab 

model and another with a concentrated load at the center. The test re

sults· are reported by Rusch in Ref. 48. The slab model is shown in 

Fig. A24 with the properties and dimensions indicated. · Points A, B, and 

E are specifically selected for comparison of moments. Point A is at 

midspan and near the edge, point B is at the center pf the slab and 
,·· .i 

point E near the obtuse corner of the support (Fig. A24). Three dis-

c:retizations have been tried as shown in Figs. A24 and A2~. ·Different 

discretizations are used so that finer discretization could be employed 

near the points of interest. Table A9 shows the comparison of moments 

at points A, B, and E be~ween the model test and the finite element 
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solutions for a uniform load of 100 psi. Table AlOli~ts the results for 

a concentrated unit load at the center of the plate. The values of the 

moments at points A and B are quite comparable with the experimental 

values. However, at point E, large discrepancies are observed. The 

third discretization gave only slightly improved results for point E. 

It is important to note here that computed values near the obtuse angle 

corners are quest~onable since they are near a region of high moment 

gradient. 

The final example is a skew plate supported on two sides with 

varying angle of skew but with constant width to span ratio. The de

flections and moments at the center of the plate using the finite dif

ference solution and the finite element procedure are shown in Figs. A26 

ane A27. Good correlation is observed between finite difference and fi

nite element except at the 60° skew where the available value of the 

width to span ratio is 0.52 instead of 0.50. A sharp decrease in the 

principal moment is observed for the skews beyond 60° and a much 

sharper decrease in deflection is. obtained beyond 75°. 

A. 5 . Summary 

The analysis of skew plates under in-plane and lateral forces 

have been presented in this Appendix. The developme~t of the analysis 

technique with the use of the finite element method of analysis was 

illustrated for the in-plane and the plate bending elements. Numerical 

examples were shown to demonstrate the application of the method of 

analysis to skew in-plane and plate bending problems subjected to uni

form and concentrated in-plane and lateral forces. 
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1 

2 

TABLE Al 

IN-PLA~~ DISPLACE~ffiNTS AND STRESSES IN 
A SQUARE PLATE UNDER UNIFORH EDGE LOADING (Fig. ASa) 

Node Q . 1 uant~ty Q8Dll CST2 Exact 
(Ref. 52) 

u 1. 66667 1. 66667 1. 66667 

v 0. 0. 0. 

5 cr 1.0 0.99995 1.0 
X 

' 
cry o. 0.00149 o. 
,. 0. 0.00161 o. xy 

u 3.33333 3.33333 3.33333 

v 0.25 0.25 0.25 

9 cr 1.0 0.99368 1.0 
X 

cry 0. 0.00065 0. 

'~"xy o. 0.00015 o. 

u, v displacements in inches, crx' cry' '~"xy stresses in ksi. 

.1% solution accuracy specified. 

.. :-
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TABLE A2 

IN-PLANE DISPLACEMENTS AND STRESSES IN 
A SQUARE PLATE UNDER IN-PLANE SHEAR (Fig. A5b) 

Quantity 
1 ·Q8Dll CST

2 Exact 
' (Ref. 52) . 
i 

- . '~. ' ... 
0 • 0.00083 0. (j 

X - . 

(j 0. 0.00093 0. 
y 

'T 0.13333 0.13284 0.13333 
xy 

cr11' cr22' cr12 0.13333 0.13196 0.13333 

-3 ~3 

Yxy 0.1022 X 10 0.1138 X 10 0.1023 X 10 

1 . k . stresses ~n ·s~. 

2.1% solution accuracy specified. 

r. 
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Node 

1 

2 

3 

4 

5 

6 

7 

8 

9 

Node 

1 

2 

3 

4 

5 

6 

7 

8 

9 

TABLE A3 

. DISPIACEHENTS AND STRESSES IN A SKEH PlATE 
UNDER UNIFORN EDGE LOADING (Fig. A6) 

u - Displacements(in.) v - Displacements(in.) 

Q8Dll CST Node Q8Dll CST 
. -

' 
' 

0. 0. 1 -0.000306 -0.000308 

0. 0. 2 0. 0. 

0. o. 3 0.000306 0.000301 . 

0.001667 0.001657 4 0.000657 0.000647 

0.0001667 0.001658 5 0.000962 0.000960 

0.001667 0.001694 6 0.001268 0.001241 

0.003333 0.003314. 7 0.001619 0.001605 

0.003333 0.003339 8 0.001924 0.001889 

0.003333 . 0.003371 9 0.002230 0.002163 

cr Stresses (ksi) 
X 

cr Stresses(ksi) 
y 

Q8Dll CST Node Q8D11 CST 

1.0 0.995 1 0. o. 
1.0 0.995 2 0. 0. 

1.0 1.005 3 0. 0. 

1.0 0.995 4 0. 0. 

1.0 1.002 5 0. 0. 

1.0 1.011 6 o. 0. 

1.0 1.002 7 0. 0. 

1.0 1.008 8 o. 0. 

1.0 1.007 9 o. 0. 
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Nesh 

TABLE A4 

MIDSPAN DISPLACE}lliNT OF A SKEW PlATE 
UNDER IN-PLANE CONCENTRATED LOAD(Fig. A7)' 

Finite Element Analysis Displacement x 10-4ft~-

., 
Q8D8

1 
11.40 

2 
CST 19.58 

Q8Dll(3) 30.44 

Q8Dll(2) 51.49 

LSE l 54.51 

1 Refs. 59, 60 
2Ref. 52 

TABLE AS 

NOfu~L STRESS AND DEFLECTION IN A 
SIMPLY-SUPPORTED BEA1.'1 WITH INCLINED FACES (Fig. AS) 

Vertical Displacement Normal Stress 
at A x P/Et at B x P/dt 

.Q8D8 
1 

Q8Dll Ref. 53 Q8D8 Q8Dll Ref. 
' 

53 

5 X 2 9.44 14.34 15.21 1.55 1. 73 -· 2.54 

5 X 4 10.09 13.58 17.27 1.67 . 2.52. 2.96 

; 

1 From Ref. 53 
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TABLE A6 

. CENTER DEFLECTION OF A SQUARE PlATE ~TI.TH FIXED SUPPORTS 

Multiplier PL
2

/D 

Source 2 X 2 4 X 4 8 X 8 10 X 10 16 X 16 

---

ACM .00592 .00613 .00580 -- .00568 

Q19 .00521 ·.00515 .00546 .00551 --
-.- ... 

·:"· ···-

EXACT (Ref.· 55). .00560 

- . -

TABLE A7 

CENTER DEFLECTION OF A SQUARE PlATE WITH STI!PLE SUPPORTS 

Multiplier PL
2

/D 

Source 2 X 2 4 X 4 8 X 8 10 X 10 16 X 16 

i 
I 

0.01i33 ACM . 0.01378 0.01233 -- 0.01167 
., .. : 

.' . 
Q19 ' - 0'.00975 0.01106 0.01145 0.01150 0.01159 I 

... 

EXACT (Ref. 55) 0.01160 
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TABLE AS 

RHOMBIC PlATE UNDER CONCENTRATED LOAD 
Tt.J'O SIDES SlllPLY SUPPORTED, cp = 45° (Fig. A23) 

w H 
Method 

max. 
; 2 x ;J?a /D A"f! 

I 

Finite Difference(l) 4 X 8 0.0117 0.331 
! 

Finite Difference(l) 6 X 8 0.0117 0.370 

Experiment ( 1) 0.0099 0.354 

Finite Element 8 X 8 0.0107 0.363 

1 Ref. 37 

Et3 
D =-~--

12(1-'}) 
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TABLE A9 

MOMENTS IN A SKEW PlATE UNDER UNIFORM LOAD 

Multiplier x 105 

Pt Moment· Discretization 

Ref. 48 (1) (2) 

M 1 • 
0.906 0.897 0.896 u 

M 1 0.270 0.285 0.286 
A 

uv 

~ 0.980 0.975 0.981 

~I 0.068 0.058 0.056 

M 0.976 0.964 0.965 
X 

M 0.019 0.010 0.010 
B .y 

M 0.188 0.205 0.207 
xy 

~ 1.01. 1.01 1.01 

M:rr 0.027 0.032 0.032 

* M 0.210 0.487 0.368 
X 

* M -0.213 -0.160 -0.245 
E y 

* M 0.131 0.336 0.195 
xy 

* 
~ 0.238 0.631 0.425 

M:ri -0.238 -0.303* -0.302 

* At center of plate element. 

1M M are in the direction of the skew. u' uv 

- ·.:., 
.···:··~- . . , ,_ . 

. '-·. 

.. · 
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0.968 

0.012 

0.206 

1.01 

0.030 

0.309 

-0.202 

0.248 

0.410 

. -0.302 



y 

?1 = -1 

X 

Fig. A3 A General Quadrilateral In-Plane Element, · 
Coordinate System and Associated Degrees . 
of Freedom 

-156-

·-------·-----

u2 

I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 



I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

Pt 

A 

B 

E 

TABLE AlO 

MOI-lENTS IN A SKE~.J' PlATE UNDER CONCENTRATED LOAD 

Multiplier x 105 

Homent Discretization 
(in-lb) 

in Ref. 48 (1) (2) 

M 1 0.453 0.461 0.457 
u 

M 
1 

0.134 0.125 0.125 
uv 

M 0.684 0.667 0.658 
X 

M 0.262 0.240 0.231 
y 

M 0.122 0.106 0.108 
xy 

M 0.068 0.143 0.122 
X 

H 0.100 0.082 0.117 
y 

M 0.068 0.115 0.113 
xy 

1M H are in the direction of the skew. 
u' uv 
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0.643 

0.221 

0.104 

0.104 

0.094 

0.130 



y 

• 

-. 

y 

j 

__ (a) Quadrilateral Plate Element 

a _' 

j 

(b) Skew Plate Element 

Fig. Al Plate Finite Elements 
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Stresses 
~-dx· 

'- /- .. , / 7 

]dz -x 

o-x +do-x 

_____. 
Txy + dTxy 

I 

y .. \ . -: ', . 

Uy . do-y 
•t. 

l : ~_, ...... 

•:" 

z 

In- Plane Forces 
Nyx 

Nxy -x 

+ dNx 

Nxy + dNxy 

y 0 Nyx + dNyx. 
Ny .. + dNy l ... 

z 

F;l,.@~ A.2 In-Plane Stresses ~d Forces 
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,.. . .. ~A~ 
. A c =11 = 0.577 
.; ' ' .. 

t: -1] :-0.577\._-.~ \ 
. t = -'7} = 0.577 

---------\-
.· \ 

t = '1 = -0.577 
i= 2 

i =I 

Fig. A4 2 x 2 Gaussian Qu~drature for the Rumerical 
Integration of the-Quadrilateral Finite El~ent 
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I 
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1 .. 
I I t :: 0.75 in 
I I -. 

2 

I I 
I I · 

q = 1.0 K/in 

J. __ -- _.JJ.875k 
4 7 ...,. X 

--1 I _1.67xlo-3 H3.33x lo-3 
.25xlo-3 

a. Normal Loads 

y 
511 511 

.596 k 
_25k 6 6_:> _,.. - .25k I 

- ----~--- _...... I 3 

~ . I I 
9 ~ .25" 

I I I 

I / . I 

I 5 I ----- ~-1 -;__.--- - a I r.:: ~k 
I I I o.o 

I I I 
I / I . 
1 ____ 4 . ----7 r.25k.J426 

5". 

........ -...;-

6.5k . .25~ 
b. Shear Loads 

E =3000 ksi 

Zl = 0.15 

t = 0.75 

Tp ~ 0.75 K/in 

·Fig. AS Rectangular Plate Under Uniform In-Plane Edge Loadings 
. . 
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Fi_g. A6 

·2011 

E =3000 ksi u = 0.15 

a. Plate Dimension and Properties 

5" 

X 

5" .! 
b. Idealization and Modeling 

Skew Plate under _Uniform In-Plane Edge Loading 
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Fig. A7 

~=lOOK 

60' 

E = 432,000 KSF 
.. = .15 
t = 1.0 

Discretization To Triangular Elements 

(CST) 

Discretization To Parallelo<;ram Elements 

(Q8DII) 

X 

Skew Plate Under In-Plane Concentrated Loads 
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c. 4 x 5 Discretization 

Fig. A8 Simply Supported Beam with Inclined Faces I 
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Fig. A~ Plate Bending Stresses and Displacements 
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Fig. Al4 Subelement Displacement Components 
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Fig. Al5 Asse~bled T=iangular Ele~ents 
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Support On All Sides 

-t 

Support On 4 Sides 

0 .. , 

Simple Supports On 2 Sides 

Lq, 

.I 
Simp~e Supports 2 Sides 

/ 

' .i 

Case I 
Concentrated load at center 
Fixed supports 

Case 2 
Concentrated load at ceter 
Simply supported 

Case 3 
Uniform load, simply supported 

Uniform load 

Skew angle 9 varied 

Case I 
Uniform load 
Skew angle cp varied 

Case 2 
Concentrated load at center 

. cp = 45° 

Case 
Uniform load 
cp = 30°, b/Lcp = 0.40 

Case 2 
Concentrated load 
cp = 30° , bllcp = 0.40 

Case 3 
Uniform load 
b/Lcp = 0.5,4;> varied 

Fig. Al6 Numerical Examples and CompaFisons for Plate 
· · Loading 
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APPENDIX Al 

Q8Sll ELEMENT STIFFNESS MATRIX 

The Q8Dll element approximates the in-plane behavior of 

the deck slab in this study. This element has 10 fundamental degrees 
• 

of freegom and one generalized coordinate ~ describing the constant 
• 

shear ·.strain throughout the. element. The derivation follows the 
. -, 

derivat~on of the element Q8D9 in Ref. 59. 

The relationship between the natural system of coordinate 

and the global right cartesian coordinate system is expressed by: 

:} 0 x. 
l. 

(A.36) = 
0 

The assumed displacement function is a linear shape function 

for the corner points and a quadratic function for the internal 

node: 

u.· 
l. 

u ~ 0 ~ 0 v. 
l 2 l. = (A. 37) 

v 0 ~ 0 ~ uo 
1 2 

v 
0 

where 
1 

,,.)(1 + Tl'Tl·) t =- (1 + 
1 2 1 1 

2 2 

i = (1 .. ' )(1 · .. Tl ) 
2 
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A. 37 by 

The displacement gradient field can be derived from Eq. 

appropriate differentiation. 

I 0~ o9
2 --l. 0 0 u. 

ox ox l. 

0~ o\ 
v. 

l. 

[Vv} = 0 _,.l. 0 (A. 38) 
oy oY u 

0 

o~. 0~1. 0~ 0~ v 
l a :a 0 

oy ox oy Ox 

Equation A.38 can be rewritten in the form 

[Vv}. = [V~] 

v. 
l. 

u 
0 

.v 
0 

(A. 38a) · 

The strain field, by assuming constant strain throughout 

the element, can be written as: 

0~ 0 _l.. 

ax 
e:x 

o~· 
1 

e:y 0 
dy 

Yxy b 0 

ot _a 
Ox 

0 

0 
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Equation A.39 can be rewritten into the form 

u. 
1. 

E:x 1 v. 
1. 

<y / 
= [•. J u 

0 

Yxy 
v 

0 

(A. 39a) 

Ct 

With the use of the Hu-Washizu variational principle, 

William has shown in Ref. 59 that the stiffness relationship is 

of the form 

where for this element: 

~}T = (F . 
Ul. 

= 

0 k 
ve 

k. -k 
ev ee 

F • 
Vl. 

v. 
1. 

F . uo 

u 
0 

v } 
0 

v 

e 

= Yxy strain degree of freedom 

and the individual submatrices are defined as: 

[k J = [k JT = I[~ ][D](V~] dV 
ev ve e 

[k J ·=I [2 ](D][~ ] dV ee e e 
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(A. 40a) 

(A.40b) 

(A. 40c) 

(A.40d) 

(A. 40e) 



The submatrices are evaluated by numerical' integration 

described in Section A. 2. 3. The strain degree of freedom is elimin-

ated by static condensation procedure as described in Refs. 17 and 18 

~esulting in the following final form of the element stiffness. 

[k] = [k ]T [k ]-l [k ] (A.41) 
ev ee ev 
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APPENDIX A2 

COMPATIBLE DISPLACEMENT FUNCTIONS FOR PLATE BENDING ELEMENT Q-19 

This appendix contains the displacement functions for the 

quadrilateral element Q-19 given by Eq. A.29. The following is 

taken from Ref. 17 and reproduced here for completeness. 

The displacement function for sub-element 3 in Eq. A.29 

is expressed by 

(A. 42) 

where . 

{
;(3)..=i(3)i (3)~ (3)~(3) 2 (3)~ (3)~(3)t (a)~ (a)~ (3)~(3)~(3) 

-J l4 9xl 9yl W2 9X4 9Y2 -.:13 exa 9y3 94 9s 96 

(A. 43) 

and the individual functions are given by the following equations in 

terms of the dimensions of the complete element: 

2 . 

= (_ (3 - 2' ) + 6~ ' ' ' "'l 1 3123 

3 

+ ' [3(A -~ )' +(2~ -A )' -3~ ' ] 3 a 3 1 3 2 3 3 2 

a 1 2 

= ' (b2 ' -b ' ) + (b -b ~ )' ' ' + -6c [3(b A 1 3 3 2 1 3 3 l 2 a 3 2 2 

+ b ~ -2b )' +3(b ~ -b )C +(3b -b A -2b ~ )'] 
3 3 1 1 3 3 1 2 1 2 2 3 3 3 

~) 2 a 
t = ' (3 - 2' ) + 6A ' ' '+ ' (3(~ -A )' wa 2 a 3 1 2 3 a l 3 2 

+(2A -~ )' -3A ' ] 
3 l 3 3 l 
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- b A -b ~ )' +3(b -b A)' +(-3b -b ~ +2b A)' ] 
3 3 1 1 2 2 3 3 1 2 1 1 3 3 3 

(3) 2 
~ ev~ = ..!

6 
' [3(3b +b +b A)' +(b ~ -b A)' -3(b +3b +b ~ )' ] 

~ 3 1 a 1 1 a a a 1 1 3 1 a a 2 l 

(3) 4A 2 
~8A = 3L [6, ' ' + ' (5, - 3)] .. 123 3' 3 

3 

( 3 ) 4A 
i =-
e 3L 

6 1 

2 

[' (3, ' ) ] 
3 2 3 

(3) 4A a 
~ = - [' (3, - ' ) ] 84 3L 3 1 3 

3 

For iSyi, all the b' s· in t 6~i are changed to a's. 

For sub-elements 1 and 2, all superscripts and subscripts 

permit cyclically from 1-2-3 to 2-3-1 to 3-1-2 an·d from 4-5-6 to 

5-6-4 to 6-4-5. 

-186-

I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
·I 



I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

APPENDIX B 

FINITE ELEMENT ANALYSIS OF SKEWED STIFFENED PLATES 

B.l General 

The type of structure discussed in this appendix is illustrated 

in Fig. 4. The plate or deck in this case can have arbitrary boundaries 

and the stiffeners or the beams can be eccentrically or concentrically 

attached to the deck. 

When the stiffeners are eccentrically attached to the plate, 

the bending of the stiffeners causes in-plane deformations in the plate 

in addition to the plate bending deformations. These in-plane defor-

mations are normally not considered in classical plate theory. In 

the finite element method of analysis, the in-plane and out-of-plane 

behavior can easily be represented with the use of in-plane and plate 

bending elements. 

The in-plane and out-of-plane plate elements have been pre-

viously discussed. In this appendix, the stiffener element is de-

scribed. Since the plane of reference for the plate elements has been 

defined at the midplane of the plate, the behavior of the stiffener or 

beam element is also defined about this plane. 

Five displacement components are selected at each node in the 

present finite element approach. These are the displacement u, v, and 

w in the x, y and z directions respectively, and two slopes 9 and 9 
X y 

about the x andy axis respectively (Fig. Bl). 
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I 
B.2 Derivation of the Beam Element Stiffness Matrix I 

The stiffener element with the plane of reference as the I 
middle plane of the plate is shown in Fig. Bl. It is assumed that the 

stiffener is attached to the plate along the boundary of a plate ele- I 
ment. It is further assumed that external loads are applied only to 

the plate elements or directly at the nodes. Bending about the z-axis I 
is neglected. I 

In order to satisfy compatibility of displacement along the 

I juncture of the plate and the stiffener elements, the displacement 

functions of the plate along the juncture must be the same as for the I 
stiffener element. Since the assumed in-plane behavior of the plate 

is linear and the out-of-plane behavior is cubic, a linear displacement I 
functions is assumed for the in-plane behavior of the beam, and a cubic 

I displacement function is assumed for the out-of-plane behavior of the 

beam. Furthermore, since the normal slope of the plate is assumed to I 
vary linearly along the boundary, the twist of the beam along this 

boundary is assumed to be linear. I 
The geometry of the beam element can be described in terms of I 

non-dimensional coordinates: 

s L - X (B.la) = 
1 L 

I 
X (B.lb) s =-

2 L 
I 

where L is in the direction of the x-axis. I 
I 
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The linear displacement function for u.and the cubic dis-

placement function for w can then be written as 

u = a l; I;; l; 
l l 2 2 

(B. 2) 

2 

w = a 1;3 a 1;3 a l; 1;2 a l; 1; (B. 3) 
3 l '+ 2 5 1 2 6 1 2 

In matrix notation: 

u 1';1 ·0 0 0 0 

= 
(B. 4) 

w 0 0 

T a } where {a} = {a a a a a 
1 2 3 '+ 5 6 

The coefficients a and a can be determined from the two in-
1 2 

plane model displacements at the two nodes, and a a a , and a can 
3 '+ 5 6 

be determined from the two out-of-plane displacements and two rotations 

at the two nodes. 

The nodal displacements can be written as, 

(B. 5) 

where ui and ~ are the in-plane displacements, and wi, wk, 9yi' and 

Oyk are the out-of-plane displacements and rotations, at nodes i and k 

respectively. 

chain rule, 

9 can be expressed by definition and the use of the 
y 

(B. 6) 
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The nodal displacements can now be expressed in terms of the 

unknown coefficients from Eqs. B.4 and B.6. 

ui 1 0 0 0 0 0 a. 
1 

wi 0 0 1 0 .0 0 a 
2 

eyi 0 0 -3/L 0 1/L 0 a. 
3 

= (B. 7) 

~ 0 1 0 0 0. 0 a 
It 

wk 0 0 0 1 0 0 a 
5 

eyk 0 0 0 3/L 0 :...1/L (X 
6 

The vector of unknown coefficients can be expressed in terms 

of the nodal displacements by solving for {a} in Eq. B.7. Hence, 

a 1 0 0 0 0 0 u. 
1 

~ 

a. 0 0 0 1 0 0 w. 
2 

~ 

a 0 1. 0 0 0 0 6 yi 
3 (B. 8) 

= 
a 0 0 0 0 1 0 uk 

4 

a 0 3 L 0 0 0 wk 
5 

a. 0 0 0 0 3 -L eyk 
6 
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Substitution of Eq. B.8 into Eq. B.4 leads to the displacement 

function expression in the form of 

u 

= 
w 

where f 
51 

f 
52 

f 
53 

f 
54 

f 
ss 

f s& 

= 

= 

= 

= 

l;1 

l; 
2 

l;3 
1 

f 
Sl 

0 

0 

f 
53 

+ 3 r,;2z; 
: 1 2 

l;2.l; L 
1 2. 

= l;3 + 3 l; l;2. 
2 1 2 

=- z; z;2. L 
1 2 

0 

f sa. 

f 
52 

0 

0 

f ss 

0 

f 
56 

{ rs} (B.9) 

(B. 9a) 

(B.9b) 

(B. 9c) 

(B. 9d) 

(B. 9e) 

(B. 9f) 

It should be noted that the resulting interpolation functions 

are the same functions as the in-plane and plate bending elements along 

the boundary. 

du a2
w 

Defining E = -- and C = - --- to be the strain and the cur-
x ax' ax2 

vature respectively, at any point along the reference axis of the stiff-

ener element, then 

"x ~ 
3£ 3£ 
_2L 0 0 

_ll 0 0 
ax ax 

= { rs} 
2. 32.£4 32.£ 32.£ 

c J 
a. £3 6 s 

0 0 
ax2 3x

1 3x
2 3x

2 

(B .11) 
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The components of C can be determined with the use of the 

chain rule, 

( ~·) 
2 

za 2 

ax + az;; z; 
1 2 

2 

( ~) (B.l2) 

The normal strain and curvature at the nodes can be evaluated 

by applying Eq. B.l2 to Eq. B.ll and substituting coordinate values 

e: 
X 

ci 

where 

u. 
l. 

-1/1 0 0 1/1 0 0 
w. 

l. 

eyi 
(B .13) 

= 0 -6/12 -4/1 0 6/12 2/1 

~ 

0 6/12 2/1 0 -6/12 4/1 wk 

eyk 

= [~ ] . {r } 
c s s 

(B .13a) 

· {e:c} = e:x' c
1

, Ck are the normal strain and curvatures at 

node i and k 

[~ ] = Normal strain and curvature interpolating functions 
c 

evaluated at the nodes. 

With the assumption that plane sections remain plane before 

and after deformation, the displacement equation for any point on the 

beam at a distance of z from the reference plane can be written as: 
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U(z) = u - z. aw ax 
(B .14) 

The normal strain e: can be defined by differentiating Eq. 
X 

B.l4, from which the stress-strain relation for the beam becomes 

(B .15) 

where cr = stress on a stiffener element at· distance z from the 
s 

reference axis 

E = is the modulus of elasticity of the beam 
s 

assuming only a uniaxial state of stress for the beam. 

The generalized forces acting on the beam section can be 

evaluated by integrating Eq. B.l5, 

N ... f
t/2 

s -i:/2 

M !t/2 
s = -t/2 

(J dA 
s 

(J z dA 
s 

(B .16) 

(B.l7) 

These generalized forces can then be expresse~ in matrix form as, 

A s 3u 
N ax s s s 

= E (B .18) s 

s I 
. a~ 

M --
s s s 2 ax 
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where A = cross-sectional area of the stiffener 
s 

S = first moment of the stiffener area with respect to 
s 

the plane of reference 

I = moment of inertia of the stiffener area with respect 
s 

to the plane of reference 

Given the normal strain and curvatures at the nodes as 

expressed by Eq. B.l3, the strain and curvature expressions can be 

written in terms of strain interpolation functions. Thus 

au 
1 0 0 € ax X 

= ci (B .19) 

a2w 
0 l;l l; ck ---

ax2 2 

or {E}s = [~€] . {Ec} 
s s 

(B. 20) 

where {e:} normal strain 
du and <iw the = and curvature ax ---along 

s dx2 

axis of the beam element about the reference plane 

[<I>e:]s = strain interpolation functions which express a con-

stant variation of normal strain and a linear vari-

ation of curvature 

{e: } = normal strain e: and curvature C at the nodes 
c s X 

The specific characteristics for the beam element can be 

expressed from Eq. B.l8 to be, 

.(D) 
s :: J (B. 21) 

which are already integrated for the complete beam section, 
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The integral of the triple produce in the general expression 

for the stiffness matrix can be evaluated from [~E]S from Eq. B.20, 

and [D] from Eq. B.21. Thus after integration, 
s 

s s 
A ....!. S. 

s 2 2 

J[~ ]T [D] 
s . I I 

(~ e:] dx E L 
s s s = e: . s s 2 3 6 (B.22) s 

s I I s s s 
2 6 3 

The integration in Eq. B.22 is carried out only through the 

length because [Dl is already expressed for the cross-section in Eq. 

B.l8. 

The stiffness matrix expression for the beam element can now 

be evaluated with Eqs. B.l3 and B.22: 

dx [~ ] 
c: s 

A s A s 
....§.. 0 ....!. s 0 

s -- --L L L L 

121 6I l2I 6I 
s s 

0. 
s s -- -- ·--3- 2. L3 . 1 

L L L 

4I s 6I 2I 
s s ~ s - --L. L L2 L 

(B.23) 
A s 

s 0 
s 

L L 

12I 6I 
s s 

Symmetric: ! 2 
L L 

4I s 
L 
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It should be noted that the above expression is only for the 

bending stiffness of the beam. The torsional stiffness is derived 

separately in the following paragraphs. 

For the present analysis, only St. Venant torsion is con-

sidered. It ·has been shown that for rectangular and stocky beam cross-

sections, most of the applied twisting moment is resisted by St. Venant 

torsion (Ref. 58). 

The twisting moment T in the beam element is related to 
s.v. 

the angle of twist <P by the· relation: 

where 

'I =GK ¢' 
s.v. t 

(B. 24) 

<P 1 = ~x ( ~; ) or the rate of change of angle of ·twist 

G = shear modulus 

K = St. Venant torsional constant 
t 

With the assumption that the angle of twist varies linearly 

along ~he length of the element, and recognizing that the angle of 

twist at the nodes corresponds to the rotation about the longitudinal 

axis of the beam, the torsional rotation function can be written in 

terms of linear interpolation functions and the nodal rotations. Thus 

e 
xi 

. {¢} = [z; z; ] (B.25) 
1 2 e . yl. 
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{¢ '} = [ - i ~ J (B.26) 

Following the procedure for the beam bending element: and 

using the given rotation function, the following matrices· can:·b~ 

defined: 
[D]t = Gkt (B. 27) 

[~f) = [1] (B. 28) . t 

[~ ] [- ~ 1 ] = . (B.29) c t L 

From the general expression for the stiffness matrix, integration 

.long the length leads to 

= [<P ]T f [<P ]Tt [D] [<P ]t dx (<P ]t 
c t € ' € . c 

-~~t 
- 1 - 1 

=--
L 

1 1 -

B.3 Assembly of the System Stiffness Matrix 
. ·..:·· 

• 'Ihe stiffness matrices of the individual elements are assem-

bled to form the structural stiffness matrix of the complete system. 

The procedure is described in detail in Ref. 64. In the following, 

the assembly of the elements is illustrated in matrix form to show the 
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interaction of individual elements as defined by the global force and 

displacement vectors. 

The in-plane and bending plate elements are assembled first 

to form a· combined element with five degrees of freedom at each node. 

Since the in-plane plate element and out-of-plane plate element both 

lie on th~-same reference plane, there is no interaction between them. 

Hence, for example 

k1 I o 
l ---;---:----
I 

o I krr 
I 

(B. 31) 

where k
1 

is a 2 x 2 matrix associated with u and v displacement compo

nents and k!I is a 3 X 3 matrix associated with theW, eX, eX displace-

ment and rotation components. 

For the whole plate element with nodes 1, 2, 3 and 4, 

t· f 
. "" ' .!;. I 

' .. :, i 
.::-; .. ~ 

' - '·:. f 

F 
1 

F 
2 

F 
3 

F 
It 

r 
1 

r 

(B. 32) = [kij] 
2 

r 
3 

r 
It 

where.the submatrices of [k .. ] are in the form of Eq. B.31, and 
l.J 

w. 
l. 

for i = 1, 2; 3, or 4. 
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The bending and torsional stiffness matrices of the beam ele~ 

ment are aSsembled in a similar manner. The stiffness terms associated 

.with the neglected displacement component are taken as zero in forming 

the complete five degrees of freedom system at the node •. H~ce, from 

Eq. B.23 and Eq.B.30 at beam nodes i and k, . ,: _.._: 

Fxi A L2 0 0 0 S L2 ._A L2 0 0 0 -s L2 u. s s s s :1. 

F . 0 0 0 0 
Y:L 

0 0 0 0 0 vi 

Fzi 121 0 -61 L 0 0 -121 0 -61 L w. s s s s :1. 

Gk . Gk 
Mxi -~2 0 0 0 0 -~~2 0 exi E E .. s s 

Myi 41 L2 -s L2 0 61 L 0 21 L2 e yi s s s s 
= 

Fxk A L2 0 0 0 S L2 
~ s s 

Fyk 0 0 0 0 ~ 

Fzk Symmetric 121. 0 61 L wk s s 

Mxk 
Gk~2 
E 

0 exk 
s 

Myk 41 L2 
eyk s 

(B. 35) 
The stiffness matrix expression for the beam element in 

Eq. B. 35 can be modified to include the additional deflection due to 

shear (Ref. 45). Defini~g 
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12 E I r = ---=S;__;;_S 

G A L2 
s s 

The beam stiffness matrix can be rewritten to include the shear 

deformation (Ref. 45). 

. E 

[k] = -i-
s CL . 

'.-...... -
·- ···~ . 

·~ .. J.. 

A L2 
s 0 0 

0 0 

12I s 
(l+r) 

0 

.o 

0 

· Gk ·. 
---::-42 E ... 

s 

0 

-6I L s 
(l+r) 

0 

-A L2 
s 

0 

0 

0 
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~B.36) 

0 

-6I L - s 
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The beam stiffness matrix is given for the beam element whose 

longitudinal a.'<:is is parallel to the x-axis. When the beam elements 

are not parallel to the x-axis, standard tensor transformation must be 

applied to the beam stiffness matrix before assembly into t~ struc

tural system (Ref. 64). 

The displacements of the plate and beam elements at common 

nodes are expressed by Eq. B. 32 and Eq. B. 35 in terms of the global 

degrees of freedom. The elements have equal number of degrees of free-

dom at the nodes and therefore can be assembled directly to the system 

stiffness matrix following the procedure specified in Ref. 64. 

B.4 ~pplication of Boundary Conditions 

One of the advantages of the finite element method of analy-
-

sis is its adaptability to solutions of problems with various bound~ry 

conditions. If a degree of freedom at the boundary is fixed, th~ cor-
! 

responding row and column of the stiffness matrix is easily eliminated 
l 

from the solution procedure. If the support at the boundary is f~ex-

ible, the stiffness of the support is simply added to the stiffness of 

the element at that boundary· (Ref. _65). 

In certain cases, the nodes are constrained to displace in a 

specified direction, and to rotate at a specified angle. For example, 

the u displacement of a node may be specified to displace in the direc-

tion of a line at an angle w from the x-axis and the 6 rotation ~y be 
X 

specified to rotate about a line at an angle S from the x-axis. For 

-201-



these cases, the stiffness matrix mu-st be transformed accordingly. It 

is shown in Ref. 64 that the required transformatio-:1 is of the form 

[k'] = [T]T [k] [T] (B. 38) 

where [k'] = the transformed stiffness matrix 

·[k] = the original stiffness matrix 

[T] = the transformation matrix 

It should be noted that the transformation can be carried out in the 

element·stiffness level [k] or at the assembled system. stiffness matrix 

[K]. It should be noted further that the applied nodal forces and the 

·resulting deformations are in the direction specified by the constraint. 

For the five degree of freedom system in this study, the 

transformation matrix for a given node is 

.•:: ·~ :~ _1: cos w sin w 0 0 0 

:'l··-=· J . . :· -sin w cos w 0 0 0 

r~0.L: (T)= 0 0 1 0 -o 
(B. 39)" 

.> :·:,i ;::-~ 2· ~· 0 0 0 -cos 6 sin e 
.-?:j'j· ... ,. 

where 

0 0 0 -sin (! cos e 

w = the angle from the global x-axis along which u displaces, 

measured clockwise; and 

e = the angle from the global x-axis about which e rotates' X 

measured clockwise. 
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:B:-5 Application of Loads 

The components of the force vector as defined by Eq. B.33 are 

applied at the nodes in the direction of the associated displacements. 

' 
For uniformly distributed loads, the force vector can be computed from 

(Ref. 17). 

' 
~; . '... , . ~ ... (B. 40) 

The uniform load is conveniently equated to a set of concentiated 

forces and moments applied at the nodes. For concentrated loads, th~. 

discretization ·can be made such that the load will be directly: .. op _a_ -~ 

node; and hence the loads can be applied directly to the global force 

vector. However, the procedure of changing the discretization to ac7 .. . .. . 1' .~ :,- . 

commodate concentrated loads is obviously inefficient especially for 

the analysis of one structure under.different types of loading. For 
·, ;~· .... 

this reason, the concept of a statically equivalent force vector for a 

concentrated load is introduced. In this concept, the element with a 

concentrated load is analyzed as a substructure, _and the reaction 

forces at the nodes are computed. The negative of these reaction 
........ _Q 

forces at! the nodes become the applied nodal forces for cthe assemled 
f) 

structure: In this study only the concentrated load normal to the 

plate element is considered. 

·i I ,•: 

The stiffness equation for the Q-19 element gives the force 

displaceme~t relationships of a quadrilateral element with the fifth 

node at the center of the element. If the fifth node is located at the 

point where the concentrated load is applied, the resulting structure 

--
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' 

is a quadrilateral plate of four triangles with a concentrated load at 

the interior nod~ (Fig. B2). The stiffness of the four triangles can 

be recomputed and reassembled in the form: 

0 

= (B. 4-J,) 

where 0 refers to the supported nodes and, where the subscripts E and I 

refer to the external nodes and the internal node respectively. The 

external nodes in this case are completely fixed in displacements and 

rotations •. {FE} can therefore be easily found to be 

.:(B. 42) 

Since Eq. B. 41 is an equilibrium equation,· {FE} is a stati

cally equivalent force vector. In cases however when the concentrated 

load is very near to a corner node of the quadrilateral, the stiffness 

formulation may get into numerical difficulty because of the resulting 

shape of one or more of the triangular elements. In such. cases, the 

.concentrated load is applied directly to the nearest node. When the 

concentrated load is on the boundary of the element but not on the 

node, the load is proportioned to the two nodes of 'that boundary. The 

components of the equivalent force vector due to a concentrated load 

normal to a quadrilateral element a'.l'!'e illustrated· in Fig. 132. 
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A·stiffener Finite Element with Associated 
Degrees of Freedom and Nodal Forces 
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Fig. B~ Equivalent Force Vector [FE] Due to Concentrated 
Lead P Nor~l to the Element 
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iO. NOMEN CIA TURE 
-·:···· ·, 

. ','"" 
The following symbols were used in the text ~~~~~ndices: 

~ \ ',,""' Capital Latin Letters (matrices and scalars) ' · ~.,- . A. 

(A] 

A 

A. 
l. 

A s 

[:s] 

c 

C ,C ,C ,C 
ll 12 21 33 

(D] 

(D] 
_S 

D. F. 

.. -~ . '··· 

E, E , E 
1 2 

E s 

{F J e 

\ ·. \ ... ··~ .,., 

= Matrix of displacement ~functi<?.ri:s' ' 

evaluated at the nodes _ ~-:-~;.;~.~ · .,i 
,1 '. 

= Area of a triangular element 
\ 
·~, 

= Area of sub element i in a triang1.,1lar 

element 

= Cross section area of stiffener element 

= Matrix of differentiated displacement 

functions 

= Curvature in a stiffener element 

= Material constants 

= Elasticity matrix relating generalized 

stresses to generalized displac~ments 
1 _ .. 

= Elasticity matrix for the stifferter 
·-- .. ---~ 

element -· -~-~ 

= Distribution factor 
-. -.-M ·;~ 

= Distribution factor in a skew bridge 
' 

= Distribution factor in a right bridge 

= General and principal modulus of 

elasticity 
'i. 5 

= Stiffener', element modulus of ·. ··- ... ,_ ·. 

-- J 
elasticity 

= Statically equivalent force vector due

to di~tributed loads 
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':··' 

' {F } 

F . ,F . ,F . ,M . ,M . 
X~ y~ Z~ X~ y~ 

G, G 

G s 

H ·' 

I 

I s 

J ,J ,J ,J 
ll 12 2~ 22 

[K] 

[M} 

M , N 
s s 

M ,M ,M ,M ,M 
X y ~ .1 2 

.. . J 

N· ,N ·:,N· . ,N ,N 
x y xy 1 2 

M M 
u' uv 

= Vector of element nodal forces 

= Applied force vector associated with 

external nodes 

= Applied force vector associated 'tvith 

internal nodes 

= Statically equivalent force vector 

due to concentrated load 

= Components of element nodal forces 

{F.} 
~ 

= General and second principal shear 

moduli 

= Stiffener element shear modulus 

= Stiffener to slab stiffness ratio; 

(~I)stiffener/(EI)slab 

= Integrand expression 

= Moment of inertia of stiffener element 

about reference plane 

= Components of Jacobian matrix 

= Global stiffness matrix 

= Bridge span length, stiffener element 

dimension 

= Matrix of displacement functions 

= Generalized forces in stiffener element 

= Cartesian and principal plate moments 
. ·' 

. • : _t. . ~~; • • .. 

- Carte.sian and principal in-plane 

= Moment resultants in the direction of 

sket;..r 
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PCTR 

PCTR(EXT) 

PCTR(BOX) 

(R] 

s 

s s 

(T] 

u, v 

w c 

= Percent reduction in the distribution 

factor for interior I-beams 

= Percent reduction in the distribution 

factor for exterior I-beams 

= Percent reduction in the distribution 

factor for interior box-beams 

= Global force vector 

= B~am spacing 

= First moment of the stiffener area 

with respect to the reference plane 

= Transformation matrix 

= In-plane strain function 

= In-plane displacement at distance z 

from the reference plane 

= Bridge curb to curb width 

= Weight coefficients 

,. 
: l.". 

B. Small Latin Letters (matrices and scalars) 

a, b 

a. ,b. 
1. 1. 

d 

e 

.• "j 

.• ,_!';~. •;. 

; .=-_;_ ~~ 

= Web element dimensions ,. " 
i 
\~ ... 

= Projected dimensions on x and y axes 

= Stiffener element depth; distance from 

the centroid of a truck wheel load to· 

the drive wheels 

= 2A/ J,i 

= Eccentricity of the centroid of the 

st'fff~n~t-- element cross section:::~t8 .-the 

plane of reference 

= In-plane displacement function 

,,. 
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i,j,k,.t 

[k]. ,· 

k k k 
ev' ve' ee 

~.:. : .-. 

[k] 
s 

[k]~ 

' [k J 

m 

n 

P(x,y), q 

(r} 

= Stiffener element disp·lacement function 

= normal distance of node i to side l. 
1 

= Node or sub element number 

= Element stiffness matrix 

= Partitioned matrices of the element 

stiffness matrix associated with 

external and internal nodes 

·= Submatrices of the element stiffness 

matrix associated with displacement 

and strain formulations 

= Submatrices associated with in-plane 
.. - . 

and out-of-plane behavior 

= Stiffener element stiffness matrix 

= Stiffener-element stiffness matrix 

for torsional behavior 

= Transformed element stiffness matrix 

= Length of side i in a triangular element 

= Ratio of shear modulus G to elastic 
2 

modulus E 
2 

= Order of interpolation function; 

principal modulus of elasticity ratio~ 

E /E 
1 a 

= Normal distance of a point i to side 

l 1 in a triangular element 

= D:tstri.bq:ted, load intensity 

= c6nsist:ent-"force vector associated with 

the displacement formulation 

= Global displacement vector 
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.I 
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{r (i)} 

{r } 
s 

{r } 
e 

{r } 
0 

u,v,w 

x,y,z 

= Element nodal displacements 

= Sub element nodal displacements 

= Stiffener element nodal displacements ·· 

= External node displacements for plate 

element 

= Internal node displacements for plate 

element 

= Displacement components 

= Components of the element nodal 

displacements 

= Nodal displacements at exterior nodes 

.s 

;_ .·:. 

= Nodal displacements at interior nodes; 
~ .; '· . 

= Cartesian coordinates 

= Cartesian coordinates of node i •. I ,, 

C. Capital Greek Letters (matrices and scalars) 

r = Shear deformation parameters 

= Matrix of interpolation or shape 

functions 

·.: 

... 
'• 

= In~erpolation functions for a triangular 

element in terms of the external degrees 

of freedom 

= Sub element i interpolation function 

= Strain interpolation functions evaluated 

·.at,_,;P,e :n<?des 
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_[i]t 

[~ '] 
e 

[i (i)] 
e: 

[i . ] 
11. 

= Strain interpolation function for the 

stiffener element evaluated at the 

nodes 

= Twist interpolation function for the 

stiffener element evaluated at the 

nodes 

= Interpolation functions associated 

with the external nodes 

- Interpolation functions associated 

. with the internal nodes 

= Curvature interpolation functions 

[ i(i)] evaluated at the nodes 

= Shape functions associated with the 

global nodal derivatives 

= Shape· functions associated with the 

local nodal derivatives 

= Strain shape functions describing the 

variation of strains 

= Triangular sub element strain inter

polation functions describing the 

variation of curvature 

= Stiffener strain interpolation function 

describing the va~iation of twist 

= Geometric shape functions 

= Linear shape function 

= Quadrat~c shape function 

= Linear sh~pe functions associated 
•. ·. ·, ~ 

with nodes i 
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= Matrix relating curvature components 

to nodal degrees of freedom 

D. Small Greek Letters (matrices and scalars) 

{a} =·Generalized coordinates 

~ = Angle measured from the global x-axis 

in the direction of which u displaces : ·. 

e ,e 
XX yy 

\I ;v 
2 

{a} 

a ,a 
XX yy 

.,. 
xy 

\ . 

,_ . 

= Shear strain 

= Strain .field 

= Vector of nodal strains 

= Normal strains 

= Local coordinates 

-= Non-dimensional nodal coordinates 

= Rotations about the global x and y 

axes 

= Nodal rotations 

= 1- t... 
1 

= Poisson's ratio 

= Stress field 

= Normal stresses 

= Shear stresses 

i .. •. l; ·.- ., .···,: 

= Skew angle, angle of twist 

= Interpolation functions in terms of 

the nodal out-of-plane displacements 
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E. Element Designation 

ACM 

CST 

LCCT-12 

LCCT-11 

LSE 

M 

p 

Q-19 

Q8Dll 

Q8SP12 

WK 

= Angle from the global x-axis about \·Jhich 

e rotates 
X 

= Local derivative at node i 

= Adini, Clough and Melosh plate bending 

element 

= Constant strain triangle in-plane 

element 

= Linear curvature compatible triangle 

with 12 degrees of freedom 

= Linear curvature compatible triangle 

with 11 degrees of freedom 

= Linear strain equilateral 

= Melosh plate bending element 

= Pappenfuss plate bending element 

= Quadrilateral plate bending element 

with 19 degrees of freedom 

= Basic 8 degree of freedom in-plane 

element with 3 additional internal 

degrees of freedom 

= Basic 8 degree of freedom in-plane 

element >vith 4 additional nodal 

rotations 

= Wegmuller and Kostem plate bending 

element 
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