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ABSTRACT 

This dissertation presents the results of a combined experi­

mental and analytical study on the ultimate strength of single-span 

rectangular steel box girders. 

The experimental phase involved the testing of two, slender­

web, steel model box girders under various combinations of bending, 

shear and torsion. The specimens had been designed to simulate typical 

box girder members. When subjected to shear and bending only, the 

specimen exhibited a behavior quite similar to that of slender web 

plate girders under similar loading conditions. The addition of 

torsion had a significant effect on the behavior and ultimate strength 

of the specimens. Under both conditions of loading the specimens 

displayed definite stress redistribution capabilities and considerable 

postbuckling strength. Failure modes were characterized by tension 

field yielding of the webs followed by failure of the flanges. 

By making use of results from the model tests and from previous 

research on plate girders an analytical method is formulated for 

evaluating the ultimate strength of single-span, rectangular steel box 

girders subjected to either shear and bending or shear, bending and 

torsion. The method assumes that deformation of the cross-section and 

buckling of the compression flange will riot occur. These assumptions 

are valid for the type of box girder being considered. In the 

development it is shown that the twisting moment is predominantly 
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supported through St. Venant torsion. Effects of warping torsion are 

found to be insignificant. 

Equations ar~ derived and defined for computing the ultimate 

strength under various loading conditions. Good agreement between the 

experimental results and analytical predictions was obtained. 

l ~ . 
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1. INTRODUCTION 

Extensive applications of closed thin-walled sections as load­

carrying structural elements have occurred in both the aircraft and 

structural fields. Examples of these include the wing or fuselage of 

an aircraft and large tubular members of a building or a bridge truss. 

It is only recently, however, that the thin-walled steel box girder 

has gained considerable popularity for use as a main load carrying 

member in bridge structures. This can be attributed to an increased 

awareness of the structural efficiency, financial savings and pleasing 

aesthetic appearance which can be achieved with such a configuration~!) 

For bridge structures, steel box girders are usually fabricated 

using relatively thin webs and bottom flange plates in combination 

with a composite slab or orthotropic steel deck. Both transverse and 

longitudinal stiffeners are often used to stiffen the slender webs and 

bottom flange. The cross section of a box girder bridge may take on 

any one of several possible configurations containing one or more box 

girder cells. Figure 1.1 illustrates a few of the many possible 

configurations. 

The two major clqsses of loading for bridge box girders are 

dead load and live load. As indicated in Fig. 1.2a, the former 

produces a wide area, near-uniform distribution of load. The live load 

shown in Fig. 1.2b often consists of non-uniformly distributed, localized 
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forces such as wheel loads. Both classes of loading can be decomposed 

into the two components presented in Fig. 1.3. By restraining the deck 

against vertical movement at the web-deck junctions, stresses due to 

plate action of the deck can be evaluated. This is referred to as a 

deck plate analysis. The other component of loading involves the 

application, at the web-deck junctions, of the equilibrants of the 

restraining forces obtained from the deck plate analysis. It is this 

component which produces bending and twisting of the box girder and 

is of prime interest when considering the ultimate strength of the 

member. 

Most presently available methods of analysis for box girders 

are restricted to the linear, prebuckling range. Of these, the 

prismatic folded plate theory of Goldberg and Leve(2 ) offers the most 

accurate method of analysis. It considers the box girder to be made 

up of an assemblage of plates. Classical plate theory is used to 

describe the ·inplane and out-of-plane plate deformations. The analysis 

is limited to straight, prismatic box girders composed of isotropic 

plate elements, with no interior diaphragms and with neither cross­

sectional deformations nor axial stresses at the ends of the con-

stituent plates. 

A number of other linear, prebuckling methods of analysis 

for box girders are based ~n thin-walled beam theory. (3 ) The box 

girder is treated as an assemblage of plates which bend as one-way 

slabs between the longitudinal edges or joints. Longitudinal stresses 

are assumed to vary ·linearly between the longitudinal joints. Wright, 
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Abdel-Samad and Robinson(4 ) have made use of thin-walled beam theory 

to formulate an analogy between an elastic box girder and a beam on 

an elastic foundation. This technique has been used to evaluate 

stresses resulting from deformation of the cross section. 

Another analytical technique which has been applied to box 

girders as well as many other structural problems is the finite element 

method. Scordelis(S, 6) has effectively used this to analyze continuous 

reinforced concrete box girders with rigid interior diaphragms. 

Malcom and Redwood(7) have utilized it to study shear lag effects in 

stiffened box girders. However, to date, no attempt has been made to 

apply this technique to the ultimate strength evaluation of box gird-

ers. 

One of the few studies which focused on the ultimate strength 

of box girders was completed by Parr(S) in 1968. His work was re-

stricted to box shapes having very stocky web plates and subjected 

to only flexural loads. Torsional loads were not considered and 

post-buckling behavior was not of concern in this study. 

A thin-walled box girder is in many respects very similar to 

a plate girder. The slender webs of both are required to carry 

practically all of the vertical shear while the flanges resist most 

of the bending moment. For a long time the strength of plate girders 

was believed to be limited by the theoretical, buckling strength of 

the web. (9 10 11) In the last decade, research ' ' on plate girders has 

indicated that the load carrying capacity is not limited by web 

buckling but by the capability for stress redistribution among the 

component parts of the girder. It is anticipated that a thin-walled 
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box girder also has considerable post-buckling strength and therefore 

its maximum load carrying capacity is much larger than the theoretical 

web buckling load. 

The purpose of this study was to evaluate through use of 

model tests the postbuckling behavior, modes of failure and load carrying 

capacity of single-span, rectangular steel box girders. Intended was 

the development of a workable analytical method for estimating the 

ultimate strength of such box girders. The study also had as one of 

its goals the acquisition of information which would provide guidance 

for planning and conducting future theoretical and experimental 

research on the ultimate strength of box girders. 

Specific objectives included: 

1. Design and fabricate two model test specimens to 

simulate typical single-span, steel, rectangular box girders. 

2. Determine the effects of transverse stiffener spacing, 

diaphragms or x-bracing, and loading conditions (different combinations 

of bending, shear and torsion) on the behavior, modes of failure and 

load carrying capacity of the model specimens. 

3. Measure deflections and strains of each specimen up to 

the ultimate .load. 

4. Develop an analytical procedure for estimating the 

·ultimate strength of single~span, steel, rectangular box girders. 

5. Compare experimental results with corresponding 

analytically computed values. 
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2. TESTS OF MODEL BOX GIRDERS 

2.1 Description of Test Specimens and Setup 

2.1.1 Design Considerations 

The first consideration for the design of the test speci­

mens was based on the procurement of a qualitative evaluation of 

the post-buckling behavior and failure mechanisms for single-span 

box girders subjected to shear, bending and torsion. Initiation of 

failure in the web plates was of prime interest and governed, to a 

large degree, the design of the relative dimensions of the component 

parts of the specimens. 

A rectangular cross section was chosen because it is one 

of the most commonly used in box girder bridges. The selection of 

the depth and-width of the box was somewhat arbitrary although 

several items were considered before a final choice was made. These 

included: (1) providing an opening large enough to make possible 

internal positioning of the X-bracing and tightening of the mechanical 

alignment fasteners during fabrication, (2) thickness of readily 

available sheet steel, (3) depth to width ratio of the box, 

(4) slenderness ratio of t~e webs, (5) connection of webs to flanges, 

and (6) the length of the specimens. The length was primarily governed 

by the clear span available in the testing machine, although fabri­

cation and lateral distortions of the web plates caused during fabri­

cation were also considered. 
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The slenderness ratio (depth/thickness) and transverse stiff­

ener spacing for the web plates were selected based on current AASHO 

specifications(l, 2) for plate girders. 

Design considerations for the top flange concentrated on 

simulation of the relative stiffness of a concrete deck and elimination 

of premature failure, that is, failure of the flange before one or more 

of the web panels failed. Because only single-span members were being 

investigated, yielding was the governing criterion for design of the 

bottom flange. 

The design of the X-bracing was based on one prime objective. 

That was to make it strong enough to maintain the shape of the cross 

section for the entire range of loading. Connection of the bracing 

to the wall plates could be achieved through welding or use of 

mechanical fasteners. 

One final design item involved the connection between the 

flanges and the web plates. It was necessary that these joints be 

continuous and have shear and tensile strengths strong enough to 

resist the ordinary shear forces resulting from bending and torsion 

·and also tensile forces resulting from anticipated tension field 

action of the web plates. To achieve such a joint, a careful in­

vestigation of several different joining materials was undertaken. 

2 .1. 2 Details and Properties ,of Test Specimens 

Two specimens having a vertical axis of symmetry were fab­

ricated from sheet steel and are sho\vn in Figs. 2.1 and 2.2. The 
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specimens were formed by connecting the two flat flange plates to the 

two webs which had previously been bent into channel shapes. The 

flanges of the web channels facilitated the longitudinal connections. 

Holes had previously been drilled in the flanges and webs to accom­

modate fasteners which securely positioned the plate components during 

fabrication. 

As was previously mentioned, careful consideration was given 

to a possible connecting medium. It was felt that the tensile forces 

which had to be carried by the joint would be the most critical, and 

therefore a series of tensile tests were performed using several 

different joints. Figure 2.3 shows the test configuration andre­

sults .. Although the brazed and silver solder joints exhibited the 

greatest strength, neither of these was finally selected because the 

required heat inputs produced intolerable web and flange distortions. 

The 50-50 solder (50% Tin, 50% Lead) was used and produced satisfactory 

joints with only small amounts of web distortions. 

Specimen Ml (Fig. 2.1) consisted of a box section 3 inches 

deep by 4 inches wide and had a span length of 24 inches. The nominal 

slenderness ratio for the webs was 192. Transverse stiffeners attached 

to the exterior surface divided the webs into panels having length-to­

depth ratios (aspect ratio) ranging from 1.0 to 1.67. Solder, the same 

as that used for the longitudinal web-to-flange joints, was used to 

attach all transverse stiffeners. The top flange having a width of 

7 inches and 5/64-inch thickness had been sized to.simulate the deck 

of a composite box girder bridge. X-bracing was provided at the 



loading and support points for the purpose of distributing the con­

centrated loads and maintaining the shape of the cross section. 

Intermediate bracing was provided at one additional location. 

Specimen M2 (Fig. 2.2) had a configuration very similar 

to that of Ml. The major differences were in the width of the top 

flange and the elimination of both the transverse stiffeners on the 

bottom flange and the intermediate X-bracing. 
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The component plate dimensions and material properties are 

listed in Table 1. Material properties were obtained from standard 

tensile specimens (ASTM E8) which had been cut from the original 

plates in the direction parallel to the longitudinal axis of the 

specimens. Table 2 presents the pertinent geometric properties for 

each specimen. 

2.1.3 Instrumentation and Test Setup 

Instrumentation 

Instrumentation for both specimens consisted of dial gages, 

electrical-resistance strain gages and an extensometer. A total of 

seven 0.001 inch dial gages, arranged as shown in Figs. 2.4 and 2.5, 

were utilized to monitor the vertical and rotational displacement of 

each specimen. Possible support settlement and rigid body rotation 

dictated the employment of the end support gages. 

Figures 2.6 and 2.7 show the strain gage layout for speci­

mens Ml and M2, respectively. The three-element rectangular rosettes 

were mounted in back-to-back pairs at the center of pre-selected web 

) 
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panels on both sides of the box. Orientation of these had the diagonal 

gage of the rosette aligned with the approximate direction of the ten-

sion diagonal of the panel. Back-to-hack gages were needed so that 

stresses resulting from inplane bending and shear could be isolated 

from the out-of-plane bending stresses. Several linear gages were 

also mounted on specimen Ml to check the normal stre-ss distribution 

(cr ) over the cross section. 
z 

For identification purposes each panel, which consisted of 

two webs and two flanges, was assigned a number as indicated in 

Figs. 2.1 and 2.2. In addition, one vertical side of the cross 

section was designated "north" and the other "south" in order to 

identify the two webs of a given panel. Thus, the web designations 

lS and lN refer to the south and north side webs of panel 1, re-

spectively. 

Because the behavior of the web panels was of prime interest, 

it was thought that supplementary data could be obtained quite easily 

by measuring strains mechanically along the diagonals of the panel. 

Several difficulties were encountered with this technique but by 

and large it proved to be a useful device for checking web diagonal 

deformations. Figure 2.8 illustrates the basic application of this 

method. 

A brittle whitewash coating was applied to M2 in an attempt 

to produce visual signs of yielding. This also proved to be valuable 

in the photographic documentation of the behavior of the specimen. 

Whitewash was not utilized on Ml. 
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Test Setup 

Specimens Ml and M2 were tested as simply supported members 

~" in a mechanical, screw type testing machine . Load was applied me-

chanically through the center of the movable head to a spreader bar 

which distributed the load to the specimen (Fig. 2.9). By carefully 

varying the longitudinal and transverse position of 'the specimen 

with respect to the center of the movable head, various combinations 

of bending and torsion could be produced. Sketches of the loading 

configuration and corresponding shear, bending moment and twisting 

moment diagrams for Ml and M2 are indicated in Figs. 2.10 and 2.11, 

respectively. 

A 1/2-inch diameter rod and 1/2-inch square bar were used 

as supports at opposite ends of each member. Hold-downs were also 

provided at each end to prevent possible lifting on one side due to 

torsion. These can be seen at the base of the bearing stiffeners 

in Fig. 2.9. 

2.2 Testing of Specimens 

2.2.1 Specimen Ml 

Testing of this specimen was initiated with applications 

of a series of symmetrical loads (no torsion) to check out the over-

all behavior of the member and the repeatability of test data.· Two 

identical test sequences were performed in which the specimen was 

* 120,000 pound capacity "torque bar" Tinius Olsen Testing Machine. 
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loaded in 200 pound increments up to 1000 pounds; the upper load level 

being within the linear-elastic range. A full set of deflection and 

strain readings were obtained for each increment of load. 

For all tests the strain rate in terms of free travel of 

the testing machine's movable crosshead was approximately 0.025 inches 

per minute. The actual travel speed under load was somewhat less than 

this. Data readings were initiated almost immediately after a given 

load level had been attained. Some drop in load occurred during the 

period of time in which data readings were being taken. In the 

linear-elastic range these load drops were small (20-40 pounds). 

However, they were as large as 250 pounds in the inelastic range. A 

drop in load took place, in most cases, over a period of 20 to 25 

minutes while the vertical deflections remained perfectly stable. 

Such behavior was unexpected, especially in the linear-elastic range. 

Because of the qualitative nature of the study, it was not given 

serious consideration during testing of the specimens. 

During the second symmetrical load sequence "canning" of 

web panel 2 on the south side of the cross section (abrupt change in 

out-of-plane deformation pattern) was observed at a load of approxi­

mately 950 pounds. This was not totally unexpected for such thin 

webs and testing was continued. A comparison of the test data from 

the two series of loads indicated that repeatability was achieved. 

After the symmetric load tests were completed and the data 

reviewed, the specimen was carefully repositioned and unsymmetrical 
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loading initiated. For specimen Ml the loading condition can be seen 

in Fig. 2.10. With the load at midspan and directly over the north 

web, each half-span was subjected to identical bending, shear and 

torsion. Load was applied and data recorded at each 200 pound in­

crement up to 1375 pounds when buckling of the web and transverse 

stiffener occurred directly under the load point. The specimen was 

unloaded and repairs effected by straightening and strengthening the 

loading stiffener. Testing was resumed and at 1200 pounds consider­

able additional local buckling of the web was noticed at the same 

locations although no evidence of stiffener buckling could be seen. 

Further inspection uncovered tearing of the upper portion of the 

solder joint connecting the loading stiffener to the web. Prior 

to this, bulging of the web along the tension diagonals of web 

panels lN, 2N, 4N and 6N was clearly observed. 

Repairs this time included straightening of the buckled 

web on the north side and the attachment of a heavy angle stiffener 

to each web at the load point location. The eccentricity was 

shifted to the south side to help avoid future possible premature 

failures. Prior to what turned out to be the final test of speci­

men Ml, load was cycled several times between 0 and 1000 pounds. 

Final testing proceeded without incident up to 1200 pounds. 

Full sets of deflection, strain and web diagonal measurements were 

recorded for each 200 pound increment. At 1400 pounds the first 

definite signs of tension diagonal web bulging appeared in panel 6S. 

Loading continued and at 1500 pounds tension field action was very 
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prominent in web panels lS and 6S which had aspect ratios of 1.67 

and 1.5, respectively. No visual evidence of tension field action 

could be detected in the corresponding web panels on the north side. 

It is significant to point out again that the load for this test was 

directly above the web on the south side (eccentricity of 2 inches). 

Upon further loading to 1600 pounds, a sharp cracking noise was heard 

and a portion of the top flange near the centerline of the specimen 

started to distort downwards on the south side. Large distortions 

of the cross section were beginning to take place. Later inspection 

indicated that failure of the midspan X-bracing was the cause of the 

cracking noise. The load was very unstable at this point yet addi­

tional load could be supported. Pulling up of the bottom flange 

and pulling down of the top flange at the tension diagonal corners 

of web panels lS and 6S started to occur at 1650 pounds. At 1750 

pounds web bulging had occurred along the tension diagonals of 2S 

and 4S in addition to failure of the X-bracing at the east end. A 

maximum load of 1800 pounds was attained before excessive deflections 

and cross-sectional deformation prohibited further loading. Even 

at the maximum load no signs of web bulging could be detected on the 

north side. Figures 2.12(a) and (b) clearly show the permanent de­

formations as viewed from the north and south sides. Bulging of the 

web along the tension diagonals is obvious on the south side but not 

on the north side. A closer look at the permanent web and flange 

deformations on the south side is given in Figs. 2.13(a), (b) and (c). 

Finally, a view from each end of the specimen, Figs. 2.14(a) and (b), 

illustrates some of the cross-sectional distortions which took place. 
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2.2.2 Specimen M2 

2.2.2.1 Unsymmetrical Loading 

The descriptive terms symmetrical and unsymmetrical refer 

to the position of the load with respect to the shear center which 

theoretically lies on the vertical centroidal axis of the cross sec­

tion. Therefore, an unsymmetrical load will subject the member to 

torsion in addition to bending, whereas symmetrical loads produce 

only bending. 

Prior to starting the unsymmetrical load test, a series of 

symmetric loads were applied to check the specimen and test setup. 

The procedure followed was similar to that used for specimen Ml. 

Following this, testing under the loading condition indicated in 

Fig. 2.ll(a) was begun with an eccentricity of l-inch to the north 

side. Load was applied in 200 pound increments up to 800 pounds and 

thereafter in 100 pound increments. Vertical deflections, strains 

and web diagonal measurements were recorded for each load increment. 

The first significant observations involved bulging of the web along 

the tension diagonal in panels lN and 2N at about 1200 pounds. Further 

loading produced additional bulging and at 1700 pounds flaking of the 

whitewash along the tension diagonal of panel 2N had occurred. Similar 

web deformations but to a lesser degree were observed in web panels 

lS and 2S. None of the other web panels exhibited any signs of such 

deformations at this load level. After a short pause in testing 

during which time the load had been decreased to 400 pounds, loading 

was resumed in 100 pound increments. A load of 1800 pounds produced 

pulling up of the bottom flange at the lower tension field corner 
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of web panel 2N. Web bulging also had begun in web panel 5N. Visual 

inspection indicated that little or no cross-sectional deformations 

had occurred up to this point. Loading continued and caused additional 

bulging in web panel 2N while no further increases in similar web de­

formations of web panel lN could be detected. At 1900 pounds, panel 

2S also exhibited considerable web bulging along the tension diagonal. 

Shortly thereafter, the maximum load of 1930 pounds was attained. Some 

slight local buckling of the upper portion of the web adjacent to the 

loading stiffener in panel 3N was observed. Unloading followed and the 

resulting permanent web deformations are shown in Figs. 2.15(a) and (b). 

2.2.2.2 Symmetrical Loading 

Figure 2.16 shows the setup for the final test of specimen 

M2. It also points out the absence of damage of permanent deformations 

in panels 3, 4, 5 and 6 during the unsymmetrical test. For the 

shortened span this condition of loading (Fig. 2.ll(b)) would s~bject 

the specimen to high flexural shear, a moderate amount of bending moment 

and no torsion. Failure was expected to occur in either panel 4 or 5. 

The procedure followed was very similar to that employed in 

the previous tests. The first visual signs of tension field action 

showed up in both webs of panel 5 at 1700 pounds. Just prior to this, 

"canning" of web panel 58 had taken place. The lateral 'veb deformations 

in these panels increased as loading continued but were not excessive 

even at 2400 pounds. The next increment of load produced the first 

noticeable signs of web bulging in panels 48 and 4N. At 2530 pounds 

flaking of the whitewash occurred along the tension diagonals of these 



-18 

web panels. Additional loading caused the web deformation in both 

sides of panels 4 and 5 to grow excessively. This was accompanied 

by vertical deformations of the flanges over the length of these 

panels. The maximum load that could be reached was 2650 pounds. 

Flaking of the whitewash in both webs of panel 3 adjacent to the 

transverse stiffener was observed at this load. The. flaking formed 

horizontal lines perpendicular to the transverse stiffener dividing 

panels 3 and 4 (Figs. 2.17 (a) and (b)). This type of behavior has 

previously been experienced in the end post regions of plate gird­

(ll•' 15) ers. Final deformation patterns are indicated in Figs. 2.17 

and 2 .18. · 

2.3 Description and Discussion of Test Results 

2.3.1 Results of Symmetrical Load Test 

Symmetrical loading would theoretically produce identical 

she~r and normal stresses in the webs of specimen M2. With the larger 

of the two shear span-to-depth ratios being about 2.6 and the neutral 

axis positioned approximately 1/4 the web depth from the compression 

flange, shear was anticipated to govern the mode of failure. A plot 

of the vertical shear stresses at the centerline of web panel 5 

(F-ig. 2.19) indicates quite closely the equivalence of stresses for 

the webs. It also illustrates that good correlation with theoretical 

values (computed using Eq. (3.13) of Chapter 3) was obtained for loads 

less than that which produced significant out-of-plane web deformations. 

Note that the stresses plotted in this figure have been obtained by 

averaging the measured surface strains and are assumed to be uniform 
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through the thickness of the plate. This is also the case for all 

other stress plots unless noted otherwise. 

Figure 2.20 illustrates the direction and magnitude of the 

principal stresses for panel 5 at three distinct load levels. The 

angle between the maximum principal stress and a horizontal axis is 

theoretically 45° for pure shear during the early stages of loading 

when the shear is carried through simple beam action. As the load 

increases and the shear exceeds the theoretical web buckling load, 

the principal stresses are gradually reoriented in the direction of 

the tension diagonal of the panel. Such a phenomenon was cotmnon 

in the other tests reported herein, and has previously been observed 

many times in shear and combined bending and shear tests of plate 

girders. (l6) 

The overall behavior of the specimen can best be described 

by referring to the load-deflection curve in Fig. 2.21. The response 

was essentially linear up to 2500 pounds. In the previous section it 

was noted that excessive web bulging and flaking of the whitewash oc-

curred along the tension diagonals of web panels 4S and 4N at 2530 

pounds. Strain readings indicated that yielding had initiated in 

both webs of panel 5 at 2550 pounds. With the webs yielding and able 
I 

to carry little or no additional shear, the load-deflection curve 

became almost flat. A small amount of additional load was realized 

through the transverse shear strength of the flanges after the webs 

had failed. Evidence of this is indicated in Fig. 2.22 which shows 

a large increase in the top flange bending strains of panel 4 
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at 2500 pounds. This can be compared with the frame action contri­

bution of plate girder flanges described by Chern and Ostapenko. (l7) 

As depicted in Fig. 2.21, the maximum load of 2650 pounds was more 

than twice as large as the theoretical buckling loads for panels 4 

and 5. 

The data points marked with x's in the inelastic region 

of the load-deflection plot of Fig. 2.21 were recorded at the end 

of each data acquisition time interval. These lower load levels 

were a result of the load drops previously described in Section 2.2.1. 

A brief supplementary study, performed after testing had been com­

pleted, revealed that this type of behavior was due to a combination 

of the non-zero strain rate used during loading and relaxation of 

the solder joints. The limtted scope of this supplementary study 

did not permit precise separation of the effects of strain rate and 

joint relaxation. However, it was evident that the effects of the 

non-zero strain rate were wiped out during the 20 to 30 minute period 

used for taking data readings and during which the deflection of the 

member was stable. This is analogous to the behavior associated with 

tensile coupon tests, in which the dynamic yield load decreases to 

the static yield load within a period of about five minutes. (lB) Be-

cause of the inability to accurately separate the effects of joint 

relaxation and strain rate, it can only be reasoned that the statically 

applied loads, that is, those loads corresponding to a zero strain 

rate, lie between the upper (o) and lower (x) data points. 
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In conclusion, it is clear that the behavior and mode of 

failure (yielding along the web tension diagonals accompanied by 

deformation of the flanges) of symmetrically loaded box girders com-

pare quite well with that of similarly loaded plate girders, pro-

viding premature failure of the compression flange is prevented. 

2.3.2 Results of Unsymmetrical Load Tests 

Under this loading configuration two tests were performed, 

one each on specimens Hl and N2. The results of specimen N2 are 

discussed first. 

Figure 2.ll(a) indicates the combination of shear, bending 

and torsion applied to this specimen. Due to the loading condition 

and geometry of the specimen, a shear type failure was again expected. 

Therefore, the vertical shear stress at the midpoint of the web would 

be a sensitive indicator of the behavior of the specimen. A theoretical 

evaluation of the shearing stresses resulting from flexure and St; Venant 

torsion indicated that these stresses would be largest in panels lN and 

• 2N. Evidence that this actually occurred during testing can be seen in 

Fig. 2.23. Correlation with the theoretical values described above is 

also evident. 

A'cdmplete evaluation and understanding of the behavior of 

the specimen up to ultimate load requires a correlated review of the 

load-deformation and load-stress data. The load-deflection curve in 

Fig. 2.24 provides a logical starting point. From this it can be 
} 

seen that the overall response was linear up to 1500 pounds. At this 

point the slope begins to change, and at 1700 pounds the slope has 
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decreased further but still is quite steep. It is at this load that 

general yielding had been observed along the tension diagonal of 

panel 2N. Figure 2.23 verifies this and also indicates that the 

shear stress begins to decrease in web panel lN and increase in 

panels lS and 2S upon the application of additional load. This im­

plies that a redistribution of the shear has taken place. Panel 2N 

which has experienced general yielding could not carry any more shear 

and therefore any additional flexural shear was carried by the web 

on the south side. Failure of web panel 2N also affected the 

torsional stiffness of the member as can be seen in Fig. 2.25. The 

length of the member containing panel 2 (9-inch length to the left 

of the load point) could no longer support its full share of the 

twisting moment due to its decreased torsional stiffness, therefore, 

a greater portion of the twisting moment had to be carried by the 

section to the right of the loading point. This redistribution 

phenomenon caused the shear stresses in this span to change. This 

is clearly indicated in the shear stress plots for panel 5 in 

Fig. 2.26. The change in the load versus shear stress curves can 

be explained analytically by again simply considering the super­

position of the shear flow due to bending and St. Venant torsion. 

For the given direction of torsion, these add on the north side and 

subtract on the south side as shown in Fig. 2.27. It is important 

to note that effects due to warping torsion and distortion of the 

cross section have been considered. However, because of the rather 

good correlation between the experimental stresses and those predicted 

by considering only bending and St. Venant torsion, detailed consideration 
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of these factors is not deemed necessary for evaluation of the behavior 

of the specimen and the mode of failure. 

Additional loading eventually caused general yielding along 

the tension diagonal of web panel 2S (Fig. 2.23) and an increased rate 

of deflection (Fig. 2.24). Prior to the attainment of the maximum 

load, flange deformations resembling the frame action described in the 

previous section occurred quite substantially on the north side of 

panel 2, but to a somewhat lesser degree on the south side of the 

same panel. The inability to develop further deformation of the 

flanges may have been affected by what was described in Section 2.2.2.1 

as local buckling of the upper portion of the web in panel 3S, adjacent 

to the loading point. 

Analogous to the results for s~rrmetrical testing of M2, the 

data points denoted by circles and x's in the inelastic region of the 

load-deflection plot of Fig. 2.24, respectively, represent the upper 

and lower bounds of the static loads of the uns~etrical load test 

of M2. 

It is interesting to note that the load-rotation curve in 

Fig. 2.25 has not flattened out upon attainment of the maximum load. 

This infers that the torsional capacity of the member has not yet 

been exhausted and additional torsional moment could be supported 

by the undamaged portion to the right of the loading point. 

A recapitulation of the pertinent events leading up to the 

ultimate load will help to clearly define the mode of failure for 
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specimen M2. Initial signs of failure showed up as tension diagonal 

yielding in the most critical web panel (2N), which is the panel 

having the most severe combination of stresses and geometry. Ad­

ditional loading produced redistribution of the flexural shear to 

the other side of the box, that is, to web panel 2S. This ob­

viously was accompanied by a redistribution of the normal bending 

stresses. The decreased torsional stiffness of the shear span con­

taining panel 2N forced a redistribution of the twisting moment to 

the undamaged right shear span. The maximum load was reached when 

no additional flexural shear could be supported in panel 2. This 

took place after panel 2S had exhibited yielding along its tension 

diagonal and the flanges had been partially deformed due to frame 

action. Figure 2.15 portrays the failure mode configuration. 

Keeping in mind the behavior and results of M2, attention 

is next focused on the results of specimen Ml. In the final test 

of Ml, the load was at midspan with an eccentricity of 2 inches to 

the south side. Under such loading conditions web panels on the 

south side were subjected to larger shear stresses than those on 

the north side, and therefore web failure would be expected to 

initiate on the south side of the cross section. Evidence that this 

actually occurred was reported in Section 2.2.1. The lower part 

of Fig. 2.28 clearly points out the difference in magnitude of the 

shear stresses on the north and south sides. The upper part of this 

figure shows that the relative magnitude of these stresses is re­

versed when the eccentricity is reversed. The distribution of shear 



stresses prior to any web failure is quite similar to that obtained 

for specimen M2 (refer to Fig. 2.23). 
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When web failures initiated on the south side, a redistri­

bution of the flexural shear to the north side was expected to occur. 

Referring again to Fig. 2.28 it is seen that this was not the case. As 

web panel 4S began to fail through yielding along its tension diagonal, 

the shear stress in the corresponding web on the north side remained 

relatively constant. Behavior of this type was also exhibited in 

panels 1 and 6. This is unlike the behavior of specimen M2 which 

demonstrated significant redistribution capability (Fig. 2.23). 

The load-deflection and load-rotation curves of Figs. 2.29 

and 2.30, respectively, indicate that little flexural or torsional 

stiffness remained once web panels lS and 6S had yielded. This is 

also quite different than the behavior of M2 which possessed appreciable 

torsional and flaxural stiffness after panel 2N had yielded. Of course, 

the lack of tors~onal stiffness in Ml could be expected because web 

panel failures occurred almost simultaneously (lS and 6S) in each shear 

span. (Recall that for M2 web failure occurred in only one of the 

shear spans.) On the contrary, the absence of significant flexural 

stiffness was not anticipated and must be attributed to the poor re­

distribution characteristics of the member. Failure of the midspan 

X-bracing at approximately· 1500 pounds and the resulting cross-sectional 

deformation certainly had a major adverse effect on the ability to trans­

fer the load. from the south web to the north web. Subsequent failure 

of the X-bracing at the east end compounded the effect. 
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Thus, specimen Ml failed prematurely due to combined web panel 

yielding and excessive distortion of the cross section. It is clear 

that adequate diaphragms or X-bracing must be provided if the member is 

to provide full redistribution of the flexural shear and torsion and 

thus develop its true ultimate strength. 
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3. A METHOD FOR EVALUATING THE ULTIMATE STRENGTH 

3.1 Introduction 

The analytical method presented herein has been systematically 

developed for single-span, rectangular box girders subjected to bending 

and torsion by considering the following: 

1) Stresses. 

2) Behavior and strength of a box girder panel. 

3) Behavior and strength of the overall member. 

Simple thin-walled beam theory and past research on closed thin-walled 

members (Refs. 4, 19, 23) provide the necessary tools to estimate the 

stresses associated with a single-span, rectangular box girder in 

the elastic, prebuckling range. With the stresses knmvn it is pos-

sible to predict the behavior and strength of a box girder panel uti-

. (17 21) 
lizing some of the results from recent research on plate g1rders. ' 

A panel of a box girder is a longitudinal segment of the member between 

the transverse web stiffeners. Finally, the overall behavior and 

strength of the box girders is analyzed by considering the member 

to be made up of a series of such panels. 

3.2 Stresses in Box Girders 

In order to develop a method which would not be unduly com-

plex yet reliable for typical rectangular, box girder members, a num-

ber of assumptions affecting the stresses had to be made. These are 

listed on the following page: 
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1) · Member is straight and prismatic. 

2) Cross section is symmetrical about its vertical 

centroidal axis. 

3) Transverse normal stresses in the planes of the 

flanges are negligible. 

4) Stresses due to deformation of the cross section 

are negligible. 

The first two assumptions place restrictions on the con-

figuration of the member. They are not considered to be overly 

restrictive because many box girder designs would satisfy these 

assumptions. The third assumption neglects the stresses induced 

by partial fixity at the flange to web junctions in the direction 

of the flange's width. These stresses are normally small enough to 

render. them negligible(l9) and are not ordinarily considered in the 

analysis of box girders. 

The final assumption implies that the shape of the cross 

section is sufficiently maintained such that stresses(4 ) resulting 

from cross-sectional deformations are small. This assumption is 

justified for two reasons: (1) maintenance of the shape of the 

cross section through proper design of diaphragms is necessary to 

derive maximum benefits from box girder designs based on ultimate 

strength, and (2) significant distortion of the cross section should 

be prevented to eliminate potential detrimental effects on the 

fatigue life of box girders. (4 ) 
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Application of an arbitrary transverse load to the deck 

of a box girder causes the member to bend and twist. Assuming that 

the principle of position is valid, stresses due to flexure and 

torsion can be calculated separately and then combined to determine 

the resultant member stresses. 

3.2.1 Flexural Stresses 

Transverse loading in the plane of symmetry of a box girder 

produces normal and shearing stresses in the cross section which can 

be closely approximated using the relationships from simple beam 

theory. The normal stresses are given by 

~y 
(3 .1) 

where y and I are based on the cross-sectional area. Figure 3.l(a) 
X 

illustrates the distribution of these stresses over the cross section 

of a box girder. The neutral axis is located in the upper part of 

the web, close to the top flange. This is typical for box girder 

bridges having either a concrete or orthotropic steel deck and re-

sults in the larger portion of the web being in tension for single-

span members. 

For closed, thin-walled sections loaded in a plane of sym-

metry, the flexural shear stresses can be evaluated from the expression, 

(3. 2) 

s 
where Q = J y(s)t(s·)ds. Due to symmetry, TB and therefore Q are zero 

0 

at points where the flanges and vertical axis of symmetry intersect. 
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The shear stresses are assumed to be uniform across the thickness, t, 

of the wall plates and usually have a cross-sectional distribution 

similar to that indicated in Fig. 3.l(b) for the given loading. It 

is obvious from this sketch that the webs theoretically carry all of 

the vertical shear. 

3.2.2 Torsional Stresses 

In general, a box girder subjected to torsion will experience 

warping of its cross section as it twists. If warping i& free to ~ake 

place at every cross section along the length of the member, only 

shearing stresses due to St. Venant torsion develop. However, if 

warping is restrained at one or more cross sections, additional shear 

and normal stresses occur. When this takes place, the total applied 

twisting moment MT is the sum of the warping contribution Mw and the 

St. Venant contribution M , that is, 
SV 

MT=M +M sv w 
(3 .3) 

The governing differential equation for a member subjected 

to a concentrated torque is given by, 

where z = 

0 = 

G = 

KT = 

E = 

I = 
w 

= GK d0 
T dz 

coordinate along the 

angle of twist 

shear modulus 

torsion constant 

modulus of elasticity 

longitudinal 

warping moment of inertia 

(3.4) 

axis 
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The general solution to this equation can be put in the form, (22 ) 

(3 .5) 

2 GKT 
where A. = EI 

(l) 

The constants of integration cl, c2 and c3 can be 

-determined from the applicable boundary conditions. Hence the angle 

of twist is completely defined along the length of the member which 

makes possible the evaluation of the torsional stresses from the 

following expressions:(
22

) 

GK 0' 
T 

'TSV 
= 

2 A t 
0 

-E s 0''' 
'T = - w 

w t 

(J = E w 0" 
w n 

(3 .6) 

(3. 7) 

(3.8) 

where S and w are the warping statical moment and the normalized w n 

unit warping, respectively. The terms K_, I , S and w are cross-
-~ w w n 

sectional properties which have been clearly defined for open thin-

walled sections. (23 , 24) The modified form of these for closed thin-

walled sections is given in Appendix A. 

·---the middle line of the wall plates. 

A is the area enclosed by 
0 

The stresses defined by Eqs. (3.6) through (3.8) are dis-

tributed uniformly across the thickness of the box girder's wall 

plates. Their distribution over a cross section of model specimen Ml 

is shown in Fig. 3.2. It is seen in Fig. 3.2(a) that the St. Venant 

shear stresses are uniform over ·the width of a given wall plate 
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of constant thickness, whereas the shear and normal stresses due to 

warping exhibit (Figs. 3.2(b) and (c)) appreciable variation over 

the width. This is considered to be typical for a box girder member. 

More important is the distribution of these stresses along the length 

of the member. In order to provide some insight into this, a torsion 

analysis of model specimens Ml and M2 was performed using Eqs. (3.4) 

through (3.8). In the analysis it was assumed that warping was free 

to take place at the ends of the member. The results plotted in 

Figs. 3.3 and 3.4 show that the warping stresses are significant 

in localized regions adjacent to the point of restraint (loading 

point). These stresses decrease to practically zero at a relatively 

short distance from the restraint. However, the shear stresses due 

to St. Venant torsion, T , are prominent over almost the entire 
sv 

length of the member. 

Another point to consider in attempting to establish the 

significance of the torsional stresses is the relative magnitude of 

these stresses with respect to the flexural stresses. Computations 

for specimens Ml and M2 indicated that the maximum normal stresses 

due to bending were 5 to 6 times larger than the maximum normal 

warping stresses. Web shear __ stresses due tQ..flexul;;e_wg....r,.e--fr.om.-2 

to 3 times larger than the_§.t •. Venant_s.h~_ar_s,t,r.e~s.s.e_s_and-fr.om __ J,....kS 

to 2. 5 times as larg~ as the maximum,.:shear .... s ... t.r.e,s,s.e,s-caus.e.d_b __ y_war,?..iJlg. 

Additional information on torsional stresses in box girders 

can be obtained by referring to some of the past literature on the 

subject. Results of experimenta"l tests by Haggard and Par/ 19) 

indicate that the warping stresses, cr and T , in box-like, w . w 
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thin-walled sections subjected to torsion, are negligible for loads 

within the linear, prebuckling range. In Ref. 24, Terrington states 

that stresses due to warping restraint are not present in closed, 

thin-walled sections to any measurable extent. 

Taking into consideration the relative magnitude and dis-

tribution (both cross-sectional and longitudinal) of the torsional 

stresses and also the findings of previous studies, it was assumed 

that the effects of warping were insignificant and therefore would 

not be considered in the remaining development of the analytical 

method. It was thus implied that the twisting moment is carried by 

only St. Venant torsion and the resulting shear stresses can be com­

puted from Bredt's formula, (2S) 

· Tsv (3. 9) 

3.2.3 Primary Stresses 

· The normal and shear stresses resulting from flexure and 

the shear stresses due to St. Venant torsion are hereafter referred 

to as the primary stresses. By making use of superposition, the 

shear effects due to flexure and torsion can be combine.d algebraically. 

An example of this is presented in Fig. 2.27. Of particular significance 

in this figure is the appreciable difference in the resultant shear flow 

for the two webs. This was found to play an important role in the de-

velopment of panel failure mechanisms. 

A summary of the primary stresses is given on the following 

page: 
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cr = 
~y 

I 
X 

-~ _l 
T - I t ± 2A t 

X 0 

3.3 Behavior and Strength of a Box Girder Panel 
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(3 .10) 

(3. 11) 

A box girder panel can be looked upon as being somewhat 

similar to that of a plate girder: In particular, the webs are 

analogous, having essentially the same geometry and boundary con-

ditions. Also, both are subjected to linearly varying normal stresses 

and practically uniform shearing stresses over their depth. Therefore, 

it was expected that, like the slender web of a plate girder, box gird-· 

ers webs would exhibit significant post-buckling strength. Because of 

these similarities it was reasoned that strength formulas developed for 

unsymmetrical plate girder paneis(26 ) could be applied with certain 

modifications to box girder panels. 

In evaluating the behavior and strength of a box girder panel, 

two distinct loading conditions were considered. A symmetrical load 

which subjects the panel to shear and bending and an unsymmetrical or 

eccentric load which also imposes torsion on the panel. Examples of 

each are given in Fig. 3.5. 

3.3.1 Symmetrical Load 

For single-span box girders stress patterns similar to those 
I 

.shown in Fig. 3.1 develop as loading commences. The strength of a panel 

is governed by web failure, yielding of the tension flange, or failure 
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of the compression flange. Failure of the compression flange is re-

stricted to either yielding of a steel plate or crushing of a concrete 

deck. Compression flange buckling has been excluded because it is not 

likely to occur with the large out-of-plane bending stiffness of a con-

crete or orthotropic steel deck. 

A. Web Failure 

When a panel is subjected to a symmetrical loading condition, 

the behavior of and stresses in the two webs are assumed .to be identical. 

The panel strength, which is evaluated based on forces at the mid-length 

of the panel, is obtained as a sum of buckling (beam action), post-

buckling (tension field action), and flange (frame action) contri-

butions. 

v 
u 

(3.12) 

This approach is identical to that suggested by Chern and Ostapenko(Zl) 

for plate girders. 

Prior to buckling the characteristic web stresses are given 

by the following relationships: 

where 

T 

a 

V = panel shear 

A = area of one web 
w 

= 

= 

v 
2A (3.13) 

w 

Vz yc 0 

I 
(3.14) 

X 

z = distance from the end support of the girder to the 
0 

mid-length of the panel 
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= distance from the neutral axis to the extreme com-

pression fiber of the web 

equation (3.13) assumes that the flexural shear stress is distributed 

uniformly over the depth of the webs. This approximation has been 

successfully utilized in ultimate strength studies on plate gird­

ers(lO,l7), and because of similar shear stress distributions can 

also be applied to box girders. In Eq. (3.14) the moment, ~· has 

been replaced by v.z . This is possible for single-span members 
0 

subjected to concentrated loads. Figure 3.6 depicts the assumed 

stress and boundary conditions for a typical web plate in a box 

girder subjected to symmetrical loading. 

This combination of bending and shearing stresses is assumed 

to be limited by web buckling. The interaction equation defining 

this limit is given in Ref. 26 as, 

2 

(TTC) = 1.0 (3. 15) 
cr 

Substitution of Eqs. (3.13) and (3.14) forT and cr in the interaction 
c c 

equation results in the following expression for the beam action con 

tribution, V • 
T 

v 2 [ 1 
T . (2A T ) 

2 
w cr 

1-R +-2 

In the above equations, 

Tc = shear buckling stress of the web under combined 

shear and bending 



crc = buckling stress at the extreme compression fiber 

of the web under combined shear and bending 

R = -yc/yt (due to a lack of sufficient experimental 

and theoretical data, conservatively use R = - 1.5 

for computed values less than - 1.5) 

= distance from the neutral axis to the extreme 

tension fiber of the web 

= distance from the neutral axis to the extreme com-

pression fiber of the web 

Tcr =web buckling stress under pure shear as defined in 

Appendix B 

crcr = web buckling stress under pure bending as defined 

in Appendix B 
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From Ref. 26 the tension field action contribution is given 

by one of the following expressions: 

for A.v < 0.58 

v = 
cr 

0 (3.17a) 

for 0. 58 < A. < /2 
v-

0.6 A - 0.348 
v v v 

cr ~cl + 1.6 
p (3.17b) 

for A > /2 v 

0.9- 0.787/A. 
2 

v = 
. v. 

vP cr 
Jcl+1.6 

(3. 17c) 
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where A.v = non-dimensional shear buckling parameter defined 

in Appendix B 

vP = 2 A ~ plastic shear force of two identical webs 
{3 w 

a = a/b = web panel aspect ratio 
w 

For slender web box girders either Eq. (3.17b) or (3.17c) normally 

governs. 

The frame action contribution of Eq. (3.12) represents the 

resistance of the flanges to the distortion of the web panel from a 

rectangle into a parallelogram. Its maximum contribution is reached 

when plastic hinges form across the effective width of the flanges 

as shown in Fig. 3.7. It is possible that for certain loading con-

ditions and box girder designs only a portion of the full flange width 

would be effective. For the sake of simplicity the contribution of a 

portion of the web plates to the flanges and the effect of axial forces 

on the flange· plastic moment are neglected. This does not appreciably 

influence the final result because the neglected effects are compensating 

and also because the flange contribution does not exceed 15% of the total 

strength for ordinary box girders. Therefore, the frame action shear is 

2 (m ) V f = a c + mt (3. 18) 

where me and mt are the pl~stic moments of the compression and tension 

flanges, respectively, and "a" is the length of the panel. For a box 

girder with a concrete deck, m has to be modified accordingly. 
c 
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B. Failure due to Yielding of Tension or Compression Flange 

In ~his study, failure of the compression flange is restricted 

to either yielding or crushing of the top flange material. It had been 

assumed that compression flange buckling would not ordinarily occur in 

single-span box girder members. The panel's ultimate strength cannot 

exceed that which causes the compression flange stress, <Jcf' to be equal 

to the reference yield stress of the flange, <Jy(cf)' 

location is at the maximum moment end of the panel. 

The most critical 

In terms of the 

panel shear force, the ultimate strength is given by one of the follow-

ing equations: 

a. If Compression Flange Yields before Webs Buckle (V < V ) 
u ' '1" 

<J I 
V = __ y"-"-( c;;_;;f':-')-=x-

u (z + a/2) y f 
0 c 

(3. 19a) 

where ycf is the distance from the neutral axis to the 

centroid of the compression flange. 

b. If Webs Buckle before Compression Flange Yields (V > V ) 
u '1" 

v 
u 

=v 
'1" 

[ J A d I + <Jy(cf) - <J'l"(cf) cf 
1 (z +a/2) 

0 

(3 .19b) 

where Acf = effective area of the compression flange 

d' =distance between the centroids of the 
tension and compression flange 

<J'l"(cf) is the stress at the centroid of the compression 

flange due to the theoretical web buckling load, V . 
'1" 

It can be computed from, 

(J 
'1" (cf) 

V (z + a/2) ycf 
'1" 0 . = ~~----------~ 

I 
X 

(3. 20a) 
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Equation (3.19b) was derived assuming that the webs do not 

support any additional bending stress after buckling. This appears 

to be too conservative for box girder panels subjetted to pure bend-

ing or a combination of large bending and a small amount of shear. 

Research on thin web plate girders( 9) revealed that under such load-

ing conditions the portion of the 'veb plate in tension can support 

additional bending stresses after theoretical web buckling. In the 

case of single-span box girders such a situation is not likely to 

occur because, under loading conditions approaching pure bending and 

the neutral axis close to the compression flange, the load causing 

theoretical Heb buckling is nearly equal to or less than the ultimate 

load causing flange failure. Therefore, most of the strength is car-

ried by beam action (the first term on the right hand side of 

Eq. (3.19b)) and the post-buckling strength defined by the other 

term of the same equation is small. 

failure. 

Similar expressions can be derived based on tension flange 

c. If Tension Flange Yields before Webs Buckle (V < V ) 
u 1" 

Hhere 

CJ I 
V = __ y"--'-'( to..;;f;;-<)-=x-

u (z
0 

+a/2) ytf 
(3. 2la) 

= reference yield stress of the tension 
flange 

= distance from the neutral axis to the 
centroid of the tension flange 

d. If Webs Buckle before Tension Flange Yields (V > V ) 
u 1" 

v 
u 

(3.2lb) 
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Atf is the effective area of the tension flange and crr(tf) 

is the stress at the centroid of the tension flange due to 

the theoretical web buckling load, V , and is given by, 
1' 

= v,. (z
0 

+a/2) ytf 

I 
X 

(3.20b) 

In summary, the ultimate strength of a box girder panel sub-

jected to symmetrical loads is given by the smallest of the values com-

puted from Eqs. (3.12), (3.19) and (3.21). Equation (3.12) defines the 

panel strength based on a web type failure. Panel failure resulting 

from compression or tension flange yielding is given by Eqs. (3.19) and 

(3.21), respectively. For convenience these are summarized in Appendix C. 

3.3.2 Unsymmetrical Load 

An unsymmetrical load on a box girder panel produces in ad-

clition to flexural shear and bending, torsion of the panel. As a 

result of the torsional component of loading, the webs on opposite sides 

of cross section are subjected to different stress states. Although the 

final failure mechanism is similar t.o one of those described for sym-

metrical loading, the development of the mechanism and the resulting 

ultimate strength are altered due to torsion. 

The behavior and strength of the panel can be evaluated by 

analyzing the panel as it progresses through several distinct phases 

of loading. Web failure is considered first. 

A. Web Failure 
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.a. Phase 1- Entire Cross Section is Effective 

During this phase of loading the entire cross section ef-

fectively resists shear, bending and torsion. Stresses in the web 

are given by, 

Ml yc vl z yc 0 

(j (1) = = I I 
X X 

(3.22) 

v 1 v 1 e 

""(1) = 2A ± 2A t 
w 0 w 

(3. 23) 

where e = eccentricity of the load with respect to the vertical, 

centroidal axis 

A = area enclosed by the middle line of the wall plates 
0 

t = thickness of a web plate 
w 

The alternate signs for the second term of Eq. (3.23) indicate the 

addition of the flexural and torsional shear in one web (rp) and the 

subtraction of the same in the other web (rrn). Phase 1 terminates 

when theoretical web buckling first occurs on the side Hhere the 

shear stresses add. This is referred to as the positive side of 

the cross section and is identified by the superscript, p. The 

corresponding panel shear, v 1 , is obtained by substituting expres-

sions (3.22) and (3.23) into the interaction formula, Eq. (3.15), for 

crc and ""c' respectively, and solving the resulting quadratic equation: 

(3.24) 

where cl 
1 e ) = (2A + 2A t 
w 0 w 

c2 = 
zo Yc 

I 
X 
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and R, Tcr and acr are as defined in the previous section for symmetrical 

loading. 

b. Phase 2 - Heb Buckled on Positive Side of the Cross 
Section 

For this phase the bending stress in the web on the positive 

side of the cross section remains constant. Additional bending moment 

is carried by the two flanges and the web on the negative side con-

stituting an effective cross section as shown in Fig. 3.8. Any ad-

ditional bending is assumed to take place about a horizontal axis 

passing through the centroid of the remaining effective cross section. 

Distribution of the shear is assumed to be the same as for Phase 1 

except that the mechanism for carrying the shear on the positive side 

has changed from beam action to tension field action. Expressed in 

terms of force, the shear carried by the positive web during Phase 2 

is, 

vP 
2 

(3. 25) 

where V 2 is the pane 1 shear above V 1 and "b'' is the depth of the web 

plate. The first term represents the flexural shear force and the 

second term defines the shear force resulting from torsion. 

The web stresses on the negative side are described by 

formulas similar to those for Phase 1. 

v
2 

z y' 
0 c 

I' 
X 

(3. 26) 

(3. 27) 
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where y' and I' are properties of the effective cross section which 
C X 

consists of a_ single w·eb and the two flanges. 

The total stresses in the web on the negative side are 

obtained by adding the effects of Phases 1 and 2 as indicated below. 

z z y' vl yc v2 n 0 0 c 
(J (1+2) == + I' I 

(3. 28) 
X X 

n {v1 +vJ [2!w- z/tJ '1"(1+2) (3. 29) 
0 w 

Termination of Phase 2 is due to either buckling of the web 

on the negative side of the cross section or tension field yielding 

of the web on the positive side. The panel shear force, v2a, causing 

the former to occur can be calculated from an expression similar to 

Eq. (3.24) by substituting the resultant stresses from Eqs. (3.28) 

and (3.29) into the interaction equation, Eq. (3.15). 

v 2 
2a 

where c3 == 

c == 
4 

1 e 
) (--2A 2A t 

w 0 w 

z y' 
0 c 
I' 

X 

In order to simplify the computation of v
2
a, R can be taken as the 

average of the values computed for the cross section assumed to be 

effective against bending during Phases 1 and 2, that is, 

(3.30) 
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R = - 1/2 ~t/yc + y~/y~~ if R > - 1.50 (3 .31) 

The above approximation has little or no effect on the strength evalu-

ation because the neutral axis shifts very little due to the elimination 

of one web. If the average value of R is algebraically less than -1.5, 

then a value of R = -1.5 is to be used in Eq. (3.30). 

The panel shear, v2b, which causes tension field yielding of 

the web on the positive side is obtained by making use of Eq. (3.25). 

or 

v2b =v_/c (J/' 5 

(3.32a) 

(3 .32b) 

eb 
where c5 = (1 + /A

0
). Vcr is defined by Eq. (17) and Vcr/2 is the 

tension field contribution of one web plate. 

The smaller of v
2a and v

2b causes the termination of Phase 2. 

Depending on Which of these controls, the behavior of the girder panel 

differs as additional load is applied. 

c. Phase 3a - Both Webs are Buckled 

This phase of loading will take effect if v
2

a has caused the 

termination of Phase 2. During this phase any additional bending 

moment is supported only hy the flanges (Fig. 3.8). Bending stresses 

in the webs remain constant while the shear forces are carried through 

tension field action. Phase 4a.will commence when the web on the 

positive side is unable to support any additional shear force due 
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to tension field yielding. It is characterized by the following load-

ing condition: 

then, 

(3.33a) 

(3.33b) 

Phase 3b - Web on Positive Side has Experienced Tension 
Field Yielding 

It is not expected that this phase would occur very often 

for ordinary box girders. The·eccentricity of the load has to be 

quite large to cause tension field yielding in one web before the 

other web buckles. However, for the sake of completeness it is con-

sidered. 

When one web yields, it is unable to resist any additional 

flexural shear. As a result of this, the flexural shear is redis-

tributed to the web on the opposite side of the cross section. This 

has an important effect on the ultimate strength of the member. If 

such redistribution does not take place, the strength of the member 

is significantly decreased. This point is made clear when the the-

oretical and experimental results are compared in the next chapter. 

It is also necessary to consider the effects of any ad-

ditional torsion on the stresses and behavior of a damaged panel. 

After one of the webs has yielded, the torsional stiffness of the 

panel decreases considerably because its remaining effective cross 



section is no longer of a closed configuration. The mechanism for 

carrying any additional torque is altered. No doubt, the actual 

mechanism is quite complex and undefinable in simple terms, es-

pecially when the effects of adjacent panels are considered. In 

any event, theoretical computations for the model specimens indicate 

that a large percentage of the girder's strength will have been 

exhausted when yielding of the first web takes place. Also, any 

additional load produces flexural shear and bending stresses in 

the effectively open cross section which out-weigh the additional 

torsional stresses. For these reasons, the effects of any ad-

ditional torque, on the behavior and strength of a panel having one 

or both of its webs rendered ineffective due to tension diagonal 

yielding, are assumed to be insignificant and thus ignored. 

The bending stresses during Phase 3b are supported by the 

flanges and the remaining web. Buckling of the web on the negative 

side of the cross section terminates this phase of loading. The web 

stresses for Phase 3b are given by, 

n = 0"(3b) (3. 34) 

(3.35) 

Combining the web stresses for Phases 1, 2b and 3b results in the 

following: 

(3.36) 
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(3. 3 7) 

Substitution of Eqs. (3.36) and (3.37) into formula (3.15) results in 

the following expression for the panel shear force, v3b. 

2 [ 1 1-R 
v3b 2 + <-2-) 

. (A 1" ) 
w cr 

- 1.0] = 0 (3. 38) 

In the above expression, R, is the larger of -1.5 or the value com-

puted from Eq. (3.31) and, 

d. Phase 4 - Web on Positive Side has Yielded, Web on 
Negative Side has Buckled 

This phase of loading occurs regardless of whether Phase 3a 

or 3b preceded it. During this stage bending moment is supported 

only by the flanges. The web on the negative side carries all the 

additional flexural shear and the.effects of any additional torque 

are assumed to be negligible. Termination of this phase occurs when 

tension field yielding of the negative side web initiates. If Phase 

3a has preceded Phase 4, the characteristic panel -shear force, v4a, 

is given by, 

(3.39) 



=(1-eb/A). 
0 

However, if Phase 4 was preceded by Phase 3b, 

then, 

v 

v 
V - cr 
4b- 2 

where again 2cr is the tension field contribution of one web. 

e. Phase 5 - Both Webs have Yielded 

(3 .40) 

Only the flanges are effective during the fifth and final 

phase of loading. The additional panel shear is supoorted through 

frame action of the flanges. Similar to the case of symmetrical 

loading it can be calculated from, 

v5 =·vf = 
2 

(m + m ) 
a c t 

(3 .41) . 

Figure 3.8 sunnnarizes the cross-sectional characteristics 

for each phase of loading. The solid lines represent that part of 

the cross section which is effective. 

f. Ultimate Panel Strength 

The strength of a panel due to a web type failure in terms 

of the panel shear force is the summation of the appropriate con-

tributions from each phase of loading. Depending on the panel 

geometry and loading conditions it is determined from either, 

·or 

v 
u = v 1 + v 2b + v 3b + v 4b + v 5 

(3 .42a) 

(3.42b) 



-'50 

B. Failure due to Yielding of Tension or Compression Flange 

It is also possible for a box girder panel under unsymmetrical 

loading to fail by yielding of either of the flanges. Like the case 

of symmetrical loading the strength of the panel cannot exceed that 

which causes the compression flange stress, crcf' to be equal to the 

reference yield stress, cry(cf)' This condition can be checked for 

one of the two possible mechanisms of failure previously described. 

The effect of shear stresses on compression flange yielding has been 

ignored because they are normally quite small due to the relatively 

large thickness of the deck. However, in some cases it may be neces-

sary to consider the shear stresses in addition to using a different 

failure criterion. 

a. Phases l-2a-3a-4a-5 Mechanism 

b. Phases l-2b-3b-4b-5 Mechanism . 

-v (z + a/2) ycf 1 0 
cr > y(cf) I 

X 

(z +a/2) 
0 

(V4b + V5) A d' cf 

V2a(zo +a/2) y~f 

I' 
X 

(z +a/2) I 

(3 .43) 

0 ycf 
(v2b + v3b) I' 

X 

(3. 44) 

Calculation of the flange stress at the end of each loading 

phase provides a progressive check for this possible failure mode. 
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If the previous condition (Eq. (3.43) or (3.44)) is not satisfied at 

the end of on~ of the loading phases, it is a simple matter to compute 

the panel shear force during that phase which causes compression flange 

yielding. The summation of that shear force and the panel shear forces 

calculated for all proceeding phases determines the strength of the 

girder panel. For example, assume that when applying Eq. (3.43) the 

yield stress, ~y(cf)' is exceeded at the end of Phase 4a. Then the 

shear force at which flange yielding initiates during Phase 4a is 

given by, 

A d
1 

[ ( V y V 
1 

V ~ = cf (zo + a/2) 1
1
:f + 2ay cf + 3a 

V 4a (z
0 

+ a/2) ~y (cf) - I~ Acf d 1 (3 .45) 

The corresponding panel strength is, 

(3.46) 

where v4a comes from Eq. (3.45). 

Of course, it is also necessary to check failure of the 

tension flange. Yielding of the flange material is again the governing 

criterion. For the case of unsymmetrical loading, shear stresses due 

to St. Venant torsion could have a significant effect on tension flange 

yielding and therefore are included in the yield condition. Applying 

von Mises 1 s yield criterion to the tension flange stress state il-

lustrated in Fig. 3.9 results in the following, 

2 + 3 'T' 2 
~z xz 

2 
- ~y(tf) < 0 (3 .47) 

where 



and 

v1(z
0

+a/2)ytf v2 (z +a/2)y'f 
crz = crtf = ---"---I---- + a o I' t 

X X 

(z +a/2) 
0 + _A..;__d-:-;-' -

T xz 

tf 
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(3 .48) 

(3 .49) 

if Phases l-2a-3a-4a-5 develop. If the other phases of loading take 

precedent then, 

(3. 50) 
(z +a/2) 

+ __ 0_-.,.-::--
A d' tf 

and 

(3. 51) 

The yield condition (Eq. (3.47)) c.an be checked at the end of each 

loading phase and the corresponding ultimate strength evaluated if 

tension flange yielding occurs. 

Equations (3.49) and (3.51) contain shear stress terms 

associated with St. Venant torsion of the closed section. For 

reasons previously discussed, torsional shear stresses occurring 

after one or both of the webs of a panel fail are not included. 

Appendix D contains a summary of the ultimate strength 

equations for unsymmetrical loading. 
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Thus, the ultimate strength of a box girder panel has been 

defined for both symmetrical and unsymmetrical loading conditions. 

In the next section this is utilized to evaluate the ultimate strength 

of a single-span box girder member. 

3.4 Behavior and Strength of a Single-Span Box Girder 

The ultimate strength of a box girder member is directly 

dependent upon the strength of its component panels. A single-span 

box girder which is statically determinate for flexural loads reaches 

its ultimate shear or bending capacity when at least one of its 

panels develops a failure mechanism. For the entire member, the 

statical redundancy of the torsional force makes it quite possible 

that the member's torsional capacity is not reached at the same 

load which produces failure of a panel. This implies that a re-

distribution of the torsional moment takes place in box girders. 

3.4.1 Ultimate Strength under Symmetrical Loading 

Theoretically, there is no torsion associated with this 

loading condition. The ultimate strength is reached when the weakest 

constituent panel (or panels) reaches its maximum capacity as defined 

by the smallest of the values computed from Eqs. (3.12), (3.19) and 

(3.21). Relationships between the ultimate panel strength, V , and 
u 

the member strength, P , can be obtained from the corresponding 
u 

shear diagram. 

3.4.2 Ultimate Strength under Unsymmetrical Loading 

When the loading conditions and panel geometries are such 

that initial web failure due to tension field yielding occurs first 



in only one of the shear spans (as, for example, in Fig. 3.10), the 

torsional stiffness of that shear span is decreased considerably 

relative to that of the other, undamaged, shear span. This results 

in a redistribution of any additional twisting moment. 

It was mentioned earlier that when the w·eb of a box girder 

panel fails, its effective cross section changes from that of a 

closed box to an open channel section. Keeping in mind that a shift 

of the shear center takes place when this occurs, it is shown in a 

separate study that any additional load theoretically produces an 

additional twisting moment in the undamaged shear span. (Zl) For 

the loading condition shown in Fig. 3.10, the additional twisting 

moment in the shear span to the right of the loading point is given 

by, 

(3. 52) 

where x ~s the distance from the shear center of the originally 
s.c. 

closed section to the shear center of the effective open section. 

This is portrayed in the lower ~MT diagram of Fig. 3,10. In other 

cases, redistribution of the twisting moment must be computed con-

sidering the particular geometric and loading configurations of. the 

member. 

It is important to point out that redistribution of the 

twisting moment does not affect the distribution of the shear and 

bending moment, however, it can have an effect on the ultimate 

strength of the member. Implementation of this effect into the 
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ultimate strength evaluation can be achieved by keeping an orderly ac­

counting of the characteristic panel loads defined in Section 3.3.2 

and by relating the panel loads to the girder loads for each phase of 

loading. 

For the special case when the loading condition and geometric 

properties are symmetrical about the longitudinal centerline of the 

member, redistribution of the twisting moment does not occur and 

the torsional strength is essentially exhausted when initial web 

failure takes place. Although the member possesses additional shear 

and bending capacity, for all practical purposes its ultimate strength 

will have been reached at the occurrence of initial web failure. Again, 

the strength of the member can be evaluated by relating the panel forces 

to the externally applied loads. 



4. COMPARISON OF EXPERIMENTAL AND ANALYTICAL 
BEHAVIOR AND RESULTS 
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The purpose of this chapter is to discuss and compare the 

observed and predicted behavior, modes of failure and strength of 

single-span, rectangular box girders. Little emphasis is placed 

on the precise quantitative comparison of either stress magnitudes 

and distributions or deformations of a member. However, when pos-

sible, stresses and deformations are used to help describe the 

behavior of the member and provide qualitative correlation with 

the analytical method. 

In conformance with previous descriptions of the experi-

mental results and analytical predictions, the two conditions of 

loading, symmetrical and unsymmetrical, are treated spearately. 

4.1 Symmetrical Loading 

First to be considered is the behavidr of the T.-1eb plates 

of a box girder panel under symmetrical loading. 

One of the main assumptions of the analytical method is 

.that the two webs of a given box girder pan~l are subjected to the 

same stresses and behave identically. Figure 4.1 provides some ex-

perimental verification of this assumed behavior. Shear stresses were 

found to be essentially the same in both webs of panel 5, specimen M2, 

for practically the entire range of loading. 
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Figure 4.1 also shows that the theoretical web shear stresses 

predicted fro~ Eq. (3.13) for the prebuckling range (beam action) of 

loading agree quite well with the measured values. Above the web 

buckling load the tension field action becomes prominent. The actual 

stress state in the web is quite complex and cannot be accurately 

estimated. Hmv-ever, the bulging of the web along the tension diagonal 

(Figs. 2.17 and 2.18) and the increase of the tensile stress in the 

same direction (Fig. 2.20) confirm the occurrence of tension field 

action as a part of the failure mechanism. This was as predicted in 

the analysis. 

The analytical method also assumes that frame action of the 

flanges provides additional panel shear capacity after the tension 

field contribution has been exhausted. This undoubtedly can only 

occur if prior flange yielding, resulting from bending of the cross 

section, has not taken place. Evidence of frame action was obtained 

in the symmetric load test of specimen M2. Figure 2.22 shows that a 

sharp increase in the longitudinal bending strain in the top flange 

of panel 4 occurred at a load of 2500 pounds, just before the failure 

of the member. This is attributed to the marked increase in flange 

curvature as frame action begins to occur. The load at.which such 

behavior initiated corresponded to that which caused the depletion 

of the tension field contribution of panel 4. 

Thus, with·the help of Fig. 4.1 it is obvious that one 

of the three assumed panel failure modes for symmetrical loading 

was demonstrated experimentally: The observed mode of failure 
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compared well with the analytically descr'ibed web type failure. De-

formations corresponding to the assumed tension field action and frame 

action of a panel are quite evident in Fig. 2.18. The photographs in 

this figure also provide proof that the webs of a particular panel 

behaved identically as predicted. 

The test specimens were not intended for observation of 

failure due tc tension or compression flange yielding. These modes 

of failure were considered to be uncomplicated and predictable from 

theory. For the purpose of this dissertation, experimental veri-

fication of these was not deemed to be necessary. 

Up to this point it should be clear that the assumed be-

havior and modes of failure for a panel subjected to symmetrical 

loading have been satisfactorily verified. A further test of the 

validity of the analytical method lies in the accuracy of the ulti-

mate strength computation. 

In Section 2.3.1, it was stated that load drops ex-

perienced during test'ing were due to a combination of the non-zero 

strain rate used during testing and relaxation of the solder joints. 

It was reasoned that the true static load-carrying capacity lies 

between the upper (o) and lower (x) data points of Fig. 2.21. This 

resulted in an upper bound of 2650 pounds and a lower bound of ap­

·proximately 2350 pounds for the experimental static strength, P exp, 
u 

of the member. Comparing these with the predicted strength, P , u 

of 2360 pounds resulted in the theoretical value being approximately 

12.3% smaller than the upper bound and about 0.4% larger than the 
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lower bound. The use of the static yield stress values (Table 1) in 

the theoretical computations meant that the predicted strength was 

computed assuming a zero strain rate. 

It must be realized that in addition to the strain rate and 

relaxation of the solder joints during testing, other factors more 

than iikely had effects on the measured and computed strengths. A 

brief review of some of the more important ones is in order. 

One of these factors involves differences between the actual 

model dimensions and the nominal ones of Fig. 2.2. Actual geometric 

properties no doubt were influenced by the contribution of the large 

solder joints which were not considered in the computed values. 

The assumptions made in the analysis also play a significant 

role. Some of the important ones have a direct bearing on the com-

putation of the beam, tension field and frame action contributions 

to the ultimate strength. For instance, the assumed web boundary 

conditions of fixity along the flanges and simply supported along 

the transverse stiffeners directly influence the beam action con-

tribution. Evaluation of the frame action contribution is affected 

by the omission of the axial forces in the flanges and an effective 

strip of the webs in the computation of the flange plastic moments. 

Also, there are several inherent assumptions which have been carried 

. (17 21 26) 
over from plate g1rder theory. ' ' These involve approxi-

mations which surely affect the theoretical results. 
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In addition, residual stresses which were not considered 

could have had an effect on the difference between the analytical 

and experimental strengths. 

In order to present further correlation between the experi-

mental and theoretical results, attention is given to a comparison 

of the strength evaluations of M2 based on failure of either panel 4 

or 5. According to the plate girder theory being utilized, these 

are the most critical panels because they are subjected to the largest 

shear and bending moments (Fig. 2.11) and also have the largest web 

plate aspect ratios. From the shear and moment diagrams of Fig. 2.11 

it is noticed that the loading on panel 4 is slightly more severe than 

that of panel 5. However, the shear capacity of panel 5 is less than 

the shear capacity of panel 4 because panel 5 has a larger transverse 

stiffener spacing, thus a larger aspect ratio (a/b ). The characteristic 
w 

loads summarized in Table 3 bear this out. The final colurrm of Table 3 

indicates very little difference (60 pounds) in the theoretical ulti-

mate strength, P , based on failure of either panel 4 or 5. Therefore, 
u 

the experimentally observed simultaneous failure of panels 4 and 5, 

in the symmetrical load test of M2, was to be expected based on the 

analytical results. 

Results in Table 3 also indicate once again that the ulti-

mate panel shear, V , was not limited by the panel shear, V or V , 
u cr T 

which causes theorettcal web buckling. Sample computations for the 

individual strength contributions and the ultimate strength of the 

member are given ·in Appendix C. 



4.2 Unsymmetrical Loading 

A comparison of the observed and predicted behavior of a 

panel subjected to unsymmetrical load can be initiated by considering 

the five distinct load phases described in Section 3.3.2. The re-

sults from the unsymmetrical load test of M2 are used in the comparison. 

In Chapter 2 it was revealed that the strength of specimen 

M2 was governed by failure of panel 2. This panel had been subjected 

to the most severe combination of shear, bending and torsion (Fig. 2.11) 

and had one of the largest web panel aspect ratios (Fig. 2.2). To aid 

in the comparison, a plot of the panel shear versus panel shear stress 

for both webs of panel 2 is presented in Fig. 4.2. Included in the 

figure are the theoretical boundaries of the various loading phases 

and the corresponding effective cross section (denoted by the solid 

lines) for shear loading. 

Phase 1 of the analytical method assumes that the entire 

cross section is effective for shear, bending and torsion and stresses 

can be estimated using Eqs. (3.22) and (3.23). Correlation between 

the measured and predicted shear stresses does not appear to be very 

satisfactory (Fig. 4.2), but general agreement is exhibited. The 

strength contribution of this loading phase corresponds to the beam 

action contribution for the condition of symmetrical loading. 

In Figure 4.2, termination of Phase 1, which is due to the­

oretical web buckling of 2N, is not characterized by any distinguishing 

variation in the experimental curves. The same is true for Phase 2 

which is terminated·by theoretical web buckling of panel 2S. Such 
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behavior was expected for these two phases because sudden buckling 

of a web does not ordinarily occur. Instead, out-of-plane web 

deformations begin at the commencement of loading due to the always 

present initial web imperfections. This results in a gradual transi­

tion from beam action to tension field action. Evidence of this has 

been clearly exhibited in past plate girder tests. (l
6

) The observed 

similarity of behavior between plate and box girder webs assured the 

applicability of the analytical model for these early phases of box 

girder strength. 

By the analytical method it was expected that termination 

of Phases 3a and 4 would be characterized by leveling off of the 

shear force-shear stress curves for 2N and 2S, respectively. This 

is because the assumed termination point of each of these phases 

was marked by tension diagonal yielding and no additional shear 

would be expected to be carried by the web. Tension field action 

did actually occur in both webs of panel 2 and the shear force-shear 

stress curves did level off as shown in Fig. 4.2, but at loads higher 

than predicted. The differences between the theoretical and experi­

mental loads associated with the termination of Phases 3a and 4 are 

not considered to be significant. The actual condition of shear 

stress distribution in this intermediate phase of strength development 

is not known, and the experimental stresses are only for qualitative 

indication. Deemed more important is that the predicted loading phases 

and web failure mechanism did take place during testing. 

Similar explanation can be applied to the shear stresses 

on the south side of panel 2 during the last phase of loading. 
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Phase 5 of the analytical method represents the condition that both 

webs have yielded and the additional shear strength of the box gird-

er panel is contributed by the flanges. Differences in predicted 

and measured values of shear stresses and panel strength not with-

standing, Fig. 4.2 confirms that, after yielding of the webs the 

panel sustained some additional load before failure. 

In reality, transverse deformation of the flanges, thus 

frame action, begins to occur first on the side of the cross section 

which experienced initial web failure at the load producing such 

failure. The deformations progress across the width of the flanges 

to the opposite side of the cross section until the other web fails. 

The capacity of the panel is reached when the flanges cannot sus-

tain anymore load. This suggests that frame action of the flanges 

actually begins to occur before the last web fails. By the time 

both webs have yielded some of the frame action conbribution has 

been spent. This helps to explain the rather small difference be-

tween v and the load which produced web yielding in panel 2S 
max 

(Fig. 4.2). 

Further verification of the predicted panel behavior is pro-

vided by examining stresses in box girder panels. In the formulation 

of the analytical model it had been assumed that redistribution of 

the shear within a panel takes place when one of the webs fail due 

to yielding along the tension diagonal. Figure 2.23 shows a notice-

able change in the slope of the load-stress curve for web panel 2S at 

the same load which produced yielding in panel 2N. This indicates 
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that tension diagonal yielding of web panel 2N caused a redistribution 

of any additional shear to panel 2S. 

The analytical method also predicts redistribution of the 

torsional moment from one shear span to another. It is described in 

Section 3.4.2 that when initial web failure occurs in a panel, its 

torsional stiffness decreases greatly because its cross section has 

essentially been changed from a closed to an open configuration for 

any additional loads. As a result, the torsional stiffness of the 

corresponding shear span is decreased considerably. Therefore, any 

additional twisting moment is redistributed to the undamaged shear 

span. Test data revealed that such a phenomenon was exhibited in 

the testing of M2 and is depicted in the stress plots of Fig. 2.26. 

It is seen that at the load increment (from 1600 to 1700 pounds) 

which caused yielding in panel 2N, thus causing a decrease in the 

torsional stiffness of the shear span to the left of the concentrated 

torque, an abrupt change in the load-stress curves for panel 5, which 

was located to the right of the loading point, had occurred. The in­

crease in the stress rate for the web on the north side and the de­

crease of the same for the web on the south side are due to the 

redistributed twisting moment. Such moment, with the direction in­

dicated in the insert of Fig. 2.26, produces a corresponding increase 

and decrease in the shear stress in the north and south webs, respec­

tively, as demonstrated in· Fig. 2.27. 

Attention is nO\V' directed to the mode of failure. The fail­

ure mechanism experienced during the unsymmetrical load test of M2 is 

portrayed in Fig. 2.15. The photographs show that failure was of the 
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web type, that is, tension diagonal yielding in both webs accompanied 

by transverse flange deformations. This is identical to one of the 

possible failure modes described in the analytical method for un­

symmetrical loading. 

Thus, the experimental behavior of model specimen M2 and 

its failure mode both correlated very well with the predictions by 

the analytical method. All that remains to be checked is the ultimate 

strength evaluation for specimen M2. The computed strength \vas 1810 

pounds while the measured static strength as ascertained from Fig. 

2.24 had an upper bound of 1930 pounds and a lower bound of about 

1800 pounds. As a result, the experimental upper bound of the static 

strength was_approximately 6.6% larger than the theoretical value 

while the lo\ver bound Has about 0. 5% smaller than the theoretical 

strength. Again, it must be remembered that factors previously cited 

for the case of symmetrical loading obviously had some effects on 

either the experimental or analytical results. In addition, the 

omission of Harping torsion and disregard of stresses due to 

deformation of the box girder cross section could also have had an 

effect. 

Appendix E contains sample calculations of the ultimate 

strength evaluation for unsymmetrical loading. 

Throughout the previous discussions no attempt was made to 

correlate the observed behavior of Ml Hith the theory. Failure of 

the X-bracing at the loading point (Fig. 2.1) at approximately 

1500 pounds and a similar subsequent failure at the east support 



permitted the cross section to deform and thus reduced the capa­

bility for shear redistribution within individual panels. That 

this was the condition can be derived from the lmver portion of 

Fig. 2.28, where it is seen that the shear stress in the web on 

the north side remained practically unchanged even after the web 
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on the opposite side had yielded. This is contrary to the behavior 

observed in panel 2 of specimen M2 (Fig. 2.23), Hhere transfer of 

the shear to web 28 took place Hhen panel 2N began to yield. Con­

sequently, the predicted phases of loading Here not carried through 

in the failure testing of model Ml. Discrepancies betHeen the ex­

perllnental and theoretical results Here to be expected. 

As a result of the X-bracing failure, the maximum experi­

mental load of Ml turned out to be approximately 23% loHer than the 

calculated strength based on no cross-sectional deformations. This 

makes clear the importance of the X-bracing in the development of 

the ultimate strength of a box girder. 

In order to provide further insight into the behavior of 

specimen Ml, supplementary strength computations Here made assuming 

that the full cross section Has only effective up to 1500 pounds, 

the load at about which initial X-bracing failure occurred. There­

after, it was assumed that only half of the cross section was ef­

fective, the side on which the load Has applied. This assumption is 

thought to be reasonable because with the load directly above the web 

on the south side (Fig. 2.10) and the X-bracing at the loading point 

no longer effective, there was very little transfer of load to the 

north side. Appreciable differential bending betHeen the tHo sides 
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of the cross section, as depicted in Figs. 4.3 and 2.12, indicates 

that this type of behavior was evident in specimen Ml. The lack of 

shear redistribution which had been determined from strain readings 

(Fig. 2.28) indicated the same. 

Thus, it is assumed that any load above 1500 pounds was sup­

ported by essentially a plate girder consisting of the south side web 

plate and flanges one-half as wide as the original flange plates. 

The theoretical failure mechanism of a plate girder then corresponded 

to that observed in the test (Figs. 2.12 and 2.13). This could be 

described as a web type failure 1~ith yielding along the tension di­

agonal followed by transverse flange deformations. Such failure modes 

have been well demonstrated before in plate girder tests. (l4 ,l7 , 21 ) 

Based on the above assumptions, the theoretical strength of 

Ml was computed to be approximately 1700 pounds. Comparing this to 

the measured strength of 1800 pounds resulted in a difference of 6%. 

The slight under estimate of the strength was better than expected 

because of the conservative assumption regarding the behavior of the 

member after X-bracing failure and because the measured strength was 

an upper bound of the member's static load-carrying capacity. The 

significant results are that the behavior of Ml.under unsymmetrical 

loading could be closely described and that the strength could be 

reasonably approximated. 

A summary of the measured and computed strengths and the 

observed and predicted modes of failure are given in Table 4 for 

all tests. 



5. SUMMARY AND CONCLUSIONS 

This dissertation presents the results of a combined ex­

perimental and theoretical study on the post-buckling behavior, modes 

of failure and ultimate strength of single-span, rectangular steel 

box girders subjected to either shear and bending or shear, bending 

and torsion. Buckling of the compression flange was not considered 

in the investigation because it was not expected to occur in an 

ordinary single-span box girder having a concrete or an orthotropic 

steel deck. 

From the results of tests on two thin-web model box girders, 

the following conclusions were reached: 

1. The load-carrying capacity of slender web box girders 

is not limited to the theoretical web buckling load. 

2. A single-span, rectangular box girder subjected to high 

shear and a moderate amount of bending exhibits a behavior and failure 

mechanism resembling those of a similarly loaded plate girder. (l4 ,lS) 

Failure is due to simultaneously yielding along the tension diagonal of 

both webs of a given box girder panel followed by large vertical de­

formations of the flange. 

3. Web failures occur first in those panels subjected to 

the most severe combination of shear and bending or shear, bending 
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and torsion. For panels subjected to identical loading, web failure 

occurs first in the panel having the largest web aspect ratio. 

4. Torsional stresses in a rectangular box girder with 

negligible cross-sectional deformations and warping restraint can 

be fairly, closely estimated for the elastic, prebuckling range of 

loading considering only the effects of St. Venant torsion. 

5. Torsional stresses can have an important effect on the 

behavior and load-carrying capacity of box girders. 

6. A panel of a box girder subjected to shear, bending 

and torsion and properly braced to prevent deformation of the cross 

section can effectively redistribute shear stresses within the panel 

when one of the two webs fail by yielding. 

7. Web failure in a box girder panel subjected to shear, 

bending and torsion occurs first on the side of the cross section 

where the flexural and torsional shear stresses add. Subsequent fail­

ure of the other web follows. 

8. The shear or bending capacity of a single-span box girder 

is reached when one of its panels fails. 

9. The torsional stiffness of a box girder panel is greatly 

reduced when the panel experiences initial web failure due to yielding 

along the tension diagonal. Redistribution of the torsional moment 

to the other side of the span away from the failed panel can take place. 
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10. Premature failure of diaphragms or X-bracing adversely 

affect the load-carrying capacity of box girders subjected to 

torsional loads. 

11. Model specimens such as those utilized in this investi-

gation are quite suitable for preliminary studies into the post-buckling 

behavior, failure modes and ultimate strength of steel box girders. 

By utilizing the results from the model tests and some of 

. (17 21 26) 
the findings from previous research on plate g~rders, ' ' an 

analytical method was developed for predicting the behavior and 

strength of single-span, rectangular steel box girders. 

The method assumes that the shape of the cross section is 

essentially maintained and buckling of the compression flange does not 

occur. Stresses due to warping torsion were shown to have a negligible 

effect on the behavior and strength of the member. The ultimate 

strength of the box girder is reached when the first panel fails due 

to one of the following: 

1. Yielding of the tension flange 

2. Web type failure 

3. Yielding or crushing of the compression flange 

In accordance with the present state of the art for web 

plate analysis, the analytical method considers the shear strength of 

a web to consist of two contributions: 

1. Beam action contribution 

. . 

2. Tension field action contribution 



-71 

The method of analysis presents two distinct sets of equa­

tions for est~mating the ultimate strength of a box girder under 

symmetrical loading (shear and bending) and unsymmetrical loading 

(shear, bending and torsion). 

A comparison of the experimental and theoretical results 

indicated that good correlation had been obtained for the overall 

behavior, modes of failure and ultimate strength of single-span, 

rectangular box girders. Therefore, it was concluded that a satis­

factory, workable method had been developed for estimating the·--~lti­

mate strength of such box girders. 

To the best of the author's knowledge, the investigation 

described herein is the first to concern itself with the ultimate 

strength of slender web box girders subjected to shear, bending and 

torsion. A great deal of additional research is needed in this area. 

Some of the important topics which should be given attention are: 

1. Refinement of the analytical method, described in this 

dissertation, based on the results of future, large scale experimental 

tests on box girders. Particular attention should be given to: 

l -- ---. ------- --·-- -- -·---- -------

a. Possible effects of warping torsion and cross­

sectional deformations due to loading between 

diaphragm locations and different box girder 

designs. 

b. Modification of the strength equations obtained 

directly from plate girder theory for a more 

accurate application to box girders. 



c. Effects of shear lag on the behavior and 

strength of box girders. 

d. Precise and thorough experimental evalu­

ation of stresses and deformations in box 

girders. 

e. Effects of a stud connected concrete deck 

on the behavior and strength of a com­

posite box girder panel. 
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2. Post-buckling behavior and ultimate strength of single­

cell box girders having non-rectangular cross sections. 

3. Post-buckling behavior and ultimate strength of multi­

cell box girders. 

4. Post-buckling behavior and ultimate strength of curved 

box girders. 

5. Effects of negative bending on the behavior and strength 

of box girders. 

6. Development of a design procedure for box girders based 

on the ultimate strength concept. 
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6. APPENDICES 

A. EXPRESSIONS FOR CO~~UTING TORSIONAL PROPERTIES KT' IW, Sw AND wn 

FOR A CLOSED THIN WALLED CROSS-SECTION 

Torsion Constant, KT 

where 

4A 
2 

0 

m ds 
J' t(s) 

(A-1) 

A = area enclosed by the middle line of the walls 
0 

s = coordinate measured along the middle line of 

the walls 

t(s) = wall thickness 

1 = defines integration around the entire length of 

the middle line 

Normalized Unit Warping, w 
n 

(A-2) 

A is equal to the area of the cross-section and, 

s 2A s 
= s ds -

0 s ds w Po 0 ~ ds t(s) 0 t (s) 0 

(A-3) 

The integrals are performed for the cross-section which has been 

rendered open by an arbitrary cut. p is the perpendicular distance 
0 
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from a tangent line passing through a general point Q(s) to the torsion 

center. (Refer to Reference 22 for a more detailed explanation). 

Warping Moment of Inertia, Iw 

Warping Statical Moment, S 
0) 

s 
0) 

where 

s 
w 

tR ds 
J' SUJ t(s) 

If\ ds 
J t(s) 

(A-4) 

(A-5) 

S is the warping statical moment for an equivalent 
w 

open cross-section, and is given by, 

s 
Sw = J wn t(s) ds 

0 

(A-6) 

B. EXPRESSIONS FOR EVALUATING WEB BUCKLING UNDER PURE SHEAR AND 

PURE BENDING 

The equations presented herein completely define T and cr for cr cr 

a web plate fixed along the flange boundaries and pinned at the 

stiffeners. All were obtained directly from Reference 26. 
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WEB BUCKLING STRESS UNDER PURE SHEAR 

The critical buckling stress, T is given by one of the following cr' 

equations: 

for A ~ 0.58 (strain-hardening range) 
v 

T = [1 + 4.3 (0.58 - A )
1

•
56

] T cr v y 

for 0.58 < Av < /2 (elastic-plastic range) 

T = [1 - 0.615 (A - 0. 58) 1. 18 J 
cr v 

for T v > /2 (elastic range) 

1 ,. ,. =-
cr A 2 y 

v 

where 

b 12(1 - ~2) a 
\, =- y(w) 

t .fin 2 k w E v 

T = a ( ) liT y y w 

(B-la) 

T y (B-lb) 

(B-lc) 

(B-2) 

The plate buckling coefficient, k , is computed for the assumed 
v 

boundary conditions from the fo llmving: 

k = 5 · 34 + 6•55 - 13.71 + 14.10 a 
v 2 (B-3a) 

a a 

for a< 1.0 

or 

(B-3b) 

for a :::: 1. 0 



WEB BUCKLING STRESS UNDER PURE BENDING 

The buckling stress under pure bending, acr' is computed from the 

following equations which are analogous to Eqs. (B-1): 

for Ab ~ 0.58 (yielding) 

a = a cr y(w) (B-4a) 

for 0.58 < Ab ~ /2 (elastic-plastic range) 

acr = [1- 0.615 (Ab- 0.58)
1

'
18

] ay(w) (B-4b) 

for Ab > /2 (elastic range) 

1 
a =-a 

cr A 2 y(w) 
b 

(B-4c) 

where, 

(B-5) 

By conservatively assuming a = ro, the plate buckling coefficient is 

obtained from, 

kb = 13.54 - 15.64R + 13.32R2 + 3.38 R3 
(B-6) 
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C. SUMMARY OF ULTIMATE STRENGTH EQUATIONS FOR SYMMETRICAL LOADING 

1. Web Failure 

v ; v + v + vf u 'T cr 

a. Beam Action Contribution, V'T 

v 2 [ 

'T ~2Aw 
z Yc J 1 + ( 1 - R) (-o:.-..::. ) + 

2 2 I cr 
'Tcr) x cr 

b. Tension Field Action Contribution, V 
cr 

for A. ::;; 0.58 ___ y ___ _ 

v ; 0 
(J 

for 0.58 < A. ::;; /2 _____ v 

0.6 ).._ - 0.348 
v v = r::=:=====--

cr Va2+1.6 

for ).._ > /2 
v 

0.9- 0.787/A 2 

v 
p 

v = v v 
cr . ~ a2 + 1 . 6 P 

c. Frame Action Contribution, Vf 

Vf = ~ (m + M ) a c t 

(3.13) 

(3. 17) 

(3. 18a) 

(3. 18b) 

(3. 18c) 

(3.19) 



2. Flange Failure 

a. Compression Flange Yields before Webs Buckle (V < V ) 
u 'f 

a I y(cf) X v :::: ....-L-->-....::...::..1.-..,..::.:;. __ 

u (z
0 

+ a/2) y cf 
(3.20a) 

b. Webs Buckle before Compression Flange Yields (Vu > V'f) 

v :::: v + 
u 'f 

[ (J -CJ J y(cf) 'f(cf) 
(z + a/2) 0 . 

A d' 
cf 

c. Tension Flange Yields before Webs Buckle (V < V ) u 'T 

V :::: CJy(tf) IX 
u (z + a/2) y 

o cf 

d. Webs Buckle before Tension Flange Yields (Vu > V'f) 

V :::: V + [?y(t£) - a'T tf)J At£ d' 

u 'T (z + a/2) 
0 

(3. 20b) 

(3. 2la) 

(3.2lb) 

D. SUMMARY OF ULTIMATE STRENGTH EQUATIONS FOR UNSYMMETRICAL LOADING 

1. Web Failure 

a. Phase 1 - Entire Cross Section is Effective 

Termination of Phase 1 is due to buckling of the web on 

the positive side of the cross-section. The corresponding 

panel shear vl is_ computed from, 
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v 
1 

1<,. cl) 2 + < 1 ; R) <:2 ) 2] + v 
1 

[< 1 ; R) <~2 ~ L cr cr cr'J 
- 1.0 :::: 0 ·(3.24) 



v 2 
2a 
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b. Phase 2 - Web Buckled on Positive Side of the Cross-Section 

Termination of Phase 2 is due to either buckling of the 'veb 

on the negative side of the cross-~ection or tension field 

yielding of the web on the positive side. 

1. Buckling of the web on the negative side in terms of 

the panel shear, v2 ' is given by, 

l+R c4 + (-)- + 2 a cr 

(l~Rl~1c2c4] 
cr 

(3.30) 

2. Yielding of the web on the positive side in terms of the 

panel shear, v2b' is given by, 

(3. 32b) 

The smaller of v2a and v2b govern termination of Phase 2. 

c. Phase 3a - Both Webs are Buckled 

Termination of Phase 3a is due to yielding of the web on the 

positive side of the cross-section. The corresponding panel shear, 

v3a' can be calculated from, 

v a 
= c - v2a 

5 
(3.33b) 
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d. Phase 3b - Web on Positive Side has Experienced Tension 

Field-Yielding 

Termination of Phase 3b is due to buckling of the web on the 

negative side of the cross-section. The panel shear, v3b' is 

obtained from, 

(1-R) (_it_) + V ____:...7--:::
2 

+ (l;R) (CJ4 ) + C 2J- [2C C 
2 CJcr 3b A T cr 

w cr 

(3.38) 

e. Phase 4 - Web on Positive Side has Yielded, Web on Negative 

Side has Buckled 

Termination of Phase 4 is due to yielding of the web on the 

negative side of the cross-section. 

1. If Phase 3a preceded Phase 4, 

(3.39) 

2. If Phase 3b preceded Phase 4, 

(3.40) 

f. Phase 5 - Both Webs have Yielded 

Termination of Phase 5 causes failure of the panel. The 

panel shear, v5' is given by, 

(3.41) 
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g. Ultimate Panel Strength under a Web Type Failure 

Depend-ing on the formation of the .previous phases the ultimate 

panel shear strength is given by either, 

or 

2. FAILURE DUE TO YIELDING OF TENSION OR COMPRESSION FLANGE 

This possible type of failure must be checked using the 

equations which follow. 

a. Compression Flange Yielding 

1. Phase 1- 2a- 3a- 4a·- 5 mechanism 

CJ y(cf) 

-Vo (zo + a/2) Ycf 

I 
X 

(z + a/2) 
0 

v2a(z
0 

+ a/2) 

I' 
X 

2. Phase 1 - 2b - 3b - 4b - 5 mechanism 

(z + a/2) 
0 

(3.42a) 

(3.42b) 

(3.43) 

(3.44) 



b. Tension Flange Yielding 
' 

1.· Phase 1 - 2a - 3a - 4a - 5 mechanism 

(zo+a/2)Ytf + v2a 
I 

X 

I 

(z +a/2) ytf 
o, + 

I 
X 

2. Phase 1 - 2b - 3b - 4b - 5 mechanism 

(z +a/2) y f 
0 t + 
I 

X 
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E. SAMPLE COMPUTATION OF ULTIMATE STRENGTH FOR SYMMETRICAL LOADING 

Computations are given below for the ultimate strength evaluation 

of specimen M2 based on failure of panel 4. 

1. Loading condition 

c p 

I I I~ Is I" 11 
7'' I e, II 

I 
15

11 



2. Cross-Sectional Properties 

i 1.095 in. 4 2.1951 in. = ytf X 

A 0.0435 in. 2 0.8584 in. = Ycf = 
w 

yt = 2.1804 in. t = 0.0145 in. 
w 

yc = 0.8197 in. t = 0.0775 in. 
cf 

A 12.21 in. 2 
ttf = 0.0294 in. = 

0 

2 I 

At£ = 0.1396 in. d = 3.0535 in. 

3. Material Properties 

0 30,500 psi E = 29' 600 ksi 
y(w) 

0 = 32,520 psi ~ = 0.3 
y(cf) 

(J = 31,340 psi 
y(tf) 

4. Web Panel Characteristics (Panel 4) 

a = 4.0 in. Ct 1. 33 z = 5.0 in. 
0 

b = 3.0 w in. f3 = 206 

A. ULTIMATE STRENGTH BASED ON WEB FAILURE 

1. Beam Action Contribution, V~ 

k • 
v 

Using Eq. (B-3b) compute the shear buckling coefficient, 

k = 8.98 + 6•18 - 2 •88 = 11.25 
v 1.77 3.35 

Then the buckling parameter A is from Eq. (B-2) 
v 

-83 



30.5 

11.25 
1.577 

For Av > j2, the buckling stress under pure shear, ~cr' is 

given by Eq. (B-lC). 

~ = ......!.._ ~ = --3- 0-''-5-0-0--- = 7100 psi 
cr A 2 Y 1.732 (1.577) 2 

v 

It is next necessary to calculate the buckling stress, 

ocr' for pure bending. First evaluate the buckling 

coefficient, kb, from Eq. (B-6) 

kb = 13.54 - 15.64R + 13.32R
2 + 3.38R

3 

Now R = -y /y = -2.1804/0.8197 = - 2.659 which is less than 
t c 

·~ 1.5 therefore use R = - 1.5. 

Therefore, 

kb = 13.54- 15.64(-1.5) + (13.32)(2.25) 

+ 3.38 (-3.375) = 55.62 

From Eq. (B-5) 

Ab = 1.314 A Vk /kb = 1.314 (1.577) v v . 
11.25 
55.62 

0.930 

With 0.58 < Ab < /2, ocr is calculated from Eq. (B-4b). 

ocr= [1.- 0.615 (Ab- 0.58)1.
18

] oy(w) 
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= [1 - 0.615(0.930 - 0.58) 1"18 ](30,500)= 25,100 psi 



I 

-85 

Summarizing then, 

~cr = 7100 psi and crcr = 25,100 psi 

Next substitute all known terms into Eq. (3.17) to obtain 

the beam action contribution, V . 
~ 

1 
2A 'f w cr 

1 
0.087 (7.1) 

= 5.0 (.8197) 
1. 095 (25. 1) 

= 1. 619 

= 0.149 

v 2 [(1.619) 2 + 1.25(0.149) 2] + v [-0.25(0.149)] - 1.0 = 0 
'f ~ 

This yields the following, 

v 2 
- 0.0140 v - 0.378 0 

~ 

Solving this results in, 

I v~ = 621.5 lbs. 

2. Tension Field Action Contribution, V cr 

For A.v > /2
1 

Eq. (3."18c) defines the tension field action 

contribution, V • 
cr 

0.9- 0.787/A. 
2 

V = ~~======--~v-
cr Jcl + 1. 6 

= 0.087 (30,500) = 
1. 732 

1534 lbs. 



Then, 

0.9 - 0.317 ( 34) 
va=~7+ 1.6 15 

-.--:-1 v
0

=487lbs.l 

3. Frame Action Contribution, Vf 

UsingEq. (3.19), 

487 lbs. 

= 2 = 1~5.5)(0.0775) 2 (32,520) 
vf (m + m ) 4 4 a. c t 

+ (4.75)(0.0~94) 2 (31,340~= 150 lbs. 

vf = 150 1bs. [ 

Then the ultimate strength based on web failure of 

panel 4 is, 

V = 621.5 + 487 + 150 = 1258 lbs. 
u 
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1 vu - 1258 1bs. 1 Based on Web Failure 

It is also necessary to check yielding of the flanges. 

B. ULTIMATE STRENGTH BASED ON FLANGE YIELDING 

Only the tension flange is checked because .it is the more 

critical. Yielding is checked at the maximum moment end of panel 

4 using Eqs. (3.21). From Eq. (3.2la), 



v 
u 

cr I 
= _y(tf) X 

(zo+a/2)ytf 
31,340 (1. 095) -- 2230 lbs. 
7.0 (2.1951) -

This indicates that the web buckles before the tension 
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flange yields because V > V , therefore Eq. (3.2lb) must u (J 

be used. Using Eq. (3.2lc) first, 

621.5(7.0)(2.1951) = 
1.095 

Then substituting into Eq. (3.2lb), 

v = 621.5 + (31,340- 8720)(0.1396)(3.0535) 
u 7 

= 621.5 + 1378 2000 lbs. 

8 720 psi 

Vu = 2000 lbs.l 
Based on Tension 

Flange Yielding 

Comparing the ultimate strength values computed based on 

web failure and tension flange yielding, it is obvious that the 

former controls. Relating the panel shear to the load, P, 

produces the following: 

P = 15 V = 15 (1258) = 2359 lbs. 
u 8 u 8 

Similar computations are made for the other panels. The 

minimum value for P defines the ultimate strength of the ·u 

member. 



-88 

F. SAMPLE COMPUTATION OF ULTIMATE STRENGTH FOR UNSYMMETRICAL LOADING 

Computations are given below for the ultimate strength evaluation 

of Specimen M2 based on failure of panel 2. 

GIVEN: 

1. Loading Condition 

( 
. ~j~_- !rL_]"=lJ 
L ______ 3" _ _ l ____ 1s"_ ... ________ ' 

I I 24 11 

r----------· ------ --·------· ---.-. 

2. Cross-Section Properties (as given in Appendix E) 

3. Material Properties (as given in Appendix E) 

4. Web Panel Characteristics (Panel 2) 

-a = 5.0 in. 

b 
w 3. 0 in. 

a= 1.67 

13 = 206 

A. Ultimate Strength based on Web Failure 

a. Phase 1 

z = 6. 5 in. 
0 

Having previously calculated 'T and cr from expressions 
cr cr 

given in Appendix B, compute v1 from equation (3.24) 

cl 
1 e 1 

+ 
1 14.32 = 2A + 2A t = 0.0870 0.354 

w c w 

z o yc 
c2 

6.5 (0.8197) 4.86 = = 
I 1.095 

X 



R = _ yt = _ 2.1804 
yc 0.8197 = - 2.66, therefore use R = - 1.5 

Substituting into Eq. (3.24) results in, 

Solving for v
1 

yields, 

+ 0.0104 ± J .0001 + .8628 
2 

0.470 

Therefore, 

v1 = 470 lbs. 

b. Phase 2 

First compute from Eq. 3.30 the panel shear which causes 

buckling of the web on the north side of the cross-section. 

1n order to make use of this equation the new cross-sectional 

properties had to be determined for the effective cross-

section consisting of two flanges and the remaining unbuckled 

web. These were calculated to be, 
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4 . 
I = 1.038 in. , 

X 
= 0. 7710 in., = 2.2290 in. 

Y = 0.8097 in., cf 2.2437 in. 



1 e C3 = 2A - ....,..2A___:;__t_ = 11.494- 2.825 = 8.669 
w 0 w 

0. 7710 (6.5) ::: 
1.038 

4,828 

Substituting into equation (3.30) results in, 

v2 {<8.6692
2 

1 25 <4.8282
21 + v { 2 <0 •4702 <8.669)

2 

2a 6.686 + · 25.1 _f 2a 6.686 

- 0.25 (4.828) + 2.5(0.470)(4.86)(4.828~j 
25.1 (25.1)2 

Solving for v2a yields, 

Therefore, 

v = 2a 
o.n2 ± vo.832 + 1.544 

2 

v2a = 0.3145 

v2a = 314.5 lbs.j 

= 0 

Now compute from Eq. (3.32b) the panel shear, v2b. 
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From expressions given in Appendix B, V was computed 
CJ 

to be, 

V 440.8 lbs. 
CJ 

eb 3 
c5 = 1 + ~ = 1 + 12.21 = 1.245 

0 

Then, 

440.8 
v2b = 1. 245 = 360 

v 2 b = 3 60 1 b s • 

From the above results it has been found that v
2

a is 

less than v2b and therefore governs the termination 

of Phase 2, ,.,hich is caused by buckling of the web on 

the negative side. 

c. Phase 3a 

Evaluation of the panel shear v3a is obtained using 

equation (3.33b). 

440.8 - 314 5 
1. 245 • 

v3a = 45.5 lb. 
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The end of Phase 3a was due to yielding of the web on the 

positive side of the cross-section. In accordance with the 

analytical method, the torsional stiffness of the shear span 

to the left of the concentrated load has thus been decreased 

appreciably. The full amount of any additional torsion is 

thus carried by the other shear span. This must be taken 

into account when checking panel failures on the right side 

of the loading point. 

d. Phase 4 

Evaluation of the panel shear v
4 

causing termination of 

Phase 4 can be obtained from Eq. (3.39). 

Then, 

= 1 _ eb 
A 

0 

1- 0.245 = 0.755 

v4a = 1/2 [440.8 - 34.3] 183.0 

v4a = 183.0 lbs. 

e. Phase 5 
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Using equation (3.41) the frame action contribution of the 

flanges can be evaluated. 
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+ _b_;_\_f _t.....:~c...:.f "y ( tfJ 

= 1/10 [(5.5)(0.0775) 2(32.52) + (4.75)(0.0294) 2 (31.34)] 

is, 

v5 = 1110 (1.201) 

~5 = 120.1 lbs. 

Then the ultimate strength of panel 2 based on web failure 

V u V 1 + V 2 a + V 3a + V 4a + V 5 

= 470.0 + 314.5 + 45.5 + 183 + 120 

V = 1133 lbs. 
u 

-It is also necessary to check yielding of the flanges. 

B. Failure Due to Yielding of Tension or Compression Flange 

Only the tension flange is checked because it is obviously the 

more critical. Yielding is checked at the maximum moment end of 

panel 2 using Eqs. (3.47), (3.48) and (3.49). From equation (3.48), 

a = 470(9.0)~2.1951) + 314.5(9.0)(2.2437) 
z atf = 1.095 1.038 

+ (0.139~)~3.0534) [45.5 + 183 + 120] = 8480 + 6120 + 7360 

a = 21,960 psi 
z 



Making use of Eq. (3.49) yields the following, 

1 
Txz = 24.42 (0.0294) [470.0 + 314.5 + 45.5] 

T = 1160 psi xz 

Substituting into equation (3.47) the computed values for cr and z 

Txz and the tension flange yield stress, cry(tf)' results in the 

following: 

(21.96) 2 + 3 (1.16)
2 

- (31.34) 2 ~ 0 

482.2 + 4.0- 982.1 < 0 

The above inequality indicates that yielding of the tension 
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flange does not occur under the loads which produced web failure in 

panel 2. Hence web failure controls the strength of panel 2 which 

was calculated to be, 

V = 1133 lbs. 
u 

By relating the panel shear to the applied load, P, the ultimate 

strength of the member based on failure of panel 2 can be 

determined. 

p = 24/15 v = 24/15 (1133) 
u u 

Pu = 1813 lbs.l 



l. ____________ --------- --- -

Similar computations are made for the other panels. The 

minimum value for P defines the ultimate strength of the member. 
u 
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A 

A 
w 

E 

G 

I 
X 
I 

I 
X 

I w 

7. NOMENCLATURE 

area of cross section 

effective area of compression flange 

effective area of tension flange 

area enclosed by middle lines of the wall plates 

area of each web plate 

1 e 
(2A + 2At) 

w ow 

(z y /r ) 
0 C X 

1 
(2A 

w 

e 
2A t ) 

0 w 

I I 
(z y /r ) 

0 C X 

(l+eb/A) 
0 

(1-eb/A) 
0 

Young 1 s modulus 

shear modulus 

moment of inertia of original cross section 

moment of inertia of reduced cross section 

warping moment of inertia 
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p 

p 
max 

p exp 
u 

p 
u 

Q 

R 

v 

v'f 

v cr 

torsion constant 

span length of a box girder 

bending moment 

twisting moment 

twisting moment resulting from pure torsion 

twisting moment resulting from warping torsion 

load 

maximum load (experimental) 

static load-carrying capacity (experimental) 

ultimate load (theoretical) 

statical area moment 

statical warping moment 

shear force on a box girder panel 

beam action contribution to ultimate panel shear force 

tension field action contribution to ultimate panel 

shear force 

vf frame action contribution to ultimate panel shear force 

V ultimate panel shear force 
u 

a length of a web panel 

b depth or width of a web panel 

d' distance between ~entroids of flanges 

e eccentricity of load w.r.t. the vertical, centroidal axis 

q shear flow 

~-~...,...---...--- --..- .... -~ --- -~ -- -. 
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shear flow due to flexure 

shear flow due to St. Venant torsion 

s coordinate measured along middle line of the cross section 

t (s) varying thickness of a wall plate 

thickness of compression flange 

thickness of tension flange 

thickness of web 

X coordinate measured in the direction of the horizontal 

centroidal axis 

x distance from shear center of original closed section to 
sc 

y 

I 

y cf'y cf 
I 

ytf'ytf 

z 

z 
0 

shear center of effective open section 

coordinate measured in the direction of the vertical 

centroidal axis 

distance from N.A. to extreme compression fiber of the 

distance from N.A. to extreme tension fiber of the web 

distance from N.A. to centroid of compression flange 

distance from N.A. to centroid of tension flange 

coordinate measured from end support in the direction 

the member's longitudinal axis 

distance from end support to mid-length 

aspect ratio of web plate (a/b ) 
w 

slenderness ratio of web plate (b /t ) w w 

of a panel 

non-dimensional buckling parameter for bending 

non-dimensional buckling parameter for shear 

Poisson's ratio 

web 

of 

-98 



oB normal stress due to bending 

uc web buckling stress at extreme compression fiber under 

combined shear and bending 

u cr 

u 
w 

u 
y(cf) 

oy(tf) 

u y(w) 

u z 

'fB 

web buckling stress under pure bending 

normal stress due to warping rorsion 

yield stress of compression flange 

yield stress of tension flange 

yield stress of web 

normal stress in direction of z-axis 

shear stress due to bending 

shear buckling stress of web under combined shear and 

bending 

'f buckling stress of web under pure shear 
cr 

'f shear stress due to St. Venant torsion 
SV 

'f shear stress due to warping torsion 
w 

'f yield stress in shear 
y 

~ angle of twist 

wn unit normalized warping 

-99 



-100 

TABLE 1 PLATE DIMENSIONS AND PROPERTIES 

Specimens 
Static Yield Ultimate Elongation 

Ml & M2 Width Thickness Stress(2) Stress in 2 inches 
(inches) (inchesl (ksi) (ksi) (%) 

Top 7 5/64 32o52 47.38 38.2 
Flange (5-1/2) (l) 

' 

Webs 3 1/64 30.40 43.36 30.5 

Bottom 4-3/4 1/32 31.34 45.59 44.8 
Flange 

(l) 711 for Ml; 5-1/2 11 for M2 

(2)Yield stress corresponding to zero strain rate 

TABLE 2 GEOMETRIC PROPERTIES 

Cross Sectional Properties 

Specimen b It a/b A I KT I 
No. 

w w w X (.l) 

(in. 2) (in. 4) (in. 4) (in. 6) 

Ml 192 1.0 - 1.67 o. 769 1.168 0.980 0.577 

M2 192 1.0- 1.67 0.653 1.095 0.980 0.512 



TABLE 3 THEORETICAL PANEL STRENGTH (M2 - SYM. LOAD) 

Beam Tension Frame Ultimate Ultimate 
Action Field Action Panel Member 

Panel Contribution Contribution Contribution Strength Strength 
v v vf v p ,. a u u 

(lbs) ( lbs) ( lbs) . (lbs) (lbs) 

4 621 487 150 1258 2360 

5 574 436 120 1130 2420 

TABLE 4 COMPARISON OF EXPERIMENTAL AND THEORETICAL RESULTS 

Observed Predicted Measured Computed 
Test Failure Failure Strength Strength 

Specimen Mode Mode p exp p u u 
(His) (lbs) 

Ml Web Failure Web Failure 
18001 2340 

(Unsym. on S. S. of of 
(1700) 2 Load) Panels 1 & 6 Panel 1 

M2 Web Failure Web Failure 26503 
.(Sym. of of 

(2350) 4 2360 
Load) Panels 4 & 5 Panel 4 

M2 Web Failure Web Failure 19303 
(Unsym. of of 

(1800) 4 
1810 

Load) Panel 2 Panel 2 

(l)Not the true load-carrying capacity due to 
premature failure of x-bracing 

(2)Approximate strength assuming only one-half 
of the cross-section is effective after the 
x-bracing fails 

( 3)Upper bound 

(4)Lower bound 

p _ P exp 
u. u 

p 
u 

(%) 

23.1 

-(5.9) 

-12.3 

(0 .4) 

-6.6 

(0. 5) 
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.. 

TWIN BOX GIRDERS WITH AN ORTHOTROPIC 

STEEL DECK 

.-

COMPOSITE BOX GIRDER 

MUL TICELL BOX GIRDER 

Fig. 1.1 Cross-Sectional Configurations 
for Box Girder Bridges 
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(a) Dead Load 

(b) Live Load 

Fig. 1.2 Major Classes of Loading 
for Box Girder Bridges 
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I £:1 I t t • • • t • • • 6 + 1)0 I J 

I I 
"' t t + 

DECOMPOSITION OF DEAD LOAD 
' 

~ ! ~ t '~ t 

I 
:::::: A= A= + 

, I I t t 

DECOMPOSITION OF LIVE LOAD 

Fig. 1.3 Decomposition of Major Classes of Loading 
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Note: X= Location of X- Bracing 

AI 
X X X X 

llll0 I® I® I® I® I® llll 
Ill 1- 511 -'- 411 .1-3"-l- 4

11
2 ... I. 3"-1. 41!2" _, 

Ill 

26
11 

East A.J West 
End End 

1-
711 

I y 
-

5
/64 

II 
X thk. 

311 1164
11 

thk. 

1/32 
II 

thk. 

Transverse 

Stiffeners 
411 _, 

3 II I II 

Ya x v32 4 3;411 

Fig. 2.1 Dimendons and Geometry of Specimen .M1 



Note: X = Location of X- Bracing 

X 

~~CD I® 
1- 4" J_ Ill 

•' 

East 
End 

Transverse 

Stiffeners 
II 5 3/a X V64 

II 

1-

AI 
X 

I@ I@ I® 
511 -1.3".1. 4" _I. 

26 II 

A_j . 

5 Y2 II 

y 

4 3;4
11 

511 

l 

-106 

X 

I®~~ 
.1. 3"-1 Ill 

West 
End . 

5 II 

164 thk. 

1164
11 

t hk. 

1
132 

II 

thk. 

3 II 
Ya 

Fig. 2.2 Dimensions and Geometry of Specimen H2 



Type Joint 

Silver Solder 

Brazed 

50-50 Solder 

Epoxy "A" 
Epoxy "B" 

I ll 31 II 
X 1 16 

Joint 
Material 

TEST RESULTS 
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I
ll (1 II 

X t64 

Max. Load 
(lbs) 

Location of Fracture 

657;753 1/64" thk. Material 

716;752 1/64" thk. Material 

570;555 Joint 

151; 215 Joint 

110; 125 Joint 

Fig. 2.3 Test Joint Configuration and Results 
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9" ( Sym. Abt. <t ) 

•. 

MIDSPAN DIAL GAGES 

9 11 
( Sym. Abt. Ck_) 

END SUPPORT DIAL GAGES 

Fig. 2.4 Dial Gage Arrangement - Specimen Ml 



-109 

7
11 

(Sym. Abt. <1:.) 

<k. 

I 

MIDSPAN DIAL GAGES 

7
11 

( Unsym. Load Test) 

9 
11 

( Sym. Load Test) 

END SUPPORT DIAL GAGES 

Fig. 2.5 Dial Gage Arrangement - Specimen M2 



•. 

I 

II II 
2 "4 

-

I II 

~ v2 

Gage on top surface-t-

311 

only. All other gages I 

are back to back. 

IN 2N 3N 

,v~'Tf' 

2V4u 2 y4 11 

I 
I 

~ 
I II Va 

311 

t 1;. II 
2 

4N Tt 5N 

71 
..!.. 

2Y4u 2v4' 

I 

~t 2~, 

I 

6N 

r' 

Fig. 2.6 Strain Gage Layout - Specimen Ml 
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TOP 
FLANGE 

NORTH 
WEB 

(Similar 
Gages on 
South Web} 

BOTTOM 
FLANGE 



IS 

211 

2S 3S 
l' lvd'f" 

II I I II 2 2V2 I II 2V2 

211 
f--

I 

-
:. 
I 

4S 

1----

I 

2 3f. II 
1 4 

All gages mounted 

back to back. 

5S GS 
/1 

2V2' 2v2' 

,. 

I --
2 3/a 

II 

I 

I 

Fig. 2.7 Strain Gage Layout -Specimen M2 
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TOP 
FLANGE 

SOUTH 
WEB 

(Similar 
Gages on 
North Web) 

BOTTOM 
FLANGE 



·. 

( 

All measurements made with a Huggenberger 

extensometer to the nearest 0.001 mm . 

• 
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UNLOADED WEB PANEL 
Steel Ball Epoxied· 

to Web Surface 

v 

LOADED WEB PANEL 

Diago'nal Strain = 
Lf -L; 

L· . I 

v 

• 

Fig. 2.8 Mechanical Measurement of Web Diagonal Strains 
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• 

Fig. ~.9 TYP!CAL TEST SETUP 
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N.S. 

SHEAR 

BENDING 
.. MOMENT 

TWISTING 
MOMENT 

Fig. 2.10 Loading Condition- Specimen Ml 



Unsymmetrical 
Load 

II CD I® 

' 

Symmetrical 
Load 

I lCD I® 

( 
I@ I@ I® 

3fJs 

15P;8 

15P;8 

3P18 (a) 

r 
I@ I@ I® 

(b) 

.-

I® II 

J 

SHEAR 

BENDING 
MOMENT 

TWISTING 
MOMENT 

p~ 

SHEAR 

BENDING 
MOMENT 

Fig. 2.11 Loading Condition- Specimen M2 
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(a) NORTH SIDE 

(b) SOUTH SIDE 
Fig. 2.12 OVERALL PERMANENT DEFORMATIONS - SPECIMEN Ml 
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..J 

(a) PANELS lS and 2S 
• 

(b) PANELS 3S and 4S 

Fig. 2.13 PERMANENT WEB PANEL DEFORMATIONS - SPECIMEN Ml 



-e 

(c) PANELS 5S and 6S 

Fig. 2.13 PERMANENT WEB PANEL DEFORMATIONS - SPECIMEN Ml 
(continued) 
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.(a) EAST END 

_(b) WEST END 
Fig. 2.14 VIEW OF END CROSS SECTIONS AFTER TESTING- SPECIMEN Ml 



.(a) PANELS lN and 2N 

(b) PANELS 1S and 2S 
Fig. 2.15 PERMANENT WEB PANEL DEFORMATIONS - SPECIMEN M2 

(Unsynunetrica1 Loading) · 
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Fig . . 2.l6 TEST SETUP FOR SPECIMEN M2 

(Symmetrical Loading) 
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(a) SQUTH SIDE 
• 

(b) NORTH SIDE 
Fig. 2.17 OVERALL PERMANENT DEFORMATIONS - SPECIMEN M2 

(Symmetrical Loading) 



• 

.e-

(a) PANELS 4S and 5S 

-

---- --
(b) PANE~S 4N and 5N 

Fig. 2 .18 PERMANENT WEB PANEL DEFORMATIONS - SPECIMEN M2 
(Symmetrical Loading) 
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2800 Pmax.=2650 lbs.~ 

p 

( lbs.) 

North Side 

400 

0 8 

Side 

~First Signs of Noticeable 

Web Bulging in Panel 5 

.. 

p 

~ 
lXJ 

16 24 

VERTICAL SHEAR STRESS AT MIDDEPTH OF WEB (ksi) 

I 

Fig. 2.19 Load vs. Shear Stress at Centerline of Panel 5-
SpecimencM2 (Sym. Load) 



Panel 5N 

Panel 5S 

{I II 

p = 200 # 

p = 1200# 

P=2400# 

P= 200 # 

p = 1200# 

P= 2400# 

PRINCIPAL. STRESSES 

0 10 ksi 

Fig. 2.20 Principal Stresses at Midpoint of Web Panels 5N 
and 5S - Specimen M2 (Syrn. Load) 
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2800 Pmax = 2650 lbs. 

2400 

2000 
~. 

1600 

P (lbs.) 

1200 
Per (5) 

Per (4) ,. 

r r 
4 5 

~ 400 
711 811 

0 0.04 0.08 0.12 0.16 

VERTICAL DEFLECTION AT LOAD POINT (in.) 

Fig. 2.21 Load vs. Load Point Deflection - Specime~ M-2 
(Sym. Load) 



p 

(I bs.) 

Pmax = 2650 

\ 
(- ) 

2000 

-600 0 600 

LONGITUDINAL BENDING STRAIN 
ON 

l 
( +) 

BOTTOM SURFACE OF TOP FLANGE 

( micro - inches/ inch) 

Fig. 2.22 Load vs. Top Flange Bending Strain in Panel 4 -
Specimen M2 (Sym. Load) 
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p 
(lbs.) 

Theory _ _.,_, 

0 8 

p 

16 

o IN 

o IS 

~ 2N 
A 2S 

,. 

-128 

\Yielding of 

Panel 2N 

p 

S.S. 

24 

VERTICAL SHEAR STRESS AT MIDDEPTH OF WEB (ksi) 

Fig. 2.23 Load vs. Shear Stress at Centerline of Panels 1 
and 2 - Specimen M2 (Unsym. Load) 



P (lbs.) 

0 

Pmax = 1930 lbs. 

"=Yielding in 
Panel 2N 

0.02 0.04 
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0.06 0.08 

VERTICAL DEFLECTION AT MIDSPAN (in.} 

Fig. 2.24 ·Load vs. Mid~pan Deflection - Specimen M2 
(Unsym. Load) 



2000 

1600 

Mr 
(in.-lbs.) 

0 

L Pmax. = 1930 lbs. 

Yielding 
in Panel 
2N 

nP,MT 

,_ 12" -'- 12" 

0.08 0.16 

,-

0.24 

R-OTATION AT MIDSPAN (degrees) 

. Fig. 2.25 Load vs. Midspan Rotation -
Specimen M2 (Unsym. Load) 

.~ . ' .. ~··. 
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.. t'./Pmax.= 1930 lbs_._· __ 

Theory 

p 
{ lbs.) 

.. 

0 8 16 24 

VERTICAL SHEAR STRESS AT MIDDEPTH OF WEB {ksi) 

Fig. 2.26 Load vs .. Shear Stress at Centerline of Panel 5 -
Specimen M2 (Unsym. Load) 
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v 

N.S. S.S 

___..........,.,,,!TI.-

+ 

11111111111111111111 I 

r\SV 
N.S. S.S. 
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