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ABSTRACT

I
The present study deals with critical deposit velocity, ''VC",

defined as the velocity at which particles begin to settle from the

carrying m~dium and form a stationary (non-moving) deposit along the

invert of the pipe. Newtonian suspensions of low solids concentra-

tions (C < 5%) are of particular interest, since the critical deposit

velocity of low-concentration mixtures is presently not well defined.

An analysis of the significant parameters in this problem

is presented and various forms of the modified Froude number are

defined and tested. ,From a regression analysis of the experimental

data, correlation of the tested parameters quantitatively defines the

modified Froude number relationship •
. "

Application of the Lehigh equations to some typical trans-

port problems is examined and the economic advantages of such an

application are discussed.
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1. INTRODUCTION TO THE PROBLEM

The problem investigated in this study deals with an im­

portant aspect of solid-liquid transport technology in pipelines:

The critical deposit velocity, "V
C
". The critical deposit velocity

i,n a closed conduit separates the "non-deposit" (depo~it free) .regime

from the "deposit" regime. This velocity is sometimes also referred

to as either the.minimum transport velocity, the deposition velocity,

or just the critical velocity.

The critical deposit velocity of low concentration mixtures

(C ~ 5%) is presently not well-defined, although it is sorely needed

for application in pipeline design. Pressuri~ed sewage collection

lines, most often transporting low concentration loads, have been

shown to be economically competitive with conventional means of sewage

disposal but in need of additional design information. There exists

an exhaustive list of Newtonian slurry transport applications, which

can be found in the literature. Condo1ios et al. (1963) give the most

thorough coverage, making readily apparent the economic advantages of

pipeline transportation. Further, Shen et a1. (1970), Robinson et a1.

(1971), and Graf (1971) report the most current state-of-the-art and

econ~ic significance of the critical deposit velocity determination.

There exist generally two prerequisites in properly de­

signing a solid-liquid transport system: (1) Consideration of criteria

that will ensure operation in a region of stability, and thus, provide

for safe, uninterrupted transport of solids, and (2) Minimization of

the power required to transport the solids, and optimization of system

-2-



design parameters. The critical deposit velocity relates both of

these requirements in designing a transport system which is both

economic and safe to operate~

The present study continues the investigation of the crit­

ical deposit veldcity problem through the use of a modified Froude

number analysis. From a regression analysis of the Lehigh data,

correlation of the tested parameters with different modified Froude

numbers is evaluated, and equations quantifying the modified Froude

number relationship are determined. The Lehigh data are subsequently

compared with data reported in the literature. Application of the

Lehigh equations to some typical transport problems is examined, and

the economic advantages of such an application are discussed.

-3-



2. SOLIDS TRANSPORT TN PIPES-

2.1 General Remarks On Solid~Liquid Mixture Flow

It is not within the ,scope of this paper to exhaustively pre-

sent the general theory for flow of solid-liquid mixtures in pipelines.

Shen et a1. (1970a) and Graf (1971) have presented comprehensive sur-

veys on the current state-of-the-art of sediment transport in pipes,

and the interested reader is referred to these texts. However, some

general comments are appropriate as an introduction to the critical

deposit velocity problem.

Many fields of industry have become interested in the app1i-

cabi1ity of pipeline transport of solid materials along with a concern

for the related problems of solid-liquid mixture flow. In all, trans-

ported solid-liquid mixtures may vary from suspensions in water of

coal, sand, gravel, wood chips, chopped sugar cane, and ashes to

slurries of sewage sludge, polymeric solutions, and concentrated sus-

pensions. The economic advantages of hydraulic transport, the great

variety of applications, and some concepts for ,designing a hydraulic

transportation system are presented by Condo1ios et al. (1963a).

Solids 'suspensions are transported-either as "Non-Settling"

(homogeneous) mixtures or as "Settling" (heterogeneous) mixtures. The

distinction between these two classifications has been presented by

Durand (1953) and Govier et ~l. (1961). The present study is con- '

cerned with a "Settling" mixture, which exhibits Newtonian flow char-

acteristics and is analyzed as a ,two-phase flow phenomenon. The

-4-
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susp~nsion settling characteristics in a turbulent pipef10w are not

discussed here, since the complex physics involved is beyond the scope

of this study. Reference is made to Govier et a1. (1961), Thomas

(1962), Rose et a1. (1969), or Carstens (1969,1971).

Regimes of Flow. The transport of "Settling" mixtures in

pipes is qualitatively characterized by several different regimes of

flow. Reference for an explanation of these different regimes is again

made to Shen et al.· (1970a) and Graf (1971).

The variety of flow regimes is diagramatica11y presented in

Fig. 2.1, which is a typical curve of mixture head loss versus mixture

velocity. An important distinction is made between the "Deposit"

transport regime and the "Non-Deposit" transport regime. Within the

non-deposit regime, several modes of transport prevail: .(1) p~eudo­

homogeneous flow, .~ heterogeneous flow, and ® heterogeneous flow

with saltation. Flow in the deposit regime, ~, is described by bed

and dune form irregularities. Separating the deposit and the non­

deposit flow regimes, ~, is the transition region identified by the

critical deposit velocity, ''Vc".

The points of division between different flow regimes is

somewhat arbitrary. Only a brief review of the flow regimes is pre­

sented herein.

Pseudo-homogeneous' flow exists if suspensions of very fine

particles, with fall velocities insignificant in relation to the fluid

motion, are transported. Since homogeneity is not critically dependent

-5-
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0.1

0.01

Deposit
Regime
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Fluid

V (log)·
m
Mixture
Velocity

10
Non-Deposit

Regime

CD -- PSEUDO-HOMOGENEOUS FLOW; concentration gradient is
nearly uniform; suspended
load transport

~ --HETEROGENEOUS FLOW; concentration gradient increases;
transport by suspension and bed
loads

® -- TRANSITION REGION, "Ve"; beginning of bed formation;
decrease in moving concen­
tration

@ -- DEPOSIT REGIME FLOW; bed forms (plane and dunes);
eventual clogging·

Fig. 2.1: Regimes of Flow
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on the flow conditions, fm (mixture flow friction factor) = f-t (liquid

flow friction factor) may be assumed. Larger particle suspensions ~y

behave similarly if transport velocities are extremely high. The

pseudo-homogeneous flow regime is characterized by a nearly uniform

vertical concentration gradient and a d~ensionless transport parameter,

CPD (see Eq • .(4-.l)), solely dependent on the relative density of the mix-

ture. O'Brien et ale (1937) and Howard (1939) investigated flow of fine

sand suspensions transported in this flow regime. Spells (1955) defines

an "equivalent true fluid" with density equal to the two-phase mixture

in the pseudo-homogeneous flow regime.

Heterogeneous flow occurs as the mixture flow velocity is de-

creased. Settling suspensions·in this flow regime will exhibit a non-

uniform concentration gradient and a noticeable increase in the mixture

pressure gradient over the clear fluid head loss curve. Particles are

transported both as bed load and suspended load now that the effect of

gravity is felt by the solids. This regime of flow is normally shown

to be the most important economically from the standpoint of total

soli~ throughput. Wilson (1942) was one of the first investigators

to present an expression for the total energy gradient for heterogeneous

flow of mixtures. Durand (1953) and his co-workers at SOGREAH developed

to date the most reliable theory of heterogeneous mixture flow trans-

port.

Some investigators separate the heterogeneous flow regime into

two: (1) transport of solids as suspended and bed loads, and (2) trans-

port of solids mainly as bed load, sliding and saltating along the

-7-



bottom of the pipe. Newitt et al. (1955) give the best account of the

reasoning for this division. It should be noted here that the distinc­

tion between these two modes of heterogeneous flow is not to be mistaken

as the separation between deposit and non-deposit regimes of flow or in

no way related to the critical deposit velocity condition, as defined

in this study.

The Deposit Regime of flow is entered as the sliding bed load

of solid particles thickens and eventually becomes a non-moving bed on

the invert of the pipe. The mov~ng concentration diminishes, the clear

flow area of the pipe decreases, and flow conditions are altered. The

head loss component due to the solids is less effective, and the iln­

portance of flow-through geometry becomes a governing factor in head

loss determination. Eventually, dunes will form as irregularities on

the bed surface, and plugging flow becomes a serious concern. For the

deposit regime of flow, two criteria may be employed. One is presented

by Gibert (1960) as an adapt ion of the Durand-Condolios relationship

for deposit flow conditions, and the other one is the transport-shear

intensity relationship developed by Graf et al. (1968).

A Transition Region separates the deposit and non-deposit

transport regimes. The head loss in this region-flattens to a nearly

constant value with further decrease in velocity; due to a complex

deposit-scour feedback mechanism constantly altering the relative ef­

fects of the solid and liquid head loss components. The transition

region is identified by a critical deposit velocity, "VC", which is

intricately dependent on fluid,- solid, and flow pa,rameters.

-8-
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Investigation of the transition region flow conditions and the develop-

ment of a relationship for quantitatively defining the critical deposit

veloc~ty has been the subject of many studies •. Our task is to continue

this effort.

Mixture Flow Head Loss. It has been always found seemingly

appropriate to praise the technological advancements made through the

efforts of investigators at the SOGREAH Laboratories in Grenoble,

France, namely: Durand (1953), Gibert (1960), and Condolios et ale

(1963a, b, & c). !he solid-liquid flow theory developed at SOGREAH

bas been a long-standing criteria for determining mixture flow head

loss of heterogeneous transport of solid suspensions through pipes.

An early suggestion setforth by Blatch (1906), that the mixture head

loss in a pipe is due to the clear flow head loss plus a head loss

component due to the solids in transport, was further developed by

Durand (1953) in defining a dimensionless transport parameter, ~D:

~D = (2.1)

. where i m represents the total mixture head loss; i~ the head loss due

to just the liquid phase component; and Cis the moving volumetric

solids concentration. The excess pressure gradient in this case is

often found to be proportional to the moving solids concentration.

The sediment transport parameter function is developed through

a dimensional analysis, or:

-9-
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v a
cp = IL f (s -l)f (va) f (~)D -1) 1 S a gD a gd (2.2)

where (s -1) represents the relative density of the mixture, and (va/gD)
s

and (v 2/gd) are, respectively, the flow and particle Froude numbers.
ss

The effect of both particle characteristics and flow parameters is

evident, and the forms of~, f
I

, fa' fa are determined empirically

from availab Ie data.

Further investigations of mixture flow theory and the associ-

ated economic implications were continued at SOGREAH. Later investi-

gat ions have both praised and questioned the form of the so-called

Durand-Condolios transport parameter, CPD' but not one has yet touched

on a better approach to the mixture flow problem.

i
m

Mixture
Head Loss

-- Individual Runs

--Equi- Concentration
Lines

v , Mixture Velocity
m

Fig. 2.2: Equi-Concentration Lines
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/ The head loss plot of a typical mixture flow run from pseudo-

homogeneous flow velocities down to deposit flow velocities was given

in Fig. 2.1. Moving concentration decreases as flow enters the deposit

regime. Determination of the minimum mixture head loss for a particular

. solids concentration flow is important in design. A rather typical plot

of constant concentration lines is shown with Fig. 2.2. Note that the

equi-concentration lines below the critical condition can only be plotted

by connecting the points of the same moving concentrations from runs with

different initial concentrations. Along these equi-concentration lines,

the mixture head loss is seen to again increase in the deposit regime.

The Vc dashed line shows the variation of critical velocity with change

in solids concentration•

. "

2.2 The Critical Deposit Velocity, "V "C....

2.2.1 Definition and Significance

The transition between deposit and non-deposit flow regimes

is identified by a "critical condition". In the present investigation,

"critical condition" is taken as the velocity at.which particles being

to settle from the flowing medium and form a stationary (non-moving)

deposit along the invert of the pipe; this will be called the critical

deposit velocity, "VC".;.

At the "critical condition" a deposit-scour feedback mechanism

transports solid particles in the form of a pulsating bed. Figure 2.3

shows typical bed motion at critical deposit velocity for plastic

-11-



suspended particles

saltating particles

particles

Fig. 2.3: Bed MGtion of Plastic Pellets in a 6-inch
Pipe at the Critical Deposit Velocity

pellets transported in a 6-inch pipe. Close to the pipe wall, the solid

particles are stationary. When this ,condition is observed, the critical

deposit velocity is recorded. Above this layer of stationary particles,

the remainder of the bed is sliding. Other particles shove, roll, and

saltate over the moving bed surface, and some will become completely

suspended farther from the wall. The deposit of solids on the bottom

of a pipe is a random phenomenon varying with local fluctuations of

solid and liquid parameters. Within the same pump-pipe facility, dupli-

cation of results is not easily, attainable.

The critical deposit velocity is somettmes referred to as

the Itmit deposit velocity, by Durand (1953) and Sinclair (1962), the

-12-
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sediment limiting velocity, by Gibert (1960), the minimum transport

velocity, by Rose et a1. (1968), or the deposition velocity, by Wasp

et ~l. (1970). It is imperative that a clearly defined "critical

condition" becomes a primary concern in every solid-liquid transport

investigation.

When using data from other "critical condition" studies,

one must be cautious of the following: (1) Some investigators, such

as, Blatch (1906), Wilson (1942), Bruce et aL (1952), Thomas (1962),

Charles (1970), and Shen et a1. (1970b), define a minimum or economic

velocity which corresponds to the minimum head loss required for trans~

porting' a certain concentration of solids. Use of this criterion is in

accordance with how one wishes to define "critical condition". It was

found in the present and in other investigations that the critical de-

posit velocity is not in direct relationship with the minimum head loss

criterion. Implementation of the assumption that these two criteria

are identical is good only for preliminary evaluation. (2) The cri-

tical deposit velocity, approached from the non-deposit regime, is

most. often different from the critical scour velocity. To scour a

deposited bed requires usually a greater shear force, thus a higher

flow velocity, than when the same bed is deposited. (3) Some studies

define a transition velocity between sa1tating and sliding bed load

transport, which is at times mistaken for the critical deposit velo-

city.

The critical deposit velocity is an important design cri-

terion both for safe operation and for system economics, but it is

-13-
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often vaguely defined in reports of solid-liquid transport research•

Due toa lack of good definition arid reproduceability of results" it

is suggested that a conservative critical deposit velocity be used

[see also Bonnington (196l)J.

2.2.2 Previous Investigations

Interest in the "critical condition" of solid-liquid trans-

port in pipes was initiated by Blatch (1906) and continued by O'Brien

et a1. (1937), Howard (1939), and others. However, Wilson (1942)

developed the first relationship which quantitatively dealt with

parameters related to the "critical condition". As a first approxi-

mation, the total energy gradient, i , consists of a liquid component,
.' m

i L, and a solids component, is, or:

. "

!
I
i

I
~ .,

Wilson (1942) defined both terms and obtained the following:

i' = f! va + K C (vss)
m . D 2g V

(2.3)

(2.4)

Ii

~here the terms on the right represent, respectively, a liquid head

loss gradient derived from the Darcy-Weisbach equation, and a head

loss gradient due to the solids dependent on solids concentration, C,

particle settling velocity, v
ss

' an average velocity, V, and corre­

lation parameter, K.

-14-
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Differentiating i with respect to V and minimizing, the
m

resulting "critical condition" is given as:

KCv g D
ss

f
(2.5)

It should be noted that the flow velocity, V
C

' at "critical condition"
'"

is defined here for minimum energy gradients. Nevertheless, the re-

lationship given with Eq. (2.5) relates parameters which are of im-

portance in the critical deposit velocity problem. These parameters

are: C, the solids concentration; v , the particle settling veloc­ss

ity; D, the pipe diameter; and f, the friction factor indicating flow

resistance.

Durand (1953) used as the lower limit of his heterogeneous

flow relationship an equation defining the lUnit deposit velocity, VC'

of sand mixtures which se~arates the zones of the regUnes with and

without deposit on the pipe bottom, or:

(2.6)

The parameter, FL, known as a modified Froude number, varies with solids

concentration, C, and particle diameter, d. This is given with

Fig. 2.4a for uniformly graded material. Later, Durand et al. (1956)

report findings for non-uniform material, which is shown with Fig. 2.4b.

An appreciable difference is noted between Figs. 2.4a and 2.4b, and it

becomes questionable that these discrepancies are accounted for solely

-15-
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(a) Uniformly Graded Material

[after Durand (1953»)

32 .I
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1.0

(b) Non-Uniform Material
[after Durand andCondolios (1956»)

Fig. 2.4: The Modified Froude Number, FL, versus Solids
Concentration and Particle Diameter
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by the difference in material distributions. Unfortunately~ neither

Durand et ale (1956) nor any of the later publications of the SOGREAH

staff explain this difference.

Gibert (1960) reported on and analyzed the extensive SOGREAH

data to obtain best-fit curves for Froude number, VC/~gD, plotted

against solids concentration, C. Subsequent to the study of Gibert

* .(1960) , Graf et al. (1970) included the effect of relative density,

given by J2(s -1), - as was similarly done by Durand (1953) - and
s

Gibert's best-fit curves were replotted and are given with Fig. 2 0 5.

This figure shows the general trend of results to be remarkably in-

variant for sand and gravel of particle sizes d ~ 0.37 mm. The curve

for this larger material can be thought of as being a maximum envelope

of FL-values. For finer materials, in the range of d = 0.20 mm and

less, there are distinctive variations in the curves. Condolios et a1.

(1963b) report a figure similar to Fig. 2.5 but only include an envelope

curve for graded and mixed sands of d > 0.44 mm. Figure 2.6 is a re-

plot of Fig. 2.5. It should be noted that Fig. 2.6 conforms closely

to the non~uniformmaterial results reported by Durand et ale (1956)

in Fig. 2.4b. It is expected(!) that both Gibert (1960) and Durand

et ale (1956) used the same set of SOGREAH data. Furthermore, it is

believed that Figs. 2.4band 2.6 supersede Fig. 2.4a; the latter is

a result of earlier SOGREAH studies.

*"TransJation and evaluation of Gibert (1960) was undertaken by
Oner Yucel, Lehigh University.
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General agreement with the relation, as defined in Eq. (2.6)

and plotted in Figs. 2.6 and 2.4b, are found throughout the literature.

Figure 2.4b is recommended by Graf (1971).

Gibert (1960) also discussed a theoretical approach to the

·critical deposit velocity problem, considering the "critical conditions"

of flow in a conduit irregardless of flow-through geometry, to be re-

1ated through the Froude Law of similitude. A discussion of Gibert's

analysis is found in Robinson et al." (1971).

Sinclair (1962) conducted tests on sand-water, iron-kerosene,

and coal-water mixtures at concentrations up to 20% flowing in 0.5-inch,

O.75-inch, and 1.00-inch pipe. Through a dimensional analysis of the

variables expected to significantly influence the critical deposit

velocity, Sinclair (1962)" arrives at an equation, such as:

Vmax f [dSS
]

s D
(2.7)

where the modified Froude number is expressed with a solid's particle

diameter, d
s5

." He observed that the critical deposit velocity reaches

a maximum between 5 and 20% solids concentration, so that the effect

of concentration could be eliminated by using Vmax instead of VCO

Sinclair (1962) wrote Eq. (2.7), for d > 1.5 mm (when C does not enter

the problem), as:

(2.8)

This may be compared with Durand's results, similarly expressed by:
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(2.9)

For smaller particle sizes, Sinclair (1962) examines the

relevance of boundary layer theory to the problem, and suggests that

particle diameter, d , takes precedent over the pipe diameter, D, in
85

their relative influence on the modified Froude number. It is within

this smaller range of particle sizes that the present study is con-

ducted.

Shen et al. (1970b) and others attempt to correlate critical

deposit velocity with other important parameters in the form:

(2.10)

The exponents, a, b, c, and d, and particularly the coefficient ~;.

vary greatly, as could be expected, from one study to the next. The

form of this function is questioned because of its inhomogeneity and

is to be used only with extreme caution in data correlation.

F~OW and particle Reynolds numbers have been investigated

for their applicability as criterion in the critical deposit velocity

problem. Spells (1955), Charles (1970), and studies by Cairns et al.,

as reported by Sinclair (1962), correlate the Reynolds number with a

modified Froude number relationship. Correlation in these studies,

however, is related to the minimum energy gradient criterion.

A modified Froude number relationship apparently presents a

rather good criterion for evaluation of solid-liquid mixture flow

-20-
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through pipes. Its relationship to other parameters significant in

the critical deposit velocity problem will be re-examined in the pre-

sent study, and experimental findings checked against the SOGREAH data.

2.2.3 A Modified Froude Number Analysis

When transporting a solid-liquid miXture through a closed

conduit, one may expect the following variables to be of importance:

(1) Flow Parameters -

V, miXture flow velocity
g, gravitational acceleration

vss ' particle settling velocity

(2) Fluid Parameters -

P, carrying fluid density
v, kinematic fluid viscosity

(~) Pipe Parameters -

D, pipe diameter
€, pipe roughness

tan a, pipe slope

(4) Sediment Parameters -

Ps ' solids particle density

d, mean particle diameter
f , particle shape; sphericitys

non-uniformity coefficient of grain
distribution

C, moving volumetric solids concentration

Proper grouping of variables into dimensionless parameters

was reported in Graf et ale (1970) and is re-examined here:

f [~, (s -1) , VD d € tan a,
dgo

cJ (2.11)v' D'f ' D' = 0s %0
,

gD s

The relative density~ (s -1), comes from (ps-p)/p where s = P /p.s s s
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It is expected that the flow Reynolds number, VD/~, does

not playa significant role in this problem, and it is omitted from

the analysis without loss of generality. The mixture flow velocity,

V, and pipe diameter, D, are accounted for by the remaining parameters

in the relation, Eq. (2.11). The kinematic viscosity, ~, which depends

on temperature, for all practical purposes varies insignificantly.

Further, a Reynolds number near the critical deposit velocity is very

unstable, because the flow-through geometry, D = 4~, varies con­

tinuously with fluctuating solids concentration, along with changing

. clear flow-through velocity.

Replacing the general flow velocity, V, with the critical

deposit velocity, VC' and considering the particle shape factor to

be unity for natural quartz grains or already included in the adjust-

ment of non-spherical particle sizes, Eq. (2.11) is rearranged and

l
I

i
!

I
J

given by:

d e
D' D'

~o
tan S, <\so ' cJ = 0 (2.12)

Note that the flow Froude number, v/~, and the relative density,

(s-l), both given in Eq. (2.11), were combined in a densimetric or. s .

modified Froude number, Vc/j2gD (ss-l). Equation (2.12) is somewhat

similar to relations proposed by Durand (1953), Sinclair (1962), and

Barr et ale (1968).

For· a certain relative pipe material roughness, e/D, and

solids grain size distribution,.dso/dso ' the applicability of

. Eq. (2.12) will be tested in the form of:
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I
2gD (s -1)

s

~ [tan e]

(a)

d- or d
D

Vc-----=:..-.-- ~ [tan eJ
2gD (s -1)
. s d

D or d

(b)

c

Fig. 2.7: Plot of Equation (2.13); the Modified Froude Number
Relationship

. -.
(2.13)

Equation (2.13) is displayed on plots such as given in Figs. (2.7a)

and (2.7b). The effect of pipe slope, tan e, is not a major concern

in this study. The left side of Eq. (2.13) will absorb the tan eargu-.

ment, and the best trigonometric re1at~onship will be determined after

fitting data against both:

and, .
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The left side of-Eq. (2.13) is a modified Froude number. The form

of this parameter, raising both D and (s -1) to the 1/2 power, has
s

been tested and shown to be a reliable criterion.

It is felt t;hat without loss of generality, it may become

frequently important to replace the relative particle to pipe diameter,

d/D, by the particle diameter, d, itself. In this instance, the signif-

icance ofD is considered to be wholly described in the Froude number.

Sinclair (1962) remarks that when the particle is such a size that it

is wholly immersed in the region where viscous forces predominate, as

our sand particles are, d/D does not enter the correlation.

Investigators, like Bruce et a1. (1952), Govier et ale (1961),

Thomas (1962), and R~se et ale (1969), consider slip between the solid

and liquid phases, v /V or V /V (referred to as ''hold-up''), to be ass s

parameter (jf maj or importance. This concept requires a thorough ..

treatment of particle dynamics, beyond the scope of the present study.

It is therefore considered that near the critical deposit velocity,

particles have already settled into a sliding bed; consequently, only

the size and moving concentration of particles are significant.

In the subsequent discussion, data will be presented and com-

pared in theTjlay su~gestedwith Fig. 2.7a.
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3.. LEHIGH EXPERIMENTS

The experimental facility consists of: (1) a vari-drive

motor-pump assemblage, (2) an adequately flexible pipeline arrangement,

(3) a sediment feed and removal system, and (4) the necessary measur­

ing and regulatory devices. Figure 3.1 schematically illustrates the

general scale of the overall system. Detailed features of the sedi­

ment handling equipment are provided in Fig. 3.4.

Vari-Drive Motor-Pump. The hydraulic horsepower was supplied

from a vari-drive motor-pump assemblage, functioning as the heart of

the system. The pump, furnished by Ellicott, is a single suction

centrifugal type with cast bronze casing and impeller. The suction

pipe is 5-1/2 inch 1.0., discharge pipe is 4-1/2 inch 1.0., and the

impeller diameter is 13-5/8 inch 0.0. During the operation of the

pump, cooling water is added continuously to the seal on the motor

side of the pump, also providing a lubricating interface.

The drive unit is a Westinghous~ - 3 phase 60 cycle 125 Hp ­

'~gna Flow" motor and is regulated by a vari-drive control. The

driving unit is of the integral type, is water cooled, and has an ad­

justable speed range from 100 to 2153 rpm. Along with the motor,
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Fig. 3.1': Solid-Liquid -Transport Test System
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there is an operator's station, excitation unit, and a type 5L Auto­

starter. The entire system operates on 208 volts AC.

The pump and vari-drive motor assembly survived 18 months

of testing. Pumping efficiency and impeller capacity were not notice­

ably altered throughout the testing period. Sand mixtures presented

no p~ping difficulty, however, the 3.63 mm diameter plastic pellets

were extruded apparently along the surface between the impeller and

encasing seal. Resulting conglomerations of plastic strands within

the pump would put a strain "on the motor at low flowrates, causing

sudden velocity fluctuations. This complication is explained further

in Section 3.3.2.

Pipeline. From the pump, mixture flow is discharged through

a 6-inch Foxboro Magnetic Flowmeter leading to a horizontal reach of

8-inch pipe. An 8-inch gate 'valve regulates pump discharge below

flawrates of 200 gpm. Often times the partially closed valve would

cause difficulty in establishing stable flow conditions when critical

flawrates occurred in this lower flow ~ange. The solid-liquid mixture

is then lifted to the test-floor elevation in 6-inch pipe.

Along the test length of approximately 40 ft, measurements

are obtained, pipe slope is adjustable, and mixture flow phenomena

are visually observed. A 4-inch pipe was installed together with its

Plexiglas observation section; subsequently, a 6-inch pipe and

Plexiglas section were installed. A strobotac set at a high frequency

response aided the observation of solids flowing through the Plexiglas

section, such that an accurate description of flow regime was
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obtainable. For example, Fig. 3.3 pictures the prdgressive dune trans­

port of sand particles in the deposit regime, as seen through the

6-inch observation section. Both pipe sizes and slopes were altered

throughout the testing program in accordance with the investigation of

variable parameter affects. Figure 3.2 shows the horizontal 4-inch

diameter pipe s.etup.

A "Loop System" follows which is employed as a device for

s~ult.aneously~asuring mi~ture flowrate and solids concentration.

Locat~d~~top the balcony-floor elevation between the 3-inch vertical

pipe sections, commonly referred to as the "Riser" and "Downcomer''', is

the main air-release for the system.

The flow, upon leaving the "Loop System", bypasses a closed

3-inch sediment flush valve. and enters a 6-inch vertical pipe, where

sediment is gravitationally fed when an increase in concentration is

desired. Flow continues downward to where a 6-inch gate valve empties

the system and a 2-inch pipeline connects the city water supply. The

system pressure was maintained and water supply assured through use

of a constant pressure control valve (A in Fig. 3.1) set at 20 psi

on the 2-inch supply line. A 2-inch check valve (B in Fig. 3.1) pre­

vented backf10w to the city supply under excessive system pressures.

The circuit is completed with 5-1/2 inch pipe leading to the

suction side of the pump.

The pipeline, secured both laterally and from hanging steel

supports, could safeiy handle flowrates up to 1000 gpm. Wear on the
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inside pipe finish was apparent, however, not of serious consequence.

Due to old pipe sections, iron oxide coloration eventually became a

persistant recurrence causing only some difficulty in flow visuali­

zation. The system water was flushed clean when flowrates were lowered

to a range ensuring no sediment transport. Transitions were attacked

by the sand, but the use of tee fittings in the critical location of

90° elbows saved the necessity of replacement. The most persistent

problem was caused by sand particles jamming the gate valves. Other

valves on the market would have gauranteed greater success.

Pipe lengths and fittings were supplied by the Bethlehem

division of Hajoca Corporation, and the Fritz Laboratory .machine shop

handled material alterations.

Sediment Feed and Removal System. The sediment feeding

apparatus underwent several adaptions, until the technique, as ex­

plained here and illustrated in Fig. 3.4, was successfully applied.

Supply valve 2 and overflow valve 3 are opened as the mixing chamber,

isolated from the system by the closed miXing valve 1, is filled with

solids material. Water is displaced through the overflow line as the

mixing chamber is filled. Valves 2 and 3 are then closed and valve 1

is opened, fluidizing the solids and gradually feeding the particles

into the flowing medium.

Also illustrated in Fig. 3.4 is a sediment removal facility

(employed as a time-saving technique) for removing the solids or un­

desirable foreign material from the system and preventing discharge
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of polluted water to the collection sump. The 3-inch sediment flush

valve was opened enough to maintain positive pressure in the system

and divert the mixture flow into the receiving chamber of the sedi-

ment'separation device. Two square feet of No. 60 cooper mesh screen-

ing prevented flow through of solids material. The screened clear water

was removed to the sump.

Sediment feeding was the more troublesome of the two oper-

ations. Both the mixing and supply valves were replaced because of

jamming, which caused unexpected backup of sand slurry from the mixing

chamber.

Measurement and Flow Regulation. The volumetric concentra-

tions of solids and the mixture flowrates were determined from "Loop

System" head loss readings. Arrows land 2 on Figure 3.1 indicate the

respective locations of "Downcomer" and "Riser" pressure taps, both

with 1.50 m (=59.1 in.) head loss lengths.

Loop readings were repeatedly checked against flow recordings

from a Foxboro Magnetic Flowmeter by means of a DYnalog Receiver measur-

ing accuracy to within 1 percent of· full scale, throughout the scale

(approximately ±25 gpm). A Prandtl tube (C in Fig. 3.1) was employed

to verify both the "Loop System" and flowmeter measurements of mixture

velocities. A Pitot tube sediment-sampling device (D in Fig. 3 •.1)

checked the "Loop System" indication of solids concentrations. Further

discusslon on determining concentrations and flowrates is .found in

Section 3.2.
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Two Venturimeters were investigated for their applicability

as mixture flow measuring devices, the results of which are reported

by Robinson et a1. (1970). A new 3 x 2 inch Venturimeter(E in

Fig. 3.1) and an antiquated 4 x 2 inch device (F in Fig. 3.1) were

tested and later used in checking flow conditions for this particular

study.

The mixture head loss length for the test section was 3.60 m

(=141.8 in.), as located at the arrows marked 3. At each pressure

tap location, four holes, 3/32 inch in diameter, were drilled diagonal­

ly opposite about the circumference of the pipe. Brass fittings were

assembled and connected with poly-flo tubing for transmitting the hy­

draulic pressure. Manometer fluids were selected according to the

required range of readings. Most often air-water readings were adequate,

however, a 2.95 fluid-water medium was needed at extreme flow conditions.

The 50.0 in. manometer scales were graduated in tenths of an inch, read­

ings to a hundredth of an inch were estimated, and each reading was con­

verted to feet of water column. Minor manometer fluctuations always

existed, partly due to the uneven distribution of sediment concentration

through the large system arid also due to the effect that concentrated

slugs of sediment had on the pump's capacity for maintaining a constant

mixture flowrate.

Flowrates between 200 and 1000 gpm were regulated by a vari­

drive rheostat control, located at the operator's station. The 8-inch

discharge valve controlled lower range f1owrates. Sediment feed rates

were not rigorously monitored, except for an attempt to evenly distri­

bute the sediment throughout the system.
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3.2 Measuring Techniques

Clear-water calibration of the system was the initial course

of action. The "Loop System" head loss readings were then evaluated

and checked against floWmeter, Prandtl tube, and Pitot tube measure-

ments.

3.2.1 Clear-Water Tests

Tests of clear-water flow were conducted to determine material

roughness characteristics of the 3-inch '.'Loop System" pipes and the 4­

and 6-inch diameter test lengths. Friction factors, f, were calculated

from the Darcy-Weisbach equation, evaluating manometer head loss read-

ings and Prandtl tube indication of velocities over the ranges of

Reynolds number indicated in Table 3.1. Also summarized are the

Pipe Specification e/D e Reynolds Nos.
(ft)

Loop System:

3 in'. ¢ commercial steel 0.00004 0.00001 2.48 x 105 to
4.77 X 105

Test Length:

4 in. ¢ galvanized 0.00009 0.00003 1.97 x 105 to
3.58 X 105

6 in. s6bla~k steel 0.00032 0.00016 1.39 x 105 to
3.76 X 105

,

Table 3.1: Relative Roughness and Material Roughness
Values for the Three Pipe Sizes.

respective relative roughness values, e/D, and material values, e,

determined from the Moody-Stanton Diagram of friction factors for

commercial pipe. The friction factors for all three pipes falL in

the transition regime. For further determination of friction factors
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at any mixture flow Reynolds number, an explicit solution of the

Colebrook-White equation was used•. Evaluation of extensive "Loop

System" data required this type of solution for f

3.2.2 The Loop System

The "Loop System" developed by Einstein et a1. (1966) was

used to simultaneously determine the mixture f1owrat~, ~, and the

solid phase concentration, C. The device consists of two identical

vertical pipe sections with oppos·ite flow direction. Pressure head

differences are obtained over these vertical pipe sections, namely,

the ''Riser'' and the "Downcomer" section. The head loss in the riser

section is

+ ~!, (;)"
J D 2g (3.1)

and in the downcomer

(~)a.
= -LIe (s -1) + ~1~ [1

. D s . J D 2g (3.2)

)

where L represents the head loss length in either section, C
R

and CD

are the solids concentrations in the riser and downcomer pipes, and

~ is the total mixture f1owrate.

If the summation. and the difference of Eqs. (3.1) and (3.2) are

respectively computed, the resulting equations are
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~ + lUtn
2L = (5 -1)

s

v. Ass
Q

f
C(1-C)2 + 'Y

e
[1 + (s -l)C]s (3.3)

(3.4)

The fluid f10wrate, Qf' in Eqs. (3.3) and (3.4) had replaced the total

f1owrate, ~, to dist~nquish between solid and liquid phase flowrates,

or Qf = ~/(l-C). C is the average volumetric concentration of solids

if flowing through a horizontal section. The symbol 'Y represents a
e

pressure gradient for mixture flowrate, as

1
2g (3.5)

It is seen that knowing riser and downcomer head loss read-

iugs for a solid-liquid miXture flow, solids concentration, C, and

mixture f1owrate, ~, may be obtained from Eqs. (3.3) and (3.4).

To expedient the determination of ~ and C from loop head

loss readings obtained while testing, a program was developed and ex-

ecuted on the University's cnt 6400 Computer to print out data for

plotting two charts. Plotted output for coarse sand particles at. .

70°F is illustrated in Charts 1 and! of Fig. 3.5. A (6~-6hn) cor­

rection curve shown below Chart 2 was determined from clear-water

evaluation of the riser and downcomer readings. A set of charts were

plotted for each of the three types of particles· investigated, using

re?dings determined from two different system temperatures of 70°F
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and 90oF•. The program calculated relative values of ~hR and ~hD in

functional relationship with various input combinations of ~ and C.

~ and C were generated in 0.10 cfs and 1% increments, respectively,

and up to 2.15 cfs and 20%. The friction factors for each Reynolds

flow number were explicitly determined from an equation developed by

Wood (1966):

f= a + b~-c
e

(3.6)

,

which is a best fit solution to the Colebrook-White relationship. a,

band c are simple power functions of e/D, e/D determined to be

0.00004 for the 3-inch loop. pipes.

Appendix A i11ust~ates, by means of an example, how concen-

ttation and mixture f10wrate for a particular test run are readily

determined from location of head loss readings on Charts land 1. Ap-

plication of the c1ear-water correction data is also examined.

Loop indications of C and ~ were checked against Prandt1

tube and Pitot tube measurements and adjustment of the loop data

recommended. However, it was found that adjustment is only necessary

for data,in the heterogeneous flow regime. The method of evaluating

the loop data with respect to Prandtl tube and Pitot tube findings is

explained in Appendix A.
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3.3 Description of Experiments

3.3.1 Range of Parameters Tested

The important parameters in the critical deposit velocity

problem were identified in Section 2. To understand the interrela-

tionships involved, it is paramount to st~dy the different effects

due to independent variation of. each parameter. Herein is described

the attempt at satisfying that requirement and a qualification of the

extensive data compilation•.

A 4-inch and a 6-inch diameter pipe, each one having adif-

ferent pipe roughness, as shown in Table 3.1, were evaluated for their

relative effects on Ve• Each was tested separately at different slopes,

assuring always a sufficient upstream flow transition length. Most of

the data were obtained with the test section placed in a horizontal

position. Some data were also obtained for both a positively and neg-

atively sloped alignment, in the hope of showing some indiction of the

tan e variable effect on critical velocity determination. The positive

slope tested was tan e = +0.027, and the negative slope, tan e = -0.060

(geometrically speaking).

Three types of solid particles, wholly described in Taqle

3.2 and pictured in Fig. 3.6, were tested in various combinations with

D and tan e variables, as are listed in Table 3.3. The mean sand

*particle diameters and non-uniformity coeffieients, ~o and dg9/~O

*dgo/~o was selected for indication of non-uniform grain distribution
to expedient the compilation of data s~ilarly reported by other in­
vestigators. In a normal Gaussian distribution, it is often shown that
a 95% confidence interval is represented by the elso and ~o particle
sizes. This adequately characterizes the particle aggradation.
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Solids Material d50 ~o/%o s vs ss
(mm) (ft/sec)

Quartz Sand:

4,0 0.88 1.21 2.65 0.312
#00 0.45 1.07 2.65 0.189

Plastic Pellets:

PP 3.63 -- 1.38 0.697

Table 3.2: Solid Particles Specification

---c-- - -------

(a) Sand 4,0

em 11II1 11111 t1111 1111 1"
·12
(c) Plastic Pellets

'i's = 0.795
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(b) Sand #00

Fig. 3.6: Photographic Repre­
sentation of the Three Types
of Solid Particles Investi­
gated; (a) Coarse Sand Parti­
cles, (b) Fine Sand Particles,
and (c) Plastic Pellets



respectively, were determined from a standard sieving analysis and

remained constant throughout the testing period. The highly-silica,

Pipe Diameter, Din. Mean Particle Diameter, Pipe Slope,
(Material Roughness, % tan e

eft) (Specific-G~avity, s )s

4 6 0.88 0.45 . 3.63 0 -0.060 0.027(0.00003) (0.00016) (2.65) (2.65) (1.38)

* * *
* * *
* * *
* * *

* * *
* * *
* * *

..

* * *
* * *

Table 3.3: Tested Combinations of Pipe Diameter,
Solid's Particle Diameter, and Slope

quite uniform, quartz sand was supplied by Whitehead Brothers; Co. in

New Jersey, and the plastic pellets were manufactured by B. F. Goodrich

Co. in Ohio.

The·effect of particle shape or true sphericity, ~s' is con­

sidered in adjusting the apparent mean particle size of the plastic

pellets by the equation:

(%0)effective
= (dso)apparent

~s
(3.7)
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'f i-s defined as the ratio of the surface area of the equivalent-volume
s

sphere to the actual surface area. It is an isoperimetric property of

particles, and its hydrodynamic influence on settling velocity is

developed by Graf et al. (1966).

The cube-shaped plastic pellets, with average dimensions of

1/8 in. x 1/8 in. x 3/32 in., indicate an "apparent" particle diameter,

d
50

= 2.89 mm. Upon application of the cube-shape sphericity factor,

'f = 0.795, Eq. (3.7) defines an "effective" particle diameter,
s

~o = 3.63 mm. Irregular pellet shapes were removed, but a distri-

bution was not determined.

The respective settling velocities were found from a graph

and equation presented after Budryck by Durand (1953, p. 100).

Budryck's graph and equation cover the entire range of settling velo-

cities for "quartz grains" of 2.65 specific gravity in a quiescent

medium. The consideration of sand particle sphericity was not neces-

sary. Plastic pellet settling velocity, however, was determined from

the "effective" particle diameter.

The specific weights of the solids, s , were provided by the
s

material suppliers and are listed in Table 3.2.

Volumetric concentrations of 0.1% < C < 17% were handled

at flowrates ranging from 0.1 cfs (~50 gpm) < ~ < 1.8 cfs (~OO gpm).

The system temperature was recorded for each test run and sometimes

varied from 60°F < ~ < 100°F. The effect of temperature on the loop

re~dings was accounted for, as explained in Section 3.2.2.
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3.3.2 Testing Procedure

Preparation for a Series test run involves selection of a

pipe diameter, D, (with determined material roughness, e); the adjust-

ment of the pipe slope, tan e; and the feed of solid particles, d60 '

(represented by solid's specific gravity, s , and. a non-uniformity. s

coefficient, ~o /%0) into the system.

For a particular test series, the solids are circulated in

a nearly pseudohomogeneous flow condition which ensures uniform distri-

bution of the particles throughout the system. Once conditions were

stabilized, the f10wrate, the moving solids concentration, and the

test section head loss readings were recorded; these are compiled in

Appendix B. A qualitative description of the mixture flow, as observed

through the Plexiglas section, is thereon commented. F10w~ates are

then decreased to the heterogeneous flow regime, and there becomes

noticeable a not so unexpected development. The moving solids concen-

tration diminishes, due to the premature settling of particles in the

larger 8-inch pipe, located upstream from the test section, exhibiting

a transport flow capacity less than that within the 4-inch or 6-inch

test sections.

Further decrease in f10wrate produces heavy bedload tr~nsport

in which most particles are either rapidly sliding along the. invert or

sa1tating into the clear flow area of the pipe. Subsequent f10wrate

changes are more finely incremented. Lowering the flowrate to ave10-

city at which the bedload begins pulsating between deposit and
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/
/ non-deposit flow conditions, the sliding bed thickness builds and

there exists no measureable transport of the bedload particles. In

this study, this is the definition of the critical deposit velocity,

Vc• The solids concentration corresponding to that particular Vc is

. recorded just prior to the critical condition, when all particles are

in transit.

Readings are also recorded in the deposit regime to complete

the data required for plotting the associated head loss curves. Dune

~ormation and dune transportation are an ever fascinating phenomenon

at these low flow ranges. Clogging of the system was never encountered.

In the early stages of this study, runs were repeated to check

the consistency of data measu~ement. Once satisfactory agreement was·

obtained, solids were added or removed to change the concentration. At

critical conditions, the concentrations never exceeded 7% by volume.

Inconsistencies are experienced in any sediment transport

study, but low concentrations in this study presented an unusual prob-

lem. The necessity of almost fully closing the 8-inch flow discharge

valve for reaching low critical velocities induced local scouring of

the already well-deposited bed in the 8-inch pip~. Sudden slugs of

sediment would then deposit in the test section at one moment, and

completely scour clean the next, under the same flow conditions. The

transport of plastic pellets.posed an additional difficulty. Low flow

conditions did not sufficiently entrain the pellets to flow freely

through the pump. Rather, particles slid down between the seal and
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the impeller, straining the motor and causing sudden variation in flow-

rates.

After several runs were made at a variety of concentrations,

the data were plotted on a typical mixture head loss versus mixture

velocity graph, as explained in Appendix B, and one of the parameters

changed for subsequent tests.
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/ 4. EVALUATION OF EXPERll1ENTAL DATA

4.1 Analysis of Lehigh Results

Nine series of tests were conducted to determine the critical

deposit velocities for varied concentrations of sand and plastic pellets

transported with water in a pipeline. Most data were recorded from

sand-water tests in a horizontal pipe over a range of low solids con-

centration (C < 7%). -It is expected that within this lower range of

solids concentration, both the particle diameter, d, and solids con-

centration, C, effect the critical deposit velocity value.

By testing various combinations of solids concentrations, C,

particle diameter, d, specific weight of solids, s , pipe diameter, D,s

and pipe slope, tan e, different critical deposit velocities were re-.

corded and compared. All experimental data are first tabulated and

then plotted as mixture head loss against mixture velocity (see Ap-

pendix B).

Critical Deposit Velocities. The critical deposit Veloc-

ity data are summarized in Table 4.1 with indication of run numbers-

for each series of tests, the volumetric solids concentrations, the

critical deposit velocities, and four modified Froude numbers. These

four modified Froude numbers are defined in Table 4.1 and were computed

for each critical deposit velocity. Froude number (I) is the modified

form, after Durand (1953), for critical deposit velocities in hori-

zontal pipeflow. Subsequently, both Froude numbers (II) and (III) are

introduced to evaluate critical deposit velocities in sloping pipes as

well. Froude number (IV) is suggested by Wasp et ale (1970).
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MODIFIED FROUDE NUMBERS EVALUATED •••

Vcp.. (I) = -,=.===::;- .... - ....-..-----. ----------
r ,._J:~D._~S.S -1)' ._. u •__._~ __~~ ~ ••

Vc--------------.---------------- F .. (II) - = -[1 - tan eJ
. . r. JZgD (s -I)' .___ . s .. . _

V
~----~~-------.----.. F (III) = C -- . --.~- --~-_.-~~~
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t---+--------t-------t- (I>--<II>-CI I I>--<IV)-
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Table 4.1: Critical Deposit Velocity Data

------.. ---47- -_._-----,..



._--------------------

________________ ._R. VOLUMETRIC CRITICAL MODIFIED
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- ' -------------~---

{
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--~._-
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Table 4~l: (Continued)
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(PERCENT> . (FT/SEC)

1
_--,- . 2._

3
4
5

------,----------_&-

._..-. • 05 :J • 7 0
.10~.90

.25 4.50

.55 5.10
2.25 5.50

.. __~~ •.?Q ._ ." .....__? :'-0 _

.622

.655

.756

.857

.925
_....•_.95.!!

.659

.695

.802

.909

.960
1.016

.642 1.627

.576 1.715

.780 1.979

.884 2.2,.3

.954 2.418
• 9 8 8 ~. 506

~_.__.._~-~.~"- -~-- - -~---_.-- .._~._--_ ... - -------- .__ ....... ~---- ~-'--,_..----_._-~..--..- ----'---
1

.__:._'.~r~::. . . _.; :·_..:2_
3

______________ . 4 _

.75
__ ._ '1.90
. 2.50

5.40

5.85 .803
6.95 ._._ .954
7.,.5 1.023

___L. 9_~_ ~ .. 1. 091

.803

.954
1.023
1.091

____. I Series_ BS-003 .{:~:~ig~-~-~-~r~~-~~ E~.~O •.~~~_~_M- .. _
PIPE SLOPE = .027

--------_. "----.- ------------ ----_. ------ - --'- ------. -- -_._- ----- - .._------- ---'--'--' -_.._._--
1 .75 6.15 .844 .621 .833 2.168

______~.. iL_ _.__~. 00 L! 1 0. ..__.. 975 _'__0 ••_~46 • 962._..__2.•.2.Q3
3 3.70 7.50 1.023 1.002 1.016 2.64"

____. .. . It 5.0_0 _ ..J_.75... .. .. 1. 06~ 1.035 1.050 2_!-7'_33_

-------------..--_=-se-r~e~-B-s~:::-{H:n~~~i~~~:::~0;~. i~. ~~~.--'---'-----~--.~-------~ -~.-~~.~~=--

- --.--.---_._" ._~._-_._ ... _. ----_.---. ._--_._- ---_ ..-.. . ----_._- _.,--~._-_._.. _.. -_._--~ .. -... _---- .. --_. ---_.__ ... ._----- -------
1 1.30 3.40 .912 .972 .972 1.813

____________ .. _2. 1.9o . 3.85 1.101 1.101 1.101 2.053
33~OO 4.~5 1.273 1.273 1.273 2.373

_~_____ _.~ _ 3.80 It_. 6 Q .1. 310_._J.• 316 _~_1._316_2_!_45.l_

---------'-............--.&._--------.&.-_--_......_------------- ._----
Table 4.1: (Continued)
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Fig. 4.1: Experimental Data from Lehigh Sand-Water and Plastic Pellet-Water Studies;
Modified Froude Number versus Concentration~ Particle Diameter as Parameter



From a preltminary study, plotting Froude numbers (I), (II),

and (III) against solids concentra,tion, C, it was found that Froude

number (II) best correlates the data, including both horizontal and

sloping flow values. Further, Froude number (IV) plotted against

concentration, C, indicated no improvement in demonstrating the trend

. of results, and only increased the scatter of data. Lehigh values of

dID raised to the 1/6 power are very small and have little influence

on the correlation.

It is therefore that Froude numbers (I), (III), and (IV) are

no longer considered; the data are analyzed with Froude number (II)

and presented in Fig. 4.1.

Correlation of Data. A regression analysis was made to

*correlate 'modified Froude number (II) with the following parameters:

. concentration, C; concentration, C, and particle diameter, d; and con-

centrat ion, C, and relative particle size, diD. __

The regression functions take two forms: (1) A least squares

fit of modified Froude number, F , with concentration, C, written as:
r

F- = k c~
r ""1

(4.1)

where ~ and ka are evaluated from logarithmic values of the data over

five different particle size ranges, and (2) a least squares multiple

*The same was done for modified Froude numbers (I) and (III) and is
given in Appendix C.
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regression, using Gaussian iteration to fit modified Froude number,

F , to both concentration, C, and particle size, either as d, or the
r-

dimensionless form, as din. These two regression functions are given

.-. .'~'~-: by.: . :.~ • __':'.#"n'\oo

k4 ~
Fr =k C d

3

-
~

,
k' dint<;,F = C

r 3

(4.2a)

(4.2b)

The exponents, k4 and k , and coefficient, k are determined for the
6 3

sand-water data and also for the total range of data, including plastic

pellet-water results.

An explanation of the multiple regression analysis arid a

statistical interpretation of the resulting equations are given in

Appendix c. It should be noted at this point that plastic pellets

data were eliminated from the analysis. The influence of 4 out of

50 data points is somewhat negligible and their imposition on the

general trend of results~ dictated by the 46 sand-water data points,

was felt to be of little value. The regression analyses reported in

Appendix C justify this reasoning.

TWo regression equations are found to fit the Lehigh data

particularly well: (1) Using only sand data, and assuming solids

concentration, C, to be the only important independent variable, the

best-fit equation is give~ as:
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[1 - tan eJ (4.3)

The coefficient of correlation is 0.870. (2) Including the influence

of particle diameter, d, the following equation was developed for sand

alone:

[1 - tan eJ = 0.928 CO.106 do.o66 (4.4)

where the particle diameter, d, is in mIn. The coefficient of corre1a-

tion is 0.877.

Note that the value for exponent k = 0.106, given with
. :3

Eq. (4.3),.is very close to exponent k4 = 0.105, given with Eq. (4.4).

Further, coefficient k
3

= 0.928 in Eq. (4.4) differs only slightly from

coefficient ~ = 0.901 in Eq. (4.3). This similarity between the coef­

ficients and exponents in Eqs. (4.3) and (4.4). is due to the almost

negligible effect of particle diameter, d. Equations (4.3) and (4.4)

are ~hown graphically in Fig. 4.2.

The regression analysis for the relation given by Eq. (4.2b)

is presented in Appendix C and shows that the relative particle size,

dID, has very little influence on improving the correlation given with

either Eq. (4.3) or Eq. (4.4).

It should be again noted that the form of the modified Froude

number, including a tan eargument, has been suggested to better corre-

late the Lehigh data. It is recommended that either Eq. (4.3) or
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Fig. 4.2: Best-Fit Equations for Lehigh's Sand-Water Data Only; Modified Froude Number.
versus Concentration, Particle Diameter as farameter



Eq. (4.4) be reliably applied in the design of sand-water transport

systems with galvanized or black steel pipes on a slope:

-0.10 < tan 8 <0.05. Either equation is certainly good within the

range of particle diameters tested at Lehigh: 0.45 < d < 0.88 nnn,

with Ii /d < 1.21.
-So 60-

Relative Influence of Tested Parameters. Needless to say,

not all ranges of the parameters, D, d, ss' C, tan 8, d90/~0' and

e!D, have been completely investigated and never will be. However,

the resulting regression equations, Eqs. (4.1) and (4.2), offer in-

sight to the relative influence of some of the tested parameters on

the critical deposit velocity.

The influence of solids concentration, C, on the critical

deposit velocity is found in this study to be of primary significance,

particularly within a low-concentration rang~ of C < 7%. For con-

centrations above 5 to 10%, both Sinclair (1962) and Wilson (1965)

find that critical deposit velocities decrease with concentration.

A s~ilar observation was made in the present study when concentrations

exceeded 5%.
;'

The particle diameter, d, has no direct effect on the crit-

ica1 aeposit velocity value within the range of particle diameters

tested in the present study, 0.45 < d < 0.88 nnn. However, with sus-

pensions of fine particles in the range d < 20 nnn, it is expected that

solids settling is sufficiently delayed to decrease the critical de-

posit velocity. This is reported by Worster et a1. (1955) and Gibert

(1960).
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While the Lehigh data provide insufficient evidence that

relative density, ss.:!' expressed as (ss _1)°·5, is proportional to

the critical deposit velocity, other studies have made this verifi­

cation. Sinclair (1962), howev~r, reports that (s _1)°';;' better
s

correlates his data for iron-kerosene, sa~d-water, and coal-water

mixtures. Furthermore, Ellis et al. (1963b) conducted experiments

with nickel shots in water, finding that critical deposit velocities

were reduced for these solids of high density. They reasoned that

this was due to both the "elastic rebounding" of the particles, which

have large momentum as they strike the bottom of the pipe, and -the

increased lift forces Unposed by the liquid as the particles come

to a sudden rest at the boundaries. It appears reasonable to ques­

tion the form (s _1)°·5 if it is used to determine critical deposit
s

velocities for solid-liquid mixtures other than sand-water. However,

for any suspension of quartz particles, (s _1)°·5 has been well founded
s

to best correlate the critical deposit velocity parameters.

The grain size distribution, ~o 1.2
50

' was also a parameter

felt to be unimportant in the present study. In addition, the Lehigh

sand samples were quite uniform and the effect of such a parameter could

not be tested. The problem of mixed sized samples is complicated in

that fine particles often create a supporting suspension for the

coarser particles. It is realistic, when designing for the trans-

port of a non-uniformly distributed material, to select an "effective"

mean particle size, slightly greater than d ,to account for the
50 -

settling of the larger particles.
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The relative material roughness, e/D, was assumed to be an

insignificant parameter in this study. Inclusion of this parameter

in the· correlation enters in the liquid head loss, and apparently does

not influence the movement of the solids phase. The present study

showed that for pipes of black steel and galvanized iron, material

roughness is of negligent concern in critical deposit velocity deter-
...

mination. This is similar to what Durand (1953) observed with steel

and cast iron pipes. Only with very fine particles and pipe roughness

protrusions, which would disrupt the laminar boundary layer, might one

find it necessary to include the effect of e/D on critical deposit

velocity.

4.2 Comparison with Other Data

Particularly important in the present study is· the appli-

cabi1ity of the modified Froude number re1~tionship, given with

Eq. (2.13), for low-concentration mixtures, C < 7%. The strength

of the Lehigh data is in the range with 0.10 < C < 2.0%. The 10w-

concentration data are mainly responsible for the final form of the

modified Froude number relationship, as given with Eqs. (4.3) and

(4.4). In what. foltows we shall try to investigqte as to how other

experimental data compare with the present findings.

Sand-Water Mixtures. Many researchers have reported on

sand-water mixture studies, but from all of these, only the studies

n If .

by Gibert (1960), Fuhrboter (1961), Sinclair (1962), and Durand,

Smith, and Yotsurura, as reported by Wasp et a1. (1970), rendered
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useful data for the present investigation. The ranges of parameters

investigated in these studies are listed in Table 4.2, and the data

are plotted in Fig. 4.3 for comparison with the Lehigh sand-water data

given with:

F = 0.901 CO. 10S

r (4.3)

Data were retrieved from only those studies which investigated

a "critical condition" identical to the critical deposit velocity, as

defined in the present study. However, it must be pointed out that a

certain amount of inaccuracy is inherent with any sediment transport

study and results will vary within the same testing system, let alone

from on~. system to another. In general, it is felt that the trend es-

tablished by Gibert's (1960) data, for d > 0.37 mm, is rather well re-

fleeted in the Lehigh sand-water data. It is recalled that Gibert

(1960) reports an exhaustive investigation obtaining 310 data points.

Of interest is also that the Sinca1ir (1962) and Durand (1953) data

are in reasonable agreement with the Lehigh findings'. Further, it is

noted that the Yotsurura data, reported by Wasp et a1. (1970), reflect

trends similar to the Gibert (1960) curve for fine particles.

Figure 4.3 together with the Lehigh sand-water data,repre-

sented with Eq. (4.3), suggest the following trends in the range where

c < 5%: (1) The critical deposit velocity, V
C

' increases with solids

concentration, C; the increase becomes less evident as the concentra-

tion rises to 5%. (2) For particle sizes, d > 0.37 mm, the critical

deposit velocity remains practically unchanged with increase in d.
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Sediment Pipe Sediment Specific RemarksSize Size Cone. Gravity. --. --_.~. ._------_. ..-
d [nun] D C Ps'P

_... . -.-....._......-._~ _.. -_.. . ~ .-- :.. ._.....- . _..._. ... ~.... _._.......- .~.. ~ -_. __... ........... ~.- -- .- - .,

(1952)* 0 0.44 2.65 Extensive range
Durand • 2,.04 5.90 in. up to 15% 'sandI of 'parameters

water . tested

2.65 Vc
obtained from

Smith (i955 )* 0 0.18 3.00 in. up to 26% sandI Vc vs. C plot
water

=:: 0.37 40.2 to 2.65 Best-fit curves-- on vc/Ji,D'vs.Gibert (1960)
-0- 0.20 150.0 nun up to 15% sandI C

water plot

II II 0 0.27 2.64
Fuhrboter (1961) • 0.53, 0.88 0.30 nun up to 25% sandI Vc

is reported
water

(1961)* \l 0.23
2.65

Yotsurura
~ 0.59, 1.15 4.25 in. up to 25% sandI Vc is reported

water

6 0.35 0.50, 0.75, 2.61 Vc obtained from
.Sinclair (1962) A 0.68 1.00 in. up to 20% sand/ Vc vs. C plot

water

*Reported in Wasp et a1. (1970)'

Table 4.2: Range of Parameters of the Data Reported by Other Investigators
for SandlWater Mixtures; Data are Plotted in Fig. 4.3



•Lehigh
Sand-Water

Data

o· -
0 0

- 0 -0-

0

."
j

Gibert
__ d>

0.37 rom
-o-d = 0.20 rom

Durand 0
Smith. 0

II "LEGEND Fuhrboter 0
(see also Tab le 4.2) Yotsurura '1

Sinclair '8
C [%]

3.0 . 4.0 6.0 6.0a.o1.0

v
C [1 _ tan e]

. '2gD (s -1)'
V s ~

o

1.00

1.26

*I 0.76
0'\

~0

*
I

0
0.60

Fig. 4.3: Modified Froude Number versus Solids Concentration, Particle Diameter
as Parameter (Data from Sand-Water Mixture Studies)



The Lehigh data exhibit this trend showing particularly good agreement

with the other data, and will give conservative desi~n values. (3) For

particle sizes smaller than d = 0.37 mm, the critical deposit velocity,

Vc' decreases with decreasing d. It is expected that this decrease in

Vc levels off for very fine particles, but the data reported give in­

conclusive verification of this.

Neither particle size distribution nor the pipe material

roughness were considered to be of importance in this comparison.

Solid-Liquid Mixtures other than Sand-Water. To show the

general usefulness of the modified Froude number, data from other

solids-liquid mixtures were studied. Wasp et al. (1970) report data

from Wicks and Moye on the investigation of sand-kerosene and sand-

oil mixtures, Sinclair (1962) reported on iron-kerosene mixtures;

and Wilson (1965) on nylon-water mixtures. Again, the data are com-

pared with the Lehigh sand-water data, as shown in Fig. 4.4; the

ranges of parameters are listed in RabIe 4.3.

Whether the density parameter, given as (s _1)° 0

6, best
s

correlates solid-liquid mixtures other than sand-water is difficult

to assess from the reported data. Higher relative density mixtures

tend to decrease the critical deposit velocity value as demonstrated

by the Sinclair (1962) and Wasp et al. (1970) data, and~s explained

in Section 4.1, after Ellis (1963b). Whereas, the lower density sus-

pensions reported by Wilson (1965), and shown with the present study,

fall significantly above the Lehigh sand-water data.
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0'1
N
I

Sediment Pipe Sediment Specific Remarks
Size Size Cone. Gravity-

d [nun] D C p/p
I

Sinclair (1962) 0 0.12 0.50, 0.75, up to 20%
10.37 Iron/ Vc is reported on

• 0.09 1.00 in. 0.78 Kerosene Vc vs. C plots

Wilson (1965) 0 3.88 3.48 in. , up to 20%
1.14 Nylon/ VC is shown on

3.69 in. Water head loss curves

6 2.65 SandI .
Wicks and * 0.25 1.05 in. , 1:0% 0.91 Oil Vc is reported
Moye (1968) 5.50 in.

A 2.65 SandI
0.81 Kerosene

Lehigh (1971) ~ 3.63 6.00 in. up to 5%
1.38 P1astic/ Vc is reported

Water

*Reported by Wasp et a1. (1970)

Table 4.3: Range of Parameters of the Data Reported by Other Investigators
for Solid/Liquid Mixtures other than Sand/Water; Data Plotted
in Fig. 4.4



v
C [1 e]- tanV2gD (ss -1)'

1.26

Lehigh
Sand-Water

r--------IGiI-=::!::;;;;;;;;_--~D~a~t~a~====~~::;::t=:::=====~===::~+~-11.00 r

8
\ '.' 0 •I 0.76

0'1
0UJ

I 0
~

~
LEGEND (See also Table 4.3)

A
Sinclair (Iron/Kerosene) 0

0.60
Wilson (Nylon/Water) 0

8 Wicks and (Sand/Oil) 8
Moye (Sand/Kerosene) V;

!'j Lehigh (Plastic Pellets/Water) ~
C ['Yo]

0 1.0 2.0 . 3.0 4.0 ' 6.0 8.0

Fig. 4.4: Modified Froude Number versus Solids Concentration, Particle Diameter
as Parameter (Data from Studies of other than Sand-Water Mixtures)...



/
/ Although these res~lts are inconclusive, it is suggested

to use the modified Froude number relationship, in the form given

with Eq. (2.13), till further data on non-sand-water mixtures become

available.

4.3 Engineering Application

An engineer, confronted with the task of designing a solids

transport system, finds that a theoretical application of critical

condition transport has many limitations. In another instance, he

. may be unable to apply one particular approach, because its validity

has not yet been tested for the type of mixture slurry he is con­

sidering. Furthermore, he is usually provided with little or no

information on the economic factors to be considered in installation.

and operation of the system. The basic problem in design is one of

safe operation and minimization of the costs to transport the mixture.

The critical deposit velocity relationship, as defined in

the present study with either Eq. (4.3) or Eq. (4.4), provides the

designer with a useful tool with which he may define the optimal

operating conditions of the system. To ensure safe, uninterrupted

transport of the mixture, the designer must also properly select

pump, pipe material and instrumentation, after consideration of basic

hydraulic parameters and· power requirements. Condolios (1963b & c)

and Graf (1971) treat the subject of solids pipeline operation with

considerable proficiency.
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/ 4.3.1 Economics of Solid-Liquid Transport Systems

A rather attractive feature of the solid-liquid transport

pipeline is the minimal cost required for operation and maintenance,

as compared with the conventional means of transporting solids. In

'addition to the revealing economic advantages, pipelines are ammenab1e

to automation, are dependable, and can overcame both natural and man-

made- obstacles..

Operating costs are minimized when the power required for

transport is held to a minimum, however, certain precautions mUst

be taken. The minimum power input and the minimum mixture head loss,

i • are coincident and identify a region in which the system may be­
m

come unstable. This leads inevitably to plugging of the system.

Operation in this region is unsafe, and slightly higher flow veloc-

ities should be maintained to avoid system instability. Condolios

et at. (1963b), Ellis et al. (1963a), and Wilson (1965) discuss ap-

plication of the minimum power requirement in design.

The critical deposit velocity, V
C

' is often found within

the region of ·instabi1ity. It has been observed by Cond91ios et a1.

(l963b), Wilson (1965), and within the present study that the re-

lationship between critical deposit velocity and the velocity cor-

responding' to the minimum head ioss is as given with Fig. 4.5. Vc
is higher than the velocity associated with the minimum head loss at

low concentrations - however, the opposite is true for C > 5%. An

explanation for this occurrence is reported by Wilson (1965). The

heavy line in Fig. 4.5 represents a reconnnended envelope for deter-

mining the stab Ie operating flow ve 10city.
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0.1

0.01

i (log)
m
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Head Loss
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i (log)
m
Mixture
Velocity

10
Fig. 4.5: Critical Velocity and the Velocity Corresponding

to the Minimum Head Loss

Condolios et al. (1963c) report on instability of the pump

characteristic curve, due to the fluctuations of solids concentration

during operation. The designer must consider the characteristic stage-

discharge curves of the pump in comparison with the mixture head loss

curVes for the pipeflow to ensure stable design. '

A method for optimizing solids concentration, C, and pipe

size, D, was reported by Hunt et al. (1968). Although some preliminary

economic considerations of solids pipe lining have been reported by Wasp

et al. (1967), the relationship between hydraulic and economic decision

variables had not been presented analytically. Hunt et ale (1968)
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/ minimize a function containing seven cost groups and hydraulic parame-

ters,with respect· to C and D. The response surface generated by this

cost function yields various combinations of C and D and the most suit-

able are selected for design;.

The engineer, in designing a solid-liquid transport system,

must concern himself with some basic considerations:

Installation:

(1) .Physica1 characteristics of the mixture
(2) Adequate pumping facility
(3) Flushing and drainage
(4) Pipeline wear and corrosion

Operation:

(1) Physical characteristics of the mixture
(2) Stability of pipe flow
(3) Stability of pump operation
(4) Optimum delivery of solids

Lowenstein (1959), Ellis et a1. (1963a), and Roberts (1967)

present different methods for designing economically practical trans-

port systems. Use of the Lehigh findings as a basic criterion in the

design procedure is presented now.

4.3.2 Application of the Lehigh Findings to Design

The "critical condition" has seldom been used as a criterion

for designing economic transport systems. The apparent reason is that

relationships for the critical deposit velocity have been vague in

conclusive evidence and thus, engineers have retained little con-

fidence in their application. The Lehigh findings provide the de-

signer with that criterion which will minimize the cost of operation

and ensure safe, uninterrupted flow conditions.
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For designing a system to transport sand with particle

diameters, 0.45 < d < 0.88 nun, in water, Eq. (4.3) is reconunended,

and is rewritten here as:

(4.3 I)

...

If the sand particle sizes are larger, d > 0.88 nun, Eq. (4.4) is

reconnnended and can be rewritten as:

(4.4' )

Equation (4.4') will give more conservative values for Vc than Equa~

tion (4.3'), as particle size, d, increases in size over 0.88 rinn.

For particle sizes smaller than 0.45 nnn, neither Eq. (4.3') nor

Eq. (4.4') are reconnnended. One is then referred to Gibert (1960).

Roberts (1967) presents a general method for extrapolating data to

regions outside o·f the tested bounds, app1:Lcation of which would

enable more extensive use of the Lehigh equations.

To illustrate general application of the Lehigh critical

deposit velocity equations, Eqs. (4.3') and (4.4'0), and Fig. 4.2,

two typical design problems are examined.

Example (1). Suppose a long distance miner~ls-watermix-

ture transport system is to be designed for a certain delivery rate

of "solids,Q . (defined as tons/mile/hr), and given with diameter, d,
s
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I and specific gravity,

to minimize costs?

s •
s

/

What parameters must the designer consider

Delivery rate, Q , is' defined with the following relation­
s

ship:

Qs =~ c = V A C (4.5)m

I

where ~ is t~e mixture flowrate. It is recommended that the critical

deposit velocity criterion, resulting from the present study, be em-

ployed. Equation (4.5) is therefore considered to be minimized with

respect to unit costs by replacing Vm with Vc and rearranging:

Q' = IT V c if
5 4 c

where Q' now represents optimum solids throughput.s

(4.6)

If particle diameter, d, as an example, is slightly larger

than the range of particle sizes tested in this study; i.e.,

d - 0.10 mm, we can substitute Eq. (4.4) into Eq. (4.6) and obtain:

rearranging:

(4.7)

Q' = 5.85 cLll do.o6 if·S (5 _l)OoS
55.

-69~

-1
(1 - tan e) (4.8)



Note that this equation is similar in form to the relationship given

by Eq. (2.10), but it is pointed out that the exponents and coefficient

of Eq. (4.8) are constant over the entire range of Lehigh data, and the

relation can be extrapolated in many instances to include parameters

outside these tested ranges •.

The pipe slope, tan e, is identified, through a topographic

survey, as to where it will be a maximum. From Eq. (4.8) the most

equitable combination of concentration, C, and pipe size, D, can be

determined throu8h trial and error. If concentration is larger .than

5%, extrapolation of the Lehigh data must be undertaken with caution.

If the particle diameter, d, of the slurry to be transported is

0.45 < d < 0.88 mm, Fig. 4.2 can be used directly and optimum modified

Froude numbers located readily.

Example (2). Consider the design of a pressurized solid­

waste disposal system. A difficulty encountered with the hydraulic

. transport of solid wastes is the identification of slurry character­

istics. Non-Newtonian suspensions cause a problem which is not con­

sidered within the scale of this study, however, real concern is for

the settling and possible clogging due to grit and sand in the mixture

slurry.

If a system is designed to handle a specified concentration

of settleable solids from domestic disposal units, will the 'working'

operating velocity become a critical deposit velocity, or more

seriously, a sub-critical, unstable flow velocity, if solids concen­

tration is suddenly increased? The characteristics of the grit
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concentration, given with d and (s -1), dictate which Lehigh design
s

equation is to be used. From either Eqs. (4.3), (4.4), or Fig. 4~2,

the variation in modified Froude number, with increase in concen-

tration, C, is observed. Subsequently, a new value for Vc is. defined

and compared to the original conservative operating velocity.

Th~ application of the Lehigh equations can be extensive,

considering that extrapolation is performed with caution, and one

understands clearly the definition and relative influence of each

parameter.
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5. CONCLUSIONS

The critical deposit velocity, V
C

' tested in the form of a

modified Froude number, is correlated with other parameters, which is

significant in the solid-liquid transport problem, over the following

ranges:

0.01 ~ C ~ 7.00 %
0.45 ~ d ~ 0.88 rom
4.00 < D < 6.00 in.- -

-0.060 < tan e < 0.027
1.07 ~-~o /d5c~ L.21 .

0.00009 ~ e/D ~ 0.00032

From a dfmensional analysis of these parameters, a modified

Froude number relationship is developed, as given with Eq. (2.13).

The relationship is tested for sand-water and plastic pellets-water

transport. Data from the sand-water tests ..exhibit the following:

(1) Agreement with the Gibert (1960) curves for

particle diameters, d ~ 0.37 rom.

(2) The increase in· critical deposit velocity, V
C

' be­

comes less evident as solids concentration, C, rises

to 5%; above 5%, Vc tends either to remain constant

or decrease with increase in C. [This was also ob-

served by Sinclair (1962) and Wilson (1965)J.·

(3) For particle ~izes, d ~ 0.37 rom, the critical deposit

velocity remains practically unchanged with increase

in d. ,.

(4) The critical deposit velocity is higher than the
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velocity associated with the minimum head loss at low

concentrations; however, the opposite is true for C> 5%.

Findings from the plastic pellet-water test data were incon-

clusive.

A regression analysis, made to correlate the Lehigh data,

'"

shows that the modified Froude number is highly dependent on concen-

tration, C, slightly affected by particle diameters, d ~ 0.37 mm, and

hardly influenced by relative particle size, diD. The regression equa-

tions which best fit the data and are in reasonable agreement with data

from other sand-water studies, are given with:

"

v'
C [1 - tan eJ = 0.901 CO,lOS (4.3)

- tan eJ (4.4)

Although the reliable application of these equations for

solid-liquid mixtures other than sand-"water',has been .inconclusively

resolved, it is suggested to use Eqs. (4.3).and (4.4) in their present

form till further data on non-sand-water mixtures become available.

lbe Lehigh critical deposit velocity equations give con-

servative values, and are presently the only relations available for

predicting critical deposit velocities for low-concentration solid-

liquid mixtures. It is recommended that either Eq. (4.3) or Eq.(4.4)

be 'used as a critical deposit velocity design criterion, certainly with-

in the range of parameters tested in the present study, and 'cautiously

in ranges of parameters extending outside of the tested bounds.
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APPENDIx A: EVALUATION OF LOOP READINGS FROM PROGRAMMED OUTPUT

Determination of ~ and C

The "Loop System" became a useful tool for quickly determining the
mixture flowrate, ~, and 'solids concentration, C,once the programmed
output was plotted. Enlarged sections of Chart 1 and Chart 2, from
Fig. 3.5, are shown in Figs. A.l and A.2, respectively. With reference
to these two charts, the determination of ~ and C from loop head loss
readings will be examined-

System water temperat~res during a test run sometimes increased
from 60°F, at the beginning of the run, to 100°F, after high flowrate
testing bf a large solids concentration mixture. The loop indication
of mixture flowrate is appreciably affected by temperature changes, and
since it could not be easily controlled, readings at temperatures of
both 70°F and 90°F were plotted on Chart 1. Water temperatures were
recorded during the progress of a test and employed in the evaluation
of ~ and C, but they are not reported in the data of Appendix B.

Recording for one test, lihR, the riser pressure drop, and,·lihD,
the downcomer pressure drop, the concentration, C, would normally be
determined immediately from locating (lihR-lihD) on Chart 2, since .this
relationship is hardly a function of flowrate,~. Proceeding then to
Chart 1 and knowing C, (lihR+lihD), and temperature, Qm' would be lo­
cated.

However, through repeated' clear-water calibration of the loop sys­
tem, riser readings were observed to be consistently greater than those
of the dowilcomer and generally increasing with mixture flowrate. These
differences were attributed to insufficient transition length, in­
completely dissipating the local turbulence effects following the elbow'
bends. The trend of deviation is shown in' the "correction curve""below
Chart 2 in Figs. 3.5 and A.2*. The difference was assumed to be equal­
ly shared by the two vertical sections, such that the (lihR+lihD) reading
needed no correction. The (lihR-lihD) reading acquired the full cor­
rection directly. To better illustrate the additional implications and
convergence on Qm andC values, an example is presented.

In Series G-02-3 of Appendix B (tests of coarse sand transport
through a downward sloping, 4-inch galvanized pipe), the first set of
loop readings recorded are:

* .For later investigations of plastic pellet and additional low concen-
tration sand flows, the transition length before the loop pressure taps
was extended 3 ft. This greatly reduced the correction curve toa
nearly constant - 0.2 values over the entire range of flowrates.
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6h
R

= 33.00 in.

6hn = 11.05 in.

Consequently, resulting in:

6h
R

- 6hn = 21.95 in..

The system temperature for this particular run was recorded at 82°F.

A first approximation of concentration, C, obtained from Chart 2,
would be 10%. On Chart 1, Fig. A.l an 80°F recording for 10% mixture
concentration would fall at point ~ in correspondence to the summed
head loss value at @. Interpolated to an 82°F reading, point ®
shifts to @, locating Qm = 410 gpm. In Fig. A.2, the correction
value at @, corresponding to Qm = 410 gpm, is -1.35 in. Applied to
the head loss differential at point @ on Chart 2, an adjusted dif­
ferential head loss, of 21. 95-1.35 = 20.60 in., is located at ®. The
resulting C = 10.5% was considered close enough to the original assump­
tion of C = 10% to warrant acceptance of the values:

~ = 410 gpm

C = 10.5%

Further iteration of this procedure was seldom required, if an
approximate correction value was considered in the first attempt.

When both the flowrates, Qm' and volumetric concentrations of
solids, C, were in their upper ranges, discrepancy of loop.readings
from Prandtl and Pitot tube observations was often detected. Adjust­
ment of these readings is now discussed.

Adjustment of ~ and C in the Heterogeneous
Flow Regime

It was observed that the magnetic flowmeter readings were sys­
tematically higher than the velocity readings given by the loop.
Further, visual observation of the flowing mixture indicated an ap­
parently greater volumetric concentration of solids than determined
by the loop. These discrepancies were particularly noticeable at
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.,

flowrates and concentrations above the critical condition, well into
the heterogeneous flow regime.

To assure confidence in the "Loop System" recordings of mixture
floWrate, Prandtl tube traverses for clear-water flow were run over a
.range of flowrates between 160 and 600 gpm. Reliability was placed in
the Prandtl tube results and were used to calibrate the Foxboro Mag­
netic Flowmeter. Within the range of flowrates tested, the flowmeter
was found to be consistently indicating flowrates 12.5% in excess of
the actual flow conditions. It was felt that the magnetic flux method
of determining flowratewould be accurate in measuring mixture flow
upon the entrainment of solids in the system, such that loop readings
could be evaluated from flowmeter recordings using the 12.5% correction.
Flowmeter indic~tions of Qm were indeed found to be greater than the
loop, and the discrepancy increased with larger flowrates and larger
concentrations, although never exceeding 8%.

A Pitot tube sediment-sampling device was employed to evaluate
loop indications of solids cbncentration. The copper sampler was
unable to withstand the sand-blast effect of the larger particles,
however, samples were obtained for the finer sand. The difficulty of
velocity flow equalization within the system and sampler was apparent,
but an insignificant deterent for establishing some degree of reli-

.~ ... ability in the sampling results. It was discovered that the· concen­
trations evaluated using the sediment-sampling device were also larger
than those given by the loop. The discrepancy increased with flowrate
and solids concentration to magnitudes of up to 50%.

Explanation of these unexpected discrepancies implicates a study
in itself, and within the scope of this study, only a method of ad­
justment can be determined. The method recommended for adjusting the
heterogeneous flow regime data is explained in what follows.

Considering the same set of data just examined, a flowmeter read­
ing and Pitot tube sample might have respectively indicated:

QF = 490 gpm (actual Q
F

=> 490 x 0.89 = 435)

*C = 14%
p

Digression from the loop readings is markedly significant and is rep­
resented as:

*The sediment-sampling device was clogged and damaged when testing the
coarser sand so that the method of correction used for fine sand could
only be assumed applicable to the coarser sand concentrations.

-78-



/ Q
F - Q 435 - 410 = 25 gpm (6% discrepancy),I =m

I C - C = 14 - 10.5 = 3~5% (33% discrepancy) .
p

The sum of the "Riser" and "Dowricomer" head readings
by locating on Chart ~ as illustrated in Fig. A.l,
a corrected value at h:

(Ml
R

+ llh
D

) ~ 51.0"
corr

was first adjusted
point@ indicating

!
i.
j

(

The deviation between flowmeter and loop reading is denoted as:

(llh
R

+ llh
D

) - (llh
R

+ llhD) ~ 7.0"
corr

It is then observed that the identical adjustment of head difference
most completely corrects the concentration reading. This is shown on
Chart 2, of Fig. A.2, whereC of 14% is located at Q), following the
appropriate adjustment of both (llhR~llhD) and Qm'

These findings were consistent at all concentration and flowrate
combinations and became an integral part of a venturimeter investi­
gation, Robinson et al. (1970). It was noted that at low flowrates
and low concentrations, both the magnitude of deviation and percentage
correction were no longer s~gnificant to warrant serious concern. Since
the primary interest in the present study was in the critical velocity
range for low concentrations, the minor adjustment, as discussed in this
section, was deemed unnecessary. However, when applying heterogeneous
flow data, from Appendix B, there should be consideration of appropriate
adjustments, as just illustrated. .

Figure A.3 is a useful tool for approximating the necessary cor­
rections for any combination of Qm and C up to 600 gpm and 15%, re­
spectively. QI and CI represent the recommended percentage increase
over the loop values.
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APPENDIX B: TEST DATA COMPIIATION

Parameters of pr~ary significance in their effect on the critical
deposit velocity are: The inside pipe diameter, D, the pipe material
roughness, e, the slope of the pipe, S, the mean sed~ent particle size,
~o' with consideration of the non-uniformity coefficient, dgo/dso' and
the specific weight of the solids, s. These parameters have been var­
ied to determine how each enters intg the modified Froude number re-
lationship, defined in the text of this paper. The series of tests are
coded with the following convention:

Horizontal
- Downward, -0.060
- Upward, +0.027

o - ~o= 0.88 mm , ~Q = 1.21 , s =2.65·
"'6Q S

00 - dso= 0.45 mm , ~~ = 1.07 , ss = 2.65

PP - e1s0= 3.63 mm , s = 1.38s

SOLID
PARTICIES

4 in. ¢ Galvanized, € = 0.00001 ft •
. 6 in. ¢ Black Steel, € = 0.00016 ft.

RUN NUMBER
(Indicates change in con­

centration

{~
l

~---------PIPE SLOPE

---PIPE {B~

G - 01 - No.

G - 02 - No.

G - 001 - No.

G - 002 - No.

BS - 01 - No.

BS - 03 - No.

BS - 001 - No.

BS - 003 - No.

BS - Ppl - No.

t
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Test Section:

Explanation of the Table Headings

(Over a ~t = 3.60 m (= 141.8 in.) test section the head
loss was determined; U-tube manometers were used).

or

Measured mixture head loss (in inches of a liquid with a
specific gravity pf Ss = 2.95).

(in inches of water)

Mixture head loss gradient (calculated from ~~95).

Loop Readings: (The ·'Loop System" developed by Einstein and Graf
(1966) was used to simultaneously determine the mix­
ture f10wrate, ~, and the solid phase concentration,
C.

Head losses in the Riser and Downcomer sections (3~inch

pipe, 1.50 m (=59.1 in.) long; U-tube manometers are
used).

V
m

~-MtD

&R-MlD
(cori.)

C

Comments:

Sum of the head losses •

. Mixture f10wrate, according to theory of Einstein and Graf
(1966), from the sum of the head losses.

Mixture velocity in test section determined with continuity
relation.

Difference of the head losses.

Correction of above from predetermined clear-water test
correction curve.

Concentration, determined according to theory of Einstein
and Graf (1966), from the difference of the head losses.

Commentary of observations in Plexiglas section on the con­
ditions of sediment transport and deposit.

Each table is summarized indicating the critical condition; this
1s the critical velocity, VC' for.a specific concentration, C.
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Some Remarks to the Figures

Plotting of the data follows on mixture head loss versus mixture
velocity graphs. These graphs show the variation of critical velocity,
Ve, with a change ,in solids concentration. Constant concentration
l1nes are fitted to the data, and the critical velocity for a parti­
cular concentration, subjectively observed as the velocity at which a
non-moving bed forms on the bottom of the pipe, is located. At velo-
cities below the critical, equi-concentration (constant "moving" con­
centration) lines are dashed (---), while the diminishing concentration
line for a particular run, is drawn solid (--).

The relationship between critical velocity and the minimum head
loss condition can' be qualitatively examined.

Some Remarks to the Data

It was explained in Appendix A that some of the data recorded at
high flowratesand high solids concentrations require adjustment ac­
cording to observed Prandtl and Pitot tube corrections, as shown in
Fig. A.3. These adjustments were found to be insignificant in the
critical velocity ranges~ hence, the data remain as recorded from the
loop readings.

It is also to be noted that some drafting errata in pipe roughness
values, e, have been corrected since the first reporting of this data,
Graf et al. (1970). Except for the inclusion of test data from plastic
pellet and additional low concentration sand mixture flows, the original
data remains una1tered~

, These more recently obtained data were not included on the head
loss figures, but are of extreme significance in the final evaluation
of this problem. They are tabled under Series. G-Ol-6 to G-01-1l,
G-OOl-S to G-OOl-IO, and BS-PP1-1 to BS-PPl-4 inclusively. It has been
noted in the text that for these studies, an improved clear-water cor- '
rection value was applied •

.,
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1

di1i_tf..!st sect on_ oop rea ngs

6,1- ( 6h )
Al~ ~hD AhR+l\~ ~1 V 6h

R
-Mln ~IR-hhD C COm'1ENTS'"1.95 ~,f;. fA

m corre.c ted
[in.) [i.n. ] [In. ] [in.J [gpm] [fps] [i.n. ) r' '1 ['1oJ.i.. n . ~~

- - ......... -- _..

10.50 0.158 29.55 18.90 48.45 440 11.15 10.65 9.05 4.75 Everything moving

8.30 0.114 23.10 14.65 37.75 385 9.7 8.45 7.35 3.75 Suspended and
, bed load

6.40 0.088 17.65 1l.0 28.65 335 8.45 6.65 5.75 3.0 Su spended and
bed load

5.60 0.077 1l.60 7.70 19.30 275 7.0 3.90 3.30 1. 75 Moving bed,
3.30 0.0455 8.10 5.90 14.0 230 5.85 2.20 1. 70 1.0 Pulsating, sliding

bed
2.80' 0.039 6.40 4.80 11.2 205 5.2 1.60 1.20 0.50 Pulsating, sliding

bed

2.30 0.032 5.30 4.20 9.5 195 4.95 1.10 0.70 0.50 Slowly moving bed

ICRITICAL l
2.30

.
0.032 5.30 4.15 9.45 195 4.95 1.15 0.65 0.50 Just below critics

I
00
V1
I

Series G-Ol-l

. . {c = 0.50%
. CRITICAL COND ITION .

V = 5 0 fpsC .



1 d'.... teEit scction __... 001' rea LllgS _ -,
th1. 95

(~) l~hR i\hJ) AhR+Ahn 0 V ahR-t.hD
6hR-Ahn C COMHENTSat '11\ m,m

corrected
(in.) [in.) [in.] [in.J [gpmJ [fps) [in.] [in.) [%]

6.40 0.088 19.40 10.60 30.0 350 8.9 8.80 7.80 4.0 Suspended and
bed load

5.20 0.0715 13.80 7.70 21.50 290 7.35 6.10 5.30 3.0 Everything moving
4.80 0.066 11.80 6,.80 18.60 270 6.85 5.00 4.40 2.25 " "
4.30 0.0592 10.40 6.40 16.80 250 6.35 4.00 3.50 l.8 Moving slowly
3.90 0.0535 8.80 5.50 14.30 230 5.85 3.30 2.80 1.50 Moving bed,

thickening layer
3.30 . 0.0455 7.10 4.75 11.85 210 5.35 2.35 2.00 1.0 { neposi t· bed

CRIT;E,!"fl

3.50 0.0481 7.60 4.95 12.55 220 5.65 2.65 2.30 1.3 Bot tom limit of
moving bed

2.60 0.0358 6.0 3.90 9.90 190 4.3 2.10 1. 70 0.8 Below cd t iea1

I
ex>
0\
I

Series G-01-2

'. CRITICAL CONDITION {~
Vc

= 1.00%

= 5.5 fps

- . I
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di1 Pt f;.. e6;' ,sec Lon .... ! 00 rea ngs

t.hl . 95
( ,Ah,) AhR AbD AhR+AhD Qm V' AhR-tlhD AbR-AhD C COMMENTS

tit m ~
corrected

[tn.J (in.] [in.) (in. ] [gpnl] [fps] [in.) (in.) [~~J

9.30 0.128 23.95 11.10 35.05 . 375 9.55 12.85 11. 75 6.0 Everything moving

8.10 0.111 20.35 9.0 29.35 340 8.65 ' 11. 35 10.35 5.3 " "
6.80 0.094 16.60 7.50 24.10 310 7.9 9.10 8.30 4.25 " "
5.80 0.080 12.00 ' , 5.75 17.75 265 6.7 6.25 5.65 3.0 Sliding bed

5,.00 0.069 10.30 5.10 15.40 235 6.1 5.20 4.70 2.5 Pulsating bed

4.50 0.062 8.90 4.75 13.65 230 5.95 4.15 3.75 2.0 ~ed slowly moving

ICRITICAL I
4.20 0.058 8.25 4.50

.
12.75 220 5.6 3.75 3.35 1. 75 Non-moving bed

2.60 0.036 4.50 2.95 7.45 160 4.1 1.55 ' 1.25 0.6 Flatbed

1. 70 0.0235 2.90 1. 50 4.40 125 3.2 1.40 L10 0.5 Long dunes

2nd Run

2.20 0.168 31.85 17.70 49.55 450 11.45 14.15 12.55 6.5 Everything moving

9.50 0.131 24.55 12.50 37.05 390 9.8 12.05 10.85 5.5 " ' "
~

6.70 0.092 16.35 8.35 24.70 310 7.9 8.00 7.25 3.75 " "
4.80 0.066 10.15 5.30 15.45 240 6.05 4.85 4.35 2.25 Sliding, pulsating

bed
I'

4.20 0.058 8.75 5.10 13.85 230 5.85 3.65 3.15 1.6 Bed slowly moving

4.10 0.0565 8.55 5.75 .13.5 225 5.75 3.60 3.10 1.6 Critical

3.90 0.0535 7.70 5.95 12.45 220 5.65 2.95 2.65 1.5 Deposit

3.20 0.044 3.75 5.60 6.60 145 3.7 . 0.t9O 0.60 0.3 Flat bed

•00
"'-J

•

CRITICAL CONDITION: C = 1.75%, Vc = 5.75 fps Series G-01-3
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. .- ~, .
.. : ~ .~. "

... ," ,>~~
'. -.' .(

e

loop rcaJingste t section.. 8 - - -_._ .._._._.. _.~-'"

bh1. 95 (...ML) 6h
R ~hD ~lhR+~hD ~1 V 6h

R
-6hn AhR-Ahn c Ca1HENl'S

~-L' m
m

-~ correc ted
..

..

[In.J (in.] [in.] [In.] [gpm] [fps] [in.] [in.] [%] ; /.;. ~

~< ," .
10.20 0.140. 26.75 12.10 38.85 390 9.9 14.65 13.45 7.0 Suspended and

bed load ..

7.70 0.106 20.10 . 8.70 28.80 330 8.35 11.40 10.50 5.5 Suspension, mostly
bed load

5.90 0.081 11.85 5.50 17.35 260 6.6 6.35 5.75 3.0 Fast moving bed

4.70 0.0645 9.25 4.65 13.90 230 5.85 4.60 :4.10 2.2 Sliding bed

4.40 0.0605 8.55 4.50 13.15 225 5.75 4.05 3.55 1.9 Just above Vc
4.20 0.0578 7.95 4.20 12.15 220 5.65 3.75 3.25 1.8 Non-moving bed

(CRITICAL],
3.50 0.0481 6.65 3.85 . 10.50 190 4.8 2.80 2.45 1.2· Flat bed

2.20 0.0302 3.60 2.10 5.70 140 3.6 1.50 1.20 0.8 Flat bed--thinning
(long dunes)

1.50 0.0206 2.40 1.50 3.90 120 3.1 0.90 0.60 0.5 6' long dunes
at 2 intervals

4.40 0.0605 8.50 4.0 13.50 230 5.85 4.50 4.0 2.0 Scour (long impu1s
variations)

,
(Xl

·00,

Series G-01-4

{

c = 2.00%
CRITICAL C0NDITION

VC' = 5. 75 fp s



loop e-d.lngtit t,-,CS acc on_ ~. r Q .4. B

lIh1 . 95
(...ML) AhR lIhD 6ha+AhD Qm V ~hR-6hD 6h

R
-t:.h

D
C C0Mt.1ENTS. At-. mm corrected

[in.) [in.] [in.J [in.J [gpm] [fps] [in.] [in.] [%)
.. - --

12.10 0.167 28.55 7.95 36.50 365 9.25 20.60 19.50 10.0 Everything moving

10.70 . 0.148 24.85 5.80 30.65 335 8.45 19.05 18.15 9.5 " "
10.10 0.139 22.80 5.00 . 27.80 315 8.0 17.80 17.0 8.8 Heavy bed load

8. 170 0.120 19.40 3.75 23.15 290 7.95 15.65 15.0 7.8 Quickly moving bed
just above crit.

7.70 0.106 15.45 2.70 18.15 255 6.5 12.75 12.15 6.5 Deposit - and.
immediate scour

7.60 0.1045 14.65 2.50 17.15 245 6.2 12.15 12.15 6.5 Still squirming,
.. pulsating bed

7.90 0.109 13.60 2.35 15.95 235 5.95 11.25 '10.75 5.5 Above cri tical

JCRITICAL I
7.30 0.101 10.75 2.60 13.35· 230 5.95 8.15 7.65 4.0 Non-moving bed

6.70 0.092 9.35 1.50 10.85 200 5.1 7.85 7.45 3.8 Flat bed

4.70 0.065 5.40 1.35 6.75 150 3.9 4.05 3.75 2.0 Long flat dunes

2.70 0.037 2.90 1.10 4.00 110 2.8 1.80 1.80 1.0 Long flat dunes

I
00
\0
I

Series G-01-5



1 d'_tel3t section_ .cop rea longs

6h1 . 95. (..L) Aha Aho AhR+6h» Qm v Aha-Aho AhR-l\hD c COMMEN~'S
At m 11\

corrected
[in.) [in.] -(in. ] [in.] [gpm] (fps] r· .. [in.] [~~)1.1n. J

2nd Run

3.90 0.191 32.90 10.70 43.60 410 10.45 22.20 20.90 10.5 All suspended

11.40 . 0.158 26.30 6.90 33.20 355 9.0 19.40 18.30· 9.5 " "
~0.70 ,0.139 22.25 5.30 27.55 325 8.25 16.95 16.15 8.5 Bed load

8.20 0.113 18.30 4.20 22.50 295 7.5 14.10 13.40 7.0 Slowly moving bed

7.50 0.103 15.40 2.90 '18.30 260 6.6 12.50 11.90 6.0 Pulsating-sliding
bed

7.80 0.1075 12.40 2.10 14.50 235 5.95 10;30 9.80 5.0 Bed just slightly.-
moving

ICRITICAL I
6.70 0.092 10.30 2.60 12.90 220 5.6 7.90 ·7.20 4.0 Non-moving bed

just below
critical

4.50
-

Flat bed, great4.30 0.059 5.80 1.30 7.10 160 4.1 4.20 2.2
saltation

3.20 0.044 3.50 1.20 4.70 130. 3.3 2.30 2.00 1.0 Very little ~!!
dune buildings

2.80 0.039 2.05 0.35 2.40 95 2.4 1. 70 1.50 0.8 High dune
formation

I
\C
o
I

Series G-01-5

i •
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loop readingstest section-- - ,
l:Ih1 . 95

(~) tiliR tJ1n l:IhR+l:IhD Qm V tiliR-l:Ihn b.hR-l:Ihn C COMMENTS
l:I-L m m

corrected
[in.] [in.] [in.] [in.] [gpm] [fps] (in.] (in.) (%]

3rd Run , .
;.:

13.70 0.189 32.00 10.30 42.30 405 10.3 21.70 20.40 10.5 Everything moving

10.80 0.149 24.70 6.30 31.00 340 8.65 18.40 17.40' 9.0 .' II "
9.00 0.124 20.05 4.40 24.45 300 7.6 15.65 14.950 7.75 Moving, sliding

bed

7.70 0.106 13:90 2.75
:
.16.65 250 6.35 11.15 10.55 5.5 Pulsating bed

7.90 0.109 12.10 2.35 14.45 235 5.95 . 9.75 9.25 '5 Just slightly
moving bed

ICRITICAL I
6.90 0.095 10.80 2.15 12.95 220 5.6 8.65 8.25 4.25 Just' below

critical,
non-moving bed

3.20 0.044 3.45 1.40 4.85 125 3.2 2.05 1. 75 1.0 Flat bed

Series G-Ol-5

{

C = 5.00%
CRITICAL CONDITION

Vc = 5.95 fps



di1ti't t'-' es sec ~n oop rea ngs

6hH O' (~~ 6h
R

6h
D

6hR+6hD ,~ V 6hR-6h
D

6hR-6hD C COMMENTS2 ·m m.
corrected

[in. ] [in. ] . tin.] [in. ] [gpm] [fps] [in. ] [in. ] [%]

9.40 0~0663 14.50 13.40 27.90 365 9.2 1.10 0.95 0.50 Complete suspension

6.90 0.0486 10.80 10.10 20.90 310 7.9 0.90 0.70 0.35 " "
5.00 0.0353 7.65 7.10 14.75 265 6.7 0.55 0.30 0.15 Heavy bed load

3.20 0.0226 4.85 . 4.50
,

9.40 220 5.6 0.35 0.20 0.10 Scour fluctuations

3.00 0.0211 {4.55 4.15 8.70} 200 5.1 {0.50 0.30 0.15} Deposits for awhile
4.60 ' 4.10 8.70 0.40 0.20 0.10 then slides again

..

1.90 0.0134 2.95 2.85 5.80 165 4.15 0.10 -- -- Infrequent sand
slugs; circulated
system at high Q
and made 2nd run.

3.30 0.0233 5.05 4.25
, . 9.30 215 5.45 0.80 0.60 0.30 Heavy bed load

1.65 0.0116 2.65 2.20 4.85 150 3.9 0.45 0.25 O~ 12, ICRITICALI dune for-
mation due to
distribution

,

I
\0
N
I

Series G-Ol~6

CRITICAL CONDITION {c
Vc

= 0.12%

= 3.90 fps

'" ,
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".

n

di1tit t~ es
se~~~)n

oop rea ngs

~hH20 ~hR ~hD ~hR+~hD Qm 'I V
~hR-~hD ~hR-~hD C COMMENTSM'm ': m

corrected
[in. ] [in.] [in.] [in.] , [gpm] [fps] [in. ] [in. ] . [%]

9.90 0.0698 15.35 ' 13.35 28.70 360 9.15 2.00 1.85 0~95 Complete suspensio
;

7.10 0.0500 10.85 9.60 20.45 300 7.75 1.25 1.05 0.55 Bed load transport

3.40 0.0240 5.05 4.35 9.40 ' 200 5.1 0.70 0.50 0.25 Pulsating bed

2.85 '0.0201 4.05 3.60 7.65 1'80 4.8 0.45 0.35 0.15 Settling with im-
med iate' scour,
just above crit.

, ICRITICAL!

2~10 0.0148 3.25 ' 2.80 6.05 160 4.1 0.45 0.30, 0.15 Dune formation
---"

I
\D
W
I

Series G-01-7

.,' {

C = 0.15%
CRITICAL CONDITION,

Vc ,= 4.65fps

n9.90 0.0698, 15.05 12.45 27.50 355 ' 9 0 00 2.60 2.45 1.25 'Complete suspensio

5.40 0.0381 8.30 ' 7.00 15.30 265 6.70 '1.30 ' 1.10 0.55 Bed load transport

{4.35 3.75 8.10} ,
,

{ 0.60 0.40 0.20}2.80 0.0198 4.45 4.00 8.45 200 5.1'0 0.45 0.30 0.15 ICRITICAL(
•

. " {c = 0.20%
CRITICAL CONDITION "

, , Vc = 5.10 fps

Series G-01-8



di11.. test
se(i~)n

oop rea ngs

tihH 0 tihR tiho tihR+ tiho Qm V tihR-tiho tiha-ti~ C COMMENTS. 2 tit m m
corrected

[in. ] [1n. ] . [1n.] [1n. ] [gpm] [fps] [in o ] [in. ] [%]

8.35 0.0589 12.65 9.75 22.40 310 7.9 2.90 2.75 h40 Suspended and bed
load transport

5 .. 30 . 0.0374 8.25 6.45 14.70 255 6.45 1.80 1.60 0.80 Pu1sa~ing bed
motion and shear,

4.85 0.0342 6.75 5.30 12.05 225 5.7 1.45. 1.20 0.60 Just above the
crit. condition

4.10 0.0289 5.90 4.65' 10.55 210 5.35 1.25· 1.00 0.50 ICRITICA~1

3.20, 0.0226 5.00 4.25 9.25 190 : 4.8 0.75 0.60 0.30. Sporatic settling,

'.
long dunes

3.00 0.0212 3.75 2.9S 6.70 . 160 4.1 0.80 ',0.60 0.30 COijJ.pletely
stationary bed

I
\0
.p-
I

Series G-01-9

CRITICAL CONOITION {C

. YC

= 0.50%
. ~..

= 5.35 fps

' ..
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di1i,. test
se(1~)n

l( op rea ngs

6hH 0 6hR
6h 6~+6hD Qm V 6hR-6h

D 6~-6hD C COMMENTS. 2 M'm D m
corrected

[in. ] [in. ] . [in.] [in. ] [gpm) [fps] [in. ] [in. ] [%J

-
13.95 0.0985 21.45 14.90 36.35 400 9.55 6.55 6.30 3.20 Complete suspensio

8.15 0.0575 12.35 9.70 22.05 310 7.9 2.65 2.45 1.25 .. ..
7.10 0.0500 10.60 8.30 18.90 290 7.35 2.30 2.10 1.05 .. . ..

9.1C}
,

6.30 0.0443 7.10 16.20 265 . 6.7 2.00 1.80 0.90 Heavy bed load.
condition

5.60 0.0395 8•.00 6.35 14.35 245 6.2 1.65 1.40 0.70 Particles sliding.
and becoming
visible

4.80 0.0338 6.95 5.60 12.55 230 5.85 1.35 1.15 0.60 }
4.20 0.0296 6.45 5.10 11.50 . 225 5.7 1.35 ·1.10 0.55 ICRITICALI
4.50 0~a317 6.70 5.45 12.15 225 5.7 1.25 1.00. 0.50

3.50 0.0247 5.05 4.25 9.30 . 200 5.1 0.80 0.60 0.30 Bottom of deposit
is non-moving

1.35 0.0095 -1.95 1.50 3.45 llO 3.3 0.45 0.30 0.15· Long dune deposit

I
\0
IJ1
I

Series G-01-10

.
. {C '= 0.60%
CRITICAL CONDITION

Vc = 5.80 fps



1 di,.. test
se~1\)n

oop rea ngs

6hH 0 6hR 6h 6ha+6hD Qm V 6hR-6hD 6ha-6hD C COMMENTS6t m D m. 2
corrected

[in. ] [in. ] [in.] [in. ] [gpm] [fps] [in. ] [in. ] [%]
~-

16.85 0.1190 ~5 .15 16.10 41.25 440 11.15 9.05 8.80 4~40 Complete suspension

12.05 0.0849 17.25 11.10 28.35 360 9.1 6.15 5.95 3.00 Suspension and bed
load. transport

8.60 0.0606 12.05 8.20 20.25 .300 7.65 3.85 3.70 1.85 Heavy bed load ,

transport

6.15 0.0434 8.50 6.20 14.70 255 6.5 2.30 .2.10 l.05 Just above the
. crit • condition

JCRITICALI
5.45 0.0384 7.65 5.70 13.35 235 5.95 1.95 1.70 0.85 Just into the

-.
deposit regime

3.30 0.0233 5.05 ·4.05 9.10 195 4.95 1.00 0.80 0.40 Dune deposit,
- . fluctuating head

. loss readings
due to sporatic
duning

I
\0
0\
I

Series G-01-11

- {·C '= 1.09%
CRITICAL CONDITION ._

Vc - 6.40 fps

". ,
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0.05

0.2

-.en
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Plot of Series G-02 Data
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loop readingste t ection
"'"

8 S 1 ----..,. .
(.AlL.)

,
t.h1. 95 ~h h.hD AhR+~hD Qr.l V ~h ... l.\h ' ~hR"'hhD C Cl~ENTS. M, R In R D. m

corrected
[in.) [in. ] [i.n •J [in.J [gpm] [fps] [in.) r J [%]"in.

8.80 0.121 27.35 16.70 44.05 410 10.45 10.65 9.35. 4.75 Everything moving,:.;

7.50 0.103 22.65 13.80 36.45 375 9.55 8.85 7.75 4.0 " "
5.20 0.072 13.65 9.40 23.05 300 7.6 4.25 3.55 1. 75 " "
4.30 0.059 11.70 7.75 19.45 270 6.85 3;95 3.35 1.6 " "
3.50 0.048 8.90 6.25 15.15 235 5.95 2.65 2.15 1.25 Sliding bed

2.90 0.040 7.60 5.50 13.10 225 5.75 2.10 1. 60 0.75 Pulsating bed

2.50 0.034 6.45 4.85 11.30 210 5.35 1.60 1.20 0.6 " "
2.00 0.028 5.55 4.10 9.65 190 4.8 1.45 1.05 0.5 Slowly pulsating

3.50 0.048 9.60 6.35 15.95 250 6.35 3.25 2.65 1.3 Everything moving

2.80 0.0385 7.30 5.45 12.75 225 5.75 1.85 1.35 0.75 " "
2.40 0.033 6.40 4.75 11.15 205 5.2 1.65 1.20 0.6 Pulsating

2.15 0.0295 5.45 4.20 9.65 190 4.8 1.25 0.85 0.5 ICRITICAL I

I
\0
00
I

Series G-02-1

{

c = 0.50%
CRITICAL CONDITION

Vc = 4.8 fps



/

loop readingtest il"'ction- c - 8

bh1. 95
l:t.h

MlR t.hfJ 6hR+uho
\.

(A1i) Q
l1l

V AbR-bbn MlR-tlhD c COM·tENTSm
~ m

correcterJ
[in.) (in.]

,. ,
[in.J [gpm) [fps] (in.] [in.J ['oJLill. J

.. '.~._.- .. ,.... ...__. _..._.._'.-

9.20 0.127 25.65 12.60 '. 38.25 400 10.2 13.05' 11.85 6.0 Everything moving

0.110
! ..:

8.00 21.85 10.55 32.40 365 9.2 11.30 10.25 5.25 " "
7.10 0.098 19.25 9.40 28.65 340 8.65 9.85 8.95 4.5 " "
6.10 0.084 15.50 8.0 23.50 300 7.6 7.50 6.70 3.3 " "
5.70 0.078 13 .90 7.05 20.95 290 7.35 6.85 6.15 3.0 " "
4.10 0.0565 9.85 5.50 15.35 250 6.35 4.35 3.75 2.0 Sliding bed

4.20 0.058 8.80 5.0 13.80 235 5.95 3.80 3.30 1. 75 Just pulsating

3.70' 0.051 7.25 4.55 11. 75 220 5.65 2.70 2.20 1.25 Just above crit.

3.00 0.041 6.05 4.0 10.05 200 5.1 2.05 1.65 0.75 ICRITICAL 1
2.50 0.0345 3.60 2.0 5.60 145 3:7 1. 60 1.30 0.5 Deposit

2nd Run,

7.00 0.0965. 19.25 9.55 28.80 320 8.1 9.7 8.8' 4.5 Everything moving

5.70 0.078 14.65 7.35 22.0 285 7.25 7.3 6.5 3.3 " "
4.90 0.067 11.40 5.85 . 17 .25 255 6.5 5.55 4.95 2.5 " "
4.20 0.058 9.05 5.25 14.30 230 5.85 3.80 3.3 1. 75 " "
3.50 0.048 7.30 4.30 11.60 210 5.35 3.0 2.6 1.3 : Bed just moving

2.90 0.040 5.85 3.75 9.60 195 4.95 2.1 1.7 1 . JCRITICAL I
1.10 0.015 2.25 1.85 4.10 120 3.1 0.4 0.2 0.25 Flat bed

I
\0
\0
I

CRITICAL CONDITION: C = LOO%
VC = 5.1fps

Series G-02-2



loop reudings--e t sec tion,..l_ ~s -, .
\

~. (_~~1 .) 6hR M1D 6hR+~hD Qm V AhR-bhD 6hR-~bD C COMMENTS{,n1 . 95 .(, nl m
-corrected

r- ) (:In.] [in.] [in.) (gpm] [fps] [in.) [in.J (70)Lin.

12.90 0.178 33.00 i1.05 44.-05 410 10.4 21. 95 20.65 10,,5 Everything moving:.;

1t.50 0.158 28.90 8.45 37.35 380 9.65 20.45 19.25 10.0 " "
9.10 0.125 21.60 5.20 26.80 315 8.0 16.40 15.60 8.0 " "
7.00 0.096 16.65 3.60 20.25 275 7.0 13.05 12.35 6.3 " "
6.70 0.092 14.60 2.80 17.40 255 6.5 11.80 11.20 5.75 Sliding bed

6.10 0.084 12.05 2.70 '14.75 235 5.95 9.35 8.85 4.5 Qucik1y pulsating

6.50 - 0.089 10.65 2.45 13.10 225 5.75 8.20 7.70 4.0 Slowly moving,
just below crit.

5.80 0.080 9.15 2.30 11.45 215 5.45 6.85 6.35 3.3 ICRITICAL[

4.90 0.0675 7.40 2;0 9.40 190 4.8 5.40 5.0 2.5 Deposit

5.10 0.070 7.70 2.30 10.0 195 4.95 5.40 5.0 2.5 "
3.70 0.051 4.90 1.60 6.50 150 3.9 3.30 3.0 1.5 Flat bed

2.40 0.033 - 3.0 1.0 4.0 120 3.1 2.0 1. 70 0.75 " II

1. 70 0.023 1.45 1.0 2.45 90 2.3 0.45 0.30 0.25 Dunes

2nd Run

6.20 0.085 12.40 2.40 14.80 235 5.95 10.0 9.50 4.75 Quickly pulsating

6.30 0.087 9.65 2.40 12.05 215 5.45 7.25 6.85 3.5 Slowly pulsating

.. -

I....
o
o
I

Continued Series G-02-3



~.

Series G-02-3

loop readingstE'1st sectio:l.- .. "-eo:1 l . 95
(..M!...) 6h ~hD L\hR-M1D

'\
~hR+6hD Qm V L\h

R
-6h

D ·C C<WAMENl'S6t R m'm

[in.)
corLected

[in.] [in.) (1,n. J [gpnl ] (fps] [in.] (in.) ('7oJ
-

5.20 0.0715 8.60 2.05 10.~5 205 5.2 . 6.55 6.15 3.25 ICRITICAL I
5.60 0.077 7.95 1.50 9.45 190 4.8 6.45 6.05 3.0 Flat bed

4.80 0.066 6.70 1. 30 .' 8.0 170 4.35 5.40 ·5.10 2.6 II II

4.30 0.059 5.70 1. 70 7.40 160 4.1 4.0 3.60 1. 75 " II

3.80 0.052 4.45 1.60 6.05 145 3.7 2.85 2.55 1.3 II "
2;40 0.033 2.95 1.40 " 4.35 120 3.1 1.55 1.25 0.6 . " "
L50 0.021 1. 50 0.65 2.15 90 2.3 0.85 0.65 0.3 Dunes

..I.....o.....
I

CRITICAL CONDITION {c
. Vc = 5.35 fps

.':



test eection_ loop readinga

11.95 (..lill....) t.hR
l\hn AhR+~~ . Qm 1/ AhR-~hn AhR-Ahn C COMMENTS

~t m m
corrected

(in.] [in. J (in. J (in.] (811m] [fpa] [in.] (in.) [%)
---,.._.- _ ............_ ...-------_.._...._.y...._--_..

10.40 0.143 21.40 -1.05 20.35 270 6.85 22.45 21.85 11.25 Sometimes stopping

9.60 0.132 20.25 -1.65 18.60 260 6.6 21. 90 21.30 11.0 " "
8.20 0.113 17.70 -2.0 15.70 240 6.1 19.70 19.20 10.0 " "
7.60 0.105 14.90 -2.20 12.70 215 ·5.45 17.10 16.70 . 8.5 Quickly pulsating

8.40 0.116 11.30 -0.95 10.35 200 4.95 12.25 11.85 6.0 ICRITICALI

6.70 0.092 8.30 -1.50 ; 6.80 155 4.0 9.80 9.40 4.75 Flat bed

6.60 0.09i 7.85 -1.60 6.25 145 3.7 9.45 9.15 4.5 " "
I

0.0825 135 3.4 " ".... 6.00 . 7.10 -1. 70 5.40 8.80 8.50 4 ..250
N

0.052 3.40 105 2.7 3.10 " "I 3.80 3.35 -K>.05 3.30 1.6

2nd Run

16.00 0.221 36.45 5.35 41.80 365 9.2 31.10 30.0 ·15.5 Everything moving

13.80 0.190 31.10 2.50 33.60
,

335 8.55 28.60 27.70 14.25 " "
11.30 0.156 25.65 -0.10 25.55 290 7.35 25.75 25.05 13.0 " ".-
10.00 0.138 21.55 -1.05 20.45 260 6.6 22.60 21. 95 11.25 " "
8.00 0.110 18.35 -1.85 16.50 240 6.05 20.20 19.70 10.0 Slowly ~u1sating

7.70 0:106 15.10 -2.30 12.80 215 5.45 17.40 17.0 8.75 " "
8.80 0.121 12.0 -1. 70 10.30 195 4.95 13.70 13.30 6.75 ·1 CRITICAL I

fluctuating
with scour-
deposit

4.40 0.061 4.10 -0.60 3.50 100 2.55 4.70 4.40 2.25 Flat bed

Continued Series G-02-4



loop readirgst t "ti,..' es . l'lc.;C on __
I •

t,h1 . 95
(-PlL) l.ihR bhn llhn.+thn ~I V MlR-~hD llhR-6hn C CO~1ENTS

llt' m
m

corrected
[in.) (in.) [in.) [in.) (gpm) [fps] [in.] [in.) (%]

-....- ....- ..-
3rd run

9.30 0.128 19.95 -2.20 245 22.15
) ..-

17.75 6.15 21.65 1l.0 Deposit'scour

7.80 0.107 16.30 -2.90 13.40 205 5.2 19.20 18.80 9.5 " "
7.80 0.107 16.15 -2.75 13.40 205 5,2 18.90 18.50 9.5 " "

ICRITICAL(

8.20 0.1l3 11.40 -2.10 .: 9.30 180 4.6 13.50 13.10 7.0 Just deposited,
thick bed

7.10 0.098 8.70 -1. 90 6.80 150 3.9 10.60 10.30 5.25 Flat bed

5.40 0.074 6.50 -1.50 5.0 125 3.2 8.0 7.70 4.0 " "
4.00 0.055 3.60 -t{).20 3.80 110 2.8 3.40 3.20 1. 75 " "

I....
e
I

Series G-02-4

CRITICAL CONDITION
{

C : 7.,00%

Vc - 5.0 fps



I·

i
~.

0.2

Clear Fluid

D =4in.
d50=0.45 mm

5=0
E =0.00003 ft.

0.01 L.--L..---..L.--...L..-_...L..----I._..L.....__'__~__'__ ______IL.__
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Plot of. Series G-OOI Data
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loop readi gte t section,.. ~3 - n s

t\\.95
(~) t.h

R 6hn ~hR+L\~ Qm V AhR-tlhn tlhR-tl~ C CO}~RNTS
A~ m m

corrected
(in.) [in. ] [in.] [in..) [gpm] [fps] [in.] r· ] ['7oJl.1.n •

- .
7.15 0.098 24.45 14.35 38.80 415 10.55 10.10 8.70 4!~5 Everything moving

5.20 0.0715 17.00 10.10 27.10 345 8.75 . 6.90 6.00 3.10 " "
4.10 0.0563 13.15 9.25 22.40 315 8.00 3.90 3.10 1.60 .' " "
2.95 0.0405 8.75 5.90 14.65 255 6.45 2.85 2.40 1.20 " "
2.65 0.0364 7.90 . 5.45 13.35 240 6.10 2.45 2.00 1.02 Bed particles

'.
visible

2.15 0.0296 6.75 4.70 11.45 220 5.60 2.05 1.65 0.85 Pulsating, almost
deposited, just
above critical

1.85 0.0254 5.60 3.95 9.55 200 5.10 1.65 1.25 0.65 ICRITICALI

1. 75 0.0240 5.10 3.70 8.80 190 4.80 1.40 1.00 0.50 Flat bed

1.15 0.0172 3.50 2.70 6.20 160 4.10 0.80 0.45 0.25 " "
0.95 0.0130 2.15 1.60 3.75 120 . 3.10 0.55 0.30 0.15 " "

I·.....
o
l.n
I

Series G-001-1

{

c _= 0.65%
CRITICAL CONDITION

Vc -.5.10 fps

..'



./

loop readingstest section,." - ;

"ih1 . 95
(...£h...) AhR Ahn AhR+Ahn ~1 V AhR-Ahn AhR-Ahn c CONMENTS

A-L m m
corrected

[~ , (in.] [in.) [in.) [gpm] [fps) [in.] (in.) [%j... r•. .i

8.65 0.119 30.45 15.25 45.70 435 10.60 15.20 13.70 7.0 Everything moving
;.:

7.35 0.101 25.30 12.35 37.65 395 9.50 12.95 11.65 6.0 " "
(400) .'

6.45 0.089 21.20 10.30 31.50 360 9.15 10.90 9.90 5.0 Bed load

5.95 0.082 19.55 9.25 28.80 345 8.75 10.30 9.30 4.75 " "
4.95 0.068 16.05 7.55 73.60 315 8.05 8.50 7.70 3.9 Sliding bed

4.05 0.056 12.05 6.20 18.25 275 7.00 5.85 5.35 2.7 " "
3.45 : 0.0475 9.60 5.40 15.00 245 6.30 4.20 3.80 2.0 Pulsating bed

(250)

2.75 0.038 7.90 4.70 12.60 225 5.70 3.20 2.80 1.5 Just above critical

{7.85 4.30 12.15} { 3.55 3.15 1.6} rCRITICAL)2.85 0.039 220 5.607.75 4.40 12.15 3.35 3.05 1.5

2.35 0.032 6.20 3.80 10.00 200 5.10 2.40 2.10 1.1 Flat bed

1. 75 0.024 4.55 . 3.00 7.55 170 4.40 1.55 1.25 0.7 " "

I
t-'
o
0'\
I

Series G-001-2

CRITICAL CONDITION {c
Vc

= 1~50%

= 5.6 fps



loop readingstest section..,... -
bh1 . 95

(~) t\hR t\hD t\hR+t\~ Qm V tiliR-tiliD tiliR-t.hD C COMMENTS
M" m m

corrected
[in.] [in.] [in.] [in.] [gpm] [fps] [in.] [in.] [%]

-_ ..~ --
9.35 0.129 31.90 13.40 45.30 430 10.95 18.50 17.00 8.il5 . Everything moving

8.65 0.119 28.75 11.50 40.25 410 10.45 17.25 15.95 8.2 " "
7.45 0.103 23.85 8.80 32.65 365 9.30 15.05 13.95 7.2 Heavy bed load

6.45 0.089 20.00 7.40 27.40 330 8.40 12:60 11.80 6.0 " " "
5.55 0.0765 16.40 6.15 , 22.65 305 7.75 10.25 9.55 4.9 " " "
5.05 0.0695 14.35 5.35 19.70 285 7.25 9.00 '8.40 4.3 Sliding bed

4.85 0.067 12.25 4.80 17.05 265 6.75 7;45 7.05 3.7 Quickly pulsating

4.55 0.0625 11.45 4.75 16.20 255 6.50 6.70 6.30 3.3 " "
(260)

3.85 0.053 9.75 4.25 14.00 245 6.20 5.50 . 5.20 2.7 .I CRITICAL I
3.65 0.050 8.90 3.50 12.40 , 225 5.70 5.40 5.10 2.6 Flat bed

3.05 0.042 6.80 3.05 9.85, 200 5.10 3.75 3.50 1.8 Thickening flat
bed

2.55 0.035 5.45 2.70 8.15 180 4.55 2.75 2.55 1.3 Sa1ta ting bed
load

2.15 0.0295 4.90 2.70 7.60 170 4.40 2.20 2.00 LO Sa1tating bed
load

1.45 0.020 2.95 2.00 4.95 135 3.60 0.95 0.80 0.4 Thick bed, little
moving

_.. '. ---

I
I-'
o
'-I
I

CRITICAL CONDIT ION: C = 3.00%
Vc = 6.25 fps

Series G-001-3



10 P e dite t se<:ti on.,.. s 0 r a ngs

t.h l . 95
(..ML_> ~hR ~hD ~hR+t.hD Qm V l\hR;'~hD liliR-~hD r. COMMENTS

~.~ m
m corrected

[in. J . [in.) [in.} [in.] [gpm] [fps) (in.] (in.] [%]

-
9.85 . 0.136 34.25 8.40 42.65 400 10.20 26.15 24.85 1Z ..:7 5 Everything moving

8.55' 0.i175 28.05 5.45 33.50 360 9.15 22.60 21.60 11.1 " "
7.15 0.0985 21. 95 3.05 25.0 310 7.90 18.90 18.20 9.3 Mostly bed load

6.15 0.0845 16.00 1. 70 17.7 265 6.75 14.30 13.80 7.0 Slowly moving bed,
just above
critical

ICRITICALl

5.75 .0.079 13.80 1. 70 15.5 245 6.20 12.10 11.70 6.0 Just below
critical,
thickening bed

6.45 0.089 16.05 1.80 17.85 270 6.85 14.25 13.75 7.0 Just below
critical,
thickening bed

5.75 0.079 13.50 1. 05 14.55 235 5.95 12.45 12.05 6.2 Deep flat bed

5.55 0.0765 12.20 0.90 13.10 225 5.70 11.30 10.90 5.6 " " "
5.05 0.0695 10.05 '0.70 10.75 200 5.10 10.35 10.05 5.2 " " "
4.25 0.0585 7.60 0.85 8.45 175 4.55 6.75 6.45

.
3.3 Still suspension

load

3.45 0.0475 5.65 1.00 6.65 155 4.05 4.65 4.35 2.25 Saltation load

2.85 0.039 4.30 0.80 5.10 130 3.45 3.50 3.30 1.7 Flat bed

1.65 0.023 2.35 0.85 3.20 110 3.00 1.50 1.30 0.7 " "

•~o
00

•

CRITICAL CONDITION: C = 7.00%
VC = 6.5 fps

Series G-001-4



n

di1tit t,.. es sec ~n' oop rea ngs

AhH O' (~ l1hR AhO . AhR+AbO
Q . Vm l1hR-Ahn AhR-l1hn 'C COMMENTS2 m m

.tin.]
corrected

[in.] [in. ] [in. ] [gpm] . [fps] [in. ] [in. ] [%]
...-

9.65 0~0681 14.90 13 .80 28.70 375 9.55 L10 1.00 0.50 Complete suspens:Lo'

7.10 0.0501 10.90 10.30 21.20 310 7.9 0.60 0.45 0.22 " "

5.00 ·0.0353 7.80 7~30 15.10 265 6.7 0.50 0.30 . 0.15 Susperision and bed
load transport'

4.20 ·0.0296 . 6.55 6~20 12.75 245 6.2 0.35 0.15 0.07 Heavy bed load

3.15 0.0222 5.00 4.70' 9.70 . 215 5.45 0.30 . 0.10 0.05 Sliding bed load

f"45 4.10 8.55} f"35 0.15 O.Ol} Just above crit.
2.85 0.0201 4.55 4.05 8.60 195 4.95 0.55 0.35 0.15 with s'poratic

4.35 4.10 . 8.45 0.25 0.10 0.05 bed scour at
.. partially closed

valve

"2.20 2.00 4.20} .r- 2O 0.10 0.05} Persisten~ scour-
1.35 0.0095 2.15 1.85 4.00 135 3.6 Q.30 0.15 0.07 ing, sometimes

,2.15 1.95 4.10 0.20 0.10 0.05 critical

ICRITICAL I
0.65 0.004~ 1.10 0.90 2.00 100 . 2.55 0.20 0.10 0.03 Stationary deposit

I....
a
~
I

Series G-001-5

= 0.05%

". \

,{C
CRITICAL CONDITION

. V .~ 2.75 fps
C



di1i~ test ser Un oop .rea nga
6 . 6h 6h

R
6ho 6h

R
+6ho Qm VhH 0 . 6t 6h

R
-6ho 6hR-6hO' C COMMENTS2 m m

.corrected
[in. ] [in. ] [in.J [in. J [gpm] [fps] [in.J [in. J . [%J

8.95 . 0.0632 14.00 12.50 26.50 355 9.0 1.50 1.30 0.65 Complete suspension

7.05 0.0497 11.20 10.00 21.20 310 7.9 1.20 '1.05 0.55 " "
5.15 :0.• 0363 8.20 7.40 15.60 . 265 6.7 0.80 0.60 0.30 Suspension and bed

load transport

4.10 0.0289 6.50 5.90 . 12.40 230 5.85 0.60 0.40 0.20 Heavy.bed load

3.20 0.0226 5.00 4.65 9.65 215 5.45 0.35 0.20 0.10 Slid ing bed ..
3.10 :: 0.0219 {4.90 4.30 9.20} 200 5.1 { 0.60 0.40 0.2~J Sporadic scouring

4.80 4.35 9.15 .' 0.45 0.25 ' 0.12 and deposit..

1.80 0.0127 2.90 2.55 5.45 160 4.1 0•.35 0.20 O.Itl ICRITICAL]

1. 75 0.0124 2.80 2.45 5.25 150 3.9 0.35 : 0.15 0.08 Just below crit.

I
t-'
t-'
o
I

.,'
Series G-001-6

..' \

, . j ,.' {c = 0,.10%
CR1TICAL CONOITION "

, V' = 4. 10 fps,
. • C

, '



" .. ' ,

1t1t t,. es
set6~)n

oop rea ngs
6hH 0 6hR 6h

D 6hR+6hD Qm V 6hR-6h
D 6~-6hD C COMMENTS2 6t m m

corrected
[in. ] [in. ] . [in.] [in. ] [gpm] [fps] [in. ] [in. ] [%]

9.30 0.0656 14.65 12.60 27.25 365 9.2 2.05 1.95 1.00 Complete suspen~ion

6.95 0.0490 10.80 9.50 20.30 310 7.9 1.30 1.20 0.60 " "
5.25 0.0370 8.25 7.30 15.55 265 6.7 0.95 0.80 0.40 Heavy 'bed load with

saltation into'
less densely
populated areas

.. of the cross-
section

4.10 0.0289 6.30 5.70 12.00 230 5~85 0.60 0.40 0.20 Thickening bed of
sliding particles

3.20 0.0226 e· 95
'

4.15 9.10} 200 5.1 { 0.80 0.55 0.25} Pulsating condi-
4.90 4.30 .9.20 0.60 0.40 0.20 tions, just above

critical

ICRITICALI
1.80 0.0127 2.70 2.45 5.15 155 3.95 0.35 0.20 0.10 Sufficiently below

crit. settling

..............
I

Series G-001-7

{

c = 0.20%
CRITICAL.~ONDITION _

. VC.- 4.80 fps



n

di1i,. test
set~~)n

oop rea ngs
6hH 0 6hR ' 6hD

6hR+6hD Qm V 6hR-Lih
D

6hR-LihD C COMMENTS, 2 Lit m m
corrected

[in. ] [ill. ] [in. ] , [in. J [gpm] [fps] [in. ] [in. ] [%]

9.40 0~0663 14.65 10.85 25.50 355 9.0 3.80 3.65 i.'85 Complete suspensio

7.10 0.0500 11.00 8.50 19.50 310 7.9 2.50 2.35 1.20 Suspension with
not iceab 1e bed
load .,

5.35 0.0378 8.25 6.75, 15.00 265 6.7, 1.50 . 1.30 0.65 Heavy bed load

4.35 0.0307 6.60 5.60 12.20 240 6.1 l.00 0.80 0.40 Sliding bed, in-.
creasing deposit
depth

3.60 0.0254 5.50 4.75 , , 10.25 220 ' 5.6 ,0,75 0.60 0.30 Just above crit.
~ondition

3.20 0.0226 4.90 4.20 9.10, , 215 '5.45 0.70 0.50 0.25 ICRITICALl
3.10 0.0219 4.60 3.9,0 8,.50 ' 200 5.1 0.70 0.45 0.20 Deposit building

2.20 0.0155 3.40 ~.OO 6.40 180 ' 4.6 0".40 0.25 0.15 " "

I..........
,N

I

Series G-001-8

. {c ,= 0.30%
CRITICAL CONDITION _

, Vc - 5.45 fps

t., ,



Ser~es G-001-9

di1tit.. tes
se(6~)n

oop rea ngs
6hH 0 6hR

6hn 6hR+6hn Qm V
M~m m 6h

R
-6hn 6hR-6hn C COMMENTS. 2

corrected
[in. ] [in. ] . [in.] [in. ] [gpm] [fps] [in. ] [in. ] [%]

11.20 0.0790 17.85 10.90 28.75 355 9.0 6.95 6.80 3~40 Total transport

9.00 0.0635 14.25· 8.50 22.75 310 7.9 5.75 5.60 2.80 II II

6.25 0.0441 9.55 6.30 15.85 265 6.7 3.25 3.00 1.50 Heavy bed load .
5.30 0.0374 7.95 5.70 13.65 235 5.95 2.25 2.05 1.05 Pulsating bed

4.85 0.0347 7.05 5.05 12.10 225 5.7 2.00 1.85 0.95 )CRITICALI

3.55 0.0250 5.20 3.95 9.15 205 5~2 1.25
.

1.10 0.55 Stationary bed
I
t-'
t-'
UJ
.1

. .: . { C = 1. 00%
. CRITICAL. CONDITION _

, .Vc,- 5.70 fps

)' "

'., ,



d1t1t t,. es
se(6~)n

oop rea 1ngs

6hH 0 6t m
6h

R
6ho 6h

R
+6ho Qm V 6h

R
-6ho 6hR-6h

O C COMMENTS. 2 m

[in. ] . [in.]
corrected

[ in. ] [in. ] [gpm] [fps] [in. ] [in. ] [%]

12.10 0~0853 19.20 10.70 29.90 375 9.55 8.50 8.40 4.20 Full suspension

8.80 0.0621 13.70 7.65 21.35 310 7.9 6.05 5.90 2.95 " II .
6.50 0.0459 9.95 5.95 15'.90 265 6.7 4.00 3.80 1.90 Heavy 'bed load

,
6.25 0.0441 9.00 5.60 14.60 260 6.6 3.60 3.40 1.70 Sliding deposit

5.75. 0.0405 8.45 5.45 13.90 250 6.35' 3.00 2.80 1.40 'Approaching crit •.

5.35 0.0377 7.40 4.95 12.35 230 5.85 2.45 . 2.30 1.15 ICRITICALl'

3.55 . 0.0250 5.20 3.70 8.90 210 '5.35 1.50 1.30 0.65 Stationary deposit

Series G-00I-10

. .' '. {c = 1.20%
CRITICAL. CONDITION' ._

. VC'- 5.85 fps

...



,.'.,- ,-- :~..-'
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o=4in.
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S =-0.060
€ =0.00003 ft.
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0.07
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0.02

en
eno
-J
o
<t
LaJ
:x:
LaJ
0::
::>
I-
.~

~

E
i •

.cl~<]<]
, I

plot of Series G-002 Data
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1 diest section_ oop rea ngs ,
6h1 . 95

( ~h ) llhR
6hD 6hR+b.hD ~ V 6hR-6hD 6hl'-AhD C COMMENTS

M~m m .\.

corrC!cted
[i.n,) [in. J [in.] [in.] [gpll1 ] [fps] [in.] [in. J (x.)

- _..- - ...

2.75 0.0378 8.75 7.50 16.25 265 6.7 . 1.25 0.75 0.40 Everything moving
".J.'-

1. 95 0.0268 6.30 5.35 11. 65 230 5.85 0.95 0.55 0.30 Ii "
" if

1. 65 0.0227 5.05 4.45 9.50 200 5.1 0.60 0.20 0.10 " ",
1.25 0.0172 3.90 3.45 7.35 170 4.35 0.45 0.10 0.05 Rapid Pulses

0.95 0.0130 2.80 2.40 5.20 140 3.6 0.40 0.10 0.05 Deposit when
enoughisand

ICRITICAL [:

1. 07 . 0.0147 3.20 2;70 5.90 155 3.95 0.50 0.15 0.08 Deposit

1.00 0.0137 3.20 2.75 5.95 160 4.1 0.45 0.10 0.05 Deposit mostly in
larger pipe

1:'

t..........
a­
t

Series G-002-1

CRITICAL CONDITION
= 0.05%

= 3.7 fps



- di1tit t.,.-. 'e s sec on oop 'rea ngs

llb1 . 95
(..Ah..) bhR bhn AhR+.\hD

Q V bhR-Ahn ~hR-6hn C COMMENTS
, ·At m m

m corrected1-:----

[in.. J [in.] [in.] [i.n.] [gpm] [fps] [in.J [in. J [~O

-- ...~.-... _._- -

3.00 0.0405 9.10 7.55 16.65 270 6.85 .1.55 1.05 0.;~5 Everything moving
i·;

2.10 0.0288 6.25 5.30 11.55 220 5.65 0.95 0.50 0.25 " "
1. 70 0.0233 5.00 4.45 9.45 200 5.1 0.55 0.10 0.05 " "
1.40 0.0192 4.25 3.60 7.85 180 4.8 0.65 0.30 0.15 Very slowly moving

1.10 0.0151 3.00 2.50 5.50 150 3.9 0.50 0.20 0.10 Deposit ICRITICALI

0.90 0.0124 2.35 2.10 ~' 4.45 135 3.45 0.25 - - Flat bed, no moving
concentration

0.20 : 0.00274 0.65 0.65 1.30 65 1.65 0.0 - - Small dunes

2nd Run

3.15 .0439 10.20 8.05 18.25 280 7.35 3.15 2.60 1.33 Everything moving

2.65 .0369 8.25 6.80 15.05 250 6.35 1.45 1.00 0.52 " "
2.25 .0313 7.10 5.90 13.00 230 5.85 1.20 0.80 0.42 " "
1.95 -..0271 6.05 5.10 11.15 215 5.45 0.95 0.55 0.30 " "
1. 70 .0237 5.30 '4.50 9.80 200 5.1 0.80 0.40 0.20 Pulses

1.55 .0215 5.00 4.20 9.20 195 4.59 0.80 0.40 0.20 Particles visible

1.48 .0206 4.50 3.75 8.25 185 4.75 0.75 0.40 0.20 " "
0.95 .0132 3.10 2.60 5.70 150 3.9 0.50 .0.20 0.10 Almost, deposit

!CRITICALI

1.05 . .0146 3.10 2.45 5.55 150 3.9 0.65 0.30 0.15 Deposit

I
I-'
t-'
........
I

Series G-002-2

Continued



1 Ii, est s~ction-r - ,oop reae ngs
"'\

6h1 . 95
Ah Aha nhn AhR+~hD 0. Vm Mla-Aho Aha-Ahu C CONHENTS( At. ~ m, m

corrected
[in.) [in.) (in.] (in.J [gpm] (fpsj [in.] [in.) ['7oJ

.-

1. 05 .0146 3.15 2.50 5.65 150 3.9' 0.65 0.30 0{.}.5 ~
Deposit, bed le~s

1. 05 .0146 3.15 2.60 5.75 ' 150 3.9 0.55 0.20 0.10 thick

0.70 .0097 2.00 1.65 3.65 115 2,.95 0.35 0.05 0.02 Deposits awhile
then washes away

0.35 .00049 1.20 0.95 2.15 90 2.3 0.25 0.05 0.02 Single dunes

"

Series G-002~2

I........
00
I

CRITICAL CONDITION
= 0.10%

= 3.9 fps



loop readingste t sec'tion.~ 6

(..Ah...)
,

bhl. 95 AhR ~hD l\hR+A~ ~n Vm llhR-lu'ln l\hRwAhD C COMMEN'fS
M~ m

cOl'rected
[in..J [in.J [in.) (in.] [gpmJ [fpa] (in.] [in.] [%]

f--

4.35 0.0597 14.00 8.35 22.35 315 8.0 ' 5.65 4.95 2.55 Everything moving
i:

3.45 0.0474 11.05 6.60 17.65 275 7.0 4.45 3.95 2.00 " "
2.55 0.0350 7.55 5.20 12.75 225 5.75 2.35 1. 95 1.00 Slowing down,

bed particles
visible

1. 95 0.0268 5.50 4.05 9.55 200 5.1 1.45 1.10 0.55 Pulsating bed

2.15 0.0295 3.85
\

1955.50 9.35 4.95 1.65 1.30 0.65 Pulsating slowly

2.05 0.028~} 5.30 3.70 9.00 190 4.8 1.60 1.30 0.65
Deposits,

1. 95 0.0268 then slides

1. 55 0.0212 4.20 3.35 7.55 . 175 4.75 0.85 0.50 0.25 Deposit

JCRITICAL [

1.35 0.0185 3.45 2.65 6.10} {O.SO 0.50 0.25 Deposit,
1.55 0.0212} 155 3.95 bed thickens
1.45 0.0199 3.45 2.60 6.05 0.85 0.55 0.30

1.15 o.0158J 2.75 2.15 4.90 140 3.6 0.60 0.45 0.25
Deposit,

1.05 0.0143 first thinner,
then thicker

0.95 0.0130 1. 90 1.25 3.15 110 2.8 0.65 0".45 0.25 First flat bed,
then dunes

0.40 ' 0.0055} 1.20 0.95 2.15 90 2.3 0.25 0.05 0.03
I' long dunes

0.60 0.0082

,........
\0,

CRITICAL CONDITION: C = 0.25%
Vc = 4.5 fps

Series G-002-3



e ding1t:lt t.,..i es sec .on_ oop r a s

"'
~hl.95 (~) ~hR AhD hhR+l\hD Qm V A.~R-~hD liliR-l1h

D
C COMMENTSt.t m

m corrected
(in.) [i.n.1 [. 1 [in. ] [gpm] [ips] [in.] [. , [%Jloll ... 1.rI.• oJ

3.00 0.0411 9.00 6.10 15.10 255 6.5· 2.90 2.45 1.30 Everything moving
; .;

2.60 0.0357 7.75 5.50 ·13.25 240 6.1 2.25 1.85 0.95 " "
2.40 0.0327 6.95 5.05 . 12.00 225 5.75 1. 90 1.50 0.80 Rapid pulses

2.10 0.0288 5.90 4.40 10.30 210 5.35 1.50 1.10 0.57 Slow pulses,
I.

bed particles
visible

..
1.90 0.0261 5.50 4.20 9.70 205 5.2 1.30 0.90 0.47 Very slow pulses,

almost deposit

2.10 0.0288 5.30 3.90 9.20 198 5.1 . 1.40 1.05 0.55
2.10 0.0288 5.50 3.75 9.25 200 5.1 1. 75 1.30 0.67 '> Deposit ICRITICALl
1. 90 0.0261 5.30 4.05 9.35 200 5.1 1.25 0.85 0.45

1.87 0.0357 5.00 3.70 8.70 190 4.8 1.30 1.00 0.50 Deposit

1. 90 0.0261 4.90 3.65 8.55 185 4.75 1.25 0.90 0.47 Deposit, pulsating

1. 65 0.0226 4.45 3.40 7.85 175 4.7'5 1.05 0.75 0.40 Deposit

1.05 0.0144 2.60 2.10 4~ 70 140 3.6 0.50 0.20 0.10 "
0.55 0.0075 1.40 1.30 2.70 95 2.45 0.10 - - II. long dunes

forming

I
I-'
N
o
I

Series G-002-4

CRITICAL CONDITION {c
.. .. Vc

= 0.55%

= 5.1 fps

. I



loop readingstest sec tion-' -- '"6h COH~ENTSL\h1. 95 EAt.> Aha Ahf) AhR+l\ho Qm Vm tlh -Ah AhR-Ahu CR 0m corrected
[in.) [il\. ] (in.J [in.J [gpm] [fps] [in.] ... J [%]L:tn •

... . ~-_.- ."-'" ~. -..._....-- .... . -

5.15 0.0707 15.50 4.90 20.40 290 7.35 10.60 10.00 5.15 Everything moving
f·.:

4.80 0.0658 13.20 4.45 17 .65 275 7.0 8.75 8.20 4.20 II II.

4.70 0.0644 11.15 4.05 15.20 250 6.35 7.10 . 6.60 3.40 Particles visible

4.30 0.0590 10.45 3.85 14.30 240 6.1 6.60 6.25 3.20 Slow bed motion

3.70 0.0508 8.65 3.60 12.25 225 5.75 5.05 4.65 2.40 Slow pulsating,
almost deposit

!CRITICAL I
3.55 0.0487 8.00 3.35 11.35 215 5.45 . 4.65 4.30 2.20 Deposit

3.15 0.0431 6.70 3.10 ~~9 .80 200 5.1 3.60 3.20 1.65 Flat bed

2.65 0.0364 5.70 2.90 8.60 190 4.8 2.80 2.45 11.25. II II

2.75 0.0378J 5.25 2.50 7.75 165 4.2 2.75 2.40 1.22 II II

2.55 0.0350.

2.20 0.0302 4.10 2.35 6.45 160 4.1 1. 75 1.50 0.75 II II

1. 65 0.0226 2.70 1.90 4.60 130 3.3 0.80 0.50 0.25 II II

0.65 0.00895 0.70 0.60 1.30 65 1. 65 0.10 - - l' long dunes,
no moving
concentrations

Series G-002-5

{

c =_ 2.25%
CRITICAL CONDITION

Vc - 5.5 fps



1 p e <1itit t"r- "es' sec. on_ 00 r a ngs

~hl.95
(..a!!...) AhR AbD . hhR+AhD ~l V UhR-AhD AhR-bhn C . COMMENTS

A'~ m
m corrected..

[in.) [11.1.] [in.] [in. ) [gpm] [fps] [in.] [in.] [%)

_. - - - f
4.70 0.0645 13.60 4.45 18.05 270 6.85 9.15 8.60 4 ..40 Everything moving

.: .;

4.50 .0626 11.00 3.90 14.90 250 6.35 7.10 6.65 3.45 Bed particles often
visible, strong
pulses

4.00 .0556 9.65 3.70 13.35 230 5.85 5.95 5.50 2.85 Particles visible
slower pulses

3.80 .O530}
]CRITICAL!3.70 .0515 8.80 3.50 12.30 225 5.7 5.30 4.90 2.50 Deposit

3.90 .0542

. 3.60 .0500 8.40 3.40 11.80 220 5.25 5.00 4.60 2.35 Flat bed

3.00 .0417}
c ~

6.65 3.00 9.65 195 4.95 3.65 3.30 1.68 " "3.10 .0432

2.57 .0358 5.35 2.70 8.05 .,175 4.4 2.65 2.30 1.18 " "
3.00 .0417 5.50 2.30 7.80 '170 4.35 3.20 2.85 1.45 I

2.60 .0362 5~35 2.50 7.85 170 4.35 2.85 2.50 1.25 > II II

2.80 .0390 5.45 .2.40 7.95 175 4.4 3.05 . 2.80 1.42

2.30 .0320 5.00 2.05 7.05 165 4.2 2.95 2.65 1.35 II "2.40 .0334 4.90 2.00 6.90 160 4.1 2.90 2.60 1.32

1.60 .0222 2.90 1. 70 4.60 130 3.30 1.20 1.00 0.50 " II ..

I.....
N
N
I

CRITICAL CONDITION: C = 2.50%
Vc = 5.1 fps

Series G-002-6
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....... " 3! 14.~0~'0

" /3,1 03.5
. ...... 3.0 29
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Plot of Series BS-01 Data
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/

loop readingstit t_ es, sec on ', --v
( ,'")(~)

/ \

~1.95 ' AhR Aho ' A~+A~ ~', Vm ,-_~~AhD (AhR-AhD I C COMMENTS
A~ m

corrected I

[in.] [in.] [in.] [in.] [gpm] [fps] , [in.] [in.] [%] I

0.0480
"

3.54 64.2' 55.0 119.2 750 8.50 9.2 3.1 l.q; Everything moving
3.05 0.0420 53.8 46.8 100.6 680 7.75 7.b 2.2 1,1 " "
2.82 0.0388 46.6 41.0 87.6 640 7.30 5.6 1,6 0.8 Heavy bed load
2.79 0.0385 40,6 35.5 '76.1 595 6,75 5.1 1,6 0.8 Sliding bed

jCRITICAL I
2.54 0.0349 35.3 30.9 c 66.2 550 , 6.25 4.4 1.'6 0,8 Just below

cri tical
2.36 : 0.0324 32.8 28.5 " 61,3 530 6.05 ' 4.3 1,6 0.8 Deposit
2.05 0.0282 26.2 ' 23,2 49.4 I 470 , 5.35 3.0 1,2 0.6 Flat bed

0.0183 36.2
,1,33 19.2 17,0 410 4.65 2.2 0.8 0.4 " "-

I
t-'
N
.p-
I

Series BS-Ol-1

.{C' = 0.80%
CRITICAL CONDITION V __

6.40 fpsC ,



..

./

di1t't t,. es sec loon oop rea ngs

&"11 . 95
(~) , Ah

R
Ah . AhR+A~ ~. V AhR-A~ . AhR-AhD C COMMENTS

A~ m D m
corrected·

[in.] [in. J [in.] [in.] [gpm] [fps] [in.] [in.} [%]

.
3.90 0.0535 68.2· 57.0 125.2 750 8.50 11.2 5.1 2.p, Everything moving

3.74 0.0515 62.4 52.6 115.0 725 8.25 9.8 4.2 2.2 " "
3.54 0.0487 55.2 46.7 101.9 680 7.75 8.5 3.7 1.9 Heavy bed load

3.54 0.0487 48.2 41.0 89.2 630 7.20 7;2 3.3 1.7 Sliding bed

3.46 0.0477 44.0 37.4 81.4 615 7.00 6.6 3.0 1.5 Just above
r critical

3.34 0.0459 42.4 37.0 79.4 600 6.80 5.4 2.0 1.0 Just above
critical

3.26 0.0448 41.4 35.8 77 .2 590 6.70 5.6 2.2 1.1 [CRITICAL1
\

2.87 0.0394 36.6 31.0 67.6 555 6.30 5.6 2.6 1.3 Thin bed

2.28 0.0314 28.4 24.6 53.0 480 5.45 3.8 1.8 ·0.9 Flat bed

1.67 0.0229 ·21.6 19.0 40.6 425 4.85 2.6 1.2 0.6 " "
" "1.59 0.0219 17.0 15.2 32.2 37~ 4.25 2.2 1.1 0.5

I
I-'

.~
I

Series BS-01-2

. {C ::: 1.10%
CRITICAL CONDITION .

. VC ::: 6. 70 fp s



/

10 p e dirttiot t,. es sec n_ o r a gs

(-Ah...;
,

tlh1. 95 ' t1hR tlhD t1hR+t1~ ~. V liliR-t1hD liliR-t1~ C COMMENTS
tl,f, m m

corrected
[in.) [in. ] [in.. J [in.] [gpm] [fpsJ [in.] [in.J (70)

.__ . ..
.

4.75 0.0653 65.8 . 52.2 118.0 725 8.25 13.6 8.1 4.2 Everything moving
4.38 0.0604 56.8 45.3 102.1 670 7.60 11.5 7.0 3.6 Pulsating bed,

just above
critical

4.87 0.0670 52.4 42.6 95.0 650 7.35 9.8 5.6 2.9 Just above
. critical

4.76 0.0656 50.6 40.8 : 91.4 635 7.25 9.8 5.6 2.9 ICRITICAL]
4.28 0.0589 44.0 36.4 . 80.4 600 6.80 7.6 4.2 2.2 Thin bed
3.92 . 0.0540 38.6 31.4 70.0 550 6.25 7.2 4.3 2.25 Flat bed
3.36 0.0462 29.4 24.9 54.3 .485 5.50 4.5 2.5 '. 1.25 " "

" "2.66 ·0.0368 24.6 21.2 45.8 445 5.05 3.4 1,8 0.9

.

I
t-'
N
0\
I

Series BS-01-3

{

c = 3.00%
CRITICAL CONDITION

Vc = 7.25 fps



din1i(test sect on oop rea gs
Lih

LihR AhD AhR+AhD ~ V LihR-AhD LihR-LihD C COMMENTSh1 95 (~) m
• m corrected

in. ] [in. ] [in. ] [in. ] [gpm] [fps] [in. ] [in. ] [%]-,
5.54 0.0762 59.0 45.2 104.2 700 7.95 14.8 9.8 5.q., Pulsating

5.56 0.0765 57.0 44.1 101.1 690 7.85 12.9 8.2 4.2 Just about
critical

5.56 0.0765 54.1 41.4 95.5 670 7.60 12.7 8.5 4.35 ICRITICALI

5.33} 0.0738 50.7 39.7 90.4 655 7.45 11.0 6.8 3.5 Deposit5.39

5.23 0.0720 45.7 35.9 81.6 615 7.00 9.8 6.1 3.1 Deposit

1!..66 . 0.0642' 39.7 31.0 70.7 565 6.45 8.7 5.7 2.95 "
1!..15 0.0571 33.6 26.6 60.2 525 6.00 7.0 4.5 2.25 Flat bed

b.51 0.0484 28.4 22.6 51.0 480 5.55 5.8 3.8 1.9 " "
~.98 0.0410 24.1 19.8 43.9 445 5.05 4.3 2.7 1.4 " "
12.26 0.0310 17 .6 15.2 .32.8 385 4.40 2.4 1.2 0.60 Flat bed,

sa1tating

1.64 0.0260 13.4 11.5 24.9 325 3.70 1.9 1.1 0.5 Flat bed,
sa1tating

t
I-'
N.....
t

Continued Series BS-01-4



di1ti
[ tes sec on oop rea ngs

~hL 95, (~) l\hR Ahn l\hR+Ahn ~ Vm AhR-Ahn AhR-Ahn C COMMENTS
, l\t

m corrected
in. ] [in. ] [in.} [in. ] [gpm] [fps] [in. ] , [in.] [%]

2nd Run
6.05 0.0834 69.5 51.4 120.9 720 8.20 18.1 12.6 6.5 Heavy bed load

5.68 0.0783 64.2 47.4 111.6 685 7.80 16.8 12.0 6.1 Sliding bed

5.59 0.0769 62.0 46.3 108.3 680 7.75 15.7 11.0 5.7 II II

'6.07 0.0835 55.4 ,41.6 - 97.0 650 7.40 13.8 9.7 5.0 jCRITICALI

5.64 0.0775 47.4 36.8 '84.2 600 6.85 10.6 7.2 3.7 Deposit bed

4.87 0.0670 35.8 27.5 ' 63.3 530 6.05 8.3 5.8 3.0 Thick flat bed

LOS : 0.0145 5.8 4.8 10.6 210 2.40 1.0 0.6 0.3 DunesI....
N
00 '
I

Series BS-01-4

, {c = 5.00% '
CRITICAL CONn ITION ' ,

Vc = 7.40 fps



- ;·r

0.2

15

4.8%

. 0=6 in.
d50 =0.88 mm

, 5=0.027
E=0.00016 ft.

p.&"j .0.25

3 4 5 6 7 8 9 10

Vm (fps) I MIXTURE VELOCITY

0.01 '--_..L-___L~-...1.---L--.L.---L..---L---L---L-----L..

2

0.05

0.1
0.09
0.08

0.07
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0.04

Cf)
Cf)

o
....J
o
<t
LLI
::L

0.03
E

", I.r:.1'(. <l <l, ,

Plot of Series BS-03 Data
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Series BS-03-1Continued

10 p eadingte t ection,.. B S - 0 r .S

(~)
,

t.h1 . 95 · Aha Aho AhR+AhO Qm Vm AhR-Ahn AhR-Ahn C COMMENTS
tit m

-corrected
[in.) [in.] '(in. ] [in.) [gpm] [fps] [in. J [in.] [%]

3.22 0.0440 54.0 46.4 100.4 675 7.70 7.6 2.9 1.5 Everything moving

3.05 0.0420 49.4 42.5 91.9 645 7.35 6.9 2.8 1.4 " "
2.92· 0.0401 43.7 37.9 81.6 610 6.95 5.8 2.3 1.2 Heavy bed load

3.00 0.0412 40.5 35.2 75.7 585 6.65 5.3 2.1 1.1 Pulsating, just
above critical

2.82 0.0388 36.4 32.0 - 68.4 560 6.35 4.4 1.5 q.75 rCRITICALl
I

2.74 0.0377 33.4 29.2 62.6 540 6.15 4.2 1.5 0.75 Deposit,
thin bed

2.13 0.0292 27.0 23.9 50.9 485 5.50 3.1 1.1 0.6 Flat bed

2.05 0.0282 21.4 19.0. 40.4 440 5.00 2.4 0.9 0.5 " "
1.31 0.01800 16.8 15.1 31. 9 380 4.35 1.7 0.5 0.25 " "

2nd Run

3.95 0.0542 61.4 52.4 113.8 . 730 8.30 9.0 3.2 1.6 Everything moving

3.08 0.0422 50.8 43.6 94.4 660 7.50 7.2 2.8 1.4 " "
2.97 0.0394 45.2 39.1 84.3 625 7.10 6.1 2.3 1.2 Heavy bed load

1.95 0.0405 41.8 36.1 77.9 595 6.80 5.7 2.3 1.2 Pu1sa ting, just
above critical

2.82 0.0387 39.0 33.8 72.8 570 6.50 5.2 2.2 1.1 ICRITICAL)

2.54 0.0349 33.6 29.1 62.7 530 6.05 4.5 2.0 1.0 Deposit

2.49 0.0342 30.4 26.4 56.8 500 5.70 4.0 1.8 0.9 Thin bed
I

I
I-'
W
o
I



;/

/

1001" readingste t section.. s
-~

.~h1. 95 (--eh...) AhR Ahn A~+Ahn ~ V AhR-Al~ AhR-Ahn C COMMENTS
b-L m m

-- correc ted
. in.) [in.] [in.] [in.] [gpm] . [fps] [in.) r· ] [%].. lon.

2.10 0.0289 28.2 24.6 52.8 485 5.50- 3.6 1.6 0,.8 Flat bed
,: .,'

1.69 0~0232 ·24.0 21.2 45.2 455 5.15 . 2.8 1.2 0.6 . " "
1.59 0.0218 20.4 17.6 38.0 410 4.65 2.8 1.3 0.6 " "
1. 36 0.0187 16.85 14.7 31.55 370 4.20 2.15 1.0 0.5 " "

Series BS-03~1'

. {c
CRITICAL CONDITION

. . Vc

= 1.00%

= 6.40 fps

. ~ .
J ','

, I.:.
, I}.

,,1,

:-



di1i.. test sect on--., oop rea ngs ,
b.hl. 95· (...AL) , l\h

R
l\h . l\hR+l\~ ~. V l\hR-b.hD

. l\h
R

-l\h
D C COMMENTS

M, m D ·m
corrected

(in,) [in. ] -(in. ] [in.] [gpm] (fps] (in.] [in. ] [%]

- ..- ... - ..-
, , '.

4.77 0.0655 59.5' 47.9 107.4 720 8.20 . 11. 6 6.1 3.2 Everything moving

4.83 0.0662 56.15 46,.0 102.15 705 8.00 10.15 4.95 2.5 Heavy bed load
i

4.97 0.0683 53.4 43.1 96.5 685 7.80 9.3 4.5 2.3 Pulsating, just
above critical

4.94 0.0680 51.0 41.9 92.9 670 7.60 9.1 4.5 2.3 j CRITICAL I
4.81 0.0662 ' 49.8 40.8 c 90.6 660 7.50 9.0 .4.6' 2.3 Deposit, thin bed

4.56 0.0627 42.7 35.1 77 .8 610 6.95 7.6 4.1 2.1 Flat bed

4.00 .·'0.0550 33.6 28.0 61.6 540 6.15 5.6 3.1 1.6 II II'

3.51 0,'0483 27.8 13.80 41.6 440 5.00 4.0 2.3 1.2 II II

I
. I-'

W
N
I

Series BS-03-2

. '{c = 2.30%
CRITICAL CONDITION ,

Vc = 7.60 fps



loop readi gtest section". -,..-. n s

ohl. 95 " (..AU...) t.hR A~ AhR+AhD Qm V AhR~AhD AhR-AhD C CONMENTS
At m m

tin.]
··-correc ted

[in.] [in.] [in.] [gpm] [fps] [in.) [in.] [%)

-
6.56 0.0902 68.0. 51.4 119.4 755 8.30 16.6 10.4 5.3 Everything moving

6.36 0.0874 " 58.7 44.5 103.2 700 7.95 14.2 9.1 4.75 Pulsating, just
above critical

6.36 0.0874 56.8 42.7 99.5 690 7.85 14.1 9.2 4.8 ICRITICALl

6.29 0.0864 53.7 41.3 95.0 675 7;75 12 ..4 7.7 3.9 Deposit

6.13 0.0842 48.3 37.0 85.3 640 7.30 11.3 7.3 3.75 Flat bed

5.44 0.0746 41.6 32.4 74.0 590 6.70 9.2 5.9 3.0 II II"

5.07 0.0697 34.4 26.1 60.5 535 6.10 8.3 5.8 2.9 II II

4.26 0.0585 27.0 . 21. 5 48.5 480 5.45 5.5 3.5 1. 75 II II

,
~

"W
W,

Series BS-03-3

CRITICAL CONDITION { :

" C

= 4.80%

= 7.85 fps , '~

\,
, "
! ,t

" '



...... --~.- ---- .

.. "

0.2

15
0.01 L...-_.&---.L__...L-'---...L-_J..-.J~--L.---L---L_-_....L-

2 3 4 5 6 7 8 9 10

Vm (fps), MIXTURE VELOCITY

0.1
0.09

CJ) 0.08
CJ)

o. 0.07 5%
-J
a
<t
w
:c 0.05
w Clear Fluid
a:
::::> 0.04
l-x
~

0.03
E

i •
.cl~<J<J
i I

0.02

Plot of Series BS-001 Data
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t

loop read'te t r.ection.s ' ci Lngs -
~hl.95' (~"!....) 6hR . 6hD AhR+6~ ~ V MlR-AhD AhR-AhD C COMMENTS

A-L m
m -orrect:ed

r- in.l [in.] ·[in. ) [in.] [gpm] [fps] [in.] [in.] [%]

'. 2.40 0.0330 53.7 45.7 99.4 700 ,7.9,5 8.0 3.0 1.5 Everything moving
-

2.35 0.0324 49.8 42.8' 92.6 675 7.7 7.0 2.5 1.25 Heavy bed load

2.10, 0;0289 46.7 40.0 86.7 650 7.4 6.7 2.4 1.2 " " "
1.80 0.0248 43.1 37.1 80.2 625 7.1 6.0 2.1 1.1 Rapidly moving bed

1.85 0.0255 40.1 34.7 . 74.8 600 6.8 5.4· 1.9 1.0 Pulsating bed

1.80 0.0255 36.0 31.2 67.2 570 6.5 4.8 ·L8 0.9 " ",
1. 75 0.0241 32.3 28.0 60.3 540 6.15 4.3 1.5 0.75 Slowly pulsating

bed

1. 70 0.0234 29.7 26~2 55.9 515 5.85 3.5 1.2 0.6 ICRITICAL I
1.60 0.0220 25.8 23.0 48.8 485 5.5 2.8 0.8 0.4 Thin bed

1.30 0.0179 20.2 18.0 38 ..2 " 420 4.8 1.8 0.4 0.25 Flat bed

0.75 0.0103 11.5 10.6 22.2 315 3.6 0~9 0.1 0.05 " "

,
I-'
W
\.J1

"

Series BS-OOl-l

{

' C = 0.75%
CRITICAL CONDITION

V = 5.85 fps
C

! .

/ 1;



../

loop readingste t sections

.t.i\ .95. (-~) 6hR AhD 6hR+6hD ~ ,Vm All -6h . 6hR-6hD C COMMENTS
6-L m R D

corrected
[in. ] (in. ] '(in. J (in.] (gpm] (fps] [in.] [in.] [%]

2.90 0.0399 61.8 51.2 113.0 730 8.3 . 10.6 4.7 2.4 Everything moving

2.80 0.0386 56.4 46.6 103.0 700 7.95 9.8 4.5 2.3 Heavy bed load

2.70 0.0371 50.0 41.4 91.4 655 7.45 8.6 4.1 2.1 Pulsating, slidin'g
bed

2.85 0.0392 47.0 39.0 86.0 645 7.35. 8 ..0 3.8 1.95 Pulsating, sliding
bed

..,
2.70 0.0371 44.0 36.4 80.4 620' 7.05 .7.6 3.8 1. 95 Just above..

critical,
ICRITICAL!

2.80 0.0386 41.4 34.8 76.2 600 6.85 6.6 3.1 1.60 Deposit

2.60 0.0358 35.8 30.7 66.5 570 6.5 5.1 2.1 1.10 Thin bed

2.40 0.0330 31.4 26.6 58.0 530 6.05 4.8 2.3 1.20 Flat bed

2.10 0.0289 26.9 23.0 49.9 485 5.5 3.9 1.9 1.0 " II

1. 75 0.0241 .21. 7 18.8 40.5 430 4.9 2.9 1.4 0.7 II "
0.55 0.0076 6.0 5.2 11.2 220 2.5 0.8 0.4 0.2 Dunes

I.....
UJ
0\
I

Series BS-001-2

. CRITICAL CONDITION { C
Vc

= 1.90%

= 6.95 fps



10 P e ditest section 0 r a ngs

~h1.95· (-Ml..) 6hR 6hn 6hR+6hO Q.. Vm AhR-h~ AhR-AhD C COMMBN'rS
A~ m ..\

in.)
corrected

[in.] '[in.] [in.] [gpm] [fps] [in.] [in.] [%]

3.20 0.0440 59.9 48.2 108.1 715 8.15 11.7 6.1 3.1 Heavy bed load

3.30 0.0454 53.0 42.8 95.8 670 7.6 10.2 5.5 2.85 Quickly moving
, bed

3.40 0.0469 49.7 40.4 90.1 655 7.45 9.3 4.8 2.45 ICRITICALl

3.40 0.0469 42.8 34.4 77 .2 600 6~8 8.4 4.9 2.47 Thin bed

3.20 0.0440 38:0 30.9 68.9 570 6.5 7.1 4.1 2.10 Thickening bed·,

2.90 0.0399 31.1 25.4 56.5 510 5.8 5.7 3.4 1. 75 " " . ..
2.40 0.0330 24.85 21.0 45.85 460 5.25 3.85 2.15 1.10 " "
1.80 0.0248 19.4 16.5 ·35.9 410 4.65· 2.9 1. 50 . 0.80 Flat bed ,

0.60. 0.0083 6.0 5.3 11.3 220 2.5 0.7 0.30 0.15 Very little
saltation, dunes

Series BS-001-3

CRITICAL CONDITION {. C
. Vc

= 2.50%

= 7.45 fps



.,.,.....

loop ead'ngtest section r ).. s

(..Ah..)
\

t\hl. 95· AhR AhO AhR+AhO Qm Vm Aha-Aho AhR-Aho C COMMENT.S
b.L m

corrected
[in.) [in.] . ·[in. J [in.] [gpm] [fps] [in.] [in.] [%]

4.10 0.0555 68.10 51.30 119.40 740 8.4 16.80 10.70 5.5 Above critical, .'

slowly pu1sati~g

4.60. 0.0631 64.40 48.20 112.60 720 8.2 16.20 10.50 5.35 Just above'
crit ica1 ..

4.70 0.0645 62.10 45.90 108.00 710 8.1 16.20 10.70 5.45 Sliding ..

ICRITICAL I ..

58.40 43.40 101.80 7.85 Just below
. .

4.80 0.0660 690 . 15.00 9.90 5.05
critical

4.80 0.0660 53.00 39.60 92.60 660 7.5 13.40 8.80 4.50 Flat bed

4.70 0.0645 48.80 36.80 85.60 620 7.05 12.00 8.3 4.2 " "
4.40 0.0605 42.80 32.00 74.80 585 6.65 10.80 7.5 3.85 " "

3.90 0.0536 33.40 25.30 58.70 520 5.9 8.10 5.70 2.90 " "
3.60 0.0495 28.90 22.25 51.15 480 5.45 6.65 4.65 2.40 " "

2.70 0.0371 21.90 17 .30 39.20 420 4.8 4.60 3.20 1. 65 " "
2.00 0.0275 16.50 13.50 30.00 370 4.2 3.00 1. 90 1. 00 Flat bed, little

bed load

0.70 0.0096 5;90 5.10 11.00 215 2.45 0.80 0.40 0.20 Dunes

I....
w
00
I

CRITICAL CONDITION: C = 5.40%
V

C
= 7.95 fps

Series BS-001-4

. " .~
'.

. !

i, - ,'.

:r .
·x, '
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Plot of ~eri~s BS-003 Data
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di1i~test sect on_r
oop rea ngs ,

6oh1 . 95· (~) .6hR 611' 6hR+6ohD Q. V liliR-6hD liliR-6hD C COMMENTS
M, m D m m

corrected
[in.] [in. ] ~[in.] [in.] [gpm] [fps] [in.] [in.] [%]

.-- . - . - -_. .-

3.20 0.0440 63.8 55.0 118.8 775 8.84 8.8 . 2.3 1.15 Heavy bed load

2.56 0.0352 49.2 42.5 91.7 675 7.70 6.7 2.1 1.05 " " "
2.44· 0.0335 46.2 40.2 86.4 655 7.45 6.0 1.8. 0.9 Sliding bed

2.31 o 0317 43.0 37.5 80.5 625 7.10 5.5 1.7 0.85 Pulsating bed

2.20 ·0.0·304 40.0 35.0 75.0 605, 6.87 5.0 1.5 0.75 " "
2.0 0.0274 33.0 28.6 61.6 550 6.25 ·4.4 1.7 0.85 Just above

·critica1

1. 97 . O~ 0271 31.8 27.7 59.5 540 6.15 4.1 1.5 0.75 ICRITICAL I
1.77 0.0243 27.6 24.2 51.8 500 5.70 3.4 1.3 0.65 Deposit

1.49 .0.0204 21.4 19.3 40.7 450 5.10 2.1 0.5 0.25 Thin bed

I

I
~
.p-
o
I

Series BS-003~1

. . {C· = 0.75%
CRITICA.L COND ITION V

c = 6.15 fps



,/

10 P ead'ti.. t,"L.eS sec on 0 r longs
"

D.h1 . 95
(..M!-.) , AhR

Doh· AhR+AhD ~. V liliR-AhD AhR-AhD C COMMENTS
A)" m D m

corrected
.. in.] [in.] [in.] [in.] [gpm] [fps] [in.] [in.] [%)

,-- .
3.49 0.0480 63.4· 52.6 116.0 .. 745 8.50' 10.8 4.8 2.,4.: Heavy bed load

3.31 0.0455 57.4 48.2 105.6 710 8.10 9.2 3.9 2.0 " " "

3.26 0.0448 53.8 44.4 98.2 670 7.60 9.4 4.5 2.2 Sliding bed

3.31 0.0455 47.4 39.2 86.6 635 7.25 8.2 4.2 2.1 Pulsating bed

[CRITICALI

3.23 0.0444 44.2 37.0 81.0 620 7.05 7.2 3.'5 1.8 Just below
critical

3.21 0.0441 38.6 32.4 71.0 575 6.55 6.2 3.1 1.6 Thin bed

2.95 0.0405 34.0 28.2 62.2 540 6.15 5.8 3.1 1.6 Flat bed

2.72 0.0374 27.0 23.0 50.0 480 5.45 4.0 2 ..1 1.1 " "
2.61 0.0190 19.8 17.2 37.0 410 4.65 2.6 1.2 0.6 " "
0.66 0.0092 5.8 5.4 11.2 210 2.40 0.4 0.1 0.05 Dunes

I

~
t-'
I

Series BS-003-2

{

C = 2.00%

CRITI.CAL CONDIT.ION. V

C
--

7.10 fps
'"



loop readingstest section,.. ... --
t.hl, 95 (..Ah...) , t.hR tJ'lD t.hR+t.~ ~' V tiliR-t.hD tili -t.h C COMMENTS

M~ m m R D
corrected

[in.) [in. ] [in.] [in.] , [gpm] [fps] [in.] [in.] [%]
i

..-,,_.. .
4.23 0.058 65.4, 51.0 116.4 730 8.30 14.4 8.7 4.45 Everything moving

I '
.1''-

4.51 0~062 57.8 45.3 103.1 685 7.80 ' 12.5 7.6 3.9 Sliding bed

4.56 0.0627 55.3 43.0 98.3 ' 665 7.55 12.3 7.8 4.0 Pulsating bed

4.62 0.0640 55.2 43.5
i

98.7 665 7.55 11.7 7.2 " 3.7 Just above
erit ica1

(
ICRITICAL I

4.75 0.0652 53.0 41.8 94.8 655 7.45 11.2 7.0 ' 3.6 Just below
critical

4.59 0.0630 44.6 35.25 79.85 605 6.90 9.35 5.85' 3.0 F~at bed

4.07 0.0560 34.6 28.30 62.90 540 6.15 6.3 3.7 1.9 " "
3.08 ' 0.0422 24.0 .19.60 43.60 ' 450 5.10 4.4 2.7 1.4 " ",

I.....
.po
N
I

Series BS-003-3

{

C = 3.70%
CRITICAL CONDITION ' .

V = 7.50 fps
C

i

, I



"

loop readite t section.. s -, ngs ,
~hL 95 . (..A1l..) . ~hR ~h . AhR+AhO ~. V . AhR-AhD AhR-AhD C COMMENTS

A~ m D m
corrected

[in.) [in. ) [in.) [in.) [gpm) [fps] [in.] [in.] [%)

---- '.
4.82 .0.0663 69.2· 52.7 121.9 760 8.65 . 16.5 10.3 5.3 Sliding bed

5.10 0.0702 64.0 48.2 112.2 720 8.20 15.8 . 10.3 5.3 II "
5.39 . , 0.0741 60.4 45.7· 106.1 700 7.95 14.7 9.6 5.0 Pulsating bed

5.35 0.0738 58.8 44.5 . i03.3 680 7.75 14.3 9.5 4.9 ICRITICALI

5.46 0.0752 55.6 42.6 98.2 670 7.60 13.0 8.5 :l 4.3 Depo.sit

5.46 0.0738 50.2 38.4 '88.6 635 7.25 11.8 7.9 '4.0 Thin bed

5.13 0.0706 44.8 34.0 78.8 600 6.80 10.8 7.4 . 3.~.8 Flat bed

4.82 0.0663 39.5 30.1 69.6 560 6.35 9.4 6.5 3.3 " "
'.

4.34 0.0596 34.0 26.2 60.2 525 6.00 7.8 5.4 2.7 " "
.3.90 ·0.0536 28.2 22.1 50.3 475 5.40 6.1 4.3 2.2 if "

3.41 0.0470 23.7 18.8 42.5 435 4.95 4.9 3.4 1.7 " II

2.64 0.0364 19.0 15.7 34.7 390 4.45 ' 3.3 2.1 1.1 II II,

I.....
~
W
I

{

c = 5.00%
CRITICAL CONDITION

Vc = 7.75 fps

Series BS-003-4

"! "



.".

di1i,. test
set~~)n

oop rea ngs

6hH 0 6hR
6h

D
6h

R
+6hD Qm V 6hR-6h

D
'·6-t m 6hR-6h

D C COMMENTS. 2 m
corrected

[in. ] [in. ] [in. ] [in. ] [gpm] [fps] [in. ] [in. ] [%]

2.60 0~0183 22.70 21.65 44.35 445 5.05 1.05 0.95 2.10 Total transport,
heavy. bed load

2.50 . . 0.0176 . 18.80 17.75 36'.55 400 4.5 1.05 0.95 2.00 Heavy bed load

2.00 0.0141 15.15' 14.30 29.45 355 . 4.05 0.85 0.75 1.70 Thickening bed
,

sliding along
invert

1.90 0.0134 . 13.25 12.40 25.65. 330 3 .. 75 0.85 '. 0.70 1.50 Pulsating bed move-
ment with spo-
radic settling

1.80 0.0127 12.50 11.70 24.20 320 3.6 0.80 0.65 1.30 Just above critical
., condition

1. 70 : 0.0120 11.40 . 10.60 22.00 300 3.4 0.80 0.65 1.25 ICRITICALI
1.40 . 0.0099 9.20 9.10 18.80 270 3.05 0~60 0.45 1.00 Sporadic dune be-

havior

I.....
t:
I

Series BS-PP1-1

1.30%
CRITICAL'CONDITION {c ,=

. Vc = 3.40 fps

.' '. ,



di1i,. test .set~~)n oop rea ngs
6hR 6h

D
6hR+6hD Qm V6hHO ' M" m 6hR-6h

D
6hR-6hD C . COMMENTS2' m

corrected
[in. J [in. J "[ in.] [in. ] [gpm] [fpsJ [in. J [in. J [%]

3.35 0.0236 28.20 26.80 55.00 500 5.7 1.40 1.25 2.80 Full bed load
transport

3.00 . 0.0212 24.00 22.70 46.70 460 5.25 1.30 1.15 2.50 Slowly moving bed
load ~

3.05 0.0216 20.30 19.15 39.45 420 4.8 1.15 1.05 2.35 Sliding bed

2.90 0.0204 18.55 17.45 36.00 395 4.55 1.10 1.00 2.20 " ".

2.80 0.0197 { 16.65 15.75 32.40 365 . 4~ 15 0.90 0.85 1.95} Sporadic',
15.40 14.40 .29.80 360 4.1 1.00 0.90 2.00 pulsating trans-

port conditions
2.70 0.0,190 14.05 13.10 27.15 . 345 3.9 0.95 0.85 1.95 Just above cri~.

condition

2.50 0.0176 13.45 .12.60 26.05 340 3.85 0.85 0.75 1.70. ICRITICAL I
2.10 0.0480 11.45 10.75 .22.20 315 3.6 0'.70 0.60 1.30 Infrequent. duning

concentrations

I....
.J:'o
VI
I

.. Series BS-PPl-2

1.90%C~ITICAL CONDITION {c I =
. Vc = 3.85 fps



/)

di1tit t,. es
set~~)n

oop rea ngs

f1hH 0 ~hR f1h
D f1hR+~hD Qm V

f1hR-~hD ~~-M1D C COMMENTS2 ~t m m
corrected

[in. ] [in. ] [in.] [in. ] [gpm] [fps] [in. ] [in. ] . [%]

,
,

3.90 '0.0275 25 •.80 24.15 49.95 485 5.5 1.65 1.59 3'.30 Total transport
basically bed
load

3.95 0.0279 23.20 21.60 44.80 455' 5.15 1.60 1.45 3.20 He~vy bed load

4.10 0.0289 21.10 19.60 40.70 440 5.00 1.50, 1.40 3.15 Sliding, thicken-
, ing bed load

4.10 0.02"89 18.95 17.55 36.50 ' 415 4.75 1.40 ' , 1.30 3.00 Pulsating just
, ,

above crit.
condition of

"

, , bed stoppage

3.80 ' 0.0268 17.70 ' 16.20 33.90 395 4.55 1.40 1.30 3.00 Almost crit.

~,
[CRITICAL I

4.10 0.0289 1l~.45 13.30 27.75 ',360 4.10 1015 1. U5 , 2.3 Bed, and long dune

, . build-up

.,

Series BS-PPl-3

..

CRITICAL CONDITION {C
Vc

=-3.00%

= 4.45 fps

':.'

','
.' '



.' ",~ " .... "
, t •

""j '.1 , ,i

J]

di1tit t~ es
set~~)n

oop rea ngs

6hH 0 6hR
6h

D
6hR+6hD Qm V

~hR-6hD ~hR-~hD C COMMENTS2 M"m m
corrected

[in. ] [in. ] [in.] [in. J. [gpm] [fps] [in. ] [in. ] . [%]

4.70 0.0332 29.00 26.55 55.55 515 5.9 2.45 2,30 5,.10 Most 'all transport'
,in form ,of heavy
bed load

4.70 '0.0332 27.25 24.95 52.20 495, 5.6 2.30 2.10 4.70 Bed load

4.50 0.0318 26.25 23.95 50.20 485 ' 5~5 2.30 2.10 ' 4.65 Slow moving
thickening bed

4.80 ' 0.0338 24.30 22.05 46.35 , 470 5.35 2.25 ' ' 2.05 ' 4.55 Effective scour
mechanism

4.90 0.0345 23,.05 21.00 44.05 , 450 5. i.o 2.05 1.95 4.30 Pulsating bed

4.55 .. 0.0320 19.05 17.15 36.20 415 4.75 1.80 1.70 3.90 Slugs of varying
concentration

~ ICRITICAL f
3.90 . 0.0275 16~30 14.60 30.90 ' 380 4.35 r.70 1.60, 3.50 Deposit condition,

.. impulsive.. dune
, " , motion

•
' ,

, .

Series BS-PPl-4

'.

{

c =3 807.
:CRITICAL CONDITION " 0

, ' V
G

== 4.60 fps
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APPENDIX C: REGRESS.ION ANALYSIS DATA

A regression analysis was made to· correlate each of three-modified
Froude numbers (I), (II), and (III), as defined in Section 4.1 of the
contents, with the following parameters: concentration C; concentration;
C, and particle diameter, d; and concentration, C, and relative particle
size, diD. The results of this analysis are tabulated in Tables C.l(a),
C.l (b), and C. 1 (c) for each Froude number.

The modified Froude numbers were calculated with solids concen­
tration, C,over five different ranges of data. Correlation was also
evaluated for regression of each modified Froude number with both solids
concentration, C, and either particle diameter, d, or relative particle
size, diD, over tWo ranges of data~ These ranges are specified in
Tables C.l(a), C.l(b), and C.l(c) along with indications of "goodness
of fit".

The regression analysis fits data to a geometric curve, correlating
logarithmic values on a linear or arithmetic scale, as given with:

1\
I

Log Fr = ka Log C + Log k
1

Reconverting to arithmetic scale gives the form:

(C. 1)

(4.1)

Likewise, for a multiple regression analysis with modified Froude number,
F , solids concentration, C, and either particle diameter, d, or relative
pirticle size, diD, the linear form for log-log data fitting is given
w~h: -

Log Fr = k4 Log C + ~ Log d + ~og k
3

and subsequently written as:

(C.2)

(4.2a)

Standard deviation, S.D., coefficient of correlation, R, and standard
error of estimate, S , are given for each analysis listed in Table C.2,
defined respectivelyYas:
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Vc f (C)=J 2gD (55-1)
2

Range No. of Equation S.D. R S
Data y

d = 0.88 mm 22 F = 0.901 CO.O S6 0.049 0.845 0.0264
r

d = 0.45 ImIl 24 . F = 0.892 CO.13l 0.088 0.935 0.0311r

d = 3.63 mm .4 F = 0.~09 CO.29O 0.052 0.994 0.0059
r

d = 0.45 to 46 F = 0.893 CO.1l4 0.073 0.886 0.03360.88 mm r

all d 50 F = 0.905 CO.122 0.078 0.872 0.0380r

Vc f (C,d)=
.j2gD (5 -1) 2

5

Range
No. of

Equation RData

d = 0.45 to 46 F = 0.921 CO.109 dO.05S 0.8710.88 mm r

all d 50 F = 0.927 CO. l10 dO.07O 0 0 863r

Vc d= f2 (C'u)V2gd •
(5 -1)5

No. of
Range Data Equation ·R

d = 0.45 to 0.113 dO.O O2
46 F = 0.905 C 0.8790.88 ImIl r D

0.114 .d 0.002
all d 50 F = 0.905 C 0.818r D

Table C.1(a): Correlation with Modified Froude Number (I)
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Vc - [1 - tan eJ = fa (C)
V2gD (s -I)'

s

Range No. of Equation S.D. R S
Data y

d = 0.88 mm 22 F = 0.908 CO-08O 0.047 0.831 0.0259.r

ci = 0.45 mm 24 F = 0.900 CO-la4 0.084 0.919 0.0332r

d = 3.63 mm 4 F = 0.909 Co-a9o 0.052 0.994 0.0059r

d = 0.45 to 46 F = 0.901 CO-106 0.069 0.870 0.03430.. 88 mm r

all d 50 F = 0.912 CO. 114 0.075 0.854 0.0387r

Vc [1 - tan eJ = f (C,d)
"/2gD

\ a
• 0, (s -1)s

Range
No. of Equation RData

d = 0.45 to 46 F = 0.928 CO-lOS dO.OS6 0.8770.88 mm r

- all d 50 F = 0.934 CO. 106 dO.068 0.866r

Vc
[1 - tan eJ fa

d= (C'i))

" 2gD
(s -15

s

Range
No. of Equation RData

d = 0.45 to 0.108 d 0.002
46 F = 0.913 C 0.8840.88 mm r· D

0.110 d 0.002
all d 50 F = 0.912 C 0.820r D-

Table C.2(b): Correlation with Modified Froude Number (II)
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/
Vc-;:::===============. = f 2 (C)

"2gD (ss-l) [1 + tan eJ'

Range

d = 0.88 mm

d = 0~45 mm

d = 3.63 mm

d = 0.45 to
0.88 mm

all d

No. of
Data

22

24

4

46

50

Equation·

F
r

= 0.905 CO.0 82

F = 0.896 CO.127

r

F = 0.909 CO.290

r

F = 0.898 Co.no
r

F = 0.909 CO. U8

r

S.D.

0.048

0.086

0.052

0.071

0.076

R

0.839

0.928

0.994

0.880

0.864

S
Y

0.0259

0.0319

0.0059

0.0336

0.0381

Vc-=======;=:====:::; = f (C,d)
j2gD (ss-l) [1 + tan eJ' '"2

I •

Range

d = 0.45 to
0.88 mm

all d

No. of
Data

46

50

Equation

F = 0.925 CO.107 dO.0 57

r

R

0.878

0.867

v
C d

-;:::=======::;::======~ = f.., (C, -D )J2gD (s s-l) [1 + tan eJ' ""

Range

d = 0.45 to
0.88 mm

all d

No. of
Data

46

50

Equation

0.110

F = 0.909 C
r

0.112

F· = 0.909 C
r

d 0.002

D

d 0.002

D

0.885

0.822

Table C.3(c): Correlation with Modified Froude Number (III)
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or:

R

explained variation
total variation

2

. I: (F t - F)
es

-2
I: (F - F)

(C.3)

(C.4)

-2
where I: (Fest - F) is the sum of the deviati2.n~ of fitted (or estimated)
values from the average, squared; and I: (F - F) is the sum of the devi­
ations of actual data values from the average, squared.

where N is the total number of data analyzed.

(C.6)

I .

'!he standard error of estimate, S , includes both central tendency, re­
lated .to standard deviation, s.n.; and variability, described by the
coefficient of corre·lation, R, in indicating "goodness of fit".

One is warned that the coefficient of correlation, R, determined
on a log-log scale, as reported in this study, may give a misleading
indication of "goodness of fit" that would be found on an arithmetic
scale. Log-log data near to the origin have the strongest influence
on the regression. Since most of the Lehigh.data were ohtained at low
solids concentrations, 0.10 < C< 2.0%, log-log fitting works to our
advantage. Correlation, on the other hand; weighs everydat·a point
equally, and an insignificant change in regression at a high solids
concentration data point may mistakenly infer greatly improved corre­
lation, or vica versa. For a closer look at the·raw data which deter~·:

mined best-fit, the regression analysis data output is on file in
Fritz Laboratory at Lehigh University.

Some resulting best-fit equations, from the Froude number (II)
analysis, are presented in Figs. C.1 to C.3, inclusively. Figure C.l
shows the best-fit equation for modified Froude number, Fr ,. corre­
lated with solids concentration, C, as evaluated for each of the three
tested particle diameters, d. A relationship between sand arid plastic
pellet results is not immediately recognized. However, the similarity
in form exhibited between the equations for sand is to be expected,
subsequent to a study of Gibert (1960). .
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0.290
'-----+ Fr = 0.909 C

. (d =3.63 mmJ

1 !L-'T:::::=±==:JC8==G~
=.;;;;;;;,;;;;a-;I-~VI~~:::~~--

0.124
Fr = 0.900 C· .

(d =0.45 mm.)

o.oao
~-Fr =0.90aC

(d=0.88 mm,)

·v
C

]..001----=---

1.a6

..

.....
VI
W

•

C[%]

o .. 1.0 3.0 4.0 6.0 6.0

I . . Fig. C.l: Equations Best Fitting Modified Froude Number with Solids Concentration;
Particle Diameter (for two different sands and plastic pellets) as Parameter



0.106 0.068
Fr =0.934.C d

'-

___--------------r d=3.63----

1.00I-__---,,;::;:---_~

1.26

• •....
VI
.p­
I

O'601:=-- ~----:._1_--

•
c[%]

o 1.0. 3.0 4.0 6.0 6.0

. Fig. C.2:Equation . Best Fitting Modified .Froude Number with Solids Concentration and Particle
Diameter, Evaluated for Both Sand-Water and Plas~ic Pellet-Water Data



0.110 0.002
F: ': 0 912 C diD. r ·

Vc .
-;:::===~. [1 • tan 8J
/2gD (ss·l)

o ,'~ B

1-----:0=-----9G-~JB"'"~~===::;::-=J:==-=-~~~t):=-:=-=~

'A~

o..l'~-4---:­e

1.a6

t....
U1
U1
t

C[%]

o 1.0 , 2.0 3.0 4.0 6.0 6.0

Fig. C.3: Equation Best Fitting Modified Froude Number with Solids Concentration and Relative
Particle Size, Evaluated for Both Sand-Water and Plastic Pellet-Water Data
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Figure C.2 illustrates the effect of including particle diameter,
d, as an independent variable in correlating all of the data. Since
there are relatively few data points for sufficiently expressing the
trend of the plastic pellets data, the sand particles dictate the gen­
eral form of the function. However, it should be noted that the plastic
pellets significantly impinge upon the form of the sand particle curves
at low concentrat.ions •... It is to this end that use of Fig. 2.3 and the
associated relationship is discouraged.

Figure C.3 gives the relationship for Froude number (II) fitted
with solids concentration, C, and relative particle s-ize, diD, over
the entire range of data. The inclusion of diD is relatively neg1i- .
gib1e, and the effect due to different particle diameters, d, is es­
sentially eliminated. Further, the plastic pellet data impose a greater
relative influence on the regression than indicated in other correla­
tions of the total data. -The relationship given with Fig. C.3 is also
not recommended.

- -.
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CASE NO.1 F~OUDE NO. (1)
TH B ST-FIT E U ON IS •••

LO

EQUATION ON ARITHMETIC SC~LE IS •••

• 0660
F = .9Ul0 C

.12 .65561

.1 • •

.20 .76456
• • •
.50 .64052 .64887
.60 ·. 0 •

1.00 1.07587 .90098
.00 • • 91

1.75 .96660 .94538
• 0 • •

5.00 1.00022 1.03465
• 0 • •

1.00 .90098
• 0 • •

7.00 1.06501
• • .8

1.10 .90839
3.00 • •
5.00 1.01570 1.03465
1.00 .8 8 •
2.3 1.04315 .96785

-
{



CA SE NO.2 FROUDE NO. (1)

THE BEST-FIT EQUATION IS •••

LOGF = ( .1309). LOGC + ( -.0497)

EQUATION ON ARITHMETIC SCALE IS •••

I .1309 I----------:--:F=--=--.-:a=-=9::-:1,.-;:9::----=C::-----,I----.----

STANGARD DEVIATION = .0878

CORRELATION COEFFICIENT = .9350

STANDARD ERROR OF ESTIMATE = .n311

c
(PERCENT)

.05

.10

.20

.30

.65
1.00
1.20
1.50
3.00
7.00

.05

.10

.25

.55
2.25
2.50

.75
1.90
2.50
5.40

.75
2.00
3.70
5.00

FROUDE NO.
(01 MENSI 0 NLESS)

.46229

.68923

.80690

.91517

.85733

.95819

.98341

.94138
1.05065
1.09266

.62198

.65561

.75647

.85733

.92457

.95819

.80295

.95393
1.02256
1.09119

.84413

.97452
1.02942
1.06374

FITTED
FROUDE NO.

(DIMENSIONLESS)

.60258

.65980

.72246

.76184

.84297

.89187

.91341

.94048
1.02979
1.15057

.6D258

.65980

.74387

.82474

.99174
1.00551

.65691

.911103
1.00551
1.11214

.85891

.97656
1.05845
1.10100



CASE NO.3 FROUOE NO. (1)
------~T'PTH-noE..--,..,B.......ES~TTtalT~Tr01rr- ....S-.-••-----------------

----------1 F = .9086 C .289811 _

STANDARD OEvr-ATlON = .0524

CORRELATION COEFFICIENT = .9931

STANDARD ERROR OF ESTIMATE - .OOSq

c
(PERcENT)

FROUDE NO.
(OIHENSI 0Nt Ess)

F-ITTFO
FROUDE NO.

eO UfE"ffS I ONLEW

5"S'"Tj------

1.30 .97244 .98036
---------------,1-.---=9-=0--------,-1-.-'-'1O~1,-,1.-:4-----~1~.---..->O 943.-4--------

3.00 1.27215 1.24925
3.80 1.31565 1.33784



CASE NO.I+ FROUDE NO. (1)

THE BEST-FIT EQUATION IS •••

LOGF = ( .1135)· LOGe + ( -.01+90)

EQUATION ON ARITHMETIC SCALE

•
11351

IS •••

STANDARD DEVIATION = .0726

CORRELATION COEFFICIENT = .8863

STANDARD ERROR OF ESTIMATE - .0336

C
(PERCENT>

.12

.15

.20

.50

.50

.60
1.00
1.00
1.75
2.00
5.00

.50
1.00
3.00
7.00

.80
1.10
3.00
5.00
1.00
2.30
It.80

.05

.10

.20

F~OUDE NO.
(DIMENSIONLESS)

.65561

.78168

.85733
.89936
.8lt052
.97500

1.07587
.921+57
.96660
.96660

1.00022
.80690
.85733
.89936
.8lt052
.878lt4
.91962
.99511

1.01570
• 878ltlt

1.0lt315
1.077lt6

.lt6229
.68923
.80690

FITTED
FROUQE NO.

(DIMENSIONLESS)

.70235

.72036

.71+lt26

.82580

.82580

.81+306

.89337

.89337

.95193

.966lt6
1.07234

.82580

.89337
1.01196
1.11407

.87103

.90308
1.01196
1.0723lt

.89337

.96191
1.06739

• 6359lt
.68797
.74lt26



CASE NO.4 FROUDE NO. (1)

C
(PERCENT>

FROODE Kia.
(DIMENSIONLESS)

FITTED
FROOoE NO.

(DIMENSIONLESS)

.30 • 91617 • 7T9~1l

.65 .85733 .85075
1. 0 0 • 951rr.....9.....-------.8"'9"3"37--------
1.20 .98341 .91204
1. 50 • 94138 • 9-:3-s-z.~'---------
3.00 1.05065 1.nli96

------------....7-......0.....0------,..1--...O-g-ZO 8 1. rfli07--------
.05 .62198 .63594
.10 .65561 .68791
.25 .75647 .763~4
.55 .8573"3 .831+7''''8--------

2.25 .92457 .97946
2.50 .95819 .99124

.75 .80295 .86468
1.90 .95393 .960B5
2.50 1.02256 .99124
5.40 1.09119 1.08175--~-----

.75 .84413 .86~68
--:-------------..2-...0....0--------......97·45~ .96l"')4cz6,----------

3.70 1.02942 1.03633
5.00 1.06374 1.07234



CASE NO.5 FROUOE NO. (1)

THE BEST-FIT EQUATION IS •••

LOGF = ( .1218)· LOGC + ( -.0431+)

EQUATION ON ARITHMETIC SCALE IS •••

-----------1 F = .9049 G .1aoll-- -
STANDARD DEVIATION = .0777

CORRELATION COEFFICIENT = .8720

STANDARD ERROR OF ESTIMATE - .0380

C
(PERCENT>

.12

.15

.20

.50

.50

.60
1.00
1.00
1.75
2.00
5.00

.50
1.00
3.00
7.00

.60
1.10
3.00
5.00
1.00
2.30
4.80

.05

.10

.20

FROUOE NO.
(01 MENSI ONLESS)

.65561

.78168

.85733

.89936

.84052
.• 97500
1.07587

.92457

.96660

.96660
1.00022

.80690

.85733

.89936

.84052

.87844

.91962

.99511
1.01570

.67844
1.04315
1.07746

.46229

.68923

.80690

FI1Tf.:D
FROUDE NO.

(DIMENSIONLESS)

.69699

.71824

.7ft385

.83165

.83165

.85032

.90489

.90469

.96871

.98459
1.10080

.83165

.90489
1.03442
1.14684

.88064

.91546
1.03442
1.10081]

.90489
1.00149
1.09535

.62831

.68364

.74385



CASE NO.5 F~OUOE NO. (1)

FITTED
-------------....C------F.....R....O....O....OE...-.N....O-.----F....~.....OarrEl\Jrno-.--------

(P ERCENT) (01 MENSI ONL ESS) (D1MENS IONLESS)

.30 • 910"T7 • 78T5lJ

.65 .85733 .85665
------------"TI-.'WO'1'1'"0-------."'RqOW-S"'"A2"'i""9·------;0.9'U1t"'""8'1"'W"1"1'y---------

1.20 .963~1 .92521
-------------...,..1-.-..-5..0--------.-=9.....~ .....1=3..8------....95lJ6--9,..----------

3.00 1.05065 1.034~2

7.00 1.09268 1.1~68~----------------

.05 .62198 .62831

.io .6~561 .68364

.25 .756~7 .76~34

.55 .85733 .64136
2.25 .92457 .99681

-------------=2-.-..-5..0-------.-=9---5..,.-8.....1..9-------,-1--.0.01.TT1.-----------------
.75 .80295 .87374

1.90 .95393 .97846
2.50 1.02256 1.D1171
5.40 1.09119 1.11117

.75 .64413 .87374
--------------:2-.-=-0=-0--------.-=9=7.,--4=-5="2-------.~9845...9---------

3.70 1.02942 1.06117
5.00 i.06374 i.iom60
1.30 .97244 .93~27

1. 90 1 • 1 0114 • 91 646
3.00 1.27275 1.03442
3.80 1.31565 1.06~63



CASE NO.4
TOTAL NUMBER OF DATA = 46

CORRELATION COEFFICIENT = .871

SOLUTION VECTOR IS •••

.1088 .0588 -.0357

EQUATION ON ARITHMETIC SCALE IS •••

IF I.1088 .0588
= .9211 C 050

-

FITTED
FROUDE FROUDE

C 050 NUMBER NUMBER
{I> (!)

{PERCENT> (MM)

.12 • 86 .65561 .72566

.15 .88 .78168 .74371

.20 .88 .65733 .76736

.50 .88 .69936 .64782

.50 .86 .64052 .84782

.60 .86 .97500· .86481
1.00 .88 1.07587 .91425
1.00 .88 .92457 .91425
1.75 .88 .96660 .97165
2.00 .88 .96660 .98568
5.00 .88 1.00022 1.08925

.50 .88 .60590 .84782
1.00 .88 .85733 .91425
3.00 .88 .89936 1.03035
7.00 .68 .84052 1.12988

.80 .88 .87844 .89231
1.10 .88 .91962 .92378
3.00 .88 .99511 1.03035
5.00 .88 1.01570 1.06925
1.00 .68 .87844 .91425
2.30 .88 1.04315 1.00099
4.80 .88 1.07746 1.08442

.05 .45 .46229 .63437

.10 .45 .66923 .68408





CASE NJ.5
TOTAL NUMBER OF DATA: 50

CORRELATION COEFFICIENT = .863

SOLUTION VECTOR IS •••

.1097 .0704 -.0329

EQUATION ON ARITHMETIC SCALE IS •••

I '0:1.1097
F = .9270 C 050

FITTED
FROUOE FROUDE

C 050 NUMBER NUMBER
(!) (D

(PERCENT) ( MM)

.12 .88 .65561 .72811

.15 .88 .78168 .74614

.20 .88 .85733 .770 06

.50 .88 .89936 .85145

.50 .88 .84052 .85145

.60 .88 .137500 .86864
1.00 .68 1.07587 .9186g
1.00 .88 .92457 .91869
1.75 .88 .96660 .97683
2.00 .88 .96660 .99124
5.00 .88 1.00022 1.09601

.50 .88 .80690 .85145
1.00 .88 .85733 .91869
3.00 .88 .89936 1.03631
7. 00 .88 .84052 1.13721

.80 .88 .87844 .89648
1.10 .88 .91962 .92834
3.00 .88 .99511 1.03631
5.00 .88 1.01570 1.09601
1.00 .88 .81844 .91869
2.30 .88 1.04315 1.00655
4.80 .88 1.07746 1.09112

.05 .45 .46229 .63094

.10 .45 .68923 .68077



CASE NO.5
TOTAL NUMqER OF DATA = 50

FITTED
FROUDE fRoOtrf:

C 050 NUMBER NUMBER
<T) (I)

(PERCENT> ( MM)

• 20 .45 .80690 • 73'7i"5'3
.30 .45 .91617 .76792
.65 .45 .857n • ~S-87

1.00 .45 .95819 .87630
1.20 .45 • g-aj4f .8""91+0-0
1.50 .45 .94138 .91615
3. 00 .45 1.05065 • 98649
7.00 .45 1.09268 1.08474

.05 .45 .62198 .5~094

.10 .45 .65561 .68077

.25 .45 .75547 .7"5-2-T2

.55 .45 .85733 .82070
2.25 .45 .92457 • 95780
2.50 .45 .95819 .96893

.75 .45 .80295 .8-zt9lf9
1.90 .45 .95393 .94020
2.50 .45 1. 02ff6 .9089~

5.40 .45 1.091113 1.05431
• 75 .45 .84413 • 81+909

2.00 .45 .137452 .134551
3.70 .45 1.02942 1.0111+9
5.00 .45 1.06374 1.04545
1.30 3.63 .97244 I. 04414
1.90 3.63 1.11H14 1.08913
3.00 3.63 1.27275 1.14507
3.80 3.63 1.31565 1.17511+



CASE NJ.4
TOTAL NUMBER OF DATA = 46

CORRELATION COEFFICIENT = .879

SOLUTION VECTOR IS •••

.1126 .0021 -.0434

EQUATION ON ARITHMETIC SCALE IS •••

I F

.1126
•

0021
1= .9048 C (50/1)

FITTED
FROUOE FROUOE

C 050/0 NUMBER NUM8ER
(1) (n

(PERCENT)

.12 .00866142 .6556 .7055

.15 .00866142 .7817 .7235

.20 .00866142 .8573 .7473

.50 .00866142 .8994 .8285

.50 .00866142 .8405 .8285

.60 .00866142 .9750 .8457
1.00 .00866142 1.0759 .8957
1.00 .00866142 .9246 .8957
1.75 .00866142 .9666 .9540
2.00 .00866142 .9666 .9684
5.00 .00866142 1.0002 1.0737

.50 .00866142 .8069 .6285
1.00 .00866142 .8573 .8957
3.00 .00866142 .8994 1.0137
7.00 .00866142 .8405 1.1151

.80 .00577428 .6784 .8728
1.10 .00577428 .9196 .9046
3.00 .00577428 .90,51 1.0128
5.00 .00577426 1.0157 1.0127
1.00 .00577428 .8784 .8950
2.30 .00577428 1.0431 .9830
4.80 .00577428 1.0775 1.0678

.05 .00442913 .4623 .6384

.10 .00442913 .6892 .6902



CASE NO.!J
TOTAL NUMBER OF DATA = 4(p

FITTED
FRoUDE FROODE

C 050/0 NUMBER NUMBER
en rn

(PERCENT>

.20 .00442913 .8069 .7462

.30 .00442913 .9162 .7811

.65 .00442913 .6573 .8521
1.00 .00442913 .9582 .8945
1.20 .00442913 .9834 .9130
1.50 .00442913 .9414 .9362
3.00 .00442913 1.0507 1.0122
7.00 .00442913 1.0927 1.1135

.05 .00442913 .6220 .6384

.10 .00442913 .6556 .6902

.25 .00442913 .7505 • 76s-2

.55 .00442913 .8573 .8362
2.25 .00442913 .9246 .980U
2.50 .00442913 .9582 .9917

.75 .00295276 .8029 .86-;-2
1.90 .00295276 .9539 .9607
2.50 .00295276 1.0226 .9908
5.40 .00295276 1.0912 1.0805

.75 .00295276 .8441 .8652
2.00 .00295276 .9745 .9662
3.70 .00295276 1.0294 1.0355
5.00 .00295276 1.0637 1.0712



CASE N::>.5
TOTAL NUMBER OF DATA :: 50

CORRELATION COEFFICIENT = .818

SOLUTION VECTOR IS •••

.1139 .0017 -.0436

EQUATION ON ARITHMETIC SCALE IS •••

I .GGHt.113<:'
F = .9045 C 050/0

FITTED
FROUOE FROUOE

C 050/0 NUMBER NUMBER
(1) (I)

( PERCENT>

.12 .0086611+2 .6556 .701+8

.15 .0086611+2 .7817 .7229

.20 .0086611+2 .8573 .71+70

.50 .0086611+2 .8991+ .8292

.50 .0086611+2 .81+05 .8292

.60 .0086611+2 .9750 .81+66
1.00 .0086511+2 1.0759 .8973
1.00 .0086611+2 .921+6 .8973
1,.75 .0086611+2 .9666 .9563
2.00 .0086611+2 .9666 .9110
5.00 .0086611+2 1.0002 1.0778

.50 .0086611+2 .8069 .8292
1.00 .0086611+2 .8573 .8973
3.00 .0086611+2 .8991+ 1.0159
7.00 .0086611+2 .8405 1.1199

.80 .005771+28 .8781+ .811+2
1.10 .00517428 .9196 .9065
3.00 .00577428 .9951 1.0162
5.00 .00577428 1.0157 1.0771
1.00 .005771+28 .8784 .8957
2.30 .00577428 1.0431 .9859
1+.80 .005711+28 1.0715 1.0721

.05 .0041+2913 .4523 .6312

.10 .0041+2913 .6892 .6895



I CASE NO.5'" TOTAL NUMBER OF DATA = £0

FITTED
FIWOUE FROlJUE

C 050/0 NUMBER NUMBER
(I) -----'T)

( PERCENT)

.20 .00442913 .8t169 .7461

.30 .00442913 .9162 .7814

.65 • 0 0 442913 .8573 .8-5"3-4
1.00 .00442913 .9582 .89&3
1.20 .00442913 • 98"34 .9PH
1.50 .00442913 .9414 .9386
3. 00 .00442913 1.0507 1.0158
7.00 .00442913 1.0927 1.1187

.05 .00442913 .&220 • &372

.10 .00442913 .6556 .6895

.25 .00442913 • 7~65 .765r.

.55 .00442913 .8573 .8373
2.25 .00442913 .9246 .9830
2.50 .00442913 .9582 .9949

.75 .00295216 .8029 .6668
1.90 .00295276 .9539 .9636
2.50 .00295276 1.0226 .9942
5.40 .00295276 '1.0912 1.0854

.75 .00295276 .8441 .8665
2.00 .00295276 .9745 .9692
3.70 .00295276 1.0294 1.0396
5.00 .00295276 1.0637 1.0759
1.30 .02381890 .9724 .9261
1.90 .02381890 1.1011 .9670
3.00 .02381890 1. 2727 1.0186
3.80 .02381890 1.315'1 1.0464



CASE NO.1 FROUDE NO. (2)
THE BEST-FIT EQUATION IS •••

LOGF = ( .0797)" LOGe + ( -.0420)

EQUATION ON ARITHMETIC SCALE IS •••

I .07971-----------'"'F=--=--.---:9:-::0-=7:-::9-....,-C--'----.I---------------------

STANDARD DEVIATION = .0465

CORRELATION COEFFICIENT = .8313

STANDARD ERROR OF ESTIMATE = .6259

C
(PERCENT)

FROUoE NO.
(01 MENSI ONLESS)

FITTED
FROUOE NO.

(DIMENSIONLESS)

.12 .65561 .76668

.15 .76166 .78044

.20 .85733 .79854

.50 .69935 .85906

.50 .64052 .85906

.60 .97500 .87164
1.00 1.07567 .90767
1.00 .92457 .90787
1.75 .96660 .94929
2.00 .96660 .95945
5.00 1.00022 1.03216

.50 .85531 .85906
1.00 .90877 .90787
3.00 .95332 .99097
7.00 .89095 1.06U23

.80 .87844 .89186
1.10 .91962 .91480
3.00 .99511 .99097

____________-==-5:=-.O:::--0::- ~1~.~0~1;..:::5~7~0:...-----~1. 03216
1.00 • 8547'2 • 90 78~-;;;7;-------~---
2.30 1.01498 .97020
4.80 1.04837 1.02881



CASE NO.2 FROUOE NO. (2)
--------...TTTH..--E-oS""E'""S..T"4-"TT EQUAirONi....S-.-.-.----------------.

LO GF - ( • r2~ 6 ) • L O"G C + ( -. 04 5 '3)

EQUATION ON ARITHMETIC SCALE IS •••

E .12361------------1 ~ = .8997 C ,1-------------------

STA~RO OEVIATIO~= .0843

CORRELATION COEFFl~~T = .9r9~

STANDARD ERROR OF ES1IMAtE = .0332

C
(PERCENT>

FROUOE NO.
(01 MENS1 ONlESS)

nTTED
FROUOE NO.

(DIMENSIONLESS)

.05 .46229 .62134
-------------.""71"0--------.6r-8....9....,....,23------~. 67-6cn--------

.20 .80690 .73144

.30 .91617 .115~

.65 .85733 .85305
1.00 .95819 .89969
1.20 .98341 .92018
1.50 .94136 .945""9-.-1--------
3.00 1.05065 1.03049
7.00 1.09268 1.14423

.05 .65930 .62134

.10 .69494 .67691

.25 .80186 .75805

.55 .90877 .63562
2.25 .98005 .99451
2.50 1.01568 1.00754

.75 .80295 .86827
1.90 .95393 .97394
2.50 1.02256 1.00754
5.40 1.09119 1.10812

.75 .82134 .86827
2.00 .94821 .98014
3.70 1.00163 1.05755
5.0n 1.03502 1.09163



CASE NO.3 FROUDE NO. (2)
THE BEST-FIT EQUATION IS •••

LOGF = ( .2898)'" LOGC • ( -.0Lt-1o)

EQUATION ON

STANDARD DEVIATION = .052Lt-

IS •••

CORRELATION COEFFICIENT = .9937

STANDARD ERROR OF ESTIMATE = .005~

c
{PERCENT>

1.30
1.90
3.00
3.80

FROUDE NO.
(01 MENSI 0 NL ESS)

.972 Lt-Lt-
1.1011Lt­
1.27275
1.31565

FITTED
FROUOE NO.

{DIMENSIONLESS)

.98036
1.09Lt-3Lt­
1.2,.925
1.3378Lt-



CA SE NJ. 4 FROUDE NO. (2)
----------"T...H...E.-,..B'"'"E~ST- F t-1 EQU AT I Olr!'S"''-.-.-.------------------

EQUATION ON ARITHMETIC SCALE IS •••

I C
.10641-----------"F;--=--.=-90..-0"'8..-----...----------',1------------------

STANDARD DEVIATION = .0694

CORRELATION COEFFICIENT = .8697

STANDARD ERROR OF ESTIMATE = .b343

C
(PERCENT)

FROUOE NO.
(Dt MENS! ON[ESS)

FITTED
FROUOE NO.

(oIPlENSnYfKE'ss)

.12 .65561 .71864
-------------.-.--1--5--------.-1......8-.--1--6=-8------...:-,.T3o"Tl"T1--------

.20 .85733 .75899

.50 .89936 .83673

.50 .84052 .83673

.60 .97500 .85312
1.00 1.07581 .90078
1.00 .92457 .90078
1.75 .96660 .95606
2 • 00 • 9666 0 • 969140
5.00 1.00022 1.06906

.50 .85531 .83673
1.00 .90877 .90U78
3.no .95332 1.01250
7.00 .89095 1.10804

.80 .87844 .67965
1.10 .91962 .90997
3.00 .99511 1.01250...----------
5.00 1.01570 1.06906

·------------·--;1-...0....0-------...8....5.-4"'"7...2------.-=-90lJT8..----
2.30 1.01498 .98427
4.8 0 1. 04637 1.if61+l+~'--------

.05 .46229 .65489
-------------."7'1'=0-------.-=6-=8=9=2=3------.-70502"'---------

.20 .80690 .75899



CASE NJ.1t FROUDE NO. (2~

C
(PERCENT)

.30

.65
1.00
1.20
1.50
3.00
7.00

.05

.10

.25

.55
2.25
2.50

.75
1.91}
2.50
5.40
.75

2.00
3.70
5.00

F~OUDE NO.
(0 I MENSI ONLESS)

.CJ1617

.85733
• 95thCJ
.98341
• CJ4138

1.05065
1.09268

.65CJ30

.694CJ4

.80186

.CJ0877

.98005
1.01568

.802CJ5

.95393
1.02256
1.09119

.82134

.94821
1.00163
1.03502

FITTED
FROODE NO.

(DIMENSIONLESS)

.7CJ21+6

.86042

.90078

.91843

.94050
1.01250
1.10804

.65489

.10502

.77723

.8,.526

.CJ81CJ7

.99304

.87363

.96446

.99304
1.07786

.87363

.96974
1.03515
1.06906



CASE NJ.5 FROUDE NO. (2)
------------~T~H~E~B=E~ST-FITEQUATION IS •••

LOG F = ( • 1144) if' LOGC + ( -. 0399 )

EQUATION ON ARITHMETIC SCALE IS •••

I .11441-----------I-=F----=-=----;.9""1"'Z"'-.2.---..C...---------.'------------------------------------

Sf AND ARODEvtATI 0N - • 0 745

CORRELATION C(fEr~ICIENT = .8541

STANDARD ERROR OF ESTIMATE = .0387

C
(PERCENT)

FROUOE NO.
(DIMENSIONLESS)

F'lTTED
FROUDE NO.

(DIMENSIONLESS)

.12 .65561 .71574
---------------------------•...,....1=-5-------------.=7=81~6~8----------~.7342 4

.20 .85733 .15682

.50 .69935 .84269

.50 .84052 .84269

.60 .97500 .86045
1.00 1.01587 .91224

------------------------.....1-...0"'0-------------....9..2--4.....5 ...7--------------:.9TZ"2lt--------
1.75 .96660 .97251
2.00 .96560 .98754
5.00 1.00022 1.09670

.50 .85531 .84269
1.00 .90877 .91224
3.00 .95332 1.03443,-------------
7.00 .89095 1.13974

.80 .87844 .88925
1.10 .91962 .92225
3.80 .99511 1.03443
5.00 1.01570 1.09670
1.00 .65472 .91224
2.30 1.01498 1.00346
4.80 1.0ij837 1.09159

.05 .46229 .64751

.10 .68923 .70096

.20 .80690 .15882



CASE N:>.5 FROUOE NO. (2)

C
(PERCENT)

.30

.65
1.00
1.20
1.50
3.00
7.00

.05

.10

.25

.55
2.25

1.90
2.50
5.40

.75
2.00
3.70
5.00
1.30
1.90
3.00
3.80

FROUOE NO.
( DIMENSIONLESS)

.91617

.85733
• 95819
.98341
.94138

1.05065
1.09266

.6'5930

.69494

.80186

.90877

.9600e;
1.01568

.80295

.95393
1.02256
1.09119

.82134

.94821
1.00163
1.03502

.97244
1.10114
1.27275
1.31565

FITTED
FROOOE NO.

(DIMENSIONLESS)

.79465

.86831

.91224

.931ft7

.95556
1.03443
1.13=9....7...4---------

.64151

.70!iJ96

.77644

.65193
1.00094
1.01306

.66271

.96116
1.01306
1.10640

.88271

.98754
1.05956
1.09670

.94'004

.98176
1.03443
1.06279



CASE NO.4
TOTAL NUMBER OF DATA = 46

CORRELATION COEFFiCIENT = .67,

SOLUTION VECTOR IS •••

.1047 .0560 -.0326

-
(

EQUATION ON ARI'iRRtTlc SGALEJ:S •••

I .05blll.1047
F = .9216 C 050

FITTED
FROUDE FROUDE

C 050 NUMBER NUMBER
(II) (In

( PERCENT> ( MM)

.12 .68 .65561 .73764

.15 .88 .7-ST68 • '7 ~5-5-1f8

.20 .88 .85733 .71817

.50 .88 • 69'Tr6 .85G-53

.50 .88 .84052 .85653

.60 .88 .97500 .87304
1.00 .88 1.07587 .92102
1.00 .88 .92457 .92102
1.75 .88 .96660 .97660
2.00 .88 .96660 .99035
5.00 .88 1.00022 1.09009

.SO • 88 • 8"5"5'31 .~5653
1.00 .88 .90677 • 2102
3.00 .88 .95332 1.03331
7.00 .88 .89095 1.12918

.80 .88 .87844 .89975
1.10 .88 .g1962 .93026
3.00 .86 .99511 1.03331
5.00 .88 1.01570 1.09009
1.00 .88 • 85ft.72 .92102
2.30 .88 1.014g8 1. (i)lil495
4.80 .88 1.04837· 1. O-S--S-it it

.05 .45 .46229 .64822

.10 .45 .68923 .69101



CASE N::>.f+
TOTAL NUMBER OF DATA = 45P

FITTED
\. FROUDE FROUDE

C D50 NUMBER NUMBER
(II) ern

(PERCENT) (MM)

.20 ' .45 .80690 .74949

.30 .1,.5 .91&17 .78200

.65 .1,.5 .85733 .81,.794.. 1.00 .45 .95819 .88707
1.20 .1,.5 .98341 .-90417
1.50 .45 .91,.138 .92555
3.00 .1,.5 1.050&5 • 99522
7.00 .1,.5 1.09268 1.08756

.05 .45 .65930 .64822

.10 .45 .691,.91,. .69701

.25 .1,.5 .80186 .76721

.55 .45 .90877 .83324
2.25 .1,.5 .9'800 5 • 9&569
2.50 .1,.5 1.01568 .9761,.0

.75 .1,.5 .60ZQ5 .86075
1.90 .45 .95393 .94874
2.50 .1,.5 1.02256 .9761,.0
5.40 .1,.5 1.09119 1.058ft1

.75 .45 .8213ft .86075-
2.00 .1,.5 .91,.821 .95385
3.70 .1,.5 1.00163 1.01132
5.00 .45 1.Q3502 1.04991



CORRELATION CO~F~~l~NT = .800

SOLUTION VECTOR IS •••

.1056 .0676 -.0299

EdUATION ON ARITHMETIC SC~LE IS •••

I .1lf!;o.067~
-----------------1;;;;;.F;;;;;;;;;;=;;;;;;;;;;;;;;;;;;;;.;;;;;9;;;;;3;;;;;3;;;;;5;;;;;;;;;;;;;;;C;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;O;;;;;5;;;;;0~;;;;;;;;;;::::::df--·-----

• 6892"3 • 693'61

.81844 .90395

.q1962 .93485

.85531 .66019

.90877 .92550

.Q53321.03g:nr-

.a90g5 1.13655

.99511 1.03930
1.01570 1.09689

.85472 .92550
1.01498 1~01056
1.04837 1.09~1-7-------

.46229 .64467

~I"TED
FROUOE FROUOE

·...-------f\f(ft·m-ER---ffOTfBc·R-------
CII> (Ill

C 050

(?ERCENTl ( MM)

.12 .88

.15 .88

.20 .88

.50 .88

.50 .88

.60 .88
1.00 .88
1.00 .88
1.75 .88
2.00 .88
5.00 .88

• 50 .88
1.00 .88
3.00 .88
7.00 .88

.80 .88
1.10 .68
3. 00 .88
5. 00 .88
1.00 .88
2.30 .88
4.80 .88

.05 .45

.10 .45



CASE NO.5
TOTAL NUMBER OF DATA = iO

FITTED
FROOOE FROOOE

c 050 NUMBER NUMBER
<II) tIl)

(PERCENT> ( MM)

.20 .45 .80&90 .74627

.30 .. 45 .91617 .77891

.65 .45 .85733 .84515
1.00 .45 .95819 .88447
1.20 .45 .98341 .90166
1.50 .45 .94136 .92315
3.00 .45 1.05065 .99324
7.00 .45 1.09268 1. 'IU617

.05 .45 .65930 .64467

.10 .45 .69494 .69361

.25 .45 .60186 .76406

.55 .45 .9081'7 .83038
2.25 .45 .98005 .96352
2.50 .45 1.01568 .91430

.75 .45 .80295 .85801
1.90 .45 .95393 .94648
2.50 .45 1.02256 .97,430
5.40 .45 1.09119 1.1iI5682

.75 .45 .82134 .85801
2.00 .45 .94821 .951,&2
3.70 .45 1.00163 1.01547
5.00 .45 1.03502 1.04827
1.30 3.63 .97244 1.04714
1.90 3.63 1.10114 1.06995
3.00 3.63 1.27275 1.14379
3.80 3.63 1.31565 1.17269



CASE NO.'+
TOTAL NUMBER OF DATA = 46

CORRELATION COEFFICIENT = .88~

SOLUTION VECTOR IS •••

.1083 .0l!lZ2 -.0398

EQUATION ON ARITHMETIC sCALE IS •••

IF
0001.1083

= .9125 C 050/0

F"m'ED
FROUOE FROUOE

C D50/0 NUMBER NUMBER
<II) (II)

(PERCENTl

.12 .008661'+2 .6556 .1171

.15 .00666142 .7811 .135~

.20 .00866142 .8513 .1585

.50 .00866142 .8994 .8376

.50 .008661'+2 .8'+05 .8376

.60 .008&5142 .9750 .6543
1.00 .00866142 1.0759 .9029
1.00 .00866142 .9246 .902C3
1.75 .0 08661,'+2 .9666 .9593
2.00 .00866142 .9666 • 97T3
5.00 .00866142 1.0002 1.0148

.50 .00866142 .8553 .8376
1.00 .00866142 .9088 .9029
3.00 .00866142 .9533 1.0170
7.00 .00866142 .8910 1.1141

.80 .005'77428 .8184 .8806
1.10 .00517428 .9196 .9115
3.00 .00571428 .9951 1.0161
5.00 .00577428 1.0151 1.0739
1.00 .00577428 .8547 .9021
2.30 .00571428 1.0150 .9813
4.80 .00577428 1.0484 1.0691

.05 .00442913 .4623 .6518

.10 .00442913 .6692 .7026



CASE NO.4
TOTAL NUMBER OF DATA = 4lP

FITTED
FROUOE FROOOE

C 050/0 NUMBER NUMBER
<II) un

( PERCENT>

.20 .00442913 .8069 .7574

.30 .OD442913 .9162 .7914

.65 .00442913 .8573 .8605
1.00 .00442913 .9582 .9016
1.20 .00442913 .9834 .9196
1.50 .00442913 .9414 .<3421
3.00 .00442913 1.0507 1.0155
7.00 .00442913 1.0927 1.1131

.05 .00442913 .6593 .6518

.10 .00442913 .6949 .7026

.25 .00442913 .8019 .7759

.55 .00442913 .9088 .8451
2.25 .00442913 .9800 .9843
2.50 .00442913 1.0157 .995&

.75 .00295216 .8029 .8732
1.90 .00295276 .9539 .9656
2.50 .00295276 1.0226 .9941
5.40 .00295276 1.0912 1.0812

.15 .00295276 .8213 .8732
2.00 .00295276 .9482 .9710
3.70 .00295276 1.10016 1.0379
5.00 .00295276 1.0350 1.0723



CASE NO.5
TOTAL NUMBER OF O~TA = 50

CORRELATION COEFFICIENT = .820

SOLUTION VECTOR IS •••

.1096 .0017 -.0400

EQUATION ON ARITHMETIC sCALE IS •••

I otfOT71.1096
F = .9119 C 050/0

FITTED
FROUOE FROUOE

C 050/0 NUMBER NUMBER
<In 'tII)

( PERCENT>

.12 .00866142 .6556 .7169

.15 .00866142 .7817 .731i7

.20 .00866142 .8573 .7582

.50 .00866142 .8994 • 8;)8""3

.50 .00866142 .8405 .8383
• 60 .00866142 .9750 .6552

1.00 .00866142 1.0759 .90ft5
1.00 .00866142 .9246 .9045
1.75 .00866142 .9666 .9617
2.00 .00866142 .9666 .9759
5.00 .00866142 1.0002 1.0789
.so .00866142 .6553 • 8383

1.00 .00866142 .9088 .9045
3.00 .008661lt2 .9533 1.0202
7.00 .00866142 .8910 1.1195

.80 .00577428 .8784 .8820
1.10 .00577428 .9196 .9133
3.00 .00571428 .9951 l.oi95
5. 00 .00577428 1.0157 1.0782
1.00 .00577428 .8547 .9038
2.30 .00571428 1.0150 .9902
4.80 .OO5714rr- 1.0484 1.0734

.05 .0041+2913 .4623 .6506

.10 .00442913 .6892 .7I!1i9





CASE NO.1 FROUOE NO. (3)
TH E BE ST-F I T EQU AT1"'O;o;N~I"'S-.-.-.-----------------

LOGF = ( .0823) ¥ LOGe + ( -.043~)

EQUATION ON ARITHMETIC SCALE IS •••

I .0,8231----------I--=F-=--.9="0~4.---,8~~C~---,t--------~----------

STANDARD DEVIATION = .0476

CORRELATION COEFFICIENT = .8393

sTANDARD ERROR OF ESTIMATE = .0259

c
(PERCENT>

FROUOE NO.
(DIMENSIoNLESS)

FITTEn
FROUOE NO.

(oIFfENS I~LESS)

.12 .65561 .75988

.15 • 18168 •77"'3-q7..---------

.20 .65733 .79252
• 50 • 899:3 6 •8546"'2~--------
.50 .84052 .85~62
.60 .9750 0 .8675....5.....-----------

1.00 1.01587 .90482
1.00 .92457;------...9....0074..8.....2---------

1.75 .96660 .94748
2.00 .96660 .95796
5.00 1.00022 1.03303

.50 .83225 .85462
1.00 .88427 .90482
3.00 .92762 .99048
7.00 .86693 1.06204

.80 .87844 .86834
1.10 .91962 .91194
3.00 .99511 .99n48
5.00 1.01570 1.03303

--------------"'71-• ..-0..0-------•..-6..-6.,.-6=-82,---------,-.9048""2----------
2.30 1.02934 .96904
4.80 1.06~O 1.0~6



CASE NO.2 FROUDE NO. (3)
THE BEST-FIT EQU~TION IS •••

LOGF = ( .1270)'" LOGC + ( -.0476)

EQUATION ON ARITHMETIC SCALE IS •••

I C
.12701-----------:--I...F~=--.--;;8--;;9-=6=2-=-----,---------

STANDARD DEVIATION = .0856

CORRELATION COEFFICIENT = .9284

STANDARD ERROR OF ESTIMATE = .0319

C
(P ERCENT)

FROUOE NO.
(OIMENSIONLESS)

FITTED
FROUDE NO.

{DIMENSIONLESS)

.05 .46229 .61267

.10 .68923 .66903

.20 .80690 .73057

.30 .91617 .76916

.65 .85733 .84849
1.00 .95819 .89618
1.20 .98341 .91717
1.50 .94138 .94352
3.00 1.05065 1.03031
7.00 1.09268 1.14732

.05 .64153 .61267

.10 .67621 .66903

.25 .78024 .75156

.55 .88427 .63068
2.25 .95362 .99336 '
2.50 .98830 1.00674

.75 .8029? .86404
1.90 .95393 .97227

____________--=-2_=__.5=--0=-- -=1:...:.c...:::0c..:::;2:...::::2:....::5c...:::6:...-.- -=-l_=__.0°67-:::4 _
5.40 1.09119 1.11013

.75 .83296 .86404
2.00 .96162 .97862
3.70 1.01580 1.05811
5.00 1.04966 1.09934



CASE NO.3 FROUDE NO. (3)
--------.T.-;-;H""E,..........B;=;ES""'T - FIT EQ"'UiAA."..T.....-I"ON~IP;;S~.-.-.-----------------

LOGF - ( .2898) 11- LOGe + ( -.0415)

EQUATION ON ARITHMETIC SCALE IS •••

I C
.28gel-----------..F--==----;.9...0....8"""5~,...-------I.------------------

STANDARD DEVIATION = .0524

CORRELATION C~~rr~T = .9931

sTANDARD ERROR OF EsltMATE = .005g

C
(PERCENT>

1.30
1.90
3.00
3.80

FROUDE NO.
(DIMENSIONLESS)

.97244
1.10114
1.27275
1.31565

FITTED
FROUOE NO.

(DIAENSIONLESS)

.98036
1.09434
1.24925
1.33781+



CASE NO.~ FROUOE NO. (3)
THE BEST-FIT EQUATION IS •••

LDGF = ( .1097)'" LOGC + ( -.0470)

EQUATION ON ARITHMETIC SCALE IS •••

-----------,If-~--____"_,,,...._-----'·:....:1:....:0:....:9'----7-11--------------------
~ = .8975 C ,

STANDARD DEVIATION = .0707

CORRELATION COEFFICIENT: .8801

STANDARD ERROR OF ESTIMATE = .0336

FITTED
FROUDE NOFROUOE NOC • •

(PERCENT) (DI ME NSI 0 NL ESS) (DIMENSIONLESS)

.12 .65561 .71120

.15 .78168 .72883

.20 .85733 .75220

.50 .89936 .83174

.50 .84052 .83174

.60 .97500 .84855
1.00 1.07587 .89746
1.00 .92457 .89746
1.75 .96660 .951+29
2.00 .96660 .96837
5.00 1.00022 1.07078

.50 .83225 .83174
1.00 .881+27 .69146
3.00 .92162 1.01242
7.00 .86693 1.11105

.80 .8781+1+ .87576
1.10 .91962 .90690
3.00 .99511 1.012~2

5.00 1.01570 1.0TU78
1.00 .86682 .8971+6
2.30 1.02931+ .98331+
4.80 1.06320 1.06600

.05 .46229 .64607

.10 .68923 .69712

.20 .80690 .75220



CASE NO.4 FROUOE NO. (3)

C
(PERCENT>

F~OOOE NO.
(OIHENSIONLESS)

FITTED
FROUDE NO.

(OIto1ENSIONLESS)

.30 .91617 .78641

.65 .85733 .85603
1.00 .95619 .89746
1.20 .98341 .91559

-------------"7"1-....5"""""0-------.7<"9-.-4..-1.....3 -=-8------........93"8""2·"9...---------
3.00 1.05065 1.31242
7.00 1.09268 1.11105'----------

.05 .64153 .64607

.10 .67621 .69112

.25 .78024 .77084

.55 .88427 .84049
2.25 .95362 .96097

-------------=2-.=5="0-------.-=9-=8="8--3="0------.9Cf2J7------------
.75 .80295 .86958

1.90 .95393 .96294
2.50 1.02256 .99237

-------------=5-."'-4=-0-------.-1-.---0---9..--11..--9=------~1~.07"'9""8,.--6------------
.75 .63296 .86958

-------------=2-.=-0=-0--------.---9=-6~16=-2~------.9o"1f37---------

3.70 1.01580 1.03599
5.00 1.04966 1.07078



CASE NO.5 FROUOE NO. (3)
THE BEST-FIT EQUATION IS •••

LOGF = ( .1178>'" LOGC + ( -. 0415)

EQUATION ON ARITHMETIC SCALE IS •••

-----------I�---=----=-=--=-=--C=-----.:·:....:1:....:1:....:.7-=8~11-------------------
F = .9089 ,

STANDARD DEVIATION = .0758

CORRELATION COEFFICIENT = .8644

STANDARD ERROR OF ESTIMATE - .0381

C
(PER.CENT)

FROUDE NO.
(D I MENSI ONL ESS)

FITTED
FROUOE NO.

(DItiENS IONLESS)

.83167

.72669

.75195

.70602

.69936

.;5561

.76168

.85733
.50

.15

.20

.12

.50 .840 52 .83767

.60 .97500 .85585
1.00 1.07587 .90894
1.00 .92457 .90894
1.75 .96660 .97089
2.00 .96660 .98629
5.00 1.00022 1.09872

.50 .83225 .83767
1.00 .88427 .90894
3.00 .92762 1.03455
7.00 .86693 1.14316

.80 .67644 .88536
1.10 .91962 .91921
3.00 .99511 1.03455
5.00 1.01570 1.09872
1.00 .86682 .90894
2.30 1.02934 1.00266
4.80 1.06320 1.09345

.05 .46229 .63863

.10 .68923 .69298

.20 .80690 .75195



CASE NO.5 FROUOE NO. (3)>

C
(PERCENT>

.30

.65
1.00
1.20
1.50
3.00
7.00

.05

.10

.25

.55
2.25
2.50

.75
1.90
2.50
5.40

.75
2.00
3.70
s.oo
1.30
1.90
3.00
3.80

FROUDE No.
(01 MENSI ONLESS)

.91617

.85733
• 958P;I
.96341
.94138

1.05065
1.09268

.64153

.67621

.78024

.88427

.95362

.98830 .

.80295
• 95393

1.02256
1.09119

.83296

.96162
1.01580
1.04966

.97244
1.10114
1.27275
1.31565

FITTED
FROUDE NO.

(DIMENSIONLESS)

.78874

.86396
• 90894
.92668
•9531+2'--------

1.03455
1.14316

.63863

.69298

.7'7198
•847T3'-------

1.000n7
1.01256

.87865

.98035
1.01256
1.10873

.87865

.98629
1.06043
1.09872

.93748

.98035
1.03455
1.06377



CASE N:>.4
TOTAL NUMBER OF DATA = 46

CORRELATION COEFFICIENT = .878

SOLUTION VECTOR IS •••

.1067 .0572 -.0340

EQUATION ON ARITHMETIC SCALE IS •••

I •
0572

1
.1067

F = .9247 C 050

FITTED
FROUDE FROUDE

C 050 NUMBER NUMBER
CII I) (III)

( PERCENT> ( MM)

.12 .88 .65561 .73205

.15 .88 .78168 .74969

.20 .88 .85733 .77307

.50 .88 .89936 .85250

.50 .88 .84052 .85250

.60 .88 .97500 .86925
1.00 .88 1.07587 .91797
1.00 .88 .92457 .91797
1.75 .88 .96660 .97447
2.00 .88 .96660 .98846
5.00 .88 1.00022 1.09001

.50 .88 .83225 .85250
1.00 .88 .88427 .91797
3.00 .88 .92762 1.03217
7.00 .88 .86693 1.12987

.80 .88 .87844 .89636
1.10 .88 .91962 .92735
3.00 .88 .99511 1.03217
5.00 .88 1.01570 1.09001
1.00 .88 .86682 .91797
2.30 .88 1.02934 1.00331
4.80 .88 1.06320 1. 08528

.05 .45 .46229 .64165

.10 .45 .68923 .p909Z



CASE NJ.£+
TOTAL NUMBER OFOA'TA = 40

FITTED
FROODt: FRll1JD"E

C 050 NUMBER NUMBER
<II I) ClI-n

(PERCENT> (MM)

.20 • 45 .8Ub90 • 74"3"98

.30 .45 .91517 .77688

.65 .45 .8~ .8£+372
1.00 .45 .95819 .88342
1.20 .45 .98341 • 9W7"8
1.50 .45 .94138 .92249
3.00 .45 1.05065 .99333
7.00 .45 1.09268 1.08735

.05 .45 .64153 .64165

.10 .£+5 .67621 .69092

.25 .45 • 78024 .76191

.55 .45 .88427 .82881
2.25 .45 .95362 • 96329
2.50 .45 .98830 .97419

.75 .45 .80295 .85570
1.130 .45 .95393 .9£+606
2.50 .45 1.02256 .91419
5.40 .45 1.0131113 1.tl5765

.75 .45 .83296 .85670
2.00 .45 .96162 .135126
3.70 .45 1.01560 1.01582
5.00 .45 1.04966 1.04699



CASE NJ.5
TOTAL NUMBER OF DATA = 50

CORREL~TION COEFFICIENT = .667

SOLUTION VECTOR IS •••

.1076 .0668 -.0312

EQUATION ON ARITHMETIC SCALE IS •••

__________________II_:_=__._9_3_0_6__C__·_
1
_
O
_
1
_
6
__D_5_0__"O~ _

C 050

(PERCENT) (MM)

.12 .88

.15 .88

.20 .88

.50 .88

.50 .88
.60 .88

1.00 .88
1.00 .88
1.75 .88
2.00 .88
5.00 .88

.50 .88
1.00 .88
3.00 .88
7.00 .88

.80 .88
1.10 .88
3.00 .88
5.00 .88
1.00 .88
2.30 .88
4.80 .88

.05 .45

.10 .45

FROUOE
NUMBER

<III)

.65561

.78168

.85733

.89936

.84052

.97500
1.07587

.92457

.96660

.g6660
1.00022

.83225

.88427

.92762

.86593

.87844

.91962

.99511
1.01570

.86082
1.02934
1.06320

.46229

.68923

FITTED
FROUDE
NUM!3ER

(III)

.73430

.75214

.77578

.85614

.85614

.87310

.92242

.92242

.97966

.99384
1.09679

.85614

.92242
1.03815
1.13722

.90055

.93193
1.03815
1.09679

.92242
1.'l!l0889
1.09199

.63816

.68757



CASE NO.5
TOT-AL NUMBER tfF-rflrTA = ~O

FITTED
FROUOE FRomrE

C 050 NUMBER NUMBER
rrnl rrrn

(PERCENT> ( MH)

.20 .45 .80690 • l1ilf80

.30 .45 .91&17 .77382
• 65 .45 .85733 • ~r41r<rl+

1.00 .45 .95619 .88083
1.20 .45 .98341 • a-g1rc6
1.50 .45 .94138 .92010
3. 00 .45 1"';1]"'5065 • 9'"9'"1""34
7.00 .45 1.09268 1.08594

.!f5 .45 • 61+1-;-:3 • 638T6

.10 .45 .67&21 .68757

.25 .Lt5 • ? 8lfZ-tt • 1'5"8T9

.55 .45 .8842 ? .82597
2.25 .45 • tj5 31':i 2 • 9El113
2.50 .45 .98830 .97208

.75 .45 • 80 2CfS • 853CJ9
1.90 .45 .953CJ3 .94380
2.50 .Lt5 1-;-tr275""6 • 97Z013
5.40 .45 1.09119 1.056015

• 75 .45 .83296 • 853-9"9
2.00 .45 .9&162 .94902
3.70 .45 1.01560 1. 01396
5.00 .45 1.04966 1.04734
1.30 3.63 .97244 1~99

1.90 3.63 1.10114 1.08951
3. 00 3.6'3 1.2"7275 1.14445
3.80 3.63 1.31565 1.17393



CASE N::>.4
--------.T~O~T AL -N-Uc,..,..M:,..."B......,E=-R-----.,O-=F,.-----0......,A-=T,...,.A-=--4~5-------

CORRELATION COEFFICIENT = .685

SOLUTION VECTOR IS •••

.1104 .0022 -.01+14

EQUATION ON ARITHMETIC SCALE IS •••

I F
•
00221.1104

= .9090 C 050/0

FITTED
FROUOE FROUOE

C 050/0 NUMBER NUMBER
(III) ( III>

(PERCENT)

.12 .00855142 .5555 .7120

.15 .00855142 .7817 .7297

.20 .00855142 .8573 .7533

.50 .00855142 .8994 .8335

.50 .00855142 .8405 .8335

.50 .00855142 .9750 .6504
1.00 .00855142 1.,0759 .8997
1.00 .00855142 .9245 .6997
1.75 .00855142 .9555 .9571
2.00 .00855142 .9555 .9713
5.00 .00855142 1.0002 1.0745

.50 .00855142 .8323 .833C;
1.00 .00855142 .8843 .8997
3.00 .00856142 .9275 1.0157
7.00 .00855142 .8569 1.1153

.80 .00577428 .8784 .8771
1.10 .00577428 .9195 .9084
3.00 .00577428 .9951 1.0148
5.00 .00577428 1.0157 1.0731
1.00 .00577428 .8668 .8989
2.30 .00577428 1.0293 .9655
4.80 .00577428 1.0532 1.0589

.05 .00442913 .4623 .645E;

.10 .00442913 .6892 .5968



i-. CASE NO.4
4~TOTAL NUMBER OF OATA =

FITTED
FRO ODE FROUDE

c 050/0 NUMBER NUMBER
<III) (III)

(PERCENT>

.20 .00442913 • 8069 .1522

.30 .00442913 .9162 .7866

.65 .00442913 .851"3 .8507
1.00 .00442913 .9582 .8984
1.20 .00442913 .9834 .9167
1.50 .00442913 .9414 .9395
3.00 .00442913 1. 0507 1. (fi42
7.00 .00442913 1.0927 1.1137

.05 .00442913 .6415 .6455

.10 .00442913 .6762 .6968

.25 .00442913 .7802 .7709

.55 .00442913 .8843 .8410
2.25 .no442913 .9536 •.9825
2.50 .004'+2913 .9883 .9940

.75 .00295276 .8029 .8696
1.90 .00295276 .9539 .9635
2.50 .00295276 1.0226 .993-2
5.40 .00295276 1.0912 1.0813

.15 .00295276 .8330 .6696
2.00 .00295276 .9616 .9690
3.70 .00295276 1.0158 1.0371
5.00 .00295276 1.0497 1.0721



__ ~ CASE NJ.5
'-----....,T;-.O".....,;TAl ·-,N-,-cUc,.,.M.,-B---,E=-"'R,-------,0-.",F,---,0-A-=T~A-=--=5-0-------

CORRELATION COEFFICIENT = .822

SOLUTION VECTOR IS •••

.1117 .0017 -.0416
~----------

EQUATION ON ARITHMETIC SCALE IS •••

jF •
00171.1111

= .9066 C 050/0

FItTED
FROUOF.: FROUDE

C 050/0 NUMBER NUMBER
<II I) ( II!)

(PERCENT>

.12 .0086614-2 .6556 .7112

.15 .00866142 .7817 .7292

.20 .00866142 .8573 .7530

.50 .00866142 .8994- .8341

.50 .00866142 .8405 .8341

.60 .00866142 .9150 .8513
1.00 .00866142 1.0759 .9013
1.00 .00866142 .9246 .9013
1.75 .00866142 .9666 .9594
2.00 .00866142 .9666 .9738
5.00 .00866142 1.0002 1.0788

.50 .00866142 .8323 .8341
1.00 .008661'+2 .8843 .9013
3.00 .00866142 .9276 1.0189
7.00 .00866142 .8669 1.1201

.80 .00577428 .8784 .8785
1.10 .00577428 .9196 .C}103
3.00 .00577428 .9951 1.0182
5.00 .00511428 1.0157 1.0780
1.00 .00577428 .8668 .9006
2.30 .00577428 1.0293 .9885
4.80 .00577428 1.0632 1.0731

.05 .00442913 .4623 .6442

.10 .00442913 .6892 .6961



>* CASE NJ.5
TOTAL NUMBER OF DATA = 50

FITTED
FRO ODE FROUDE

C 050/0 NUMBER NUMBER
CIIl> ( III)

(PERCENT>

.20 .00442913 .6069 .752f

.30 .004421313 .13162 .7870

.65 .00442913 • 8S~73 .8579
1.00 .00442913 .9582 .9002
1.20 .00442913 .9834 • 91 Er8
1.50 .004421313 .9414 .13419
3.00 .00442913 f.050r i.0178
7.00 .00442913 1.0927 1.1188

,
.05 .004421313 .6415 .6442
.10 .00442913 .6762 .61361
.25 .00442913 • 7802 .7111
.55 .00442913 .8843 .8421

2.25 .00442913 .9536 .98156
2.50 .004421313 .9883 .9973

.75 .00295276 .80213 .8712
1.90 .00295276 .95313 .9665
2.50 .002135276 1.0226 .9966
5.40 .00295276 1.0912 1.0861

.75 .00295276 .8330 .8712
2.00 .00295276 .9&16 .9720
3.70 .002135276 1.0158 1.0412
5.00 .00295276 1.0497 1.0168
1.30 .02381890 .9724 .9297
1.90 .02381890 1.1011 .9699
3. 00 .02381890 1.2727 1.0207
3.80 .02381890 1.3157 1.0480
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