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1 

ABSTRACT 

This dissertation presents the load distribution behavior of 

skewed, beam-slab highway bridge superstructures. Bridges with pre

stressed concrete I-beams and prestressed concrete spread box-beams 

are investigated. The finite element method is employed to analyze 

beam-slab bridges under statically applied design vehicular loads. 

A study is made of the effects of skew on the design moments 

and on the lateral distribution of the loads. The effects of skew on 

bridges of different widths, span length, number of beams and number 

of design lanes are correlated and an empirical relationship between 

skew and distribution factor is presented. The applicability of the 

method of analysis to bridges with curbs and parapets, and with in

terior-span diaphragms is demonstrated. The suitability of the method 

of analysis to related composite steel-girder bridge superstructures, 

and to continuous bridge structures is also shown. 

The effect of the skew is to reduce the distribution factor 

in the interior beams and increase the distribution factor for the 

exterior beams. This effect is largely a function of the ske~·l angle 

and of the bridge span and beam spacing. 

The effect of curbs, parapets and diaphragms is to distribute 

the load more uniformly to the beams of the bridge. However, these 

effects becomes insignificant for longer bridges or when the bridge 

is fully loaded. 
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1. INTRODUCTION 

1.1 Object and Scope of the Investigation 

Skewed beam-slab bridges are common structures in modern 

highway bridge construction. The live load distribution provisions for 

these bridges however, are not covered in the current specifications 

(Refs. 2, 3). 

Field tests of in-service beamrslab type, prestressed con

crete bridges in Pennsylvania indicated the need to refine the specifi7 

cation provisions on live load distribution for right bridges (Refs. 7, 

8,16,21,22,31,57), and to include provisions for skew bridges 

(Ref. 51). The investigation on simply-supported right bridges with 

prestressed concrete spread box-beams has resulted in the new live load 

distribution provision for this type of bridge (Refs. 2,38). A similar 

study is underway to develop the load distribution formulae for the 

right bridges with prestressed concrete I-beams (Ref. 62). However, 

very little work has be~n done on skew bridges, and virtually no work 

has been done on skewed beam-slab bridges with prestressed concrete 

I-beams or with prestressed concrete box-beams (Ref. 63). 

This investigation will extend the live load dis~ribution 

studies in prestressed concrete bridges to include the effects of skew. 

Design recommendations are proposed for the I-beam bridges based on the 

analyses of numerous bridges with varying width, spacing, span, number 

of beams and angle of skew. These design recommendations cover the 

-2-



interior and exterior beams. Due to the limited scope of the box-beam 

studies, only preliminary recommendations are presented for the box-

beam bridges. 

This study will also deiOOnstrate: {1) the effects of curbs 

and parapets in the load distribution behavior of right !-beam bridges, 

(2) the effects of midspan diaphragms, or multiple diaphragms along the 

span, and (3) the extension of the study to continuous bridges. 

The two basic beam-slab bridge sections utilized in this 

study are shown in Fig. 1. Fig. la shows a typical cross-section of 

the bridge with prestressed concrete !-beams. Fig. lb shows a typical 

section with prestressed concrete box-beams. The beams are equally 

spaced, and are p~rallel to the direction of traffic (Fig. 2). The 

design loading on the bridge is the HS20-44 standard truck shown in 

Fig. 3 and described in Ref. 2. The vehicle used in the field testing 

of bridges is also shown in Fig. 3. The test vehicle simulates the 

HS20-44 design vehicle. This vehicular loading is employed in the cor-

relation studies between the field test and the results of the analyt-

ical formulation. 

The skew angle in this study is defined as the acute angle 

between the support line and the longitudinal axis of the beams 

(Fig. 2b). When the angle is 90 degrees, the bridge structure becomes 

a right bridge (Fig. 2a). A distinction, however, should be made be-

tween the skewness and the angle of skew of a bridge. For example, a 

60 degree skew bridge has a small skew but a large skew angle. On the 

\ 

\ 
other hand, a 30 degree skew bridge has a large skew but a small skew 

I 

\ 
angle. 

-3-
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1.2 Previous Studies 

The problem of lateral load distribution in bridges has been 

investigated by many researchers in the past. A summary of the com

pleted research and a bibliography is reported in Ref. 63. A detailed 

. description of the studies in be~slab bridges including the different 

methods of analysis is given by Sanders and Elleby in Ref. 49, by 

Motarjemi and VanHorn in Ref. 38, and also by Wegmuller and Kostem in 

Ref. 58. 

Sanders and Elleby indicated the methods of analysis appli

cable to load distribution by investigators and discussed their re~

sults (Ref. 49). Sanders and Elleby then used the theoretical methods 

and test results of these investigators on the different types of high

way bridges to arrive at a proposed. load distribution criteria for 

highway bridges. The resulting proposals for distribution of live load 

in highway bridges were complicated and not quite practical as a design 

aide. The study did not include the skew bridges. 

Motarjemi and VanHorn developed a method of analysis suitable 

for spread box-beam slab type bridges (Ref. 38). In this method, the 

bridge superstructure is reduced to an articulated structure by intro

ducing a series of beam and plate elements. Us·ing the flexibility ap

proach, the bridge superstructure is solved for stresses and displace

ment. This method of analysis had been used to arrive at the newly 

accepted provision on load distribution for spread box-beam 

bridges (Ref. 2). 

-4-



Wegmuller and Kostem used the finite element method in the 

analysis of prestressed concrete I-beam bridges (Ref. 58). In the 

method, the bridge superstructure is discretized into plate and eccen

trically attached stiffener elements. The method was· applied to field 

tested be~slab type highway bridges constructed with prestressed con

crete I~beam bridges. A study of several variables that affect load 

distribution was made. The authors showed that a stiffened plate 

superstructure can be adequately idealized by the given model and fi

nite element approach. The analytical modeling technique for the above 

approach is given by Kostem in Ref. 29. 

The finite element approach with the use of plate and eccen

trically attache~ stiffener elements· as applied to highway bridges was 

reported by deCastro and Kostem (Ref. 13). Zellin, Kostem and VanHom 

used the method of analysis to determine live load distribution 

factors for prestressed concrete I-beam bridges (Ref. 62). Distribu

tion factors were determined for several bridge configurations with 

varying width, spacing, number of beams and span length under the 

critical HS20-44 vehicular loadings. Based on the results, simplified 

distribution factor equations were obtained for the interior beams and 

exterior beams of right bridges. 

Very little experimental data is available on skewed beam

slab bridges (Ref. 63). A field test comparison of an actual 45° skew 

spread box-beam bridge with that of a right bridge of nearly identical 

dimensions is reported by Schaffer and VanHom in Ref. 51. A 
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laboratory tes~ on a 60° skew composite bridge with steel I-beams is 

reported by Hondros and Marsh in Ref. 25. 

The field test results for the 45° skew spread box-beam 

bridge indicated that the experimental distribution factor for interior 

girders was considerably less than the design distribution factor 

(Refs. 42 ,51) • However, for exterior girders, the experimental values 

were greater than the design values. The authors in the sane. study 

indicated the desirability of including the curbs and parapets in 

future design procedures. The observation from the 60° skew composite 

bridge with steel 1-beams was that the skew caused a general reduction 

in the beam strains of about 17 percent (Ref. 25). 

Among the analytical studies in skewed bea.nrslab structures, 

two major works are noted: the work by Chen, Newmark and Siess 

(Ref. 9); and the work by Gustafson and Wright (Ref. 23). 

Chen, Newmark and Siess used the finite difference lllethod in 

the analysis of skew bridges. Finite difference operators in skewed 

coordinates were generated and the system of difference equations was 

solved by computer. The major assumptions employed in addition to 

those usually made for plates are .(Ref. 9): 

1. There is no composite action between the beam and the slab; 

2. Diaphragms and their effects are neglected; 

3. The beam acts on the slab along a line and not distributed 

over a finite width; 
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4. There is no overhang at the edge of the bridge; the edge beams 

are located at the sides of the bridge; and 

5. The value of Poisson's ratio is assumed to be zero. 

Influence values for moments and deflections are computed for 

· various ratios of spacing and lengths, relative stiffness of the beam 

to the slab, and for different angles of skew. Influence surface for 

moments and deflections are then derived for some of the structures 

studied. Monent coefficients for skew bridges subjected to standard 

truCk loadings were determined and some general relationships pertain

ing to design had been derived. 

Because of the assumptions, the analysis procedure and re

sults are applicable to noncomposite steel I-baam bridges. For com

posite bridges, the procedure could still be made applicable by using 

the composite section in the beam stiffness computation. However, the 

accuracy of the results with this approach cannot be assessed. More

over, because of the third assumption, the width of the beam which af

fects the load distribution in prestressed concrete !-beam bridges as 

reported in Ref. 62, cannot be taken into account. Finally the analy

sis procedure was carried out only.for five-beam bridges. 

Gustafson and Wright (Ref. 23) presented a finite element 

. method of analysis employing parallelogram plate elements and eccentric 

beam elements. Two typical composite skew bridges with steel !-beams 

were analyzed and the behavior due to the skew, and the effects of add

ing midspan diaphragms were illustrated. The parallelogram plate 
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elements used did not satisfy slope compatibility requirements at ele

ment 'boundaries and therefore, accuracy could not be ascertained. The 

work was not carried out to cover load distribution analysis of general 

skewed be~slab structures. 

The other works on skew bridges are summarized in Ref. 63. 

Most of these reports on skew are on skew slab bridges~ skew cellular 

bridges, and skew bridges with only edge beams. Thus, their contribu~ 

tions are not directly applicable to the present study. 

1. 3 Method of Analysis 

The finite element method is chosen as the analytical basis 

for this research.. Among the many methods of analysis as listed in 

Ref. 63, and the drawbacks of some of the methods as mentioned in 

Section 1.2, the finite element method of analysis can model the skew 

bridge structure realistically. The method can take directly into ac

count the loading procedures and information necessary for a lateral 

load distribution analysis. The loading procedure involves the appli

cation of the design vehicular load anywhere on the bridge structure; 

and the information necessary is the beam and slab moments at the 

critical sections. 

There are two basic approaches to the finite element method 

of analysis: (1) the stiffness approach, and (2) the flexibility ap

proach. It has been found that for complex structures of arbitrary 

form, the displacement method over the flexibility method provides a 

more systematic formulation (Ref. 65). Consequently the computer 
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programming is simplified and an efficient solution of large and _com-

plex structural systems is obtained. The displacement approach is 

therefore adopted in this study. 

The basic concepts and steps necessary in the development of 

the analysis procedure for a finite elem=.nt analysis are given in this 

Section. A general formulation is presented. Its extension to the 

elements used in bea~slab superstructure is shown in subsequent 

chapters. 

1.3.1 Introduction to the Finite Element Method of Analysis 

The basic concept of the finite element method is that the 

structure may be idealized into an assemblage of individual structural 

components, or elements. The structure consists of a finite number of 

such elements interconnected at a finite number of joints, or nodal 

points (Ref. 65). 

The finite element method of analysis may be divided into the 

following basic steps: (1) structural id~alization, (2) evaluation of 

element properties, (3) assembly of the force displacement equations, 

and (4) structural analysis. 

Structural idealization is the subdivision of the original 

structure into an assemblage of discrete elements. These elements are 

generally simple structural components of sizes and shape that retain 

the material and physical properties of the original structure. The 

proper structure idealization is obtained by using element shapes that 

follow the shape and boundaries of the original structure. 
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The structural idealizations for the beam-slab bridge struc-

tures considered in this research are shown in Figs. 4 and 5. Fig. 4 

illustrates the idealization of a beam-slab bridge with prestressed 

concrete !-beams into plate elements and eccentric beam elements. The 

plates are general in shape and follow the beam delineation and struc-

tural boundaries. The beams are eccentrically attached to the plate 

elements along the element boundaries. 

Figure 5 illustrates the structural idealization of a 

' spread box-beam bridge. Plate finite elements model the deck and the 

top and bottom plate of the box-beams. Web elements model the web of 

the box-beam; and interconnect the top and bottom plate elements. 

The finite element idealization requires that each element 

deform similarly to the deformations developed in the corresponding 

region of the original continuum. This is accomplished by prescribing 

deformation patterns which provide internal. compatibility within the 

elements and at the same time achieve full compatibility of displace~ 

ments along the boundary (Ref. 65). 

Since the elements are interconnected only at the nodes, the 

elastic characteristics of the element must be adequately represented 

by the relationship between forces applied to a limited number of nodal 

points and deflections resulting therefrom. The force deflection rela-

tionship is expressed conveniently by the stiffness properties of the 

finite element. 
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Once the element properties have been defined, the analysis 

of stresses and deflections become a standard structural problem. As 

in any structural analysis, the requirements of equilibritim, compati-

bility and force displacement relationship must be satisfied by the 

solution. In the finite element model, internal element forces must 

equilibrate externally applied forces Gt the node~ and ~ement deiorma~ 

tions must be such that they are compatible at the nodes and boundaries 

before and after the loads are applied. It should be noted that this 

analysis procedure does not insure equilibrium of stresses along ele-

ment boundaries. In general stresses in adjacent elements are not 

similar. Intuitively, finite elements that satisfy com.patioility 

along the boundaries would give better results. 

1.3.2 Basic Equations of the Finite Element Theory 

The displacement method of analysis consists basically of the 

following operations (Ref. 65). First, the stiffness properties of the 

individual structural elements are evaluated, usually in a convenient 

local coordinate system. Second, the element stiffness matrix is 

transformed from its local coordinate system to the global coordinate 

system of the complete structural assemblage. Third, the structural 

·-· 
stiffness matrix at each node is assembled by the superposition of the 

individual element stiffnesses contributing to the nodal point. 

Fourth, equilibrium equations are formulated by expressing the rela-

tionship between the applied forces {R} at the nodes and the resulting 

nodal displacements {r}: 
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I . 

. {R} = [Kf {r} (1.1) 

The system of equations is solved for the unknown displacements. {r} 

with the cognizance that the stiffness matrix [K] is generally sparsely 

papulated, banded and well conditioned. Finally elenent deformations 

are evaluated from the computed nodal displacements by kinematic rela

tionships. Element forces are then determined fro:m the element defor

mation by means of. the element stiffness matrix. 

From the assumed finite element deformation pattern, the 

stiffness properties of any element can be evaluated in the following 

procedure (Ref. 65): 

1. Express the element displacement field. {v} in ter.ms of dis

placement functions [M] and generalized coordinates {a}: 

· {v} = [M]' {a} 

The number of independent funct~ons in M should equal the 

number of nodal point displacenent components. 

(1.2) 

2. Evaluate the nodal displacements in terms of the generalized 

coordinates: 

The matrix [A] is obtained by evaluating the displacement 

functions at the nodes. 

3. Express the generalized coordinates in terms of the nodal 

displacements by solving for {a} in Eq. 1.3: 

· {a} = [A]-
1 {vi} 
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4. Express internal displacement field in terms of the nodal dis-

placements by substituting Eq. 1.4 to Eq. 1.2: 

{v} = [M] [A]-
1 

{v.} 
]. 

(1.5) 

5. Evaluate the strain.{£} 

· {£} = [B) {a} (1.6) 

where [B] is obtained from Eq. 1.2 by the appropriate differ-

entiation of the displacement function. 

6. Evaluate the stress field. {cr} in terms of the nodal point 

displacements: 

.,-.1 

. {cr} = [D] {£} = (D] (B] [A] {v.} 
]. 

(1. 7) 

The specific characteristics of the finite element material 

are represented in the stress-strain matrix [D]. 

7. With the use of the principle of virtual displacement, evalu-

ate the element stiffness matrix [k]: 

[kJ = [A-i J j [BJT rnJ [BJ dv rAr
1 (1. 8) 

Equation 1.5 expresses the displacement field in terms of the 

nodal displacements. With the use of special coordinates, the dis-

placement function can be expressed directly using the concept of 

interpolation polynomial (Refs. 5, 33). Steps 2 to 4 and the inversion 

of matrix (A] can be bypassed with the proper choice of interpolation 

function. Thus, 
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(1.9) 

where the matrix [~] contains the necessary interpolation functions 

which are based on shape functions assumed for the element (Refs. 17 ,33) .. 

The nodal strains can then be obtained by differentiation of 

Eq. 1.9 and evaluating the strains at the node points. Hence, 

. {E } = [ ~ ] · {v.} 
c c l. 

(1.10). 

where the column vector {E } contains the components of the strain at 
c 

the nodes and the matrix [~ ] is the matrix [~] differentiated and c 

evaluated with corresponding nodal point coordinates. 

Given the nodal strains, the strain field can be expressed 

by a strain interpolation function [~E] 

(1.11) 

The strain interpolation functions in general are of an .order lower 

than [~] and describes the strain variation within the element. 

By using Eq. 1.10 and Eq. 1.11, it can be seen that, 

(1.12) 

wherein the strains are expressed directly in terms of the nodal point 

displacements. 

Application of the principle of virtual displacement: leads to 

the following form of stiffness matrix expression (Ref. 33). 
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[k] = [<P ]T/ [<P ]T [D] [<P] dV [<P] 
C E . S C 

( 1.13) 

The resulting relationship therefore between element forces 

{F.} and displacements { v.} at the nodes can be written as 
1 1 

[k] {v.} 
1 

(1.14) 

where [k] is given by Eq. 1.8 or Eq. 1.13. The stiffness matrix is of 

the form 

[k] = 

!k .. ] 
J1 

[k .. ] 
JJ 

(1.15) 

in which [k .. ] ~ [k .. ] ~ etc.~ are subma.trices of size ~ x ~ ·where ~ is the 
11 1J . 

nwnber of force components or degrees of freedom considered at a node. 

1.3.3 Static Condensation Procedure 

The additional-nodes necessary in order to make use of all 

the terms of the assumed displacement ftmctions can be conveniently 

located inside the element (Ref. 17). These interior nodes can be 

eliminated from the stiffness expression given in Eq. 1.15 by a static 

condensation procedure (Refs. 17,18). This procedure is particularly 

useful in complex-shaped structures where the interior nodes would be 

practically unmanageable in terms of input preparation (Ref. 18). In 

terms of computational effort, a decrease in the size of the problem 

can be obtained. -15-



The element stiffness equation expressed by Eq. 1.15 can be 

written in the following form: 

FE ~E 
I 

f_:~-I ~I 
l (1.16) -----;-----"'-

FI kiE 
I 

kii l VI 
I 
I 
I 

where {FE} = Applied nodal forces at external nodes 

{FI} Applied nodal forces at interior nodes 

{vE} = Nodal displacements at exterior nodes 

. {vi} = Nodal displacements at interior nodes 

~E' ~I' kiE' kii = the partitioned element stiffness 

matrices corresponding to {FE} and {FI} with {vE} and {vi} respectively. 

Solving for {vi} in the second part of Eq. 1.16 and substi~ 

tuting the result to the first part of Eq. 1.16 results in the follOiving 

expression: 

(1.17) 

Defining the modified force vector as: 

(1.18) 

The element stiffness matrix for the element with the reduced number of 

nodes is: 
(1.19) 
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1. 3. 4 . Assembly and Solution 

The condition of overall equilibrium for the element is satis-

fied by Eq. 1.14. It is then necessary to establish equilibrium condi-

tions at the nodes of the complete structure. 

The system of nodal displacement for the element may be 

listed in the order of the nodal displacement of the structure {r}. 

Corresponding to these nodal displacements are the external forces on 

the structures applied at the nodes: {R}. 

At a typical node i, the sum of component forces contributed 

by the elements meeting at node i is equated to applied nodal force at 

R.. Thus, 
]_ 

{R.} = L {F.} 
]_ ]_ 

The summation is for all the elements at node i,. 

(1.20) 

Using the sub-matrices of Eq. 1.15, the above equation can 

be rewritten for all the nodes n (Ref. 64) 

M 
{R.} = L 

]_ 
[k. ] {r } 

J.m ;m (1.21) 

The sun:m.ation in Eq. 1.21 is taken over all the elements M of the struc-

ture. If the element contains no sub-matrices corresponding to node i, 

its contribution to the sun:m.ation is ze~o. 

The system of equations resulting from Eq. 1.21 can be solved 

once prescribed support and boundary conditions have been imposed. 

Where components of the displacement at a node are zero, the number of 
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equilibrium equation can be reduced by deleting the ·Corresponding equa

tion corresponding to that particular component. 

The time consuming procedure of eliminating terms in Eq. 1.21 

and reorganizing computer storage to account for boundary conditions 

can be avoided by using a numerical technique. Instead of eliminating 

the equilibrium equation at which displacement is specified, the diago

nal term of the assembled matrix [k] at the node of the associated dis

placement component is multiplied by a large number (Refs. 58,64). The 

resulting system of equations is then solved for all displacement 

components. 

Once the solution of unknown displacements has been obtained, 

it is a matter of substitution to compute internal stress and forces by 

Eq. 1. 7. 

1.4 Development of Bridge Design Criteria 

The 1971 AASHO Bridge Specifications (Ref. 1) provides the 

live load distribution factor equation for which the interior and 

exterior beams of beam-slab bridges must be designed. The expressions 

are different for different types of bridges, and are functions of the 

center-to-center spacing of the beams only. In·l973, AASHTO adopted 

the new specification provision including the width, length, number of 

lanes, and number of beams among the parameters governing the load 

distribution in spread box-be~m bridges (Ref. 2). A similar refinement 

to the specification provisions for prestressed concrete !-beams is 

given in Ref. 62. 
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This research is aimed at developing the specification 

provisions that will include the. skew among the load distribution 

criteria. Three major steps are involved: (1) the theoretical devel

opment of an analysis procedure suitable for general skew beam-slab 

structures subjected to vehicular loadings, (2) the application of the 

method of analysis to highway bridges that represent general beam-slab 

· bridge configurations; and from the results, (3) development of a 

simple expression for the determination of design load of interior and 

exterior beams. 

The analytical developments are presented in Chapters 2 and 

3. The application to highway bridges with prestressed concrete !-beam 

bridges is presented is Chapter 4 where the development of a simplified 

equation is also shown. The additional theoretical development for the· 

analysis of box-beam bridges is presented in Chapter 5. The applica

tion to highway bridges with spread box-beams and the development of a 

simplified design equation are also presented in that chapter. 
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.2. ANALYSIS OF SKEWED ELA.STIC PlATES 

2.1 Introduction 

Plate problems with arbitrary geometrical boundaries are in

variably complex and difficult to analyze. Their solution however, is 

of considerable importance in enabling the construction of safe and 

efficient structures like skew slabs, skew bridges, swept wings and 

skew-shaped floor systems. The classical solutions, e.g. theory of 

elasticity, for these problems are limited; and, in general restricted 

to the very simple cases. However, the finite element method is power

ful enough to handle arbitrary geometry, boundary conditions and load

ing configurations. The finite element approach to these types of 

problems has already been demonstrated (Refs. 10,11,18,35,56~64). 

This chapter presents a finite element analysis technique 

for skew plates. The formulation has been kept general enough to 

permit its extension to skew, eccentrically stiffened structures (see 

Chapter 3). Because of the eccentricity of the beams to the plate in 

these structures, the plate develops in-plane and plate bending re

sponse. Thus, both the in-plane and plate bending analyses are 

included. 

The elements representing the in-plane and out-of-plane be

havior of the plate will make up the basic plate finite element that 

is used in the analysis of general stiffened plates in Chapter 3, 

skew bridges with prestressed concrete !-beams in Chapter 4, and skew 

·bridges with prestressed concrete spread box-beams in Chapter 5. 
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2.2 Skew Plate In-Plane Analysis 

The skew plate also known as a parallelogram is a special 

case of a quadrilateral plate when opposite sides are par~llel 

(Fig. 6). The acute angle between two adjacent sides is called the 

skew angle as shown in the figure. The rectangular plate is a special 

case of the skew plate when the skew angle is 90°. 

2.2.1 Methods of Solutions 

The solutions to skew in-plane problems have been arrived at 

by using the theory of elasticity in rectangular,oblique and polar co-

ordinate systems (Ref. 37). As reported by Morley in Ref. 37, solu-

tions in rectangular and oblique coordinates have been obtained by 

Hemp, Favre, Lardy and Theodorescu; and solutions in the polar coordi-

nate system have been obtained by Coker and Filon, Williams, and 

Mansfield. Solutions in terms of the Airy stress function expressed 

in complex variables, trigonometric series, and infinite series have 

been obtained by Green and Zerna (Ref. 20) and Pickett (Ref. 44). 

2.2.2 Assumptions and Basic Equations 

The skew plate under any in-plane forces is assumed to be a 

plane stress problem. Stresses a , a and T and the generalized 
X y xy 

forces N , N and N in an infinitesimal element are shown in Fig. 7. x y xy 

The components of stress and generalized forces shown in the figure 

indicate the assumed positive direction. The generalized forces are 

the stresses integrated over the thickness of the element. 
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The displacement at any point of the plate is defined by the 

compOnents of the vector field {v}: 

{v} = 
{ 

.vu} (2.1) 

Where U and V are in the X andy directions respectively: The strain 

field at any point is defined from the displacement field by the 

relationship: 

e: au 
XX ax 

{e:} av = e: = ay yy 
(2. 2) 

Yxy 
au+ av 
ay ax 

where e:xx' e:yy' yxy are the well known components of strain. 

The usual stress-strain relationship as defined by Eq. 1.6 

for the general orthotropic case is given by Ref. 64: 

a 
X 

a y 

T 
xy 

where 

E 
= 

(1 - n\1 2) 

E 
n =~ 

E 
2 

G 
m=~ 

E 
2 

2 

n n\1 2 0 

nv 
2 

1 0 

0 .0 m(l - n\1 2) 
2 
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in which E and E are the principal elastic moduli in the x and y 
. ·1 2 

direction, v 
2 

is the Poisson's ratio, and G is the shear modulus. 
2 

For the isotropic case, E 
1 

= E , v 
2 2 

1 = v, and m = 2 (1 + v)" 

2.3 In-Plane Finite Element Analysis of Skew Plates 

2.3· .1 Geometry and Displacement Field 

Consider a quadrilateral in-lane finite element as shown in 

Fig. 8. The local coordinate system with the origin at the centroid of 

the element is indicated by C and~· The nodes are numbered counter-

clockwise with the node at the centroid being the fifth node. The 

edges 1-2 and 3-4 of the quadrilateral are represented by C = -1 and 

~ = 1. The edges 2-3 and 4-1. are represented by ~ = -1 and ~ = 1. 

The in-plane element has eight external and three internal 

degrees of freedom (Fig. 8). The external degrees of freedom are the 

displacements ui and vi specified at the external nodes i, i = 1 to 4. 

The three internal degrees of freedom are the displacements u and v 
5 5 

and the strain y • The displacement u and v are specified at the 
. xy 5 5 

fifth node while the strain y 'is assumed to be constant throughout 
xy 

the element. This element was originated by Doherty who designed the 

element based on physical concepts and was derived by Williams using 

concise variational formulation (Ref. 59). 

The geometrical relationships between the global coordinates 

and the local coordinates can be expressed in matrix form by the fol-

lowing expressions: 
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where 

y. 
l. 

(2.4) 

in which x. andy. are the global coordinates of node i, and n. and ~i 
l. l. l. 

are the local coordinates of node i. 

The displacement function for the element is assumed to be a 

linear shape function for the corner points and a quadratic interpola-

tion function for the interior point. The internal shape function 

selected is the quadratic interpolation scheme with vanishing values at 

the boundaries (Ref. 59). Thus, Eq. 1.9 in Section 1~3 for this ele-

ment can be written as follows: 

where, 

= { u, 

0 

f 
1 

v 
1 

f 0 f 0 
2 ! 

0 f 0 f 
2 !I 

u v 
2 2 

u 
! 

v 
! 

f 0 f 
4 5 

0 f 0 
4 

u 
4 

v u 
4 5 
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v ·}'· 
5 . 

u. 
l. 

v. 
1 

(2.5) 

(2.5a) 



--and, 
f 1 (1 - n> (2.5b) = - (1 - I;) 

1 4 

f 1 
(1 - n> (2 .Sc) = - (1 + I;) 2 4 

f = .!. (1 + I;) 
3 4 (1 + n> (2.5d) 

f 1 (1 + n> (2 .Se) = - (1 - 1;) 
~ 4 

f = (1 - 1;2) (1 - n2> (2 .Sf) 
5 

2.3.2 Derivation of Element Stiffness Matrix 

The strain field can be derived from the standard strain dis-

placement relationship. With the assumption of constant shear strain 

and with the additional strain degree of freedom, the strain components 

can be written (Ref. 59) 

e: u 0 0 ui XX 

e: = 0 v 0 v. 
YY ~ 

(2.6) 

yxy 0 0 1 Cl. 

where ()fi 
u = ax (2.6a) 

afi 
V=-

ay 
(2.6b) 

and a is the generalized coordinate associated with the constant shear 

strain degree of freedom. The derivatives of the functions in 

- - ,-. Eqs. 2 .6a and 2. 6b can be written with the help of the chain rule 

(Ref.- 45): 
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.. 

•. a£i a£i 
a£i 2Y 11. 

.~ an - an az;; 
--= (2. 7) ax ax h ax h 

az;; an an az;; 

a£i ax a£. ax 
a£i 

1. 

an ·an an . 
az;; 

ay = ·ax h ax h 
(2 .8) 

az;; an an ar; 

The evaluation of the element stiffness for the resulting 

finite element model is given in Appendix A. The final stiffness 

matrix is obtained by the application of the static condensation proce-

dure on the interior node as described in Section 1.3.3. The element 

is known as Q8Dll. 

The explicit integration of the stiffness matrix integral is 

a lengthy process and difficult. The usual procedure in this case is 

to use the numerical integration procedure (Refs. 45,59,64). 

In the procedure, the terms of the matrices are evaluated at 

several points call integration points. The Gaussian quadrature formu-

lation is found to be most useful for the present problem. In the 

formulation, the polynomial function is integrated as the sum of the 

weighted values at specified points. 

1 
Thus, a function !_

1 
f(l;)dz;; can be replaced by a summation 

f 
1 

f(l;)dl; = 
-1 

n 
r W. f(aj) 

j=i· J 
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where W. are the weight coefficients and a. are the values of the 
J J 

function at the n specified points. 

The double integral of the form 

l l 

I = J J f (,,~) d' dn (2.10) 
.. 1 -1 

can be replaced by the following summation (Ref. 64): 

n n 
I = L: L: W. W. f (a. , b.) 

i=1 j=1 J l J l 
(2 .11) 

The numerical values of the coordinates at the integration 

points and the weight coefficients for ~ifferent values of n are 

given by Zienkiewicz (Ref. 64). For this element, William has shown 

that the 2 x 2 Gaussian quadr~ture formula provides better results 

in stiffness than the improved 3 x 3 Gaussian integration scheme 

_(Ref. 59). The coordinates of the integration points are shown in 

Fig. 9 and the weight coefficients are equal to 1 (Ref. 64). 

The following should be noted in connection with this 

element. First, since a different shape function is used to describe 

individual displacement and strain components, the variation of 

displacement is not homogeneous. The stiffness property of the 

element is therefore directional. Secondly, monotonic convergence 

and boundedness is lost according to the Melosh criterion (Ref. 34). 

This criterion requires that interpolation function of internal nodes 

must be lower than the external node. However, this element has 

been shown to give more flexible and better results among the 8 

degree of freedom family displacement models (Ref. 59). 
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The Q8Dll element has been tes~ed and compared with other 

finite elements by William (Ref. 59). The same study showed the 

efficiency and accuracy of the element among the other finite 

elements. This element will be combined with the plate bending 

element in Section 2.5 to make up the basic plate element used in 

this study. Numerical examples are provided to illustrate the 

accuracy of the element. 

2.3.3 Numerical Examples and Comparisons 

The accuracy of the finite element solution for rectangular 

plate problems as compared with theoretically exact answers has been 

reported and shown by Zienkiewicz, and Tottenham and Brebbia (Refs. 

56,64). Unfortunately, very little data is available for skew plate 

problems except for the very simple cases. 

The method of analysis must be applicable for all angles of 

skew. Therefore, the first test example is a rectangular plate under 

uniform edge loading and under pure shear loading. The plate proper

ties and dimensions are shown in Fig. 10. The skew angle is 90° and 

the exact solution can be found from the theory of elasticity. The 

results are tabulated in Tables 1 and 2. It can be noted that uni

form strain for these loadings is accurately predicted by the element. 

The CST, that is, constant strain triangle (Ref. 52), finite element 
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solution is also shown in Tables 1 and 2 for comparison. The CST dis

cretization in this example was with the use of 8 triangular elements 

formed by connecting two opposite corner nodes of the complete plate 

and connecting the midpoints of opposite sides. 

The second example is a skew plate under uniform edge loading 

as showri in Fig. 11. The state of stress for this problem is uniform 

throughout the element and can be found directly from equilibrium. The 

example illustrates the applicability of the element to plate problems 

with a parallelogram shape. The discretization into four rhombic ele

ments is shown in Fig. lla. The discretization into eight triangular 

elements for the CST analysis follows the same procedure as the first 

example. The numerical results are tabulated in Table 3. Since the 

exact solution is that of constant strain, the analytical results veri

fied the analytical model. 

The third example is a skew plate under in-plane concentrated 

loads~ The plate shown in Fig. 12 is fixed at the supports and sub

jected to two concentrated loads near midspan~ This problem is chosen 

to illustrate the accuracy of the element under this type of loading. 

There is no exact solution for this problem. The solutions are pro

vided by using linear strain equilateral -LSE (Ref. 60), constant 

strain triangle -CST (Ref. 52), and the reported values from Ref. 59. 

The results are tabulated in Table 4. 

Q8D8 refers to the quadrilateral element with only four nodes 

and two degrees of freedom at each node. Q8Dll(3) refers to the de

rived finite element using the 3 x 3 integration rule. The Q8Dll (2) 

-29-



refers to the element formulation using the 2 x 2 integration rule. 

The accuracy of the element using the relaxed integration rule 

can be seen from the table. 

The final example is the problem of the beam with inclined 

faces under a concentrated load at midspan. The structure is shown on 

Fig. 13a and the two selected discretizations are shown in Figs; 13b 

and 13c. The analytical solution is compared to the solution by 

Sisodiya and Cheung (Ref. 53) who used a higher order element that 

gives good results for the given type of structure and loading. The 

results are tabulated in Table 4. The advantage of the element over 

the standard Q8D8 is made obvious in this example. 

It should be emphasized that this example is the most severe 

case the element will be subjected to. In the application of this 

element to the beam slab problem, the element will represent the 

in-plane behavior of the deck slab. As such, the typical type of load

ing would be in-plane loads in the direction of span thus producing 

column behavior rather than beam behavior. The results of this example 

are the reasons for the choice of another element to represent the 

in-plane behavior of webs for box-beam bridges in Chapter 5. 

2.4 Skew Plate Bending Analysis 

2.4.1 Methods of Solutions 

The exact solution to the differential equation of skew 

plates in bending is difficult to obtain if at all possible. For the 
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simple cases, the problem is solved by direct integration of the dif

ferential equation under associated boundary conditions, or by the 

application of conformal mapping (Ref. 27). Subsequently, a number of 

studies have been concerned with investigations of the methods of solu

tion, the most common being the series solutions and the method of 

finite difference (Ref. 26). Solutions in oblique coordinates, trigo

nometric series, and finite difference solutions by several authors are 

listed and referenced by Morley in Ref. 37. Solutions by polynomials 

and trigonometric functions have been obtained by Jumppanem (Ref. 27) 

and Kennedy and Simon (Ref. 28) • 

Based on model tests RusCh (Ref. 48) produced design data in 

the form of influence surfaces for bending and torsional moments of 

simply-supported slabs with various angles of skew. A series of thir

teen skew slab models of different side to length ratio were investi

gated. The slab models tested were all simple span structures and made 

of gypsum plaster. As in any model study, it was not possible to inves

tigate all parameters. 

One of the earliest solutions using the finite difference 

methods was made by Jensen (Ref. 26). This was followed by Chen et al. 

in 1957 and by Robinson in 1959 (Refs. 9, 47). 

Within the past decade, the finite element teChnique has been 

employed successfully to analyze plates of arbitrary shape (Refs. 5,10, 

18). Zienkiewicz and Cheung, and Melosh used the teChnique to analyze 

plates in bending (Refs. 34,64) using rectangular elements. Based on 

the same deformation pattern used in the rectangular plate element 
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Dawe (Ref. 11) developed the stiffness matrices for parallelogram ele-
. . 

ments. Subsequently triangular elements were introduced, the most com-

man being those by Zienkiewicz and Cheung (Ref. 64) and by Clough and 

Tocher (Ref. 10). Further improvements in accuracy were subsequently 

obtained by Felippa and Clough (Ref. 18), and Bogner et al. (Ref. 5) 

with the use of refined and higher order elements. 

2.4.2 Assumptions and Basic Equations 

A typical element from a skew plate structure is shown in 

Fig. 14. The element is of differential dimensions whose sides are 

parallel to the orthogonal x-y system of coordinates. The reference 

plane is assumed to lie on the mid-plane of the plate. Forces, dis-

placements and the adopted sign conventions are shown in the positive 

directions in Fig. 14. The plate is assumed to be elastic, homogeneous, 

orthotropic and of uniform thickness, t. The standard assumptions in 

small deflection theory of plates are employed: 

1. Stresses normal to the plate are negligible 

2. Deflections are small relative to the plate thickness 

3. Deflection in the z direction is a function of x and y only 

4. Shear strains yxz, yyz in the x and y faces of the element 

and in the direction of z are equal to zero. 

The consequence of the above assumptions is that normals to 

the plate remain normal after deformation. 

-32-



From the above assumptions, the displacement equations may be 

written as: 

U(z) = u - z : 

V(z) = v -
aw z
ay 

(2 .12a) 

(2 .12b) 

where U(z) and V(z) are the displacement components of the point at 

distance z from the reference plane; and u, v, and ware the displace-

ment components of the point on the reference plane. 

Equations 2.12a and 2.12b can be differentiated to obtain the 

relationship of the strains to displacements: 

au a2w 
E ax - z --

X ax2 

av a2w (2.13) E = ay - z--
y az2 

au + av - a2w 
Yxy ay ax 2z axay 

The stress-strain relationship given by Eq. 2.3 in Section 2.2.1 can 

then be rewritten explicitly by substituting the above expressions for 

E ' E andy 
X y xy 

C1 c ( au a2w ) + c ( av a2w ) = ax - z ay - z --
X 11 ax2 12 ay2 

(2 .14a) 

- ( au a2w ) + c ( av a2w ) C1 = c -- z -- ay - z--
y 21 ax ax~ 22 ay2 

(2.14b) 
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Y = C ( au + av _ d 
2
w ) 

xy 33 ay . ax Zz axay 
. •. 

(2.14c) 

where C , C , C , C are the material constants evaluated from 
11 . p.·· 21 33 

Eq. 2. 3. 

The stress resultants per unit of the plate shown in Fig. 14b 

are found by integrating over the thickness. 

Thus, /t/2 
M 

= -t/2 
a z dz 

X X 
(2.15a) 

ft" M 
= -t/2 

a z dz y y 
(2.15b) 

/t/2 M - a z dz 
xy -t/2 xy 

(2.15c} 

Using Eq. 2.14 and the assumption of plane sections, the 

above equations can be integrated easily.resulting to the following 

equations in matrix form: 

M l D D 0 
a~ 

X 11 12 ax2 

M D D 0 
a~ (2.16} = y 21 22 ay2 

1 

t a2w 
M 0 0 D -2--

xy !3 axay 
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where c t3 
D = 11 

11 12 

c t3 
D = D = u 

12 21 12 

c t3 
D = ~3 

33 12 

Equation 2.16 is the explicit form of Eq. 1.7 applied to 

plate bending. 

2.5 A Finite Element Analysis of Skew Plates in Bending 

In this-section, the general quadrilateral element is pre-

sented. The element is developed by Felippa and reported in Ref. 18. 

This element is employed in the reported investigation. The element 

has been tested under a variety of boundary conditions and the results 

compare favorably with the theory of elasticity solutions (Ref. 18). 

The quadrilateral element is a conforming element formed from 

four triangular elements whiCh satisfy deflection and slope continuity 

along the boundaries. Eadh one of the triangular elements is known as 

the LCCT-11 or the linear curvature compatible triangle with eleven 

fundamental degrees of freedom. The LCCT-11 is a simplified form of 

the triangular element LCCT-12 whiCh has twelve degrees of freedom. 

The LCCT-11 is obtained from LCCT-12 by imposing the linear variation 

of the slope normal to one side of the triangle. 
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The element formulation is outlined in the following sec-

tions. Detailed derivations can be fotind in Refs. 17, 46 and 50. 

2.5.1 Element Coordinate Systems 

The geometry of a triangular element can be expressed by the 

projected dimensions in cartesian coordinate system (Fig. 15), by 

intrinsic dimensions (Fig. 16), or by dimensions in the natural coordi-

nate system (Fig. 17). 

In Fig. 17, A , A , A are the three subtriangles subtended 
1 2 !I 

by point P such that 
A' 

i 
l,;i =A (2.17) 

where the index i = 1, 2, or 3 designates the number of the corner 

opposite to A. and A is the total area of the complete triangle. 
l. 

From Fig. 16, Eq. 2.17 can also be written as 

(2 .18) 

where n. is the normal distance of point P and h. is the height of 
~ ~ 

node i from side i. These relationships are used to simplify the 

expressions in the element stiffness formulations. 

The relationship between cartesian and natural coordinates 

is expressed as follows (Ref. 33): 
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1 

X 

y 

= 

1 

X 
l 

1 

X X 
2. 3 

z;;l 

z;; 
2 

z;; 
3 

where xi and yi are the coordinates of the nodes i, i=l, 2., 3. 

(2.19) 

The inverse relationship can be obtained by solving for z;; , 
1 

1;;1 2A b a 1 
1 1 1 

z;; 
1 2A b (2.20) =- a X 

2. 2A 2. 2 2 

z;; 2A b a y 
3 3 3 3 

where ai and bi are the projected dimensions shown in Fig. 15. 

The derivatives of a function !(I; , z;; , z;; ) with respect to 
1 2 3 

the x, and y axes and a normal n. can be obtained by the chain rule 
I 1 

. (Ref 0 33): 

a£ 1 
an = 2A 

i 

a£ 1 
ax = 2A 

a£ 1 
ay = 2A 

(2 0 21) 

(2.22) 

(2. 23) 
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where coordinates di and ~i are shown in Fig. 16. 

The above relationships are used in the formulation of the 

element displacement field and stiffness properties in Sections 2.5.2 

and 2.5.3. 

2.5.2 Construction of the Element Displacement Field 

The twelve fundamental· degrees of freedom for the LCCT-12 

element at the external nodes of the triangular element are shown in 

Fig. 18. These can be expressed as components of the nodal displace~ 

ment vector { r}: 

(2.24) 

where w., e i and e . are the transverse displacement, rotation about 
~ X y~ 

the x-axis, and rotation about the y-axis respectively of node i. 

8 and 8 are normal slopes at the midside nodes of the element 
5 6 

bom1daties. 

a ' 4 

As proposed by Felippa (Ref. 17) the element is subdivided 

into three subtriangles or subelements as shown in Fig. 18. Each sub-

element has three displacement components at each node and one rotation 

component at the midpoint of the outer side (Fig. 18). Point 0 is 

located·at the centroid of the complete triangular element. Indepen-

dent cubic displacement functions are then assumed for each subelement. 

The nodal displacements for each triangle can be listed as 

follows: 
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T 
{r (1)} = {w e e w e e w e e e } (2.25a) 

2. X2. Y2. 3 X3 Y3 0 xo yo 5 

T 
{/2)} = {w e e w e e w e e e } (2. 25b) 3 X3 Y3 1 X1 Y1 0 xo yo 6 

. T 
{r(3)} = {w e e w e e w e e e } (2.25c) 

1 X1 Y1 2 X2 Y2 0 xo yo 7 

Since each subelement has ten degrees of freedom a complete 

cubic polynomial expression can be used (Ref. 18). Thus for sub element i: 

w(i) = [~(i)] {r(i)} (2 .26) 

where [~(i)] is the interpolating polynomial that relates displacements 

within the element to the nodal displacements as defined in Eq •. 1.9. 

The explicit expression for ~(i) for i=l has been derived and presented 

by Felippa in Ref. 18: · 

1';2 (3 - 21'; ) + 611 (1) I; I; I; 
1 1 3 1 2 3 

1';2 (b (1) I; - b (1\ ) + (b ( 1 ) ll ( 1 ) ~ b ( 1 ) ) ' I; I; I; 
1 3 2. 2. 3 3-3 1 12.3 

1';2. (a(1)1'; - a(1)1';) + (a(1)ll(1) - a (1)) I; I; I; 1 3 2. 2. 3 3 3 1 1 2. 3 

1';2. (3 - 21'; ) + 6A(l) I; 1; I; 
2. 2. 3 1 2. 3 

T 
(b (1) I; - b(1)1';) (b ( 1 ) - b ( 1 ) A ( 1 ) ) ~(1) = 1';2. + I; I; I; . (2. 27) 

2. 3 3 1 2. 3 3 1 2. 3 

1';2. (a(1\ - a(1)1';) + (a(1)- a ( 1 ) A ( 1 ) ) I; I; .I; 
2. 1 3 3 1 2. 3 3 1 2. 3 

1';2. (3 - 21'; ) 
3 3 

1';2. (b (1) I; - b(1)1';) 
3 2. 1 1 2. 

1';2. (a ( 1) I; - a(1)1';) 
3 1 l 1 2. 

' (1) 
I; I; z;; 4h 

3 1 2. 3 
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where, 

and, ll = 1 - A i . i 

The above interpolation function is a complete polynomial 

based on the choice of nodal system for n=3, i.e. cubic polynomial 

(Refs. 17 ,33). 

The subscripts used in the above correspond to the renumbered 

node in Fig. 19; and therefore the function is the same for the other 

elements except for the superscript. 

The vector of all the nqdal displacements is expressed 

in the order given by Eq. 2.25. The displacement w of the complete tri-

angular element can then be expressed by: 

w 
(1) 

~ ~ 
·e 0 

(2) r 
~ ~ 

e (2.28) w = e 0 

(3) r 
~ ~ 

0 w 
e 0 

where the superscripts refer to the suhelement number and 

~ refers to the interpolation polynomial associated with 
e 

the displacements {r } at the external nodes, and 
e 

~ refers to the interpolation polynomial associated with 
0 

the displacements {r } at the internal L~de 
0 
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Transverse displacement of two adjacent subelements are iden-

tical along the juncture line. However, along this line their normal 

slopes differ. To impose slope compatibility along the internal edges, 

additional nodes 7, 8 and 9 are located at midpoint of these edges 

(Fig. 20). The normal slopes are computed from Eq. 2.21 and evaluated 

at nodes 7, 8 and 9. The resulting compatibility equations are then 

used to evaluate the displacements at the internal node {r } in terms 
0 

of the displacements at the external nodes {r }. . e 

The final displacement field is then written only in terms of 

the external degrees of freedom: 

w 
(1) 

w 
(2) 

= 

w 
(s) "(s) 

IP 

. {r} (2.29) 

The explicit expression for ;(i) is given in Appendix B"for 

ready reference. 

2.5.3 Derivation of the Element Stiffness Matrix 

The stiffness matrix for each subelement can be derived fol-

lowing the procedure outlined in Section 1.3.2 together with the dis-

placement function given in Eq. 2.28. 

From Eq. 2.16, {e:} is defined to be: 
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. {E} = (2.30) 

and is known as the curvature field. 

For subelement i, the curvature field can be obtained by pro-

per differentiation of the displacement function given by Eq. 2.28, and 

the use of Eqs. 2.22 and 2.23 

· {r} = [T(i)] {r} (2. 31) 

The nodal values of the curvature can be obtained by evalu-

ating Eq. 2.30 at the nodes. Thus 

(2.32) 

where {E(i)} is the vector of nodal curvatures and [~(i)] is the matrix 
c B 

[T(i)] evaluated at the node points of· element i. 
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The linear curvature variation within the subelement can now 

be expressed in terms of the nodal curvatures by a linear interpolating 

function [~E] such that 

. {E (i)} = [~ {i)] {E(i)} (2. 33) E c 

where z;; z;; z;; 0 0 0 0 0 0 
1 2 3 

[~ {i)] = 0 0 0 z;; z;; z;; 0 0 0 E 1 2 3 

0 0 0 0 0 0 z;; z;; z;; 
1 2 3 

With Eqs. 1.13, 2.16 and 2.32, the stiffness matrix can 

be evaluated: 

(2 .34) 

Since the stiffness matrix of a subelement is expressed in 

terms of the same set of nodal coordinates, the stiffness matrix of the 

complete triangular element is obtained by adding the contributions of 

the three subelements, thus, 

(2.35) 

Four of these triangular elements are assembled to form the 

quadrilateral. The midpoint nodes at the outermost side of the quadri-

lateral are however undesireable. These nodes require special program-

ming procedures for identification in input and in the calculation of 

the global stiffness matrix. Moreover, these nodes increase the band 
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width of the assembled equations. In order to avoid this difficulty, 

without violating compatibility requirements, t~e midside node can be 

eliminated by imposing the normal slope to vary linearly along the side 

(Ref. 18). For example e in Fig. 18 can be expressed as the average 
4 

of the corresponding slope at nodes 1 and 2. Since e is expressed now 
4 

in terms of 8 and 8 at nodes 1 and 2, Eq. 2.28 is reduced to eleven 
X y 

components. The resulting element is the LCCT-11. 

The partially constrained elements are assembled to a quadri-

lateral element such that there are no midside nodes at the exterior 

edges (Fig. 20). The resulting general quadrilateral has nineteen 

degrees of freedom and more commonly known as Q-19. The seven internal 

degrees of freedom are eliminated by a static condensation procedure as 

discussed in Section 1.3.3. Thus the final quadrilateral is fully com-

patible, with linear variation of normal slopes at the edges. The ele-

ment has twelve degrees of freedom: one translation and two rotations 

at each of the corner nodes. 

2.5.4 Numerical Examples and Comparisons 

Several example problems are presented to illustrate the ap-

plication of the quadrilateral element to plate bending problems. Dif-

ferent discretization schemes are used in some of the problems to com-

pare the accuracy and convergence of the solution with tests and other 

reported solutions. The different cases studied for each problem are 

depicted in Fig. 21. 
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The first example is the square plate shown in Fig. 22. The 

dimensions of the plate are shown in Fig. 72a. Due to symmetry only a 

quarter of the plate is analyzed. The discretization schemes used for 

this problem are illustrated in Figs. 22b to 22f. The three cases con-

sidered for this problem are: (1) concentrated load at the center of 

the plate with completely fixed supports, (2) concentrated load at the 

center of the plate with simple supports, and (3) uniform load through-

out the plate with simple supports. For all these cases Poisson's 

ratio is assumed to be equal to 0.3. 

The error in percent of deflection at the center of the plate 

resulting from the analyses and those reported in literature are shown' 

ln Figs. 23 and 2~ and Tables 6 and 7.for the first two cases. In 

these figures, the lines corresponding to elements developed by 

Wegmuller-Kostem (WK), Adini, Clough and Melosh (ACM), Melosh (M), and 

Pappenfuss (P) are taken from Ref. 58. The bending moments M and M 
X y 

for the third case are shown in Fig. 25. Shown also in this figure are 

the theoretical moments from Ref. 55. The above example shows the good 

convergence of the displacements and moments. 

The second problem is a skew plate with uniform load and 

simply supported on all sides. The plate is ideally a rhombic plate, 

all sides of which are equal, and whose skew angle is varied (Fig. 26, 

inset). The plate is discretized into 64 equal skew elements. Rotation 

about the skew supports is allowed except at the corners which are co~ 

pletely fixed. The reduction in the deflection at the center of a skew 

.plate due to the increase of skew is depicted in Fig. 26. The change 
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in the principal moments M as the skew angle is varied is shown in 
1 

Fig. 27. For comparison, the finite difference and series solutions 

from Ref. 37 are also shown. The large decrease in deflection and in 

mo~nt especially at skew angles beyond 60° can be observed. 

The third example is a 45° skew plate which is simply sup-

ported 6n two sides. The plate is subjected to a concentrated load P at 

the center. Plate dimensions, material properties and the discretiza-

tion for this problem are illustrated in Fig. 28. The theoretical re-

sults for the deflection and principal moments using finite difference, 

finite element and experimental values are listed in Table 8. The fi-

nite element results are comparable with the numerical values of the ex-

periment .. · In most. cases, the finite .element results are between the ex-

perimental and the finite difference solution employing the finer mesh. 

The fourth example is a skew slab model made of gypsum plas-

ter. Two cases are studied: one with uniform load throughout the slab 

model and another with a concentrated load at the center. The test re-

sults are reported by Rusch in Ref. 48. The slab model is shown in 

Fig. 29 with the properties and dimensions indicated. ·Points A, B, and 

E are specifically selected for comparison of moments. Point A is at 

midspan and near the edge, point B is at the center-of the slab and 

pointE near the obtuse corner of the support (Fig. 29). Three dis-

cretizations have been tried as shown in Figs. 29 and 30. Different 

discretizations are used so that finer discretization could be employed 

near the points of interest. Table 9 shows the comparison of moments 

at points A, B, and E between the model test and the finite element 
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solutions for a uniform load of 100 psi. Table 10 lists the results for 

a concentrated unit load at the center of the plate. The values of the 

moments at points A and B are quite comparable with the-experimental 

values. However, at point E, large discrepancies are observed. The 

third discretization gave only slightly improved results for point E. 

It is important to note here that computed values near the obtuse angle 

corners are questionable since they are near a region of high moment 

gradient. 

The final example is a skew plate supported on two sides with 

varying angle of skew but with constant width to span ratio. The de-

flections and moments at the center of the plate using the finite dif-

ference solution and the finite element procedure are shown in Figs. 31 

and 32. Good correlation is observed between finite difference and fi-

nite element except at the 60° skew where the available value of the 

width to span ratio is 0.52 instead of 0.50. A sharp decrease in the 

principal moment is observed for the skews beyond 60° and a much 

sharper decrease in deflection is obtained beyond 75°. 

2.6 Summary 

The analysis of skew plates under in-plane and lateral forces 

have been presented in this chapter. The development of the analysis 

technique with the use of the finite element method of analysis was 

illustrated for the in-plane and the plate bending elements. Numerical 

examples were shown to demonstrate the application of the method of 

analysis to skew in-plane and plate bending problems subjected to uni-

form and concentrated in-plane and lateral forces. 
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3. ELASTIC ANALYSIS OF SKEW STIFFENED PLATES AND BRIDGES 

3.1 Introduction 

In this chapter, the analysis of a general stiffened struc

ture csing the finite element procedures is presented. As was done for 

rectangular stiffened plate problems by Wegmuller and Kostem (Ref. 58), 

the structure is discretized into deck plates and stiffener elements 

(Fig. 4). The stiffness matrices of the finite elements for in-plane 

and out-of-plane plate behavior in Chapter 2 are used for the deck 

slab. An eccentric beam finite element with shear deformation proper

ties is introduced to represent the beam and the spacers or diaphragms. 

The method is used to analyze skew end right bridges. Com

parisons are made with available solutions and field tests. The appli

cability of the method of analysis to beam-slab highway bridge super

structures is demonstrated. The behavior of highway bridges with and 

without curbs and parapets, and diaphragms are also shown and discussed. 

3.2 Methods of Analysis of Stiffened Structures 

A brief survey of the methods of analyzing plates with stiff

eners is given by Wegmuller and Kostem in Ref. 58. In general, the 

methods of analysis may be classified according to the follawing struc

tural idealizations: (1) orthtropic plate model, (2) equivalent grid 

model, (3) plate and stiffeners model, and (4) folded plate model. 

Each method has limitations imposed on it because of the associated 

modeling scheme (Refs. 58,59). 
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The equivalent plate model idealizes the behavior of stiff

ened plates by plate bending action. In this method the properties of 

the stiffeners are "smeared" to the plate, and the resulting structure 

is analyzed as a plate problem. 

In the equivalent grid model the structure is idealized as a 

grillage of beam elements. Where only the slab connects the longitudi

nal stiffeners, the slab is modeled by transverse beam elements at suf

ficient intervals. The analysis follows the standard structural analy

sis procedure. 

The difficulty with the equivalent plate or equivalent grid 

model is twofold. First is the determination of the adequate plate and 

beam properties that will truly represent the actual structure. Second 

is the computation of the actual stresses in the beams and the slab 

from the analyzed equivalent structure. 

The plate with stiffeners model and the folded plate model 

have gained full acceptance in the analysis of stiffened plates 

. (Refs. 23 ,58, 60). The actual properties of the plate and the stiff

eners are used, and the actual stresses are derived directly from the 

analysis. In the reported investigation, the plate and stiffeners 

model is used for the I-beam bridges and the folded plate model is used 

for the box-beam bridges. 

The analysis of structures with plate and stiffeners can be 

formulated by combining the classical plate and beam theories (Ref. 58). 

The standard assumptions for the plate are listed in Section 2.4.2. 
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For the beam, the assumption is that all deformations can be described 

in terms of the vertical displacement of the longitudinal axis and ro

tation of the beam section. This assumption neglects the deformation 

of the cross-section of the beam, and hence strains normal to the 

longitudinal axis of the beam are not conisdered. The classical ap

proach results to a system of equation which is not easily solved 

except for the very simple loads and boundary conditions. The problem 

becomes even more involved for skew structures. 

From the· objectives of the overall study as mentioned in 

Section 1.1, and the requirements set forth in Section 1.5, the method 

of analysis must be sufficiently general so that design details may be 

considered separately without "smear~ng". The method should also be 

applicable to a variety of structural configurations and loading con

siderations without difficulty. Since the finite element method of 

analysis meet these requirements, this method is used in this 

investigation. 

3.3 A Finite Element Analysis of Skewed Stiffened Plates 

The type of structure considered in this section is shown in 

Fig. 4. The plate or deck in this case can have arbitrarily shaped 

boundaries. The stiffeners or the beams can be eccentrically or con

centrically attached to the deck. 

When the stiffeners are eccentrically attached to the plate, 

the bending of the stiffeners causes in-plane deformations in the plate 

:f..n addition to the plate be;1ding deformations. These in-plane 
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. deformations are normally not considered in classical plate theory. In 

the finite element method of analysis, the in-plane and out-of-plane 

behavior can easily be represented with the use of in-plane and plate 

bending elements. 

The in-plane and out-of-plane plate elements have been des-

cribed in Chapter 2. In this section, the stiffener element is des-

cribed. Since the plane of reference for the plate elements has been 

defined at the midplane of the plate, the behavior of the stiffener or 

beam element is also defined about this plane. 

Five displacement components are selected at each node in the 

present finite element approach. These are the displacement u, v, and 

~in the x, y and z directions respectively, and two slopes e and e 
X y 

about the x andy axis respectively (Fig. ·33). 

3.3.1 Derivation of the Beam Element Stiffness Matrix 

The stiffener element with the plane of reference as the 

"middle plane of the plate is shown in Fig. 33. It is assumed that the 

stiffener is attached to the plate along the boundary of a plate ele- . 

ment. It is further assumed that external loads are applied only to 

the plate elements or directly at the nodes. Bending about the z-axis 

is neg~cted. 

In order to satisfy compatibility of displacement along the 

juncture of the plate and the stiffener elements, the displacement 

functions of the plate along the juncture must be the same as for the 
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stiffener element. Since the assumed in-plane behavior of the plate is 

linear and the out-of-plane behavior is cubic, a linear displacement 

functions is assumed for the in-plane behavior of the beam, and a cubic 

displacement function is assumed for the out-of-plane behavior of the 

beam. Furthermore, since the normal slope of the plate is assumed to 

vary linearly along the boundary, the twist of the beam along this 

boundary is assumed to be linear. 

The geometry of the beam element can be described in terms of 

non-dimensional coordinates: 

L ...;. X z;; = 
1 L 

(3.la) 

z;;2 
X =-
L 

(3.lb) 

where Lis in the.direction of the x-axis. 

The linear displacement function for u and the cubic dis-

placement function for w can then be written as 

u=a.z;; +z;;z;; (3.2) 
1 1 2 2 

3 3 
w=a.z;; +a.z;; 

3 l 4 2 

2 2 
+ a. z;; z;; + a. z;; z;; 

5 1 2 6 1 2 
(3. 3) 

In matrix notation: 

u 0 0 0 0 

= (3.4) 

w 0 0 
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where 
. T . 

{ct} = {CL CL CL CL . CL CL } are unknown coefficients. 
1 2 a 4 5 6 

The coefficients CL andCL can be determined from the two in-
1 2 

plane model displacements at the two nodes, and CL , CL , CL , andCL can 
3 4 5 6 

be determined from the two out-of-plane displacements and two rotations 

at the two nodes. 

The nodal displacements can be written as, 

(3.5) 

where ui and '\ are the in-plane displacements, ~d wi, wk, 9yi' and 

9yk are the out-of-plane displacements and rotations, at nodes i and k 

respectively. By can be expressed by definition and the use of the 

chain rule, 

-a 
e = aw = aw • ~ + aw 
y ax a~ ax a~ 

1 2 

(3~6) 

The nodal displacements can now be expressed in terms of the 

unknown coefficients from Eqs. 3.4 and 3.6 

1 0 0 0 0 

0 0 1 0 0 

EYr 0 0 -3/L 0 1/L 

= 
0 1 0 0 0 

0 0 0 1 0 

0 0 0 3/L 0 
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-1/L 

CL 
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CL 
2 

CL 
3 

CL 
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CL 
5 

CL 
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(3.7) 



The vector of unknown coefficients can be expressed in terms· 

of the nodal displacements by solving for. {a} in Eq. 3.7. Hence, 

a 1 0 0 0 0 0 u. 
1 l. 

a 0 0 0 1 0 0 w. 
2 l. 

a 0 1 0 0 0 0 e 
yi 3 

= (3.8) 
a 0 0 0 0 1 0 uk 

'+ 

a 0 3 L 0 0 0 wk 
5 

a 0 0 0 0 3 -L eyk 6 

Substitution of Eq. 3.8 into Eq. 3.4 leads to the displace-

ment function expression in the.form of Eq. 1.9: 

u 

= 
w 

where f 
Sl 

f 
S2 

f 
53 

f 
S4 

f ss 

f 
S6 

= 

= 

= 

= 

= 

z; 
1 

z; 
2 

z;3 
1 

f 
Sl 

0 

+ 3 

z;2z; L 
1 2 

z;3 + 3 
2 

0 

f 
53 

z;2z; 
:. 1 2 

z; z;2 
1 2 

= - z; z;2 L 
1 2 

0 

f 
S'+ 

f 
52 

0 
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(3.9) 

(3. 9a) 

(3.9b) 

(3. 9c) 

(3. 9d) 

(3.9e) 

(3.9f) 



It should be noted that the resulting interpolation functions 

are the same functions as the in-plane and plate bending elements along 

the boundary. 

au a2w 
Defining e: = "'x , and C = --- to be the strain and the cur-

x a ax2 

vature respectively, at any point along the reference axis of the stiff-

ener element, then from Eq. 1.10: 

£X t af af 
Sl 0 0 S2 0 0 ~ ~ 

= { rs} 2 

J 
a fs a2f a2f a2f 

4 ·6 6 
c 0 

ax
2 

ax
2 0 

ax
2 

ax
2 

(3.11) 

The components of C can be· determined with the use of the 

chain rule, 

a a2 
--=--
a:x2 ar;;2 

1 
) ( ) 

2 
ar;; ar;; 2 ar;; · 

( 

---1:.. - 2 +_a_ ___k_ (3.12) 
ax ax ar;;2 ax 

2 

The normal strain and curvature at the nodes can be evaluated 

by applying Eq. 3.12 to Eq. 3.11 and substituting coordinate values of 

the node under consideration: 
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ui 

E -1/L 0 0 1/L 0 0 w. 
~ 

X 

eyi 

ci = 0 -6/L2 -4/L 0 6/L2 2/L (3 .13) 

~ 

0 6/L2 2/L 0 -6/L2 4/L w k 

eyk 

or {E } = [~ ] · {r } 
c c s 

(3.13a) 

where 

s s 

. {Ec} = Ex' Ci, Ck are the normal strain and curvatures at 

node i and k · 

[~ 1 = Normal strain and curvature interpolating functions c 

evaluated at the nodes. 

With the assumption that plane sections remain plane before 

and after deformation, the displacement equation for any point on the 

beam at a distance of z from the reference plane can be written as: 

U(z) aw 
= u - z ax 

The normal strain E can be defined by differentiating 
X 

(3.14) 

Eq. 3.14, from which the stress-strain relation for the beam becomes 

a = E s s ( 
au_ 
ax (3.15) 
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where a = stress on a stiffener element at distance z from the s 

reference axis 

Es = is the modulus of elasticity of the beam 

assuming only a uniaxial state of stress for the beam. 

·The generalized forces acting on the beam section can be 

evaluated by integrating Eq. 3.15, 

/t/2 N = a dA 
s -i:./2 s 

(3~ 16) 

/t/2 M - a zdA 
s . -t/2 s 

(3.17) 

These generalized forces can then be expressed in matrix form as, 

where 

N A s au 
s s s dX 

= E s 

M s I 
d2

W ---s s s ax2 

A = Cross-sectional area of the stiffener s 

(3.18) 

S = First moment of the stiffener area with respect to the s 

plane of reference 

I = Moment of inertia of the stiffener area with respect to s 

the plane of reference 
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Given the normal strain and curvatures at the nodes as 

expressed by Eq. 3.13, the strain and curvature. expressions can be 

written in terms of strain interpolation functions. Thus 

or 

where 

au 
1 0 0 ax E 

X 

= ci (3.19) 

a2w 
0 z; z; ck ---

ax2 1 2 

. {E}s = [~E] . {ec} (3.20) 
s s 

. 2 
. {~} au a w 

c. = Normal strain and curvature ~ and - --
2 

along the 
s d b 

axis of the beam element about the reference plane 

[~E] = Strain interpolation functions which express a con
- s 

stant variation of normal strain and a linear vari-

ation of curvature 

· {e: } . = Normal strain E and curvature C at the nodes 
C X s 

Th~ specific characteristics for the beam element can be 

expressed from Eq. 3.18 to be, . 

::] [D]s 
[ 

Asss (3.21) 

which are already integrated for the complete beam section. 

The integral of the triple product in the expression for 

Eq. ~.13 can be evaluated from [~] from Eq. 3.20, and [D] from Eq. 
. e: s s 

3.21. Thus after integration, 
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A ..J! S . 

s 2 2 

~~~.]: [D]s 
s I I 

[~ ] dx = E L 
s ..J! s (3.22) e: s 2 3 6 

s I I s s s 
2 6 3 

The integration in Eq. 3.22 is carried out only through the 

length because [D] is already expressed for the cross-section in 

Eq. 3.18. 

The stiffness matrix expression for the beam element can now 

be evaluated with Eqs. 3.13 and 3.22: 

(k] = (~ ] T f [~ ] T [D] 
s c e: s s s 

A s A s s 
0 

s s 0 s -- --L L L L 

.12I 6I l2I 6I s s 
0 

- __ s s --- --s·-· 2 3 •2 
L L L L 

4! s 6I 2I s _ _.§. s s 
L L L2 L 

(3.23) 
A s 
~ 0 

s 
L L 

12I 6I 
s s 

Symmetric 3 2 
L L 

4I s 
L 
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It should be noted that the above expression is only for the 

bending stiffness of the beam. The torsional stiffness is derived 

separately in the following paragraphs. 

For the present analysis, only St. Venant torsion is con-

sidered. It has been shown that for rectangular and stocky beam cross-

sections, most of the applied twisting moment is resisted by S't. Venant 

torsion (Ref. 58). 

The twisting moment T in the beam element is related to s .v. 

the angle of twist¢ by the relation: 

where 

T - GK ¢' s.v. t 
(3.24) 

( ~; ) or the rate o( change of angle of t:r...rist 

G = shear modulus 

K = St. Venant torsional constant 
t 

With the assumption that the angle of twist varies linearly 

along the length of the element, and recognizing that the angle of 

twist at the nodes corresponds to the rotation about the longitudinal 

axis of the beam, the torsional rotation function can be written in 

terms of linear interpolation functions and the nodal rotations. Thus 

. {<f>} = (3.25) (I; 
l 

l;; ] 
2 
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{4>'} = [ - i i ] (3.26) 

Following the procedure for the beam bending element and 

using the given rotation function, the following matrices·can be 

defined: 
(3.27) 

(3.28) 

(3.29) 

From the expression for the sti.ffness matrix, given by 

Eq. 1.13, integration along the length leads to 

- 1 - 1 
Gk . . .. t 

=--
L 1 1 -

(3.30) 

3.3.2 Assembly of the System .Stiffness Matrix. 

The stiffness matrices of the individual elements are assemr 

bled to form the structural stiffness matrix of the complete system. 

The procedure follows the requirement of Eq. 1.21. In the following, 

the assembly of the elements is illustrated in matrix form to show the 
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interaction.of individual elements as defined by the global force and 

displacement vectors. 

The in-plane and bending plate elements are assembled first 

to form a combined element with five degrees of freedom at each node. 

Since the in-plane plate element and out-of-plane plate element both 

lie on the same reference plane, there is no interaction between them. 

Hence, for example 

kl 
I 0 I 

[kii] = l (3. 31) ___ "1....;-~--
I 

0 I kii I 
I 

where k1 is a 2 x 2 matrix associated with u and v displacement compo

nents and kll is a 3 X 3 matriX associated With theW, a , a· displace-
. X X 

ment and rotation components. 

For the whole plate element with nodes 1, 2, 3 and 4, 

F r 
1 1 

F r 
2 = [k .. ] 2 

F . l.J r 
3 3 

F r 
It It 

where the submatrices of [kij] are in the form of Eq. 3.31, and 

T {Fi} = {F . F . F . M.. M . } 
Xl. Yl. Zl. Xl. Yl. 
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(3.34) 



The bending and torsional stiffness matrices· of the beam ele-

ment are assembled in a similar manner. The stiffness terms associated 

with the neglected displacement component are taken as zero in forming 

the complete five degrees of freedom system at the node. Hence, from 

Eq. 3.23 and Eq. 3.30 at beam nodes i and k, 

Fxi A L2 0 0 0 S L2 -A L2 0 0 0 .:..s L2 u. s s s s ~ 

Fyi 0 0 0 0 0 0 0 0 0 v. 
~ 

F . 12I 0 -6I L 0 0 -121 0 -6I L w. 
z~ s s s s ~ 

Gk . · Gk 

Mxi -~2 0 0 0 0 
. -~2 

0 a . E E Ja 
- s s 

M. 4I L2 -s Li 0 6I L 0 2I L2 a yi y~ s s s s 
= 

Fxk A L2 0 0 0 S L2 
~ s s 

Fyk 0 0 0 0 ~ 

Fzk Symmetric 12I 0 6I L wk s s 

Gkt 
Mxk -L2 0 axk E 

s 

Myk 4I L2 
ayk s 

(3.35) 

The stiffness matrix expression for the beam element in 

Eq. 3. 35 can be modified to include the additional deflection due to 

shear (Ref. 45). Defining 
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r = 
12 E I 

s s 

G A 1 2 

s s 

(3.36) 

The beam stiffness matrix can be rewritten to include the shear 

deformation (Ref. 45). 

A 1 2 0 0 0 s 1 2 -A 12 0 0 0 -s 1 2 
s s s s 

0 0 0 0 0 0 0 0 0 

12I -6I 1 -12I -6I 1 s 0 
s 

0 
s s 

(l+f) (l+r) 0 {l_:f-r} 0 (l+r) 

Gk · Gk 
~2 0 0 0 0 -~2 0 E .. E s s 

E (4+r> I 1 2 6I 1 (2-7) I 1 2 
s s -s 1 2 

0 (1.:) 
s 

[k] =- (l+r) 0 (1-+r) s 3 s 
1 

A:1 2 0 0 0 s L2 
s s 

0 .0 0 0 

l2I 6I 1 s 
0 s 

Symmetric (1-+r) (l+r) 

~2 
E 

0 
s 

(4+r> I 1 2 
s 

(l+r> 

(3. 37) 
--~~:~.,...._..-·~·-·-
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The beam stiffness matrix is given for the beam element whose 

longitudinal axis is parallel to the x-axis. When the beam elements 

are not parallel to the x-axis, standard tensor transformation must be 

applied to the beam stiffness matrix before assembly into the struc-

tural system (Ref. 64). 

The displacements of the plate and beam elements at common 

nodes are expressed by Eq. 3. 32 q.nd Eq. 3. 35 in terms of the global 

degrees of freedom. The elements have equal number of degrees of free-

dom at the nodes and therefore can be assembled directly to the system 

stiffness matrix following the procedure specified in Section. 1.3.4. 

3.3.3 Application of Boundary Conditions 

One of the advantages of the finite element method of analy-

sis is its adaptability to solutions of problems with various boundary 

conditions. If a degree of freedom at the boundary is fixed, the cor-

responding row and column of the stiffness matrix. is easily eliminated 

.from the solution procedure. If the support at the boundary is flex-

ible, the stiffness of the support is simply added to the stiffness of 

the element at that boundary· (Ref. 65). 

In certain cases, the nodes are constrained to displace in a 

specifi~d direction, and to rotate at a specified angle. For example, 

the u displacement of a node may be specified to displace in the direc-

tion of a line at an angle w from the x-axis and the 6 rotation may be 
X 

specified to rotate about a line at an angle S from the x-axis. For 
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these cases, the stiffness matrix must be transformed accordingly. It 

is shown in Ref. 64 that the required transformation is of the form 

[k'] = [T]T [k] [T] (3.38) 

where [k'] = the transformed stiffness matrix 

[k] = the o!iginal stiffness matrix 

[T] = the transformation matrix 

It should be noted that the transformation can be carried out in the 

element stiffness level [k] or at the assembled system stiffness matrix 

[K]. It should be noted further that the applied nodal forces and the 

resulting deformations are in the direction specified by the constraint. 

For the five degree of freedom system in this study, the 

transformation matrix for a given node is 

where 

cos w sin w 0 0 0 

-sin w cos w 0 0 0 

(T)= 0 0 1 0 ·o (3. 39) 

0 0 0 ·cos e sin e 
0 0 0 -sin e cos e 

w = the angle from the global x-axis along which u displaces, 

measured clockwise; and 

e = the angle from the global x-axis about whiCh e rotates, 
X 

measured clockwise • 
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3. 3.4 Application of Loads 

The components of the force vector as defined by Eq. 3.33 are 

applied at the nodes in the direction of the associated displacements. 

For uniformly distributed loads, the force vector can be computed from 

(Ref. 17). 

(3.40) 

The uniform load is conveniently equated to a set of concentrated 

forces and moments applied at the nodes. For concentrated loads, the 

discretization can be made such that the load will be directly· on a 

node; and hence the loads can be applied directly to the global force 

vector. However, the procedure of changing the discretization to ac-

commodate concentrated loads is obvio.usly inefficient especially for 

the analysis of one structure under different types of loading. For 

this reason, the concept of a statically equivalent force vector for a 

concentrated load is introduced. In this concept, the element with a 

concentrated load is analyzed as a sUbstructure, and the reaction 

forces at the nodes are computed. The negative of these reaction 

forces at the nodes become the applied nodal forces for the assembled 

structure. In this study only the concentrated load normal to the 

plate element is considered. 

The stiffness equation for the Q-19 element gives. the force 

displacement relationships of a quadrilateral element with the fifth 

node at the center of the element. If the fifth node is located at the 
I 

point where the concentrated load is applied, the resulting structure 
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is a quadrilateral plate of four triangles with a concentrated load at 

the interior node (Fig. 34). The stiffness of the four triangles can 

be recomputed and reassembled in the form: 

0 

= (3.41) 

where 0 refers to the supported nodes and, where the subscripts E and I 

refer to the external nodes and the internal node respectively. The 

external nodes in this case are completely fixed in displacements and 

rotations. {FE} can therefore be easily found to be 

(3.42) 

Since Eq. 3.41 is an equilibrium equation, {FE} is a stati-

cally equivalent force vector. In cases however when the concentrated 

load is very near to a corner node of the quadrilateral, the stiffness 

formulation may get into numerical difficulty because of the resulting 

shape of one or more of the triangular elements. In such cases, the 

concentrated load is applied directly to the nearest node. When the 

concentrated load is on the boundary of the element but not on the 

node, the load is proportioned to the two nodes of that boundary. The 

components of the equivalent force vector due to a concentrated load 

normal to a quadrilateral element is illustrated in Fig. 34. 

' 
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3.4 Numerical Examples and Comparisons 

The purpose of this section is to show numerical examples 

with the use of the combined plate and beam elements. Comparisons with 

available solutions and field test data are made to assess the accuracy 

of the results. The behavior of these types of structures are investi

gated in order to provide a better insight into the subsequent load 

distribution studies. The analy$is procedure in this section is the 

analytical basis for the lateral load distribution analysis of pre

stressed concrete I-beam bridges in Chapter 4. 

3. 4 .1 Be am Moments in Skewed Non-Composite Bridges 

One of the be~slab bridge configurations analyzed in Ref. 9 

is investigated here by the finite element method of analysis for pur

poses of comparison. The bridge, in view of the assumptions for the 

reported solution (Section 1.2), is non-composite. The structure is a 

five-beam bridge with spacing to span ratio of o._l. The plate to beam 

stiffness ratio H, defined as the ratio of beam rigidity to the plate 

rigidity, is equal to 5. Poisson's ratio and the beam eccentricity are 

taken as zero. 

The beam slab structure, as a right bridge or 90° skew, and 

as a sk~w bridge with 30° skew, is shown in Fig. 35. The same bridge 

with 60° and 45 ° skew is shown in Fig. 36. The right bridge and the 

30° skew bridge are shown in the same figure to show the change in 

geometry due to the skew. The loading is a single concentrated load P 

at midspan on Beam C. The discretization, as shown in Figs~ 35 and 36, 
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is with two elements between the beams and eight ele:ments along the 

span. The. figures also shaw the ·location of maximum moment determined 

from the finite element analysis. 

The moment coefficients for each beam as determined by the 

analysis, the reported results from Ref. 9, and another finite element 

solution from Ref. 23 are shown in Fig. 37. 

The finite difference analysis underestimates the two finite 

element results. The following observation can be made from the finite 

element results. 

1. There is a decrease in the l:ooment coefficients of the interior 

beams as the skew angle changes from 90° to 30°. A slight 

increase in the exterior beam moment can be rioted. 

2. The rate of decrease is gradual from 90° to 45° skew but 

abrupt beyond 45 6 • The rate of change is relatively constant 

for the exterior beam. 

3. The location of maximum moment response is towards the obtuse 

angle comer of the structure. The section of maximum re

sponse is not the skew centerline but varies for different 

angles of skew. 

The decrease in the total beam moments in a bridge super

structure as the skew angle is changed is reflected in the above re

sults~ .For the same width and.span, the skew bridge transfers the load 

more efficiently to the supports. The interior beam moment is further 

reduced by the increase in the participation of the exterior beams. 
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3.4.2 Beam Moments in Composite Skew Bridges 

The beams in composite bridge structures are eccentrically 

attached to the slab. It is necessary to include the eccentricity in 

order to arrive at a more realistic analysis. In the following example, 

the effect of considering the eccentricity is demonstrated by comparing 

the analysis with the previous example. 

The five-beam structure in the previous comparison is ana-

lyzed as a composite bridge. An eccentricity of 28 inches correspond-

4 2 
ing to a beam moment of inertia of 126584.0 in. and area of 576.0 in. 

is introduced. A torsional ratio G~/EI = 0.035 is also included for a 

more representative bridge analysis. The principal ratios and the 

beam slab dimensions are comparable to those for the Bartonsville 

Bridge in Ref. 7. 

The difference between composite and non-composite analysis 

is shown in Fig. 38. The following observations can be deduced from 

the figure: 

1. The beam directly under the load carries a major portion of 

the total load as a composite structure. The increase in mo-

ment coefficients of beams B and C is balanced by the decrease 

in the moment coefficient of beam A. The .remaining difference 

is carried by the slab. 

2. The reduction apd the rate of reduction in moment coefficients 

for the interior beam seems to be almost the same for both 

composite and non-composite analyses. 
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The above example shows the necessity of including the eccen

tricity of the beam when the beams are integrally and eccentrically 

connected to the slab. 

The effect of constraining the supports to rotate about the 

line of support can be seen in Table 11 for the 45° case. For this 

problem, it can be seen that the effect is quite negligible. 

3.4.3 Load Distribution in a Reinforced Concrete Skew Bridge 

An actual reinforced concrete skew bridge has been tested 

under static loads (Ref. 6). The bridge has a 60° skew, simple span, 

and with four reinforced concrete beams which are mnolithic with the 

deck slab. The £:ield tests were done by the team of Burdette and 

Goodpasture of the University of Tennessee (Ref. 6). The bridge is 

located on U.S. 41A over Elk River, with a span of 50 ft. and beam 

spacing of 6 ft. 10 in. center-to-center. 

The loads are applied as shown in Fig. 39. The distribution 

of load is shown in Table 12. Good agreement between field test and 

analytic results can be observed. 

3.5 Applications to Highway Bridge Constructions 

,,_._,,.. The method of analysis has several applications to highway 

bridges. In this section a study is made of the effect of the variables 

that affect the behavior of beam-slab bridges in general. Field test 

results where available are also shown. Four cases are investigated: 
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(1) composite versus non-composite behavior, (2) effect of curbs, para

pets and diaphragms, (3) effect of multiple diaphragms, and (4) effect 

of continuity. 

3.5.1 Composite Versus Non-Composite BehaVior 

For this part of the study, the bridges tested by AASHO in 

the AASHO road test series (Ref. 24) are used for comparison. The co~ 

posite bridges, designated 2B and 3B in the report, are shown in 

Fig. 40. The bridges have three beams, 15 ft. width, and 50 ft. span 

length. The difference between Bridge 2B with 3B is in the beam sec

tion properties as indicated in Fig. 40. The steel I-beams are con

nected to the slab by shear connector~ designed for full composite 

action. The structure is loaded by a test vehicle with front axle load 

of 6.8 kips and rear axle load of 14.3 kips. First, the vehicle is 

positioned with the drive wheel at midspan in .the longitudinal-direc

tion and at the center of the width in the transverse direction. The 

structure is then analyzed as a composite bridge and as a non-composite 

bridge. The percent of the total moment carried by the beams from the 

field test values and the finite element analyses are listed in the 

second column of Table 13. The following observation can be made. 

1. The finite element results predicted higher percentage of load 

carried by the beams as a composite structure. The values are 

comparable with field test results. 

2. As expected a higher percentage of the total moment is carried 

by the beams when acting compositely with the slab. 
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3. The load carried by the beams is. higher for the stiffer beam 

sections. 

4. For this type of loading, there is very little difference in 

the percent of load carried by each beam as shown in Table 13. 

As a second comparison, the design moments are computed for 

each beam and compared to the 1953 provisions of the AASHO. The drive 

wheels are placed at midspan and the truck is positioned across the 

width that would produce the critical loading condition. The structure 

is then analyzed as a composite and non-composite bridge. The com

parison of distribution factors computed for each case and also from 

the field test can be seen in Fig. 41. The comparison shows that the 

distribution factor for the center beams is overestimated by the AASHO 

specification provision. However, the distribution factor for the 

exterior beams is substantially underestimated. 

3.5.2 Effect of Curbs, Parapets and Diaphragms 

TWo field tested bridges, the Lehighton Bridge (Ref. 8) and 

the Bartonsville Bridge (Ref. 7) are .selected for this study. The 

Lehighton Bridge is a six-beam bridge superstructure and 36 ft. wide. 

This bridge has a curb and parapet only on one side of the structure. 

The bridge was tested first with the midspan diaphragms in place. Sub

sequent tests were conducted with the midspan diaphragms removed. The 

Bartonsville Bridge is a five-beam bridge superstructure and 32 ft. 

wide. This bridge has curbs and parapets on both sides of the structure 
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and midspan diaphragms. The two bridges were tested by using the test. 

vehicle shown in Fig. 3. The vehicle transversed the bridge over 

several lanes. These lanes are located directly over the beams and in 

between the beams (Figs. 42 and 43). 

In the actual structure, the diaphragms are monolithic with 

the slab but are not fully continuous over the beams. The curbs, by 

construction practice, are not made fully integral with the deck slab; 

and the parapets are with a number of gaps along the span. Therefore, 

only a portion of the diaphragm section and the curb and parapet sec

tions can be considered effective. 

An analytical study was made on the effect of a partially and 

fully effective curb and parapets. In the study, the thickness of the 

slab elements under the curbs and parapets is increased to a thickness 

that would correspond to the predetermined area of the curb and parapet 

section. It is found that a partially effective curb and parapet whose 

cross-sectional area is 50% of the actual area closely approximates the 

·bridge behavior. The good agreement between the field test results and 

the analytical results using partially effective curb and parapet sec

tion can be seen from the uppermost curves of Fig. 42. 

In determining the effective section of the diaphragms, the 

bridge ~uperstructure is first analyzed with truck loads on different 

lanes of the bridge using the full diaphragm cross-section. The result

ing maximum moment is then used in computing the effective moment of 

inertia as defined by Section 9 .5.2 .2 of the ACI Code (Ref. 4). For the 

Lehighton bridge, the effective mo~nt of inertia is computed to be 40% 
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of the gross moment of inertia. The agreement between field tests and 

analytical values using 40% effective mment of inertia for the dia

phragms can be seen from the lower curves in Fig. 42. However, for the 

Bartonsville Bridge, a better agreement is obtained using only 20% 

effective moment of inertia for the diaphragms (Fig. 43). The 

Bartonsville Bridge and the Lehighton Bridge have diaphragm dimensions 

of 9" x 34" and 10" x 28" respectively. From the given diaphragm 

dimensions, approximately 20 1ns. of the diaphragm depth are effective 

for the two cases. 

The distribution factors for the Lehighton Bridge are given 

in Tables 14. for the cases without diaphragms, with diaphragms, parti

ally effective, diaphragms effective only in shear, and diaphragms 

fully effective. The distribution factors are given for a design lane 

of 12 ft. with the leftmost lane 2 ft. from the edge of the bridge. 

Table 15 gives the distribution factors with the leftmost lane starting 

at the edge of the bridge. It can be seen that the distribution · 

factors depend considerably on the lane locations. Further, it can be 

seen that the diaphragms with only shear stiffness are practically 

equivalent to having no diaphragms at all. The distribution factors 

for.the Bartonsville Bridge is given in Table 16. 

The effect of curbs, parapets and diaphragms on bridges with 

three specific widths can be seen in Figs. 44 through 49. The bridges 

have beam spacing of 8 ft. 0 in. and span of approximately 64 ft. The 

number of beams are 4, 5 and 7 corresponding to bridge widths of 24, 

32, and 48 ft. Influenc~ lines· for moment are shown for the exterior 
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.and the interior beams for the following cases: (1) without curb and 

parapets, (2) with curbs and parapets only, (3) with diaphragms only, 

and (4) with curbs, parapets and diaphragms. The computed distribution 

factors are shown in Figs. 50 and 51. The following observations can 

be made: 

1. The curb and parapets and diaphragms provide a more uniform 

distribution of the load. Consequently, the participation of 

the exterior beams is increased. 

2. The effect of the curb and parapet is negligible for very wide 

bridges, for example 72 ft. wide. 

3. The diaphragms distribute the load efficiently to all the 

beams of ·the bridge. However, when the structure is fully 

loaded, the effect of the diaphragm becomes negligible regard

less of the bridge width. 

The above observations are for a specific spacing of 8 ft. 

and a span of 64 ft. For closer spacing which provides a greater 

lateral distribution effectiveness of the slab, the effect of the dia

phragms in distributing the load may be expected to decrease. The 

effect of the curb and parapet in increasing the participation of the 

exterior beams may be e~ected to be more significant. 

3.5.3 Effect of Multiple Diaphragms 

Very little is known about the effect of several lines of 

.diaphragms across the span of a· prestressed concrete I-beam bridge. To 
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investigate this, a 71 ft. long, 36 ft. wide bridge is analyzed under 

standard HS20 vehicular load with one, two, three and four lines of 

diaphragms. The diaphragms are placed equidistant from each other at 

distances of 1/2, 1/3, 1/4 and 1/5 of the span respectively as shown in 

Fig. 52. For comparison, the same bridge is also .analyzed without 

diaphragms. 

The influence lines for moment for the five different cases 

are shown in Fig. 53. The computed distribution factors are shown in 

Fig. 54 and Table 17. The following observations can be made: 

1. For the interior beam, the midspan diaphragm is the most 

effective in distributing the load. The least effective is 

with diaphragm at L/4. 

2. For the exterior beam, a larger participation is induced by 

the diaphragms at L/4. 

3. When the structure is fully loaded, the difference between the 

multiple diaphragm cases is not very significant. 

3.5.4 Effect of Continuity 

The purpose of this section is to show the effect of continu

ity on the lateral distribution of load. First, a comparison of the 

moment coefficients for a four-span continuous bridge is made between 

field test results and analysis. Second, a three-span prestressed con-

crete continuous bridge is analyzed under standard HS20 vehicular load

ing. In the latter the load distribution behavior at midspan and at 

the support are shown and discussed. 
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The four-span continuous bridge which had been field tested 

is reported in Ref. 6. The bridge is a 70'~90'-90'-70' composite struc

ture with 36 in. steel !-beams, continuous over the two interior sup

ports and simply supported at the ends. The structure is illustrated in 

Fig. 55. Computations are made for the beams of the second span. In the 

first loading condition, the structure is subjected to a University of 

Tennessee test vehicle traveling over the bridge at crawl speed. The 

truck has a front wheel load of 7.2 kips, drive wheels of 54.3 kips and 

rear wheels of 71.0 kips (Fig. 56). Computations for moments are made 

when the truck is over the second span. In the second loading condi

tion, static loads are placed in the structure as shown in Fig. 55b. 

The comparison of moment percentages obtained by field test 

and analysis is shown in Table 18. Close agreement between test and 

analysis confirms the applicability of the method of analysis to con

tinuous structure. It should be.noted that since the loads are symr 

metric, the moment coefficients must also be symmetric. 

The second span is studied with completely fixed supports and 

with simple supports. The object of this procedure is to see the 

effect on the lateral distribution of the load due to different bound

ary conditions. The results are tabulated in Table 19 for the two load 

cases. It can be observed that the greatest distribution of load 

occurs with the simple span, then the continuous span construction and 

finally the single span with completely fixed supports. 

The structure idealization for the three-span continuoUF pre

stressed concrete !-beam bridge is· shown in Fig. 57. The structure is 
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a three-lane, six-beam bridge, 36 ft. wide and loaded by standard HS20 

vehicles. In determining the moment coefficients at midspan the cen

troid of the truck is placed at midpoint of the center span. In deter

mining the moment coefficients at the support, a truck is placed on 

each of the first two spans. The truck is placed on the individual 

span such that the centroid of the truck load falls at the center of 

the span. The analyses are then carried out with the truck at differ

ent locations across the width of the bridge. 

The influence lines for moment at midspan and support for the 

exterior and interior beams are illustrated in Figs. 58, 59 and 60. 

For the interior beams, the moment coefficients at the supports are 

slightly higher than at midspan. How.ever for -the· exterior beams, the 

moment coefficients are higher at midspan. In terms of distribution 

factors as shown in Fig. 61 and Table 20 the difference is very small 

especially when all the lanes· of the structure are loaded. 

It is of interest to note that the influence line for moment 

at midspan is nearly identical to the influence line for moment of a 

71 ft. bridge of equal beam spacing. The above can be seen by compar

ing Fig. 53 and Fig. 60. 

3.6 Summary 

The analysis of stiffened plates has been presented in this 

chapter. The method of analysis has been applied to highway beam slab 

bridges and compared favorably with field test results. The effects of 

curbs, parapets, diaphragms .and. continuity have been .investigated and 

evaluated. 
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4. LATERAL LOAD DISTRIBUTION IN SKEWED I-BEAM BRIDGES 

4.1 Introduction 

In the design of beamrslab highway bridges, the live load 

bending moments are determined with the use of load distribution fac

tors. The distribution factor determines the fraction of the wheel 

loads that is applied to a longitudinal beam. The applicable distribu

tion factor is given by AASHTO in the Standard Specifications for high

way bridges for right bridges· (Section 1.5 and Ref._. 3). However, as 

indicated in the scope of the work in Section 1.1, load distribution 

factors are not given for skew bridges. 

This chapter presents the lateral load distribution analysis 

of skewed beamrslab bridges with prestressed concrete !-beams. Skew 

bridges of various widths, spacing, span length and number of beams are 

analyzed using the finite element method of analysis presented in 

Chapter 3. Live load distribution factors are computed for the inter

ior and exterior beams of the bridges for design vehicle loading. Dis

tribution factors resulting from the critical combination of vehicular 

loadings are selected and correlated with bridge parameters to arrive 

at a simplified equation for the distribution factor. 

4.2 Beam Moments in Skewed !-Beam Bridges 

The HS 20-44 design vehicle as defined in Section 1.1 is used 

in the following lateral load distribution study· (Ref. 2). The moment 

in a beam produced by one design vehicle placed anywhere on the bridge 
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is express~d in terms of the moment coefficient. This coefficient is 

the ratio of the composite beam moment to the total right bridge moment 

which is ntimerically equal to the moment produced by the given load on 

a simple beam .of equal span. For convenience, the coefficient is 
• 

expressed in percent. The plot of the moment coefficients against the 

lateral position of the load results in the influence line for moment 

of the beam under consideration. 

4.2.1 Computation of Load Distribution Factors 

The load distribution factor is applied to the wheel loads in 

the design of the beams in beam-slab bridges (Ref. 3). This factor can 

be determined from the plot o~ the moment coefficients, i.e., influence 

lines, following the requirements of. the AASHTO Specifications (Ref. 3). 

According to the specification provisions on live load distribution, 

the design traffic lane must be 12ft. wide (Fig. 62). The design 

truck, which occupies 6 ft. of the lane, should be positioned in the 

lane, and the lane should be positioned on the bridge, such that the 

loading will produce the maximum moment response for the beam being 

.considered. The same definition of loading applies to bridges with two 

or more lanes, except that the lanes should not overlap (Ref. 3 and 

Fig. 62). A minimum distance of 2 ft. is specified between the edges 

of the lane and the wheel of the design vehicle. The sum of the moment 

coefficients for the beam at the specified portions of the trucks gives 

the distribution factor for the particular beam. Thus, 
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D. F. 

for axle loading, and 

D. F. 

for wheel loading. 

= r moment coefficients (%) 
100% 

= 2 r moment coefficients (%) 
100% 

(4.1) 

(4.2) 

The positioning of the truck loads in order to arrive at the 

maximum distribution factor for a particular beam proceeds as follows. 

First, a 12 ft. lane is placed on the structure at x = 0, where x is 

the distance of the leftmost boundary of the lane from the leftmost 

curb (Fig. 62a). Second, a truck load is positioned within the lane 

such that the highest moment coefficient from the influence line for 

moment of the be~ is obtain.ed. The position of the truck in the lane 

is determined by the distance x which is greater than or equal to 2 ft. 
1 

but is less than or equal to 4 ft. to maintain the 2 ft. clearance 

between the line of wheels and the boundaries of the lane. Third, the 

lane is moved to a new value of x, e.g. x = 1, and the truck is reposi-

tioned again within the lane such that the highest moment coefficient 

value is obtained for this new lane position. The procedure is re-

peated until the lane has covered the entire width of the birdge. The 

maximum moment coefficient value obtained in the above process is used 

in the distribution·factor calculation in Eq. 4.2. For two or more 

design lanes, the corresponding number of lanes is placed on the bridge 

(Fig. 62b). The second step is repeated· for all lanes until all trucks 

are positioned in each lane that the sum of the moment coefficients is 

maximum. The lanes are then moved to a new position on the bridge and 
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the procedure of positioning the trucks in each lane is repeated. The 

largest sum of the moment coefficients obtained in the above process is 

.used in the distribution factor calculation in Eq. 4.2. 

4. 2. 2 MaximtDD. Beam Moments 

The maximum moment caused by the HS 20-44 truck on a simple 

span right bridge occurs under the drive wheels, when the center of 

gravity of the wheel loads and the drive wheels are equidistant from 

the center of the span (Ref. 19). Consequently, in the lateral load 

distribution analysis of right bridges, the design truck load is placed 

on the bridge so that the drive wheels are at d/2 distance from midspan 

where d is the distance from the centroid of the wheel loads to the 

drive wheels (Ref. 62). The beam moments· in the distribution factor 

calculations are also computed at the section under the drive wheels. 

For skew bridges, however, the position of the load that pro

duces the maximum response in a beam, and the location of the beam sec-

. tion where the maximum moment occurs are not known. Moreover, for the 

same beam, the location of the maximum moment section differs for dif

ferent lane positions of the truck. The position of the load to pro

duce the maximum moment response, and the location of the maximum 

moment section in a beam of a skew bridge, are different from those of 

a right bridge. This feature can be illustrated in the following 

example. 

The structure is a five-beam bridge, 24 ft. wide and 60 ft. 

long, with a relative beam-to-slab stiffness ·ratio of 5. The beams .are 
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equally spaced at 6 ft., and the slab is 7-1/2 ins. throughout. The 

HS 20-44 truck loads are placed one at a time at five positions across 

the width of the bridge, so that the distance of the centroid of each 

truck from its consecutive position is 4.5 ft. In each of the lane 

positions, the longitudinal position of the truck is varied until the 

maximum moment is o.btained for each beam. The distance of the centroid 

of the truck between longitudinal positions is d/2 = 2.33 ft. This 

distance is selected primarily for convenience, and because the change 

in the computed moments near the midspan between two consecutive longi-

tudinal positions is less than 1%. The above loading procedure is 

carried out for each beam of the bridge at skew angle of 90° (right 

bridge), 45 °, and 30 ° :.(Figs. 63 through· 67). The direction of the 

truck is always with the front wheels towards the right (Fig. 3). The 

computed moments are based on the averaged nodal moments. 

The positions of the truck centroid and the location of maxi

mum moment in beam A are shown in Fig. 63 for the bridge with skews of 

90°, 45° and 30°. While the maximum moment section occurs at d/2 from 

midspan for all angles of skew, the positions of the truck differ for 

each case. Similar observations can be made for beams B and C 

(Figs. 64 and 65). For beams D and E, the positions of the truck cen

troid and the location of the maximum beam moment section are shown in 

Figs. 66 and 67. In these cases the maximum moment section and the 

positions of the load are different for different angles of skew. 

Based on these results, one would expect the critical load position and 

the location of the maximum beam moment section, to be different for 
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another skew bridge with a different number of beams, spacing or span 

length. 

Obviously, there is great difficulty in carrying out the 

above procedure for all the beams of the bridges that must be investi

gated in a lateral load distribution analysis. This, however, can be 

greatly simplified if the maximum moment can be approximated by the 

moment produced in the beam with the load centroids at midspan. 

4.2.3 Beam Moments with Load Centroid at Midspan 

In this section, the beam moments in the skew bridge of 

Section 4.2.2 caused by the HS 20-44 truck loads, but with the load 

centroids at midspan, are determined. These moments are computed at 

the beam section d/2 from midspan and in the direction of the obtuse 

angle corner at the supports. · The object of this procedure is to deter

mine if there is a significant difference between these moments and the 

maximum moments as determined in the previous section. 

The moments for beam C with the load centroid at midspan, and 

the moments from the procedure in Section 4.2.2, are shown in Fig. 68. 

Moments are shown for the five lane positions across the width at skew 

angles of 45° and 30°. The figure shows that there is a small differ

ence in the moments between the two load positions. The larger differ

ence occurs at larger skews and at lane loads away from beam C. It is 

also of interest to compare the moments in beam C with the loads at 

lane 1 and 5. It can be seen that the larger moment is produced with 

the ·truck going in the direction of the acute angle corner of the sup

port, i.e., lane 5 (Figs. 65 and 68). 
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_The above investigation indicates that the· load centroid at 

midspan can approximate the true ·load position in producing the maximum 

moment response in a beam without great loss in accuracy. Also, the 

beam section at d/2 from midspan and towards the obtuse angle comer at 

the supports indicates the ideal section to compute the desired moment 

for the lateral load distribution study. 

It should be noted here, however, that in general the dis

tance from the midspan of the beam to the section of maximum moment 

will not be d/2 for the other bridges. A study of the beam moments in 

the skew bridges analyzed in Section 4.4, shows that the moment at d/2, 

if different·from the maximum moment, can be in error by 2% for the 

shorter bridges and less than_l% for the longer ones. However, for 

practical purposes, the estimated e~ror is within practical design 

·limits. 

4.3 Effect of Skew on Load Distribution 

In order to gain an initial insight into the behavior of skew 

bridges and to determine the important parameters that must be con-

. sidered in load distribution studies, an analytical investigation was 

carried out for two basic bridge widths. This section presents the 

findings based on the analyses of thirty bridges with curb-to-curb 

widths of 24 ft. and 42 ft. 

r 
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4.3.1 Effect of Skew on Beam Moments 

The effect of skew on the individual beam moments is shown in 

Fig. 69. The bridge analyzed was a five-beam bridge, 60 ft. long and 

24ft. wide with beam spacing of 6ft. The truck was placed on the skew 

bridge as it would be placed on a right bridge to produce the maximum 

moment. · The skew angle was then varied and the moment percentages were 

computed for eaCh case. 

The two load positions indicated in Fig. 69 show the shift in 

distribution of the load for the skew angle changes. The results showed 

a more uniform distribution of load with decreasing angle of skew. The 

angle of skew did not have' a significant effect on the exterior beam 

directly under th~ load. The load distribution in a 60° skew bridge 

was also not significantly different from the right bridge. 

4.3.2 Effect of Skew and Number of Beams 

A 24 ft. wide bridge with a span of 60 ft. was analyzed with 

two design lanes. The truck loads were placed near the center of the 

bridge section as close as possible to each other as allowed by the 

1973 AASHTO Specification (Ref. 3) .• Beginning with four beams, the 

number of beams was increased to five and then to six to make up two 

new sets of bridges keeping the span length constant. Consequently the 

beam spacing Changed from 8 ft. to 6 ft. and 4.75 ft. respectively. 

For each set, the skew angles investigated were 90° (right bridge), 

60°, 45° and 30°. Thus, a total of twelve bridges were analyzed. 
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Figure 70 shows the distribution factors resulting from the 

analysis. Also shown for comparison is the current AASHTO specifica

tion of S/5.5 (Ref. 3). The distribution factor decreased as the angle 

of skew decreased. The decrease in the distribution factor was gradual 

from 90° to 45°. The number of beams and spacing did not seem to 

affect the rate of reduction. 

4.3.3 Effect of Skew with Span Length 

The five-beam bridge, 24 ft. wide with 6 ft. beam spacing, 

was further investigated with different span lengths. In addition to 

the 60ft. bridge in Section 4.3.2, the five-beam bridge was analyzed 

with a span of 30 ft. and 120 ft. The appropriate beam sizes in 

accordance with the standards for Bridge Design BD-201 (Ref. 43) were 

used. For each length, the skew angles considered were 90°, 45° and 

30°. Distribution factors for the beams were computed based on the 

critical location of one or two HS 20-44. design vehicle(s) positioned 

across the width of the bridge. For this initial study, the vehicle 

was positioned in the longitudinal direction, as it would be placed on 

the right bridge to produce the maximum moment. 

The distribution factors for the beams are seen in Fig. 71. 

Beams B and C of the 30 ft. series with skews are not shown. For these 

configurations, one rear wheel and one front wheel were off the bridge 

so that load distribution comparison with longer bridges was not 

practical. 
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In beam C, the ~ount of reduction in the distribution factor 

is marginal from 90° to 45° skew for the lengths considered. However, 

a considerable change in the rate of reduction was observed for skew 

angles less than 45°. Also, for the long span bridges, the rate or·re-

duction decreases as the skew angle decreases. 

Exterior beam A had practically no reduction in the distribu-

tion factor as the angle of skew decreased, except for the· 30 ft. case. 

It should be noted that for the 30 ft. span and small skew angles some 

of the wheels of the vehicle were off the bridge. 

4.3.4 Effect of Skew on Distribution Factor.versus S/L 

The plots of the distribution factors versus S/L for the 

24ft. wide bridges with five beams and at skew angles of 90°, 45°, and 

30° are shown in Fig. 72. Similar plots for the 42 ft. wide bridges 

with six beams are shown in Fig. 73. The span lengths investigated 

were 30ft., 60ft., and 120ft. for the 24ft. wide bridges; and· 

42ft., 59 ft., and 101ft. for the 42ft. wide bridges. These dimen-

sions correspond toW /L ratio of 0.80, 0.40, and 0.20 for the 24 ft. 
c 

wide bridges and 1.0, 0.70 and 0.42 for the 42ft. wide bridges. 

The two figures indicate that at a high S/L ratio there is a 

larger decrease in the distribution factor as the skew angle decreases. 

Furthermore, the decrease in the distribution factor is larger at 

smaller skew angles for the wider bridge. The above results imply that 

the aspect ratio of the bridge is an important parameter which governs · 

the amount of reduction with the skew. 
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4.4 Load Distribution in Skewed Beam-Slab Bridges 

with Prestressed Concrete I~Beams 

In the development of the distribution factor formula for 

right bridges, about 300 bridges were investigated (Ref. 62). These 

bridges varied in width, number of beams, and span length to cover the 

bridge configurations encountered in practice. In this section, thirty 

of these representative right bridges were selected and each one was 

analyzed for skew angles of 90° (right bridge), 60°, 45°, and 30°. 

Thus, in effect a total of 120 bridges were analyzed. 

4.4.1 Design of the Experiment 

The bridges analyzed with different skew angles are listed in 

Table 21. The basic widths considered were 24, 48 and 72ft., curb-to

curb. The number of beams were varied from 4 to 16, and consequently, 

the beam spacings varied from 4'-10" to 9'-6". Different lengths rang

ing from 36'-0" to 120' inclusive were used. The details in the design 

of a particular bridge are discussed in Ref. 62. Reference 43 was used 

in the determination of beam properties. 

4.4.2 Distribution Factors in Skew Bridges 

With the use of the procedure outlined in Section 4.2.1, dis

tribution factors were computed for all the interior and exterior 

beams. Distribution factors were computed based on one up to the maxi

mum number of design lanes that can be placed on a given bridge width. 

The maximum interior and"exterior beam distribution factors for each 
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bridge wer~ selected and are listed in Tables 22 and ·23 respectively. 

The full list of distribution factors for different design lanes can be 

found in Ref. 12. 

The interior beam distribution factors for the 24 ft. wide 

bridges with four, five and six beams are plotted against S/L in 

Fig. 74. Similar plots are presented for the 48 ft. wide bridges with 

six, nine and eleven beams in Fig. 75, and for the 72 ft. wide bridges 

with nine, twelve, .and sixteen beams in Fig. 76. In addition to the 

observations made in Section 4.3, the following can be seen from the 

figures: 

1. The rate of reduction is usually larger for larger spacing, 

for wider bridges and at smaller angles of skew. 

2. There is, however, a limit to the increase in the rate of 

reduction. 

The second observation may be interpreted as follows. At 

large spacing and short spans the lateral distribution of the load is 

small and hence the distribution . factor is small. At narr.ow beam spac

ing, the distribution factor is also small. Consequently, the amount 

of reduction because of the skew is found to be relatively smaller for 

these cases. The influence line plots for moments in the individual 

beams in this study are given in Ref. 12. 

The plots of the maximum distribution factors for the exter

ior beams against the. S/L ratio are shown in Figs. 77, 78, and 79 for 

the three bridge widths. Compared to the interior be~ms, a similar but 
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but smaller-reduction in the distribution factor was observed for the 

shorter bridges. However, an increase in the distribution factor was 

observed at longer bridge spans. The increase in the distribution 

factor may be attributed to the greater participation of the exterior 

beams when the bridge has a skew. 

4.4.3 Development of the Distribution Factor Equation 

The distribution factors for prestressed concrete I-beam 

bridges with no skew is the subject of a comprehensive study in Ref. 62. 

It is therefore the aim of this section to provide only the reduction 

factor for these bridges given the angle of skew. 

The reduction factor in the interior beams in a given bridge 

is computed from the amount of reduction in the beam distribution 

factor using the right bridge (90° skew) with the same width, number of 

beams and span length as the base. These reduction factors are ex-

pressed as percent reductions, and are always zero for right bridges. 

With the use of the Lehigh University Amalgamated Package for 

Stat~stics, LEAPS (Ref. 30), the correlation of the percent reduction 

with variables such as skew angle, span length, number of beams, number 

of loaded lanes, bridge width and their combinations was investigated. 

The variables found to have good correlation with the percent reduction 

were the spacing-to-length ratio S/L and the bridge width-to-span ratio 

W /L in combination with the square of the cotangent of the skew angle. c 

A regression analysis of the percent reduction against these variables 

resulted in the followin& equation: 
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where 

PCTR = ( 45 ~ + 2 : c ) cot2 
cj> (4.3) 

PCTR = Applicable reduction factor in percent to the distri-

bution factor of the interior beam of a right bridge 

with the givenS, W , and L 
c 

S Beam spacing 

L = Span length 

cj> Skew angle 

For the exterior beams, a simplified equation was determined 

by trial and error and proposed as follows: 

where 

PCTR(EXT) ( 
S· 

50 .L 0.12 ) cot cj> (4. 4) 

PCTR(EXT) = Applicable reduction (positive) or amplification 

(negative) to the distribution factor of the 

exterior beams of a right bridge with the given 

S, W and L. 
c 

The above equations are limited to the following bridge 

dimensions: 

4 I -6 II $ s .s 9 I .-Oil 

48'-0" $ L $ 120'-0" 
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The computed distribution factors and the percent reductions 

based on the above equations and· the analytical results for the bridges 

investigated are listed in Ref. 12. The equation is found to be con-

servative in most cases except the case of the large spacing, 30° skew 

and very short span. The plots of the proposed equation for the inter-

ior beams are shown in Figs. 80, 81 and 82 for the bridges investigated. 

4 .5 Design Recommendations _ 

From the results of this study, the following simplified pro-

cedures are recommended for the determination of the live load distri-

bution factors in prestressed concrete !-beam bridges with skew: 

1. The load distribution factors in the interior beams may be 

determined by applying to the distribution factor in the inter-

ior beams of the bridge without the skew a reduction specified 

by the following formula: 

DF,_ = DF 
'I' 90 ( 1.0 

PCTR -·--100 ) (4.5) 

where DFcf> = Distribution factor for the interior beam of the 

bridge with skew angle cf> 

DF -= Distribution factor for the interior beam of the 
90 

bridge without skew, and 

PCTR = Reduction in percent as specified by Eq. 4.3. 

2. The load distribution factors in the exterior beams shall be 

determined by applying to the distribution factor in the 
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exterior beams of the bridge without the skew a factor speci-

fied by the following formula: 

DF~(EXT) = DFgo(EXT) ( 
PCTR(EXT) 

l.O - 100 ) (4.6) 

where DF~(EXT) = Distribution factor in the exterior beam of 

the bridge with skew angle ~ 

DF
90

(EXT) =Distribution factor in the exterior beam of 

the bridge without skew, and 

PCTR = Amplification or reduction factor as sped.-

fied by Eq. 4.4 

A plot of the smallest and ~he largest percent reduction in 

the distribution factors for interior beams. using 1the proposed equation 

and the bridge dimensions investigated in this study is shown in 

Fig. 83. A similar plot for the exterior beams is shown in Fig. 84. 

4.6 Summary 

The load distribution behavior of skewed I-beam bridges under 

design vehicular loads have been presented. Load •distribution factors 

were computed for the interior and exterior beaiiS 10f bridges with pre-

stressed concrete I_.beams. The skew angles investtii.gated were 90°, 60°, 

45° and 30°. In the analyzed bridges, the follOWI'i:ng were observed: 

1. The load distribution factor decreases w:ii.•th decreasing angle 

of skew. 
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2. The rate· of reduction in the distribution factor is gruadual 

from 90° to 45° but is abrupt from 45° to 30°. 

3. The rate of reduction in the distribution factor decreases 

with increasing span length. 

4. The bridge width-to-span ratio, and beam spacing-to-span ratio 

largely affects the amout of reduction. 

Based on the statistical correlation of the bridge parameters 

with the numberical results, simplified distribution factor formulae 

were obtained for the interior and exterior beams. 
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5. LATERAL LOAD DISTRIBUTION IN SKEWED SPREAD BOX-BEAM BRIDGES 

5.1 Introduction 

The spread box-beam bridge (Fig. lb) is one of the more 

recent developments in bridge design practice. The load distribution 

characteristics for this type of bridge have been the subject of 

several investigations (Section 1.1.2 of Ref. 63). Extensive field 

investigations of spread box-beam bridges have been carried out by 

Lehigh University (Refs. 16, 21, 22, 31, 51, 57) •. Except for Ref. 

51, all of the above investigations have been for right bridges. 

The investigations confirmed the need for a realistic live 

load distribution procedure for spread box-beam bridges with and 

without skew. The theoretical analysis developed by MOtarjemi and 

VanHorn (Ref. 38) provided a new specification provision for lateral 

load distribution for right bridges with prestressed concrete spread 

box-beams (Ref. 2). This chapter presents an analysis procedure for 

right and skew box-beam bridges. Through the application of the 

method, formulae have been determined for the lateral load distri-

bution for skewed spread box-beam pridges. · 

'lbe developed analysis scheme employs finite element 

concept and method of solution discussed in Chapter 1. The bridge 

superstructure is treated as an assemblage of plate and web finite 

elements (Fig. 5). Plate finite elements in Chapter 2 model the 

deck slab and the bottom plate of the box-beam. Web finite elements 
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which are·introduced in this chapter, model the sides of the box-

bekms. Following the procedures outlined in Chapter 3 for the as-

sembly of the elements and the solution of the resulting equations, 

the validity of the modeling is checked through comparisons of anal-

ytical results with field test values. The method is then applied 

to the analysis of 72 spread box-beam bridges with skew angles of 

Using the results, the load distribution behavior of 

spread box-beam bridges is presented and a load distribution pro-

-
cedure is developed. Because of the limited number of bridges in 

the analysis scheme, and the limited scope of the loading investi-

gated, the presented load distribution formulae can be considered as 

tentative. 

5.2 Theoretical Development 

The analytical procedure in the analysis of box-beam 

bridges is similar to the analysis of stiffened plates described in 

Chapter 3. Instead of eccentric beam elements, web plate· elements which 

can model the sides of the box-beams are used (Fig. 5). The element 

has top and bottom nodes to interconnect with the deck slab and the 

bottom plate of a box-beam. The in-plane and out-of-plane behavior 

of the webs are. considered. 

In this analysis, the top plate of the box-beam segment is 

incorporated into the deck slab by adding its thickness to the 

corresponding deck element (for example see Fig. 94). The bottom 
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plate is represented by the plate element which is also used for the 

deck slab. The formulation,·description, and accuracy of the deck 

and bottom plate elements are described in Chapter 2 and are not 

repeated here. The in-plane and out-of-plane behavior of the web 

element are formulated separately and are combined in a procedure 

analogous to the deck elements as described in Section 3.3.2. 

The analysis of spread box-beam bridges presents a problem 

in the computer storage requirements. Because of the large differ

ence in the node numbers of the assembled elements, the size of the 

bandwidth, which determines the amount of computer storage needed, 

becomes excessively large. The number of elements and the resulting 

system of equations are also ·larger tha~ a corresponding !-beam 

bridge with equal number of beams. · Consequently, the computational 

effort for any given analysis is substantial. In an analysis pro

cedure investigated, the solution of a very large system of equations 

requires very extensive computational effort. The necessity, there

fore, ·of. using the minimum number of elements and at the same time 

obtaining a reasonable amount of accuracy is apparent. In this part 

. of the investigation, emphasis was given to the selection of the web 

element that can represent the webs of the. box-beams with one element 

through the depth. As in any structural analysis problem, care was 

taken in the numbering scheme to minimize the bandwidth. 

5.2.1 In-Plane Stiffness Formulation 

The in-plane behavior of the web element is approximated by 

a quadrilateral with four nodes. and ·twelve degrees of freedom (Fig. 
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85). The degrees of freedom are represented by the components of 

the vector (r } where 
w 

{r JT = {u w Q u w Q u w Q u w Q } 
w l l Yl a a Ya 3 3 Y3 4 4 Y4 

(5.1) 

The element displacement field, proposed by William in Ref. 

59 for the web of cellular structures, is used. The element de-

scribes a u displacement which is linear in the ' direction, and a 

w displacement which is cubic in the C direction and linear in the 

~ direction. The displacement field associated with the local deriv-

atives at the nodes is defined also by a cubic function (Ref. 60). 

The element is known as the Q8SP12 element. The derivation of the 

element stiffness matrix is g.iven by William in Ref. 59 and is 

outlined in Appendix C. 

5.2.2 Bending Stiffness Formulation 

The out-of-plane behavior of the web is represented by a 

rectangular element with out-of-plane bending about the x-axis only. 

Bending about the z-axis is ignored. The assumption for the element 

is that one-way bending is the dominant action in the out-of-plane 

behavior of the web in a box-beam structure. The geometric descrip-

tion and nodal configuration are shown in Fig •. 85b. 

Assuming no interaction between the pairs of nodes 1 and 4 

and 2 and 3, elementary out-of-plane beam theory can be used to 

form the stiffness matrix of the element (Refs. 59, 60). 
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It should be noted that the one-way bending assumption for 

the out-of-plane behavior violates continuity with the deck and 

bottom plate elements. 

5.3 Numerical Examples and Comparisons 

In this section, a cantilevered beam, a simple beam, and a 

simple box-beam are analyzed with the use of the web element des-

cribed in Section 5.2. Comparisons of analytical results are made 

with the solution using conventional beam theory for the cantilevered 
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beam and. the simple beam problems, and the thin-walled elas~ic beam 

theory for the simple box-beam problem. 

The purpose of this section is to show the accuracy of the 

finite element results with the use of the web element even at very 

coarse discretization. 

5.3.1 Cantilevered Beam Analysis 

The cantilevered beam problem is shown in Fig. 86. The 

structure is discretized into two different mesh schemes, each con-

sidering two types of boundary conditions at the support: fixed in 

u, w with free Q ; and fixed in u, w, and Q • The beam is loaded 
y y 

at the tip with a concentrated load of 40 kips. The loading and 

boundary condition idealizat.ions are shown in Figs. 86a and 86b. 

The finite element results for deflection and stresses are 

given in Table 24. The analysis gives a go~d agreement with theory. 

It can also be noted from the results that fixing the rotation at 

the support does not affect the results to any great extent. More 

important, however, is the fact that the use of a one-web element 

through the depth of the beam gives just about the same accuracy 

as with two elements through the depth. 

5.3.2 Simply-Supported Beam Analysis 

A similar comparison is made for a simply-supported beam 

with a concentrated load at the center. The span length of the 

beam is varied from 4d to 32d, where d is the depth of the beam. 

Due to symmetry, only one-half of the structure is analyzed. Only 

4 elements are used along the length to model the half span. The 
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purpose of this ccmparison is to show the behavior of the element 

at various aspect ratios. Deflections are computed at midspan and 

stresses are computed at 3/8 of the span for aspect ratios of 4, 8, 

16 and 32. The results are listed in Table 25. The theoretical 

values using classical beam theory with shear connections are shown 

for comparison. 

The close agreement of the analytical results, even at 

very large aspect ratios, can be seen. Furthermore, good agreement 

is again obtained with the tlse of a few number of elements. 

5.3.3 Single Box-Beam Analysis 

A steel box-beam composite with a reinforced concrete deck 

is simply supported at two ends. The p~an and elevation of the 

structure is shown in Fig. 87. The· experimental and theoretical 

results for this problem under a symmetric and unsymmetric concen-

trated load at midspan are reported in Ref. 61. The theoretical 

results were obtained by using thin-walled elastic beam theory. 

Experimental results were obtained from the tests conducted at Fritz 

Engineering Laboratory (Ref. 61). A comparison of normal stresses 

at a midspan section amorig theoretical, finite elements, and test 

values is made to check the accuracy of the combined elements. 

The finite element model and the discretization employed 

for the box-beam structure are shown in Figs. 88 and 89. Only one 

element over the depth is chosen to idealize the webs. Furthermore, 

one plate element is used to model the bottom plate, and three plate 
. 

elements are used to model the-·top deck in the transverse direction. 
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It should be noted that this discretization is the coarsest possible 

in the transverse direction. In the longitudinal direction 6 

elements are employed with finer mesh sizes used near the midspan 

(Fig. 89). The diaphragms are also idealized by web elements. 

The structure is investigated for two loading conditions: 

(a) a.concentrated load of 18 kips at midspan and symmetric between 

the two webs (Fig. 90) and (b) a concentrated load of 18 kips at 

midspan and directly over the web (Fig .• 91). The computed normal 

stresses at the indicated cross section are also shown in the 

figures. Superimposed on the stresses are the values reported in 

Ref. 61. Good agreement is observed between theory, finite element 

analysis and test results. A check of the total cross-sectional 

moment computed by integrating the stresses at the section result in 

a moment which is within 95% of the moment obtained by equilibrium. 

5.4 Application of the Method of Analysis to Highway Spread Box

Beam Bridges 

With the method of analysis presented in Section 5.2, there 

is no conceptual difference between the analysis of a single box

beam structure and a multi-beam bridge superstructure. As such, the 

method can be used directly in the analysis of spread box-beam 

bridges. Since the generated elements are general quadrilaterals, 

the method is also applicable to skew spread box-beam bridges. 

The accuracy of the method of analysis is demonstrated by the fol

lowing comparisons with field test values. 
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Two comparisons are made with actual spread box-beam bridges 

which have been field tested. The first comparison is with the 

Berwick Bridge which is a 90° skew, i. e. right bridge. The second 

comparison is with the Brookville Bridge which has similar dimensions 

to the Berwick except for a skew of 45°. Bridge dimensions are shown 

in Fig. 92. In both cases, only one web element is used over the 

depth and only one plate element is used across each beam width and 

spacing in the finite element discretization. 

5.4.1 Comparison with a Right Spread Box-Beam Bridge 

The field testing of the Berwick Bridge is reported in Ref. 

22. The cross-sectional dimensions of the Berwick Bridge are indi-

cated in Fig. 92. The bridge span, center-to-center of bearing, is 

66 ft., the roadway width is 28 ft. and .the 48 in. prestressed con-

crete box-beams are equally spaced at 8'-9-3/8". The finite element 

discretization in the plan is shown in Fig. 93. The idealization 

of the cross section is shown in Fig. 94. In the analysis, the top 

part of the box-beam is included by adding its thickness to the cor-

responding plate element. The curbs and parapets are modeled by 

increasing the thickness of the overhang as shown in Fig. 94. Two 

methods of modeling the curbs ahd parapets are inv~stigated. First, 

the thickness of the overhang is increased so that the resulting 

cross-"Sectional area is equal to the cross-sectional area of the 

curb and parapet with the slab. Second, the thickness of the over-

hang is increased so that the resulting area is equal to 1/2 the 

area of the curb and parapets and the full area of the slab. The 

second model is investigated because, by current construction 
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practice, the curbs are not fully integrated with the deck slab and 

the parapets have construction gaps along the length. It is assumed 

that because of this practice, the curb and parapets are only 50% 

effective. 

The structure is loaded by the test vehicle shown in Fig. 3. 

The vehicle is placed at 5 positions in the transverse direction, 

as indicated by the lane number· in Fig. 92. In the longitudinal 

direction, the truck is positioned so that the drive wheels are 

42.6· inches to the right of midspan. This loading corresponds to 

the loading position that will produce the maximum moment in a simple 

beam of equal span under the given load configuration. This loading 

position also produces the maximum moment directly under the drive 

wheels. 

Table 26 lists the distribution coefficients at section M, 

which is the section directly under the_drive wheels for the two 

cases studied. Shown also for comparison are the results from the 

tests on the Plexiglass model reported in Ref. 32. The analytical 

results, based on a 50% effective curb and parapets, ·agree closely 

with the field test values. The agreement for all the beams at all 

load cases can be seen in Fig. 95. 

The following conclusions can be made based on the above 

comparison: 

a) The curbs and parapets are only partially effective. 

A 50% effectiveness of the curb and parapet is a reason

able assumption. 
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b) The discretization of the structure with 6 elements along 

the length, and one element for each box-beam width and 

for each spacing gives acceptable results. 

It should be noted however that the results compared are 

for the overall behavior of the bridge. Finer discretization should 

still be used in order to obtain critical stresses of the bridge 

components. 

5.4.2 Comparison with a 45° Skew Box-Beam Bridge 

The section of the Brookville Bridge is superimposed on 

Fig. 92 on the Berwick Bridge section. From the indicated dimensions 

for each bridge at the bottom of the figure, the cross sections of 

the two bridges are practically the same. 

The differences between the two bridges are in the skew and 

the beam size. The Brookville Bridge has a 45° (Fig. 96) and the 

beams are 36 in. deep prestressed concrete box-sections. There are 

also minor differences in the curb and parapet sections. Details 

of the bridge can be found in Ref. 51. 

The idealization of the skew box-beam structure into plate 

and web elements can be seen in Fig. 97 in plan and in Fig. 98 in 

section. The modeling scheme used. for the ·Berwick .Bridge is also 

adopted in this study. The two methods of modeling the curb and 

parapets are again used for this bridge. In both analyses, moments 

are computed at Section I for interior beam C and Section E1 for 

exterior beam D. 
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The test vehicle (Fig~_ 3) is used to load the bridge at the 

different lane locations indicated in Fig. 99. In the longitudinal 

directions, the positions are as reported in Ref. 51. The longitudi

nal positions of the test vehicle are different for sections I and E1, 

and are dependent on the direction of the vehicle. For this study, 

the direction of the test vehicle is from left to right of plan 

shown in Fig. 96. The reported longitudinal positions that produced 

the maximum moment response in this direction at the skew midspan are 

used. 

Figure 99 shows the plot of the moment coefficients for 

beam C at beam section I against the vehicle lane locations. The 

moment coefficients are computed by dividing the actual beam moment 

with the elastic modulus (Ref. 51). The plot shows the results of 

the finite element analysis using fully and partially effective curbs 

and parapets and the reported values. A similar plot is drawn for 

section E1 of the exterior beam in Fig. 100. Both figures indicate 

a better correlation with test values when the curbs and parapets 

are only partially effective. 

The positioning of the vehicle in the longitudinal direction 

for each lane, however, is inconvenient because this position is not 

known initially, and may be expected to differ for different bridge 

configurations. A study, therefore, was conducted to determine the 

difference between the moment coefficients when the load is at the 

position which produces the maximum response and when the drive 

_axle is at the skew midspan. T'ne latter choice is simply a 
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convenience so that a consistent loading scheme for all the lanes can 

be adopted. The difference in the moment coefficients between the 

two load positions can be seen in Table 27. The smallest difference 

occurs when the load is directly over the beam considered for the 

analytical values. Compared, however, with the reported moment coef

ficients from field tests, the difference with the drive axle at 

midspan is not significant. 

The conclusions made for the right spread box-beam bridge 

are also the conclusions for the skewed spread box-beam bridge. In 

addition, the load position with the drive axle at midspan may be 

used instead of the more exact position. 

5.5 Lateral Load Distribution in Skewed Box-Beam Bridges 

Load distribution factors in box-beam bridges are computed 

in the same manner as in I-beam bridges. In the following study 

the procedure of computing the maximum distribution factors for both 

the interior and exterior beams by loading one lane at a time and 

positioning the lanes across the width of the bridge and then 

finding the combination of lane loads that would produce the maximum 

distribution factor is not used •. For the box-beam bridges the 

structure is loaded only once with the maximum number of lane loads 

that can be placed on a given bridge width. The vehicles are placed 

within the lane so that they are as close as possible towards the 

interior lane. The distribution factors for the interior and ex

terior beams are computed using this loading configuration. 
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The simplified procedure mentioned above is adopted for two 

reasons. First, the analysis of multi-beam box girder bridges in

volves the solution of a very large system of equations for each load 

configuration. With the number of bridges and skew angles that 

have to be considered in order to cover reasonably the range of box 

girder geometries, the analysis of each bridge under many individual 

lane loads becomes impractical. Secondly, the influence lines for 

moments in box girder bridges are more or less flat (Refs. 22, 51 

and Figs. 95 0 99); The flatness of the influence line suggests that 

the case with all the lanes loaded produces the maximum moment in a 

box-beam bridge and hence the maximum distribution factor. 

In the following analyses of box girder bridges, HS20-44 

standard trucks are placed on all lanes that can be placed in a 

given bridge width. The longitudinal positions of the trucks are 

such that all the drive axles fall on the skew centerline. The rear 

axles of the trucks are towards the obtuse angle at the supports. 

5.5.1 Design of the Experiment 

The selection of the analytical bridges including the deter

mination of the variables for each bridge, is called the design of 

the experiment. The importance of this part in the investigation 

is the determination of the different widths, number of beams, span 

length and skew angles that will represent the general behavior of 

spread box-beam bridges. 

The box-beams selected in this study are listed in Table 

.28. The 18 bridges on the list are each investigated at skew angles 
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of goo, 60°, 45° and 30° .. Because of the new lane width definition 

in the current specifications (Ref. 3) the bridge widths considered 

are different from those used in Ref. 34 for the right bridges. The 

widths considered are 24ft., 48ft., and 72ft. corresponding to 

12 foot lane widths for 2, 4 and 6 design lanes respectively (Ref. 3). 

These bridge widths are from curb to curb and do not include the over

hang of 2 ft. on each side of the bridge. A uniform thickness of 

7-1/2 inches is used for the deck slab. Curbs, parapets and dia

phragms are not considered. One size of beam a 48/48 (Ref. 43) pre

stressed concrete box-beam, 48" wide and 48" high, is used for all 

the beams in all the bridges. 

5.5.2 Load.Distribution Factors in Skewed Box-Beam Bridges 

The computed distribution factors for the interior box

beams of bridges with skews of goo, 60°, 45° and 30° are listed in 

Table 28. The distribution factors for the exterior beams are 

listed in Table 2g. The distribution factors are computed based on 

the full loading scheme, described in Section 5.5. These distri

bution factors are plotted against the bridge S/L ratio in Figs. 

101, 102 and 103 for interior beams and Figs. 104, 105 and 106 for 

the exterior beams. 

The following observations can be made for the loading 

considered (Figs. 101 to 106): 

1) The effect of skew is to significantly reduce the 

distribution factor for the interior and exterior 

beams. 
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2) There is a monotonic decrease in the distribution factors 

with decreasing skew angle. 

3) The reduction factor is largest at shorter span lengths 

for interior beam~ and at longer span lengths for ex

terior beams (for example see Figs. 101 and 104). The 

reason for this behavior is primarily the increased 

participation of the exterior beams at longer spans. 

The significant reduction in the distribution factors be

cause of the skew can be attributed to the principal bending of the 

bridge being in the direction of the skew and not in the direction 

of the span. The cross-sectional geometry of the bridge is also 

such that there is a better lateral distribution of the loads and 

consequently a better participation of all the beams. 

The larger reduction in the distribution factors at shorter 

span lengths for the interior beams can be attributed to the fact 

that at large skews some of the wheels of the vehicular load are off 

the bridge or very near· the supports. This reduction, however, is 

considerably larger than is typical of a corresponding prestressed 

concrete I-beam bridge. 

It is not possible though to make a general conclusion for 

the load distribution behavior of the exterior beams. The ioading 

scheme as described in Section 5.5 produces the maximum moment· 

response for the most interior beam and therefore can not be ex

pected to produce the maximum moment response for the exterior beams. 
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5.6 Proposed Lateral Distribution Provisions 

A simplified method for the determination of live-load distrt-

bution factors for the interior beams of spread box-beam bridges is 

presented in this section. The process in the development of this de-

sign procedure is similar to the prestressed concrete I-beam analysis. 

Because of the limited number of bridges and the limited scope of the 

loading, only a tentative design recommendation is made. The simpli-

fied equation, within the specified limits, conservatively predicts 

the distribution factors for the skew bridges investigated. 

The live load bending moment in the interior beams of skewed 

spread box-beam bridges may be determined by applying to the beams the 

fraction of the wheel load specified by the following formula: 

where 

and 

mensions: 

PCTR(Box) 
= DF90 (l - 100 ) 

PCTR(Box) 
5000 cot 0 

= ..;...;;_L~+~64~ 

(5.1) 

DF
90 

= distribution factor for the interior beam 

of a right bridge with the same spacing 

and span length. 

DF0 = the distribution factor for the interior 

beam of the bridge with skew angle 0. ' 

The above equation is limited to the following bridge di-

42' ~ L ~ 128' 
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The plot of DF0/oF90 using the equation for the 34 and 128 

ft. span is shown in Fig. 107. A comparison of the equation with the 

measured values is given in Ref. 12. 
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6. SUMMARY, CONCLUSIONS. AND RECOMMENDATIONS FOR FUTURE RESEARCH 

6.1 Summary 

The lateral load distribution behavior of skew I-beam and 

box-beam highway bridges has been presented. The technique employed 

was the finite element method. · Live load distribution factors were 

computed for 120 skew bridges with prestressed concrete I-beams and 

for 72 skew bridges with prestressed concrete box-beams. The bridges 

were subjected to design HS20-44 vehicular loadings. From the re-

sults, simplified design procedures for the determination of live-

load moments in the interior and exterior beams of skew bridges 

were developed. 

In the method of analysis, plate and beam finite elements 

were used to model the bridge structure.. Quadrilateral plate elements 

with in-plane and out-of-plane behavior represented the deck slab of 

the bridge and the top and bottom plate of the box-beams. Eccentric 

beam elements represented the I-beams, and web finite elements 

modeled the webs of the box-beams. The general concepts and the 

structural idealizations with the use of the finite element method 

were d~scribed in Chapter 1. 

The in-plane and out-of-plane behavior of the quadrilateral 
I 

I 
plates as skew plates representing the deck slab were presented in 

Chapter 2. The accuracy of the finite elements used for the deck 

I 
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slab was verified through comparisons with available ·solutions and 

test data-. 

In Chapter 3, the eccentric beam finite elements were intra-

duced. The plate elements of Chapter 2 were then combined with the 

beam elements to model plates with eccentric stiffeners. The method 

was then applied to highway bridges with I-beams. The effects of 

curbs, parapets and diaphragms on lateral load distribution were also 

investigated. The applicability of the method of analysis to multi-

span continuous bridges was demonstrated. The validity of the 

modeling and the overall analysis were verified by the results of 

the comparisons with four field tested I-beam bridges. 

In Chapter 4, the load distribution analyses of the skew 

bridges with prestressed concrete I-beams were presented. Load dis-

tribution factors were determined for interior and exterior beams of 

the bridges under the critical loading pattern of HS20-44 vehicular 

loads. The behavior of the load distribution factors with skew and 

the major bridge parameters were illustrated. Based upon the 

results, a simplified design procedure for the determination of 

load distribution factors for I-beam bridges with skew was developed. 

The skew bridges with prestressed concrete box-beams were 

analyzed in Chapter 5. Load distribution factors were determined for 

the interior and exterior box-beams based on a full load of HS20 

trucks. The behavior of the beam distribution factors with the 

skew and the bridge parameters was demonstrated. The validity of 

the model and the method of analysis was shown through comparisons 
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with two field-tested spread box-beam bridges. A simplified design 

procedure for the determination of load distribution factors for box-

beam bridges with skew was developed. 

6.2 Conclusions 
t' 

The finite element method has proven to be efficient and 

accurate in the analysis of skewed beam-slab structures. The appli-

cability of the method for a load distribution analysis has been 

demonstrated for bridges with I-beams or with box-beams. 

The following conclusions are made for the load distri-

bution study: 

For the prestressed concrete .I~beam bridges, 

1. The effect of skew is generally to reduce the 

distribution factors for the interior beams when 

compared to a right bridge of equal span and 

beam spacing. The distribution factors for the 

exterior beams are increased by a small amount 

for the bridges with beam spacing to span ratio 

less than 1/8. 

2. The reduction in the distribution factor is 

minimal from 90° skew to 60° skew but becomes 

significant at skews beyond 45°. The reduction 

is influenced to a large degree by (a) beam spacing 

to.span length ratio, and (b) bridge curb-to-curb 

width to span length ratio. 
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3. The amount of _reduction can be predicted by the 

trigonometric function in the form presented 

in Section 4.5. 

4. The effect of the curbs and parapets is to reduce 

the load carried by the interior beams and to 

increase the load carried by the exterior beams. 

However, for wider bridges, this effect is con-

siderably diminished. Also the curbs and parapets 

may be considered only 50% effective based on the 

construction practice of not fully integrating 

the curbs and parapets with the deck slab. 

5. The.effect of.the diaphragms is to distribute the 

load more uniformly to the beams of the bridge. 

However, for bridges which are fully loaded, this 

effect is not significant. For all practical 

purposes, one line of diaphragms at midspan is 

quite effective in distributing a given load 

compared to several lines of diaphragms along 

the span. 

6. The effect of continuity is to distribute the 

load more efficiently to the different beams 

in a multi-span bridge. Based on the findings, 

strong consideration should be given to the 

design of multi-span bridges with distribution 

factors for continuous beam-slab structures. 
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For the prestressed concrete box-beam bridges, 

1. The effect of the skew is to significantly reduce 

the distribution factors for the interior and 

exterior beams when compared to a right bridge of 

equal span and spacing. It should be noted, how

ever, that this behavior is based only on a fully 

loaded bridge with the loads placed as close as 

possible towards the middle of the bridge width. 

2. The amount of reduction can be predicted by the 

trigonometric function in the form presented in 

Section 5.6. 

6.3 Recommendations for Future Studies 

The analysis procedure developed in this research is appli

cable to beam-slab bridges, with or without skew. The following 

areas are recommended for future research: 

1. Load distribution in skewed beam-slab bridges 

with curbs and parapets. 

2. Load distribution in skewed beam-slab bridges with 

diaphragms perpendicular to the beam or in the 

direction of the skew. 

3. Load distribution in beam-slab bridges with · 

non-parallel skews. 

4. Load distribution in composite steel I-beam 

bridges. 
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5. Load distribution in multi-span continuous 

beam slab bridges. 

The above areas can be investigated with the analytical 

procedures developed and presented herein. 
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TABLE 1 

IN-PLANE DISPLACEMENTS AND STRESSES IN 
A SQUARE PLATE UNDER UNIFORM EDGE LOADING (Fig. lOa) 

Node Q . 1 uant1ty Q8Dll CST2 Exact 
(Ref. 52) 

u 1. 66667 1. 66667 1. 66667 

v o. o. Oo 

5 cr 1.0 0.99995 1.0 
X 

cry 0. 0.00149 0. 

'f 0. 0.00161 o. 
xy 

u 3.33333 3.33333 3.33333 

v 0.25 0.25 0.25 

9 cr 1.0 0.99368 LO 
X 

cr 0. 0.00065 0. 
y 

'f o. 0.00015 0. 
xy 

1 
u, v displacements in inches, crx' cry' 'fxy stresses in ksi. 

2 .1% solution accuracy specified. 
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TABLE 2 

IN-PLANE DISPLACEMENTS AND STRESSES IN 
A SQUARE PLATE UNDER IN-PLANE SHEAR (Fig.lOb) 

Quantity 
1 Q8Dll CST

2 Exact 
(Ref. 52) 

(J 0. 0.00083 o. 
X 

(J 0. 0.00093 0. 
y 

'f 0.13333 0.13284 0.13333 
xy 

(Jll' (J22' (J12 0.13333 0.13196 0.13333 

0.1022 X 10-3 -3 -3 
Yxy 0.1138 X 10 0.1023 X 10 

1 . k . stresses 1n s1. 
2 .1% solution accuracy specified. 
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Node 

1 

2 

3 

4 

5 

6 

7 

8 

9 

Node 

1 

2 

3 

4 

5 

6 

7 

8 

9 

TABLE 3 

DISPlACEMENTS AND STRESSES IN A SKEW PlATE 
_UNDER UNIFORM EDGE LOADING (Fig. 11) 

u - Disp1acements(in.) v - Disp1acements(in.) 

Q8Dll CST Node Q8Dll CST 

o. 0. 1 -0.000306 -0.000308 

0. o. 2 0. 0. 

'0. 0. 3 0.000306 0.000301 

0.001667 0.001657 4 0.000657 0.000647 

0.0001667 0.001658 5 0.000962 0.000960 

0.001667 0.001694 6 0.001268 0.001241 

0.003333 0.003314. 7 0.001619 0.001605 

0.003333 0.003339 8 0.001924 0.001889 

0.003333 0.003371 9 0.002230 0.002163 

cr Stresses (ksi) 
X 

cr Stresses(ksi) 
y 

Q8Dll CST Node Q8D11 CST 

1.0 0.995 1 o. o. 
1.0 0.995 2 o. 0. 

1.0 1.005 3 0. 0. 

1.0 0.995 4 0. 0. 

1.0 1.002 5 o. o. 
1.0 1.011 6 o. o. 
1.0 1.002 7 o. o. 
1.0 1.008 8 o. o. 
1.0 1.007 9 o. 0. 
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TABLE 4 

MIDSPAN DISPLACEMENT OF A SKEW PLATE 
UNDER IN-PLANE CONCENTRATED LOAD (Fig. 12) 

-4 
Finite Element Analysis Displacement x 10 :l;t!. 

Q8D8
1 

11.40 

2 
19.58 CST 

Q8Dll(3) 30.44 

Q8Dll(2) 51.49 

LSE l 54.51 

1 Refs. 59, 60 
2Ref. 52 

TABLE 5 

NORMAL STRESS AND DEFLECTION IN A 
SIMPLY-SUPPORTED BEAM WITH INCLINED FACES (Fig. 13) 

Vertical Displacement Normal Stress 
at A x P/Et at B x P/dt 

Mesh Q8D8 
1 

Q8Dll Ref. 5.3 Q8D8 Q8Dll Ref. 53 

5 X 2 9.44 14.34 15.21 L55 1. 73 2.54 

5 X 4 10.09 13.58 17.27 L67 2.52 2.96 

1 From Ref. 53 
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TABLE 6 

. CENTER DEFLECTION OF A SQUARE PlATE WITH FIXED SUPPORTS 

Multiplier PL
2

/D 

Source 2 X 2 4 X 4 8 X 8 10 X 10 16 X 16 

ACM .00592 .00613 .00580 -- .00568 

Ql9 .00521 .00515 .00546 .00551 --
... ~-

~:-... . --
EXACT (Ref. 55). .00560 

~ . - .. 

TABLE 7 

CENTER DEFLECTION OF A SQUARE PlATE WITH SIMPLE SUPPORTS 

Multiplier PL
2

/D 

Source 2 x 2 4 X 4 8 X 8 10 X 10 16 X 16 

ACM 0.01378 0.01233 0.01133 -- 0.01167 

Ql9 0.00975 0.01106 0.01145 0.01150 0.01159 

EXACT (Ref. 55) 0.01160 

-125-



I 

TABLE 8 

RHOMBIC PLATE UNDER CONCENTRATED LOAD 
TWO SIDES SIMPLY SUPPORTED, ~ = 45° (Fig.28) 

w M 
Method max. 

2 x ;pa /D ~;p 

Finite Difference(l) 4 X 8 0.0117 0.331 

Finite Difference(l) 6 X 8 0.0117 0. 370 

E . (1) 
xper~ment 0.0099 0.354 

Finite Element 8 X 8 0.0107 0.363 

1 Ref. 37 

Et3 
D = ___;:::..=:...~-

12(1.-v2) 
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~ l? . 

0.199 

0.257 
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TABLE 9. 

MOMENTS IN A SKEW PlATE UNDER UNIFORM LOAD 

Multiplier x 105 

Pt Moment Discretization 

Ref. 48 (1) (2) 

M 1 0.906 0.897 0.896 u 
M 1 0.270 0.285 0.286 

A uv 

~ 0.980 0.975 0.981 

~I 0.068 0.058 0.056 

M 0.976 0.964 0.965 
X 

M 0.019 0.010 0.010 
B y 

M 0.188 0.205 0.207 
xy 

~ 1.01. 1.01 1.01 

~I 0.027 0.032 0.032 

* M 0.210 0.487 0.368 
X 

* M -0.213 -0.160 -0.245 
E y 

* M 0.131 0.336 0.195 
xy 

* ~ 0.238 . 0. 631 0.425 

-0.238 * ~I -0.303 -0.302 

* At center of plate element. 

1M M are in the direction of the skew. u' uv 
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(3) 

0.968 

0.012 

0.206 

1.01 

0.030 

0.309 

-0.202 

0.248 

0.410 

-0.302 



Pt 

A 

B 

E 

TABLE 10 

MOMENTS IN A SKEW PLATE UNDER CONCENTRATED LOAD 

Multiplier x 105 

Moment Discretization 
(in-lb) 

in Ref. 48 (1) (2) 

M 1 0.453 0.461 0.457 
u 

M 
1 

0.134 0.125 0.125 
uv 

M 0. 684 0.667 0.658 
X 

M 0.262 0.240 0.231 
y 

M 0.122 0.106 0.108 
xy 

M 0.068 0.143 0.122 
X 

M 0.100 0.082 0.117 
y 

M 0.068 0.115 0.113 
xy 

1M M are in the direction of the skew. 
u' uv 
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o. 643 

0.221 

0.104 

0.104 

0.094 

0.130 



TABLE 11 

MOMENT COEFFICIENTS AND REACTIONS IN A 45° 
SKEW .BRIDGE WITH CHANGE IN BOUNDARY CONDITIONS 

Beam Moment Coefficients Reactions at Left Support 
xLxP X p 

s.s. 1 Skew s.s. 
2 

s.s. 
1 

Skew S.S. 

A 0.00232 0.0233 0.0614 

B 0.0437 0.0439 0.0371 

c 0.0922 0.0918 0.1085 

D 0.0437 0.0439 0.2545 

E 0.00232 0.0233 0.0385 

1simply supported. 
2simply supported and constrained to rotate about 

skew line of support, ~ = 45°. 

TABLE 12 

LOAD DISTRIBUTION COEFFICIENTS - BRIDGE 3
1 

Ratio of Bending Moments 

0.0600 

0.0412 

0 .. 028 

0.2254 

0.0706 

(%) 

Interior Girders Exterior Girders 

Field Test 60 40 

Analytical Results 59 41 

1 Ref. 6 
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TABLE 13 

MOMENT PERCENTAGES 

I: Beam Moment Beam Moment/I:; Beam Moment 
Bridge 

' 
Truck Moment Interior Center Exterior 

Field Test 89.30 34.0 32.0 34.0 

(Ref. 24) 

2B Finite Element 93.57 32.6 34.0 33.2 

(composite) 

Finite Element 92.13 33.2 33.8 33.0 

(non-composite) 

Field Test 92.10 33.8 33.4 29.2 

(Ref. 24) 

3B Finite Element 94.50 32.7 34.3 33.0 

(composite) 

Finite Element 83.95 33.2 33.8 33.0 

(non-composite 
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TABLE 14 

!DAD DISTRIBUTION FACTORS IN LEHIGHTON BRIDGE WITH AND WITHOUT DIAPHRAGMS - CASE A l 

L = 71 '-6" s = 6'-9" 

Without Diaphragms With Diaphragms Diaphragms Diaphragms 
Loaded Beam Partially Effective in Shear Only Fully Effective 
Lanes 

Analytic Field Analytic Field Analytic Analytic 
Test Test 

A o. 79 o. 71 0.81 0.75 0.79 0.80 
B o. 69 o. 69 0.61 0.64 o. 69 0.58 

1 c o. 64 0.58 0.51 0.53 o. 64 0.45 
D o. 62 0. 62 0.50 0.59 0.62 0.45 
E o. 68 o. 64 0.61 0.54 o. 68 0.58 
F 0.83 0.85 0.83 0.87 0.83 0.82 

A 0.85 0.81 0.94 0.88 0.85 0.99 
B 1.01 0.99 0.96 0.98 1.01 0.94 

2 c ' 1.07 0.98 0.92 0.94 1.07 0.84 
D 1.04 1.06 0.92 1.02 1.04 0.84 
E .1.09 1.02 1.02 0.87 1.09 0.98 
F 1.03 1.08 1.10 1.14 1.03 1.15 

A 0.85 0.81 0.94 0.88 0.85 0.99 
B 1.03 1.01 1.01 1.05 1.03 1.00 

3- c 1.20 1.10 1.11 1.06 1.20 1.06 
D 1.18 1. 20 1.13 1.18 1.18 1.11 
E 1.13 1.08 1.11 0.96 1.13 1.09 
F 1.02 1.07 1.08 1.15 1.02 1.13 

1 Design Lane= 12'-0", leftmost lane starts at beam A. 



I . ...... 
w 
N 
I 
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TABLE 15 

LOAD DISTRIBUTION FACTORS IN LEHIGHTON BRIDGE WITH AND WITHOUT DIAPHRAGMS - CASE B1 

L= 71'-6" s = 6'-9" 

Without Diaphragms With Diaphragms Diaphragms Diaphragms 

Loaded Beam Partially Effective in Shear Only Fully Effective 

Lanes Analytic Field Analytic Field Analytic Analytic 
Test Test 

A 0.95 0.84 0.93 0.86 0.95 0.90 
B o. 69 0. 69 0.63 0.65 0.69 . 0.61 

1 c o. 64 0.58 0.51 0.53 0.64 0.45 
D o. 62 0.63 0.51 0.59 0.63 0.45 
E . o. 68 0.64 0.60 0.53 o. 68 0.56 
F 0.73 0.77 0.75 0.79 0.73 0.76 

A 1.09 0.99 1.16 1.05 1.09 1.19 
B 1.11 1.08 1.04 1.06 1.11 1.01 

2 c 1.09 1.00 0.93 0.95 1.09 0.84 
D 1.07 1.08 0.92 1.05 1.07 0.84 
E 0.97 0.92 0.94 0.79 0.97 0.92 
F 0.85 0.93 0.92 0.98 0.85 0.98 

A 1.06 1.00 1.12 1.05 1.06 1.16 
B 1.18 1.17 1.15 1.16 1.18 1.14 

3 c 1.25 1.17 1.18 1.13 1.25 1.13 
D 1.21 1.23 1.12 1.23 1.21 1.06 
E 0.99 0.96 0.99 0.86 0.00 0.99 
F 0.84 0.91 0.89 0.97 0.84 0.92 

Design Lane= 12'-0", leftmost lane starts at overhang. 



TABLE 16 

LOAD DISTRIBUTION FAClORS IN BARTONSVILLE BRIDGE WITH AND WITHOUT 
CURBS, PARAPETS AND DIAPHRAGMS 

L = 68'-6" s = 8'-0" 

No. of Live Load Distribution Factors 
Loaded Beam 

(2) b (4)d (6) f Lanes (1) a (3)c (5) e 

A 0.92 0.92 0.94 0.94 0.80 0.94 

1 B 0.85 0.84 o. 71 o. 70 o. 72 0.75 

c 0.84 0.82 0.68 0.66 0.76 o. 72 

A 0.97 1.00 1.08 1.10 0.85 1.06 

2 B 1.30 1.28 ~.18 1.17 1.04 1.21 

c 1.38 1.35 1.20 1.18 1.27 1.24 

abeams and slab only. 

bbeams and slab with curbs and parapet 

cbeams and slab with diaphragms 

d beams and slab with curbs, parapets and diaphragms 

efield test results with curbs, parapets and diaphragms 

f beams and slab with with,only 20% effective diaphragms 
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TABLE 17 

LOAD DISTRIBUTION FACTORS IN A 36 FT. WIDE BRIDGE WITH DIAPHRAGMS 

L = 71'-6" s = 7'-2" 

One Loaded Lane 
Beam 

Diaphragm Locations 
w/o 

Diaphragms at L/2 at L/3 at L/4 at L/5 

A 0.84 0.84 0.84 0.86 0.83 

B 0.76 0.64 o. 71 0.69 0.66 

c o. 72 0.59 0.66 0.62 0.59 

Two Loaded Lanes 
Beam 

Diaphragm Locations 
w/o 

Diaphragms at L/2 at L/3 at L/4 at L/5 

A 0.92 0.94 0.96 1.00 0. 97 

B 1.13 1.04 1.08 1.08 1.04 

c 1.19 1.06 1.11 1.08 1.04 

Three Loaded Lanes 
Beam 

Diaphragm Locations 
w/o 

Diaphragms at L/2 at L/3 at L/4 at L/5 

A 0.90 0.90 0.92 0.96 0.92 

B 1.16 1.08 1.13 1.14 1.09 

c 1.34 1.25 1.29 1.28 1.23 
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Beam 

A 

B 

c 
D 

TABLE 18 

MOMENT COEFFICIENTS! IN A FOUR-SPAN CONTINUOUS BRIDGE 

St;atic Load Test Vehicular Load Test 

Beam Analytic . Test.Z Analytic Test-2 
r 

A 19.53 20.0 17.44 16.0 

B 30.47 29.0 32.56 33.0 

c 30.47 29.0 32.56 31.0 

D 19.53 22.0 17.44 19.0 

1All values in percent of theoretical single beam moment. 
-2-· 
-F-rom_Ref.-24-

. TABLE 19 

MOMENT COEFFICIENTS! IN A FOUR-SPAN CONTINUOUS BRIDGE 
WITH CHANGES IN BOUNDARY CONDITIONS 

Static Load Vehicular Load 

Simply Continuous Fixed Simply Continuous Fixed Supported Supported 

20.49 19.53 17.11 21.55 17.44 13.19 

29.51 30.47 32.89 28.45 32.56 36.81 

29.51 30.47 32.89 28.45 •32.56 36.81 

20.49 19.53 17.11 21.45 17.44 ·13.19 

1 All values in percent of theoretical single beam moment. 
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TABLE 20 

LOAD DISTRIBUTION FACTORS IN A SIX-BEAM CONTINUOUS BRIDGE 

L = 75'-100'-75 1 

s = 7'-2" 

Number of Distribution Factors . 
Loaded 
Lanes Beam At Midspan At Supports 

A 0.780 0.785 

1 B o. 706 0. 720 ~ 

c 0.664 . o. 700 

A 0.882 0.833 

2 B 1.061 1.011 

c 1.107 1.165 

A 0.884 0.855 

3 B 1.121 1.146 

c 1.268 1.308 
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TABLE 21 

LIST OF BRIDGES ANALYZED 

Bridge Number 
No. Width of Beams Spacing Length Beam Size S/L 

{ft.) {in.) {ft.2 
1 24.00 6 57.60 120.00 AASHO-VI .0400 

2 24.00 6 57.60 72.00 24/42 .0667 

3 24.00 6 57 0 60 38.40 20/30 .1250 

4 24.00 5 72.00 120.00 AASHO-VI .0500 

5 24.00 5 72.00 60.00 20/39 .1000 

6 24.00 5 72.00 42o00 20/30 .1429 

7 24.00 4 96.00 120.00 AASHO-VI o0667 

8 24.00 4 96.00 64.00 24/45 .1250 

9 24.00 4 96.00 40.00 20/30 .2000 

10 48.00 11 57.60 120.00 AASHO-VI .0400 

11 48.00 11 57.60 84.00 24/48 .0571 

12 48.00 11 57.60 48.00 20/30 01000 

13 48.00 9 72.00 105o00 28/63 .0571 

14 48.00 9 72.00 60o00 20/39 .1000 

15 48.00 9 72.00 42.00 20/30 .1429 

16 48o00 6 115o 20 96.00 AASHO-VI 01000 

17 48.00 6 115.20 57 0 60 24/45 .1667 

18 48o00 6 115.20 48.00 20/33 .2000 

19 72.00 16 57.60 120.00 ASSHO-VI .0400 

20 72.00 16 57.60 57.60 20/36 .0833 

21 72.00 16 57.60 38.40 AASHO-I .1250 

22 72.00 14 66.50 110.80 AASHO-VI .0500 

23 72.00 14 66o50 66o50 24/42 .0833 

24 72.00 14 66.50 38.80 AASHO-I .1429 

25 72.00 12 78.50 114.50 AASHO-VI .0571 

26 72.00 12 78.50 65.50 24/42 .1000 

27 72.00 12 78.50 39.30 20/30 .1667 

28 72.00 9 108.00 108.00 AASHO-VI .0833 

29 72.00 9 108.00 54.00 24/42 .1667 

30 72.00 9 108.00 45.00 24/36 .2000 
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TABLE 22 

MAXIMUM DISTRIBPTION FACTORS - INTERIOR BEAMS 

Bridge NUMBER OF LOADED lANES AND SKEW ANGLE 
No. ~ ***NLL ~ NLL ~ NLL ~ .NL1 ~ 

1 2 2 .81 2 • 79 2 .77 2 .71 

2 2 2 .84 2 .81 2 .77 2 .66 

3 2 2 • 96 2 .94 2 .93 2 .86 

4 2 2 . 96 2 .92 2 .88 2 .82 

5 2 2 1.05 2 .99 2 .92 2 • 78 

6 2 2 1.17 2 1.07 2 .95 2 .76 

7 2 2 1.23 2 1.20 2 1.18 2 1.08 

8 2 2 1.30 2 1.24 2 1.17 2 .99 

9 2 2 1.32 2 1.23 2 1.14 2 .88 

10 4 4 .94 4 .91 4 .87 4 • 79 

11 4 4 .94 4 .90 4 .87 4 • 75 

12 4 2 1.03 3 .98 3 .94 3 .87 

13 4 4 1.17 4 1:13 4 1.09 4 • 97 

14 4 4 1.20 4 1.14 4 1.08 4 .89 

15 4 4 1.24 3 1.13 3 1.07 3 .83 

16 4 4 1.84 4 1. 79 4 1. 74 4 1.59 

17 4 4 1.83 4 1.77 4 1. 70 4 1.45 

18 4 4 1.86 4 1.72 4 1.58 3 1.24 

19 6 5 .94 5 .92 5 .90 5 .84 

20 6 4 .95 4 • 91 4 .87 5 • 75 

21 6 4 • 97 4 .91 4 .96 5 .72 

22 6 5 1.07 5 1.05 5 . 1.04 5 .98 

23 6 4 1.07 4 1.04 . 4• 1.01 5 .89 

24 6 4 1.09 4 1.02 5 .96 5 .77 

25 6 5 1.23 5 1.21 5 1.19 5 1.11 

26 6 .4 1.24 5 1.20 5 1.16 5 1.03 

27 6 4 1.30 4 1.21 5 1.12 5 .89 

28 6 5 1.72 5 1.68 5 1.65 6 1.51 

29 6 4 1. 74 5 1.68 5 1.61 5 1.33 

30 6 4 1.77 5 1.68 5 1.60 5 1.23 

Number of Lanes 
**Number of Loaded Lanes 
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TABLE 23 

MAXIMUM DISTRIBUTION FACTORS - EXTERIOR BEAMS 

Bridge NUMBER OF LOADED lANES AND SKEW ANGLE 
No. *NL ***NLL 90° NLL 60° NLL 45° NLL 30 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

15 

16 

17 

18 

19 

20 

21-

22 

23 

24 

25 

26 

27 

28 

29 

30 

2 

3 

2 

2 

2 

2 

2 

2 

2 

4 

4 

4 

4 

4 

4 

4 

4 

4 

6 

6 

6 

6 

6 

6 

6 

6 

6 

6 

6 

6 

2 

2 

2 

2 

2 

2 

2 

2 

2 

2 

4 

1 

2 

2 

2 

2 

2 

2 

2 

6 

1 

2 

2 

1 

2 

2 

1 

2 

2 

2 

• 69 2 

.67 2 

.56 1 

.80 2 

• 75 2 

.73 2 

1.01 2 

.95 2 

.87 2 

.71 2 

.68 2 

• 62 1 

.83 2 

. 78 2 

• 72 2 

1.10 . 2 

1.02 2 

1.08 2 

• 70 2 

.65 2 

• 61 1 

. 78 2 

. 74 2 

.68 2 

.88 2 

.83 2 

.74 2 

1.09 2 

.97 2 

.95 .. 2 

• 70 2 

• 67 2 

.57 1 

.81 2 

• 77 2 

.73 2 

1.02 2 

.95 2 

.87 2 

• 72 2 

.68 2 

.61 1 

.83 2 

.76 2 

.74 4 

1.10 2 

1.01 2 

1.03 4 

0 71 2 

.64 2 

• 60 2 

.78 2 

• 72 2 

.66 2 

.89. 2 

.85 2 

.75 2 

1.10 2 

.96 2 

.93 2 

Number of Lanes 
**Number of Loaded Lanes -139-

• 70 

• 67 

.57 

.82 

.78 

.72 

1.02 

.94 

.86 

.73 

• 68 

.61 

.84 

.76 

.71 

1.11 

1.00 

.99 

.72 

.63 

.60 

. 79 

.73 

·.67 

.91 

.86 

.75 

1.11 

.95 

• 91 

2 • 72' 

2 .64 

2 .58 

2. .83 

.2 • 73 

2 . 62 

2 1.01 

2 .88 

2 .74 

3 .73 

4 • 65 

2 .59 

4 .83 

4 .70 

4 .62 

4 1.09 

4 .92 

4 .85 

3 .72 

2 .58 

2 .53 

2 • 78 

2 .67 

6 .58 

3 . • 91 

6 .80 

2 .63 

3 1.09 

6 .86 

6 .80 



TABLE 24 

CANTILEVER BEAM WITH CONCENTRATED LOAD 

E "" 30,000 ksi 

= 0.25 

r--1-__ L=---~l 
b = 1.0" 

d = 12.0" 

L = 48.0" 

Mesh Boundary Deflection Normal Stress 
{Figo 86) Condition at A (in In.) at B (in ksi) 

Simple Supports 0.3279 60.0 
1 X 4 

Fixed Supports 0.3283 60.0 

Simple Supports 0.3416 60.97 
2 X 4 

Fixed Supports 0.3428 61.48 

Ref. 59 0.3558 60.0 
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TABLE 25 

SIMPLY SUPPORTED BEA}f WITH CONCENTRATED LOAD 

p ,, 
V=O. 

L 

Span Averaged Vertical Displacement Stress at 3/8 Span 
L (1) at Midspan x P/Ed (bottom face) x P/bd 

Beam Finite % of Beam Finite % of 
Theory E1emen.t Theory 'theory Element Theory 

4d 18.19 18.36 99.00 4.5 4.5 100 

8d 132.59 130.61 99.00 9.0 9.0 100 

16d 1033.39 1016.57 98.34 18.0 18.0 100 

32d 8210.99 8080.42 98.41 36.0 36.0 100 

1All discretizations into 1 x 4 mesh 
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TABLE 26. 

DISTRIBUTION COEFFICIENTS BOX-BEAM BRIDGE - SECTION M 

(BERWICK BRIDGE) 

Lane Beam 

A 

1 
B 

c 
D 

A 

2 
B 

c 
D 

A 

3 
B 

c 
D 

(l)Ref. 22 

(2)Ref. 32 

Distribution Coefficients (%) 

Field Test (l) Finite Element Plexiglass MOdel(2) 

43.82 42.79 ---
30.95 29.75 ---
15.02 17.53 ---
10.21 9.93 ---
33.00 32.41 ---
31.06 30.27 ---

. 20.85 21 .• 51 ---
15.09 15.82 ---
21.12 23.27 25.5 

29.00 26.73 24.5 

28.88 26.73 24.5 

21.12 23.27 25.5 
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. TABLE 27 

MAXIMUM MOMENT COEFFICIENTS 
45° SKEW BOX-BEAM BRIDGE - SECTION I 

(BROOKVILLE BRIDGE) 

Moment Coefficients (ft.-in. 2) 

Lane (1) (2) (3) (4) 

1 0.028 0.029 0.031 0.027 

2 0.034 0.031 0.03. 0.032 

3 0.030 0.029 0.030 0.026 

4 0.019 0.024 0.023 0.016 

5 0.012 0.018 0.016 0.013 

(l)Field tests (Ref. 51) 

(2)curb and Parapet fully effective 

(3)curb and Parapet partially effective 

(4)case (3) with drive axle at midspan 
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TABLE 28 

LIST OF SPREAD BOX-B~ BRIDGES 

Bridge Number 
No. Width of Beams Spacing Length Beam Size · S/L 

~£t.2 ~in. 2 ~ft. 2 
1 24.00 3 122.50 40.83 3-48/48 .2500 

2 24.00 3 122.50 71.46 3-48/48 .1430 

3 24.00 3 122.50 122.50 3-48/48 .0830 

4 24.00 4 81.67 34.03 4-48/48 .2000 

5 24.00 4 81.67 47.64 4-48/48 .1430 

6 24.00 4 81.67 102.08 4-48/48 .0670 

7 48.00 5 133.25 44.42 5-48/48 .2500 

8 48.00 5 133.25 88.83 5-48/48 .1250 

9 48.00 5 133.25 11.04 5-48/48 .1000 

10 48.00 7 88.83 37.01 7-48/48 .2000 

11 48.00 7 88.83 59.22 7-48/48 .1250 

12 48.00 7 88.83 111.03 7-48/48 .0670 

13 72.00 8 117.29 39.10 8-48/48 .2500 

14 72.00 8 117 0 29 78.19 8-48/48 .1250 

15 72.00 8 117.29 97.74 8-48/48 01000 

16 72.00 9 102.62 42.75 9-48/48 .2000 

17 72.00 9 102.62 68.42 9-48/48 .1250 

18 72.00 9_ 102.62 128.25 9-48/48 .0670 
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TABLE 29 

MAXIMUM DISTRIBUTION FACTORS - INTERIOR BOX-BEAMS 

BJ."idge 
NUMBER OF LOADED lANES AND SKEW- ANGLE 

90° 60° 45° 30° No. *NL **NLL NLL NLL NLL 

1 2 2 1. 73 2 1.45 2 1.09 2 .53 

2 2 2 1.61 2 1.38 2 1.04 2 .47 

3 2 2 1.56 2 1.27 2 1.01 2 .66 

4 2 2 1.15 2 .95 2 0 70 2 .38 

5 2 2 1.06 2 .91 2 .65 2 .30 

6 2 2 1.01 2 .87 2 .68 2 .40 

7 4 4 2.16 4 1.77 4 1.20 4 .47 

8 4 4 1.93 4 1.56 4 1.03 4 .32 

9 4 4 1.89 4 1.49 4 1.00 4 .41 

10 4 4 1.47 4 1.09 4 .74 4 .30 

11 4 '4 1.33 4 1.01 4 0 62 4 .26 

12 4 4 1.22 4 .86 4 .54 4 .24 

13 6 6 1.87 6 1.55 6 1.03 6 .46 

14 6 6 1.80. 6 1.37 6 .82 6 .32 

15 6 6 1. 76 6 1.27 6 • 75 6 .27 

16 6 6 1.63 6 1.25 6 .77 6 .33 

17 6 6 1.55 6 1.13 6 .66 6 .26 

18 6 6 1.49 6 .85 6 .50 6 .24 

* Number of Lanes 

** Number of Loaded Lanes 
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TABLE 30 

MAXIMUM DISTRIBUTION FACTORS - EXTERIOR BOX-BEAMS 

Bridge NUMBER OF LOADED lANES AND SKEW ANGLE 

No. *NL **NLL 90° NLL 60° NLL 45° NLL 30° 

1 2 2 1.17 2 1.01 2 • 69 2 .24 

2 2 2 1.29 2 1. i2 2 .73 2 .23 

3 2 2 1.27 2 1.03 2 .65 2 .20 

4 2 2 .90 2 • 68 2 .42 2 .• 12 

5 2 2 .96 2 .77 2 .47 2 .13 

6 2 2 .99 2 • 79 2 .46 2 .08 

7 4 4 1.17 4 1.00 4 .67 4 .26 

8 4 4 1.40 4 1.09 4 .59 4 .17 

9 4 4 1.43 4 1.06 4 .53 4 .11 

10 4 4 .89 4 • 70 4 .46 4 .16 

11 4 "4 .99 4 • 75 4 .44 4 .19 

12 4 4 1.10 4 • 75 4 .44 4 .20 

13 6 6 1.01 6 .88 6 .58 6 .24 

14 6 6 1.20 6 .92 6 .58 6 .29 

15 6 6 1.26 6 .90 6 .55 6 .28 

16 6 6 .93 6 .76 6 .49 6 .21 

17 6 6 1.04 6 .75 6 .46 6 .24 

18 6 6 1.14 6 .56 6 .32 6 .18 

* Number of Lanes 

** Number of Loaded Lanes 
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(b) Skew Plate Element 

Fig. 6 Plate Finite Elements 
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a. Plate Dimension· and Properties 
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b. Idealization and Modeling 

Fig. 11 Skew Plate under Uniform In-Plane Edge Loading 
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Fig. 21 Numerical Examples and Comparisons for Plate 
· · Loading 
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APPENDIX A 

Q8Sll ELEMENT STIFFNESS MATRIX 

The Q8Dll element approximates the in-plane behavior of 

the deck slab in this study. This element has 10 fundamental degrees 

of freedom and one generalized_coordinate a describing the constant 

shear strain throughout the element. The derivation follows the 

derivation of the element Q8D9 in Ref. 59. 

The relationship between the natural system of coordinate 

and the global right cartesian coordinate system is expressed by: 

X 

= 

y 

~X 0 

0 

X. 
1. 

(A.l) 

The assumed displacement function is a linear shape function 

for the corner points and a quadratic function for the internal 

node: 

u. 
1. 

u ~ 0 ~ 0 v. 
1. .a 1. 

(A.2) = 
v 0 ~ 0 ~ uo 

1. .a 

v 
0 

where ~ = ~ (1 + ,,.)(1 + ~~.) 
1. 1. 1. 

.a .a 
~ 

.a = (1 - ' ) (1 - il ) 
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.The displacement gradient field can be derived from Eq. 

A.2 by appropriate differentiation. 

0~ 0~2 
----1. 0 0 u. 
ox ox 1 

0~ o\ 
v. 

1 

{Vv} = 0 _..1. 0 (A.3) 
oY oY u 

0 

o~. 0~ 0~ 0~ v 
1 1 2 2 0 

oY ox oY Ox 

Equation A.3 can be rewritten in the form 

u. 
1 

v. 
1 

{Vv} = [V~] (A. 3a) u 
0 

v 
0 

The strain field, by assuming constant strain throughout 

the element, can be written as: 

0~ 0 0~ 
_..1.. _2 _ 

~X ox 

e:x 
0~ 

1" 

e:y 0 ey 0 

Yxy 0 0 0 
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at 
2 

ey 

0 

0 

0 

1 

v. 
1 

u 
0 

v 
0 

a 

(A.4) 



Equation A.4 can be rewritten into the form 

u. 
1. 

E: 1 v. 
X 

f 

1. 

E:y = [•e J u 
0 

YxyJ 
v 

0 

0! 

With the use of the Hu-Washizu variational principle, 

William has shown in Ref. 59 that the stiffness relationship is 

of the form 

~) 
where for this element: 

= [F . 
Ul. 

= [u. 
1. 

F . 
Vl. 

V. 
1. 

0 k 
ve 

k -k 
ev ee 

F 
uo 

u 
0 

v } 
0 

v 

e 

e = Yxy strain degree of freedom 

and the individual submatrices are defined as: 

[k ] =·[k ]T = /[cp ][D][V<P] dV 
ev ve e 

[k . J = I [ ip J [D J [ ip J dV ee e e 
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(A.S) 

(A. Sa) 

(A. Sb) 

(A.Sc) 

(A. Sd) 

(A.Se) 



The submatrices are evaluated by numerical integratio~ 

described in Section 2.3.3. The strain degree of freedom is elimin-

ated by static condensation procedure as described in Section 1.3.3 

resulting in the following final form of the element stiffness. 

[k] = [k JT [k J-l [k J 
ev ee ev 
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APPENDIX B 

COMPATIBLE DISPLACEMENT FUNCTIONS FOR PLATE BENDING ELEMENT Q-19 

This appendix contains the displacement functions for the 

quadrilateral element Q-19 given by Eq. 2.29. The following is 

taken from Ref. 17 and reproduced here for completeness. 

The displacement function for sub-element 3 in Eq. 2.29 

is expressed by 

(B.l) 

where 

( ;(3)}=~(a)~ (a)~ (a)~(3)~ (a)~ (a)~(a)~ (a)~ (a)~ (3)~(a)~(a) 
'INl 8Xl 8y1 wa 8XG Sya W3 8Xs 8ya 84 8s 86 

(B.2) 

and the individual functions are given by the following equations in 

terms of the dimensions of the complete element: 

2 

= c (3 - 2C ) + 6~ c c c 
l l al23 

3 

+ C [3(A -~ )C +(2~ -A )C -3~ C ] 
3 a 3 1 3 2 3 3 2 

+ b ~ -2b )C +3(b ~ -b )C +(3b -b A -2b ~ )C J 
a 3 l 1 3 3 1 a 1 2 2 a 3 3 

+(2A -~ )C -3A C ] 
3 1 3 a l 
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I 

I 

I 
I 
I 
I 
i 
~ 
~ 
i' 

I 
I 
I 
fi· 

' I 
j 

1!:t"ffl'N . .4.'4·· • 

/ 

- b A -b ~ )' +3(b -b A)' +(-3b -b ~ +2b A)' ] 
3 3 l l 2 2 3 3 l 2 l l 3 3 3 

i (
3
)= ,

2

[3(1 + ~ )' +3(l+A )' +(1-~ -A)' ] 
w

3 
3 2 l l 2 21.3 

• 

(3) 2 

i Sv~ = !6 ' [3(3b +b +b A)' +(b ~ -b A)' -3(b +3b +b ~ )'] 
~ 3 l 2 l l 2 2 2 l l 3 l 2 2 2 l 

(3) 4A 2 
~64 = 3L [6,'' +' (5, - 3)] 

l 2 3 3 3 
3 

(3) 
4A 2 

i =- c, (3, ' ) ] 
96 3L 3 2 3 

l 

(3) 
4A 2 

ie" = 3L c, (3, - ' ) ) 3 l 3 
2 

For i
9 

., all the b's in ie . are changed to a's. 
y~ X~ 

For sub-elements 1 and 2, all superscripts and subscripts 

permit cyclically from 1-2-3 to 2-3-1 to 3-1-2 and from 4-5-6 to 

5- 6-4· to 6-4-5. 
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APPENDIX C 

WEB ELEMENT IN-PLANE STIFFNESS MATRIX 

This appendix presents the derivation of the stiffness 

matrix for the quadrilateral element Q8SP12. This element has been 

developed by William in Ref. 59, and is shown here for completeness 

of this study. The element is used in Chapter 5 to model the in-

plane behavior of the webs of box-beam structures. 

The geometry of the quadrilateral is described by linear 

interpolation functions: 

X iii 0 ~ ui 
X 

(C.l) = 

z 0 iii w. z l l. 

where 
1 

iii = ili = -(1 + ~~.)(1 +'T]T].) 
X z 4 l. l. 

and T]. and ~- are the local coordinates corresponding to node i. 
l. l. 

The displacement field describes the w displacement com-

ponent by shape functions with cubic variation in the ~-direction 

and a linear variation in the T]-direction. The displacement field 

associated with the local derivatives at the nodes is described by 

cubic shape functions: 

u 

(C.2) 

z 
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where 

i = ..!.(1 + ".) (1 + 'T]'T].) 
li 4 1 . 1 

and 

or the local derivative at node i. 

Using the chain rule, the local derivatives can be expressed 

in terms of the global derivatives at the node under consideration: 

(C.3) 

However, since there are no strain components in the nodal 

-vector,; must be expressed from the given displacement field in 

terms of the given nodal degrees of freedom: 

Ow = ow. ~+ ~ . .Qy 
oY a' oy o'Tl oy 

(C.4) 

Substitution of C.4 into C.3 and evaluating at each node, 

(~) can now be expressed in terms of (Ow) and w.: 
l;."'a i ox i l. 
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u -[ :li :J 
u. 

0 
1 

w. (C.S) - 1 

iTi 
8 . 

w 

X1 

where 

- - -
iTi = iTi + T]i [FTl-j iRj + FTlk iRk] (C. 6) 

iRi = FT2 iRi (C. 7) 

(C.8) 

FCT = det J + J 21 J 12 

with j = 1, 2, 2, 1 and k = 4, 3, 3, 4.for i = 1, 2, 3, 4 respec-

tively. J 11 , J 12 , J 21 are the components of\the associated Jacobian 

. matrix J. 

The strain field can now be defined by diff7rentiation of 

the displacement field: 

€ 
X 

€ y 
= 

oi 
1 

ox 

0 

oi 
---2:. 
oy 

0 

a iT 
oy 

. oiT 
ox 
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aiR 
Oy 

.! oiR 
2 ox 

u. 
1 

w. 
1 

8 . 
X1 

(C.9) 



or 

(C.9a) 

From the definition of the stiffness matrix in Section 

1.3.2, 

[k] = J . [T]T [D] [T] dA 
A 

The stiffness coefficients are then evaluated by the 

Gaussian quadrat~re rule .. 
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11. NOMENClATURE 

The following symbols were used in the text and appendices: 

A. Capital Latin Letters (matrices and scalars) 

[A] = Matrix of displacement functions 

A 

A 
s 

[B] 

c 

C ,C ,C ,C 
ll 12 2l 33 

[D] 

[D] s 

D. F. 

DFt 

DF90 

E, E , 

E s 

{F } e 

l 
E 

2 

evaluated at the nodes 

= Area of a triangular element 

= Area of sub element i in a triangular 

element 

= Cross section area of stiffener element 

= Matrix of differentiated displacement 

functiqns 

= Curvature in a stiffener element 

= Material constants 

=· Elasticity matrix relating generalized 

stresses to generalized displacements 

= Elasticity matrix for the stiffener 

element 

= Distribution factor 

= Dist~ibution factor in a skew bridge 

= Distribution factor in a right bridge 

= General and principal modulus of 

elasticity 

= Stiffener element modulus of 

elasticity 

= S~atically equivalent force vector due 

to distributed loads 
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I 

[F } 

F . ,F . ,F . ,M . ,M . 
X1 Y1 Z1 X1 Y1 

G, G 

G 
s 

H 

I 

I 
s 

2 

J ,J ,J ,J 
11 12 21 22 

[K] 

L 

[M] 

M ,M ,M ,M ,M 
x y xy 1 2 

N ,N ,N ,N ,N 
x y xy 1 2 

M ,M 
u uv 

Vector of element nodal forces 

= Applied force vector associated with 

external nodes 

= Applied force vector associated with 

internal nodes 

= Statically equivalent force vector 

due to concentrated load 

Components of element nodal forces 

[F.}. 
1 

General and second principal shear 

moduli 

Stiffener element shear modulus 

Stiffener to slab stiffness ~atio; 

(EI) . I (EI) 
. st1ffener slab 

Integrand expression 

= Moment of inertia of stiffener element 

about reference plane 

= Components of Jacobian matrix 

Global stiffness matrix 

= Bridge span length, stiffener element 

dimension 

= Matrix of displacement funct~ons 

Generalized forces in stiffener element 

Cartesian and principal plate moments 

Cartesian and principal in-plane 

Moment resultants in the direction of 

skew 
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PCTR 

PCTR(EXT) 

PCTR(BOX) 

[R] 

s 

s s 

[T] 

u, v 

w c 

W.,W. 
1. J 

= Percent reduction in the distribution 

factor for interior !-beams 

= Percent reduction in the distribution 

factor for exterior !-beams 

=Percent reduction in-the distribution 

factor for interior box-beams 

= Global force vector 

= Beam spacing 

= First moment of the stiffener area 

with respect to the reference plane 

= Transformation matrix 

= In-plane strain function 

= In-pla~e displacement at distance z 

from the reference plane 

= Bridge curb to curb width 

Weight coefficients 

B. Small Latin Letters (matrices and scalars) 

a, b = Web element dimensions 

a. ,b. 
]. ]. 

d 

d. 
]. 

e 

= Projected dimensions on x and y axes 

= Stif-fener element depth; distance from 

the centroid of a truck wheel load to 

the drive wheels 

= 2A/ 1-. 
]. 

= Eccentricity of the centroid of the 

stiffener element cross section to the 

plane of reference 

= In-plane displacement function 
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i,j,k,.R, 

[k] 

k k k 
ev' ve' ee 

[k] 
s 

[k]t 

' [k ] 

.t. 
~ 

m 

n 

n. 
~ 

P(x,y), q 

= Stiffener element displacement function 

= normal distance of node i to side .R,i 

= Node or sub element number 

= Element stiffness matrix 

= Partitioned matrices of the element 

stiffness matrix associated with 

external and internal nodes 

= Submatrices of the element stiffness 

mat:t"ix associated with displacement 

and strain formulations 

= Submatrices associated with in-plane 

and out-of-plane behavior 

= Stiffener element stiffness matrix 

= Stiffener element stiffness matrix 

for torsional behevior 

= Transformed element stiffness matrix 

= Length of side i in a triangular element 

= Ratio of shear modulus G to elastic 

modulus E 
2 

2 

= Order of interpolation function; 

principal modulus of elasticity ratio., 

E ./E 
~ a 

= Normal distance of a point i to side 

.R,. in a triangular element 
~ 

= Distributed load intensity 

= Consistent force vector associated with 

the displacement formulation 

= Global displacement vector 
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(r } 
s 

(r } e 

(r } 
0 

u,v,w 

x,y,z 

= Element nodal displacements 

= Sub element nodal displacements 

= Stiffener element nodal displacements 

= External node displacements for plate 

element 

= Internal node displacements for plate 

element 

= Displacement components 

= Components of the element nodal 

displacements 

= Nodal displacements at exterior nodes 

· - Nodal displacements at interior nodes 

= Cartesian coordinates 

= Cartesian coordinates of node i 

C •. Capital Greek Letters (matrices and scalars) 

r 

[\P] 

= Shear deformation parameters 

= Matrix of interpolation or shape 

functions 

= Interpolation functions for a triangular 

element in terms of the external degrees 

of freedom 

= Sub element i interpolation function 

= Strain interpolation functions evaluated 

at the nodes 
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~Ri'~Ri 

[~ .] 
11 

= Strain interpolation function for the 

stiffener element evaluated at the 

nodes 

= Twist interpolation function for the 

stiffener element evaluated at the 

nodes 

= Interpolation functions associated 

with the external nodes 

= Interpolation functions associated 

with the internal nodes 

= Curvature interpolation functions 

[ i(i)] evaluated at the nodes 

= Shape functions associated with the 

global nodal derivatives 

= Shape functions associated with the 

local nodal derivatives 

= Strain shape functions describing the 

variation.of strains 

= Triangular sub element strain inter

polation functions describing the 

variation of curvature 

= Stiffener strain interpolation function 

describing the variation of twist 

= Geometric shape functions 

= Linear shape function 

= Quadratic shape function 

= Linear shape functions associated 

with nodes i 
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[ (i)] = Matrix relating curvature components 

to nodal degrees of freedom 

D. Small Greek Letters (matrices and scalars) 

{a} = Generalized coordinates 

~ = Angle measured from the global x-axis 

9 .,9 .,9. 
X~ y~ ~ 

v,v 
2 

[cr} 

'T" 
xy 

in the direction of which u displaces 

= Shear strain 

c:: Strain field 

= Vector of nodal strains 

=.Normal strains 

= Local coordinates 

=·Non-dimen~ional nodal coordinates 

= Rotations about the global x and y 

axes 

= Nodal rotations 

= di/.ti 

= 1 - A.i 

= Poisson's ratio 

= Stress field 

= Normal stresses 

= Shear stresses 

= Skew angle, angle of twist 

= Interpolation functions in terms of 

the nodal out-of-plane displacements 
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I. 

w ' .... 

E. Element Designation 

ACM 

CST 

LCCT-12. 

LCCT-11 

LSE 

M 

p 

Q-19 

Q8Dll 

Q8SP12 

WK 

Angle from the global x-axis about ~vhich 

8 rotates 
X 

Local derivative at node i 

~ Adini, Clough and Melosh plate bending 

element 

Constant strain triangle in-plane 

element 

~ Linear curvature compatible triangle 

with 12 degrees of freedom 

Linear curvature compatible triangle 

with 11 degrees of freedbm 

~ Linear strain equilateral 

Melosh plate bending element 

Pappenfuss plate bending element 

~ Quadrilateral plate bending element 

with 19 degrees of freedom 

Basic 8 degree of freedom in-plane 

element with 3 additional internal · 

degrees of freedom 

~ Basic 8 degree of freedom in-plane 

element with 4 additional nodal 

rotations 

~ Wegmuller and Kostem plate bending 

element 
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