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ABSTRACT

This is the fourth report on the research investigation
entitled "Development and Refinement of Load Distribution Provisions
for Prestressed Concrete Beam-Slab Bridges: (PennDOT 72-4). The
effects of skew on the design moments and on the lateral distributions
of statically applied vehicular loads are examined for prestressed
concrete I-beam and prestressed concrete spread box-beam bridge
superstructures. The finite element method is utilized to analyze
120 I-beam superstructures and 72 box-beam superstructures ranging in
length from 34 ft. to 128 ft. and in roadway width from 24 ft. to
72 ft. Skew effects are correlated for bridges of different widths,
span lengths, number 6f beams, and number of design lanes, and em-
pirical expressions are developed to facilitate computation of
lateral load distribution factors for interior and exterior beams.

The proposed skew distribution factors are actually based upon ap-
propriate modifications to the distribution factors for right bridges.
In general, the skew correction factor reduces the distribution
factor for interior beams and increases the distribution factor for
exterior beams. The magnitude of the skew effect is primarily a

function of skew angle and of bridge span and beam spacing.
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1. TINTRODUCTION

1.1 General

The structural behavior of prestressed concrete beam-slab
highway bridge superstructures subjected to design vehicle loading
conditions has been the subject of extensive research conducted at
Lehigh University and sponsored by the Pennsylvania Department of
Transportation. The bridge superstructures, which were considered
during this investigation, consisted basically of equally spaced,
longitudinal, precast, prestressed concrete beams with cast-in-place
composite reinforced concrete deck slabs. Field tests of in-service
bridges of this type indicated the need for refinement of the spec-
ification provisions governing live load distribution for right
bridges (Refs. 7,8,16,21,22,31,57), and for development of similar

specification provisions for skew bridges (Ref. 51).

The overall research program was initially directed towards
the study of prestressed concrete spread box-beam superstructures and
resulted in the development of new specification provisions governing
the lateral distribution of live loads for right bridges of this
type (Refs. 2,38). A similar study was then undertaken to develop

load distribution criteria for right bridges with prestressed concrete

I-beams (Ref. 62).

Despite the fact that skewed beam-slab bridges are quite
common in modern highway bridge construction, specific provisions for
live load distribution for such bridges are not included in current

-1-



design specifications (Ref. 2,3). Prior to the study discussed in this

report very little work had been done on skewed bridges, and virtually
no work had been done on skewed beam-slab bridges with prestressed

concrete I-beams or with prestressed concrete box-beams (Ref. 63).

1.2 Objectives and Scope

The research discussed in this report expands the live load
distribution concepts previously developed for right prestressed
concrete I-beam or box-beam bridges to include the effects of skew.
Design recommendations are proposed for ﬁdth types of superstructﬁres
based upon the analysis of numerous bridges with varying width,
spacing, span, number of beams, and angle of skew. The design
recommendations are based upon empirical expressions which were for-
mulated utilizing the results of analytical experiments, and which
cover interior and exterior beams for both I-beam and box-beam super-

structures.

The two basic beam-slab bridge sections utilized in this
study are shown in Fig. 1. Figure la shows a typical cross-section
of a bridge with prestressed concrete I-beams. Figure 1b shows a

typical section with prestressed concrete box-beams. As shown in

.‘Fig. 2, the beams are equally spaced, and are parallel to the direc-

tion of traffic. The design loading on the bridge is the HS20-44
standard truck shown in Fig. 3 and described in Ref. 2. The vehicle
uséd in the field testing of bridges is also shown in Fig. 3. This

test vehicle simulates the HS20-44 design vehicle, and is employed

in the correlation of field test results with analytical formulatioms.
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The angle of skew (skew angle) referred to in this study is
defined as the acute angle between the support line and the longi-
tudinal axis of the beams (Fig. 2b). A skew angle of 90 degrees
indicates that the structure is a right bridge (Fig. 2a). It is
important, however, to distinguish between the skewness and the
angle of skew of a bridge. For example, a bridge with a relatively
large skew angle (say 60 degrees) has comparatively less skewness
than a 30 degree skew bridge, which exhibits significant skewness

but has a relatively small skew angle.

This is the fourth report in a series of five reports
included within PennDQT Research Project No. 72-4, entitled
"Development and Refinement of Load Distribution for Prestressed
Concrete Beam~Slab Bridges'. The final report will discuss:

(1) the effects of curbs and parapets on the load distribution be-
havior of right I-beam bridges, (2) the effects of midspan or
multiple diaphragms and (3) the extension of the overall study to

include continuous bridges.

1.3 Previous Studies

Lateral load distribution in bridges has been the subject of
numerous previous investigations. A summary of completed research
with bibliography is reported in Ref. 63. A detailed description
of studies related to beam-slab bridges, including various methods

of analysis, is given by Sanders and Elleby in Ref. 49, by Motarjemi

and VanHorn in Ref. 38, and by Wegmuller and Kostem in Ref. 58.



Sanders and Elleby discussed various methods of load distri-
bution analysis employed by previous investigators, and their cor-
responding results (Ref. 49). Using the theoretical methods and test
results of these investigators, Sanders and Elleby proposed load
distribution criteria for highway bridges. The resulting proposals
for distribution of live load in highway bridges were complicated and
were not practical for design applications. The study did not

include skew bridges.

Motarjemi and VanHorn developed a method of analysis suit-
able for spread box-beam slab type bridges (Ref. 38). 1In this method,
the bridge superstructure is reduced to an articulated structure by
introducing a series of beam and plate elements. Using the flexi-
bility approach, the bridge superstructure is solved for stresses
and displacement. This method of analysis was used to develop the
newly accepted specification provision on load distribution for

spread box-beam bridges (Ref. 2).

Wegmuller and Kostem used the finite element method to
analyze prestressed concrete I-beam bridges (Ref. 58). 1In this
method, the bridge superstructure is discretized‘into plate and
eccentrically attached stiffener elements. The method was applied
“to field tesﬁed'beam—slab type highway bridges éonstructed with pre-
stressed concrete I-beams. A study was made of several variables
which affect load distribution. The authors showed that a stiffened
plate superstructure could be adequately idealized by the given
model and analyzed using the finite element method. The analytical

modeling technique for the above approach is given by Kostem (Ref. 29).
4=



The finite element approach, utilizing plate and eccentri-
cally attached stiffener elements as applied to highway bridges, was
reported by deCastro and Kostem (Ref. 13). Zellin, Kostem and VanHorn
used this method of analysis to determine live load distribution
factors for prestressed concrete I-beam bridges (Ref. 62). Distribution
factors were determined for several bridge configurations with varying
width, spacing, number of beams and span length under the critical

HS20-44 vehicular loadings. Based on the results, simplified distri-

-bution factor equations were obtained for the interior beams and

exterior beams of right bridges.

Very little experimental data is available on skewed beam-
slab bridges (Ref. 63). A field test of a 45° skew spread box-beam
bridge was compared with a field test of a right bridge of nearly
identical dimensions and is reported by Schaffer and VanHorn in Ref.
51. A laboratory test of a 60° skew composite bridge with steel I-

beams is reported by Hondros and Marsh in Ref. 25,

The field test results for the 45° skew spread box-beam
bridge indicated that the experimental distribution factor for interior
girders was considerably less than the design distribution factor
(Refs. 42,51); whereas, for exterior girders, the experimental values
were greatér than the design values. 1In the same study, the authors
indicated the desirability of including the influence curbs and
parapets in future design considerations. The test results from the
60° skew composite bridge with steel I-beams indicated that the skew
caused a general reduction in the beam strains of about 17 percent

(Ref. 25).



The work by Chen, Newmark and Siess (Ref. 9) and the work by
Gustafson and Wright (Ref. 23) contributed significantly to the anal-

ytical study of skewed beam-slab structures.

Chen, Newmark and Siess used the finite difference method to
analyze skewed bridges. Finite diffe:ence operators in skewed co-
ordinates were generated and the system of difference equations was
solved by computer. The major assumptions employed, in addition to
those usually made for plates, were (Ref. 9):
1. There is no composite action between the beam and the
slab;
2. Diaphragms and their effects are negligible;
3. The beam acts on the slab along a line and is not
distributed over a finite width;
4. There is no overhang at the edge of the bridge; the edge
beams are located at the sides of the bridge; and

'

5. The value of Poisson's ratio is assumed to be zero.

Influence values for moments and deflections were computed
for various ratios of spacing and length, for various relative stiff-
nesses of the beam to the slab, and for different angles of skew.
Influence surfaces for moments and deflections were then derived for
some of the structures studiéd. Moment coefficients for skew bridges
subjected to standard truck loadings were determined and some general

relationships pertaining to design were derived.

Because of the assumptions, the analytical procedure and the

subsequent results are applicable only to noncomposite steel I-beam

a



bridges. The procedure could be adapted to composite bridges by
using the composite section in the beam stiffness computation.
However, the accuracy of the results with this approach cannot be
assessed. Moreover, because of the third assumption, the width of
the beam which affects the load distribution in prestressed concrete
I-beam bridges as reported in Ref. 62, cannot be taken into account.
Finally this analytical procedure was carried out only for five-

beam bridges.

Gustafson and Wright (Ref. 23) presented a finite element
method of analysis employing parallelogram plate elements and ec-
centric beam elements. Two typical composite skew bridges with steel
I-beams were analyzed and the behavior due td the skew as well as
the effects of midspan diaphragms, were illustrated. The parallelo-
gram plate elements which were used did not satisfy slope compati-
bility requirements at element boundaries, and, therefore, relative
accuracy could not be ascertained. The work was not expanded to
include load distribution anaiysis of general skewed beam-slab

structures.

Additional research on skew bridges is summarized in Ref. 63.
These reports deal primarily with skew slab bridgeé, skew cellular
bridges, and skew bridges with only edge beams, and are ﬁqt directly

applicable to this particular study.

1.4 Analytical Approach

The finite element method was chosen as the analytical basis

for this research to facilitate realistic modeling of skew bridge
-7- '



structures. Using the finite element method, design vehicular loads

can easily be applied anywhere on the bridge structure, and beam and

slab moments can be readily computed at critical sections.

There are two basic approaches to the finite element method
of analysis: (1) the stiffness approach, and (2) the flexibility ap-
proach. It has been found that for complex structures of arbitrary
form, the displacement method provides a more systematic formulation
(Ref. 65). Consequently the computer programming can be simplified
and an efficient solution of large and complex structural systems can
be obtained. The displacement approach was therefore adopted in this

study.

The basic concepts and steps necessary for a finite element
analysis are discussed in general terms in this section, and in more
specific terms in Refs. 5,17,18,33,58,64,65. The extension of this
analytical procedure to the elements used in beam-slab bridge super-

structures is discussed in subsequent chapters of this report.

1.4.1 The Finite Element Method of Analysis

The basic concept of the finite element method is that the
structure may be idealized into an assemblage of individual structural
components, or elements. The structure ¢consists of a finite number

of joints, or nodal points (Ref. 65).

The finite element method of analysis may be divided into

the following basic steps: (1) structural idealization, (2) evaluation

of element properties,'(3) assembly of the force displacement equations,

and (4) structural analysis.



Structural idealization is the subdivision of the original
structure into an assemblage of discrete elements. These elements are
generally simple structural components of sizes and shape that retain
the material and physical properties of the original structure. The
proper structure idealization is obtained by using element shapes that

follow the shape and boundaries of the original structure.

Typical structural idealizations for the beam-slab bridge
structures considered in this research are shown in Figs. 4 and 5.
Figure 4 illustrates the discretization of a prestressed concrete I-
beam-~slab bfidge utilizing plate elements and eccentric beam elements.
The plates are general in shape and follow the beam delineation and
structural boundaries. The beams are eccentrically attéched to the

plate elements along the element boundaries.

Figure 5 illustrates the structural idealization of a spread
box-beam bridge. Plate finite elements model the deck and the top
and bottom plate of the box-beams. Web elements model the web of the

box-beams and interconnect the top and bottom plate elements.

The finite element idealization requires that each element
deform similarly to the deformations developed in the corresponding
region of the original continuum. This is accomplished by prescribing
deformation patterns which provide internal compatibility within the
elements and at the same time achieve full compatibility of displace-

ments along the boundary (Ref. 65).

Since the elements are interconnected only at the nodes, the

elastic characteristics of the element must be adequately represented

-9-



by the relationship between forces applied to a limited number of

nodal points and deflections resulting therefrom. The force deflec-
tion relationship is expressed conveniently by the stiffness proper-

ties of the finite element.

Once the element properties have been defined, the analysis
of stresses and deflections becomes a standard structural problem. As
in any structural analysis, the requirements of equilibrium, compati-
bility and the force displacement relationship must be satisfied by
the solution. 1In the finite element model, internal element forces
must equilibrate externally applied forces at the nodes, and element
deformations must be such that they are compatible af the nodes and
boundaries before and after the loads are applied. It should be noted
that this analysis procedure does not insure equilibrium of stresses
along element boundaries. In general stresses in adjacent.elements
are not similar. Intuitively, however, finite elements that satisfy

compatibility along the boundaries should give better results.

1.4.2 Development of Bridge Design Criteria

The 1969 AASHO Bridge Specification (Ref. 1) provides the
live load distribution factor equation for which the interior and
exterior beams of beam-slab bridges must be designed. The expres-
siéns are different for different types of bridges, and are functions
of the center-~to-center spacing of the beams only. In 1973 AASHTO
adopted a new specification provision which included the width,
length, number of lanes, and number of beams among the parameters

governing the load distribution in spread box-beam bridges (Ref. 2).

-10-




A similar refinement to the specification provisions for prestressed

concrete I-beams is given in Ref. 62.

The research discussed in this report was directed towards
developing specification provisions which will reflect the influence
of skew in load distribution criteria. Three major steps were in-
volved: (1) the theoretical development of an analysis procedure
suitable for general skew beam-slab structures subjected to vehicular
loadings, (2) the application of the method of analysis to highway
bridges that represent general beam-slab bridge configurations; and
(3) the development of simple expressions for the determination of

the design load for interior and exterior beams.

The basic theoretical developments for a finite element
analysis of skewed bridges is presented in Chapter 2. The application
of these developments to highway bridges with prestressed concrete
I-beam bridges is presented in Chapter 3 along with the development
of simplified design equations. Additional theoretical development
required for the analysis of box-beam bridges, the analysis of highway
bridges with spread box-beams, and the development of generalized

design equations for such structures are presented in Chapter 4.

-11-



2. ELASTIC ANALYSIS OF SKEW STIFFENED PLATES AND BRIDGES

2.1 Introduction

The finite element procedures necessary for the analysis of
a generalized stiffened structure are discussed in this chapter. As
was done for rectangular stiffened plate problems by Wegmuller and
Kostem (Ref. 58), the structure is discretized into deck plates and
stiffener elements (Fig. 4). General skewed elastic plate finite
elements with in-plane énd out-of-plane plate behavior are used to
model the deck slab. An eccentric beam finite element with shear
deformation properties is introduced to represent the beam and the

spacers or diaphragms.

The finite element method is used to analyze skew and right
bridges. Comparisons are made with available solutions and field
tests. The applicability of the method of analysis to beam-slab

highway bridge superstructures is demonstrated.

2.2 Analysis of Skewed Elastic Plates

Plate problems with arbitrary geometrical boﬁndaries are

invariably complex and difficult to analyze. Their solution, however,

is of considerable importance to the safe and efficient construction
of skewed slabs, floor systems, or bridges. The classical theory of

elasticity solutions for these problems are limited and are, in

general, restricted to only the very simple cases. However, the finite

element method is a powerful analytical tool which can easily handle

-12-



arbitrary geometry, boundary conditions, and loading configuratiomns.
The finite element approach to these types of problems has been
previously demonstrated on numerous occasions (Refs. 10,11,18,35,

56,64).

A finite element analysis technique for skewed plates is pre-
sented in Appendix A. The formulatiqn has been kept general enough
to facilitate its extension to skew, eccentrically stiffened
structures such as beam-slab bridge superstructures. Because of the
eccentricity of the beams to the plate in such structures, the plate
develops in;plane and plate bending response, and both behaviors are
considered in the analysis. The elements developed in Appendix A,
which represent the in-plane and out-of-plane behavior of elastic
thin plates, will be utilized to model and analyze general stiffened
plates, skew bridges with prestressed concrete I-beams, and skew

bridges with prestressed concrete spread box-beams.

2.3 Analysis of Stiffened Structures

A brief survey of the methods of analyzing plates with stiffeners
is given by Wegmuller and Kostem in Ref. 58. 1In general, the methods
of analysis may be classified according to the following structural
idealizations:' (1) orthotropic plate model, (2) equivalent grid
model, (3) plate and stiffeners mod;l, and (4) folded plate model.
Each method hés limitations imposed on it because of the associated

modeling scheme (Refs. 58,59).

-13-



The equivalent plate model idealizes the behavior of stif-
fened plates by plate bending action. In this method the properties
of the stiffeners are 'smeared" throughout the plate, and the re-

sulting structure is analyzed as a plate problem.

In the equivalent grid model the structure is idealized as
a grillage of beam elements. In cases where the slab is the only con-
nection between longitudinal stiffeners, the slab is modeled by trans-
verse beam elements at sufficient intervals. The analysis follows

standard structural analysis procedures.

Two major difficulties are associated with the equivalent
plate or equivalent grid mode. TFirst, plate and beam properties must
be adequately determined so as to accurately represent the actual
structure. Second, the actual stresses in the beams and the slab

must be computed from the analyzed equivalent structure.

The plate with stiffeners model and the folded plate model
have gained full acceptance in the analysis of stiffened plates
(Refs. 23,58,60). The actual properties of the plate and the stif-
feners are used, and the actual stresses are derived Qirectly from
the analysis. 1In this investigation, the plate and stiffeners model
is used for I-beam bridges and the folded plate model is used for

box-beam bridges.

The analysis of stiffened plate structures can be formulated
by combining the classical plate and beam theories (Ref. 58). The
standard assumptions for plate analysis are listed in Appendix A.

For the beam, the assumption is made that all deformations can be

~14-



described in terms of the vertical displacement of the longitudinal
axis and the rotation of the beam cross-section. This assumption
neglects the deformation of the cross-section of the beam, and hence
strains normal to the longitudinal axis of the beam are not considered.
The classical approach, however, results in a system of equations
which is not easily solved except for very simple loads and boundary

conditions. The problem becomes even more complex for skewed structures.

The overall objectives of this study dictate that the method
of analysis must be sufficiently general so that design details may be
considered separately without using 'smearing'" techniques. The method
should also be readily adaptable to a variety of structural configura-
tions and loading considerations.‘ Since the finite element method of
analysis meets these requirements, it was chosen for this investigatiom.
A detailed development of the finite element analytical technique as

applied to skewed stiffened plates is included in Appendix B.

2.4 Numerical Examples and Comparisons

The combined beam and plate elements previously described
were used to analyze various structures and the results of such analyses
were compared with available solutions and with field test data. Gen-
eralized strugtural behavior of various bridges was investigated to
validate the analytical technique, and to provide insight which would
facilitate load distribution studies. The procedure discussed in this
section is the analytical basis for the lateral load distribution
analysis of prestressed concrete I-beam bridges which will be presented

in Chapter 3.
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2.4.1 Beam Moments in Skewed Non-Composite Bridges

One of the beam-slab bridge configurations analyzed in Ref.
9 was investigated utilizing the finite element method of analysis and
results were compared. The bridge is assumed to be non-composite as
discussed in the reported solution (section 1.3). The structure is a
five-beam bridge with spacing to span ratio of 0.1. The plate-to-beam
stiffness ratio H, defined as the ratio of beam rigidity to the plate
rigidity, is equal to 5. Poisson's ratio and the beam eccentricity

are taken as zero.

The beam slab structure, as a right bridge (900 skew), and
as a 30° skew bridge, is shown in Fig. 6. The same bridge with 60°
and 45° skew is shown in Fig. 7.  The right bridge and the 30° skew
bridge are shown in the same figure to illustrate the change in
geometry due to the skew. A single concentrated load.P is placed at
midspan on Beam C. The discretization, as shown in Figs. 6 and 7
includes two plate elements between the beams and eight plate elements
along the span. The figures also show the location of maximum moment

as determined by the finite element analysis.

The moment coefficients for each beam as determined by the
analysis, the reported results from Ref. 9, and anothervfinite element

solution (Ref. 23) are shown in Fig. 8.

The finite difference analysis underestimates the two finite
element solutions. The following observations can be made from the

finite element results:
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1. There is a decrease in the moment coefficients of the
interior beams as the skew angle changes from 90° to
30°. A slight increase in the exterior beam moment
can be noted.

2. The rate of decrease is gradual from 90° to 45° skew
but abrupt beyond 45°. The rate of change is relatively
constant for the exterior beam.

3. The location of maximum moment response is towards
the obtuse angle corner of the structure. The
section of maximum response 1is not the skew centerline

but varies for different angles of skew.

Thé decrease in the total beam moments in a bridge super-
structure, as. the skew angle is changed, is reflected in the above
results. For the same width and span, the skew bridge transferé the
load more efficientiy to the supports. Thé interior beam moment is
further reduced by the increase in the participation of the exterior

beams.

2.4.2. Beam Moments in Composite Skew Bridges

The beams in composite bridge structures are eccentrically’
attached to the slab, and it is necessary to include such eccentricity
to achieve a realistic analysis. 1In the following example, the effect
of considering eccentricity is demonstrated through comparison with

the analysis discussed in the previous example.

The five-beam structure in the previous comparison was anal-

yzed as a composite bridge. An eccentricity of 28 inches corresponding
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to a beam.moment of inertia of 126584.0 in.4 and area of 576.0 in.2

was introduced. . A torsional ratio GKT/EI = (0.035 was also included to
achieve a more representative bridge analysis. The principal ratios
and the beam slab dimensions were comparable to those of the Bartons-

ville Bridge (Ref. 7).

The difference between composite and non-composite analysis
is shown in Fig. 9. The following observations can be deduced from

the figure:

1. The beam directly under the load carries a major portion
of the total load in a composite structure. The increase
in moment coefficients of beams B and C is balanced by

the decrease in the moment coefficient of beam A.

2. The reduction and the rate of reduction in moment coef-
ficients for the interior beam seems to be almost the

same for both composite and non-composite analyses.

The above example demonstrates the necessity of considering
beam eccentricity when the beams are integrally and eccentrically con-

nected to the slab.’

The effect of constraining the supports to rotate about the
line of support can beé seen in Table 1 for the case of a 95° skew
bridge. For this problem, it can be seen that the effect of such

constraint is quire negligible.

-18-



'
Il I Il N BN I ) BN Iy N B S N EE B B B aE e

2.4.3 Load Distribution in a Reinforced Concrete Skew Bridge

An actual reinforced concrete skew bridge has been tested
under static loads (Ref. 6). The bridge has a 60° skew, simple span,
and is supported by four reinforced concrete beams which are monolithic
with the deck slab. The field tests were done by the team of Burdette
and Goodpasture of the University of Tennessee (Ref. 6). The bridge
is located on U. S. 41A over Elk River, and has a span of 50 ft. and

beam spacing of 6 ft. 10 in. center-to-center.

The loads are applied as shown in Fig. 10 and the distribution
of load is shown in Table 2. Good agreement between field test and

analytical results can be observed.

2.4.4 Composite Versus Non-Composite Behavior

For the purpose of comparison, the bridges tested by AASHO in
the AASHO road test series (Ref. 24) can be analyzéd-using the method
previously discussed. The composite bridges, designated 2B and 3B in
the report, are shown in Fig. 1ll. The bridges have three beams, 15 ft.
width and 50 ft. span length. Bridges 2B and 3B have different beam
section properties as indicated in Fig. 11. The steel I-beams are con-
nected to the slab by shear connectors designed for full composite
action. The structure is loaded by a test vehiclé with a front axle
load of 6.8 kips and a rear axle load of 14.3 kips. The vehicle is
initially positioned with the drive wheel at midspan in the lomgitudinal
direction and at the center of the width in the tramsverse direction.
The structure is then analyzed as a composite bridge and as a non-
composite bridge. The percent of the total moment carried by the beams
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as indicated by the field test data and the finite element analyses
are listed in the second column of Table 3. The following observa-

tions can be made:

1. The finite element results predicted that a higher
percentage of the load would be carried by the.beams
in the composite structure. The values are comparéble
with field test results.

2. As expected, a higher percentage of the total moment
is carfied by the beams when acting compositely with
the slab.

3. The load carried by the beams is higher for the stiffer
beam sectioms.

4, For this type of loading, there is very little
difference in the percent of load carried by each

beam as shown in Table 3.

The design moments for each beam can also be computed and
compared to the 1953 AASHO provisions. The drive wheels are placed
at midspan and the truck is positioned across the width so as to
produce the critical loading condition. The structure is then
analyzed as a composite and non-composite bridge. The distribution
faétors computed for each case are compared in Fig. 12. The com-
parison shows that the distribution factor for the center beams is
qverestimated by the AASHO specification provision, and that the
distribution factor for the exterior beams is substantially under-

estimated.
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3. LATERAL LOAD DISTRIBUTION IN SKEWED I-BEAM BRIDGES

3.1 Introduction

In the design of beam-slab highway bridges, the live load
bending moments are determined with the use of load distribution
factors. The distribution factor determines the fraction of the
wheel loads that is applied to a longitudinal beam. The applicable
distribution factor is given by AASHTO in the Standard Specifica-
tions for highway bridges for right bridges (Section 1.4.2 and Ref. 3).
However, as discussed in Section 1.1, load distribution factors are

not given for skew bridges.

This chapter presents the lateral load distribution analysis
of skewed beam-slab bridges with prestressed concrete I-beams. Skew
bridges of various widths, sﬁacing, span length and number of beams
are analyzed using the finite element method of analysis presented in
Chapter 2. Live load distribution factors are computed for interior
and exterior beams for design vehicle loading. Distribution factors
resulting from the critigal combination of vehicular loadings are
selected and correlated with bridge parameters to arrive at a sim=~

plified design equation for computing distribution factors.

3.2 Beam Moments in Skewed I~Beam Bridges

The HS20-44 design vehicle as defined in Section 1.2 is used

in the following lateral load distribution study (Ref. 2). The moment
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in a particular beam produced by one design vehicle placed anywhere

on the bridge is expressed in terms of the moment coefficient. This
coefficient is defined as the ratio of the composite beam moment to
the total right bfidge moment, which is numerically equal to the
moment produced by the given load on a simple beam of equal span.
For convenience, the coefficient is expressed as a percent. A plot
of moment coefficients against the lateral position of the load re-

presents the moment influence line of the beam under consideration.

3.2.1 Computation of Load Distribution Factors

The load distribution factor is applied to the wheel loads
in the design of the beams in beam-slab bridges (Ref. 3). This
factor can be determined from the plot of the moment coefficients,
i.e., influence lines, following the requirements of the AASHTO
Specifications (Ref. 3). According to the specification provisions

governing live load distribution, the design traffic lane must be

12 ft. wide (Fig. 13). The design truck, which occupies 6 ft. of the

lane, should be positioned in the lane, and the lane should be
positioned on the bridge, such that the loading will produce the
maximum moment response for the beam being considered. The same
-definition of loading applies to bridges with two or more lanes,
except that the lanes should not overlap (Ref. 3 and Fig. 13). A
minimum distance of 2 ft. is specified between the edges of the lane
and the wheel of the design vehicle. The sum of the moment coef-
ficients for the beam at the specified positions of the trucks gives

the distribution factor for the particular beam. Thus,
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L moment coefficients (%)

D.F. = 1007 (3.1)
for axle loading, and
D.F. = 2 L moment coeff}c1ents (%) (3.2)
100%

for wheel loading.

Truck loads must be positioned so as to arrive at the maximum
distribution factor. To ensure appropriate positioning, a 12 ft. lane
is placed on the structure at x = 0, where x is the distance of the
leftmost boundary of the lane from the leftmost curb (Fig. 13a). A
truck load is then positioned within the lane so as to obtain the
highest moment coefficient from the moment influence line of the beam.
The position of the truqk in the lane is determined by the distance
X5 which is greater than or equal to 2 ft., but is less than or equal
to 4 ft. so as to maintain a 2 ft. clearance between the line of
wheels and the boundaries of the lane. Finally, the lane is moved to
a new value of x, e.g. x =1, and the truck is repositioned again within
the lane so as to obfain the highest moment coefficient for this new
lane position. The procedure is repeated until the lane has covered
thé entire width of the 5ridge. The maximum moment coefficient value
obtained in the above process is used in the distribution factor cal-
culation in Eq. 3.2. For two or mo;e design lanes, the corresponding
number of lanes are placed on the bri&ge (Fig. 13b). The second step
is repeated for all lanes until all trucks are positioned in each lane
in such a manner that the sum of the moment coefficients is a maximum.

The lanes are then moved to a new position on the bridge and the
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procedure of positioning the frrucks in each lane is repeated. The
largest sum of the moment coefficients obtained in the above process

is used in the distribution factor calculation in Eq. 3.2.

3.2.2 Maximum Beam Moments

The maximum moment caused by the HS20-44 truck on-a simﬁle
span right bridge occurs under the drive wheels, when the center of
gravity of the wheel loads and the drive wheels are equiddistant from
the center of the span (Ref. 19). Consequently, in the lateral load
distribution analysis of right bridges, the design truck load is
placed on the bridge so that the drive wheels are at d/2 distance from
midspan where d is the distance from the centroid of the wheel loads
to the drive wheels (Ref. 62). The beam moments in the distribution
factor calculations are also computed at the section under the drive

wheels.

For skew bridges, however, the position of the load that pro-
duces the maximum response in a beam, and the location of the beam
section where the maximum moment occurs are not known. Moreover, for
the same beam, the location of the maximum moment section can differ

for different lane positions of the truck. The position of the load

- which produces the maximum moment response, and the location of the

maximum moment section in a beam of a skew bridge, are different from
those of a right bridge. This point can be illustrated by the fol-

lowing example.

The structure is a five-beam bridge, 24 ft., wide and 60 ft.
long, with a relative beam-to-slab stiffness ratio of 5. The beams
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are equally spaced at 6 ft., and the slab is 7-1/2 in. throughout.

The HS20-44 truck loads are placed one at a time at five positions
across the width of the bridge, so that the distance of the centroid

of each truck from its consecutive position is 4.5 ft. 1In each of the
lane positions, the longitudinal position of the truck is varied until
the maximum moment is obtained for each beam. The distance of the
centroid of the truck between longitudinal positions is d4/2 = 2.33 ft.
This distance is selected primarily for convenience, and because the
change in the computed moments near the midspan between two consecutive
longitudinal positions is less than 1%. The above loading procedure is
carried out for each beam of the bridge at skew angles of 90° (right
bridge), 450, and 30° (Figs. 14 through 18). The direction of the
truck is always with the front wheels towards the right (Fig. 3). The

computed moments are based on the averaged nodal moments.

The positions of the truck centroid and the location of maxi-
mum moment in beam A are shown in Fig. 14 for the bridge with skews of
o’ 450, and 300. While the maximum moment section occurs at d/2 from
midspan for all angles of skew, the positions of the truck differ for
each case. Similar observations can be made for beams B and C (Figs.
15 and 16). For beams D and E, the positions of the truck centroid
and the location of the maximum beam moment section are shown in Figs.
17 and 18. 1In these cases the maximum moment section and the positions
of the load are different for different angles of skew. Based on these
results, one would expect the critical load position and the location
of the maximum beam moment section, to be different for another skew

bridge with a different number of beams, spacing or span length.
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Obviously, significant difficulty would be encountered in
carrying out the above procedure for all of the beams of bridges which
must be minimized if the maximum moment can be approximated by the

moment produced in the beam with the load centroids at midspan.

3.2.3 Beam Moments with Load Centroid at Midspan

In this section, the beam moments in the skew bridge of
Section 3.2.2 caused by the HS20-44 truck loads are determined for
load centroids located at midspan. These moments are computed at the
beam section d/2 from midspan and iﬁ the direction of the obtuse angle
corner at the supports. The object of this procedure is to determine
if there is a significant difference between these moments and the

maximum moments as determined in the previous section.

The moments for beam C with the load centroid at midspan, and

the moments from the procedure in Section 3.2.2, are shown in Fig. 19.
Moments are shown for the five.  lane positions across the width at skew
angles of 45° and 30°. The figure shows that there is a small dif-
ference in the moments between the two load positions. The larger
difference occurs at larger skews and at lane loads away from beam C.
It is also of interest to compare the moments in beam C resulting
from loads on lanes 1 and 5. It can be seen that the larger moment

| is produced with the truck going in the direction of the acute angle

corner of the support, i.e., lane 5 (Figs. 16 and 19).

The above investigation indicates that placing the load cen-
troid at midspan will aproximately produce the maximum moment response

in a beam without significant loss in accuracy. Also, the desired
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moment for the lateral load distribution study can be computed at the
beam section at d/2 from midspan and in the direction of the obtuse

angle cormner.

It should be noted, however, that in general the distance
from the midspan of the beam to the section of maximum moment will not
be d/2 for other bridges. A study of the beam moments in the skew
bridges analyzed in Section 3.4 shows that the moment at d/2, if dif-
ferent from the maximum moment, can be in error by 2% for the shorter
bridges and by less than 1% for the longer bridges. However, such

error is within practical design limits and is acceptable.

3.3 Effect of Skew on Load Distribution

In order to gain an initial insight into the behavior of skew
bridges and to determine the important parameters that must be con-
sidered in load distribution studies, an analytical investigation was
carried out for two basic bridge widths. This section presents
findings based on the analyses of thirty bridges with curb-to-curb

widths of 24 ft. and 42 ft.

3.3.1 Effect of Skew on Beam Moments

The effect of skew on the individual beam moments is shown in
Fig. 20. The bridge analyzed was a five-beam bridge, 60 ft. long and
24 ft. wide with beam spacing of 6 ft. The truck was placed on the
skew bridge similar to the manner in which it would be placed on a
right bridge to produce the maximum moment. The skew angle was then
varied and the moment percentages were computed for each case.
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The two load positions indicated in Fig. 20 illustrate the
shift in distribution of the load as the skew angle changes. The
results indicate a more uniform distribution of load with decreasing
angle of skew, The angle of skew did not have a significant effect
on the exterior beam directly under the load. The load distribution
in a 60O skew bridge was also not significantly different from that

in a right bridge.

3.3.2 Effect of Skew and Number of Beams

A 24 ft. wide bridge with a span of 60 ft. was analyzed
with two design lanes. The truck loads were placed near the center
of the bridge section as close as possible to each other in accor-
dance with the 1973 AASHTO Specification (Ref, 3). Beginning with
four beams, the number of beams was increased to five and then to
six to establish two new sets of bridges with constant span lengths.
Consequently, the beam spacing changed from 8 ft. to 6 ft. and
4.75 ft., respectively. For each set the skew angles investigated

o

were 90° (right bridge), 60, 450, and 30°. Thus a total of twelve

bridges was analyzed.

Figure 21 shows the distribution factors resulting from the
analysis. Also shown for comparison is the current AASHTO distri-
.bution factor of $/5.5 (Ref. 3). The distribution factor decreased

as the angle of skew decreased. The decrease in the distribution

factor was gradual from 90° to 45°. The number of beams and spacing

did not seem to affect the rate of reduction.
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3.3.3 Effect of Skew with Span Length

The five-beam bridge, 24 ft. wide with 6 ft. beam spacing,
was analyzed with a span of 30 ft. and 120 ft. The appropriate beam
sizes in accordance with the standards for Bridge Design BD-201
(Ref. 43) were used. For each length the skew angles considered were

90°, 45°

, and 30°. Distribution factors for the beams were computed
based on the critical location of one or two HS20-44 design vehicle(s)
positioned across the width of the bridge. For this initial study the
vehicle was positioned in the longitudinal direction, similar to the

manner in which it would be placed on the right bridge to produce the

maximum moment.

The distribution factors for the beams are shown in Fig. 22.
Beams B and C of the 30 ft. series with skews are not shown. For these
configurations, one rear wheel and one front wheel were off of the
bridge so that load distribution comparison with loﬁger bridges was

not practical.

In beam C, the amount of reduction in the distribution factor
was marginal from 90° to 45° skew for the lengths considered. However,
a considerable change in the rate of reduction was observed for skew
angles less than 45°, Also, for the long span bridges, the rate of

reduction decreased as the skew angle decreased.

Exterior beam A had practically no reduction in the distri-
ution factor as the angle of skew decreased, except for the 30 ft. case.
It should be noted that for the 30 ft. span with small skew angles

some of the wheels of the vehicle were off of the bridge.
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3.3.4 Effect of Skew on Distribution Factor versus S/L

The plots of the distribution factors versus S/L for the
24 ft. wide bridges with five beams and at skew angles of 900, 450,
and 30° are shown in Fig. 23. Similar plots fgr the 42 ft. wide
bridges with six beams are shown in Fig. 24. The span lengths inves-
tigated were 30 ft., 60 ft., and 120 ft. for the 24 ft. wide bridges;
and 42 ft., 59 ft., and 101 ft. for the 42 ft. wide bridges. These
dimensions correspond to WC/L ratio of 0.80, 0.40, and 0.20 for the
24 ft., wide bridges and 1.0, 0.70, and 0.42 for the 42 ft. wide

bridges.

The two figures indicate that at a high S/L ratio there is a
larger decrease in the distribution factor as the skew angle de-

creases. Furthermore, the decrease in the distribution factor is

larger at smaller skew angles for the wider bridge. The above results

imply that the aspect ratio of the bridge is an important parameter

governing the skew reduction of load distribution factors.

3.4 Load Distribution Factors for Skewed I-Beam Bridges

In the development of the distribution factor formula for
right bridges about 300 bridges were investigated (Ref. 62). These
bridgésAvaried in width, nﬁmber of beams, and span length to cover
the bridge configurations encountered in practive. In this section,
thirty of these representative right bridges were selected and each
one was analyzed for skew angles of 90° (right bridge), 600, 450, and

30°. Thus, in effect, a total of 120 bridges were analyzed.
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3.4.1 Design of the Experiment

The bridges analyzed with different skew angles are listed in
Table 4. The basic widths considered were 24, 48, and 72 ft., curb-
to-curb. The number of beams were varied from 4 to 16, and consequent-
ly, the beam spacings varied from 4'-10" to 9'-6". Different lengths
ranging from 30 ft. to 120 ft. inclusive were used. Detailed descrip-
tions of the bridges employed in this investigation are presented in
Refs. 12 and 66. Reference 12 also contains the graphic presentation
of the influence lines developed for the bridges considered herein.

Reference 43 was used in the determination of beam properties.

3.4.2. Distribution Factors in Skew Bridges

With the use of the procedure outlined in Section 3.2.1,
distribution factors were computed for all interior and exterior beams.
In determining distribution factors, consideration was given to the
maximum number of désign lanes that could be placed on a given bridge
width. The maximum interior and exterior beam distribution factors
for each bridge were selected and are listed in Tables 5 and 6
respectively. The full list of distribution factors for different

design lanes can be found in Ref. 12.

The interior beam distribution factors for the 24 ft. wide
bridges with four, five, and six beams are plotted against S/L iﬁ Fig.
25. Similar plots are presented for the 48 ft. wide bridges with
six, nine, and eleven beams in Fig. 26, and for the 72 ft. wide
bridges with nine, twelve, and sixteen beams in Fig. 27. 1In addition
to the observations made in Section 3.3, the following can be observed

from the figures:
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1. The rate of reduction is usually larger for larger
spacing, for wider bridges, and at smaller angles
of skew.

2. There is, however, a limit to the increase in the

rate of reduction.

The second observation may be interpreted as follows. At
large spacing and short spans the lateral distribution of the load is
small and hence the distribution factor is small. At narrow beam
spacing, the distribution factor is also small. Consequently, the
amount of reduction because of the skew is found to be relatively
smaller for these cases. The influence line plots for moments in the

individual beams in this study are given in Ref. 12.

The plots of the maximum distribution factors for the ex-
terior beams against the S/L ratio are shown in Figs. 28, 29, and 30
for the three bridge widths. Compared to the interior beams, a
similar but smaller reduction in the distribution factor was observed
for the shorter bridges. However, an increase in the distribution
factor was observed for longer bridge spans. The increase in the
distribution factor may be attributed to the greater participation

of the exterior beams when the bridge has a skew.

3.4.3 Development of the Distribution Factor Equations

Determination of factors for prestressed concrete I-beam
bridges with no skew is the subject of a comprehensive study in Ref.
62. It is therefore the aim of this section to provide only the re-
duction factor for such bridges with a given angle of skew.
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The reduction factor for interior beams in a given skewed
bridge is computed utilizing the beam distribution factor for a right
bridge (90o skew) with the same width, number of beams and spaﬁ length
as the base. These reduction factors are expressed as percent re-
ductions, and are always zero for right bridges. With the use of the
Lehigh University Amalgamated Package for Statistics, LEAPS (Ref. 30),
the percent reduction in distribution factor was correlated with com-
binations of such varieales as skew angle, span length, number of
beams, number of loaded lanes, and bridge width. The variables found
to have good correlation with the percent reduction were the spacing-
to-length ratio S/L and the bridge width-to-span ratio WC/L in com-
bination with the square of the cotangent of the skew angle. A regres-
sion analysis of the percent reduction against these variables resulted

in the following equation:

perR = (452422 ) cot’ 4 (3.3
where PCTR = reduction factor in percent which is to be applied
to the distribution factor for an interior beam of
a right bridge with given S, Wc’ and L.
S = beam spacing

W = curb-to-curb width

e

L = span length

¢ = skew angle
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For the exterior beams, a simplified equation was determined

by trial and error and is proposed as follows:

S
PCTR(EXT) = 50 L - 0.12 } cot ¢ (3.4)
where PCTR(EXT) = reduction (positive) or émplification (negative)

which is to be applied to the distribution factor
for an exterior beam of a right bridge with given

S, W_, and L.

The above equations are limited to the following bridge

dimensions:

4'__6" S < 91_0"

IA

48'-0" < L < 120'-0"

30° < ¢ < 90°

The computed distribution factors, the percent reductions
based on the above equations, and the analytical results for the
bridges investigated are listed in Ref. 12. The equations are found
to be conservative in most cases except in the case of the large
spacing, 30° skew, and very short span. The plots of the proposed
equation for interior beams are shown in Figs. 31, 32, and 33 for the

bridges investigated.

3.5 Design Recommendations

From the results of this study, the following simplified pro-
cedures are recommended for the determination of the live load dis-

tribution factors in prestressed concrete I-beam bridges with skew:
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The load dist
be determined
for interior

reduction spe

DF =D

where DF =

DF90 =

PCTR

ribution factor for interior beams may
by applying to the distribution factor,
beams of the bridge without the skew, a

cified by the following formula:

PCTR)
F90 (1.0 - 166) (3.5)

distribution factor for the interior
beam of the bridge with skew angle

distribution factof for the interior
beam of the bridge without skew, and
reduction in percent as speﬁified by

Eq. 3.3.

The load distribution factor for exterior beams may

be determined by applying to the distribution factor,

for exterior

beams of the bridge without the skew, a

factor specified by the following formula:

PCTR
_ (EXT)
DF gxm) = PFoo(exT) <l‘0 100 (3.6)
where DF(EXT) = distribution factor in the exterior
beam of the bridge with skew angle
DFQO(EXT) = distribution factor in the exterior
beam of the bridge without skew, and
PCTR = amplification or reduction factor as

specified by Eq. 3.4.
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A plot of the smallest and the largest percent reduction in
the distribution factors for interior beams using the proposed equa-
tion and the bridge dimensions investigated in this study is shown in

Fig. 34. A similar plot for exterior beams is shown in Fig. 35.

3.6 Summary

The load distribution behavior of skewed I-beam bridges under
design vehicular loads has been discussed. Load distribution factors
were computed for the interior and exterior beams of bridges con-
structed with prestressed concrete I-beams. The skew angles investi-
gated were 900, 600, 450, and 30°. The following observations were
made: |

1. The load distribution factor decreases with decreasing

angle of skew.

2. The rate of reduction in the distribution factor is

gradual from 90° to 45° but is abrupt from 45° to 30°.

3. The rate of reduction in the distribution factor

decreases with increasing span length.

4, The bridge width-to-span ratio and beam spacing-to-

_span ratio, and the skew angle significantlyvaffect

the amount of reduction. -

Based on a statistical correlation of bridge parameters with
numerical results, simplified distribution factor equations were

obtained for interior and exterior beams.
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" 4, LATERAL LOAD DISTRIBUTION IN SKEWED SPREAD

BOX-BEAM BRIDGES

4.1 Introduction

The design and construction of spread box-beam bridges (Fig.
1(b) isa relatively recent development, and the load distribution
characteristics for this type of bridge have been the subject of
several investigations (Section 1.1.2 of Ref. 63). Extensive field
investigations of spread box-beam bridges have been carried out at
Lehigh University (Refs. 16,21,22,31,51,57), however, with the ex-
ception of Ref. 51, all of these investigations have been for right

bridges.

The field investigations confirmed the need for a realistic
procedure for determining live load distribution for spread box-beam
bridges with and without skew. The theoretical analysis developed by
Motarjemi and VanHorn (Ref. 38) provided a new specification pro-
vision for lateral load distribution for right bridges with prestressed
concrete spread box-beams (Ref. 2). The analysis of right and skewed
box-beam bridges is discussed in this ghapter and design equations
are developed for use in determining the lateral load digtribution in
skewed spread box-beam bridges. The design equations are similar in
form to the previous expressions for lateral load distribution in
skewed I-beam bridges and are actually the product of two terms. The

first term is the distribution factor for an identical right (no skew)
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bridge. The second term is a modification factor which accounts for

the effect of the skew.

A total of 72 bridges of various widths, spans, number of

beams and skew angle were analyzed and a computerized process was

developed to calculate distribution factors for each particular bridge.

A combination of three computer programs (PRESAP, SAPIV, and POSTSAP)
was used for overall bridge analysis., PRESAP produced input required
by SAPIV utilizing simple bridge dimensions. Program SAPIV (Ref. 4)
was used to analyze the discretized bridge structure by means of the
finite element method. Program POSTSAP utilized the stresses computed
by SAPIV to calculate the required lateral distribution factors.
Finally, a regression analysis was carried out on the distribution
factors which were calculated by POSTSAP. Utilizing program LEAPS
(Ref. 30), design equations, which delineate the required skew mod-

ifications, were developed.

4.2 Method of Analysis

4.2.1 General

The analysis of spread box-beam bridges is a complex problem
where relative solution accuracy can often be éonstrained by available
computer. storage. Because of the large differences in the node
numbers of the assembled elements, the size of the bandwidth, which
determines the amount of computer storage required, can become ex-
cessively large. The total number of elements and the resulting

system of equations are also larger than for a corresponding I-beam
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bridge with an equal number of beams. Consequently, the computa-
tional effort required for a given analysis is substantial, and it
is therefore necessary to use a minimum number of elements while at

the same time obtaining results with a reasonable degree of accuracy.

4.2.2 Assumptions

The beam-slab bridge configuration utilized in this in-
vestigation consisted of a concrete deck of constant thickness, sup-
pgrted on equally spaced prismatic box-beams (Fig. 1b). The deck acts
compositely with thé simply supported beams. Although the
Pennsylvaﬁia Department of Transportation (PennDOT) specifications
would require diaphragms for the majority of the bridges analyzed,
diaphragms were not considered. Previous work involving the
Philadelphia Bridge (Ref. 31) indicated that diéphragms have only
limited effect on distribution factors, thus supporting this
simplifying assumption. The concrete in both the slab and the beams
was assumed to respond to service loads as a linear elastic, homo-

geneous, isotropic material.

Boundary conditions for the finite element model were
specified in the global coordinate system, and consequently support
nodes were not constrained to rotate about the skewed line of support.
The effect of such an assumption on maximum beam moments was dis-

cussed in Section 2.4.2 and was found to be of negligible concern.

4.2.3 Modeling Procedure

The pre-processor PRESAP Modeling Procedure which creates
the input required by program SAPIV, was used to model the bridge
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structures. A general discretization, identical for all bridge
configurations, was chosen for the parametric study. Consequently, a
coarser discretization was utilized for longer bridges than for
shorter bridges; however, such an approach greatly simplified the
parametric study and did not adversely effect the accuracy of the
analysis of overall bridge behavior. The actual discretization was
optimized for a bridge of average span, and an attempt was made to
achieve a favorable aspect ratio (approximately equal to 1.0) for the
elements at the skew midspan of each bridge. The elements extending
from the ends of the bridges toward midspan were long and narrow with
relatively poor aspect ratios (up to 18.0). Since the intent of this
investigation was to determine the stresses at the skew midspan only,
a poor aspect ratio was acceptable for elements which were not in

close proximity to the midspan.

The typical discretization utilized for the analysis of
skewed, spread box-beam bridges is shown in Fig. 36 for a 3-beam
bridge. The longitudinal discretization consisted of eight elements,
including two elements at midspan with an aspect ratio of one, and
six additional elements with aspect ratios which wvaried with bridge
span. Laterally, tﬁe overhangs and beam flanges were modeled with
single elements, while two elements were used to model the deck
between each beam. The deck and top flange of the beam were modeled
with plate bendiﬁg elements, which exhibit plane stress and flexural
response (Ref. 4). The webs and bottom flange of the beams were
modeled with plané stress elements since any out-of-plane behavior
of these members has negligible effect on overall bridge behavior.
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In effect, the St. Venant torsional stiffness of the box-beams was
modeled by the in-plane behavior of their components, whereas the
minor effects of warping torsion, resulting from out-of-plane

distortion of the web or bottom flange, were neglected (Ref. 58).

4.2.4 Calculation of Distribution Factors

The post-processor POSTSAP used the output from SAPIV to
calculate lateral load distribution factors. Values of stresses were
obtained from the SAP IV output through direct reading, or through
interpolation, for the points along the bridge cross-section as
shown in Fig. 37. Straight line distributions were assumed between
these stress points, and the resulting stress distributions were
integrated to compute the forces acting on the cross-section. The
neutral axis for each beam was obtained by locating the point of
zero stress for each stress distribution. Assuming that the effective
width of the slab for each beam was the center-to-center beam spacing,
the bending moment for each beam was computed about its neutral axis.
The lateral load distribution factor was then obtained by dividing
the resulting moment in each beam by the maximum simple-span moment

which would be produced in a similar beam by one line of wheel loads.

4.3 Validation of the Analytical Method

4.3.1 Comparison with Field Test Results

The Brookville Bridge (Fig. 38) which has a skew of 45°
was modeled using the procedure previously discussed. All reported

moments were presented as the product of a number multiplied by the
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modulus of elasticity (Ref. 51), and no information was available
which would permit determination of the actual modulus of elasticity
of the bridge. Consequently, all comparisons were based upon the
percentage of total moment in the bridge which was resisted by each
girder. Table 7 compares the field test data with the results
obtained from the finite element model. The largest difference
between the two values is only 37 and is quite acceptable for the

purposes of this investigation.

4,3.2 Comparison with an-Alternate Analytical Method

Further model validation was carried out by comparing results
obtained from a SAP IV finite element analysis with results computed
for right bridges utilizing a finite strip amnalysis, as reported by
Motarjami (Ref. 38). The comparisons were made on bridges having a
typical 7-beam cross-section with a curb-to-curb width of 54 ft.
Five different bridge lengths were used, with S/L ratios varying
from 1/4 to 1/10. The distribution factors obtained from the SAP IV
analyses were approximately 8% greater than the results reported by
Motarjemi (Table 8). This difference was due to the fact that a
different lane definition was used for each analysis. 1In the
Motarjemi analysis, the 54 ft. roadway was divided into four traffic
lanes, each 13 ft.-6 in. in width. The vehicles, considered to be
10 feet in width, were then shifted within each of the lanes to
produce the maximum distribution factor. This method was consistent
with AASHTO provisions in effect at that time. However, the SAP IV

analysis, included in this study, was based on the current AASHTO
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provisions, which specify load lane widths of 12 ft. The current
provisions allow the positioning of load lanes across the roadway
width, as well as the positioning of load vehicles within the load
lanes. The movement of vehicles within the lanes gives use to more

critical loading conditionms.

4,4 Load Distribution Factors for Skewed Box-Beam Bridges

4.4.1 Design of the Experiment

To effectively develop a design equation which will accurately
predict the lateral load distribution in spread box-beam bridges, the
analytical experiment must include a representative sampling of bridge
configurations, and must seek to determine the specific parameters
which significantly influence overall bridge behavior. The general
behavior of skewed, spread box-beam bridges was modeled in this in-
vestigation by 72 bridges of different widths, number of beams, span

length, and skew angle.

The box-~beam bridges selected for this study are listed in

Table 9. Each of the 18 bridges listed in Table 9 was investigated

at skew angles of 900, 600, 450, and 30°. As a result of the new

" lane width definition included in the current AASHTO specifications

(Ref. 3), the bridge widths, which were considered, are different
from those used in Ref. 38 for the study of right bridges. The
widths considered are 24 ft., 48_ft., and 72 ft. corresponding to 12
foot lane widths for 2, 4, and 6 design lanes respectively (Ref. 3).
These bridge widﬁhs are from curb-to-curb and do not include the
overhang of 2 ft. on each side of the bridge.
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A uniform thickness of 7-1/2 inches was used for the deck slab.
Curbs, parapets and diaphragms were not considered. A 48/48 prestressed
concrete box-beam (Ref. 43) (48" wide and 48" high) was used for all
beams in all bridges. The selection of this particular beam size was made
in order to have the stiffest possible beams. Thus, the beams under the
load carried a large percentage of the vehicular loading. This has re-
sulted in high distribution factors; consequently the reported results are
consistently on the conservative side; Young's modulus was held constant

for all bridge configurations and for all elements of each bridge.

Two general loading schemes were utilized to determine distri-
bution factors for both interior and éxtérior box-beams. Five load
conditions, using HS20-44 standard trucké; wetre applied whenever possible
(when the bridge was wide enough):; howéver, the positioning of the design
lanes, and of the vehicleé'within the lanes; was véried depending upon
whether interior or eiterior beams were being analyzed. For the case of
interior beéms, lanes and vehiclés wére crowded as closely as possible
to the interior beam. For analysis of exterior beams, the 12 ft. wide
traffic lanes and design vehicles were laterally crowded towards an
exterior beam. Longitudinally, the design vehicles were positioned in
each lane in such a manner that all drive axles fell on the bridge's
skew midspan. The rear agles of the design vehicle wege placed towards
the obtuse .angle at the supportsl This longitudinal placement produced

a very close approximation of the absolute maximum moment in each beam.

4.4,2 Distribution Factors

The maximum distribution factors for the 18 bridges listed in

o

Table 9 with skews of 90°, 60°, 45°

, and 30° are listed in Table 10
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for interior beams and in Table 11 for exterior beams. Distribution
factors were calculated using the procedure previously discussed and
indicate that a decrease in the angle of skew results in a significant
reduction in the distribution factor for both interior and exterior
beams. This reduction can be attributed to the fact that the principal
bending of the bridge is in the direction of the skew and is not in
the direction of the span. Additionally the cross-sectional geometry
of a skewed, spread box-beam bridge provides a better lateral distri-
bution of the loads and consequently results in better participation

of all beams in the overall response of the structure.

The larger reduction in the distribution factors at shorter
span lengths for the interior beams can be attributed to the fact
that, at large skews, some of the design vehicle's wheels were either
off of the bridge or wvery close to the supports. The observed
reduction in the distribution factors was, however, considerably
larger than that experienced by similar prestréssed concrete I-beam
bridges. It was further observed that as the length of the bridge
span increased, the distribution factor for exterior box-beams also

increased.

In the case of interior box-beams, the maximum distribution
factor was generally achieved when the bridge was fully loaded. For
exterior box-beams, the maximum distribution factors occurred under
different load configurations for each of the various bridges. In
two-lane bridges maximum moments were achieved when the bridge was

fully loaded with two design vehicles. For a four-lane bridge the
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governing load condition was found to occur when either three or four
vehicles were on the span. The three vehicle load condition created

a maximum moment for shorter, less skewed bridges, whereas the four
vehicle condition governed for longer, more skewed bridges. The
critical load pattern for a six-lane bridge followed the same trend as
that of a four-lane bridge with the exception that either four or five

design vehicles resulted in maximum moments in exterior box-beams.

4.4.3 Development of the Distribution Factor Equations

The line load bending moments in the interior or exterior
beams of skewed, spread box~beam bridges may be determined by applying

to the beams the fraction of the wheel load specified by the following

formula:
PR
DF¢ = DF90 <} - 10é> (4.1)
where PR = the percentage reduction appropriate for either
interior or exterior box-beams in a skewed bridge
DF90 = the distribution factor for an interior or exterior
beam of a similar right bridge (i.e., same span,
width, and beam spacing)
DF¢ = the distribution factor for the interior or exterior

beam of a bridge with skew angle ¢

Maximum percentage reductions for interior and exterior box-
beams are listed in Tables 12 and 13 for the various bridges analyzed
in this study. A regression analysis was carried out on these values,
utilizing the Lehigh Amalgamated Package for Statistics (LEAPS)
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computer program (Ref. 30), to determine appropriate design equationms

for the percentage reduction (PR) factor included in Eq. 4.1.

The following forms of equations were regressed:

g X WC y z

PR = K(i? () (cot 9) (4.2)
s, ¥ y

PR = K(i) (cot ¢) (4.3)
w X y

PR = K(I? (cot ¢) ' (4.4)

These equations consider various combinations of the critical para-
meters of span length (L), beam spacing (S), and curb-to-curb

width (WC). Specific results are discussed in the following section;
however, it was generally found that an expression‘in the form of

Eq. 4.2 most accurately represented the data obtained from the
analytical experiment. This observation emphasizes the influence of
bridge aspect ratio (WC/L) on overall structural behavior. However,

it was also observed that Eq. 4.3, which has a simpler form, ade-
quately approximated the experimental data. This observation indicated
that the influence of bridge aspect ratio was less significant than

that of spacing to length (S/L) ratio or skew angle.

4.5 Design Recommendations

Distribution factors for skewed, spread box~beam bridges
may be determined frém Eq. 4.1 utilizing the following expressions

for the percentage reduction (PR) factor for interior or exterior

box-beams.
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Interior Box-Beams

u \ 1/10 1/2 3/2

29.0 —f) (%) (cot ¢> (4.5)
g \ /2

33.0( f) <cot ¢> (4.6)

Exterior Box-Beams

N 1/5 4/3
19.5<—L£> <%> <cot ¢> 4.7
G\ 172
30.0 (f) <cot ¢)> (4.8)

Figures 39 through 50 present comparisons between the results of the

PR

or

PR

PR

or

PR

analytical experiment and the proposed empirical expression for skew
distribution factors (Eq. 4.1). As previously discussed, Egs. 4.5 and
4.7 more accurately represent the experimental data; however, Eqs. 4.6
and 4.8 have a much simpler form, can be readily adopted for design
application, and proﬁide an adequate approximation of overall bridge
behavior. Although the more sophisticated expressions are preferred
on the basis of their improved accuracy, the simpler expressions are

adequate for routine bridge design.

All of the above expressions are limited by the following
bridge dimensions:
24' < W < 727
42" < L < 128'

30° < ¢ < 90




4.6 Summary

The load distribution behavior of skewed, spread box-beam
bridges under design vehicular loads has been discussed. Load distri-
bution factors were computed for the interior and exterior beams of
bridges constructed with prestressed concrete box-beams. The skew

o

angles investigated were 900, 60, 45°

, and 30°. The following
observations were made:

1. The load distribution factor decreases with
decreasing angle of skew.

2. The reduction factor is largest at shorter span
lengths for interior beams and at longer span
lengths for exterior beams. This behavior is
primarily the result of increased participation
of the exterior beams in longer spans.

3. The bridge width-to-span ratio, the beam
spacing-to-span ratio, and the skew angle
sufficieﬁtly affect the magnitude of the

percentage reduction factor.

Based upon a statistical correlation of bridge parameters with numer-
ical results, simplified equations for computing distribution factors

for interior and exterior box-beams were developed.
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5. SUMMARY AND RECOMMENDATION

This report describes the development of skew-effect cor-
rection factors which are to be applied to the live-load distribution
factors in beam-slab highway bridge superstructures supported by pre-

stressed concrete I-beams or box-beams.

Initially, an analytical procedure utilizing the finite
element method was developed to evaluate the response of skewéd—
bridge superstructures to design-vehicle loading. The analytical
technique was validated through comparisons with previous field test
results of in-service bridges and by comparisons with alternate anal-
ytical solutions. An analytical experiment was then designed for each
type of bridge to study the effects of various parameters on live-load
distribution. A total of 120 I-beam and 72 box-beam superstructures
were analyzed under numerous loading conditions. The results of these
analyses provided a data base which was utilized to develop appropriate
design equations for both interior and exterior beams. The design
equations were based upon formulating appropriate corrections to the
distribution factors for similar right bridges to account for skew,
and yielded the live-load distribution factors required for the. design

of skewed bridge superstructures.

Based upon the results of this study, it is recommended that
the expressions governing live-load distribution in skewed beam-slab
Bridges, as presented in Sections 3.5 and 4.5 of this report, be
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adopted as modifications to the specification provisions currently
governing live-load distribution in right beam-slab bridges. The
proposed expressions are relatively simple in form and clearly yield
values which accurately represent the behavior of skewed beam-slab

bridges.
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TABLE 1

MOMENT COEFFICIENTS AND REACTIONS IN A 45°
SKEW .BRIDGE WITH CHANGE IN BOUNDARY CONDITIONS

Beam | Moment Coefficients Reactions at Left Support
xLxP x P
S.S.1 Skew S.S.2 _ s.S. Skew S.S.2

A 0.00232 0.0233 0.0614 0.0600

B 0.0437 0.0439. 0.0371 - 0.0412

C 0.0922 0.0918 0.1085 0. .028 -
D 0.0437 0.0439 0.2545 0.2254

E 0.00232 0.0233 0.0385 0.0706

1Simply supported.

2Simply supported and constrained to rotate about
skew line of support, B = 45°.°

TABLE 2

LOAD DISTRIBUTION COEFFICIENTS - BRIDGE 31

Ratio of Bending Moments (%)

Interior Girders

Exterior Girders

Field Test

Analytical Results

60

59

40

41

Ref. 6
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TABLE 3

MOMENT PERCENTAGES

Y. Beam Moment

Beam Moment/Y Beam Moment

Bridge
Truck Moment |Interior | Center |Exterior
Field Test 89.30 34.0 32.0 34.0
(Ref. 24) ‘
2B Finite Element 93.57 32.6 34.0 33.2
(compoéite)
Finite Element 92.13 33.2 _ 33.8 33.0
(non-composite) '
Field Test 92.10 33.8 | .33.4 29.2
(Ref. 24) '
3B | Finite Element 94.50 32.7 | 34.3 | 33.0
(composite) -
Finite Element 83.95 33.2 33.8 33.0
(non-composite)
54—




TABLE 4

LIST OF BRIDGES ANALYZED

Bridge Number :
No Width of Beams Spacing Length Beam Size s/L
(ft.) (in.) (ft.)
1 24.00 6 57.60  120.00 AASHO-VI  .0400
2 24..00 6 57.60 72.00 24/42 .0667
3 24.00 6 57.60 38.40 20/30 .1250
4 24.00 5 72.00  120.00  AASHO-VI  .0500
5 24.00 5 72.00 60.00 20/39 .1000
6 24.00 5 72.00 42.00 20/30 .1429
7 £ 24.00 4 96.00  120.00 AASHO-VI  .0667
8 24.00 4 96.00 64 .00 24/45 .1250
9 24.00 4 96.00 40.00 20/30 - .2000
10 48.00 11 57.60  120.00 AASHO-VI  .0400
11 - 48.00 11 57.60 84.00 24148 .0571
12 48.00 11 57.60 48.00 20/30 .1000
13 48.00 9 72.00  105.00 28/63 .0571
14 48.00 9 72.00  60.00 20/39 ©.1000
15 48.00 9 72.00 42.00 20/30 L1429
16 48.00 6 115.20 96.00 AASHO-VI  .1000
17 48.00 6 115.20 57.60 24/45 .1667
18 48.00 6 115.20  48.00 20/33 .2000
19 72.00 16 57.60  120.00 ASSHO-VI  .0400
20 72.00 16 57.60 57.60 20/36 .0833
21 72.00 16 57.60 38.40 AASEO-I  .1250
22 72.00 T 14 66.50 110.80 AASHO-VI  .0500
23 72.00 14 66.50 66.50 24/42  .0833
24 72.00 14 66.50 38.80 AASHO-I .1429
25 72.00 12 78.50  114.50 AASHO-VI  .0571
26 72.00 12 78.50 65.50  24/42 .1000
27 72.00 12 78.50 39.30 20/30 .1667
28 72.00 9 108.00  108.00 AASHO-VI  .0833
29 72.00 9 108.00 54.00 24142 .1667
30 72.00 9 108.00 45.00 24/36 .2000
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TABLE 5 °
MAXIMUM DISTRIBUTION FACTORS - INTERIOR BEAMS
Bridge NUMBER OF IOADED IANES AND SKEW ANGLE
No. AL oNLL 90° ML _60° ML _45° ML _30°
1 2 2 81 2 79 2 77 2 .n
2 2 2 .84 2 .81 2 J7 2 .66
3 2 2 .96 2 94 2 93 2 .86
4 2 2 96 2 92 2 .88 2 .82
5 2 2 1.05 2 .99 2 92 2 .78
6 2 2 117 2 1.07 2 95 2 .76
7 2 2 1.23 2 1.20 2 1.18 2  1.08
8 2. 2 1.30 2 1.24 2 1.17 2 .99
9 2 2 1.32 2 1.23 2 1.1 2 .88
10 4 4 9% & 91 &4 87 & .79
11 4 4 94 4 90 4 87 4 .75
12 4 2 1.03 3 .98 3 .94 3 .87
13 4 4 1.17 4 113 4 109 4 .97
14 4 & 1,20 4 1.14 &4 1.08 & .89
15 4 4 126 3 113 3 107 3 .83
16 4 4 1.8 &  1.79 4 1.7 &  1.59
17 4 4 1.83 4 177 4 170 4  1.45
18 4 4 1.86 4 1.72 4 . 1.58 3 1.2
19 6 5 94 5 92 5 .90 5 .84
20 6 4 95 4 .91 &4 87 S .75
21 6 4 97 & .91 & .96 5 .72
22 6 5 1.07 5 1.05 S5 1.06 5 .98
23 6 4 .07 & 1.06 4 1.00 5 .89
2% 6 4 1.09 4 1.02 5 .96 5 .77
25 6 5 123 5 121 5 119 5 1l.11
26 6 4 1.26 5 1.20 -5 1.16 5  1.03
27 6 4 .30 4 1.21 5 112 5 .89
28 6 5 1.72 5 1.8 5 1.65 6 1.51
29 6 & 1.74 5 1.8 5 1.61 5  1.33
30 6 & 1.77 ~5 1.68 5 1.60 5 1,23

*®
Number of Lanes
**Number of Loaded Lanes
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TABLE 6
MAXTMUM DISTRIBUTION FACTORS - EXTERIOR BEAMS
- Bridge NUMBER OF LOADED IANES AND SKEW ANGLE
No.  *NL #NLL  90° wL = 60° wiL  45° wuL 30°
1 2 2 - .69 2 .70 2 70 2 .72
2 3 2 67 2 67 2 67 2 .64
3 2 2 .56 1 57 1 57 2 .58
4 2 2 .80 2° .81 2 82 2 .83
5 2 2 75 2 772 78 2 .73
6 2 2 73 2 73 2 72 2 .62
7 2 2 1.01 2 1.02 2 1.02 2 1.01
8 2 2 .95 2 .95 2 94 2 .88
9 2 2 .87 2 .87 2 .86 2 7
10 A 2 g1 2 . .72 2 .73 3 .73
11 4 A .68 2 .68 2 .68 & .65
12 A 1 .62 1 W61 1 61 2 .59
13 A 2 .83 2 .83 2 .84 4 .83
14 A 2 .78 2 76 2 76 4 .70
15 4 2 72 2 Jb6 4 J1 4 .62
16 4 2 1.10 2 1.10 2 1.11 &  1.09
17 4 2 1.02 2 101 2 1.00 4 .92
18 4 2 1.08 2 1.03 & .99 & .85
19 6 2 .70 2 I 2 723 .72
20 6 6 .65 2 .66 2 63 2 .58
21 6 1 61 1 60 2 .60 2 .53
22 6 2 .78 2 .78 2 79 20 .78
23 6 2 T4 2 a72 2 .73 2 .67
24 6 1 .68 2 66 2 .67 6 .58
25 6 2 .88 2 .89 2 91 3 .91
26 6 2 .83 2 .85 2 .86 6 .80
27 6 1 T4 2 75 2 .75 2 .63
28 6 2 1.09 2 1.10 2 1.1 3 1.09
29 6 2 97 2 96 2 .95 6 .86
30 6 2. ..95 ..2 93 2 91 . 6 .80
*Number of Laneé
**Number of loaded Lanes
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TABLE 7

BROOKVILLE BRIDGE COMPARISON

Percentage of Total Moment Taken by Each Girder (Fig. 38)

Girder
Method
Field Test 44
Model 47%

31%

TABLE 8

C D
15% 10%
147% 7%

MOTARJEMI COMPARISON

Load Distribution Factors as Reported by Motarjemi and by

Model Analysis

S/L
1/4
1/5
1/6
1/8

1/10

Motarjemi
1.08
1.12
1.13
1.15

1.15
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1.16
1.20
1.21
1.23
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TABLE 9

LIST OF SPREAD BOX-BEAM BRIDGES

Bridge Number
No. . Width of Beams Spacing Length  Beam Size S/L
~(ft.) (in.) (ft.)
1 24.00 3 122.50  40.83  3-48/48 .2500
2 24,00 3 122.50  71.46  3-48/48 .1430
3 24.00 3 122.50 122.50  3-48/48 .0830
4 24..00 4 81.67  34.03  4-48/48 ~  .2000
5 24,00 4 81.67  47.64  4-48/48 .1430
6 . 24.00 4 81.67 102.08  4-48/48  .0670
7 48.00 5 133.25  44.42  5-48/48 2500
8  48.00 5 133.25  83.83  5-48/48 .1250
9 48.00 5 133.25 11.04 5-48/48 .1000
10 48,00 7 88.83  37.01 . 7-48/48  .2000
11 48.00 7 838.83  59.22  7-48/48 .1250
12 48.00 7 88.83 111.03  7-48/48 .0670
13 72.00 8 117.29  39.10  8-48/48 .2500
14 72.00 8 117.29  78.19  8-48/48 .1250
15 72.00 8 117.29  97.74  8-48/48 .1000
16 72.00° 9 102.62 42,75  9-48/48 .2000
17 72.00 9 102.62  68.42  9-48/48 .1250
18 72.00 9 102.62 128.25  9-48/48 .0670
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MAXIMUM DISTRIBUTION FACTOR - INTERIOR BEAMS

Bridge
Number

1

2

10

11

12

13

14

15

16

17

18

.73

.63

.51

.17

.13

.07

.92

.87

.85

.39

.32

.27

.72

.67

.66

.55

.51

.47

TABLE 10

60°

1.62
1.56

1.47

1.07
1.07

1.04

1.82
1.80

1.79

1.27
1.25

1.22

1.61
1.60

1.61

1.46
1.44

1.42

-60-

45

1.45

1.46

1.40

0.96
0.98

0.99

1.66

1.69

1.69

1.12
1.16

1.16

- 1.46

1.51

1.52

“1.33

1.35

1.35

30

1.12

1.22

0.80

0.86

1.32

1.42

1.43

0.86

0.95

0.98

1.18

1.25

1.27

1.04



TABLE 11

MAXTMUM DISTRIBUTION FACTOR - EXTERIOR BEAMS

Bridge . 90° 60° 45° 30°
Number NLL DF NLL DF NLL DF NLL DF
1 2 2 1,30 2 1.21 2 1.12 2 0.93
2 2 2 1.34 2 1,28 2 1.22 2 1.08
3 2 2 1.36 2 1.32 2 1.27 2 1.16
4 2 2 1.01 2 0.9%4 2 0.87 2 0.72
5 2 2 1.03 2 0.98 2 0.9t 2 0.79
6 2 2 1.05 2 1.02 2 °0.99 2 0.9
7 4 3 1.45 3 1.34 3 1.22 4 1.01
8 4 3 1.48 4 1,40 4 1.34 4 1.17
9 4 3 1.50 4 1.43 4 1.37 4 1.21
10 4 3 1.09 3 1.01 3 0.91 4 0.75
11 4 3 1.13 3 1.05 4 0.98 4 0.85
12 4 3 1.15 4 1,09 4 1.05 4 0.93
13 6 4 1.32 4 1,22 4 1.11 4 0.92
14 6 4 1,39 4 1.31 5 1.22 5 1.05
15 6 5 1.40 5 1.32 5 1.24 5 1.08
16 6 4 1.22 4 1,13 4 1.03 4 0.86
17 6 4 1.26 -4 1.19 5 1.10 5 0.95
18 6 5 1.29 5 1.22 5 1.15 5 1.00
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Bridge
Number

10

11

12

13
14

15

16

17

18

90

0.00

0.00

TABLE 12
MAXIMUM PERCENTAGE REDUCTION - INTERIOR BEAMS

60

2.65

8.55

5.31

2.80

5.21

3.74

3.24

8.63

5.30

3.94

6.40

4.19

3.01

5.81

—62—

45

16.18
10.43

7.28

17.95
13.27

7.48

13.54
9.63

8.65

19.42
12.12

8.66

15.12

9.58

8.43

14.20

10.60

8.16

30

35.26

25.15

18.54

32.48
29.20

19.63

31.25
24,06

22.70

38.13

28.03

22.83

31.40

25.15

23.49

32.90

25.83

22.45



TABLE 13

MAXIMUM PERCENTAGE REDUCTION - EXTERIOR BEAMS

Bridge ° ° ° °
Number 90 60 45 30
1 0.00 6.92  13.85  28.46
2 4.48 8.96  19.40
3 2.94 6.62  14.71
4 6.93  13.86  28.71
5 4.85  11.65  23.30
6 2.86 5.71  14.29
7 7.5  15.86  30.34
8 5.41 9.46  20.95
9 4,67 8.67  19.33
10 7.34  16.51  31.19
11 7.08  13.27  24.78
12 5.22 8.70  19.13
13 ©7.58 15.91  30.30
14 5.76  12.23  24.46
15 5.71  11.43  22.86
16 7.38  15.57  29.51
17 5.5 12.70  24.60
18 0.00 5.43  10.85  22.48
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DISTRIBUTION FACTOR: (DF ¢)

Fig. 43 Simplified Interior Box-Beam Distribution Factors, Wc = 48 ft.
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APPENDIX A

FINITE ELEMENT ANALYSIS OF SKEWED ELASTIC PLATES

A.1 Skew Plate In-Plane Analysis

The skew plate also known as a pafallelogram is a special
case of a quadrilateral plate when opposite sides are parallel
(Fig. Al). The acute angle between two adjacent sides is called the
skew angle as éhown in thetfigure. The rectaﬁgular plate is a special

case of the skew plate when the skew angle is 90°.

A.1.1 Methods of SolutiOns‘

The solutions to skew in-plane problems have been arrived at
by using the theory of elasticity in rectangular,oblique and polaf co—~
ordinate systems (Ref. 37). As reported ﬁy Morley in Ref. 37, solu-
tions in rectangular‘and oblique~ coordinates have been obtained by
Hemp, Favre, Lardy and Theodoreécu; and solutions in the polar coordi-
nate'system have been obtained by Coker and Filon, Williams, and
Mansfield. Solutions in terms of the Airy stress»function expressed
in coﬁpléx variables, trigonometric series, and infinite series have

been obtained by Green and Zerna (Ref. 20) and Pickett (Ref. 44).

A.1.2 Assumptions and Basic Equations

The skew plate under any in—plane forces is assumed to be a

plane stress problem. >Stresses Gx’ Gy and Txy and the generalized

-

forces Nx’ N and N in an infinitesimal element are shown in Fig. A2,

The components of stress and generalized forces shown in the figure
indicate the assumed positive direction. The generalized forces are
the stresses integrated over the thickness of the element.
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The displacement at any point of the plate is defined by the

components of the vector field {v}:

y 4
{v}l = [ ] _ _ GA.1)
v .

where u and v are in the x and y directions respectively. The-strain

field at any point is defined from the displécement field by the -

relationship: .
<] [ o )
XX 9x
|
v :
= = = : A.2
{e} < gy > T > (A.2)
du , ov
Y. ¥y  ox
\. xy‘J \. 7 .,

where sxx’ eyy’ Y. are the well known components of strain.

The usual étress-s;rain relationship ({0} = [D] {e})

for the general orthotropic case is given by Ref. 64:

4 N N : . (" )
0’x n av 0 Ex
\ ' __jia_____ } (A.3)
o = nv 1 o - . € A.3
ﬁ y 1 -.av?) 2 A y
2 .
1 0 0 m(1-nv?
. Tx-y ot ce ( 2) YXY
S | -~ . J
where ’ﬁ -
n= EL’
2
A
m=g
2
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in which E1 and E2 are the principal elastic moduli in the x and y

direction, vz is the Poisson's ratio, and G2 is the shear modulus.

For the isotropi s = v, =V - )
e isotropic case E1 Ez’ ) » and m 2(1 + v)

A.2 In-Plane Finite Element Analysis of Skew Plates

A.2.1 Geometry and Displacement Field

Consider a quadrilateral in-lane finite element as shown in

Fig.ABu The local coordinate system with the origin at the centroid of

the element is indicated by { and T}. The nodes are numbered counter-
clockwise with the node at the centroid being the fifth node. The
edges 1-2 and 3-4 of the quadrilateral are represented by ¢ = -1 and

Z = 1. The edges 2-3 and 4-1 are represented by 1| = -1 and ) = 1.

The in-plane element has eight-external and three intermal
degrees of freedom (Fig. a3). The exterﬁal degrees of freedom afe the
displacements uy and Vi specified at thg external nodes i, 1 = 1 to 4.
The three internal degrees of freedom are the displacements us and vs
and the strain ny. The displacement usAand v; are specified at the
fifth node while the strain ng is assumed to be constant throughout
the element. This element was originated by Doherty who designed the

element based on pﬁysical concepts and was derived by Williams using

£
i

concise variational formulation (Ref. 59).

¢

The geometrical relationships between the global}coord&nafes

and the local coordinates can be expressed in matrix form by the fol-

lowing expressioms: .
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x Qx - 0 Xy
A4 = A (A.4)
y 0 ¢ IR A - | - ‘ :

where ®

I

1
¢ =7 @+ (@ +m)

in which Xy and y; are the global coordinates of node i;‘and ng and Ci

are the local coordinates of node i.

The displacement function for the element is assumed to be a
linear shape function for the cormer points and a quadratic interpola-
;ion function for the interior point. The internal shape function
selected is the quadratic interpolation scheme with vanishing values at
the boundaries (Ref. 59). Thus, the equation {v} = [®] {vi},.for this

element, can be written as follows

u £ .0 £ 0 £ 0 £ 0 £ 0 u
1 2 ) . 5 i
= (A.5)
v 0 £ 0 £ 0 £ 0 £ 0 £ v
1 2 ) 4 5 i
= { u1 v1 u2 vz‘ u3 v3 “:,' v“ us vs} (A.5a)
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and, £

%-(1 -2 1-n | (A.5b)
£ =2 @+ @-n (A.5

2 4 . .5¢)
E =@+ a+n a5
£ =2@-2) 1+ n) : (A.5e)

v 4 : . )
£= Q- z3) (1 -1 3 (A.5£)

A.2.2 Derivation of Element Stiffness Matrix

'The strain field can be derived from the standard strain dis-
placement relationship. With the assumption of comnstant shear strain

and with the additional'stréin degree of freedom, the strain components

can be written (Ref. 59)

- - 0 r~ -
sxx U 0 ui
. €yy L = 0 v 0 - vi;_ (A.6)
Y 0 o0 1 e}
ny.l . - - J
where 9f
v = - . N A
ox . (A.63)
V=% . T (A63b)

and o is the generalized coordinate associated with the constant shear
strain degreé of freedom. The derivatives of the functiogs in

Eqs. A.6a and A.6bcan be written with the help of the chain rule
(Ref. 45):
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1 _-9¢ _9n n_~ 3¢
" 3x 3y _ 0x . &y -7

g an an  3g

8, W " on an " 3t
% 3 3y _ 3& ¥ (4.8)

oz an- on 14

The evaluation of the element stiffness for the resulting
finite element model is given in Appendix Al. The final stiffness
matrix is obtained by the application of the static condensation proce-
dure on the interior node as described in Refs. 17 and 18. The element

is known as Q8D11.

The explicit integratiom of the stiffness matrix integral is
a lengthy process and difficult. The usual procedure in this case is

to use the numerical integration procedure (Refs. 45,59,64).

In the procedure, the terms of the matrices are evaluated at
several points call integration points. The Gaussian quadrature formu-

lation is found to be most useful for the present problem. In the

‘forﬁulation, the polynomial function is integrated as the sum of the

weighted values at specified points.

T Lo
Thus, a function f_l £(Z)dz can be replaced by a summation

'J'_:1 £(2)dz = jfx Wy £y (4.9

ERTR
" i
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where W, are the weight coefficients and aj are the valueé of the

function at the n specified points.
The double integral of the form

l 1
_'Iv=_f ' £(M d¢ dn (A.10)

- -l
can be replaced by the following summation (Ref. 64):
n n

I1=23 TW. W, £ (a,,b
i ogm 31 (25200 (4.11)

The numerical values of the coordinates at the integration
points and the weight coefficients for different values.of n are
given by Zienkiewicz (Ref. 64). For this element, William has shown
that the 2 x 2 Gaussian quadrature forﬁula provides better results
in stiffness than the improved 3 x 3 Gaussian integration scheme

(Ref. 59). The coordinates of the integration points are shown in

Fig. A4 and the weight coefficients are equal to 1 (Ref. 64).

The following should be noted-in connection with this

~element. First, since a different shape function is used to describe
individual displacement and strain components, the variation of
displacemenﬁ is not homogeneous.v The stiffness property of the
element is therefore directionai. Secondly, monotohic.convergence
and boundedness is lost according to the Melosh criﬁéii5h (ﬁéf. 34).
This criterion reéuires that interpolation function of internil nodes
must be416§er than the external node. However, this eieméﬁ% has
been shown to give more flexible and better results among the 8

degree of freedom family displacement models (Ref. 59).
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The Q8D1l1 element has been tested and compared with other

. finite elements by William (Ref. 59). The same study showed the

efficiency and accuracy of the element among the other finite
elements. This élement will bé combined with the.plate_bending
élement in Section A.4 to make up the bgsic platé element used in
this sfudy. Numerical examples are providedvto illustrate the

accuracy of the element.

A.2.3 Numerical Examples and Comparisons

The accuracy of the finite element solution for rectangular

plate problems as compared with theoretically exact answers has been

reported and shown by Zienkiewicz, and Tottenham and Brebbia (Refs.
56,64). Unfortunately, very little data is available for skew plate

problems except for the very simple cases.

The method of analysis must be applicable for all angles of °

skew. Therefore, the first test example is a rectangular plate under

uniform édge 1oadiﬁg and under pure shear loading. The pléte proper-
ties and dimensions are shown in Fig. A.5. The skew angle is 90° and
the exact solutid; can be found from the theory of elasticity. vThe

results,grg ngqlgted in Tables Al and A2. It can be noted that uni-

form strain for these loadings is accurately predicted by the element.

The CST, that is, constant strain triangle (Ref. 52), finite element
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solution is also shown in .Tables Al and A2 for comparison.. The CST dis~
cretization in this example was with the use of 8'triangular elements
formed by connecting two opposite corner nodes of the complete plate

and connecting the midpoints of opposite sides.

The secoﬁd exémple 15 a skew plate under uniform edge loading
as shown in Fig. A6. The state of stress for this proglem is uniform
throughout the element and can be found'directly from equilibrium. The
example illustrates the applicability of the element to plate problems
with a parallelogram shape. The discretization into four rhombic ele-
ments is shown in Fig. A6b. The discretization into eight triangular
elements for the CST analysis»follows the same procedure as the first
example. The numerical results are tabulated in Table A3. Sinee the
exact solution is that of constant strain, the amalytical results veri-

fied the analytical model.

The third example is a skew plate under in—piane concentrated
loads. The plate shown in Fig.A7 is fixed at the supports and s&b-
jected to two conéentféted lqads ﬁear midspan. This problem is chosen
to illustrate the accuracy of the element under this type.of loading.
There is no exact solution for this problem. The solutions are pro-
vided by using linear strain equilétéral -LSE (Ref._60), constant
#train triangle -CST-(Ref. 52), and the reported valuég from Ref. 59.

The results are tabulated in Table A4. . Lo

"% 08D8 refers to the quadrilateral element with only four nodes
and tﬁquegrees of freedom at each node. Q8D11(3) refers to the de~
rived finite element using the 3 x3 integration rule. The Q8D11(2)
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refers to the element formulation using the 2 x 2 integration rule.

The accuracy of the element using the relaxed integration rule

can be seen from the table.

The final example is the problem of the beam with inclined
.faces under a concentrated load at midspan. The structure is shownin
Fig. A8a and the two selected discretizations are shown in Figs: A8b
and A8c. The analytical solution is compared to the solﬁtion by
Siéodiya and Cheung (Ref. 53) who used a higher order element that
gives good results for the given type of structure and loading. The
results aré tabulated in Table A5. The advantage of the element over

the standard Q8D8 is made obvious in this example.

It should be emphasized that this example is the most severe
case the element will be subjected to. In the application of this
element to thg beam slab problem, the element will represent the
in-plane behavior of thé deck slab. As such, the typical type of load-
ing would be in-plané loads in the directiqn of séan thus producing

column behavior rather than beam behavior. The results of this example

are the reasons for the choice of another element to represent the

in-plane behavior of webs for box-beam bridges in Chapter 4.

ch . -

A.3 Skew Plate Bending Analysis

A.3.1 Methods of Solutions

»~ The--exact solution to the differential equation of skew

plates in bending is difficult to obtain if at all possible. Fg; the

b
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simplé cases, the problem is solved by direct integration of the dif-
ferential equation under associated boundary coﬁditions; or by the
application of conformal mapping (Ref. 27). Subsequently, a number of
studies have been concerned with investigations of the methods‘of solu-
tion, the most common being the series solutions and the method of
finite difference (Ref. 26). Solutions in oblique coordinates, trigo- |
nometric series, and finite difference solutions by several authors are
listed and referenced by Morley in Ref. 37. Solutions by polynoﬁials
and trigonometric functions have been-obtained by Juﬁppanem (Ref. 27)

and Kennedy and Simon (Ref. 28).

Based on model tests Rusch (Ref. 48) produced design data in

- the form of influence surfa@es for bending and torsional moments of
simply-supported slabs with various angles of skew. A series of thir-
teen skew slab models of different side to length ratio were investi-
gated. The slab models tested were all simple spamn structures and made
of gypsum plasﬁer. As in.any model sﬁudy, it was not possible to inves;

tigate all parameters.

One of the earliest solutions using the finite difference
methods was made by Jensen (Ref. 26). This was followed by Chen et al.

in 1957 and by Robinson in 1959 (Refs. 9, 47).

Within thé pést decade, the finite element technique has been
employed successfully to‘analyze plates of arbitrary shape (Refs..5,10,
18). Zienkiewicz and Cheung, and Melosh used the techﬁiau;ﬁgo analyze
pPlates in bending (Refs. 34,64) using rectangular elements. Based on

the same deformation pattern used in the rectangular plate element
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Dawe (Ref. 11) developed the stiffness matrices for parallelogram ele-

ments. Subsequently triangular éiéments‘were introduced, the most com-
mon being those by Zienkiewicz and Cheung (Ref. 64) and by Clough and

Tocher (Ref. 10). Further improvements in accuracy were subsequently

obtained by Felippa and Clough (Ref. 18), and Bogumer et al. (Raf. 5)

with the use of refined and higher order elements.

A.3.2 Assumptions and Basic Equations

A typical.element from a skew plate structure is shown in

Fig. A9. The element is of differential dimensionms whose sides are

. parallel to the orthogonal x-y system of coordinates. The reference

" plane is assumed to lie on the mid-plane of the plate. Forces, dis-

placements and the adopted sign conventions are shown in the positive
directions in Fig. A9. The plate is assumed to be elastic, homogeneous,
orthotropic and of uniform thickness, t. The standard assumptions in

small deflection theory of plates are employed:

2

1. Stresses normal to the plate are negligible

2. Deflections are small relative to the plate thickmess

3. Deflection in the z direction is a fumction of x and y only
4._ Shear strains Yxz, Yyz in the x and y faces of the element

and in the direction of z are equal to zero.

The consequence of the above assumptions is that normals to

the plate remain normal after deformatiom.
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e assumptions, the displacement equations may be

From the abov

written as: .
. ow
U(z) =u - 237 (A.12a)
= W 4
V(z) =v=-2z3 | (A.120)

where U(z) and V(z) are the displacement components of the point at

distance z from the reference plane; and u, V, and w are the displace-

ment components of the point on the reference plane.

Equations A.12a and A.2b cad be differentiated to obtain the

relationship of the strains to displacements:

- f 7
) [, |
X - ' 9x . 3xz
v 3w ; '
€. L = — -z f (A.13)
3 y J} dy 3z2 : :
\ w3y, P
Xy dy ¢°x 3xdy
[ 7 L J

The stress-strain relationship given by Eq. A.3 in Sectioﬁ A.l,..z can

~ then be rewritten explicitiy by substituting the above expressions for

-ex, ey and ny:

g =C _22_23_3_1 +C -gl’--z——az"-' (A.1lba)
du 3.2w : v 92w
= — —— + — o e
GY c21 ( ox z 32{2‘) .sz ( oy z ayz ) ‘ (A.14b)
-134-



= ' é“_ a_v__. .____._azw
YX‘Y Cas ( dy * 22 9x3y ) (A.1l4c)

where Cu, cu, Cz1’ Ca3 are the material constants evaluated from

Eq. A.3.

The stress resultants per unit of the plate shown in Fig. A.9b

are found by integrating over the thickness.

Thus, t/2 S
L f-clz oy z dz ' (A.15a)
- rt/2
My L= [-t/z cy z dz (A.15b)
. t/2 ~
M = g 2z dz |
xy -t/2 xy (A.15¢)

Using Eq.A.14 and the assumption of plane sections, the
above equations can be integrated easily resulting to the following

equations in matrix form:

Y - ( 3
M D D 0 -3__?}7_
x 11 12 g2
y - | 3w L
A r"_ Pyp Py o 0 4 392 (A.16)
i ¥ ’
M 6 0 -D -zg—zg—
L ny L 33 | L X9y
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where ¢ t?

a3 12

Equation  A.16 is the explicit form of the equation {0} = [D]{e}

appiied to plate bending.

A.4 A Finite Element Analysis of Skew Plates in Bending

In this section, the general quadrilateral element is pre-
sented. The elzment is developed by Feiippa and reported in Ref. 18.
This element is employed in the reported.investigation. The element
has been tested under a variety of boundary conditions and the results

compare favorably with the theory of elasticity solutions (Ref. 18).

The qﬁadrilateral element is a conforming element formed from
lfour triangular elements which satisfy deflection and slope continuity
along the boundaries. Eaéh one of the triamgular eleﬁents is known as
the LCCT-11 or the linear curvature compatible triéngle with eleven
fundamental degrees of freedom. The LCCT-11 is a simplified fo?m of
the triangular element LCCT-12 which has twelve degrees o%hfreedom.
The>LCCT-11 is obtained from LCCT-12 by imp&sing the linééf vari#tion

of the slope normal to one side of the triangle.
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‘The element formulatiom is outlined in the following sec-

tions. Detailed derivatioms can be found in Refs. 17, 46 and 50.

A.4.1 Element Coordinate Systems

The gecmetry of a triangular element can be expressed by the
projected dimensions in cartesian coordinate system (Fig.. Al0), by
intrinsic dimensions (Fig. All), or by dimensions in the natural coordi-

pnate system (Fig. Al2).

In Fig. AiZ,AI, Az’ A3 are the three subtriangles subtended

by point P such that
(A.17)

PL}D

8y =

where the index 1 = 1, 2, or 3 designates the number of the cormer

opposite to A, and A is the total area of the complete triangle.

i

From Fig. All, Eq. A.17 can also be written as

n

;i = (A. 18)

o
e

where n, is the normal distance of point P and hi is the height of

node i from side i. These relationships are used to simplify the

expressions in ‘the element stiffness formulatioms.

The relationship between cartesian and natural coordinates

is expressed as follows (Ref. 33):
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(A.19)

A
W
N
[
(¥
M
M
A
oY
nN
v

where x, ‘and y; are the coordinates of the nodes 1, i=1, 2, 3.

The inverse relationship can be obtained by solving for cl,

;2, and ca from Eq. A.19:

r — ~
4 ] 2A b a B 1 ]
1 1 1 1
1
. ;2 h = 24 2A2 bz 32 - XX »r » . (A.ZO)
1 2A b
Lcs J L_ 3 3 aa__ L y J

where ai and bi are the projected dimensioﬁs shown in Fig. AlO.

The derivatives of a function f(cl, Cz, Cs) with respect to

the x, and y axes and a normal ni can be obtained by the chain rule
' .

(Ref. 33):
' of 1 of of of

of _ 1L (8L o 4+ (d.,- &) -5 4, [(a.21)

n,o 24 (aci 17 9gy 1 T4 3% i)

f _1 [23f of A ) -

= A ( BCI b1 + Ye b2 + acs bs) o (A.22)

of _ 1 of of of A.23

vy 2 (cax+aca+3ca) (429
1 2
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where coordinates di and 11 are shown in Fig. All.

The above relationships are used in the formulation of the

element displacement field and stiffness properties in Sections A.4.2

i

and A.4.3.

A.4.2 Construction of the Element Displacement Field

The twelve fundamental degrees of freedom for the LCCT-12

element at the external nodes of the triangular element are shown in

Fig.Al3. These can be expressed as components of the nodal displace-

ment vector {r}:

. T-.
{r}" = {Yx exz ey1~wz exz eyé Y3 exa eya 6“ es es} ' (a.24)

where wi, <i

the x-axis, and rotation about the y-axis respectively of node i. 6“,

) and eyi are the transverse displacement, rotation about

95 and 9s are normal slopes at the midside nodes of the element

boundaries.

As proposed by Felippa (Ref. 17) the element is subdivided
into three subtriangles or subelements as shown in Fig.Al3. Each sub-

element has three displacement components at each node and one rotation

'component at the midpoint of the outer side (Fig. Al13). Point O is

located at the centroid of the complete triangular element.' Indepen—

dent cubic displacement functioms, are then assumed for each subelement.

The nodal displacements for each triangle can be listed as

follows:
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T
(1), _
{7} {wz exz eyz wa exs eya wo exo eyo 65} (A.25a)
T -.
(), _
{£V"’} = {w3 e, Bya v, ax1 6y1 v 84 eyo 96} (A.25b)
ROn :
®)} ={w 6_6_ _w 6 6 w O 8 8.}
1 X1 y1 2 X2 y2 o0 X0 yo 7 (A.25¢)

- Since each subelement has ten degrees of freedom a complete

cubic polynomial expressicn can be used (Ref. 18). Thus for subelement i:

ICV A =3 o (A.26)

where [fb(i)] is the interpolating polynomial that relates displacements

 within the element to the nodal displacements by {v} = [8] {Vi}"

; The explicit expression for ®(i) for i=1 has been derived and presented

by Felippa in Ref. 18:

(1) e

C: (3-2C ) +6u
1 3 1 2 3

2 (1), (D) a).(1) L)
c (ba Cz bz ;3)+(b3 1-13 - bl )«ClCzCa

2 , ), _ (1) (), (1) _ (1)
g (8,7, 78, e (a, ", a, )Lt
2 _ (1)
z, @ 2z ) + 6177 2,28,
T .
0@ o] 22 6P - My W —pNMy £y (A.27)
o 2 3 s 17 a2 PR 17273
| 2 . (1), _ Q1) (1) (1), ()
‘, o : ' A (all %7 % ;x)'+ (az T3 >‘3' ) £.%5%
2 3-2¢)
3 3’
‘ - 2 Mg - M)
3 2 1 1 2
tZ (aCI)C - a(l); )
s 1 1 1 2

(1) .
4 s Clczca .
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where, , Ai ='§£."
i
=1-2

and, By Ay

The above interpolation function is a complete pblynomial

based on ‘the choice of nodal system for n=3, i.e. cubic polynomial

(Refs. 17,33).
The subscripts used in the above correspond to the renumbered

node in Fig. Al4; and therefore the function is the same for the other

elements except for the superscript.

The vector of all the nodal displacements is expressed

in the order gived by Eq.A.25. The displacemént w of the complete tri-

. angular element can then be expressed by:

r . - -
¢y 9 p
_ e o
() | _ Te
17 = % 9 (A.28)
r
w(a) d ¢ °
L J € o

where the superscripts refer to the subelement number and

¢e4 refers to the interpolation polynomial associated with

the displacements {re} at the external nodes, and

Qo refers to the interpolation polynomial associated with

°

the displacements'{ro} at the internal node
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Transverse displacement of two adjacent subelements are iden-

tical along the juncture line. However, along this line their normal
slopes differ. To impose slope compatibility along the internal edges,
additional nodes 7, 8 and 9 are located ét midpoint of these edges
(Fig. A15). The normal slopes are computed from Eq. A.21 and evaluated
at nodes 7, 8 and 9. The resulting compatibility equations are then
used to evaluate the displaceﬁents at the internal node'{ro} in terms

of the displacements at the external nodes'{re}.

The final displacement field is then written only in terms of

the external degrees of freedom:

A

The explicit expression for ¢(i) is given in Appendix AZ for

ready reference.

A.4.3 Derivation of the Element Stiffness Matrix _

The stiffness matrix for each subelement can be derived fol-
lowing the procedure outlined in Ref. 65 tiogether with the dis-

placement function given in Eq. A.28.

From Eq. A.16 {e} is defined to be:

-142-

(o] [ o]

o w(z) b = 8(2) . ’ {r} (A. 29) ’
(2) NOB

v LY




- 32 .
{e}=< — » (A.30)

_;2 9%y
L dxdy y

and is known as the curvature field.

For subelement i, the curvature field cam be obtained by pro-
per differentiation of the displacement function given by Eq. A.28, and
the use of Eqs. A.22 and A.23

p— e

ax?

) {e(i)} _ 323(1)

{r} = 1P () (A.31)

The nodal values of the curvature can be obtained by evalu-

ating Eq. A.30 .at the nodes. Thus

‘{eii)} = [Qéi)] {r} S | (A.32) ¢

where {sii)} is the vector of nodal curvatures and [ééi)] is the m#trix

[T(i)] evaluated at the node points of element i.
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The linear curvature variation within the subelement can now

be expressed in terms of the nodal curvatures by a linear interpolating

function [@al such that

@y P Py (4.33)
where r £ ¢ 0 o 0 0 0 0.]
1 2 3
[@éi)]= o o0 0.z £ T 0 0 O
1 2 3
0 0 0 0 0 0 ¢ X z
1 2 34

wWith Eqs. A.16 and A.32, the stiffness matrix can

be evaluated:
@) - @] 6@ o1 801 a fo, (8.3
- B e £ B]' -34)

Since the stiffness matrix of a subelement is expressed in
terms of the same set of nodal coordinates, the stiffness matrix of the

complete triangular element is obtained by adding the contributions of

the three subelements, thus,
ted = ™+ w1+ e®p - (A.35)

Four of these triangular.elements are ass;mbled to form the
quadrilateral. The midpoint nodes at the outermost side of the quadri-
lateral are however undesireable. These nodes require séecial program-
ming procedures for identification in input and in the calculation of

the global stiffness matrix. Moreover, these nodes increase the band
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The first example is the square plate shown in Fig. Al7. The
dimensions of the plate are shown in Fig. Al7a. Due to symmetry only a
quarter of the plate is analyzed. The discretization schemes used for
this problem are illustrated in Figs. Al7b to Al7f. The three cases con-
sidered for this problem are: (1) concentrated load at the center of
the plate with completely fixed supports, (2) concentrated load at the
center of the plate with simple supports, and (3) uniform load through-
out the plate with simple supports. For all these cases Poisson's

ratio is assumed to be equal to 0.3.

The error in percent of deflection at the center of the plate
resulting from the analy;es and those reported in literature are shown
in Figs. Al8 and Al19 and Tables A6 and A7 for the first two cases. 1In
these figures, the lines corresponding to elements developed by
Wegmuller-Kostem (WK),  Adini, Clough and Melosh (ACM), Melosh (M), and
Pappenfuss (P) are taken from Ref. 58. The bending moments Mx and My
for the third case are shown in Fig. A20. Shown also in this figure are
the theoretical moments from Ref. 55. The above example shows the good

convergence of the displacements and moments.

The second problem is a skew plate with uniform load and
simply supported‘on all sides. The plate is ideally a rhombic plate,
all sides of which are equal, and whose skew angle is varied (Fig. A21,
inset). T@e plate is discretized into 64 equal skew elements. Rotation
about the skew supports is allowed except at the cormers which are com-
pleEely fixed. 'The reduction in the deflection at the center of a skew

plate due to the increase of skew is depicted in Fig. A21. The change

=145~



widtﬁ of the assembled equations. In order to avoid this difficulty,
without violating compatibility'requirements, the midside node can be
elimipated by imposing the normal slope to vary linearly along the side
(Ref. 18). For example 6b in Fig.Al3 can be expressed as the average
of the corresponding slope at nodes 1 and-i. Since 6; is expressed now
in terms of Gx and ey at nodes l.and~2, Eq. A.28 is reduced to eleven
components. ;The resulting element is the LCCT-1l.

The ﬁértially'constrained elements are assembled to a qﬁadri—
lateral element“éuch that tﬁere are no midside nodes at the extefior
edges (Fig. AlS),‘The resulting general quadrilateral'has nineteen
degrees of freedom and more commonly known as Q-19. The seven intermal
degrees of freedom are eliminated by a static condensation procedure as
discussed in Refs. 17 énd 18.Thus the.final quadrilateral is fully com-
patible, with linear variation of normal slopes at the edges. The ele-
ment has twelve degrees of freedom: one translation and two rotations

at each of the cormer nodes.

A.4.4 Numerical Examples and Comparisons

Several example problems are presented to illustrate the ap-

plication of the quadrilateral element to plate bending problems. Dif-

ferent discretization schemes are used in some of the problems to com-
pare the accuracy and convergence of the solution with tests and other
reported solutions. The different cases studied for each problem are

depicted in Fig. AlS6.
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in the principal moments M1 as the ske& angle is varied is shown in
Fig. X22. For comparison, the finite difference and series solutions
from Ref. 37 are also shown. The large decrease in deflection and in

moment especially at skew angles beyond 60° can be observed.

The third example is a 45° skéw plate which is simply sup- .
ported on two sides. The plate i$ subjected to a concent;aﬁed load P at
the center. Plate dimensions, material properties and thé discretiza-
tion for this problem are iliustrated in Fig. A23. The theoretical re-
sults for the déflection and principal-moments using finite difference,
finite element and experimental values are listed in Table A8. The fi-
nite element results are comparable with the numerical values of the ex-
periment. In most cases, the finite elemgnt results are between the ex-

perimental and the finite difference solution employing the finer mesh.

The fourth example is a skew slab model made of gypsum plas-
ter. Two cases are studied: ome with uniform load throughout the.slab
model and another with a concentrated load at the center. The test re-
sults are reported by‘Rusch in Ref. 48. The slab model is shown in

Fig.A24 with the properties and dimensions indicated. : Points A, B, and

E are specifiecally selected for comparison of moments. Point A is at

midspan and near the e&ge, point B is at the’cenéer of the slab and
point E near thebébt;;e corner of the support (Fig.Azé)L Three dis-
cretizations have been tried as shown in Figs. A24 and AZS. ‘Different
discretization; aré used so that finer discretization could be.employed
near the points of interest. Table A9 shows the comparison of moments

at points A, B, and E between the model test and the finite element
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solutions for a uﬁiform load of 100 psi. Table Al0 lists the results for
a concentéated unit load at the center of the plate. The values of the
moments at points A and B are quite comparable with the experimental
values. However, at point E, large discrepancies are observed. The
third discretization gaﬁe only slightly improved_results for point E.
It is important to note here that computed values near the obtuse angle
corners are questionable since they are near a region of'high moment
gradient.

| The final example is a skew plate supported on two sides with
varying angle of skew But with constant width to span ratio. The de;
flections‘and-moments at the center of the plate using the finite dif-
ference solution and the finite element procedure are shown in Figs. A26
and A27. Good correlation is observed between finite difference and fi-
nite element except at the 60° skew.where the available value of the
width to span ratio is 0.52 instead of 0.50. A sharp decrease in the
principal moment is observed for the skews beyond 60° and a much

sharper decrease in deflection is obtained beyond 75°.

A.5 ,Summagz

The analysis of ékew plates under in-plane and lateral forces
have.been presented in this Appendix. The develéﬁment of the analysis
technique with the use of the finitg element method of analysis was
i1llustrated for the in-plane and the plate bending elements. Numerical
éxamples were shown to demonstrate the application of the method of
analysis‘to skew in-plane and plate bending problems subjected to uni-
form and concentrated in-plane and lateral forces.

-148-



A SQUARE PIATE UNDER UNIFORM EDGE LOADING (Fig. A5a)

TABLE

Al

IN~-PLANE DISPLACEMENTS AND STRESSES IN

Node Quantity1 Q8pl1l CST2 Exact
(Ref. 52)
u 1.66667 | 1.66667 1.66667
v 0. 0. 0.
5 .ox 1.0 0.99995 | 1.0
| o, 0. 0.00149 0.
xy 0. 0.00161 0.
u 3.33333 | 3.33333 3.33333
v 0.25 0.25 0.25
9 o, 1.0 0.99368 1.0
s 0. 0.00065 0.
Tey 0. 0.00015 0.

1 . ..
u, v displacements in inches, o .
> P s Og> Gy, Txy

2

.17 solution accuracy specified.
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TABLE A2

IN-PLANE DISPLACEMENTS AND STRESSES IN

A SQUARE PIATE UNDER IN-PLANE SHEAR (Fig. AS5b)

Quantity1 ‘ Q8D11 CST2 Exact
i (Ref. 52)
o V0. 0.00083 0.
x - d
e) 0. 0.00093 0.
y |
Txy 0.13333‘ 0.13284 0.13333
0112 999> 919 0.13333 0.13196 0.13333
=3 ~3 -3
ny 0.1022 x 10 0.1138 x 10 0.1023 x 10

stresses in ksi.

2.1% solution accuracy specified.
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.DISPLACEMENTS AND STRESSES IN A SKEW PLATE
UNDER UNIFORM EDGE LOADING (Fig. A6)

TABLE A3

u - Displacements(in.) v - Displacements(in.)
Node Q8D11 CST Node QD11  csT
1 0. 0. 1 -0.000306 -0.000308
2 0. 0. 2 0. 0.
3 0. 0. 3 0.000306 0.000301
4 0.001667 0.001657 4 0.000657 0.000647
5 0.0001667 { 0.001658 5 0.000962 0.000960
6 0.001667 0.001694 6 0.001268 0.001241
7 0.003333 0.003314 7 0.001619 0.001605
-8 0.003333 0.003339 8 0.001924 0.001889
9 0.003333 -|{ 0.003371 9 0.002230 0.002163
o, Stresses(ksi) % Stresses(ksi)
Node Q8D11 CST Node Q8pl11 CST
1 1.0 0.995 1 0. 0.
2 1.0 0.995 2 0. 0.
3 1.0 1.005 3 0. 0.
4 1.0 0.995 4 0. 0.
S5 1.0 1.002 5 0. 0.
6 1.0 1.011 6 0. 0.
7 1.0 1.002 7 0. 0.
8 1.0 1.008 8 0. 0.
9 1.0 1,007 9 0. 0.
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TABLE A4

MIDSPAN DISPLACEMENT OF A SKEW PIATE
UNDER IN-PIANE CONCENTRATED LOAD (Fig. A7):

Finite Element Analysis Displacement x 10 ft..
g Q8D81 11.40
CST2 19.58
Q8p11(3) : 30.44
Q8D11(2) 51.49
LSE 1 54.51

lRefs. 59, 60
2Ref. 52

TABLE A5

NORMAL STRESS AND DEFLECTION IN A
SIMPLY~-SUPPORTED BEAM WITH INCLINED FACES (Fig. A8)

Vertical Displacement Normal Stress

at A x P/Et , at B x P/dt
Mesh | QD8 |Q8DI1 | Ref. 53 Q8D8 | 8Dl | Ref. 53
5x2 | 9.44 |16.34 15.21 1.55 | 1.73 | - 2.54
5x4 |10.09 |13.58 17.27 1.67 | .2.52 2.96

;From Ref. 53
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"~ TABLE A6

'CENTER DEFLECTION OF A SQUARE PIATE WITH FIXED SUPPORTS

Multiplier PL?/D

‘Source | 2 x 2 4 x4 8x8 |10x10 | 16 x 16
acv | .00592 .00613 | .00580 - .00568
Q19 .00521 00515 | .00546 .00551 -
EXACT (Ref. 55). .00560

TABLE A7

CENTER DEFLECTION OF A SQUARE PIATE WITH SIMPLE SUPPORTS

Multiplier PLZ/D

Source 2x2 4 x4 8 x 8 10 x 10 16 x 16
ACM - 1.0.01378 0.01233 0.01133 = 0.01167
Q19 "'40‘.‘.00975 | 0.01106 | 0.01145 |0.01150 0.01159
EXACT (Ref. 55) ' 0.01160
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TABLE A8

RHOMBIC PIATE UNDER CONCENTRATED LOAD

TWO SIDES SIMPLY SUPPORIED, ¢ = 45° (Fig. A23)

M

Methbd w max. min.
} 2
x Pa"/D | x P x P
Finite Difference” 4 x 8 | 0.0117 | 0.331 | 0.199
Finite Difference(l) 6 x 8 0.0117 0.370 0.257
Experiment’ ") 0.0099 | 0.354 | 0.254
Finite Element 8x8 | 0.0107 0.363 | 0.253
1Ref. 37
Et>
D=-———-———-—§—
12(1-v%)
- _156-
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" TABLE A9

MOMENTS IN A SKEW PIATE UNDER UNIFORM LOAD

Multiplier x 105

Pt Moment - Discretization
Ref. 48 (1) ) " (3)
Mul 0.906 0.897 0.896
1 0.270 0.285 0.286
A uv _ .
8 0.980 0.975 0.981
ML 0.068 0.058 0.056
M 0.976 0.964 0.965 0.968
M, 0.019 | 0.010 | 0.010 0.012
B :
M 0.188 0.205 0.207 0.206
xy ' |
1.01. | 1.01 1.01 1.01
Moo 0.027 0.032 0.032 0.030
M 0.210 0.487" 0.368 0.309
. . ‘
M -0.213 {-0.160 -0.245 -0.202
. _ .
x
M 0.131 0.336 0.195 0.248
Xy . . »
M 0.238 | 0.631 0.425 0.410
‘ *
Mo -0.238 | -0.303 -0.302 | -0.302

1

*
At center of plate element.

M, M are in the direction
u’ Tuv ..

,;-: .\_"‘

of the skew.
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Fig. A3 A General Quadrilateral In~Plane Elemenf,'
Coordinate System and Associated Degrees -
of Freedom
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TABLE AIO

MOMENTS IN A SKEW PIATE UNDER CONCENTRATED I1OAD

Multiplier x 105
Pt Moment Discretization
(in-1b) : )
" in _ |Ref. 48 1y (2) 3
u ! 0.453 0.461 0.457
A, 1 0.134 . 0.125 |- 0.125
uv _
. Mx 0.684 0.667 0.658 0.643
B M.y 0.262 0.240 . 0.231 0.221
M 0.122 0.106 0.108 0.104
Xy o
Mx 0.068 0.143 0.122 0.104
E My 0.100 0.082 0.117 0.094
M 0.068 0.115 0.113 0.130
Xy :
1M s MuV are in the direction of the skew.

u
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Fig, A2 In-Plane Stresses and Forces
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Fig. A4 2 x 2 Gaussian Quadrature for the Rumerical
Integration of the Quadrilateral Finite Element
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"Fig. A5
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6.5% . .25%
b. Shear loads
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Fig. A7 -~ Skew Plate Under In-Plane Concentrated Loads

-163-



0.6d 4d

iy i_A -t
)
d
'-l\ B .jL-

. a. Structure and loading

//////
//////

b. 2 x 5 Discretization

AR
[ [/ /S S )

S S S S S )

L LS /aJ

c. 4x5 Dlscret zation

Fig. A8 Simply Supported Beam with Inclined Faces

. -164-



S e . T T
. , s )
. '
. * .

8y
z,w Iy
S Ay A Mid-Plang
v Reference Surface

a. Displacements

'1"\.,.\ -. : Qy + de

b. Stress Resultants
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Fig. A10 Projected Dimensions

Fig. All Intrinsic Dimensions
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Fig. Al5 Assembled Triangular Elements
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| a y  Case |
Concentrated load at center
Fixed supports

a)
a Case 2
Concentrated load at ceter
Simply supported

Support On All Sides Case 3
: Uniform load, simply supported

[ Y ha—t
¢ Uniform load
Skew angle & varied
o b) ge ¢

Support On 4 Sides

Case |

S |
6 Uniform load
’ Skew angle ¢ varied
\ \Qﬂ Case 2
Concentrated load at center
. ¢ = 45°

Simple Supports On 2 Sides
L Case |
— Uniform load
$  $=30°b/Ly=0.40

d) Case 2

Concentrated load
¢ =30°,b/L$ =0.40

Simpl,éj Supports 2 Sides Case 3
Uniform load
- b/L¢ =0.5,¢ varied

i’

Fig. Al6  Numerical Examples and Comparisons for Plate
"" Loading
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My x qa2 x 1072

My x qa2 x 10-2

Fig.

Exact

© 16 x16 Mesh
O 8x8 Mesh
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| Exact
B © |6x16 Mesh
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Bending Moments Mx and My in a Simply Supported
Square Plate - Uniform Load

-173-



|0°3l DEFLECTION AT CENTER OF THE PLATE x qa%/D

o Finite Difference (Ref37)

40 & Fin'iie Element
i " v=0.3
a .
30— l l X
¢
Support
20—
10—
\ { { |- 1
75 60 45 30 - \I_S.
SKEW ANGLE ¢
Fig. A21 peflection at the Center of a Simply Suppofted

Rhombic Plate - Uniform Load -
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Fig. A22 Principal Moment oo at Center of a Simply
Supported -Rhombic %late * Uniform Load
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O Finite Difference (Ref 55)
A Finite Element
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O Finite Difference (Ref. 55)

A Finite Element
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Fig. A27 Maximum Moment in a‘Skew Plate, Two Sides Simply

Supported - Uniform Load
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APPENDIX Al

Q8S11 ELEMENT STIFFNESS MATRIX
The Q8D1l element approximates the in-plane behavior of
the deck slab in this study. This element has 10 fundamental degrees

‘of freedom and one generalized coordinate ¢ describing the constant
shear ‘strain throughout the element. The derivation follows the

C o~

derivat;oh of the element Q8D9 in Ref. 59.

The relationship between the natural system of coordinate

and the global right'cartesian coordinate system is expressed by:

- | T (a.36)

The assumed displacement function is a linear shape function

for the corner points and a quadratic function for the internal

node:
)
u,
- i
u $ 0 " & 0 v,
= 3 2 < - . (A.37)
v 0 §1 0 Qa u,
_ \vb J
R
where §1 =3 (1+ CCi)(l + ﬂﬂi)

a3 . 3
¢ =(1-¢)0-17)
. -181-



The displacement gradient field can be derived from Eq.

A.37 by appropriate differentiation.

' od od N
— 0 2 0 f'u.
ox ox i
CH 3% Vi |
= 0 — o . — (A.38)
A A A A
Ly 3 Yy E B
Equation A.38 can be rewritten in the form
(~ u )
v. :
i
{w} = ([va] <« u & (A.38a)
o
v
k )
‘ /

The strain field, by assuming constant strain throughout

the element, can be written as:

B o0 % o o ||,

ax . x *
Y v

o Y 3% Py

0 — 0 2 0 K

€y aY ay . [o]
v

Yy 0 0 0 0 1 °

. ® — \Q' J
(A.39)
- -182-




Equation A.39 can be rewritten into the form

[ u )
x| Vi
e
ny vo
\dJ‘

With the use of the Hu-Washizu variational principle,

(A.39a)

William has shown in Ref. 59 that the stiffness relationship is

of the form

)
2v 0 k v
ve -
0 .=k e
= ev ee -
where for this element:
Y
{gv} B { ui Fvi Fuo Fvo}
W =y v, ouw v}
, i i o o
e = ny strain degree of freedom -

and the individual submatrices are defined as:

n

[k, ]

ev

[kve]T‘—' / [ée][D][Vii-]AdAV.

k3

ee

ll
~
1Ot

1]
[E}
—

o
(]
—
HH
[

(W)

<3

" (A.40)

(A.40a)

(A.40b)

(A.40c)

(A.404)

(A.40e)



_The submatrices are evaluated by numerical integration

described in Section A.2.3. The strain degree of freedom is elimin-
‘ated by .static condensation procedure as described in Refs. 17 and 18

resulting in the following final form of the element stiffness.

] = [k, 1" [ 70 [k, (a.41)
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APPENDIX A2

COMPATIBLE DISPIACEMENT FUNCTIONS FOR PLATE BENDING ELEMENT Q-19

This appendix contains the displacement functions for the
quadrilateral element Q-19 given by Eq. A.29. The following isv

taken from Ref. 17 and reproduced here for completeness.

‘The displacement function for sub-element 3 in Eq. A.29

is expressed by

&) =[§(3)] {r} | (A.42)
where . ) :
e @), ), ). @), ), (@) (@); B, (). (3).(a).(3)
(2 )}=@m S Tag, B ?exa Tl Mook Iek Tk Btd Nead e
(A.43)

and the individual functions are given by the following equations in

terms of the dimensions of the complete element:

e ) - -2y + e
W gl pY ual; 273
3 .
+ C3[3(k2-u3)€1+(2u3°12)§3-3u3 ¢.]
3.2 = T (baC b ) + (b =B p)CCC +1g2t3(b A
0% 1° 2% 3% 1 gua 17273 6% 2 2
+ b =25 )¢ +3(b p =b )L +(3b b A =25 )C ]
: @ . 2§>+6xggc+g3£3<} -2 ¢
W Ca 2 2® %25 2yt TR 5,
+(2)\3-p‘1)ca-3l3€1]
-185-



) 2 b c-b.C) + (b A Lt
Qexa - Ca( 3§1- 1g2) ( 3)\3- 2)g1§2g3 i 6 Ca 3<2b2

-b A -b +3(b =b A )C +(=3b =b p +2b
a3 lpl)gz ( 2 3 3) gl ( 3 1”'1 3)\3)g3]

(3)= 2 ---.
§wg §3[3(1 + pa)§1+3(1+kl)€2+(1 b xl)gal

) 2
=1 - -
: fxs 6 §3[3(3b1+ba+b1x1)g2+(b3u2 blkl)ga 3(b1+3b2+b2u2)g1]
@) 3
_4A -
§94 3La [6§1C2C3 ¥ ga~(5g3 3?]_

(3) LA 2 . _
=5 L¢, (3¢ )]
5 1

)

P s - e
?96 T 3L [ga (3§1 g3)] o

3 .

For 3. ., all the b's in §e ; are changed to a's.

Oyi %
For sub-elements 1 and 2, all superscripts and subscripts

perﬁit cyclically from 1-2-3 to 2-3-1 to 3-1-2 and from 4-5-6 to

5-6-4 to 6-4-5.
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APPENDIX B

FINITE ELEMENT ANALYSIS OF SKEWED STIFFENED PLATES

B.1 General

The type of structure discussed in this appendix is illustrated
in Fig. 4. The plate or deck in this case can have arbitrary boundaries
and the stiffeners or the beams can be eccentrically or concentrically

attached to the deck.

When the stiffeners are eccentrically attached to the plate,
the bending of the stiffeners causes in-plane deformations in the plate
in addition to the plate bending deformations. These in-plane defor-
mations are normally not considered in classical plate theory. 1In
the finite element method of analysis, the in-plane and out-of-plane

behavior can easily be represented with the use of in-plane and plate

- bending elements.

The in-plane and out-of-plane plate elements have been pre-
viously discussed. 1In this appendix, the stiffener element is de-
scribed. Since the plane of reference for the plate elements has been
defined at the midplane of the plate, the behavior of the stiffener or

beam element is also defined about this plane.

Five displacement components are selected at each node in the
present finite element approach. These are the displacement u, v, and
w in the x, y and z directions respectively, and two slopes QX and Gy

about the x and y axis respectively (Fig. Bl).
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B.2 Derivation of the Beam Element Stiffness Matrix

The stiffener element with the plane of reference as the
middle plane of the plate is shown in Fig. Bl. It is assumed that the
stiffener is attached to the plate along the boundary of a plate ele-
ment. It is further assumed that external loads are applied only to

the plate elements or directly at the nodes. Bending about the z-axis

is neglected.

In order to satisfy compatibility of displacement along the
juncture of the plate and the stiffener elements, the displacement
functions of the plate along the juncture must be the same as for the

stiffener element. Since the assumed in-plane behavior of the plate

is linear and the out-of-plane behavior is cubic, a linear displacement

functions is assumed for the in-plane behavior of the beam, and a cubic

displacement function is assumed for the out-of-plane behavior of the
beam. Furthermore, since the normal slope of the plate is assumed to
vary linearly along the boundary, the twist of the beam along this

boundary is assumed to be linear.
The geometry of the beam element can be described in terms of

non-dimensional coordinates:

g = L ; X (B.1a)

=X
g =2 (B.1b)

where L is in the direction of the x-axis.
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C e

The linear displacement function for u.and the cubic dis-

placement function for w can then be written as

u = al Cl CZCZ | (B.2)
2

w=o0actgl at® azz® aczc (8.3)
31 4 2 s 1 2 g 1 2

) s . {=} (3.4)
1 2

where {a}T ={a ¢ o o o ol
1 2 3 & s s

The coefficients ¢ and a2 can be determined from the two in-
1
plane model displacements at the two nodes, and o a ¢ , and ¢ can
3 4 5 6

be determined from the two out-of-plane displacements and two rotations

at the two nodes.

The nodal displacements can be written as,
e} = {u, w, 8 w, 0.}
Ts (O U £ s T T (8.5

. d : in- i dw,, w, 8 ., and
where u; and u, -are the in-plane displacements, an Wi » 940

Oyk are the out-of-plane displacements and rotations, at nodes i and k

respectively. Qy can be expressed by definition and the use of the

chain rule, i :
'3

o 0w _ 3w, %, v %, (B.6)

y 9= 3;1 9x Bcz ox
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The nodal displacements can now be expressed in terms of the

unknown coefficients from Eqs. B.4 and B.6.

a \
Coug ) 1.0 O 0 0 0 ( .
. v 0 0 1 0 .0 0 a

en‘ 0O 0 -3/L 0 1/L 0 @ L
< & = S < (B.7)
u 0 1 0 0 0. 0 o,
0

v, 0o 0 O 1 0 o
3/L -1/L o

\ 8 x ) ] c 0 0 / 0 L %

The vector of unknown coefficients can be expressed in terms

of the nodal displacements by solving for {a} in Eq. B.7. Hence,

RN 1 0 0 0 0 O (uw )
1
o 0 0 0 1 0 O W
2
a, o 1. 0 0 0 0 8 : L - 5.
& = R _< M4
1 e o 0 0 0 1 0 u , ,
4
a 6°3 L 0 0 0 v
L % L O BN L
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Substitution of Eq. B.8 into Eq. B.4 leads to the displacement

function expression in the form of

u £ 0 0 £ 0 0
s1 s2
= Tr
w 0 £ £ 0 £ £ { s} (8.9)
_ s3 sS4 S5 S8
where fs1 = C1 4(B.9é)
s2 Cz ' ~ - (B.9b)
3 2 '
= + 3. . .
fS3 Cl 3 ;162 ’ FB 907)
_ L2 :
£, =85, L » ' (B.9d)
£ = 3 + 2 - ’ (B.g
S5 Z;z 3 C1€2 e)
- _ 2
ss C1§2 L (B.9f)

It should be noted that the resulting interpolation functions
-are the same functions as the in-plane and plate bending elements along

the boundary.

2

3 3w
Defining . = —E, and C = - — to be the strain and the cur-
X 9% 3%

vature respectively, at any point along the reference axis of the stiff-

ener element, then

r of S2

S1 0 —_— 0 0
Sx ax 0 | ox .
= | s
0 2
| € J ° ax’ o’ ox
i 1 may
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The components of C can be determined with the use of the

chain rule,

N 2 ' 2
3¢ 2. (3T 3¢ 52 [ %,
.._a_.=§..z__ .3.._1. +3§ac -é-i-l'- . -5;3- .+-—2- 3% (B.12)
e |\ %) R | E ]

The normal strain and curvature at the nodes can be evaluated

by applying Eq. B.12 to Eq. B.1ll and substituting coordinate values

r 3\
u,
i
N\ ' .
rex -1/L 0 0 1/L 0 0 ¥i
. Qyi
c. =] 0 -6/12 -41L O 6/L2 2/L |< - (B.13)
AT
Yk
C, 0 6/L2 2/L 0 . -6/L* 4/L || w
\ / , B
—
L Ok J
or {ec} = [@c] '{rs} ‘ ' _ ’ (B.13a)
s s .
where {e} = €. Cy» C are the normal strain and curvatures at
node 1 and k .
[® ] = Normal strain and curvature iﬁterpolating functions
c

evaluated at the nodes.

With the assumption that plane sections remain plane before
and after deformation, the displacement equation for any point on the

beam at a distance of z from the reference plane can be written as:
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U(z) = u - z‘-g% (B.14)

The normal strain Ex can be defined by differentiating Egq.

B.14, from which the stress-strain relation for the beam becomes

2 .
g =E u_ 3w | | (B.15)
8 s o9x 2
ox

t

where os stress on a stiffener element at- distance z from the

reference axis

E

s is the modulus of elasticity of the beam

assuming only a uniaxial state of stress for the beam.

The generalized forces acting on the beam section can be

evaluated by integrating Eq. B.15,

.

t/2
NS = / o dA ) : o
-t/2 S (B.16)
/t/z Ry s V.
M= c_ z dA . ‘ B.17
s _ej2 s ( )

These generalized forces can then be expressed in matrix form as,

du
Ns Aé Ss A%
= Es ﬁ ) } (B.18)
A 3w |
MS | s Is Tz
- = J
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where A = cross—-sectional area of the stiffener
S = first moment of the stiffener area with respect to
the plane of reference
I = moment of inertia of the stiffener area with respect

to the plane of reference

Given the normal strain and curvatures at the nodes as
_expressed by Eq. B.13, the strain and curvature expressions can be

written in terms of strain interpolation functions. Thus

[ i [~ r 3

Ju
- 1 0 0 €,
b F = $ Ci { (B.19)
3w
Y o || %
[ 3x i L B
’ = ' -. B.2
or {e}s [¢.] _{ec} _ (B.20)
s s
_ . du - Pw
where {s}s = normal strain and curvature x and - along the

axis of the beam element about the reference plane
[#_ ] = strain interpolation functions which express a con-
stant variation of normal strainm and a linear vari-

ation of curvature

{e } = normal strain €k and curvature C at the nodes
c' s

The specific characteristics for the beam element can be

expressed from Eq. B.18 to be,
o]y ' | ~ (B.21)

which are already integrated for the complete beam section,
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The integral of the triple produce in the general expression
for the stiffness matrix can be evaluated from [@E]s from Eq. B.20,

and [D]s from Eq. B.21. Thus after integration,

— s, s, -
A 7 T
s - I I
T = s 5 s
/[4‘?5],5 (DI, [¢ )1 &x=E L | 3 3 3 (B.22)
' s 1 1
s 8 s
| 2 6 3

The integration in Eq. B.22 is carried out only through the
length because [D] is already expressed for the cross-section in Eq.

B.18.

The stiffness matrix expression for the beam element can now

be evaluated with Eqs. B.13 and B.22:

k1, = (0,17 f 61 (01 [8,] ax (9]
S s

s s
e - —‘1- _
A S A S
S 0 S - = 0 - =
L L L L
121 GIS lZIs - 6Is
- "7 O - -3
L L L L
41 ) Ei 61 ZIS
L L Lz L
. (B.23)
A
. L L
| 121s GIS
Symmetric L 12
41
-2
| ‘ . L
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It should be noted that the above expressiom is only for the

bending stiffness of the beam. The torsional stiffness is derived

separately in the following paragraphs.

For the present analysis, only St. Venant torsion is con-
sidered. It:hasfbeen shown that for rectangular and stocky bezm cross-

sections, most of the applied twisting moment is resisted by St. Venant

torsion (Ref. 58).

in the beam element is related to

The twisting moment Ts

the angle of twist ¢ by the relatiom:

Ts.&. = GK: 9’ : (B.24)

where o' = %; ( %3-) or the rate of change of angle of twist
G = shear modulus
K, = St. Venant torsional constant

With the assumption that the angle of twist varies linearly

along the length of the element, and recognizing that the angle of

twist at the nodes corresponds to the rotation about the longitudinal

axis of the beam, the torsional rotatiom function can be writtem in

terms of linear interpolation functions and the nodal rotatioms. Thus

{4} = [z, C2] B (B.25)

yi.
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1 exi
Z ] (B.26)

eyi

-

@ [

Following the procedure for the beam bending element:and

using the given rotation function, the following matrices-canfbg

defined: i , ,
(D], = Gk, . " (B.27)
PQe]t = [1] | - (B.28)
1 1
[<1’c]t = [- I 1 ] . (B.29)

From the general expression for the stiffness matrix, integration

long the length leads to

to 1T [ a oT |
e, = 12,1 f CRHONIRILS (RN

i

. .
~
o’
L]
L'D"
(=]

el

~-
I
N

B.3 Assembly of the System Stiffness Ma;rix

* The stiffness matrices of the individual elements are assem

bled to form the structural stiffness matrix of the complete syétem,

The procedure is described in detail in Ref. 64. 1In the following,

the assembly of the elements is illustrated in matrix form to show the

-
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interaction of individual elements as defined by the global force and

displacement vectors.

The in-plane and bending plate elements are assenbled-firsﬁ
to form a combined element with five degrees of freedom at each node.
Since the in-plane plate eleﬁent and out-of-plane plate element both
1ie_on.th§~same reference_plane, there is no igteraction between them.

Hence, for example

3 ' ]
kI i 0
(k) =} ——q—- (B.31)
0 1k
‘ —
where kI is a 2 x 2 matrix associated with u and v displacement compo-

nents and kII is 2 3 x 3 matrix associated with the w, ex, ex displace-

ment -and rotation components.

For the whole plate element with nodes 1, 2, 3 and 4,

1 o ; . ( 3 ( \
. F r
Dol 1 !
% ‘ g Fz & rz
i = [k,,] \. _
oy Y F 1304 (B.32)
Bl ' s 3 . 3 |
D F T
2 i ; L [} i [

;
£

where,th submatrices of [kij] are in the form of Eq. B.31, and

S
(B = {F,; Fu Fpy My Mib goay
Ar Waeilu v, w, 6,6}
fori =1, 2, 3, or 4. : .
: ‘ -198-



The bending and torsional stiffness matrices of the beam ele-

ment are assembled in a similar manner. The stiffness terms associated

with the neglected displacement component are taken as zero in forming

the complete five degrees of freedom system at the node. Hence, from

Eq.B.23 and Eq.B.30 at beam nodes i and k,

xi

yi

T

AL%20 0 0
S

0 0 0

zi

yi

xk

vk

zk

0

SL?Z -AL20 O
s s

0 o0 0 o0

121
s

F Symmetric

-6I L O
s

0 -121
s

4112 -s 120 6I 1L
. s s : s

AL% 0
S

. 0

0

0

121
. S

0 -s 1.2
S
0 0
0 -6I L
s
Gk \
E—‘ 0
S
0 21 1.2
S
0 s L2
S
0 0
0 6I L
. 8
thL
L2
= 0
.8
41 1.2
S
- J:

vk

(B.35)

The stiffness matrix expression for the beam element in

Eq. B.35 can be modified to include the additional deflection due to

shear (Ref. 45).

Defining
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The beam stiffness matrix

deformation (Ref. 45).

.

s
Hed

=

ALZ0 O
S
0 O

121
(1+7)

. - Symmetric

(=]

s 12 -A120 o0
S S
0 0 0 ©
-6I_L ~121_
an 0 °Tm
0 0 0 O
(4+T)ISL2 \ 61_L
am - S 0O
A.SL2 0 0
0 o0
121
s
(+D)
~200-

{B.36)

can be rewritten to include the shear

(2—7)ISL2
(1+7)

s 1.2
s

61 L
s
(14D

) (4‘+1")ISL2
(+D

—

(B.37)




The beam stiffness matrix is given for the beam element whose
longitudinal axis is parallél to the x-axis. When the beam elements
are not parallel to the x-axis, standard tensor transformation must be
applied to the beam stiffness matrix before assembiy into the struc-

tural system (Ref. 64). SR

" The displacements of the plate and beam elements at common
nodes are expressed by Eq. B.32 and Eq.B.35 in terms of the global
degrees of freedom. The elements have equal number of degrees of free-
dom at the nodes aﬁd therefore can be assembled directly to the system

stiffness matrix following the procedure specified in Ref. 64.

B.4 Application of Boundary Conditions

One of the advantages of the finite element method of analy-
sis is its adaptability to so;utions of problems with various bouhgér};
conditions. If a degree of freedom at the boﬁndary is fixed, theécor-
responding row and column of the stiffness matrix is easily elimi;atedA
from the solution proceduré. If the support at the boundary is faex-

ible, the stiffness of the support is simply added to the stiffnéés of

the element at that boundary (Ref. 65). ‘

In certaiq cases, the nodes are constrained to displacé in a
specified direction, and toirotate at a specified angle. For example,
the u displacement of a ﬁode may be_specified to displace in the direc-
tion of a line at an angle w from the x-axis and the ex rotation may be

specified to rotate about a line at an angle B from the x-axis. For
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these cases, the stiffness matrix must be transformed accordingly. It

is shown in Ref. 64 that the required transformatioa is of the form

1 -~ T |
| [k._]-::- [T] [x] [T] (B.38)

- where [k'] = the transformed stiffness matrix

-{k]

the original stiffness matrix

[T] = the transformation matrix

1t should be noted that the transformation can be carried out in the

element ‘stiffness level [k] or at the assembled system stiffness matrix

K]. Tt should be noted further that the applied nodal forces and the

- resulting deformations are in the direction specified by the comstraint.

For the five degreé of freedom system in this study, the

.

L

cos W

-sin W

sin W

cos W

0
0

0
-cos B

-sin B

o |
.0

0
sin B

cos B

(B.39)"

axis aleng which ﬁﬁdisplaces,

where W the angle from the global x-

measured clockwise; and

the angle from the global x-axis about which Sx'rotates,

w
"

" measured clockwise.
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‘B35 Application of Loads

The components ofAthe force vector as defined by Eq. B.33 are
applied at the nodes in the direction of the associa:ed displacements.
For uniformly distributed loads, the force vector can b; ;:ompt;ted from
(Ref. 17). _ . L |
'{Fe} = —fmT p (x,y) dv SRR (B.4Q)

The uniform load is conveniently equated to a set of concentééted

forces and moments applied aé the nodes. For concentrated loads, ;hg:
discretization can be made such that the load will be directly om a _
node; and hence the loads can be applied directiy to the global force
vector. However, the procedure of changing the discretization to ac-. -
commodate concentrated loads is obviously inefficient especially for
the analysis of one strﬁctu;e under different types of loading. For
this reason, the concept of a statically equivaient force veCtormf;; a
concentrated load ié introduced. In this concept, the element with a
concentrated load is analyzed as a substructure, zud the reaction'

forces at the nodes are computed. The negative of these reaction

~ forces atjthé nodes become the applied nodal forces for .the assembled

a

: stfucture;_ In this study only the concentrated load normal to the

plate element is considered.

The stiffness equation for the Q-19 element gives'ihe force
displacement relationships of a quadrilateral element with the fifth
node at tﬁe center of the element. If the fifth node is located at the

point where the concentrated load is applied, the resulting structure
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is a quadrilateral plate of four triangles with a concentrated load at
the interior node (Fig. B2). The stiffness of the four triangles can

be recomputed and reassembled in the form:

Fp | kEE - 0 |
. = . (B.41)
I IE 511 Ty

where 0 refers to the supportgd nodes and, where the subscripts E and I
refer to the external nodes and the internal node respectively. The
external nodes in this case are completely fixed in displacemenﬁs and

rotations. {F.} can therefore be easily found to be

AR} = k) {kII]'IL{FI} 4 (B.42)

Since Eq.B.41 1is an equilibrium equation,.{FE} is a stati-
cally equivalent force wvector. lIn cases however when the concentrated
load is very near to a corner node of the quadrilateral, the stiffness
formulation may get into numerical difficulty because of the résulting
shape of one or more of the triangular elements. In such.cases, the
,concéntrated load is applied directly to the nearest node. When the
concentrated 1;5d is on ﬁhe boundary of the elenenf but not on the

- node, the load is proportioned to the two nodes of that boundary. The
components of the equivélent force vectorAdue to a concentrated load

normal to a quadrilateral element sre 1llustrated in Fig. B2.
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Fig. Bl

(x,y) = Plane of Reference

& Stiffener Finite Element with Associated
Degrees of Freedom and Nodal Forces

-205-



{F} {PIMXIMYI PZMXZMYZ P*Mx3MY3 Fw‘"‘)«&“"‘\ﬂ&

Fig. B2 Equivalent Force Vector {F ] Due to Concentrated
lcad P Normal to t“e EL eme1
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10.

NOMENCLATURE

L
LS

.;f;\\

The following symbols were used in the text éndfaépendices:

A. Capital Latin Letters (matrices and scalars) = 3

(a]

(]

-element : o

RO
_ NN
Matrix of displacement funcétidns =

evaluated at the nodes -~ 'ﬁ{.“mf

pre
L
-

Afea of a triangular element

Area of sub element i in a triangular

element
Cross section area of stiffener element

Matrix of differentiated displacement

functions
Curvature in a stiffener element
Material coanstants

Elasticity matrix relating generalized

stresses to generalized displacements

H

Elasticity matrix for the stiffeger

-

el

W

Distribution factor g

Tt oae F“g V ';ﬁ
Distribution factor in a skew bridge
Distribution factor in a right bridge

General and principal modulus of

elasticity

Y
JCRGEN

Stiffener. element modulus of
elasticity
Statically equivalent force vector due-
to distributed loads
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{r}

xi’Eyi’?zi’MXi’Myi

]

Vector of element nodal forces

Applied force vector associated with

external nodes

Applied force vector associated with

internal nodes

Statically equivalent force vector

due to concentrated load

Components of element nodal forces
{7}
General and second principal shear

moduli

" Stiffener element shear modulus

Stiffener to slab stiffmess ratioy
(Fl)stiffener/gEI?slab

Integrand expression

Moment of inertia of stiffener element

about reference plane

Components of Jacobian matrix

Global stiffness matrix

Bridge span length, stiffener element

dimension
Matrix of displacement functions
Generalized forces in stiffener element

Cartesian and principal plate moments

S

"Cartesian and principal in-plane

Moment resultants in the direction of

skew
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. .
v
.

PCIR

PCTR(EXT)

PCTR(BOX)

(r]

Percent reduction in the distribution

factor for interior I~-beams

Percent reduction in the distribution

factor for exterior I-beams

Percent reduction in the distribution

factor for interior box-beams
Global force vector

Beam spacing

vy

First moment of the stiffener area

with respect ‘to the reference plane .
Transformation matrix

In-plane strain function

In-plane displacement at distance z *

from the reference plane

Bridge curb to curb width

Weight coefficients

. T

B. Small latin Letters (matrices and scalars) - - .,.l‘,_ﬂ

a, b

Web element dimensions 0
Projected dimensions on x and y axes

Stiffener element depth; distance from
the centroid of a truck wheel load'q?i

the drive wheels

2A/zi

Eccentricity of the centroid of the
stifféner element cross sectiom’td .the
plane of reference ‘

iﬁ-plane displacement function
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fsi

By

1,1,k,2

[k] AR S S
kep Rpr¥rpekir

bk ,k
ev’ ve’ ee

[

[ Cp ]

[x],
(k]

t

P(x,y), q

{p,}

{r}

Stiffeher element displacement function
normal distance of node i to side £
Node or sub element number

Element stiffness matrix

Partitioned matrices of the element
stiffness matrix associated with

external and internal nodes

Submatrices of the element stiffness
matrix associated with displacement

and strain formulations

Submatrices associated with in-plane

and out-of-plane behavior
Stiffener element stiffness matrix

Stiffener-element stiffness matrix

for torsional behavior

Transformed element stiffness matrix

Length of side i im a triangular element

Ratio of shear modulus G to elastié
2
modulus E
2

Order of interpolation function;
principal modulus of elasticity ratio,
E/E

1 3

Normal distance of a’point i to side

Li in a triangular element

Distributed load intensity

‘Consistent-force vector associated with

the displacemént formulation

Global displacement vector
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X,¥,2

C. Capital Greek Letters (matrices and scalars)

[@]'

(2]

(5
[2,]

Element nodal displacements

Sub element nodal displacements

Stiffener element nodal displacementsf

External node displacements for plate

element

Internal node displacements for plate

element . Ve,
. ¢ L F

Displacement components

Components of the element nodal’

displacements

Nodal displacements at exterior nodes

Nodal displacements at interior node§;
Cartesian coordinates

Cartesian coordinates of node i o

Ve

Shear deformation parameters

Matrix of interpolation or shape

functions

Interpolation functions for a triangular

element in terms of the external degrees

. of freedom

Sub element i interpolation function

Strain interpolation functions evaluated

. _T',at.;'rf}trt.le":no'des
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Ce.]

(e, ]

ta),

e

(3]

o

AR

&

Ri*%Ri

Ti’

(s ]

€

3

Ti

(W
(g,"]

(&

(e, .08, ]

b

€

t

L}

Strain interpolation function for the
stiffener element evaluated at the

nodes

Twist interpolation function for the

stiffener element evaluated at the

nodes

Interpolation functions associated

with the external nodes

Interpolation functions associated

. with the internal nodes

Curvature interpolation functions

'[Q(l)] evaluated at the nodes

Shape functions associated with the

. global nodal derivatives

Shape: functions associated with the

local nodal derivatives

Strain shape functions describing the

variation of strains

.Triangular sub element strain inter-

polation functions describing the

variation of curvature

Stiffener strain interpolation function

describing the variation of twist
Geometric shape function;

Linear shape function

.Quadratic shape function

Linear shape functions associated
. &

with nodes i
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. . B
. . v
. . .

3

Matrix relating curvature components

to nodal degrees of freedom

D. Small Greek lLetters (matrices and scalars)

{a}

B

~ A ”
b1 P0xs 9911 %1

-Generalized coordinates

Angle measured from the global x-axis

in the direction of which u displaces ;~

2

Shear strain

Strain field

Vector of nodal strains
Normal strains

Local coordinates

.

Non-dimensional nodal coordinates
Rotations about the global x and y

axes

Nodal rotations

Poisson's ratio

Stress field

Normal stresses

Shear stresses

iéﬁéﬁhﬁnéié, Angle of twist

Interpolation functions in terms of

the nodal out-of-plane displacements
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W : : = Angle from the global x-axis about which

f. rotates
X

wgi = Local derivative at node i

E. Element Designation

ACM , = Adini, Clough and Melosh plate bending

element

CsST = Constant strain triangle in-plane
element

LCCT-12 _ ' = Linear curvature compatible triangle

with 12 degrees of freedom

LCCT-11 ' = Linear curvature compatible triangle

with 11 degrees of freedom

LSE = Linear strain equilateral

M ' = Melosh plate bending elgment

P o= Pappénfuss plate bending element
Q-19 = Quadrilateral plate bending element

with 19 degrees of freedom

Q8pll = Basic 8 degree of freedom in-plane
element with 3 additional internal -
'degrees of freedom

Q8spr12 = Basic 8 degree of freedom in-plane
element with 4 additional nodal
rotations -

WK = Wegmuller and Kostem plate bending
element
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