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ABSTRACT

A mathematical model was developed to predict the rate and the
pattern of bed load deposition in an arbitrary river-reservoir system
where one-dimensional (unit width) flow phenoﬁena predominate. Three
different bedlload equations, namely the modified (for\deposition)
Schoklitsch, the MeyerePeter-Mullér, and the Einstein-1942 bed load
equations were used. The calculations were mgde with an arbitrary sef
of input data with three different sediment sizes.

The most interesting result of this investigation is a qualita-
tive one, namely the formation of a typical delta. In all cases, a
delﬁa is first built-up and then progressgs in the downstream direction.
The quantitative results are highly variagié;.largely‘due to the
differences in bed load capacities predicted by the three bed load
equations., Of the three equations, the Meyer;Peter-Muller equation is
the only one that consistently predicts the typical "steép—faced" delta,

Despite the simplicity of the preseﬁt mathematical model, it
is remarkable to observe that the predicted behavior of the delta for-
mations are in good agreement‘with ekisting ones, such as in Lake Mead

behind Hoover Dam.
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1. INTRODUCTION

The sediment transported by a water course is forced to deposit
as it proceeds into a deeper water body, sqch as a reservoir behind
a dam, a lake or an ocean. This is due to the.fact that the velocity,
and thus the sediment transport capacity, of the flow is reduced as
its depth is increased.

A water course may ﬁransport goth cohesive and noncohesive

sediments. Presently, the cohesive sediment transport is a problem

without any plausible solution even in simplified cases [see GRAF (1971),

Ch. 12]. There has been relatively more success in dealing with the
transﬁort of noncohesive (granular) sediments; the latter may be

classified as the bed load, the suspendedilbad, and the wash load

[see GRAF (1971), Chs. 7, 8, and 9]. The bed load, the suspended
load, and the wash load together make up the total load.

This study investigates the deposition of the bed ioad material,
consisting of the relatively coarser sediments, as a river enters a
reservoir. For this purpose, a mathematical model is developed as

described in the following section.



2, MATHEMATICAL MODEL

2.1 Introductory Remarks

In this study a mathematical model was developed for the prediction
- of the rate and pattern of bed load deposition in a river-reservoir
system, The deposition takes place in the forﬁ of a delta. The earlier
‘developments of the mo&el were described by YUCEL and.GRAF (1973). The
model considers an arbitrary river-reservoir systen suifable for a one-
dimensional (unit-width) analysis, as shown in Fig. 2.1l. The character-

istics of the model and the assumptions involved are described below.

2,2 One-Dimensional (Unit-Width) Model of a‘River-Resérvoir System

As shown in Fig. 2.1, the model considers a reservoir formed by a
dam constructed on the course of a river where one-dimensional flow
phenomena are predominant. As a result of the retardation of the flow
as it enters the réservoir, the sediment transported by.the river is
forced to deposit. If only the bed load is taken into account, such

‘a deposition is usually considered to take place in two different ways:

: RIVER
RESERVDIR- : “f,,,am—f“”//
— W e e
- ) : '.:a““"""/
/M/ ,
e {_"DELTA" FORMATION
P . o
',ﬁa':‘/ v il
AP . poTTom SEDIMENTS

Fig. 2.1: River-Reservoir System

P———



(i) The larger sized sediments are first deposited to develop a delta
formation, which builds up at the upstream end (the mouth) of the

i
reservoir and progresses downstream. (ii) The smaller sized sediments

are carried further downstream to be deposited in relatively flat layers

often referred to as the bottom sediments.

The objective of this model is to mathematically predict‘the
deposition patterns during delta formation. The analysis is made in
two parts: (a) The back water profile; and, (b) the sediment transport
and deposition.‘ These two parts of the analysis are made independently.
Thus, a constant geometry of the river-reservoir system with no sediment
transport is assumed in calculating the initial back water profile.
Similarly, the back water profile is assumed to remain unchanged duriﬁg

each series of calculations made for the sediment deposition.

It is expected that any deposition in the reservoir which
alters the bottom configuration will affect the back watér profile.
However if the quantity of deposition is small, the water surface
profile will not be significantly chénged. Therefore, in'ofder to
avoid unnecessary repetitions, the model warrants the calculation of a
new back water profile only if a certain significant amount of deposi-
tion has taken blace [see Sec. 2.2.2(f)j. A simplified logical s;heme
of the model is.shown in the flowchart given by Fig. 2.2. The methods
applied in calculating the back water profiles and the bed load deposi-
tions are described in the following sections. A detailed characteristic

of the model is given in the Appendix.
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2.2.1 Back Water Profile

The back water profile in a river-reservoir system with a unit
flow rate, q, and a fixed bed configuration (no sediment transport) can
be calculated with the use of any one of the well-known methods [see
CHOW (1959, Ch,lO)J. The model developed in this study uses a standard
""step~by-step method"”. As shown in Fig. 2.3, the calculations are started
at the dam section where the water depth is maximum, i.e., D = Dmax’ and
proceeded step-by-step in the upstream direction until the normal river

flow conditions are reached. A typical cycle of calculations made for

the back water profile can be described as follows:

(a) A typical section is considered where the water depth is

known (or previously calculated) to be Di-l'

(b) A water depth increment ADi is assumed such that:

D, =D, . + AD, . (2-1)

DA
SECTION

0L -

Fig. 2.3: Back Water Profile



where Di is the water depth at a new section upstream of the previous
one, where the water depth is D, 1- Thus, a reach is formed between

these two sections.

(c) The reach has a length“bf ALi which is approximated by

the following equation:

AL, = - AD, ) ' (2-2)

where Vo’ Do’ Sbo and Seo are the.average velocity, water depth, the
bottom slope, and the slope of the energy grade line, respectively, all

calculated at the mid-section of the reach.

(d) Both the water depthﬂiﬁérement ADi assumed and the reach
length ALi calculated should be sufficiently small in order to justify
the validity of Eq. (2-~2). 1In this study, Eq. (2;2) is considered to
be sufficiently adeqﬁate;*if.thé'mid—Section'paramefers,'Sbofand Seo’f
are within 5% of those at the boundary sections of the reach, namely,

d .
sbi and sb(i—l)’ and Sei an Se(

i—1) respectively.
(e) 1If the above conditions--described under (d)--are not
satisfied, a new (smaller) water depth increment ADi is assumed and

the above procedure is repeated as given under (a) to (d) until the

conditions described under (d) are satisfied.

(f) Special problems are encountered at two ﬁlaces during
the calculations of the back water profile: (1) at the re-

gions where there is considerable change in the channel bed slope,
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and (ii) at the regions where the normal river flow conditions are about
to be reached. The procedures followed under these conditions are de~

scribed in the Appendix, in the:Subroutine Program -WPROF.

2.2.2 Bed load Deposition

Once the back water profile is determined for a particular
geometry and the flow conditions known.for the river-reservoir system, the
bed load deposition calculations are made. As shown in Fig. 2.4, these
calculations are started at the section approximating the normal river
flow conditions and progressed downstream into the reservoir. The same
sections, as determined in the back water profile calculations, are used
for the bed load deposition calculations. A typical cycle of calculations

made for the bed load deposition is described as follows:

(2) At some section within the river-reservoir system, where
the water depth is Di (the characteristics of the sections were determined
during the back water profile calculations), the bed load transport ca-
pacity of the flow is designated by 9gs- The latter can be determined

with the use of a bed load equation (see Section 2.3).

Figure 2.4 Sediment Transport and Deposition
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(b) At the next downstream section, which is at a distance

ALi from the upstream one, the water depth is Di Since, in general,

1
the water depth increases in the downstream direction, namely,

Di—l < Vi (the

> Di’ the average flow velocity is decreased, or Vi 1

unit water flow rate is constant, i.e., q = const). As a result of
smaller velocity, the bed load transport capacity at the downstream

section, q , will also be smaller than the one at the upstream

s(i-1)

section, qs(i-l) < ;-

(¢) The difference between the bed load transport capacities

at the upstream and the downstream sections is:

Aq (2-3)

si  Isi —ﬂgs(i-l)

This amount of bed load should be deposited between these two sectiomns.
If the length of the reach, ALi’ is sufficiently small, and if the
change in the flow conditions between the two sections is gradual, tﬁen
it may be assumed that the deposition of the bed load within the reach

will be uniformly distributed. .The average uniform thickness of the

deposition, asi’ per unit time (périod) of deposition, Td,'is_then:

5 o= —2=. Ty (2-4)

(d) The calculations explained above are started at the sec-
tion approximating the normal river flow conditions where the water depth
is Dn’ and progressed in the downstream d%rection. Eacﬁ cycle of dep-
osition calculations is ended if either 6f the following two conditions

is approximately reached: (1) when the bed load transported by the water
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course is exhausted, or (ii) when the reservoir itself is exhausted,
i.e., the dam section is reached.

(e) The deposition calculated according to the above procedure
results in a change in the channel boftom elevation within each reach.
Thus, a new channel bottom elevation is obtained at each section by
adding the thickness of the deposition calculated to the original channel

bottom elevation, or,

zbi(neW) = “bi(original) + 0. (2-5)

with the application of Eq. (2-5) at each section, a new channel bottom
configuration is obtained;

(£) Any change in the channel bottom requires the determination
of a new back wafer profile, However to avoid too lengthy calculations,
a new back water profile is calculated only after deposition.resulting in
significant changes in the channel bottom profile. In this study signi-
ficant deposition is assumed to have occurred 6n1y if any of the local
thicknesses of deposition exceeds 2% (an arbitrary figure small enough
such that bed load carrying capacities are not significantly changed)
of the local water depth. Thus, a new back water profile is calculated

only if,
- > 2% (2-6)

‘(g) If the deposition obtained as a result of a cycle of cal-
culations is not significant, or if (6Si/Di)maX < 2%, then another cycle
is assumed to have taken place identical to the previous one, and the

channel bottom elevations are adjusted accordingly.



The details of the above procedure are described in the Appendix

in association with the Subroutine Program DPBL.

2.3 Bed Load Equations

The bed load deposition wasﬁéalculated with the use of three
different bed load equations: . (1) the Schoklitsch equation (modified
for deposition with the use of Hjulstrgm‘s critical déposition velocity),
the Meyer-Peter Muller equation, and (3) the Einstein-1942 bed.load equa-
tion. GRAF (1971, Ch. 7) reviews these and other béd load equatiéns in
detail. A brief description of each of these equations is given

below.

2.3.1 Modified Schoklitsch Equation

The Schoklitsch-type bed load equatioﬁ [see GRAF (1971,
PP. 130-131)] can be expressed in the following form:

q, = X5 (@-q) | | (2-7)

where 9 is the bed load transport rate in volume per unit time per unit
width; S is the channel slope; q is the water flow rate in volume per unit
time per unit width; 9er is the critical water flow rate at which the bed

material begins to move; and X and k are empirical sediment coefficients.

In using Eq. (2-7), or any presently available bed load equa~-
tion for that matter, for sedimentation (deposition) in reservoirs, two

violations are unavoidable:

(i) All of the bed load equations are developed for uniform

flow conditions, for which the slopes of the channel bed and of the
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energy grade line are identical., For flow in reservoirs, this is not the
case as the two slopes are obviously different. 1In this study the slope
of the energy grade line, Se’ is chosen since this is the slope that
reflects the water velocity which in turn is résponsible for the sediment
transport.

(ii) All of the bed load equations are developed for "erosion"
or "scour" and not for "deposition". One remedy to this situation is to
adapt the "erosion" equations for "deposition'", where the bed load equa-
tion is suitable for such a modification. The Schoklitsch-type bed load
equations are suitable for such a purpose, sinée they involve a term such
as q_.» the critical "erosion'" flow rate. In this study it is
proposed to use HjulstrBm's critical "depoéition" velocity, Vcr’ to
evaluate the critical flow rate, Aoy see GRAF (1971, p. 88) .
Furthermore, having no better information, it is assumed that the empirical
coefficients, X and k, remain the same for both "erosion"
and "deposition". Thus, Eq. (2-7) is modified for "deposition" and re-
written in the follé%ing form:

qq = X sk (@-DpvVv, ) B ‘ (2-9)

where D is the depth of flow and Vcr is the critical "deposition" velocity

given by Hjulstr8m.

2.3.2 Meyer—~Peter - Muller Equation

The second equation used in this study in calculating the bed
load deposition is the Meyer-Peter Muller bed load equation [see GRAF

(1971, pp. 136-139)] which can be written as
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3/2

S Y {y DS ] d50 _ '
= - 0.047 - _— 2-10
p

where qq is the bed load transport rate in volume per unit time per unit
width; S is the specific gravity of the sediment.material; Y is the unit
weight of water; D is the Water depth; S is the slope of the energy grade
line; &50 is the representative (50% passing) sediment size; and p is the
density of water.

A simple modification for "deposition" is not plausible in this case,
since there is no explicit dependence of Eq. (2-10) on any sort of a
critical velocity. Thus, it should be kept in mind that the bed load
deposition is célculated, iﬁ this case, bésed on the "erosion" concept

and not the "deposition'.

2.,3.3 Einstein-1942 Bed Load Equation

The third equation used in calculating the bed load deposition
is the Einstein bed load equation [see GRAF (1971, pp. 139-150)]1 which

can be written as:

3 0.391 (ss—l) d50

] /{Ss"l) 8 dsp . - DS
qs - 0.465 e . (2-11)

where g is the gravitational acceleration. Here again a modification for

"deposition" is not plausible due to the lack of an explicit critical velocity term.

2.3.4 Behavior of the Bed Load Equations for Uniform Flow

The research conditions preceeding the development of the Schoklitsch,
the Meyer-Peter Muller, and the Einstein-1942 bed load equafions varied signi-

"ficantly. The studies involved different sediment and stream characteristics.




Table 1 contains the ranges of particle diameters for which the equations

are applicable.

Table 1 -

Particle Size for Which the Bed Load Equations are Applicable

Equation Particle Diameter (mm)
Schoklitsch~-Hjulstrom >6
Meyer-Peter Muller 5 to 28

Einstein-1942 0.8 to 28
The bed load rates predicted by the threeAequations under a given
set of parameters differ significantly, often by an order of magnitude.
A comparison was made of how the equations react to varying paraméters.
The control set of parameters, or the basg from which the parameters
were varied, was the following:

2.0 m3/sec/m

Flow rate, g

Manning's n = 0,025
Bed slope, S = 0.001
Particle size, d50 = 0,010 m

Figures 2.1, 2.2, 2.3 and 2.4 show the bed load rate plotted against the
flow rate, bed slope, particle size, and Ménning>roughness, respectively.
These plots will be used to help expiéin ;he delta formation predictions
in the following sections.

It should be noted here that thé positions of the curves relative

to each other will change if a different set of base conditions is chosen.

2.4 Characteristics of the Model River—Reservoir System

The following variable values were used as the initial characteris-

tics of a model river-reservoir system:

18
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(a) A constant water flow rate per unit channel width,
q = 1.81 m®/sec/m (19.5 ft®/sec/ft);

(b) The river bed slope, S, = 1.75x10 %

(¢) The maximum water depth (at the dam section),

D =23.5m (77 £t);

(d) A constant Manning's roughness coefficient, ny = 0.0234;
(e) The specific gravity of the sediment particles,
s, = 2.65 (quartz);

(f) The representative sediment sizeé, = 0.5, 1.0, 2.0 mm

dSO
(0.0017, 0.0033, 0.0066 ft).

These data represent very roughly the characteristics of the
Missouri River-Ft. Randall Reservoir system as reported by LIVSEY (1955).
Subsequently, the effect of varying the input parameters was in-

vestigated.  The river bed slope was increased to Sbr = 1,0x10 2 and the

;iver flow rate was set at q= 2.0 ms/sec/m. Maintaining these two
parameters constant, the following were investigated:
(a) Effect of Manning roughness, ny = 0.025 and ny = 0.035

for sediment sizes, = 0.5 mm & 10 mm.

d50

(b)bEffect'of sediment size variation from d50 = 1 mm to

d50 = 10 mm for nM = 0.025.
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3. EVALUATION AND DISCUSSION OF RESULTS : |

3.1 Introductory Remarks

Three different bed load equations were used in calculating the rate
and the pattern of the bed load depostion in a given river-reservoir system.

For the bed slope, Sbr’ of 1.75 x 10—4 the éélculations were carried out for

30 days during which the average flow rate was equal to an arbitrarily chosen
constant value of q = 1.81 m3/sec/m (19.5 ft3/sec/ft). Although the choice
of a 30-day period was arbitrary, it was preferred over a shorter period,

such as a sediment day, in order to avoid unnecessary calculations. However,

for a bed slope of 1 x 10—3, with q = 2.0 m3/sec/m (21.55 ft3/sec/ft) the
sediment period was chosen as one day becquse-the sediment load carried by
the river is much greater for a steeper sigpé (see Fig. 2.2).

The depositiqn phenomena predicted by the present mathematical model
can be discussed both qualitatively and quantitatively. Due to various
limiting assumptions indicated earlier, the qualitative results are>
considered more important than the‘quantitqtive ones, such as the actual
rates of deposition predicted by the mddel;

3.2 Rate of Bed Load Deposition

- The rates of bed load deposition forvthe given river-reservoir system were
differenf for the three different bed load equations used by the model. This A
is expected due to the fact that these bed load equations are essentially
based on different methods of approach [see GRAF (197i), Ch. 7].

3.2.1 Results for S, . = 1.75 x 10—4 and q = l.81-m3/sec/m.

Fig. 3.1 shows the bed load deposition pattern predicted by the three

bed load equations for various intervals of time.
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Figure 3.1 Rate of Bed Load Deposition Obtained with the

Three Different Bed Load Equations

25



It is evident that the highest rate of deposition is predicted with

the Meyer-Peter Muller equation, while the Einstein-1942 bed load equation

- 26

predicts a slightly lower rate of deposition. The rate of deposition predicted

by the modified Schoklitsch equation, however, is much lower than the others.

In fact, approximately the same amount of deposition is obtained with

the modified Schoklitsch equation in 100 sediment years, as compared to about

5 years for the Meyer-—Peter Mullexr and Einstein—-1942 bed load equations.
This might be expected since the Schoklitsch bed load equation ié known to
yield rather low amounts of bed load [seé GRAF (1971), pp; 156—159]; This
can also be seen from Fig. 2.1l. A comparison is also shown in Fig; 3;2
for the total bed load depositions resulting‘at the end of the above pre-
scribed sediment periods.

Calculations were also made for different sediment sizes using both
the modified Schoklitsch and the Einstein-1942 bed load é&ugEEgﬁs;  As

shown in Fig. 3.2, a deposition period of 100 sediment years was obtained

for the three sediment sizes, namely d_., = 0.5 mm (0.0017 ft), 1 mm

50
(0.0033 ft), and 2 mm (0.0066 ft), with tﬁe use of the modified Schoklitsch
equation. It is interesting to note that the total amount of the bed load
deposited does not seeﬁ to be affected a great deal by the sediment size;
It is observed from Fig. 3.3 that the total amount of the bed load deposi-
tion decreases only slightly as the sediment siée is increaéed fr;m
d50 = 0,5 mm up.to d50 = 2.0 mm. In contrast to the modified Schoklitsch

equation, which appéars to be insensitive to the sediment size, the

Einstein~1942 bed load equation shows strong dependence onxthe sediment size,

It can be observed from Fig. 3.4, that the total amount of sediment deposited

decreases considerably as the sediment size is increased from d50 = 1,0 mm

4,
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up to d = 2.0 mm, within the same period of 10 sediment years. This trend

50

could be inferred directly from computations based on the bed load equations

for uniform flow (i.e., a plot similar to Fig. 2.3 with base conditions of

4

Sbr =1.75 x 10f, q = 1.81 m3/sec/m, and ny = 0.0234). For instance the

Einstein-1942 bed load equation yields the following uniform flow sediment

carrying rates:

dso(mm) g (kg/sec/m)
0.5 0.102
1.0 0.121
2.0 0.058

The fact that there is less sediment inflow for d50

d50 = 1.0 mm is clearly shown in Fig. 3.4. For d50 = 0,5 mm, at first

glance (Fig. 3.4), it appears that the delta formation is larger than for"

2.0 mm than for

dSO = 1.0 mm., However upon closer examination it can be seen that there

is actually a larger amount of deposition for d_. = 1.0 mm than for d__ =

50 50

0.5 mm (as the uniform flow equation indicates), but the distribution of

sediment deposits is significantly different.

3.2.2. Results for Sbr =1x 10:3 and q = 2.0 m3/sec/m

The effect of a steeper bed slope on delta formation as well as the

effects of varying the Manning roughness coefficient, s the sediment size,
d50, and the length of the sediment period are investigated in this section.

(a) Bed Slope, Sbr' The effect of a steeper bed slope can be inferred

directly from Fig. 2.2, It can be seen from this figure that the bed load

is markedly affected by bed slope. In fact for a change in bed slope from

=4 -
1.75 x 10 to 1 x 10 3 the magnitude of the bed load rate of sediment transport

increases by a factor of 10 to 100 depending on the bed load equation used.

30
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Consequently at the steeper bed slope, delta formation occurs much more
. -3
rapidly. Hence for this steeper bed slope of 1 x 10 the sediment period

used in the calculations is the sediment day rather than the sediment month

used in section 3.2.1. The more rapid delta formation is apparent in the
following figures where the total time for Aelta formation is expressed in
days rather than months.

A comparison of the three bed 1oadvequations on a bed slope of 1 x 10-3
is shown in Fig. 3.5 for a Manning n of 0,025 and in Fig. 3.6 for a Manning
n of 0.035. It can be-clearly seen that the delta formation predicted by
the Meyer-Peter Muller equation is about 10 times faster than either the |
modified Schoklitsch or the Einstein-1942 bed 1oaa equations, a‘result which
is significantly different from that obtained in section 3.2.1. Once again
this is due, at least in part, to the fact that, for these conditions,
the Meyer~Peter Muller bed load equation predicts a larger sediment inflow.

(b) Manning Roughness, nye Computer runs were made with n, values of
0.025 and 0.035 and sediment sizes of 0.5mm and 10mm, Tt should be noted that
changing the roughness affects the solution in several ways. An increase in
roughness, while maintaining a constant bottom slope,‘flow rate and sediment
size, has the effect of increasing the normal depth and of decreasiﬁg the
velocity., Figure 2.4 illustrates how the bed load capacity, as predicted by
the three equations, varies with different values of Manning's n.

Figures 3.7, 3.8 and 3.9 show the delta formations for the modified
Schoklitsch, Meyer-Peter Muller and Einstein-1942 bed load equations with
a sediment size of 0.,5mm. In all three cases, the higher n, ﬁalue of 0.035

causes the delta to form closer to the dam. In two of the figures, modified

Schoklitsch equation (Fig. 3.7) and Einstein-1942 equation (Fig. 3.9), the
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lower n, value is responsible for forming a steeper-faced delta, whereas
the opposite is true for tﬁe Meyer-Peter Muller equation (Fig. 3.8).

A similar study was made using a sediﬁent size of 10 mm which is within
the alleged applicable raﬁge of all three equations. The results are shown ‘
in Figs. 3.10 and 3.11 which correspond fo the modified Schoklitsch and
the Einstein-~1942 bed load equations. (Due_to a technical probelm not yet

solved within the subroutine REACH, the computer program was not successful

with this sediment size using the Meyer-Peter Muiler equation). The
qualitative results are the same as the ones discussed in the preceding
paragraph.

The results for d50 = 10 mm which gave Figs. 3.10 and 3.11 are plotted
in a different manner in Figs. 3.12 and 3.13 for comparison of the two bed
load equations. Note that for a Manning n of 0,025, the rate of delta
formation is about the same for the modified Schoklitsch and Einstein-1942
equations. However with a Manning n of 0.035 the réte of delta formation
predicted by the Einstein-1942 equation is about 5 times faster than that
predicted by the modified Séhoklitsch equation.

() Sediment Size, d

50°

affect on delta formation due to a change in sediment size from 1 mm to 10 mm.

Computer runs were made to determine the

Figure 2.3 shows that the bed load capacity, as predicted by both the
Schoklitsch~-Hjulstrom and the Einstein-1942 equations? decreases significantly
with this change in sediment size. Figures 3.14 and 3.15 show that in both
cases the deltas formed with the 10 mm particles are smaller and further
upstream than 1 mm particle deltas., These two generalities are to be expected

since the bed load capacity is smaller for the 10 mm sediment size and since
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larger particles settle out faster and therefore further upstream than
smaller particles. These observations differ somewhat from those made in
section 3.2.1. It wés noted there that the Schoklitsch-Hjulstrom delta
formation rate did not depend much on sediﬁént size. It should be emphasized
that this generality applies only under certain conditions.

(d) Sediment Period. Computer runs were made to observe the effect
of the sediment period length on the delta formation. The Meyer-Peter Mulier
and thé Einstein~1942 equations were selected, because, for the flow parameters

selected (d_, = 0.5 mm and n = 0.025), the former predicts a rapid delta

50
formation while the latter predicts a slow one. Computations were made for
sediment periods of six hours and one dan

The results of the Meyer-Peter Mulléf rﬁns have shown that, for the
six-hour sediment period, a smoother, more shallow and slightly larger
delta is formed than that for the 24-hour sediment period. This is due to
the fact that sqfficient sediment is being carried during the 24~hour
period to cause a deposifion thickness of‘greater than 27 of the water depth.
Hence, in this case, the émount of deposition within the sediment period
is sufficieﬁt to cause a significant change in the backwater_profile before
the computer program warrants such a re-computation. Thereforé, if’the
rate of sedimentation is rapid, then the specified period should be small.
This precaution ensures a sufficient frequency of back watef.calcﬁlations.
Another result of reducing the sediment period is, éf course, an increase

in computer time required.
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The results of the Einstein-1942 equation runs have shown that the
delta formations are almosf-identical. This was to be expected since the
computer run with a 24~hour period had several deposition cycles between
back water calculations.  This means that thé,24—hour period was
sufficientiy small and any further réduction would have no significant

effect.

3.3 Delta Formation

The most interesting result obtained in this study was that a delta

was being formed with features common to all cases in which the three

different bed load equations were used. Such a typical delta formation is

illustrated in Fig. 3.16 as plotted by.thé computer as a result of the
calculations made with the use of one of £ﬁe Bed load equations, Thé
following remarks can be made,régarding the formation of the delta:

a) The deposition begins in the form of rather flat layers in
the upstream regions of the reservoir, The.thicknesé of fhese layers
becomes gradually larger until a certain section is reached at which the
rate of depoéition is ‘at a maximum. Downstream of this seétion the
deposition layers tend to become thinner.again. The repetition of . this
process results in altypical ériangular shape of deposition,fé delta.
Thus, in the earlier stages of deposition, there is a process of
build-up, and as such, a ggigg is formed.

b) Subsequently, the apex of this delta begihs to advance in the
downstream direction, such that the downstream side of the delta becomes

shorter and steeper, while the upstream side becomes 1onger'and flatter.

Thus, the delta begins to advance towards the reservoir.

PR,
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Figure 3.16 Build-up and Advancement of a Typical Delta

Formation as a Result of Ded Toad Deposition
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The mathematical model is relatively éimplistic in its present form,
Yet, it is remarkable to observe, that the above basicbfeatures of the
formation of a typical delta are in good agreement with the delta
formations in existing reservoirs. A good example of such a reservoir
would be Lake Mead behind Hoover Dam along thé Colorado River. As shown
in Figf 3.17, the deposition pattern can be considered quite similar to the
one predicted by the presenf model., It sﬁould immediately‘be noted,
' however, that this is an entirely qualitative observation, and not a
quantitative one.

It is also interesting to note that the location of the delta
-formation seems to depend on the sediment size to a considerable extent.
It has been clearly exhibited that the initial location of the delta
appears at further downstream sections as fﬁe sedimenf size is decreased.
This behavior; predicted by the model, is as expected and is observed to

occur in existing reservoirs.
4, CONCLUSIONS

A mathematical model Qas constructed to predict the characteristics
of bed load depositon in a reservoir. ‘Three different bed load equations
were used: (1) the modified (for deposition) Schoklitsch equation, (2) the .
Meyef—Peter Muller equation, and (3) the Einstein-1942 bed 1oéd_equation.v
Several arbitrary sets of input information were chqsén for the characteristics
of the sediment and the:river-reservoir system. |

The following conclusions can be made:
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a) A-delta js formed in the upstream regions of the reservoir, as
a result of a build—ub"process. Subsequently, this delta begins to
advance in the downstream direction maintaining its typical triangular
shape which resembles actual delta formation in existing reservoirs., |

b) Qualitatively, the shape and the method for formation of the
delta seem to be quite similar to the ones that occur in existing
reservoiré, such as Lake Mead behind Hoover Dam, This is particularly
remarkable considering the fact that the present mathgmatical model is
rather éimplistic.

c) Delta formation rates as predicted by the‘three bed load
equations differ markedly under certain circﬁmstances{ These differences
can be'largely attributed to the extremei&_different bed load capacities
predicted by the equations for uhiform flow.

d) A significant difference in bed load deposition distribution
of sediments is noted. In general the Meyer-Peter Muller equation.
consistently predicts a steep-faced delta:formation. The Modified
_Schoklitsgh equation, on the other hand, fends to predict a mofe rounded
delta face. The Einstein-1942 equation predicts a steep~faced delta for
the larger diameter particles, but a smoother, more rounded delta face

for the small diameter (d5 = 0,5 mm) investigated.

0

5. FUTURE WORK

In the present study, a mathematical model for predicting sedimentation
in reservoirs was applied to one~dimensional (unit-width) river-reservoir

systems, whose characteristics were chosen arbitrarily. Although results of



" the predicted delta formation are very encouraging, it is apparent that
further study is needed. The computer program developed for the model is
considered fo be sufficiently flexible for-improvement and for application to
more complicated, yet more realistic, river;feservoir systems,

The following points are éonsidered to be of interest for future
investigations:

a) Other bed load equations should be studied possibly after
being modified for deposition.

b) The model, in its present state, should be tested with other
different values of the sediment size, watef flow rate, river roughness,
normal river slope and the sedimentation éeriod. These values should be
chosen so as to correspond to real river;fese}voir systems for the
purpose of comparing the predicted and the actual phenomena.

¢) The size of the sediment transported by a river is hardly
uniform. Rather, it is some mixture of various different sizes of éedi—
ments. This is not taken into account by this model in its present state.
The simplest way of accounting for thg mixture effects would be a mere
superposition of the‘results obtained with the various fractional sediment
sizes forming the mixture. The model would be further improved if the
sedimentation periods are chosen to ﬁe rather small, and if duriﬁg this
period, the larger fractional sediment sizes are allowed to‘deposit before

the smaller ones.

d) The present_model assumes a constant water discharge through-

out the system. In the actual river~reservoir systems, such is seldom the
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case; the water discharge is time-dependent. A hydrograph of the river
water discharge would be used to improve the model to that effect., In
such a‘case, the model would simply be executea over sediméntation periods
for which fhe water discharge roughly remains a constant.

e) The sedimenté which are deposited are subject to a certain
amount of compaction and consolidation. Thé model could be improved to
take such phenomena into account. One way would be to assume and calculate
only one rate of compaction and consolidation for every fractional sediment
size,

f) The present mathematical model is designed for one-directional
flow phenomena., The following steps could be considered for improvement
of the model:

- (1) The width of the river-reservoir system caﬁ be prescribed
as a function of the distance from a control section, for
example, the dam section,

(ii) Secondary flow and sediment phenomena can be considered

for the given channel geometry.}.Velocity distributions in
horizontal and vertical, flow patterns such as meanders
and resulting sediment mofions would ultimately have to

be considered.

(g) The above points being considered, the model should next be
extended to cover the suspended and ﬁotal sediment transport, as well as
the cohesive type of sédiment transport, and the deposition resulting from
these different modes of transport.

(h) It‘is clear that, with each step of improvementfin the model

the éssumptions would become less severe, leading to the fact that the



results predicted by the model can be considered more realistic and
comparable with field data: The field data, on the other hand; are
presently quite scarce. Consequently, efforts should also be concentrated
on collecting field data with proper inforﬁéfion on the sediment and river-
reservoir characteristics. Only then would the mathematical model become

really valuable in predicting the sedimentation phenomena in reservoirs.,
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APPENDIX - COMPUTER PROGRAM

A computef progrém was prepared for the mathematical model
of the phenomena of sediment deposition_in a one-dimensional (unit
width) river-reservoir sysfem. The program was written in Fortran IV
and run with the CDC-6400 Computer and 620/F Calcomp Plotter facilities.

of the Lehigh University Computer Center.

Given a river with a normal (uniform) depth and slope, a unit
discharge, a channel bed roughness, a representative sediment size
(d50), and a dam height, the computer program is designed to calculate
the Ml-type back water profile, the éediment transport and deposition
within the reservoir, and recalculéfé the back water profile after
significant deposition occurred, and so on. It also prints and plots

the calculated data (see Fig. 2.2).

In the following, a detailed explanation of the compﬁter pro-
gram is preéented. First given is a list of symbols used in the program.
Subsequently, the flow charts for the main program and ﬁhe individual
subroutines are given along with some explanatory remarks wherever deemed
necessary. Finally, a complete listing of the program and a typical

output are presented.
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LIST OF RECURRING SYMBOLS IN THE COMPUTER PROGRAM

CDZBB

CDZBM

DD
DEPBL

DL

DMAX

DNORM

DSB

DSE

DZBB
DO,V0,SB0. ..
D1,V1,SBl...
D2,V2,SB2...
D50

FR

GSB

IRFL
K,KD,KE

K(I)

KEY

Cumulative increment in bed elevation at each section
due to bed load aeposition between ﬁwo consecutive
calculations of back water profile.

Maximum value of CDZBB

Water Depth

Increﬁental water depth

Amount of bed elevation due to bed load deposition
Incremental reach length

Maximum water depth at dam section

Normal depth of the river

Approximation paramgter for bed slopes

Approximation paramé£ér for energy slopes

Increment in bed elevation due to bed load depostion

Values of the variables at mid-section of the reach

Values of the variables at entrance section of the reach

Values of the variables at exit section of the reach
Representative sediment size

Froude number

Bed load rate in weight per width per unit time
Field length required for dimensional_variables
Iteration control parameters

Dummy variable for blank common

Control parameter for significant deposition

Distance from the dam section



LWA Last word address
LO Distance of each section from the dam section at the

end of each backwater curve calculation

NCASE Computation case number

NCH Control parameter for field length

NCM . Maximum cycle number

NCY . | Cycle number

NEQ Number of the bed load equation being used

NLAST Cycle number of the last series of calculations
NM Manning's roughness coefficient

NPLT Control parametef fér plot type

NS Running section numb;r“.

NSM Maximum section numbef

QSB Bed load rate in volume per width per unit time
QU ‘ Water flow rate per unit width .

QUCR ~ Critical (depositionj value of QU

SBA Difference between the bed and the energy slopes
SBR Normal slope of the river

Ss Specific gravity of solids

SBOT Trial bed slope )
TOTGSB "Total bed load rate in Weigﬁt per width per cycle
TOTQSB Total bed load rate in volume per width per cycle
VCR | Critical (deposition) velocity (after Hjulstrom)
ZB | Bed elevation at each section .

ZBO Bed elevation at each section at the end of each backwater

curve calculation

ZE Energy elevation at each section
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MAIN PROGRAM

In the MAIN program, after fhe reading of the inpuf aﬁd the
control parameters, the required field length is determined based on
the estimated maximum number of the séétions, NSM, for the backwater
profile calculations. Then, the subroutine SEDRES is called for the
initiation of the actual calculations. If the estimated field length
is not sufficient, then the related control parameter comes out to be'
NCH = 1, and a longer field length is determined based on an increased
NSM, with this new field length the procedure outlined above is reéeated

to continue the calculationms.

The MAIN program also makgs sure that all the storage locations
are filled in with "bad computer val;eéﬁ, so that if a proper initiali-
zation is not made for any parameter, an error message should appear.

A special command in the MAIN program also indicates the exact length
of the dynamic part of the program as well as the "iast word address".
'Thelmain program has also a BLANK COMMON, and several regular COMMON

blocks.

R



START

READ - & WRITE .
INPUT & CONTROL.

PARAMETERS

NCY = |

NCH = O |
0]

HEW
NS4

(o0
\E

FIZLD LENGTH:
IRFL =21 X NS
CALL—\

REQMEHM (IRFL) |

PRINT
TRFL LW

SET BAD N\

INT'L VALUES

K(ll=115
I=1,IX%

y

CALL
SEDRES (K (1),...)
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SUBROUTINE SEDRES

This subroutine is basically a dispatcher. If the calculations
are just being initiated, then oﬁe has NCASE = 1, which is read in by
the MAIN program and transferred through a COMMON block. 1If, on'the
other hand, there were previous calculations recorded on tape, then
one has NCASE = 2 if only the last record of these previous calculations
is to be read off the tape and further calculations are to be done.
If one has NCASE = 3, all the records of the previous calculations are
read off tape, plotted and branching is made to continue with the
calculations. After branching off properly according to the value of
NCASE, the subroutine WPROF is cal?gd for the backwater profile calcu-
lations. If the field length.is not sufficient, then the related control
parameter is NCH = 1, which returns the computer to the MAIN program
to readjust the field length. If the field length is sufficient, the -
results of the backwater profile calculations are flotted and recorded
‘on a tape. Then, the subroutine DPBL is called for the calculations of
the bed load transport and deposition in the river-reservoir system. At
this point one cycle of calcuiations is completed; The same procedure

is repeated until a prescribed number of calculation cycles is attained.



NCY = NLAST -+ 1 [~

d

NCH=0,KEY=0

C¢

NCASE

CHANNEL DATA

READ LAST
CYCLE OF

READ ALL
CYCLES OF
CHANNEL DATA

OFF TAPE

OFF TAPE

PLOT RESULTS
ELPLT ,DEPLT

[

YES NO |

CALL
WPROF

YES
RETURN

CALL
DPBL

NCY = NCY+1

NO

NCY =NLAST

PRINT

lcP AND PP TIME

/PLOT RESUTS
NPLT=1.. ELPLT

NPLT =2...0EPLT ' )
NPLY £0...80TH ’

%

V/RITE

S

SUBR

N

OUTINE

NCY=NCM

CHANNEL DATA
ON TAPE
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SUBROUTINE WPROF

This subroutine makes the backwater profile calculations
for a one-dimensional (unit-width) river—reservoir system by making
use of a standard-step method. If the initial calculations are being
started, in which case NCY = 1, the initial values are transferred
through a common block as read in by the MAIN program. If NCY # 1,
then, the initial channel bed data for the next cycle of calculations
are given by the last cycle of calculations of backwafer profile and
deposition. The calculations are started off at»the dam section and
continued upstream in a number of reaches until the normal conditions
are reached. TFor the actual hydraulic calculations for each reach, the
subroutine REACH is called. During these calculations, if the specified
number of reaches is not sufficienf, then NSM is increased by a éertain
percentage and a RETURN is made back to the MAIN program for restarting
the calculations with increased field length. This subroutine also calls
the output subroutine OUTS for printing out the results of the backwater

profile calculations.
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NCH= I NO

T

READ (L,ZB)OFF
TEMPORARY TAFE

INITIAL CHANNEL . )
BED DATA (1.0,280) - ' ;

YES

REDEFINE PORTIONS OF CHANNEL
BED DATA (LO,ZBO) AFFECTED
AND UNAFFECTED BY DEPOSITION
OR INCREASED FIELD LENGTH

4

WRITE NEW CHANNEL .
e BED DATA (LC,ZB0) INCREASE FIELD LENGTH

.. PUSECY

R ’ FOR SUFFICIENT NSM

’ = 1400 ' l
{ WRITE (L,ZB)
ON TEMP. TAPE

INITIAL VALUES AT DAM SECTION ‘

NSM= NSM+ ANSM

RETURN

DO 2500
NS=1,NSM

CALL 1\
INDXV, CUTS,
INDX, REACH \

' $ RO (2500} ——
. .

YES

- WRITE RESULTS .
_ AT RIVER MNS=-NS ‘
{ RETURN . : | ’

SUBROUT!

NE WPROF



SUBROUTINE DPBL

In this'subroutine, the deposition calculations are made by
making use of one of the bed 1oad_equations. In the present program,
NEQ = 1 refers to the "Modified'" Schoklitsch equation, NEQ = 2 to the
Meyer-Peter et al. equation,'and NEQ = 3 to the Einstein -~ 1942 bed
load equation. Bed load deposition:calculations are started at the
"river" section and progressed in the downstream direction towards
the dam. When the amount of deposition becomes too small, or the dam
section is reached, one cycle of deposition calculations is completed.
If the maximum thickness of deposition is less than a certain fraction
(in the present case, 2%) of the local water depth, another i&ehtical
cycle of deposition is assumed to have taken place, and the channel bed

configuration is adjusted accordingly.




-

MOD. SCHOKLITSCH EQ.
SEDIMENT TRANSPORT

START

CONSTANTS, INIT'L VALUES

AT RIVER SECTION
(NS)

EINSTEIN (1942) EQ.
SEDIMENT TRANSPORT
AT RIVER SECTION

MEYER-PETER ET AL.EQ

(NS)

SEDIME

NT TRANSPORT
AT RIVER SECTION {NS}

KMOD. SCHOKLITSCH EQ.
SEDIMENT TRANSPORT

A

SRR NEQ
AT J-TH SECTION o

o
N

dsb (NS)

i

0 1000 "\
= (s [T

=2

EINSTEIN (1242) EQ
>___E§_p-

MEVER-PETER ET AL.EQ
SEDIMENT TRANSPORT
AT J-TH SECTION

o~

750 p=

SEDHAENT TRANSFORT
AT J-TH SECTION

K'J

Gep (91 AL, DEP (9, AZpy (V)
[6Zyp0 70 ()] max.

.05

FURTHER DEPOSITION CYCLES
VATH IDENTICAL DATA
UNTIL [8Zpn(0) /000 )22 %

‘ RETURN }

SURROUTINE DPEL

. ISTPREN



SUBROUTINE REACH

This subroutine is called by subroutine WPROF with ali the
hydraulic information given at one section, and it performs the necessary
calculations to determine the flow cbnditions at the next upstream'sec—
tion. 1In these calculations, a trial-and-error procedure is applied.
First, a trial-reach-length, DLT, is assumed. by means of which a trial-
bed-slope, SBOT, is obtained. Then, a trial-depth-increment, DD, is
assumed, and with this information, the trial values of the flow char-
acteristics are calculated, at the next éection and at the mid;section
of the reach. If these mid-section characteristics do not represent the
whole reach with sufficient approximation, a new trial-depth-increment is
assumed and calculations are repeated; and so on. In the present program,
an error of € = 57 is considered to represent sufficieﬁt approximation
as far as the section characteristics (slopes of the bottom and the en-
ergy grade line) are concerned. The normal river conditions are assumed
to be reaéhed within the same approximation limits. The efficiency in
the successive trial-and-error procedures is facilitated by various dy-
namic checking and control parameters and processes, the details of which

are given in the flowchart of the subroutine itself in four parts.
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‘ START )
1

L2=LI+DLT
ZB2:=ZINT {(L2)

.zB2-ZBI
$BOT = ~— 5

DL=DLT
KD=KE=K=0

.

YES

i

DO=DI+ DD/2
D2:DI+DD
SLOPE (DO,VO,SEQ)
FRO= VO/V GxDO
TEii: 1- FROXFRO
K:=0 :
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0
K=K+1 .

SBO = SBOT
SBA=SBQO-SEO

DD =-DD/IO

D2:=DNORM, DD=D2-D!
DD=D!1+DD/2
SLOPE (DO,VO,SEOQ)
/,'FRO=VO/ VGxDO
TEM=1-FRG x FRO

SBR- SBI -
SBOT = ——5——

$BO =SBOT
SBA=5B0-SEO

D2: DNCRM
SB2:SW2= SE2:SBR
DL=20000
L2 =L1+DL
ZB2: ZINT (L2)
SECT (D2,V2,....))
NS=-NS

SUBROUTH

RETURN -

(PART 1)




KD=KD + 1

———

YES

DD:= 0 ,D2:D!
SE2: SBI, SW2 =SWi
SE2= SE|

DL> 20000

bb=DD/2
DD=-DD
YES.. DL =20000

N0f~

L2 =Li+DL
ZB2:=ZINT (L2)
SECT(D2,V2,......)

RETURN

SUBROUTINE REACH (PART 2)



oj=. TEMXDD

SBA

DL <<20000

DL = 20000

DL=20000 -

—

L2=LI+DL
ZB2:=ZINT (L2)

SEC (D2,v2,..... )

1380

SBOT =

DSB =

L2=LI+0L

ZB2:=ZINT (L 2)

Z82-781 -
DL .

IsBOT-580]|

$B80

SLOPE (D2,v2,552)
_|SEI-SE2]
SEO

DSE =

ssor: S201SB0T

T

D2 zDNORM, NS= - NS
$B2:5\W2:SE2: SBR

RETURN

D2=ONORM ,DD=D2 - DI
SB2=SW2=5E2= SBR
DO=DI+DD/2
SBO= (SBI+SR2z ) /2
SEO= (SE! +SE2)/2

KE = KE+ |

SUBROUTINE REACH (PART 3)

FRO=VO/\/ G xDO

TEM=1{~ FRO xFRO
SBA:=SB0O-SEOQ

TEMxDD
SBA

DLz~




E ¢

SECT (D2,......)

SWO= -

S¥2 = SWo

$B2=8B0O

ZW2 -7V
DL

- SUBROUT

SpR.
sBR-s80l_ 3

I

RETURN

SBR

<

= REACH (PART 4)
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SECONDARY SUBROUTINES

There are also some auxiliary subroutines in the program. Among
thése, the subroutine SLOPE calculates the sldpe of the energ& grade line
at any section, the subroutine SECT calculates all the flow characteristics
at any section. Function ZINT makes use éf a linear interpolation to cal-
culate the imtermediate values of a funétion, in the present case the
channel bed elevation as a function ?f the distance from the dam section.
The subroutine INDX transfers the calculated parameters at a section to
become the initial values of the next reach to be calculated. Finally,
the subroutine INDXV transfers the constant variable values of the calcu-
lated parémeters at any section to become the corresponding dimensional

variables.

OUTPUT SUBROUTINES

These subroutines are called for printing out the titles as

well as the calculated data.

PLOT SUBROUTINES |

The subroutine AXPLT plots the axes and. the relevant identi-
fying information before the calculated data are actually plotted.

NPLT

1 causes the complete river-reservoir system to be plotted only,

NPLT

2 causes a detailed piotting of the delta only, and NPLT = 0 cor-
responds to both plots at the same time. The subrbutinéqELPLT plots the
célculated data as a complete river-reservoir system, while the subroutine
DEPLT plots a detailed delta. The latter two subréutines plot both the

channel bed and the water surface elevations.

g



s 4

G0

V=q/D

2
- (Veny)
Se*—ga7/3

RETURN

SUBROUTINE SLOPE

DO 1000
I=1,N

YES

START

{

V=q/0,V v 2q
Zw < Zb"'[)' Ze: ZW+VH

Fr=V/V gD, Sp=D+V,

RETURN

i}

SUBROUTINE SECT

START

{

DI:D2,L1=L2 ,VIzV2,ZBI=ZB2

ZWI=ZW2,7E1=ZE2,VHI = VH2,

SB1zSB2, SWI=SsW2,SEl = SE2
SP1zSP2 ,FRI=FR2

-

RETURN

SUBROUTINE INDX

{  sTaRT

XINT- X{I-1)

ZINT = Y(I-1) +
_ x(r)-x(x-mvin-viz-1j]

D=DIL=LI,V=VE,ZB = ZBI,

ZW=ZWI,ZE=ZEl ,VH = VHI

SG=SBl,SW=SWI,SE= SEI,
SP=SPI , FR=FRI

1
{ RETURH >

FUNCTION ZINT

RETURN

'SUBROUTINE INDXV

SECONDARY SUBROUTINES




»

START

WRITE GEN'L TITLE

AND INPUT INFORMATION

START

RETURN -

SUBRQUTINE CU

'WRITE TITLE FOR

WATER PROFILE

WRITE BACKWATER

PROFILE ‘DATA

START

VRITE DEPOSITION

DATA AT RIVER

RETURN ’

SUBROUTINE OUTEL

RETURN

UBROUTINE OUTL .

START

WRITE DEPOSITION
DATA AT OTHEPR SECTIONS

RETURN

SUBROUT]

1

NE OUTBLI

s




e

L e e gl At S

e

PLOT AXES
FOR ELPLT
{RESERVOIR )

PLOT AXES
FOR BOTH
ELPLT AND DEPLT

PLOT AXES
FOR DEPLT

(DELTA)

{

IDENTIFY EQ.
DEPOSITION PERIOD
AND INPUT INFD.

.
(  RreTun )

SUBROUTINE AXPLT

START o START

PLOT BOTTOM AND \. PLOT BOTTOM AND
WATER SURFACE . . . WATER SURFACE

- ELEVATIONS FOR ELEVATIONS FOR
WHOLE RESERVOIR , DETAILED DELTA J

RETURN

SUBROUTINE ELPLT

RETURN

SUBROUTINE DEPLT

PLCT SUBROUTINES
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