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ABSTRACT:

The upper bound technique of limit analysis is used to

obtain the active and passive limit earth pressures for a cohesionless

soil retained by a rigid wall of varying roughness. The soil is

treated as a perfectly plastic medium obeying the Mohr-Coulomb yield

criterion and its associated flow rule. Various assumed failure

mechanisms are evaluated. The resulting solutions are found to

favorably agree with known solutions including those obtained by

slip-line methods.
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1. Introduction

The problem of the active and passive earth pressures acting

on a rigid retaining wall has been studied ever since Coulomb formu

lated the limit equilibrium solutions in 1776 by assuming a simple

straight failure line (Fig. lea)). It has long been recognized that

such solutions greatly overestimate the passive pressure exerted on

a relatively rough wall for high soil friction angles, e.g. ~ = 30

to 40 degrees. Indeed for these situations the actual failure surface.

is far from straight but is curved. With the formulation of Ktltter's

curvilinear equilibrium equations came the complicated, numerically

integrated, s lip line solutions of Sokolovskii [21J. Although such

solutions have been considered as "exact", it should be remembered

that nowhere in the formulation has the soil deformation been con

sidered, i.e. the soil stress-strain relationship.

With the development of the plastic limit theorems of perfect

plasticity and their adaptation to the field of soil mechanics [lOJ,

many problems have been solved on a much more logical and simple basis

through the concept of a flow rule or normality. This adaptation,

called the limit analysis technique, has been successfully applied in

obtaining solutions to the problems of slope stability [5,6,8J and

bearing capacity [4J.

The limit analysis technique has also been applied to obtain

the active and passive earth pressures acting on a rigid retaining

wall. Finn [llJ, and Chen and Scawthorn [7J have investigated the

problem using the classical Coulomb straight line failure mechanism
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(Fig. lea)) and simple discontinuous stress fields. A slightly more

complicated mechanism consisting of two rigid sliding blocks (Fig. l(b))

has briefly been discussed by Davis [9J. Some lower bound, strai~ht

line solutions, have been obtained by Lysmer [18J with the use of a

computer technique somewhat related to the finite element method.

In the following work the upper bound technique of limit

analysis is applied to obtain the upper bounds for the active and

passive earth pressures acting on a rigid wall using various failure

mechanisms (Fig. 1). A new circular shearing zone is also developed

and is used in two new mechanisms as shown in Figures led) and l(f).

Although the general formulation for a c - ~ soil is presented, results

are primarily discussed for a cohesionless soil with no surcharge on

the backfill. The necessary additional equations for the inclusion

of both cohesion and surcharge are however included in Appendix 1.

As in Ref. [3J the soil is idealized as a perfectly plastic material

which obeys the Coulomb yield condition and its associated flow rule.

2. Radial Shear Zone (~ f 0)

2.1 Velocity Field

A circular shearing zone for a soil with finite internal

friction can be developed in a manner similar to that which was used

in Ref. [3J for a log-spiral radial shearing zone. Consider a sector

of a circle with central angle 8 to be composed of a series of n rigid

triangles each of angle 68, as shown in Fig. 2(a). The velocity vector

of each triangle is directed at an angle ~ to the discontinuous rigid

(
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boundary A-B-C-D-E as required by the associated flow rule idealization.

Figure 2(b) shows the compatible velocity diagram for triangles AOB and

BOC. It should be noted that the discontinuous velocity vector Vol also

makes an angle ~ with the line OB. This vector is shown to be composed

of components eu and eV parallel and perpendicular to the discontinuity

OB. Thus eu can be considered as a simple slip velocity; while ev,

a separation velocity. Assuming the central angle ~e is sufficiently

small we may write:

cos(M. - 2~)2
VI V

0 cos(M + 2~)2

V2 VI
cos<' - 2~)

COS(lf + 2(0)

(1)

V
n

Vn _l cos(~ - 2~)
=

COS(~ + 2~)

The velocity in the nth triangle ODE can be expressed as

V
n

(2)

where V is the initial zone velocity. The circular radial shearing
o

zone will be obtained in the limit as the number of triangles grows

to infinity. Equation 2 can be written as
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cos (112. - 2cp)Jn cos(JL - 2cp)Jn 11 + 2tan ...e...- tan 2cp

J
nr 2 [ ~n 2n

V V V
0 cos (112. 2cp)-

0 0+ ' cos (28n + 2cp) 1- tan ...e...- tan 2cp2
2n

"
Now if n -+ <Xl we obtain the limit

lim 11 n
+ 8 tan 2r,pl -+ exp(8 tan 2cp)n-+<Xl , n "

or V V exp(8 tan 2c.p)
0

(3)

where V is the velocity at any location 8 along the circular arc.

Equation 3 is similar to the one 'derived for a log-spiral zone:

(4)

.. 2.2 Rate of Dissipation of Energy

The general formulation for the energy dissipation due to

shearing for a Coulomb material has previously been developed [2,7J.

In general, energy is dissipated along velocity discontinuities

(narrow transition zones) and in the circular shearing zone. From

Fig. 2(a) it is clear that this energy will be dissipated along radial:

and boundary surfaces. The rate of energy dissipation along a typical

radial line, say OE, can be found by multiplying the cohesion C, dis-

continuity, length r o ' and discontinuous tangential velocity eU = V lCoscp:n,n+

C r V +1 cosc.po n,n

Using Fig. 2(b) and assuming 68 to be small, eU

Eq. 5 can be written as:

(5 )

V 68 cosc.p/cos 2w; and
n

C r o Vn 68 coscp

cos 2cp

C r o Vo 68 coscp exp(8 tan 2cp)

cos 2cp
(6 )

Integrating over the total circular radial shearing zone 8:

C r V coscp
o 0 [eXP(8 tan 2rn) - lJsin 2(() 't"

(7)
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Likewise, the dissipation along a typical boundary surface, DE, is

given by

which if ~e is small becomes:

Integrating over the total length A-B-C-D-E:

The corresponding total radial and boundary dissipation expressions

for the log-spiral shearing zone are both equal to:

It is noted that for the circular zone this equality does not occur.

2.3 Rate of Externa 1 Work

The external rate of work done by the soil weight in the

(8)

(9)

(10)

(11)

circular zone can be computed by summing over the region e the products

of each triangle's component of vertical velocity with its weight.

Using Fig. 2(a) this can be expressed in integral form as:

8J exp(+ e tan 2m) sineS + e + ~ - ¥) de
o

(12)

where the upper and lower signs signify the active and passive states

respectively; and S denotes the angular inclination of the zone from

the horizontal. The corresponding expression for the log-spiral zone

is

r 2
o

e
J

o
exp(+ 3e ta~) sin(n - e - s) de (13 )
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3. Log-Sandwich Mechanism

The upper bound theorem of limit analysis states that a soil

mass will collapse if there is any compatible pattern of plastic de-

formation (velocity field or "mechanism") for which the rate of work

of the external loads exceeds the rate of internal energy dissipation

due to shearing of the soil. If a failure mechanism is described by n

independent parameters, the active and passive pressures acting on

a rigid wall can be expressed as:

p Q' Max IK (8 l' 82 ,···8n ) +K (8 l' 82 ,···An )a ay aq

+K (8 l' 82 ,···8n )]ac

p Q' Min rK (AI' 82 ,···8n ) + Kpq (8 l' 82", .8n )p '.. Py

+K (81' 92 ,···9n)]pc

(14)

...

where K , K , and K are the coefficients representing the effects of
y q c

weight, surcharge, and cohesion respectively; such that

1
p = -2 Y H2 K + qH K + cH KY q c

A total of six different failure mechanisms, as shown in

Fig. 1, are considered herein. Since the solution procedure for all

cases is identical a detailed formulation will only be given for the

log-sandwich\mechanism and a cohesionless soil. The necessary equa-

tions for the ~nclusion of cohesion and surcharge loading are given

~,
in Appendix 1 ~hile the two-triangle mechanism is discussed in Appen-

dix 2.

Figure 3 shows a logarithmic spiral shearing zone, GBC,

sandwiched between two rigid blocks, GAB and GCD. Since the velocities
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VI and V
3

for the rigid triangles OAB and OCD are assumed perpendicular

to the radial lines OB and OC, two angular parameters p and ~ describe

the mechanism completely. It will be shown later that for certain

limited boundary situations only one parameter need be considered.

This simplification reduces the complexity of the solution process.

The compatible velocity diagrams corresponding to the passive pressure

case are given in Figs. 3(b) and 3(c) for the smooth (6 < ~) and

rough (6 = ~) wall conditions respectively. Figure 4 shows the corres-

ponding diagrams for the active case. The wall is assumed to translate

horizontally with a velocity V. All other velocities in the mechanism
o

can then be expressed in terms of V .
o

Rate of External Work

For a cohesionless soil with no surcharge loading, the rate

of external work due to self-weight in any region is simply the vertical

component of velocity in that region multiplied by the weight of the

region: (Note: for passive case use lower signs)

Triangular region OAB:

± i y H2 VI sinp cos(p ±~) cos(a - p)

sin2 a cos~

Log-spiral region aBC: (see Eq. 13)

(15 )

.... p)!± 3ta~ + (+ 3tan~ cos~ + sin~)
(16 )

exp(+ 3~ tan~)J + sin(a - p) r1 + (+ 3ta~ sin~ - cos~) exp(+ 3~ ta~)J}
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Triangular region OeD:

1± 2 y H2 vI cos2 (p ±~) sin(ry - p - ~ + S) cos(ry - p - ~) exp(+ 3~ ta~)

sin2 ry cos~ cos(ry - p - ~ + S + ~) (17)

External work is also done by the components of the resultant

wall load P moving in the horizontal direction with velocity V :
o

P
J a~V [+ sinry + tano COSryJ
LpPNr 0

(18)

where PaN and P
pN

are the normal to the wall components of the active

and passive states respectively.

Rate of Internal Energy Dissipation

Since,a cohesionless soil is being considered, the only

dissipation occurs at the soil-wall interface. For a smooth wall

(0 <~) the dissipation by sliding friction is given by

P

{paN).tano VOl
pN

(19)

..

For a rough w~ll (0 = ~) the internal dissipation of energy is 0 since

e = 0 (s~e Eq.\S). Using the velocity diagrams, Figs. 3(b) and 3(c),

or 4(h) a~ 4(c), the velocities VI and VOL can he expressed in terms

\
of the translational wall velocity V for both smooth and rough cases

o

in all the preyious expressions. Equating the rate of external work

to the rate of internal energy dissipation, a closed form expression

for the resultant coefficients of active and passive pressures is

obtained:
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For a smooth wall:

+ secO ~tanD cos(o + W) cos(a - p)
tanO cos(a - p) l sina cos~+ s ina + tanO cosa - ..::..c...~--,-::""::'-""",,,--_~

cosp

+ cos
2

(Q + w) r.cos(a - p) [± 3ta~ + (+ 3ta~ cos~ + sin~)
cosp sina cos2co(l + 9tan2~) I

exp(+ 3~ ta~)J + sin(a - p)[l + (+ 3ta~ sin~ - cos~) exp(+ 3~ ta~)JJ

+ cos2 (p + cp) sin(a - p - '1' + 6) cos (a - p - 'f) exp(+ 3~ tanw)t (20)

cOSco sina cos(a - p - ~ + ~ + ~) cosp

For a rough wall:

...l..

+ secO {sin2p cos(o ± W) cos(q - ~) sin(q ~\~)

+ sina + tanO cosa sin2a cos~ cos(p + ~)

cos~ + sin~) exp(+ 3~ ta~)J + sin(a - p)[l + (+ 3tan~ sin~ - cos~)

+ cos2 (p ± w) sin(a - P - 'f + 6) cos(a - p - 'f) sin(a + w) exp(+ 3~ tanw)1
sin2a cos~cos(a - p - ~ + ~ +~) cos(p +~)

(21)

In order to obtain the critical active and passive wall

loads, expressions (20) and (21) must be either maximized or minimized

respectively, with regard to the mechanism parameters p and~. This

was accomplished with the aid of an iterative technique incorporating

the method of steepest descent. Solutions were obtained on the CDC 6400
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computer. A typical solution required at most 15 iterations or 0.1

seconds.

4. Discussion of Results

4.1 Passive Pressure

Table 1 shows the resultant passive pressure coefficients

K for three different wall inclinations a and a horizontal backfill
py

(~ = 0). These solutions were obtained by using the failure mechanisms

given in Fig. 1. Mechanisms 3 and 4 failed to yield good solutions

for the case of perfectly smooth walls (0 = 0). It should be noted

that these mechanisms cannot physically reduce down to the classical

straight line failure mechanisms which effectively model smooth wall

behavior. Figure 5(a) shows this reduction for the two-triangle

mechanism (Mechanism 2) while Fig. 5(b) shows a similar reduction for

the log-sandwich mechanism (Mechanism 5). In addition, for high soil

friction angles (~ = 400
) the arc-triangle mechanism (Mechanism 4)

yielded poor results. This was expected due to the fact that the ve1-

ocity in the circular radial shearing region approaches infinity as

- 0
the region extent e approaches 45 .

Solutions were found to be improved by the use of more

elaborate mechanisms only for the case of rough walls retaining highly

frictional backfills. For a soil with ~ = 40
0

the solution obtained

by using the log-sandwich mechanism was improved by 27% for the case

of a = 110
0

, to as much as 78% for the vertical wall, a = 90
0

• The

effect of wall roughness on the resulting passive pressure coefficients
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is shown in Fig. 6. For a horizontal backfill it is seen that roughness

is particularly important for walls angled into a backfill of high

soil friction angle. For a sloping backfill (s 20
0

) it is evident

'.

that roughness is important for all wall inclinations.

Mechanism 6 was identical to the log-sandwich mechanism

except that the log-spiral region was replaced with the circular (~ # 0)

shearing region discussed in Section 2. As before, results between

the two compared favorably until high soil friction angles were en-

countered.

From these observations it is evident that Mechanisms 2

and 5 yielded the best solutions, with Mechanism 5 improving those

solutions for rough walls. Although Mechanism 5 was physically more

complicated, it was fully described by only two independent parameters

as opposed to three for Mechanism 2. In an attempt to further reduce

the number of parameters and hence simplify the minimization scheme,

a study was made of the inclination of the straight line portion of

the upper rigid body as it intersected the unloaded horizontal backfill

surface (Fig. 1). Ideally for a Rankine failure state such lines

should make angles of II - ~ with the horizontal. The results of this
4 2

study are found in Table 2. Shown are the percent differences between

the computed inclinations 0 and the theoretical Rankine inclinations;

as well as the resulting differences in the coefficients K It is
py

interesting to note that for smooth walls inclined at a = 70° consid-

erable deviation occurred, but that such deviations resulted in no

more than 7% difference in coefficient values. This fact illustrates
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the apparent insensitivity of the log-sandwich mechanism to changes

in the angular extent of the rigid body adjoining the wall, since the

log-spiral extent was virtually unaffected. It should be pointed out

that the Rankine inclinations corresponded to coefficients which

were greater than those obtained from the unconstrained log-sandwich

mechanisms. If the mechanism is so constrained such that

we obtain one independent parameter:

(22)

IT
4

(23)

where p is the angular extent of the rigid block adjoining the wall,

and ~ is angular extent of the log-spiral zone (Fig. lee»~. Thus for

horizontal backfills we can be assured that the resulting solutions

will only slightly be in error.

For a backfill of varying inclination the Rankine state is

defined by a line to the horizontal such that

TT ~+~_.a4" - 2 2 2

where

sine

(24)

(25)

and S is the backfill inclination from the horizontal. The usefullness

of Eq. 24 was found to be limited only to the cases of soil friction

angle ~ less than 30
0

and backfill angle S less than 150. For cases

outside these limits the one-parameter solutions overestimated the

corresponding two-parameter solutions by 5% to as much as 50%. The

results given in Table 6 for sloping backfills therefore reflect the
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use of the two-parameter log-sandwich mechanism.

4.2 Active Pressure

Table 3 shows the resultant active pressure coefficients

K for three different wall inclinations and a horizontal backfill.
ay

These results correspond to the failure mechanisms given in Fig. 1.

As in the case of passive pressure, Mechanisms 3 and 4 yielded poor

solutions. Figures 7(a) and 7(b) shaw typical results for the two-

triangle and log-sandwich mechanisms respectively. For the case of

a vertical wall, a = 90
0

, both mechanisms yielded nearly identical

results. For walls angled into the backfill (a = 110
0
), however, the

log-sandwich mechanism underestimated the upper bound solution. Again

the inclusion of a log-spiral zone in place of a circular shearing

zone in the log-sandwich mechanism improves the solution. Table 2

shows that the Rankine condition at the unloaded surface was not as

well obeyed as for the passive case. It should be noted, however,

that the active mechanisms were much less sensitive in terms of final

results, with a maximum deviation of not more than 5%. The number of

independent parameters can also be reduced to one, such that

(26)

where € is defined by Eq. 25. As in the passive case the use of Eq. 26

results in poor values. For sloping backfills the two-parameter

mechanism must again be used. The effect of wall roughness on the

active pressure coefficients is shown in Fig. 8. Unlike the passive

case for horizontal backfills, wall roughness has a much smaller

o
effect and is important for walls angled out of the soil (a < 90 ).
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5. Comparison with Known Solutions

5.1 Passive Pressure

To date the best solutions have been generated by Sokolovskii

[21J using the slip-line method or method of stress characteristics.

For soils with weight, solutions are obtained by an approximate numer-

ical integration of the characteristic stress equations of the plastic

equilibrium field. The question of whether such a slip-line solution

is either an upper or lower bound solution has already been discussed

[4J. It is generally agreed, however, that such solutions give good

estimates of the exact values. Table 4 shows a comparison of limit

analysis solutions for horizontal backfills with those obtained by

Sokolovskii.
o

For the cases a = 70 and a 900 (vertical wall) good

agreement exists. It is also seen that the two-triangle and log-

sandwich mechanisms control over the whole range of soil-wall con-

ditions, especially for rough walls retaining soil of high friction

o 0
angle (~ = 30 to 40). For these cases the limit analysis method

yields values which differ from the Sokolovskii solutions by no

more than 15% (~ = 40
0

, 0 = 40
0
). For the case of the wall bearing

into the backfill (a = 1100
), considerably more disagreement occurred.

The maximum difference obtained was 26.6% for the same case given

above. It should be noted that the Sokolovskii solutions are very

limited and easily available only for horizontal backfills. In a

recent study by Lee and Herington [17J some slipline solutions for

perfectly rough walls with sloping backfills have been formulated

for both associated and non-associated flow rule materials.
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Figure 9 shows a comparison of some typical limit analysis

results for a vertical wall with several existing solutions. As pre

Viously mentioned the power of the method of limit analysis lies in

the capability of bounding the true solution. Although lower bound

solutions are much more difficult to obtain and involve the formula

tion of statically admissible stress fields, some limited solutions

are available. As an example, for the particular case of a vertical

wall with ~ = 40
0

, 0 = 20
0

; a lower bound solution of 8.97 has been

obtained by Lysmer [18J. The upper bound solution for this case is

10.10. The corresponding Sokolovskii solution of 9.69 is seen to

lie between these two bounds. If an upper bound can be obtained

that agrees with the corresponding lower bound solution, then of

course, the exact solution will be found.

5.2 Active Pressure

A comparison of the active limit analysis solutions with

those obtained by Sokolovskii is given in Table 5. In general the

limit analysis results underestimate the slip-line solutions, with

the greatest deviation being 6%. As in the case of passive pressures

the log-sandwich and two-triangle mechanisms controlled in most cases.

The exception to this, however, occurred for the case of the wall slop

ing into the earth backfill (i.e., a = 110
0
). The two-triangle mech

anism yielded results which greatly exceeded the slip-line solutions.

This was particularly true for the rough wall conditions i.e. 0 = ~.

For these particular cases, however, the log-sandwich mechanism yielded

much better agreement. The maximum deviation was reduced to 20%
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0
). A comparison with some typical results is given
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5.3 Cohesion and Surchasge

In order to illustrate the ease with which the effects

of cohesion and surcharge are included in the analysis, two passive

pressure example problems were solved using the expressions derived

in Appendix 1.

The problem of a vertical wall retaining a c - ~ soil was

solved (Fig. ll(a)). A comparison with the trial wedge method shows

excellent agreement. The problem of a wall retaining a cohesive,

loaded soil is given in Fig. ll(b) which shows the resulting failure

mechanisms for the effects of weight, cohesion, and surcharge. The

final solution was obtained by superimposing these effects. As ex-

pected, the limit analysis method yielded lower solutions for highly

frictional walls. For the particular problem solved (~

the limit analysis solution was over 20% lower than the one obtained

by using the graphical friction circle method.

6. Summary and Conclusions

It has been shown that the upper bound technique of limit

analysis can yield rationally founded solutions that are in good

agreement with the Sokolovskii slip-line results. In addition, these

solutions are easily obtainable in a closed form. The formulation

needed can be readily derived and has great physical appeal. A
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tabulation of passive pressure results for a cohensionless soil re

tained by a rigid wall of varying roughness 0 and inclination a from

the horizontal is given in Table 6. Table 7 shows the corresponding

active pressure results.

The investigation of several assumed failure mechanisms

has shown that significant solution improvement can especially be

realized for the case of rough walls. These improvements have basic

ally resulted from the use of new sandwich mechanism which incorpor

ates a logarithmic spiral shearing zone. The use of this mechanism

is particularly convenient and desirable due to the fact that only

two independent parameters are needed in its description. An inves

tigation was also made to study the effects of shifting the pole of

the log-spiral region away from its position at the top of the wall.

The resulting general sandwich mechanisms are shown in Fig. 12.

From the results obtained it was concluded that very little solution

improvement, if any, could be expected. Such improvement is out

weighed by the complexity of the optimization procedure needed, since

it must now contend with various functional discontinuities resulting

from unknown velocity directions VI and V
3

as shown in Figs. 12(a)

and 12(b) respectively. Improvement beyond the present stage may

perhaps be realized only for other types of simple failure mechanisms.

It has also been shown that the simplicity of the upper

bound technique makes it possible to easily include the effects of

cohesion and surcharge. Such problems have previously been solved

using the graphical forms of limit equilibrium. The problems of
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retaining walls with broken backs as well as backfills with irregular

slopes can also be so~ved when appropriate kinematically admissible

failure mechanisms are constructed. With the inclusion of non-homo-

geneous, layered soils for the limit analysis of slope stability

problems [8J, the extension to earth pressure situations is also

possible.
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9. Notations

The following symbols are used in this report:

internal friction angle of soil
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y

C

q

H

K
Y

Kc

Kq

soil unit weight

soil cohesion

surcharge per unit width

vertical height of wall

angle of wall inclination

angle of backfill surface

wall angle of friction

coefficient of earth pressure due to weight

coefficient of earth pressure due to cohesion·

coefficient of earth pressure due to surcharge

active and passive resultant earth pressures

normal active and passive earth pressures



p, 'Y, (1

V
0

eu

r
0
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mechanism parameters

initial translational wall velocity

discontinuous tangential velocity

initial radius of radial shear zone

Appendix 1

Log-Sandwich Mechanism

Cohesive Soil

For a cohesive soi~ energy dissipation terms must be added

for all surfaces of discontinuity as well as the shearing zone in the

log-spiral region (Fig. 3). Since the line ABCD is continuous there

will be no dissipation along either OB or OC due to a lack of relative

movement at those surfaces. The following dissipation terms must,

however, be included: (for passive case use lower signs)

Along the wall (OA) - see Eq. 19 for a smooth wall

For a rough wall (I) cp) the dissipation is given by

~H coscp Val
sinO'

Along AB

cH sinp Vl
sinO'

Along CD

cH Vl cos(p ± cp) sin(O' - p - 'Y + S) exp(+ 'Y tancp)

sinO' cos (0' - p - 'Y + cp + S)

(27)

(28)

(29)
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From Eq. 11, the dissipation terms for shearing in the log-spiral zone

and along the curved discontinuity Be are both equal to

_ 1 cH VI cos(p ± ~)[exp(+ 2~ ta~) - lJ
+ -2 ••

s~~ s~nO!

Equating the rate of external work to the rate of internal

energy dissipation:

For a smooth wall:

(30)

________s_e_c.:w.o -
n

-) {tanp
tanO cos(QI '"+ sinO! + tano cosO! - cosp

+ cos(p +w) sin(QI - p - ~ + s) exp(+! tanw)

cosp cos(QI - P - ~ + ~ + ~)

cos (p + cp) [exp (t: 2! tancp) - 1J}
+ si~ cosp

For a rough wall:

K
{C~scp cos(QI - 0) sinp sin(QI + cp)

{K
ac

}
seco +

pc + sinQl + tan& cOSQl s~nQl cos(p + ~) sinQl cos(p + ~)

+ cos (p ±w) sin(QI - 0 - ~ + s) sin(O! + w) exp(+ ~ tanw)

sinO! cos(QI - p - ~ + ~ + ~) cos(p + ~)

+ cos (p + cp) sin(QI + cp)[exp(+ 2! tal1<,p) - lJ}

si~ sinQl cos(p + ~)

Surcharge

For a uniformly distributed surcharge loading q on the

backfill as shown in Fig. 1, the following rate of external work

(31)

(32)
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Mni~Sim!~

~-()IW~

term must be include.d:

qH V] cos (p ± cp) exp (+ 2'l' tancp)
+ .

sina cos(a - p - 'l' + ~ + S)
(33)

Equating the rate of external work to the rate of internal

energy dissipation:

For a smooth wall:

2~r tanw) 1
- I

\!J + ~ + ~)

(34 )

+ seco (cos(p + w) exp(+
tan6 cos (a - Q) !+ s ina + tan?'. cosa - _..:.:.:.::~-=-=-.::...--'>.>.<--~ . cosp cos (a - p 

cosp

K
{Kaq1
. pq

+ seq; {c~s(Q +(0) sin(a + (0) exp(+ 2'J( tan~? } (35)

+ sina + tan6 COSaS1na cos(a - p - 'l' + ~ + S) cos(p +~)

Appendix 2

Two-Triangle Mechanism

The two-triangle mechanism consists of two rigid sliding

blocks and is completely described by three parameters (p, 11, 0).

The velocity fields for both the passive and active states are shown

in Figs. 13(a) and 13(b) respectively. The formulations for the

coefficients of earth pressure due to weight, cohesion, and surcharge

(K , K , K ) follow.
Y c q

Rate of External Work

For a cohesionless soil with no surcharge loading, the

rate of external work due to self-weight in any region is simply
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the vertical component of velocity in that region multiplied by the

weight of the region: (Note: for passive case use lower signs)

Region OAB

1
+ 2 yH2 VI sinp sin(a + ~) sin(~ + ~)

sin2 O' sin(a + ~ - p)

Region OBC

1
- yH2 V2 sin2 (O' +~) sin(O' - p + S) sin(O' - p + 0) sin(o +~)+ .=2__--==-- -:--:::-_:--;::;-:---:-__---:-_-:---:--_---:- _

sin2 O' sin2 (a + ~ - p) sin(o - S)

Moving Wall Load - See Eq. 18

Rate of Energy Dissipation

(36 )

For a smooth wall (0 <~) the dissipation by slidin~ friction

is given by Eq. 19. For a rough wall (0 = ~) the dissipation is given

by Eq. 28.

With the use of the compatible velocity diagrams all velo-

cities in the mechanism can be expressed in terms of the wall trans-

lational velocity V. For the case of smooth walls:
o

V sinO' V sina sin(a - p + ~ + 2~)

VI
0

V2
0

sin(~:+= ~ + 0') sin(~ + ~ + a) sin(O' - +0+ 2~)P
(38)

V sin(~ + ~) V sina s in(o - ~)0 0

Vol
sin(~ + ~ + 0')

V12
sin(~ + ~ + 0') sin(O' - p +0+ 2~)

For rough walls:

Vo sin(O' +~) V sin(O' + ~) sin(O' ~ - p + 2~)
0

VI
sin(~ + 0' + 2~)

V2
sin(~ + 0' + 2~) sin(O' - p + 0 + 2~)

(39)
Vo sin(~ +~) Vo sin(O' +~) sin(o - ~)

Vol V12 =
sin(~ + 0' + 2~) sin(~ + 0' + 2~) sin(O' - p + 0 + 2~)
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Equating the rate of external work to the rate of internal

energy dissipation:

For a smooth wall:

+ secD

tan6 sine] + m)+ sina + tan6 COSa - ~

sine'll + cp + a)

sina sin(a + 'll - p) sine'll + ~ + a)

{ sino sin(a + ]) sine] + ~)

(40)

+ sin2 (a +]) sin(q - 0 + S) sin(q - Q + 0) ~in(o +~) sin(~ + ~ - p + 2~)}

sina sin2 (a + 'll - p) sin(o - ~) sin(a + 'll + cp) sin(a - p + 0 + 2cp)

For a rough wall:

+ secO {s~np Si~(q + ]) sine] +~) sin(q + ~)

+ sina + tan6 cosas~n2a s~n(a + 'll - p) sine'll + a + 2cp)

(41)

+ sin2 (q±]) sin(q-p+B) sin(~-p+O) sin(o+wl sin(~) sinia+n-p+2W)}

sin2~ sin2 (<01l-p) sin(O-I3) sin('ll+ry+2cp) sin(a-p+o+2cp)

Cohesive Soil

The following dissipation expressions are necessary:

Along the wall (GA) - see expressions (19) and (27)

Along AB Along GB

cH VI coscp sinp

s ina sin(a+11-p)
(42)

cH V12 coscp sin(a+11)

sina sin(a+11-p)
(43)

Along BC

cH V2 coscp sin(~) sin(a-p+l3)

sina sin(a+1-p) sin(O-I3)
(44)
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For a smooth wall:

seco

_ta_n--,o,--s_in-->-.:(]-I--T,.,,-"I'-'-)+ sina + tano cosa - ~

sin (Tl+CP+a)

{ --'c--'o...::;s""'c,p---:;...s=..:in:.4·P,,-__ + cosc,p sin (o±n ) s in (0-])

sin(Tl+CP+a) sin(a+Tl-p) sin(a+Tl-p) sin(Tl+CP+a) sin(a-p+O+2~)

(45 )

+ cosc,p sin(a+]) sin Ca- o+6l sinCo±n-p+2c,p) t
sinCa+Tl-p) sinCo-s) sinCTl~+a) sinCa-p+O+2~)'

For a rough wall:

coso { cosc,p sinCn~)

+ sina + tanO cosa 'sina sin(Tl+a+2~)

+ __C.::...O.::.;S::J,CDu.-.:s:....:i::;:n:.joop<......::s...:;:i;:..:n....>.CCCW""-'-'*'-)<--__

sina sinC~-p) sin(Tl+a+2~)

cosc,p sin (a±]) sinCifhp) sinCo-])
(46)

+ cOSco sinCc&n) sinCa-p+6) sinCar±t,p) Sin(c01]-Q~2c,p)1

sina sin(~-p) sin(o-s) sin(Tl+a+2~) sin(a-p+O+2~)

Surcharge Loading

The following rate of external work term is necessary for a

backfill uniformly loaded with a surcharge q:

± qH V2 sin(~) sin(a-p+O) sin(o+~)

sina sinC~-p) sin(o-~)
(47)

For a smooth wall:

(48)

+ seco

+ sina + tano cosa _ tan6 sinC]+m)

sin(Tl+CP+a)

J sin(c01l) sin(cx-p-±D) sin(ofw) sin(c01]-p+2cp) 1
1 - - T
sin(a+Tl-p) sin(o-s) sin(Tl+CP+a) sin(a-p+O+2~)

Kf aql
'K I

pq



For a rough wall:
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+ secD

+ sin~ + tan6 cos~

(49)

{Sin(o±]) sin(aiw) sin(~-Q+O) siniO±w) Sin(07TI-~+2~)}

'sin~ sin«()!f1j-p) sin(o-s) sin(Il+~2cp) sin(~-p+O+2cp) .



Tab Ie 1 Passive Pressure Coefficients K (~ 0)
PY

Mechanism
c.p 0

.( 1) (2) (3 ) (4) (5 ) (6 )

10 0 1.36 1.36 1.52 1.47 1.36 1.36
5 1.45 1.46 1.53 1.50 1.45 1.45

10 1.55 1.54 1.54 1.54 1.54 1.54
20 0 1. 75 1. 75 2.31 2.01 1. 75 1. 75

0
10 2.08 2.08 2.36 2.18 2.08 2.08" 20 2.49 2.44 2.46 2.47 2.44 2.47

C1 30 0 2.27 2.28 3.86 2.75 2.28 2.30
15 3.16 3.16 4.06 3.36 3.16 3.18
30 4.76 4.43 4.50 4.76 4.41 4.76

40 0 3.02 3.02 7.76 3.52 3.02 3.27
20 5.34 5.32 8.33 5.39 5.31 5.89
40 12.80 10.00 10.10 15.50 9.88

10 0 1.42 1.42 1.68 1.60 1.42 1.42
5 1.57 1.56 1.69 1.63 1.56 1.56

10 1. 73 1.68 1.71 1.68 1.68 1. 67
20 0 2.04 2.04 3.07 2.60 2.04 2.04

0 10 2.64 2.58 3.12 2.82 2.58 2.610'

20 3.53 3.18 3.27 3.19 3.17 3.19
C1 30 0 3.00 3.00 6.38 4.80 3.00 3.01

15 4.98 4.71 6.61 5.88 4.71 4.97
30 10.10 7.24 7.37 8.31 7.10 8.31

40 0 4.60 4.61 16.10 15.40 4.60 4.67
20 11. 80 10.10 17.70 23.60 10.10 12.50
40 92 .60 22.70 21. 70 67.90 20.90

10 0 1. 76 1. 74 3.10 2.06 1. 74 1. 74
5 1. 90 1. 83 3.12 1. 97 1. 96 1. 96

10 2.04 1. 91 2.77 1. 90 2.16 2.14
0 20 0 2.98 2.91 6.41 4.03 2.91 2.93
~

~ 10 3.78 3.38 6.50 3.85 3.91 3.94
20 4.81 3.92 5.22 3.79 5.04 4.95

C1 30 0 5.34 5.09 15.60 10.20 5.08 5.33
15 9.22 6.99 16.10 10.10 8.93 10.20
30 72.70 10.10 11. 70 11.50 14.40 17.60

40 0 10.70 9.73 50.30 127.00 9.71 11.40
20 89.70 17.60 53.50 141.00 25.50 69.40
40 77 .40 34.90 298.00 56.60
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Table 2 Effects of Rankine Constraint Cs = 0)

0
Passive Log-Sandwich Active Log-Sandwich

cp
(1 % Diff. K % Diff. (2 % Diff. K % Diff.

Py ay

10 0 26.30 1.47 20.00
5 9.20

10 1.00 40.00
20 0 27.40 2.24 18.40 1. 85

0 10 6.00"-
20 2.28 3.82

a 30 0 36.00 3.94 16.80 3.02
15 1.66 9.00
30 2.00 3.50

40 0 35.60 6.64 6 .85 4.80
20 1.60 21.60
40 2.40 6.15

10 0 2.00 1.40
5 2.00

10 1.00
20 0 1.27

0 100'\

20 2.57
a 30 0 1.17

15 1.33 2.16
30 2.00

40 0 2.40 1.07
20 4.40
40 7.00

10 0 1. 75
5 8.60

10 2.25 4.20
0 20 0 1.15 1.82
r-l 10 4.56 1.09r-l

20 6.30 7.82
a 30 0 1.33 17.50

15 5.66 .50
30 10.00

40 0 4.31
20 14.50
40 .46



Table 3 Active Pressure Coefficients K (S 0)ay

Mechanism
qJ I)

(1) (2) (3 ) (4) (5 ) (6 )

10 0 .833 .821 .774 .738 .832 .832
5 .801 .800 .775 .778 .801 .801

10 .786 .787 .786 .826 .787 .786
20 0 .648 .616 .576 .447 .647 .647

0 10 .615 .610 .582 .485 .615 .614r--
20 .613 .614 .613 .549 .613 .613

b 30 0 .498 .490 .434 .173 .497 .497
15 .476 .473 .446 .187 .475 .475
30 .501 .501 .501 .230 .501 .501

40 0 ,375 .320 .328 .375 .373
20 .370 .303 .346 .368 .365
40 .428 .417 .428 .428 .418

10 0 .704 .704 .622 .572 .704 .704
5 .662 .664 .624 .566 .664 .663

10 .635 .642 .631 .564 .642 .637
20 0 .490 .490 .394 .236 .490 .490

0 10 .447 .448 .400 .226 .448 .4470'\

20 .427 .434 .420 .222 .434 .427
b 30 0 .333 .333 .250 .333 .333

15 .301 .302 .259 .302 .301
30 .297 .303 .289 .302 .297

40 0 .217 .215 .155 .217 .217
20 .199 .200 .165 .200 .197
40 .210 .214 .202 .214 .210

10 0 .644 .649 1.09 .441 .649 .647
5 .625 .639 1.09 .436 .601 .595

10 .616 .649 1.26 .435 .569 .561
0 20 0 .380 .387 .679 .015 .385 .382
,...; 10 .371 .386 .689 .341 .353,...;

20 .378 .417 .943 .319 .307
b 30 0 .212 .218 .434 .216 .212

15 .215 .226 .449 .188 .181
30 .237 .275 .767 .178 .168

40 0 .106 .111 .280 .109 .106
20 .115 .123 .298 .095 .090
40 .146 .180 .687 .095 .088
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Table 4 Comparison with Passive Slip-line Solutions (13 0)

K K
cp 0 py py

Soko1ovskii (21) Limit Analysis Mechanism % Diff.

10 0 1.34 1.36 1,2,5,6 + 1.49
5 1.46 1.45 1,2,5,6 .68

10 1.53 1.54 1,2,3,4,5,6 + .65
20 0 1.71 1. 75 1,2,5,6 + 2.34

0
10 2.08 2.08 1,2,5,6r--.

20 2.42 2.44 2,5 + .83
Cl 30 0 2.16 2.28 1,2,5 + 7.86

15 3.16 3.16 1,2,5
30 4.30 4.41 5 + 2.56

40 0 2.84 3.02 1,2,5 + 6.34
20 5.32 5.31 2,5 - 2.07
40 9.32 9.88 5 + 6.00

10 0 1.42 1.42 1,2,5,6
5 1.56 1.56 1,2,5,6

10 1.66 1.68 2,4,5,6 + 1.20
20 0 2.04 2.04 1,2,5,6

0
10 2.55 2.58 2,5 + 1.180"\

20 3.04 3.17 2,5 + 4.27
Cl 30 0 3.00 3.00 1,2,5,6

15 4.62 4.71 2,5 + 1. 95
30 6.55 7.10 5 + 8.40

40 0 4.60 4.60 1,2,5
20 9.69 10.10 2,5 + 4.23
40 18.20 20.90 5 +14.85

10 0 1. 75 1. 74 2,5,6 .57
5 1. 95 1.83 2 - 6.15

10 2.10 1. 90 2,4 - 9.50
0 20 0 2.90 2.91 2,5 + .34
H
H 10 3.80 3.38 2 -11. 00

20 4.62 3.79 4 -18.00
Cl 30 0 5.06 5.08 2,5 + .40

15 8.45 8.93 5 + 5.65
30 12.30 14.40 5 +17.10

40 0 9.56 9.71 5 + 1.57
20 22.40 25.50 5 +13 .80
40 44.70 56.60 5 +26.60
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Tab Ie 5 Comparison with Active Slip-line Solutions (~ 0)

{)
Kay Kay

q:> Soko1ovskii(21) Limit Analysis Mechanism % Diff •

10 0 .826 . 833 1,5,6 + .85
5 .794 .801 1,2,5,6 + .88

10 .794 .787 1,2,3,5,6 .88
20 0 .656 .648 1,5,6 - 1.21

0 10 .612 .615 1,5,6 + .49r---
20 .612 .614 1,2,5,6 + .33

cs 30 0 .521 .498 1,5,6 - 4.41
15 .487 .476 1,5,6 - 2.26
30 .510 .501 1,2,3,5,6 - 1. 76

40 0 .396 .375 1,5 - 5.30
20 .385 .370 1 - 3.90
40 .430 .428 1,3,5 .47

10 0 .700 .704 1,2,5,6 + .57
5 .670 .664 2,5 .89

10 .650 .642 2,5 - 1.23
20 0 .490 .490 1,2,5,6

0 10 .450 .448 2,5 .440'

20 .440 .434 2,5 - 1.36
cs 30 0 .330 .333 1,2,5,6 + .91

15 .300 .302 2,5 + .67
30 .310 .303 2 - 2.26

40 0 .220 .217 1,5,6 - 1.36
20 .200 .200 2,5
40 .220 .214 2,5 - 2.73

10 0 .665 .649 2,5 - 2.40
5 .620 .639 2 - 3.06

10 .596 .649 2 + 8.90
0 20 0 .482 .387 2 - 1. 98M
M 10 .356 .386 2 + .84
II 20 .344 .417 2 +21.20
cs 30 0 .229 .218 2 - 4.81

15 .206 .226 2 + 9.71
30 .195 .275 2 +41.00

40 0 .126 .111 2 -11. 90
20 .106 .123· 2 +16.00
40 .119 .180 2 +51.30
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Table 6 Passive Earth Pressure Coefficients K
Py

-33

Angle of Wall
internal friction Backfill

Wall Angle ct (deg. )friction angle angle
cp(deg) B(deg) s(deg) 50 60 70 80 90 100 110 120 130

10 0 0 1.58 1.44 1.38 1.37 1.42 1.54 1. 74 2.06 2.60
10 1.87 1.69 1.62 1.61 1.68 1.81 2.05 2.45 3.11

5 0 1.61 1.50 1.45 1.48 1.56 1.71 1. 96 2.36 3.03
10 2.05 1. 87 1. 80 1. 81 1. 90 2.08 2.39 2.89 3.74

10 0 1. 66 1.56 1.54 1.58 1.68 1.87 2.16 2.64 3.45
10 2.19 2.01 1. 95 1. 98 2.10 2.32 2.70 3.31 4.35

15 0 0 1. 75 1.62 1.57 1.59 1. 70 1. 91 2.24 2.78 3.70
10 2.08 1.92 1. 88 1. 93 2.07 2.32 2.74 3.43 4.61

5 0 1. 78 1.68 1.67 1. 74 1. 89 2.15 2.57 3.24 4.40
10 2.27 2.13 2.10 2.18 2.36 2.69 3.22 4.10 5.62

10 0 1.84 1.77 1. 79 1.89 2.08 2.40 2.90 3.72 5.13
10 2.46 2.32 2.32 2.43 2.66 3.07 3.72 4.81 6.69

15 0 1. 91 1. 87 1.91 2.04 2.27 2.64 3.23 4.20 5.87
10 2.63 2.50 2.52 2.66 2.95 3.44 4.22 5.52 7.79

20 0 0 1.92 1. 81 1. 79 1. 86 2.04 2.37 2.91 3.78 5.32
10 2.29 2.17 2.18 2.30 2.56 2.98 3.68 4.85 6.91
20 2.78 2.62 2.62 2.77 3.09 3.63 4.50 5.98 8.63

5 0 1. 98 1.90 1.92 2.04 2.30 2.72 3.39 4.49 6.45
10 2.52 2.41 2.45 2.63 2.96 3.51 4.40 5.90 8.57
20 3.14 2.99 3.02 3.24 3.65 4.35 5.49 7.42 10.9

10 0 2.05 2.01 2.08 2.26 2.58 3.09 3.91 5.27 7.69
10 2.75 2.67 2.75 2.98 3.39 4.08 5.19 7.05 10.4
20 3.52 3.37 3.45 3.73 4.26 5.13 6.57 9.01 13 .4

15 0 2.14 2.14 2.26 2.49 2.88 3.49 4.47 6.11 9.04
10 2.99 2.93 3.05 3.34 3.85 4.68 6.02 8.29 12.4
20 3.90 3.77 3.89 4.25 4.90 5.97 7.73 10.7 16.4

20 0 2.26 2.29 2.44 2.71 3.17 3.89 5.04 6.95 10.4
10 3.22 3.19 3.34 3.70 4.30 5.29 6.95 9.65 14.0
20 4.26 4.15 4.32 4.77 5.55 6.83 8.94 12 .5 18.9

25 0 0 2.14 2.05 2.06 2.18 2.46 2.98 3.81 5.23 7.80
10 2.54 2.46 2.53 2.76 3.18 3.88 5.02 6.99 10.6
20 3.15 3.04 3.14 3.44 4.00 4.91 6.43 9.06 13.9

5 0 2.21 2.15 2.22 2.42 2.82 3.47 4.53 6.33 9.64
10 2.81 2.75 2.88 3.19 3.74 4.63 6.11 8.66 13.4
20 3.58 3.50 3.66 4.07 4.80 5.99 7.98 11.4 17.8

10 0 2.30 2.29 2.42 2.72 3.22 4.02 5.34 7.60 11.8
10 3.08 3.07 3.27 3.76 4.36 5.49 7.35 10.6 16.6
20 4.04 4.00 4.24 4.78 5.70 7.23 9.75 14.1 22.4

-
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25 15 0 2.41 2.46 2.67 3.05 3.66 4.64 6.25 9.02 14.2
10 3.39 3.43 3.69 4.20 5.05 6.44 8.74 12.7 20.2
20 4.54 4.55 4.87 5.55 6.70 8.59 11.7 17.2 27.4

20 0 2.56 2.67 2.94 3.40 4.13 5.31 7.23 10.6 16.8
10 3.72 3.80 4.13 4.76 5.80 7.47 10.4 15.3 24.5
20 5.07 5.12 5.55 6.38 7.79 10.1 14.5 21.4 34.5

25 0 2.74 2.89 3.21 3.76 4.62 6.00 8.26 12.2 19.5
10 4.05 4.18 4.59 5.34 6.57 8.54 12.0 17.8 29.7
20 5.60 5.71 6.23 7.24 8.90 11.6 16.8 25.0 40.4

30 0 0 2.37 2.31 2.37 2.57 3.00 3.78 5.08 7.37 11.7
10 2.82 2.79 2.95 3.34 4.01 5.12 7.00 10.3 16.8
20 3.57 3.54 3.79 4.32 5.25 6.79 9.43 14.2 23.3
30 4.41 4.42 4.76 5.68 6.74 8.82 12.4 18.8 31.3

5 0 2.46 2.44 2.57 2.88 3.49 4.49 6.16 9.13 14.8
10 3.13 3.15 3.40 3.92 4.79 6.24 8.70 13.1 21.6
20 4.07 4.12 4.48 5.19 6.42 8.46 11.9 18.2 30.4
30 5.19 5.26 5.76 6.79 8.39 11.2 16.0 24.5 41.3

10 0 2.57 2.61 2.82 3.29 4.06 5.32 7.44 11.2 18.5
10 3.47 3.55 3.91 4.58 5.70 7.56 10.7 16.4 27.4
20 4.66 4.78 5.27 6.21 7.79 10.4 14.9 23.0 38.9
30 6.07 6.23 6.90 8.02 10.3 14.0 20.1 31.3 53.2

15 0 2.72 2.83 3.16 3.75 4.71 6.27 8.92 13.7 22.9
10 3.85 4.02 4.50 5.34 6.75 9.08 13.0 20.2 34.1
20 5.31 5.52 6.17 7.37 9.37 12.7 18.4 28.7 48.7
30 7.05 7.32 8.21 10.3 12.6 17.2 25.0 39.2 66.0

20 0 2.91 3.n 3.55 4.27 5.44 7.36 10.6 16.4 27.8
10 4.29 4.54 5.15 6.20 7.94 10.8 16.1 25.2 42.9
20 6.03 6.35 7.18 8.68 11.2 15.3 23.0 37.0 63.0
30 8.14 8.54 9.68 12.3 15.1 20.8 30.5 49.0 82.0

25 0 3.15 3.44 3.97 4.85 6.25 8.55 12.5 19.5 33.2
10 4.77 5.n 5.86 7.14 9.24 12.7 19.1 30.1 51.4
20 6.81 7.25 8.29 10.1 13 .1 18.1 27.5 44.0 78.5
30 9.32 9.87 11.3 14.4 17.9 25.0 37.6 60.0 100.

30 0 3.42 3.77 4.41 5.45 7.10 9.80 14.4 22.7 38.8
10 5.26 5.70 6.60 8.13 10.6 15.1 22.2 35.1 60.3
20 7.62 8.18 9.44 11.6 15.2 21.4 32.8 54.0 94.0
30 10.5 11.2 13.0 16.7 20.8 29.0 44.0 72.4 122.

35 0 0 2.67 2.64 2.76 3.07 3.69 4.87 6.92 10.7 18.3
10 3.14 3.19 3.47 4.07 5.20 6.90 10.0 15.9 27.7
20 4.06 4.14 4.60 5.56 7.03 9.66 14.3 23.0 40.9
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35 0 30 5.17 5.37 6.10 7.40 9.50 13.3 20.0 32.7 56.0
5 0 2.78 2.81 3.01 3.47 4.37 5.91 8.60 13.6 23.7

10 3.50 3.63 4.05 4.86 6.25 8.61 12.8 20.6 36.5
20 4.66 4.88 5.53 6.60 8.79 12.3 18.6 30.4 54.5
30 6.14 6.49 7.50 9.20 12.2 17 . 2 26.4 43.6 78.4

10 0 2.92 3.02 3.34 4.01 5.19 7.17 10.7 17 .2 30.4
10 3.92 4.14 4.74 5.81 7.61 10.7 16.1 26.4 47.4
20 5.39 5.75 6.64 8.20 10.9 15.6 23.8 39.4 71.3
30 7.29 7.82 9.00 11.2 14.7 21.2 34.1 56.9 110.

15 0 3.10 3.29 3.77 4.67 6.16 8.68 13 .1 21.5 38.6
10 4.40 4.76 5.55 6.93 9.24 13.2 20.2 33.5 60.6
20 6.25 6.77 7.94 10.0 13 .5 19.5 30.1 50.3 91.6
30 8.63 9.41 11.0 13.8 18.5 27.0 43.5 73.0 138.

20 0 3.33 3.64 4.32 5.44 7.31 10.5 16.1 26.6 48.2
10 4.97 5.48 6.49 8.24 11.2 16.1 26.0 43.5 79.2
20 7.23 7.96 9.48 12.0 16.5 24.1 38.7 66.0 118.
30 10.2 11.2 13 .4 17.0 23.2 34.5 55.0 96.0 175.

25 0 3.63 4.10 4.94 6.33 8.63 12 .5 19.4 32.5 59.2
10 5.63 6.30 7.58 9.75 13 .4 19.5 31.7 53.4 97.7
20 8.35 9.32 11.2 14.2 20.0 29.4 46.8 81.0 148.
30 11. 9 13.3 16.2 20.8 29.0 43.0 70.0 122. 225.

30 0 4.01 4.61 5.64 7.33 10.1 14.8 23.2 39.0 71.4
10 6.36 7.21 8.79 11.4 15.8 24.2 38.0 64.3 118 ..
20 9.59 10.8 13.2 16.8 23.2 35.0 57.5 98.0 188.
30 13.9 15.7 19.0 24.5 34.8 52.5 86.0 150. 285.

35 0 4.42 5.15 6.38 8.39 11.7 17.2 27.1 45.8 84.1
10 7.14 8.18 10.1 13.2 19.2 28.4 44.8 75.8 139.
20 10.9 12.4 15.2 19.7 28.3 43.0 69.0 122. 225.
30 16.0 18.1 22.0 28.5 40.0 22.6 102. 180. 350.

40 0 0 2.98 3.01 3.22 3.67 4.60 6.41 9.70 16.1 29.8
10 3.51 3.66 4.13 5.04 6.68 9.58 14.9 25.5 48.3
20 4.65 4.88 5.66 7.20 9.68 14.3 22.8 39.8 70.0
30 6.11 6.59 7.70 10.0 14.0 21.0 34.2 60.5 110.
40 7.97 8.30 9.80 12.8 19.2 30.3 52.0 91.0 162.

5 0 3.12 3.22 3.54 4.21 5.56 7.97 12.4 21.1 39.9
10 3.94 4.20 4.87 6.14 8.35 12.3 19.6 34.2 65.6
20 5.38 5.84 6.94 9.0 12.4 18.7 30.5 53.9 102.
30 7.35 8.12 9.60 12 .5 18.2 28.1 46.4 82.9 150.
40 9.89 10.5 12.6 16.5 25.0 41.1 68.0 132. 230.
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40 10 0 3.30 3.49 3.96 4.96 6.76 9.94 15.8 27.6 52.8
10 4.46 4.87 5.81 7.50 10.4 15.7 25.6 45.2 87.8
20 6.29 7.01 8.53 11.2 15.9 24.4 40.3 72.0 135.
30 8.87 10.0 12.0 16.2 23.6 37.0 61.8 111. 210.
40 12.3 13 .5 15.3 21.8 33.0 52.5 90.0 165. 315.

15 0 3.53 3.84 4.55 5.91 8.25 12.4 20.2 35.6 69.0
10 5.06 5.68 6.95 9.19 13 .1 20.0 33.0 59.0 115.
20 7.42 8.44 10.5 14.0 20.3 31.5 52.6 94.7 185.
30 10.7 12.3 15.7 20.8 31.0 48.5 81.1 147. 280.
40 15.2 17.0 21.0 29.0 47.0 70.0 120. 225. 430.

20 0 3.82 4.30 5.31 7.06 10.1 15.4 25.5 45.5 88.9
10 5.80 6.68 8.35 11.2 16.3 25.3 43.0 80.0 155.
20 8.77 10.2 12.8 17.3 25.6 40.2 70.0 127. 250.
30 12.9 15.2 19.5 26.4 41.0 63.0 106. 190. 350.
40 18.7 21.4 27.0 37.9 60.0 94.5 164. 295. 550.

25 a 4.21 4.92 6.23 8.45 12.3 19.1 31.8 57.3 113.
10 6.70 7.87 10.0 13.7 20.1 31.6 56.0 102. 201.
20 10.4 12.2 15.7 21.5 32.0 50.6 88.5 165. 300.
30 15.6 18.5 23.8 33.0 49.0 78.0 132. 248. 450.
40 22.8 27.0 35.0 49.0 74.0 120. 210. 375. 700.

30 0 4.71 5.67 7.31 10.1 14.8 23.3 39.3 71.1 140.
10 7.75 9.26 12.0 16.6 24.6 40.0 69.7 127. 251.
20 12.2 14.6 19.0 26.5 39.5 64.0 114. 220. 400.
30 18.7 22.5 29.0 44.0 62.0 100. 170. 315. 600.
40 27.7 36.5 43.0 60.0 93.0 150. 260. 475. 920.

35 0 5.33 6.52 8.54 11. 9 17.8 28.2 47.7 86.6 171.
10 8.95 10.8 14.2 19.9 30.0 50.0 88.0 160. 320.
20 14.4 17.4 22.8 32.5 50.0 82.0 150. 290. 600.
30 22.2 26.9 34.5 48.5 75.0 120. 210. 388. 760.
40 32.0 38.5 51.0 72.0 108. 177. 310. 565. 1120

40 0 6.01 7.45 9.88 13.9 20.9 33.3 56.6 103. 204.
10 10.2 12.6 16.6 23.4 36.0 59.4 101. 190. 365.
20 16.6 20.3 26.8 38.5 59.5 100. 184. 360. 780.
30 26.0 31.7 40.5 56.8 91.0 150. 265. 485. 950.
40 36.5 44.0 59.5 82.0 125. 215. 375. 700. 1330
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internal friction angle

Wa 11 Ang Ie Ci (deg. )friction angle
cp(deg) o(deg) (3(deg) 50 60 70 80 90 100 110 120 130

10 0 0 1.11 .943 .832 .756 .704 .669 .650 .641 .641
10 1.41 1.20 1.06 .982 .937 .922 .900 .895 .890

5 0 1. 09 .917 .801 .720 .664 .626 .601 .586 .577
10 1.45 1.23 1.08 1.00 .951 .936 .920 .900 .890

10 0 1.07 .911 .787 .702 .642 .600 .570 .549 .533
10 1.53 1.29 1.13 1.05 .991 .966 .950 .940 .935

15 0 0 1.02 .850 .735 .651 .589 .541 .504 .472 .438
10 1.27 1.04 .893 .782 .701 .643 .595 .555 .516

5 0 1.00 .828 .709 .622 .557 .507 .467 .433 .395
10 .1.28 1.04 .885 .764 .679 .612 .560 .516 .442

10 0 1.00 .821 .695 .603 .536 .484 .442 .405 .365
10 1.32 1. 07 .889 .758 .663 .591 .536 .489 .473

15 0 1.02 .826 .691 .596 .525 .470 .425 .385 .342
10 1.38 1.11 .903 .760 .657 .581 .522 .471 .420

20 0 0 .937 .767 .647 .559 .490 .434 .387 .341 .290
10 1. 15 .920 .765 .653 .568 .500 .441 .387 .329
20 1.44 1.17 1.01 .901 .822 .781 .759 .749 .732

5 0 .921 .748 .626 .536 .465 .409 .361 .314 .263
10 1.14 .915 .754 .634 .546 .474 .414 .360 .301
20 1.47 1.19 1.03 .907 .840 .786 .763 .741 .736

10 0 .924 .742 .614 .520 .448 .391 .342 .295 .243
10 1. 17 .926 .751 .626 .531 .457 .396 .340 .280
20 1.51 1.23 1.06 .937 .855 .812 .776 .767 .748

15 0 .942 .745 .610 .512 .438 .379 .328 .280 .229
10 1.21 .949 .756 .622 .523 .446 .383 .325 .265
20 1.59 1. 29 1.11 .982 .895 .837 .813 .789 .769

20 0 .970 .759 .614 .511 .434 .372 .319 .270 .217
10 1.29 .984 .771 .626 .521 .441 .375 .315 .253
20 1.72 1.39 1.18 1.04 .951 .888 .848 .821 .800

25 0 0 .859 .688 .568 .478 .406 .346 .293 .241 .184
10 1.03 .814 .661 .549 .462 .389 .327 .267 .203
20 1.25 1. 00 .818 .681 .569 .480 .401 .326 .249

5 0 .848 .674 .552 .459 .387 .327 .275 .223 .168
10 1.03 .810 .648 .532 .443 .370 .308 .249 .186
20 1.27 1. 00 .824 .673 .557 .462 .381 .307 .230

10 0 .851 .671 .542 .448 .374 .313 .261 .210 .156
10 1.05 .814 .645 .523 .431 .356 .294 .235 .173
20 1.31 1.03 .830 .673 .548 .449 .367 .292 .216
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25 15 0 .866 .672 .540 .441 .365 .304 .251 .200 .146
10 1. 09 .828 .647 .520 .423 .347 .284 .225 .164
20 1.37 .107 .853 .678 .545 .441 .357 .282 .206

20 0 .896 .685 .542 .439 .361 .298 .244 .193 .139
10 1.14 .856 .658 .521 .420 .342 .277 .217 .156
20 1.45 1.12 .886 .688 .545 .438 .351 .274 .198

25 0 .925 .725 .552 .443 .361 .296 .240 .187 .134
10 1.22 .920 .676 .528 .423 .341 .273 .212 .151
20 1.56 1.20 .929 .708 .554 .439 .349 .270 .192

30 0 0 .787 .617 .497 .406 .333 .272 .218 .165 .108
10 .929 .717 .569 .460 .373 .301 .239 .180 .116
20 1.12 .861 .683 .546 .438 .353 .276 .207 .135
30 1.38 .107 .899 .765 .684 .610 .561 .500 .434

5 0 .778 .606 .484 .392 .319 .258 .205 .154 .099
10 .932 .715 .559 .446 .359 .287 .226 .168 .108
20 1.12 .861 .678 .536 .426 .338 .263 .194 .125
30 1.39 1.09 .912 .776 .694 .619 .570 .507 .428

10 0 .781 .604 .477 .383 .309 .248 .196 .145 .093
10 .946 .720 .557 .439 .349 .277 .216 .159 .100
20 1.16 881. .681 .532 .419 .328 .252 .184 .117
30 1.43 1.14 .934 .795 .712 .634 .570 .506 .426

15 0 .798 .607 .475 .378 .302 .242 .189 .138 .087
10 .972 .728 .558 .437 .343 .270 .209 .152 .095
20 1.19 .900 .695 .532 .414 .321 .245 .177 .111
30 1. 51 1.18 .968 .823 .738 .657 .590 .524 .442

20 0 .821 .618 .479 .377 .299 .237 .184 .134 .083
10 1. 01 .750 .566 .437 .341 .266 .204 .147 .091
20 1.25 .943 .712 .539 .414 .318 .240 .172 .106
30 1. 59 1.24 1.01 .885 .773 .688 .618 .549 .448

25 0 .862 .638 .487 .380 .299 .235 .180 .130 .080
10 1. 08 .785 .581 .442 .342 .265 .201 .143 .087
20 1.35 1.00 .739 .550 .418 .318 .238 .169 .103
30 1. 74 1.35 1.11 .940 .820 .729 .654 .564 .473

30 0 .900 .770 .501 .387 .302 .236 .179 1.27 .078
10 1.17 .829 .602 .453 .347 .266 .200 .141 .085
20 1.47 1.08 .776 .568 .425 .321 .238 .167 .100
30 1. 88 1.46 1.19 1. 01 .882 .783 .701 .604 .489

35 0 0 .717 .551 .433 .343 .271 .211 .158 .107 .057
10 .837 .634 .491 .383 .299 .230 .171 .115 .060
20 .986 .741 .572 .443 .342 .261 .191 .128 .066
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excp 50 60 70 80 90 100 110 120 130

35 0 30 1.18 .895 .703 .558 .434 .331 .240 .160 .084
5 0 .711 .542 .424 .333 .260 .201 .149 .101 .052

10 .843 .629 .483 .372 .289 .220 .162 .108 .056
20 1. 01 .741 .568 .435 .333 .250 .182 .120 .060
30 1.20 .904 .708 .557 .426 .320 .230 .151 .078

10 0 .717 .543 .418 .326 .253 .194 .143 .095 .049
10 .849 .635 .480 .368 .282 .213 .155 .103 .052
20 1. 02 .759 .569 .430 .326 .243 .175 .115 .057
30 1.22 .923 .720 .560 .422 .312 .222 .145 .074

15 0 .731 .546 .417 .322 .248 .189 .138 .091 .046
10 .876 .643 .481 .365 .277 .208 .150 .098 .049
20 1. 05 .775 .575 .430 .322 .238 .170 .110 .054
30 1.27 .975 .753 .567 .421 .308 .216 .140 .070

20 0 .755 .557 .420 .322 .246 .186 .135 .088 .044
10 .915 .664 .488 .367 .275 .205 .147 .095 .047
20 1.11 .800 .592 .434 .322 .235 .166 .107 .052
30 1.36 1.02 .781 .580 .424 .306 .214 .137 .068

25 0 .791 .575 .430 .325 .246 .185 .133 .086 .043
10 .968 .692 .501 .371 .276 .204 .145 .093 .046
20 1.17 .847 .610 .443 .323 .235 .165 .105 .050
30 1.44 1. 08 .819 .598 .429 .307 .213 .134 .066

30 0 .846 .601 .442 .331 .249 .185 .132 .085 .042
10 1.04 .730 .519 .379 .280 .205 .144 .092 .044
20 1.27 .908 .637 .455 .329 .237 .164 .103 .049
30 1.60 1.15 .870 .623 .438 .310 .213 .133 .064

35 0 .928 .634 .460 .341 .254 .187 .132 .084 .041
10 1.12 .783 .545 .392 .287 .208 .145 .091 .044
20 1.41 .989 .676 .473 .337 .241 .166 .103 .048
30 1. 75 1. 29 .951 .656 .457 .318 .216 .134 .064

40 0 0 .649 .491 .374 .287 .217 .160 .111 .065 .024
10 .760 .556 .421 .316 .237 .172 .118 .069 .025
20 .874 .643 .482 .358 .266 .191 .129 .075 .026
30 1.38 .762 .577 .429 .316 .226 .150 .086 .029
40 1.22 .920 .751 .614 .511 .443 .364 .277 .160

5 0 .645 .486 .368 .279 .210 .153 .105 .061 .022
10 .759 .553 .415 .310 .230 .166 .112 .064 .023
20 .879 .644 .479 .352 .259 .183 .123 .070 .024
30 1.03 .770 .579 .426 .309 .218 .143 .081 .027
40 1.25 .941 .769 .628 .524 .439 .361 .274 .157
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40 10 0 .654 .485 .364 .275 .205 .149 .101 .058 .021
10 .767 .562 .413 .305 .225 .160 .108 .061 .022
20 .894 .651 .480 .349 .254 .178 .118 .067 .023
30 1.05 .786 .586 .425 .305 .212 .139 .078 .026
40 1.29 .973 .769 .650 .542 .455 .374 .273 .155.....

15 0 .664 .490 .365 .272 .201 . 145 .098 .056 .020
10 .783 .571 .415 .304 .221 .fS7 .105 .059 .021
20 .937 .666 .486 .349 .251 .175 .115 .065 .022
30 1.07 .811 .590 .426 .304 .209 .135 .075 .024
40 1.35 1.02 .804 .657 .567 .459 .377 .286 .154

20 0 .690 .503 .367 .273 .200 .143 .096 .054 .019
10 .822 .585 .421 .306 .220 .155 .103 .057 .020
20 .975 .688 .496 .352 .250 .173 .113 .063 .021
30 1.11 .846 .610 .434 .305 .208 .133 .073 .023
40 1.43 1.08 .849 .693 .578 .485 .399 .290 .155

25 0 .717 .518 .376 .276 .200 .143 .095 .053 .018
10 .860 .607 .431 .310 .221 .155 .101 .056 .019
20 1. 03 .729 .511 .359 .252 .173 .112 .061 .020
30 1.17 .892 .637 .445 .309 .208 .132 .072 .023
40 1.53 1.15 .908 .741 .617 .518 .409 .297 .156

30 0 .765 .543 .388 .281 .203 .143 .094 .052 .018
10 .927 .643 .447 .317 .224 .156 .101 .055 .019
20 1.10 .772 .532 .369 .256 .174 .112 .061 .020
30 1.24 .953 .681 .463 .314 .210 .133 .071 .022
40 1.67 1.25 .984 .802 .668 .559 .442 .321 .160

35 0 .840 .576 .405 .289 .207 .145 .094 .052 .017
10 1.02 .690 .470 .327 .230 .158 .102 .055 .018
20 1.22 .840 .562 .383 .263 .177 .113 .060 .020
30 1.33 1. 03 .727 .480 .324 .214 .134 .071 .023
40 1. 84 1.38 1.08 .881 .733 .589 .463 .335 .164

40 0 .946 .598 .428 .302 .214 .148 .096 .052 .017
10 1.09 .738 .500 .342 .238 .162 .103 .055 .018
20 1.38 .931 .604 .402 .273 .182 .114 .061 .019
30 1.50 1.17 .792 .512 .338 .221 .136 .072 .023
40 2.07 1.55 1.21 .985 .817 .654 .513 .353 .171
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(a) Coulomb (b) Two-Triangle

(c) Log - Triangle (d) Arc-Triangle

(e) Log - Sandwich (f) Arc - Sandwich

Fig. 1 Failure Mechanisms
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(a) Division of Zone Into n Rigid Triangles

o

(b) Velocity Diagram for Regions AOB and BOC

Fig. 2 Circular Shearing Zone (~ # 0)
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90- a+p

( b) Smooth Wall 8 < ep (c) Rough Wall 8 = ep

Fig. 3 Passive Log-Sandwich Mechanism
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(a) V3 = VI exp (-"'tan¢)
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(b) Smooth Wall 8<¢

Vo

Vo~+p

(c) Rough Wall 8 =¢

Fig. 4 Active Log-Sandwich Mechanism
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-- Limit Analysis
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Fig. 11 Inclusion of Cohesion and Surcharge Loading
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