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ABSTRACT 

Five composite steel-concrete beams were tested under 

negative bending moment (slab in tension). The purpose of the 

tests was as follows: 

(1) To investigate the effect of the amount of longi

tudinal reinforcing steel in the slab, and 

(2) To determine whether or not it is possible to sim- · 

ulate the negative moment region of a continuous 

composite beam by using a simple span beam sub

jected to negative bending moment. 

Although five composite beams were tested only four are 

described in detail in this report. The four composite beams re

ported herein were given the following designations: CC-3F, CC-4F, 

SC-3S and SC-4S. 

All of the beams consisted of a reinforced concrete slab 

60 inches wide and 6 inches thick, connected to a W2lx62 rolled 

steel beam by 3/4 in. x 4 in. stud shear connectors. CC-3F and 

CC-4F were 50'-10 11 long continuous co.mposite beams with two equal 

spans of 25'-0. SC-3S and SC-4S were 15'-4" long. Simple span 

composite beams which were designed to simulate the negative mo

ment region of the continuous composite beams mentioned above. 

CC-3F and SC-3S had a longitudinal reinforcement percentage of 

0.61% while CC-4F and SC-4S had a longitudinal reinforcement 
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" percentage of 1.02%. All four beams were loaded to ultimate, 

however, CC-3F and CC-4F were first subjected to over 2 million 

cycles of working load. 

Based on the tests described in this report, the follow

ing was concluded: 

(1) The tensile capacity of the longitudinal steel 

reinforcement of the slab should be larger than the 

tensile capacity of the concrete alone. 

(2) Simple span beams loaded under negative moment con

ditions can be used to study the negative moment 

region of continuous composite beams. 

(3) An accurate theory is required to predict the 

stresses in continuous composite beams in which 

there are no shear connectors over a substantial 

length of the negative moment region. 
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1. INTRODUCTION 

Simple span composite bridges are quite common in most 

states, but the relatively small number of continuous composite 

bridges constructed reflects a lack of confidence in the ability 

to produce satisfactory structures of this type.. A need there-

fore exists for more detailed design specifications and a specific 

method of analysis for this type of structure. There is also the 

need for the development of design criteria which will provide 

for satisfactory control of cracking in the concrete slab and 

specification provisions to guard against fatigue failure of cer-

tain elements of the cross-section subjected to negative moment. 

The basic design criteria and procedures for propor-

tioning shear connectors in steel-concrete composite bridge mem-

bers have been developed for simple spans in recent studies at 

c1r·· Lehigh University. " These studies suggest that the above de-

sign criteria are also applicable to continuous beams. 

Continuous composite beams designed by the AASHO speci-

fications may be composite or non-composite in the negative moment 

region.C 2) It appears that in practice the majority of contin-

uous composite bridges are designed without shear connectors in 

~·: References are listed at the end of this report. 
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the negative moment region. In this case, the AASHO specifica-

tions state that additional anchorage connectors shall be placed 

in the region of the point of dead load contraflexure. The number 

of additional connectors required is a function of (l) the total 

area of the longitudin?l slab reinforcement that is continuous 

through the negative moment region, (2) the range of stress in 

the reinforcement due to live load plus impact (or 10,000 psi in 

lieu of more accurate computations) and (3) the allowable range 

of horizontal shear on an individual shear connector (fatigue re-

quirement). 

The AASHO Specifications also state that the additional 

anchorage connectors shall be placed adjacent to the point of dead 

load contraflexure within a distance equal to l/3 the effective 

slab width and placed either side of this point or centered about 

it. 

The above mentioned pilot studies confirmed the recom-

mendations suggested in Ref. 3. It was shown clearly that shear 

connectors are required to resist the force developed in the con

tinuous longitudinal reinforcing steel in negative moment regions. 

These studies showed that a force is developed in the reinforc-

ing steel even though shear connectors are omitted and the rein-

forcement is neglected when proportioning the cross-section for 

negative moment. It is ap_parent that most of this force arises 
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due to anchorage of the longitudinal reinforcing steel in the 

positive moment regions. Additional force is developed because 

the slab in the negative moment region must conform approximately 

to the curvature of the steel beam. The pilot study confirmed 

that the effect of the tension forces being applied to the slab 

is to cause cracking in the.slab throughout the negative moment 

region and overstr~ssing of shear connectors in the adjacent pos

itive moment regions due to the high anchorage forces. To reduce 

the shear connector stresses, additional anchorage connectors are 

therefore required in order to transfer the tension force in the 

longitudinal reinforcement to the steel beam. 

The pilot studies also revealed that additional study 

of all of the various factors involved in the design of the nega

tive moment region was needed. As a result, current investiga

tions are concentrating on such factors as (l) the extent to 

which connectors can be omitted in the negative moment region, 

(2) the optimum requirements for longitudinal reinforcement in the 

negative moment region with respect to fatigue behavior and slab 

cracking, and (3) the stress conditions that exist in continuous 

composite beams during the passage of vehicles.C 4 , 7 ,B) 

Initially, experimental and theoretical studies were 

carried out using two, two-span continuous composite test beams 

of the same spans and geom~try as those previously ~eported in 
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Ref. 1. The results of these studies are reported in Ref. 4. It 

was considered desirable to further study the significant vari

ables which affect the behavior of continuous composite beams in 

the negative moment region by using shorter simple span beams in

tended to simulate the negative moment region of the test beams 

reported in Ref. 4. As the first step in this parallel study, 

three simple span composite pilot beams were designed and tested 

under negative bending moment (slab in tension) to verify if the 

indicated variables could be effectively studied in this manner. 

The first two simple span test beams (each designated 

8C-38) were made identical but were tested in two different ways 

in order to determine which test set-up should be used for 8C-48 

and for future tests. Only the results from one of these test 

beams is reported herein, and in this report that beam is desig

nated CC-38. Figure 10 shows schematically the test set-up found 

to be satisfactory. The unsatisfactory test set-up was a simpli

'fication of that shown in Fig. 10 in which the composite beam with 

the slab on the bottom (instead of on top as shown in the figure) 

was simply supported at the two ends and loaded at the center to 

produce a slab in tension condition. The results were question

able because the slab separated from the steel beam and sagged 

between the connected regions. 

It was found that the essential behavior of the negative 
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moment region of continuous composite beams could be studied using 

simple span beams and the test set-up in Fig. 10. The informa

tion obtained from these pilot tests was used to design four addi

tional test beams, the results of which will be the subject of a 

subsequent report.C 7 ) 

Details of the design, fabrication, instrumentation, and 

testing of beams SC-3S and SC-4~ and the analysis of the test re

sults are presented fully in this report. For beams CC-3F and 

CC-4F many of the above details are presented in Ref. 4. However, 

additional information regarding beams CC-3F and CC-4F is pre

sented in this report where that information directly relates to 

the objective of the study reported herein. 
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2. TEST BEAHS, INSTRUHENTATION AND TESTING PROCEDURE 

2.1 Description of Test Beams 

Figure 1 shows the two types of composite beams that were 

tested in this investigation. The test beams designated CC-3F and 

CC-4F (Fig. la) were each two-span continuous composite beams. 

They were sot-lQtt long overall with two equal spans of 25t-o. 

These beams consisted of a reinforced concrete slab 60 inches wide 

and 6 inches thick, connected to a W21X62 rolled steel beam by 

3/4 in. x 4 in. stud shear connectors. Further details of these 

two beams are reported in Ref. 4. 

The test beams designated SC-3S and SC-48 (Fig. lb) were 

each simple span composite beams 1St-4n long overall. These beams 

were identical to the 12t-sn region between the dead load points 

of contraflexure of the continuous beams CC-3F and CC-4F re

spectively. They also included a 16-inch projection into the 

positive moment region each side as shown in Fig. lb. A typical 

cross-section for all four beams is shown in Fig. lc. 

2.2 Design Criteria 

The design criteria for beams SC-38 and 8C-48 were the 

same as for the continuous composite beams CC-3F and CC-4F. The 

-6-
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design criteria for beams CC-3F and CC-4F are reported in Ref. 4 

and further discussed in Ref. 1. 

2.3 Design Details and Fabrication 

Fabrication details for beams CC-3F and CC-4F are reported 

in Ref. 4. 

Fabrication details for beams SC-38 and SC-4S are shown 

in Fig. 2. The rolled steel beams were of ASTM A36 steel. They 

were cut from 55-ft. rolled shapes by a local fabricator. Bearing 

stiffeners and stud shear connectors (Fig. 2a) were welded by the 

fabricator. Unused sections of the rolled shapes were sent to 

Fritz Laboratory to provide material for tension tests of the 

steel beam as well as for the welded studs. 

Before welding the shear connectors to the rolled steel 

beams, the equipment was adjusted following tests of several studs 

which were welded to the excess lengths of the beams. The quality 

of the welds was verified using the in$pection procedure outlined 

in Ref. 2. 

Figure 2b shows the stud shear connector patterns used 

as determined from the design conditions. Fig. 2c shows a typical 

cross-section of the fabricated steel beam with connectors, stiff

eners and loading pins. The loading pins were located approximately 

-7-



at the center of gravity of the composite section under negative 

bending moment (slab in tension). These pins were welded to the 

end bearing stiffeners which were welded to the rolled steel beams. 

2.4 Construction 

Construction details of beams CC-3F and CC-4F are re

ported in Ref. 4. 

Figure 3 shows the slab formwork for one of the short 

test beams and the reinforcement and instrumentation in place 

ready for pouring the concrete slab. The forms were.re-used for 

the other short test beam. Each beam was continuously supported 

from the laboratory floor during concrete pouring. 

The concrete was proportioned and transit-mixed for a 

28 day compressive strength of 3000 psi with a slump of 3-1/2 in. 

Consolidation was accomplished by internal vibration as placement 

progressed. The final finish was obtained by hand trowelling. 

Twelve control cylinders were poured for each concrete slab, six 

at the beginning and six at the end of each pour. 

The concrete in the slabs was moist cured for seven 

days together with four cylinders. Moist curing was accomplished 

by covering the exposed surface with wet burlap and a polyethylene 

sheet. The forms were removed approximately 14 days after casting 
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and the slabs were allowed to cure under dry conditions until the 

beams were tested. Testing of each beam occurred between 60 and 

90 days following pouring. Eight of the control cylinders from 

each beam were maintained as prescribed by ASTM for the standard 

f' test. The remaining four cylinders were cured along with the c 

beam. 

2.5 Properties of the Test Beams 

A test program was conducted to determine the mechanical 

properties of the materials used in the test beams. Properties 

of the structural steel were determined from tensile coupons cut 

from the control pieces left over from the rolled shapes used for 

the test beams. Mechanical properties of the steel are shown in 

Table 1. The coupons were tested in a 120 kip Tinus Olsen Univer-

sal machine at a speed of 0.025 in per minute up to first yielding 

and then at 0.3 in per min. until fracture occurred. For all 

coupon tests the yield point, the static yield level, and the ul-

timate load were recorded. In addition a plot of applied tension 

versus elongation was obtained. The modulus of elasticity and the 

strain hardening modulus were not determined from the tension con-

trol lests. Where required, standard values are assumed (Ref. 5). 

The mechanical properties of the No. 4 and No. 5 deformed 

reinforcing bars were determined by tension tests on 2 ft. lengths 

of bar. These results are ·also shown in Table 1. 
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The concrete used for the slabs was made of type 1 Port

land cement, crushed gravel and natural bank sand. The slabs were 

poured one at a time and control cylinders taken as previously re

ported. The concrete cylinder test results are shown in Table 2. 

The physical dimensions of the test beam components were 

measured and the cross section properties of the test beams were 

determined. The values obtained are shown in Tables 3 and 4. The 

measured values for the rolled shapes are also compared with AISC 

manual values in Table 3. 

2.6 Instrumentation 

The instrumentation for beams SC-3S and SC-4S was essen

tially the same. Figures 4 to 9 summarize the details of the in

strumentation used for the test beams in this investigation. A 

combination of electrical resistance strain gages, dial gages and 

level bar rotation gages was used. 

Figure 4 shows the location of the SR-4 electrical strain 

gages which were used to determine the flexural strains in the 

rolled steel beams and the slab reinforcement. A typical instru

mented cross-section had eleven electrical strain gages placed on 

the longitudinal reinforcement bars, six more on the transverse. 

reinforcement bars, and another ten in the rolled steel beam. 

A schematic view of the protection used for the strain 
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gages on the longitudinal and transverse slab reinforcement is 

shown in Fig. 5. The strains were measured in a uniformly stressed 

bar section, free from the gripping action of the surrounding con

crete. 

A close up detail for the reinforcement bar strain gages 

as they appeared ready for pouring the concrete is shown in Fig. 6b. 

Figure 6a shows additional instrumentation provided at 

each cross-section for measuring slab separation and slip. This 

consisted of two Ames 0.001-in. mechanical dial gages at each 

cross-section. One dial gage was positioned with the plunger in 

a horizontal position to measure the slip at the interface. The 

other one had the plunger positioned for vertical measurements and 

recorded the uplifting of the concrete slab from the rolled steel 

beam. Both gages were fixed to a vertical rod welded to the upper 

flange of the rolled beam and their plungers rested against a 14 

gage steel plate bent into an L shape and bolted .to the concrete. 

Figures 7 and 8 show the instrumented cross-sections for 

the test beams. Fig. 7 corresponds to beams 8C-38 and 8C-48. Beam 

8C-38 had 9 instrumented sections while beam 8C-48 was instrumented 

only pt sections 1 to 6. Fig. 8 corresponds to beams CC-3F and 

CC-4F (Ref .. l). These beams had only 3 instrumented sections in 

the negative moment region corresponding to instrumented sections 
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1, 3 and 5 of the simply supported test beams, SC-3S and SC-4S. 

Level bar rotational g~ges as well as vertical deflec

tion gages (Fig. 7) were also provided in order to obtain the end 

rotation and vertical deflections of the test beams. 

The recording equipment consisted in two DATRAN units 

and one Budd strain indicator to read the electrical resistance 

strain gages, as well as one fifty power microscope to read the 

width of the cracks which developed in the concrete slab during 

the test. 

2.7 Test Procedure and Loading 

The loading procedure for beams SC-3S and SC-4S simu

lated the loading procedure for the continuous beams. The center 

of beams SC-3S and SC-4S was supported while vertical shear forces 

were applied at the points of contraflexure by loading directly 

into the web of the rolled steel beam as shown in Fig. lb. These 

beams therefore behaved as double cantilevers having a 6'-4" span 

each side with an additional length of 16 11 to provide continuity 

and anchorage of the longitudinal reinforcement in the concrete 

slab. 

In this report test results for all four beams are dis

cussed mostly with reference to two load levels - a predicted 
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working load level of 60k and a level of lSOk which was near the 

ultimate load level. For beams CC-3F and CC-4F allowable stresses 

are reached at a predicted center reaction of about 60k(Fig. la).C 4) 

This is designated the working load level for those beams. Simi-

larly, near ultimate load occurred at center reaction of about 

lSOk. For beams SC-38 and SC-48 (which were designed to simulate 

the negative moment regions of beams CC-3F and CC-4F respectively) 

allowable stresses were predicted when the center reaction was 

approximately 60k and near ultimate load was reached when the 

center reaction was about lSOk(Fig. lb). The predicted load 

corresponding to first yielding in the four beams was approximate-

The predicted and observed load-deflection behavior of 

the four beams is shown in Fig. 19. 

Test beams SC-38 and SC-48 were first supported and 

loaded in such a way as to produce a positive bending moment in 

the beams(slab in compression). This was done in order to break 

the bond developed between the upper flange of the rolled beam and 

the concrete slab. The beams were supported at both ends by 6-in. 

diameter steel rollers. Longitudinal stability was maintained by 

the cross-head of the testing machine. The load was applied by 

the 5,000,000 lb. Baldwin testing machine located in Fritz Labor-

atory and was small enough to produce elastic response in the 

beams. A 4-ft. long beam distributed the load across the slab 
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width to a 4-in. wide homesote pad bearing against the concrete 

surface. Both beams were then tested under negative bending 

moments. 

Figures 9 and 10 show the test setup used to test the 

beams under negative bending moment. The load was applied to one 

end of the test beam using the 5,000,000 lb. Baldwin Testing Machine 

in Fritz Laboratory and a lever bar mechanism which is shown ~che

matically in Fig. 10. The lever bar was supported by a roller at 

one end, loaded by the testing machine at its center and connected 

to the test beam at the other through a tension hanger. The test 

beam was supported at its center by a 4 in. roller and at its other 

end by another tension hanger which was attached to the apron of 

the testing machine. The tension hangers were pin connected to 

the test beam and to the lever bar and the apron. 

The tests were carried out approximately nine to ten 

weeks after pouring the concrete. Each test required approximate

ly 12 hours to complete and was carried out on 2 consecutive days. 

Twenty kip load increments were applied up to first yielding. 

After first yielding .ten kip load increments or less were applied 

until the ultimate load was reached. After each load increment 

the load was held constant until deformations had ceased. The 

data was then recorded and the next load increment applied. As 
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plastic deformations began to take place, the period of time for 

the stabilization of deformations increased up to 30 min. In the 

vicinity of the ultimate load deflection increments were used in

stead of load increments, enabling the unloading behavior of the 

beams to be obtained. 
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3. TEST RESULTS AND ANALYSIS 

3.1 Strain Distribution 

3.1.1 Longitudinal Reinforcement 

Figure 11 shows the average strain distribution in the 

londitudinal slab reinforcement for test beams SC-3S and SC-4S, 

at two load levels. Also shown for comparison is the average 

strain distribution in the longitudinal slab reinforcement for the 

same load levels for the two span continuous beams CC-3F and CC-4F. 

Two load levels were selected to illustrate typical test results. 

The first is the working load level as determined by the allowable 

stresses and corresponds to approximately 60 kips vertical reac

tion at the center support.C 4) The second is a load level near 

the ultimate load which corresponds to about 150 kips vertical 

reaction at the center support. The average of the measured 
k k . 

strains for beams SC-3S and SC-4S for the 60 and 150 load levels 

are in~icated by the solid circles and squares respectively. The 

open circle~ and open squares indicate the average of the strains 

for the two continuous beams CC-3F and CC-4F. The dashed lines 

represent the theoretical values as computed from simple tie bar 
. 

theory assuming that only the steel section (rolled steel beam 

plus reinforcing bars having fully developed anchorage) is effec-

tive in the negative moment region.. The strains in the longitudi

nal reinforcing for beam CC-3F at the 150 kip load level are not 
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shown because of a fatigue failure of some of the longitudinal 

reinforcing bars which occurred during the fatigue test as re

ported in Ref. 4. 

It can be observed from Fig. 11 that a considerable 

variation in strain distribution occurred between beams 8C-38 and 

8C-48. In beam 8C-38 the strain distribution was very irregular. 

It was observed for this beam that peaks of strain were located in 

the vicinity of cracks in the concrete slab (crack locations are 

not shown in the figure). Minimum strain values were observed to 

occur between the cracks. In addition, large strains were mea

sured in 8C-38 even at the working load level. 

The distribution of strains for test beam 8C-48 exhib

ited more predictable behavior and smaller strains were recorded. 

Although it was again observed that the largest strains occurred 

in the vicinity of cracks, there was a larger number of cracks in 

beam 8C-48 and a more uniform crack spacing. 

The test results illustrated in Fig. 11 indicated that a 

closer and more uniform crack pattern in the slab resulted from 

a larger amount of longitudinal slab reinforcement. Also, a more 

predictable distribution of longitudinal reinforcement strains 

was achieved. 

It can also be observed from Fig. lla that a correlation 
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in the strains for beams 8C-38 and CC-3F did not occur at corre

sponding sections·. Neverthe:)_ess, the level of maximum strains 

in the unconnected regions in the two beams was in fairly good 

agreement. Much better correlation in the strains of beams 8C-48 

and CC-4F was obtained as shown in Fig. llb. 

The results presented in Fig. 11 indicate that in all 

cases the theoretical strains computed from simple tie bar theory 

were smaller than the maximum strains measured. 

In the theoretical predictions no modification of rein

forcement area due to shear lag and transverse slab deformations 

was considered. The observed difference between the test results 

and the theoretical predictions was largest in beams 8C-38 and 

CC-3F which had the least reinforcement. In this case theory 

predicts about SO% of the maximum average measured strains. In 

beams 8C-48 and CC-4F where the amount of slab reinforcement was 

greater, the predicted values are closer to the measured values 

but are still unconservative and about 11% smaller on the average. 

Figures 12 and 13 show the strain distributions at the 

mid-depth of the slab for all four beams. The strains were deter

mined,by averaging the measured strains in the upper and lower 

longitudinal reinforcing bars. As before, two load levels are 

considered - a working load of 60 kips and a yield load of 150 kips 
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(Refer to Art. 2.7). Fig. 12 compares the results for beams 

SC-3S and CC-3F. Fig. 13 compares the results for beams SC-4S 

and CC-4F. Two characteristic types of strain distribution can 

be seen. One corresponds to a fairly low strain level and shows 

a relatively uniform strain distribution across the slab. This 

is typical for a cross-section between cracks. The other shows 

a fairly high strain level and has an irregular distribution. 

This is characteristic of a cross-section at a crack or in its 

immediate vicinity. 

For beams SC-3S and CC-3F which have the smaller amount 

of longitudinal slab reinforcement the strains at the cross-sec-

tions appear either very small or very large depending upon the 

crack locations. The strain distribution for SC-3S at 150 kips 

is not shown at Section 5 because it is beyond the scale of the 

figure. 

Similarities in the level and distribution of strains 

can be seen to occur between corresponding test beams (simple span 

versus continuous). As previously discussed, this situation occurs 

whenever the same cracking conditions of the slab are present at 

corresponding sections. Local differences in strains are due to 
. 

several factors such as bond between the concrete and the wires 

leading to the individual strain gages and torsional moments in 

the beams due to irregularities in construction and loading. 
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A more detailed strain distribution at Section 3 of 

test beams SC-4S and SC-4F is shown in Fig. 14. This figure shows 

the difference between the measured strains in the upper and 

lower layers of the longitudinal reinforcement bars. The upper 

layer strain values are less than the strain values for the lower 

layers. This is a typical result obtained at all load levels for 

all four beams, at both Sections 2 and 3. These two sections are 

nearest the shear connectors as shown in Fig. 11. Simple tie-bar 

theory does not explain this situation. This theory also does not 

include the general tendency of the strains in the bars over the 

steel beam to rise over the strains further out in the slab. 

It can be concluded from observations of the longitu

dinal strains in the four test beams that in general the strains 

in beams SC-3S and SC-4S did correlate fairly well with similar 

strains in beams CC-3F and CC-4F but that simple tie-bar theory 

is inadequate for accurately predicting these strains. 

3.1.2 Transverse Reinforcement Strains 

In Fig. 15 the transverse reinforcement strains at sev

eral cross-sections of beam SC-4S are compared. These results 

are typical for all load levels. A complex distribution of the 

transverse strains is indicated. Sign reversals for strains in 

the same bar were frequent as were fluctuations of strains between 
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the several cross-sections. The strain distributions for the 

other three test beams showed a similar behavior. It was observed 

from the test data that the transverse reinforcement strains were 

produced by a combination of flexural strains in two perpendicular 

directions - one in the plane of the slab in the direction of the 

longitudinal axis, and the other perpendicular to the plane of the 

slab. Torsional strains also contributed to the observed varia-

tion. No specific trends were apparent for the four beams; never

theless, the influence of the crack locations and the boundary 

conditions in the neighborhood of the contraflexure region for the 

continuous beams or the end of the beams for the simply supported 

beams can be observed. 

Corresponding beams 8C-48 and CC-4F prese~ted some simi

larities in transverse strain distribution. The signs of the 

strains were the same, and the orders of magnitude (small in all 

cases) also agreed. Corresponding beams 8C-38 and CC-3F did not 

present this similarity in behavior. 

3.2 Bending Moment Distribution 

Figures 16 and 17 show the distribution of negative 

bending moments for the four beams at the 60k and 150k load levels. 

The solid line is the moment distribution found from equilibrium 

conditions using the measured vertical reaction at the center 
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support. The solid circles show the calculated values of the 

moments at each cross-section using the strain readings obtained 

at the cross-sections. The dashed line represents the predicted 

bending moments. For the simple span beams the predicted curve 

and the curve computed from equilibrium conditions based on the 

measured center reaction are the same. Tie-bar theory was used 

to predict the bending moments for the continuous beams. The 

bending moments at the 150 kip load level are not available for 

beam CC-3F (Fig. l6a) due to the reinforcement bar failure during 

fatigue as discussed previously.C 4) 

Good correlation is apparent between the moments cal

culated from the strain distribution at the cross-sections and 

the moments found from equilibrium using the measured center re

action. Although small ~ariations are observed there is in gen

eral an.overestimation of the moments corresponding to the 150 

kip load level. This is probably due to the straining of the 

electrical wires leading to the strain gages which were embedded 

in the concrete. From the good agreement obtained between the 

bending moments computed from the measured strains and from the 

center reaction it can be concluded that due to the protection 

provi?ed to the gages on the reinforcement bars accurate strains 

were measured. These results, however, could be further improved 

by shortening the length of the lead wire that is embedded in the 
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concrete and by protecting the lead wire inside the concrete to 

prevent bonding to the concrete. These and other improvements 

were made in four subsequent beam tests with somewhat better re

sults. ( 7) 

Figures 16 and 17 show the close correspondence of the 

moment diagrams obtained from the respective beams 8C-38 and CC-3F, 

and 8C-48 and CC-4F. Of particular interest is the location of 

the points of zero moment which were fixed (loading points) for 

the simple span beams. In each case the point of zero moment was 

located within a few inches (4-in. at the most) of the point of 

inflection for the continuous beams. As a result, the negative 

moment region was simulated to within 5% for beam CC-3F and 2% for 

beam CC-4F. 

Figure 18 shows the distribution of horizontal forces 

in the cioncrete slabs at three load levels for beams 8C-38 and 

8C-48. The solid points represent the slab forces computed using 

the measured strains at the cross-sections. The open circles 

represent the forces computed from the corresponding strains in 

the continuous beams CC-3F and CC-4F. The dashed lines are the 

theoretical forces predicted using simple tie-bar theory where 

the slab in the region without connectors is assumed to be fully 

cracked. The load levels shown in the figure correspond to the 

two previously mentioned levels of 60 and 150 kips, plus an initial 
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yielding load level equivalent to approximately 100 kips measured 

at the vertical reaction of the center support of beams 8C-38 and 

8C-48 and an applied load of approximately 100 kips for beams CC-3F 

and CC-4F. 

It can be observed from Fig. 18 that within the region 

containing no shear connectors, the slab force (force in the longi

tudinal reinforcement) is fairly constant as assumed by simple tie

bar theory. The observed variations for the forces obtained from 

the measured strains are mainly due to variations in the cross

sectional properties at the instrumented cross-sections. 

It is observed in Fig. 18a that at the 60 kip load the 

force in the slab of beam 8C-38 is within the expected range. How

ever, at the 100 kip load ~n abrupt change in force took place in 

the slab. The measured slab force was substantially greater than 

the predicted one. The increase in the slab force was much 

smaller as the load level was increased from 100 kips to 150 kips. 

The increase in slab force in beam 8C-48 was much more uniform 

and followed the predicted increases more closely (Fig. 18b). 

The observed difference in behavior between beams 8C-38 

and 8~-48 in the vicinity of the initial yield load was probably 

due to the fact that the initial yield load as observed during 

test and the initial yield load as predicted by simple tie-bar 
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theory was somewhat closer for beam SC-4S than for beam SC-3S. 

This result again illustrates the inability of simple tie-bar 

theory to accurately predict the stresses in the longitudinal slab 

reinforcement for the beams considered in this investigation. 

The above difference in behavior is important for the 

case of cyclic loading since the stress range in the reinforcement 

bars is an important parameter in the case of fatigue. 

A comparison of the slab forces between the correspond

ing continuous and simple span beams at sections 1, 3, and 5 indi

cate that the average of the computed slab forces for correspond

ing beams agree to within 10% in the regions without shear connec

tors. The slab forces at Section l were slightly different because 

the boundary conditions were not the same. At Sections 3 and 5 

fairly good correlation can be observed. 

3.3 Load Deflection Behavior 

Figure 19 shows the load deflection behavior of the 

four test beams. Load deflection curves for SC-3S and CC-3F are 

shown in Fig. l9a. Load deflection curves for beams SC-4S and 

CC-4F are shown in Fig. l9b. In each case the relative deflection 

between the center support and the inflection points is plotted. 

It can be observed from the figures that all four beams 
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attained an ultimate load capacity that was within 2% of the ulti

mate load based on ultimate strength theory.CG) Except for beam 

8C-48, a horizontal plateau was attained before unloading took 

place which occurred after the occurrence of local buckling in 

the compression flange as will be discussed later in this chapter. 

The test results for the two continuous beams CC-3F and 

CC-4F were obtained after about 2,000,000 cycles of 0 to 60 kip 

loading had been applied.C 4) The curve corresponding to 10 cycles 

of 0 to 60 kip loading is not shown in the figure but it overlaps 

the predicted curve up to the 60 kip level. The difference be-

tween the 10 cycle curve and the 2,000,000 cycle curve in the 

case of beam 8C-3F is due to the fact that the upper layer of 

reinforcement in the slab of beam 8C-3F had failed in fatigue by 

the time the ultimate strength test took place. As a result beam 

CC-3F was somewhat more flexible. For beam CC-4F the predicted 

and test curves corresponding to 10 and 2,000,000 cycles are 

nearly identical. 

It is of interest to note the differences in initial 

yield loads for the corresponding beams 8C-48 and CC-4F. It is 

also· of interest to consider why the load deflection curve for 
. 

beam CC-4F was steeper than the curve for beam 8C-48 during the 

initial loading whereas the reverse was true at the higher load 

levels. These two phenomena can probably be explained as follows. 
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The cross-sectional properties for beam CC-4F were slightly diff

erent than the properties of beam SC-4S.(Ref. 4 and Table 3) Also 

the compatibility restrictions imposed at the point of contraflex

ure by the more rigid positive moment portion of the beam CC-4F 

and the more favorable cross-section properties of beam CC-4F 

tended to make beam CC-4F more stiff than beam SC-48 during initial 

loading. 

At the time the ultimate strength test was conducted 

for beam CC-4F, the concrete slab of beam CC-4F was more heavily 

cracked than in beam SC-48. This had the effect of altering 

the occurrence of initial yielding in the two beams. As a result 

·yielding took place first in beam CC-4F. Beam SC-48 continued to 

exhibit greater stiffness than CC-4F until yielding also occurred 

in that beam. This developed when the crack pattern in beam 

SC-48 was about the same as that in beam CC-4F. 

In general, however, the load deflection curves for 

corresponding beams indicated that a simulation of the continuous 

beam behavior was achieved with the simple span beams. 

3.4 Force on the Shear Connectors 

Table 5 summarizes the forces on the shear connectors 

for the four test beams. The forces acting on the shear connectors 

of the two continuous beams is shown corresponding to three stages 

of 0 to 60 kip fatigue loading as well as at the 100 and 150 kip 
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load levels after the 2,000,000 cycles of fatigue loading had been 

applied. The measured forces in the connectors of the simple span 

beams are shown for three load levels corresponding to 60, 100 and 

150 kips at the center reaction: The total force to be resisted 

by the shear connectors is the force in the slab. The force in 

the slab was taken as the maximum force measured between Sections 

3 and 5 since it was reasonably constant in this region and was 

not greatly affected by the friction force over the center support. 

The force per connector was estimated by dividing the slab force 

by the number of connectors included between Section 3 and the 

point where the force in the slab decreased to zero.· Theoreti

cal values for the average force per shear connector based on 

tie-bar theory are also provided, where the same number of con

nectors used to obtain the experimental values for the average 

force acting on the connectors~ was considered to obtain the 

average theoretical force per connector. 

It can be seen from Table 5 that the connectors for 

beam SC-3S experienced a large force increment as the load in

creased from 60 to 100 kips. It can also be seen that only a 

small increment of force was experienced by the connectors as 

the load increased from 100 to 150 kips. On the other hand the 

force increments in the connectors of beam SC-4S were small as 

the load increased from 60 to 150 kips. 
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It can also be observed that the shear force per con

nector for beam SC-3S at the 60 kip load level is less than the 

force per connector for beam CC-3F at the same load level at 10 

cycles and at 600,000 cycles. This appears to be due to a lack 

of qccuracy in measuring the force for beam SC-3S which was ex

pected to exhibit a greater force in the slab. Beam SC-4S ex

hibited larger values than those obtained in beam CC-4F. It is 

logical that a greater slab force would develop in beam SC-4S be

cause its slab was not as severely cracked as was the slab in 

beam CC-4F. 

It can further be observed that the predicted values 

of connector forces are less than the experimental ones except 

for beam CC-3F at the 150 kip load level where the reinforcement 

bars had reached their yield capacity. 

3.5 Slip and Slab Separation 

Figures 20 to 22 show the magnitude of the slip and 

slab separation obtained in the four test beams between the steel 

beam and slab. The measured slip is shown in Figs. 20a and 21. 

The experimental accuracy of the slip measurements plotted in the 

figure was estimated at 0.0001 in. Therefore some scatter of the 

plotted results was expected. The slip measurements are shown for 

Sections l and 3. Section 1 was inside the shear connected region 
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whereas Section 3 was in the region without shear connectors. 

In general~ there is good agreement in the load-slip 

relationships at similar sections in corresponding beams. The 

slip curve for beam CC-3F at Section 3 became very flat due to 

the small amount of reinforcement steel that remained after the 

fatigue failure of the upper layer of reinforcement. It was ob

served that the load-slip relationships for the different stages 

of fatigue loading were not very different up to the 60 kips 

load level.C 4) 

The distribution of slip measured along the length of 

each beam at two load levels is shown in Fig. 21. At the 60 kip 

load level, Fig. 21 indicates that there is a good agreement be

tween the observed slip distribution in corresponding beams. In 

each case the slip was measured before the fatigue loading ot the 

continuous beams occurred. At the higher load level some differ

ences in the slip distributions along the length of the beams is 

efident, although the trends are entirely similar. Large slips 

occurred in beam CC-3F when the reinforcement bars failed. For 

beams SC-4S and CC-4F the differences are due to the more flex

ible slab of the continuous beam caused by the large number of 

cracks. 

Figures 20b and 22 show the observed slab separation. 
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A very irregular pattern can be observed in the region without 

shear connectors. This irregular behavior can be attributed to 

the crack development sequence. For beams SC-4S and CC-4F the 

slab separation at Se~tion 5 increased rapidly until it stabil

ized. On the other hand the slab separation at Section 3 behaved 

irregularly. As the crack sequence progressed the curves followed 

different trends as expected since the rigid concrete portions 

were deforming into new patterns. 

The distribution of slab separation along the length of 

the beam is shown in Fig. 20b for five different load levels for 

beam CC-4F. This is typical of the slab separation behavior. 

This figure illustrates how the slab and steel beam remain in 

contact at low levels of load. 

that: 

The observations on slab slip and separation indicated 

(l) The beams with a higher steel reinforcement per

centage exhibited better symmetry of relative move

ment at the interface. 

(2) The slip for continuous composite beams can be 

reasonably simulated by simple span beams. 

(3) The slab and the steel beam remain in contact at 

several points within the region without shear con

nectors for low stages of load. As the load in

creases the two faces separate except at the center 

support. 
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3.6 Cracking Behavior 

Figures 23 and 24 show the crack patterns in the con

crete slabs of the four beams tested. Fig. 23 shows the crack 

patterns at the working load level(60 kips) and Fig. 24 shows the 

crack patterns near the ultimate load. It should be recalled that 

at the working load level the total tension force in the slabs 

of the beams was small compared to the tension capacity of the 

slab. This force was less than that required to initiate crack

ing of the slab based on a cracking strength of one-tenth the 

compressive strength of the concrete. The cracks which did occur 

therefore must have originated from secondary effects such as 

bending in the slab and stress concentrations at the transverse 

reinforcement locations and shrinkage. As a consequence only a· 

few irregularly spaced cracks could be expected and indeed that 

was observed, especially in beams SC-38 and CC-3F as shown in 

Fig. 23. The shrinkage stresses were large enough to produce 

cracking of the slab even before loading. In the case of beam 

CC-4F two fully developed shrinkage cracks plus many edge cracks 

were evident before testing began. Because of the tensile shrink

age forces in the slab of both continuous beams, a reverse camber 

of the beam occurred which made it difficult to level the specimen 

prior to testing without introducing additional cracks in the 

slab.C 4) In order to properly align the continuous beams prior 
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to fatigue testing, several.hundred cycles of small amplitude 

loading were required. Therefore, prior to the actual fatigue 

testing and prior to the first static test to the working load 

level, some cracks were already evident in the slab.C 4) The con

ditions described above were not present to the same degree in 

the simple span tests, SC-3S and SC-4S. Shrinkage stresses 

appeared to be smaller in beams SC-3S and SC-4S since no cracks 

were observed prior to the test. Furthermore, the single span 

beams were not subjected to cyclic loading. Even so, the crack 

patterns in beams SC-3S and SC-48 were not greatly different from 

those in the corresponding beams, CC-3F and CC-4F. 

The crack patterns in the slabs of the four beams are 

shown in Fig. 24 near the ultimate load. The similarity of the 

crack patterns in corresponding beams is much more evident, es-

pecially for beams SC-4S and CC-4F. 

Of significance is the marked difference in cracking 

behavior between the beams having the smaller (0.61%) amount of 

steel reinforcement (SC-3S and CC-3F) and those with higher (1.02%) 

amounts of steel reinforcement (SC-4S and CC-4F). For continuous 

beams CC-3F and CC-4F the fatigue loading increased the number of 

cracks in the slab. All cracks for beam CC-3F were developed 

during the fatigue test, as well as most of the cracks for beam 

CC-4F. Simple beams SC-3S and SC-4S had additional cracks develop 
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with the load increments beyond the working load level. In beam 

SC-38 these cracks occurred at a.small increment of the load over 

the working load level. Afterwards the number of cracks (seven) 

remained constant until the ultimate load was reached and a large 

plastic deformation occurred in the steel beam when two additional 

cracks developed. The beams with the small amount of reinforce

ment steel did not develop a large number of cracks. However, 

the width of the cracks increased markedly from initial loading 

until the ultimate load was reached. This was not the case for 

beams SC-48 and CC-4F where the individual crack width did not 

increase significantly, but many more cracks developed as is evi

dent by comparing Figs. 23 and 24. 

The difference in the cracking behavior described above 

was due to early yielding of the longitudinal reinforcement in 

beams SC-38 and CC-3F which prevented the development of a larger 

slab force. Yielding in the reinforcing bars occurred at a load 

level of about 80 kips which was 30% above the working load level. 

Thus the yield stress level in the reinforcement was reached much 

earlier than would be predicted by simple tie-bar theory (See 

Fig. 18a), where yielding for the bars was expected to occur at 

ultimate load. Yielding occurred at the crack locations next to 

the center line. 

It should be poi~ted out that the ultimate tension 
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capacity of the concrete slab for beams 8C-38 and CC-3F was 

larger than the yield capacity of the longitudinal reinforcement 

bars. On the other hand, the stresses in the reinforcement for 

beams 8C-48 and CC-4F remained below the yield stress level until 

the. ultimate load was reached. Up to that point the cracks closed 

almost completely upon removal of load. For beams 8C-48 and CC-4F 

the yield capacity of the reinforcement exceeded the ultimate 

tension capacity of the slab. 

Figure 25 shows histograms of crack width versus fre

quency of occurrence for the four test beams. All of the mea

sured crack widths for loads ranging from zero to the working 

load level were included. The effect of including all measured 

crack widths was to spread out the histograms over a wider range 

of crack widths, without altering the position of the mean and 

maximum crack widths. This procedure was desirable since the 

crack widths w~re influenced not only by the load level but also 

by new crack developments. The ACI recommended maximum crack 

width for exterior members is also shown in Fig. 25. It can be 

observed that much more desirable cracking behavior was evident 

in beams 8C-48 and CC-4F which had the larger amount of longi

tudinal steel reinforcement. 

From the above discussion it can be concluded that: 

(1) Beams 8C-38 and CC-3F with 0.61% longitudinal 
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reinforcement exhibited an undesirable crack 

pattern of a few widely spaced cracks of large 

width. The cracking behavior of beams SC-4S and 

CC-4F with 1.02% longitudinal reinforcement was 

much more desirable. Cracks were much smaller, 

much more frequent, and more evenly distributed. 

(2) The very similar cracking behavior exhibited by 

corresponding beams indicated that the cracking 

behavior of continuous composite beams in the 

negative moment region can be simulated by simple 

span beams under negative moment. 

3.7 Failure Mode 

Figure 26 shows a typical simple span beam after ulti

mate load was reached and all instrumentation removed. The figure 

clearly shows the large deformation which occurred during the 

test, reaching 4 to 6 in. at the load point for the beam. In 

both simple span test beams and in the two continuous beams fail

ure eventually occurred after the lower flange of the steel beam 

had buckled next to the center support as can be seen in Fig. 27. 

Local buckling usually occurred only after the ultimate 

load capacity was reached and large deformations occurred. An ex

ception was in test beam SC-4S, where local buckling occurred 
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almost simultaneously with the ultimate load (Fig. l9b). The 

observed mode of failure therefore was similar to that exhibited 

by the continuous beams reported in Ref. 4 where the same cross

section was used. 
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4. SUHHARY AND CONCLUSIONS 

Two simply supported composite steel-concrete beams 

were tested statically under negative bending moment conditions 

(slab in tension). These beams were designed to simulate the 

negative moment region of two, two-span continuous composite beams 

having spans of 25'-0" which were tested under fatigue and static 

loading. The results of those tests are reported elsewhere.C 4) 

Each of the simple span beams reported herein had span lengths 

of 12'-8''· The cross-sections were identical with a 6"x60" re-

inforced concrete slab connected to a W2lx62 rolled steel beam 

by means of 4" high 3/4" diameter headed steel studs. These 

studs were concentrated near the support points of the beams. 

One beam was designed with 0.61% longitudinal reinforcement in 

the slab. This amount of reinforcement was determined by the 

present AASHO Provisions for distribution reinforcement. The 

other beam was designed with 1.02% longitudinal reinforcement in 

the slab. The distribution of stud shear connectors was the same 

in each beam although a greater number of studs were required in 

the beam with the 1.02% slab reinforcement. 

The results of these static tests were presented in 

this report. The following conclusions can be made: 

(1) The observed comparative behavior of the two test 
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beams, as well as the analysis of the test data 

indicated that a more satisfactory structural be

havior was achieved by the test beam having the 

higher percentage (1.02%) of longitudinal slab 

reinforcement. The behavior of this beam was char

acterized by a lower and more predictable stress 

level in the longitudinal reinforcement (important 

from fatigue considerations), and a more satis

factory crack pattern in the slab with smaller 

crack widths. 

(2) The test results indicated that to achieve a satis

factory cracking behavior in the slab, the strength 

of the longitudinal reinforcement should exceed 

the ten~ile strength of the concrete. In the tests 

reported herein, the beam with the lower steel 

percentage (0.61%) did not meet this condition 

whereas the other beam (1~02%) did. 

(3) The test results indicated that a satisfactory 

simulation of the negative moment region was 

achieved within the scope of this study. Therefore, 

future tests of the type could be used to study 

. negative moment regions of continuous composite 

beams more easily and economically. 

(4) Existing methods of analysis (simple tie-bar 
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theory, complete and partial interaction theory) 

do not accurately predict the stresses in the rein

forced concrete slab. Additional research is re

quired to develop a more rational method of analysis. 
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TABLE 1 

-· MECHANICAL PROPERTIES OF STEEL 

Type No. Yield Point Static Tensile 
Yield Stress Strength 

of of (KSI) (KSI) (KSI) 

Specimen Test Mean Mean Mean 

Web 12 37.5 35.5 62.7 W2lx62 

Flange 12 35.9 34.1 61.4 W2lx62 

No. 4 Bar 5 46.0 76.1 

No. 5 Bar 8 44. 72.5 

TABLE 2 

RESULTS OF CONCRETE CYLINDER TESTS 

Standard Test Cylinders Cured 
With Slab 

f' Modulus Tensile Compressive 
Tensile c c . of ompress1ve 

Beam Strength Strength Elasticity 
(psi) (psi) (ksi) (psi) (psi) 

SC-3S 586 4690 3471 533 4580 . 
SC-4S 587 5430 3940 530 4050 
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TABLE 3 
-. 

ROLLED STEEL BEAM PROPERTIES 

BEAM AREA DEPTH FLANGE WEB · MOMENT 
OF 

WIDTH THICKNESS il'HICKNESS INERTIA 
(in)

2 (in) (in) (in) (in) (in) 4 

SC-3S 17.474 20.955 8.366 0.546 0.407 1245.354 

SC-4S 17.633 20.986 8.257 0.561 0.415 1257.056 

*W2lx62 18.230 20.990 8. 250 . 0.615 0.400 1327.000 

* From AISC Manual of Steel Construction 

TABLE 4 

PROPERTIES OF THE TEST BEAMS 

BEAM AREA OF AREA OF MOMENT OF MOMENT OF COMPUTED 
REINFORCE- REINFORCE- INERTIA INERTIA ULTIMATE 

MENT TOP MENT BOTTOJ:'I TRANSFORMED STEEL MOMENT 
LAYER LAYER SECTION SECTION·:: 

in. 2 in. 2 in. 4 in. 2 kip-in. 

SC-3S 1.20 1.00 3745 1685 6030 

SC-4S 2.75 1.00 3797 1900 6873 

* 'Including Reinforcement Steel 
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TABLE 5 

FORCE ON THE SHEAR CONNECTORS 

Test Results 
Theory CC-3F Theory 

Load for SC-3S for 
SC-3S SC-4S 
CC-3F 10 600 2000 CC-4F cyls. KCy;Ls. KCyls. 

Kips Kips Kips Kips Kips Kips Kips 

60 1.95 2.91 3.41 4.14 2.14 2.72 

100 3.25 8.09 4.55 

150 9.02 9.00 7 .12~': 

Test 

SC-4S 
10 

cyls. 

Kips Kips 

6.34 5.61 

6.43 

7. 4o~·: 

Results 

CC-4F 

600 
KCyls. 

Kips 

4.24 

20JO 

. . 

KCyls. 

Kips 

4.44 

5.80 

8.61 

number of connectors estimated as 13 (first row of connectors of the support line included) 
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FIG. 6 INSTRUMENTATION DETAILS 
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FIG. 26 BEAM AFTER FAILURE 

FIG. 27 LOCAL BUCKLING FAILURE MODE 
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