
Lehigh University
Lehigh Preserve

Fritz Laboratory Reports Civil and Environmental Engineering

1970

Bearing capacity of concrete blocks, December
1970. (71-17)
W. F. Chen

S. Covarrubias

Follow this and additional works at: http://preserve.lehigh.edu/engr-civil-environmental-fritz-lab-
reports

This Technical Report is brought to you for free and open access by the Civil and Environmental Engineering at Lehigh Preserve. It has been accepted
for inclusion in Fritz Laboratory Reports by an authorized administrator of Lehigh Preserve. For more information, please contact
preserve@lehigh.edu.

Recommended Citation
Chen, W. F. and Covarrubias, S., "Bearing capacity of concrete blocks, December 1970. (71-17)" (1970). Fritz Laboratory Reports.
Paper 2024.
http://preserve.lehigh.edu/engr-civil-environmental-fritz-lab-reports/2024

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Lehigh University: Lehigh Preserve

https://core.ac.uk/display/228628828?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://preserve.lehigh.edu?utm_source=preserve.lehigh.edu%2Fengr-civil-environmental-fritz-lab-reports%2F2024&utm_medium=PDF&utm_campaign=PDFCoverPages
http://preserve.lehigh.edu/engr-civil-environmental-fritz-lab-reports?utm_source=preserve.lehigh.edu%2Fengr-civil-environmental-fritz-lab-reports%2F2024&utm_medium=PDF&utm_campaign=PDFCoverPages
http://preserve.lehigh.edu/engr-civil-environmental?utm_source=preserve.lehigh.edu%2Fengr-civil-environmental-fritz-lab-reports%2F2024&utm_medium=PDF&utm_campaign=PDFCoverPages
http://preserve.lehigh.edu/engr-civil-environmental-fritz-lab-reports?utm_source=preserve.lehigh.edu%2Fengr-civil-environmental-fritz-lab-reports%2F2024&utm_medium=PDF&utm_campaign=PDFCoverPages
http://preserve.lehigh.edu/engr-civil-environmental-fritz-lab-reports?utm_source=preserve.lehigh.edu%2Fengr-civil-environmental-fritz-lab-reports%2F2024&utm_medium=PDF&utm_campaign=PDFCoverPages
http://preserve.lehigh.edu/engr-civil-environmental-fritz-lab-reports/2024?utm_source=preserve.lehigh.edu%2Fengr-civil-environmental-fritz-lab-reports%2F2024&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:preserve@lehigh.edu


BEARING CAPACITY OF CONCRETE BLOCKS 

by 

W. F. Chen1 

and 

S. Covarrubias2 

ABSTRACT 

Theoretical and experimental results are presented for the 

bearing capacity of concrete blocks with an axially or eccentrically 

located cable duct and axially or eccentrically loaded by two rigid 

punches. The solutions have been obtained using the concept and the 

theory developed recently by Chen and Drucker. The agreement between 

the theory and experimental results is satisfactory. These solutions 

should provide a better understanding of the bearing strength of the 

anchorage zones of post-tensioned concrete members. 
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1. INTRODUCTION 

The problem of the end bearing of a post-tensioned concrete 

beam may be idealized and simplified to the problem of a circular cyl-

indrical concrete block or a square prismatic concrete block with a 

longitudinal cable duct loaded by two circular or two square punches 

applied on the cable duct at both ends (Fig. 1). A complete elastic 

solution to the problem under the conditions of axial symmetry has been 

obtained by Sundara Raja Iyengar and Yogananda [1]. The three-dimen-

sional punch problem (Fig. 1) is complicated and probably not possible 

for an elastic-plastic analysis, since such an analysis requires the 

basic knowledge of the stress-strain relations for concrete in the 

elastic as well as the inelastic range. No such general relations have 

been determined as yet for inelastic concrete. However, as in pre-

vious work [2] on the bearing capacity of concrete blocks, the limit 

theorems [3] of the generalized theory of perfect plasticity can be 

used to determine upper and lower bounds for the maximum bearing capacity 

of the problem. 

In the following work, only the upper bound theorem of limit 

analysis is employed to obtain the bearing pressure which can be applied 

by circular and square punches. The first problem to be considered under 

this approach is the incipient collapse of a circular cylinder or a square 

block with a co-axial cable duct compressed by two forces applied centrally 

through two circular or square punches (Fig. la). The second is to extend 

this result to obtain the solution of a block with an eccentrically lo-

cated cable duct and eccentrically loaded by two rigid punches (Fig. lb) . 
. 

4 
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; Since the lower bound theorem of limit analysis is not con­

sidered in the present analysis, the solutions so obtained can at best 

give only upper bounds to the problem. However, the fact that the upper 

bound solutions obtained in Ref. 2 is found to be very close to the cor­

rect value, suggests that the same is also ture for the more general 

case of the bearing capacity problem described in the present paper. 

This paper contains a theoretical and experimental analysis 

of the generalized bearing capacity problem, as shown in Fig. 1. The 

theoretical part of the analysis includes upper bound calculations of 

the bearing pressure for short as well as long concrete blocks. Experi­

ments were performed to determine the bearing capacity of the concrete 

blocks with various punch eccentricity ratios and to compare their re­

sults with the theoretical upper bound values. Since calcualtions of 

the upper bound solutions are sometimes laborious, simple approximate 

evaluations of the general bearing capacity problem for practical pur­

poses are proposed. 

2. UPPER BOUND THEOREM OF LTI-1IT ANALYSIS 

The upper bound theorem of limit analysis [3] states that a 

concrete block will collapse if, for any assumed failure mechanism, the 

rate of work done by the applied loads exceeds the internal rate of 

dissipation. Equating external and internal energies for any such mech­

anism thus gives an upper bound on the collapse load. 

As stated in the upper bound theorem, it is necessary to 

compare the rate of internal dissipation of energy with the rate of 
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work of external forces. The dissipation of energy, DA' per unit area 

due to a plastic shearing is, therefore, of primary importance. The 

dissipation function, DA, can be derived in a straightforward manner 

on the not-so-justifiable assumption of perfect plasticity. Herein, as 

in Ref. 2, the concrete may be idealized as perfectly plastic with a 

Mohr-Coulomb failure surface as the yield surface in compression and a 

small but non-zero tension cutoff (Fig. 2). No effort is made here to 

restate the fundamental arguments necessary in order to justify the 

validity of the theory of Ref. 2. Already available are results from 

a research program for the bearing capacity of some concrete blocks 

[4,5,6,7,8]. In Fig. 2, f' and f' denote the simple compression and 
c t 

simple tensile strength, respectively, C is cohesion and ~ is the angle 

of internal friction of the concrete. The vector ow representing slip 

velocity with tangential slip and normal separation velocity components 

cu and ov, across the failure surface, is normal to the yield curve [9]. 

It can be shown that the dissipation function has the form [2] 

in which 

=ow {fc' 1- sine+ f' sine- sin~) 0
A \ 2 t 1 - sin~ 

tane = ov > tan~ 
ou -

(1) 

(2) 

For the particular cases of simple tensile separation and simple sliding 

for which 6 = rr/2 and 6 = ~, respectively, Eq. (1) takes the simple forms 

D = f' ~v A t v 
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and 

= f' 1 - sin~ ow 
DA c 2 for e = ~ (4) 

3. CONCRETE BLOCKS WITH A CONCENTRIC CABLE DUCT 

3.1 Short Circular and Square Blocks (Fig. 3) 

Figure 3 shows a failure mechanism consisting of simple ten-

sian cracks and truncated cone or truncated pryamid rupture surfaces 

directly beneath the punches. The two truncated cones or pryamids of 

angle 2a move toward each other as rigid bodies, and displace the sur-

rounding material horizontally sideways. The relative velocity vector 

ow at every point on the truncated cone or pryamid surfaces is inclined 

at an angle e to the surfaces. The compatible velocity relations are 

also shown in Fig. 3 from which the rate of internal dissipation of 

energy on the surfaces of discontinuity can be calculated easily. Since 

the sliding surfaces of the truncated cones or pryamid involve shearing 

and separation, the rate of dissipation of energy is found by multiplying 

the area of each truncated cone or pryamid surface by the dissipation 

function, DA, as given by Eq.(l). To this internal rate of dissipation 

has to be added the rate of dissipation obtained as the product of the 

area of the discontinuity surfaces for simple tensile cracks multiplied 

by f~ times the separation velocity ov (Eq.3). It is found:, by equating 

the rate at which work is done by the forces on the punches to the rate 

of the total internal dissipation of energy, that the value of the upper 

bound on the average bearing pressure over the net bearing area is 
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u 

q 

1 - sine f' + sine - sin~ f' 
= ----~2--______ c~----~1~-~s~i~n~~----~t 

sinO' cos (o- + e) 

tan(o- + ( 
h b c 

e) - (- - -) -a a a 
c a ·~· 1 .;: ' (1 - ;> cot~ 

+ c 
1 - (-) 

a 

(5) 

1he upper bound has a minimum value when e = ~ and Q' satisfies the 

condition 

cot a = tanq> + secq> ~ 1 + 

h b c - (- - -) cos~ a a a 

1 - sincp 
2 

f' 
c 

fT 
t 

valid for c h 
(1 - -) coto- < --2 a - a 

and Eq. (5) is reduced to 

- (1 -

q 
u = [~ (~ - ;) tan(2a + q>) - (1 - ;/] t; 

c a 
1 - (-) 

a 

2 
}1/a 

i> sin~ 

(6) 

(7) 

(8) 

For the special case for which c/a = 0, Eqs.(S) to (8) reduce to the 

equations obtained previously by Chen and Drucker [2]. 

The value of qu/f' is plotted against h/2a in Fig. 4 for a 
c 

punch for which b/a = 4 and c/a = 0. Experimental results are denoted 

by small circles in the figure. The theoretical curve computed for 

~ = 20° and f' = 12 f' is found to be in good agreement with the results c t 

of tests. Details of the tests will be discussed later. 
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3.2 Long Circular and Square Blocks (Fig. 5l 

Mechanism 1 for a short block may be modified to Mechanism 2 

for a long block as shown in Fig. 5. Instead of simple tensile cracks 

along the total height of the block, eight planes of sliding all inclined 

at an angle of ~ to the vertical are assumed. The two punches move 

towards each other with a relative velocity, 2~, and are accommodated 

by the sideway movement·s, l:l, of the eight surrounding rigid blocks, 

inclined at an angle of~ to the horizontal. These planes of sliding 

involve shearing and separation so that Eq.(l) may be used to compute 

the rate of dissipation of energy per unit area. The total dissipation 

of energy in the block can then be found by adding to this rate the 

rates of dissipation at other discontinuity surfaces, i.e., those due 

to simple tensile cracks plus truncated cone or pryamid rupture surfaces. 

Equating the rate at which work is done by the force on the punches to 

the total rate of energy dissipation in the block, it is found that an 

upper bound on the average bearing capacity of the punch loading is 

c 2 f I u (1 - -;) 

q = ---------
1 - (£.)2 

a 

(1 - since) cosy c 
sincr cos (cr + ~ + cp) 2 

where 

a a sin(cr + cp) (~- £/ { 
+ -1 --_~(...;;i;...)_;a_ -s~i-n-~-c-o-s.._(~cr-'-+....J...-'.~-+-cp-)~ f ~ 

1 - cos(6 - y) 
2 

+ f' 
t 

cos(B _ y) _ . ~\ cosy sin(cr + cp) f~ f! (cr,~) 
--~~l---s~i~n-cp~s~1~n.wj+~[-l-----(;-)~;a~]~c-o_s_(_cr_+ __ y-'-+--cp_)_ 
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2 

= c!?. - £.> 
a a 

b c c 
cot~ + (28- a - 1) (1 - -;> cota (10) 

This is an upper bound solution for a square punch on a square 

block or a circular punch on a circular cylinder. For the special case 

of no cable duct, c/a = 0 and Eq.(9) reduces to the equation obtained 

previously by Chen and Drucker [2]. The upper bound solution has a 

minimum value when 0', e. and y satisfy the conditions 

u 
.QL = 0 oa , ~= 0 ~ 0, 

u 
and~= 0 oY (11) 

Solving these equations and substituting the values of a, e, 
and y thus obtained in Eq.(9), yields a least upper bound solution for 

the bearing capacity problem. The results of these computations are 

presented in Table 1 for~= 20° and f'/f' = 10 and 14, respectively. 
c t 

The critical values of ~ and y are seen to be insensitive to the dimen-

sion ratios b/a and c/a but depend mainly on the concrete strength ratio 

f I /f I • 
c t 

The upper bounds, given by Mechanism 1 and Mechanism 2, are 

plotted in Fig. 6 for values of f~ = 10 f~, b/a = 4, h/2a = 10, and 

~ = 20°. (Note: q =load/total punch area). It can be seen that the 

concrete bearing strength is relatively insensitive to c/a ratios of 

the cable duct when these are very small, but the strength is consider-

ably reduced when the c/a ratios are large. When h/2a 2: 12, MP.cha.nism 2 

almost always governs. The concrete blocks with h/2a > 12 can therefore 

be considered as long blocks . 
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lj.. CONCRETE BLOCKS WITH AN ECCENTRIC CABLE DUCT -
SMALL ECCENTRICITY 

4.1 Short Circular and Square Blocks .<Fig. 7) 

Mechanism 1 in Fig. 3 can be modified to provide an upper 

bound for the collapse pressure for the case of a block with an ec-

centrically located cable duct and eccentrically loaded by two rigid 

punches. Only the plan view of the modified mechanisms is shown in 

Fig. 7. For a circular block, it is convenient to approximate the cir-

cular punch by a regular polygon of n = 8, 16, 32, ...• Mechanism 3, 

shown in Fig. 7, is for n = 8. 

Following the same procedure described for Mechanism 1, the 

bearing capacity for a circular block is found to be 

u 
q 

TI TI 
(1 - sincp) tan- f' 4 tan(a + cp) tan-

= ~ ~------~----~n- _£ + n 
n sina cos (a + cp) 2 [ c 2] 

TI 1 - (-;) 

{ 

b h iT n/4l --cos- L: 
a a n i=l 

c h 
a a 

u 
The value of q is minimum when 

cota = tancp + seccp 1 + 

h. 2. coscp cos!!. ~4 
[ 1 

a a n i=l 

f' n c 8 fT (1 - sincp) 
t 

(2 i - 1) 
n 

n c a 
- 4 (1 - ;> sincp 
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and Eq.(l2) reduces to 

u tan~ tan(2a + cp) ~b h TT n/4 [ 
q = - - cos- L: 1 

1 - (~·/ a a n i=l 
a 

ch n c 2 ~ 
8 a- i (1- ;I cot(2a + •> Jf; 

valid for 
h 

cota < -2 - a 

(2 i - 1) 
n 

(14) 

(15) 

By comparing the values of the average bearing pressure com-

puted from Eq.(l4) for n = 8 and n = 64, respectively, it is found that 

the bearing pressure is not sensitive to the value of n, and thus n ~ 8 

may be considered as a suitable value in Eq.(14) for all practical pur-

poses. 

Similarly, the bearing capacity for a square punch on a square 

block is found to be (Mechanism 4, Fig. 7) 

hl b c eb] f' - 2(-- -)- -- tan(a + cp) f' 
q u = _.....;;1~-....;;s-"i~n;..~,cp_--:- _£ + a a a b a _ _ ....! · 

sina cos (a + cp) 2 1 _ (£) 2 2. 
a 

2 

(1 - ;) 
------~c-2-- cota tan(a + cp) f~ 

1 - <;> 

(16) 

u The value of q is minimum when 

lh[ b c eb] -- 2 (- - -) - - - coscp + 2a a a ba 

r 2] 1 . f' 2 
1 _ (£) - slncp ~ _ (l _ £) 

• a 2 f~ a 

(17) 
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and Eq.(l6) reduces to 

u 
q 

h [ b c f' -2(-- -) 
t a a a 

=T 
e b J - b ; tan(2a + cp) 

c 2 
1 - (-) b 

valid for c h (1 - -) cote¥ < -2 a - a 

4.2 Long Square Blocks (Fig. 8) 

c 2 
- (1 - ;> 

(18) 

(19) 

A direct extension of the eccentrically loaded situation of 

Mechanism 2 (Fig. 5) for a square block is shown in Fig. 8 (vertical 

section only). Mechanism 2' is evident in Fig. 8. It is found that 

the equation for computing the bearing capacity pressure remains 

identical in its form as in the previous solution (Eq.9), but the 

function f (a,~) defined by Eq. (10) must be substituted by 
l 

f (a,~) lb e c 1] c = - (2 - -) - (1 - -) COte¥ 
2 a b a a 

+l l<~ c 2 b 
(1 - e c ] -) + -) -- cot~ 2 a a b a 

~ 

5. CONCRETE BLOCKS WITH AN ECCENTRIC CABLE DUCT -
LARGE ECCENTRICITY 

(20) 

Mechanisms 5 through 8 are shown in Figs. 9 and 10 and need 

no detailed explanation. The procedure in obtaining the bearing ca-

pacity equations for various mechanisms is identical to the previous 

cases, and, hence, only the final results are recorded here for the 

sake of brevity. 
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5.1 Short Circular Blocks (Mechanism 5, Fig. 9) 

u 
q 

f' = __ c ~--~--~~~~K ________ _ 

TT [ 1 -

+ 
f I 

t 
TT 

in which 

2 
K = 1 - 2(~) + 

a 

C h r C 2 

3 -;; -;; - 2 : (1 - -;;> 
I 

jl- (;) 
2

] cot (a + qJ) 
.I l 

e b 
b a 

b e c 
+ -;; (l - b) - a cot a 

(21) 

( 

[ 1 -

·1/2 r 1/2 : ·1/2} +.!. (£.) 2) I!. -1 (2..) 2 -' t 1 (~)2 -1 
ll - (~) 2 - sin cos sin 2 a ' 2 b b 

l 
(22) 

The value of qu is minimum when 

~ota = tanqJ + sec<pl1 + 
I 
I 

- _....-._l ~~~--·~/2 [ 

ll/2 
h b h b e 21 h c ;-;;+-;;-;; 2- (b) J --3 -;;; 

. K (1 - sin<p) sec<p : i -2 [ ( 1 - ~) 2 

+ ~ (1 - ~) - ~ J tan<p J 
(23) 

and Eq. (21) can be reduced to 
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u 
q 

fl 
t 

=-
11 

h valid for cota < -2 (Eq.l4). 
- a 

c h 
- 3- - tan(2a + ~) -

a a 

5. 2 Short Square Blocks (Mechanism 6, Fig. 9) 

(24) 

f 1 _3 _h (-b __ c) 1 h b e (l c)a b (l e) c J - -- - - - - -a + -a - b - -a cota 
+_! __ 2_a ___ a~-=a---~2 __ a __ a_b~~~------------------------~----

2 r 1 _ (;)a 

The value of qu is minimum when 

cota =tan~+ sec~~l + 

h [ b c e b] --- ~ (- - -) - -- cos~ 2a _ a a b a _ 

and Eq.(26) can be reduced to 

(25) 

+ ~ (1 - ~) - ~] sin~ 
(26) 

f 1 3 (b c) e b h (2 ) (l c)a + ~ (l _ ~) _ .s_ 
u a - a - b a 28 tan a + ~ - a a b a 

q = :r~~---~--~~~~------c~-----------~----~----~--_;~ 
1 - <&> 

(27) 

valid for cota ~ ~ (Eq,l5). 
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5.3 Long Circular Blocks (Mechanism 7, Fig. 10) 

The velocity vector, ow, of the volume A-B-D-C-E is inclined 

at an angle ~ to the two sliding surfaces A-B-E and A-C-E, respectively 

(or at an angle~ to the diagonal line A-E). The lineA-E makes an angle 

~ to the horizontal .. 

u 
q 

f~ (1 -
= 2TT 

+ (1 
e b 

-b-;; 

e b 
(2 -b a 

l/2 

sincp) [1· + c sc2 0 tan2 eJ { 0 
sin(~ - ~) sin~ cot 

_l 
sin 

sino) 

(~-~sino)] b b 

l (~):a - (1 -
e b 
b a 

e b 
sin&) cos&) b a 

sino) 
2

] 

l/:a 

in which the angle ~ must satisfy the geometric condition 

(28) 

simp = [tan~ - tan(~ - ~) ] cos(~ - ~) l sin tan-' (sin& cot~)] 
(29) 

The upper bound solution has a minimum value when ~ and o 

satisfy the conditions 

u 

~=0 and 
u 

Es.:. = 0 
00 

(30) 

Solving these equations and substituting the values of ~ and 

o thus obtained into Eq. (28), yields a least upper bound solution·. Thus, 

-13-
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for a punch for which b/a = 4 and~= Z0°, for example, the upper bound 

has the minimum value 3.31 f 1 or Z.58 f 1 when ~' o, and ~ are approxi-
c c 

mately 60°, 60°, and ZZ.4° for e/b = Z/3 or 60°, 55°, and Z3° for 

e/b = 3/4, respectively. 

5.4 Long Square Blocks (Mechanism 8, Fig. 10) 

f I (1 + !?..) ll + ~ (1 ~)] (1 - sin~) (Z + tan2 ~) u c a q =- (31) 8 
(1 + cos2 ~- l/2 

Zsin2 ~) tan~ - Zsin~ 

in which ~ must satisfy the geometric condition 

sin~ 
= /Z sincp 

cos~ [z + tan2 ~t/2 
(3Z) 

The upper bound has a minimum value when it satisfies the con-

u 
dition 0q /o~ = 0. Thus, for example, for a punch for which b/a = 4 and 

~ = Z0°, the upper bound has the minimum value near the point ~ = 60° 

and~= Z5.6°. The value is 4.5Z f 1 for e/b = Z/3 and 3.85 f 1 for 

e/b = 3/4. 

c c 

Figure U shows the values of the qu /f 1 ratio for square blocks 
c 

with various eccentricity ratios e/b. The results of calculations made 

with various mechanisms are calculated for concrete with f 1 = 10 f 1 and 
c t 

~ = Z0° and for a punch with b/a = 4 and c/a = 0. 

Tresca 1 s yield criterion for metals may be considered as a 

special concrete for which ~ = 0°. Equations (28) through (32) then 

reduce to the upper bound solutions obtained previously [10) for the 

plastic indentation of metal blocks by flat punches. 

-14-
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6. COMPARISON WITH TEST RESULTS 

6.1 Present Test Results 

The concrete used for the tests consisted of 1 cement to 

1.6 sand to 1.5 curshed aggregate (nominal diameter, 1/2-inch) to 

0.4 water by weight. In order to increase the tensile strength and 

ductility of concrete, 2 percent in volume of l-inch long wire was 

added into and mixed randomly with the concrete, following the con­

clusions reported in Ref. 7. 

Specimen diameter and punch diameter were constant at 6 in. 

and 1.5 in., respectively. The height of the cylinder was varied from 

4 in. to 10 in., and three different eccentricity ratios, e/b = 0, 1/3, 

and 2/3, were used in tests. The specimens were tested at an age of 

21 days in a Baldwin Hydraulic Testing Machine. All specimens were 

moisture-cured at 75°F for two weeks to minimize drying out effects. 

A spherical seat.was placed on top of the top short steel cyl­

inder (punch) and the bottom short steel cylinder was supported directly 

on the steel bed of the testing machine (Fig. 1). Loads were applied 

to the specimens continuously until failure occurred at a rate about 

1 kip every 10 sec. The control tests were carried out on standard con­

crete cylinders. The average direct tensile strength f~ was estimated 

to be 0.8 times the indirect tensile test (splitting)~ 

Test results and upper bound solutions are summarized in 

colum~s 7 and 8 of Table 2. The critical mechanism gives the 

lowest value of the bearing capacity pressure among the mechanisms 

-15-



considered, is listed in parentheses in column 8. The ratios of cal-

' 
culated to measured strengths in column 10 of Table 2 show that the 

upper bound solutions predict the test results remarkably well for the 

case e/b = 0, and reasonably well for e/b = 1/3. The ratios range 

from 0.98 to 1.03 for e/b = 0 and 1.07 to 1.30 for e/b = 1/3. For the 

large ratio of e/b = 2/3, the upper bound solutions may over-estimate 

the bearing capacity by as much as 86 percent. This difference may be 

explained by the fact that local plastic flow of concrete for the case 

of large ratios of e/b is considerably less than that of small ratios 

of e/b, because hydrostatic pressure (or lateral confinement of the 
I 

material due to the hoop stresses) around the punch cannot be induced 

high enough to permit the application of limit analysis. 

6.2 Hawkins' Test Results [11] 

The test results reported in Ref. 11 and those calculated 

from the present upper bound solutions are compared in Table 3 for 

specimens with h/2a ~ 8 and b/a ~ 4. The direct tensile strength of 

the concrete used in the theoretical calculations is estimated to be 

f' /12. The ratios of calculated to measured strengths listed in column 
c 

8 show that the upper bound limit analysis for a square punch on a 

square block predicts the results reasonably well. Although all the 

tests correspond to the extreme eccentricity ratio e/b = 1 - a/b, yet 

the calculated to measured strengths are in error only for the range 

from 1.19 to 1.53. Moreover, it is reported in Ref. 5 that the load 

carrying capacity for a double punch specimen (Fig. 1) is higher than 

that of a. similar specimen which is supported directly on the steel bed 
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of a_ testing machine, as was the case in Hawkins' tests. This would 

suggest that a better correlation between the theoretical predictions 

of upper bound limit analysis and the results of double punch tests 

may be expected . 

. 6.3 Approximate Solutions 

The bearing capacity of a block with an eccentric punch load 

(Fig. lb) may be estimated directly from the solution of the axially 

loaded situation (Fig. la) by assuming that the rigid punch load acts 

only across an effective block width 2b', and this width forms a con­

centric block with the punch. Thus, for example, for the case of a 

circular punch on a circular cylinder, this effective cylinder width 

may be taken to be b' = b - e as shown by the dashed circle in Fig. 12. 

The material outside the radius b' is assumed to have no effect on the 

bearing capacity of the cylinder. These approximate solutions are sum­

marized in columns 9 and 11 of Table 2. The observed bearing capacity 

is seen to be in good agreement with the approximate theoretical esti­

mates. 

7. CONCLUSIONS 

The solutions presented here are a continuation of an in­

vestigation reported in Ref. 2. The problem considered here is closely 

related to the bearing strength of the anchorage zone of a prestressed 

concrete beam. More·important, these solutions provide additional 

theoretical and experimental evidence as to the validity and lim.itations 

of the theory of perfect plasticity as applied to bearing capacity 
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problems in concrete. In the analysis, it was found that the upper 

bound theorem of limit analysis may be used to predict the bearing 

strength of an eccentrically loaded concrete block. However, when 

the eccentricity ratio of the punch load is large, crack propagation 

does enter for such a situation. An appropriate fracture mechanics 

for concrete is needed. Nevertheless, the solutions obtained herein 

still provide a reasonable upper bound for fractured concrete. 
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9. NOTATION 

half-length of the side of the square punch or 

the radius of punch 

half-length of the side of the square block or the 

radius of the circular cylinder 

half-length of the side of the square cable duct or 

the radius of the circular cable duct 

cohesion 

ratio of energy dissipation per unit area, Eq.(l) 

concrete cylinder strength 

direct tensile strength 

block or cylinder height 

bearing pressure over the total punch area 

-18-



• 

, 

u 
q 

a,j3,y 

ow 

ou' ov 

cp 

e 

bearing pressure over the net bearing area 

angular parameters which define various mechanisms 

velocity variable of a mechanism 

discontinuous velocity across a failure plane 

discontinuous tangential and normal velocity of ow 

friction angle of concrete 

angle between the velocity vector ow and its com-

ponent ou, Fig. 2 

REFERENCES 

1. Sundara Raja Iyengar, K. T. and Yogananda, C. V. 
A THREE-DIMENSIONAL STRESS DISTRIBUTION PROBLEM IN THE AN­
CHORAGE ZONE OF A POST-TENSIONED CONCRETE BEAM, Magazine 
of Concrete Research, Vol. 18, No. 55, pp. 75-84, June 1966. 

2. Chen, W. F. and Drucker, D. C. 
BEARING CAPACITY OF CONCRETE BLOCKS OR ROCK, Journal of the 
Engineering Mechanics Division, American Society of Civil 
Engineers, Vol. 95, No. EM4, Proc. Paper 6742, pp. 955-978, 
August 1969. 

3. Drucker, D. C., Greenberg, H. J., and Prager, W. 
EXTENDED LIMIT DESIGN THEOREMS FOR CONTINUOUS MEDIA, Quarterly 
Applied Mathematics, Vol. 9, pp. 381-389, 1952. 

4. Chen, W. F. 
EXTENSIBILITY OF CONCRETE AND THEOREMS OF LIMIT ANALYSIS, 
Journal of the Engineering Mechanics Division, American 
Society of Civil Engineers, Vol. 96, No. EM3, Proc. Paper 
7369, pp. 341-352, June 1970. 

5. Hyland, M. W. and Chen, W. F. 
BEARING CAPACITY OF CONCRETE BLOCKS, Journal of the American 
Concrete Institute, Vol. 67, pp. 228-236, March 1970. 

6 . Chen, W • F. · 
DOUBLE PUNCH TEST FOR TENSILE STRENGTH OF CONCRETE, Journal 
of the American Concrete Institute, Vol. 67, pp. 993-995, 
December 1970. 

• -19-



• 

• 

7. Carson, J. L. and Chen, W. F . 
STRESS-STRAIN RELATIONS FOR RANDOM WIRE REINFORCED CONCRETE) 
Fritz Engineering Laboratory Report No. 370.1, Lehigh Uni­
versity, Bethlehem, Pennsylvania, October 1970. 

8. Carson, J. L. and Chen, W. F. 
BEARING CAPACITY OF RANDOM WIRE REINFORCED CONCRETE BLOCKS, 
Fritz Engineering Laboratory Report No. 370.4, Lehigh Uni­
versity, Bethlehem, Pennsylvania, December 1970. 

9. Drucker, D. C. 
A MORE FUNDAMENTAL APPROACH TO STRESS-STRAIN RELATIONS, Pro­
ceedings, First U. S. National Congress for Applied Mechanics, 
American Society of Mechanical Engineers, pp. 487-491, 1951. 

10. Chen, W. F. 
PLASTIC INDENTATION OF METAL BLOCKS BY FLAT PUNCH, Journal 
of the Engineering Mechanics Division, American Society of 
Civil Engineers, Vol. 96, No. EM3, Proc. Paper 7370, pp. 353-
363, June 1970. 

11. Hawkins, N. M. 
THE BEARING STRENGTH OF CONCRETE LOADED THROUGH RIGID PLATES, 
Magazine of Concrete Research, Vol. 20, No. 62, pp. 31-40, 
March 1968 . 

-20-



£' c 
fi t 

10 

• 
14 

TABLE 1 - MECHANISM 2 

Bearing Capacity of Circular and Square Long Blocks 
with a Concentric Cable Duct ~ = 20° 

Angle in Degrees b u c .L -a a 0! f3 "'( £' c 

2 0 22.7 57.3 -12.7 2.9 
0.6 16.0 57.3 -12.7 1.5 

4 0 14.7 57.3 -12.7 7.4 
0.6 9.0 57.3 -12.7 5.9 

2 0 22.8 49.6 -20.4 2.6 
0.6 15.4 49.6 -20.4 1.4 

--
4 0 13.9 49.6 -20.4 6.9 

0.6 8.1 49.6 -20.3 5.6 
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Min. 
h -2a 

3.6 
4.8 

6.4 
8.8 

4.0 
5.4 

7.4 l 10.4 
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I 
N 
N 
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• 

(1) (2) (3) 

Test 
f' 

c f' t 
No. ksi ksi 

1 
2 6.37 0.56 
3 

4 ; 

5 6.45 0.57 
6 

7 
8 6.39 0.55 
9 

10 
11 6.32 0.54 
12 

TABLE 2 

Bearing Capacity of Circular Punch on Circular Blocks -
* Double Punch Test 

(4) (5) (6) (7) (8) 

f' q/f 
c 

(9) l 
I h c e 

A +! fT - -
t 2a b Tests Theory+ Mech. pprox. i 

0 2.53 2.49 (3) 2.49 I 11.4 2.66 1/3 2.23 2.38 (3) 2.18 
2/3 1. 75 2.18 (3) 1.58 

0 3.10 3.19 (3) 3.19 
11.3 4.00 1/3 2.53 3.09 (3) 2.70 

2/3 1.85 2.85 (3) 1. 79 

0 3. 74 3.82 (3) 3.82 
11.5 5.33 1/3 2.93 3.70 (3) 3.08 

2/3 1. 93 3.31 (7) 2.06 

0 4.35 4.40 (3) 4.40 
11.7 6.66 1/3 3.29 4.27 (3) 3.51 

2/3 2.13 3.31 (7) 2.30 

* b/a = 4 for all specimens 

+£ 1 = 12 f 1 ro = 20° c t' ,.. 

(10) (11) 

ill. ill 
(7) (7) 

0.98 0.98 
1. 07 0.98 
1.25 0.90 

1.03 1.03 
1.22 1.07 
1.54 0.97 

1.02 1.02 
1.26 1.05 
1. 79 1.06 

1.01 1.01 
1.30 1.07 
1.86 0.87 
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TABLE 3 

Bearing Capacity of Square Punches on Square Blocks -
Hawkins' Tests* [11] 

i (1) (2) (3) (4) (5) I 

Test 2a b h e -No. i (in.) a 2a b 

I 
1 I 1.72 3.50 7.00 0. 714 I 

I 
I 

2 I 2.42 2.48 : 4.96 0.597 
I 

I I 

3 '3.00 2.00 4.00 0.500 

4 1.72 3.50 7.00 0. 714 

5 2.00 3.00 6.00 0.667 

6 3.00 2.00 4.00 0.500 

7 2.00 3.00 6.00 0.667 

8 3.00 2.00 4.00 0.500 

9 2.00 3.00 6.00 0.667 

10 3.00 2.00 4.00 0.500 

*All specimens are 6 inch cubes 

+ 
f' = 12 f 1 rn = 20° 

C t' T 

(6) 

Tests 

1. 99 

1. 75 

1.40 

1. 95 

1.77 

1.52 

1. 91 

1.71 

1.68 

1.38 
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(7) 

qjf I 
c 

'!heory+ Mech. 

2.98 (6) 

2.08 (6) 

1.91 (4) 

2.98 (6) 

2.45 (6) 

1.91 (4) 

2.45 (6) 

1. 91 (4) 

2.45 (6) 

1.91 (4) 

(8) 

..ill. 
(6) 

1.50 

1.19· 

1.36 

1. 53 

1.38 

1.26 

1.28 

1.12 

1.46 

1.39 
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Cable 
Duct 

(a) Concentric Duct 

Cable 
Duct 

(b) Eccentric Duct 

Fig. 1 Simplified Problem of the End Bearing 
in a Post-Tensioned Concrete Beam 
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MECHANISM 

2b 

au (a) Plan 

(b) Section (c) Velocity Relations 

Fig. 3 Short Circular and Square Blocks 
with a Concentric Cable Duct 
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• 

o = Experimental Data 

6 8 10 

Fig. 4 Comparison of Upper Bounds with Test Data for Two Circular Punches 
on a Short Circular Block 



(a) Plan 

h 
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MECHANISM 2 

(b) Section 

(c) 

Fig. 5 Long Circular and Square Blocks 
with a Concentric Cable Duct 
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Load qU = --------
Total Punch Area 

8 

qU 
f I ---
c -----I ---N 4 -\0 

4>•20° I 

fc= I Oft 
b/a =4 

0 0.2 0.4 0.6 0.8 

c 
a 

Fig. 6 Concrete Blocks with a Concentric Cable Duct 
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MECHANISM 3 MECHANISM 

2b 

t LlR 

(a) (b) 

Fig. 7 Short Concrete Blocks with an Eccentric 
Cable Duct - Small Eccentricity 

MECHANISM 2' 

4 

au 
(a) Section (b ) Velocity Relations 

Fig. 8 Long Concrete Blocks with an Eccentric Cable Duct- Small Eccentricity 
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MECHANISM 5 MECHANISM 6 

2b 

(a) (b) 

(c) 

Fig. 9 Short Concrete Blocks with an Eccentric 
Cable Duct - Large Eccentricity 
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MECHANISM 7 MECHANISM 8 

2b 

h 
2 
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/ 
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/ 
/ 

/ 
/ E 

/ 

Fig. 10 Long Concrete Blocks with an Eccentric 
Cable Duct - Large Eccentricity 
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f I c 
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~+ 
2a 

2b 

b/a = 4 

td =lOft' 
¢= 20° 

I ~--~--._--~--~--~--_.--~ __ _._ 
0 0.2 0.4 0.6 0.8 

e -b 

Fig. 11 Bearing Capacity of an Eccentrically Loaded 
Square Block 
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Fig. 12 Approximate Solution to an 
Eccentrically Loaded Block 
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