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SWAY SUBASSEMBLAGE ANALYSIS FOR UNBRACED FRAMES
a
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by J. Hartley Daniels, and Le-Wu Lu, Associate Members, ASCE

INTRODUCTION

The plastic methods of structural analysis bAsed on simple plastic theory

are limited to the design of frames in which the deformations are so small that

the equilibrium equations c~n be formulated for the undeformed stAte, and where
3 ­

no instability will occur prior to the attainment of the ultimate load (3).

These limitations imply that the effects of axial forces can be ignored. Such

methods therefore are not suitable for the design of tall unbraced multi-story

frames in which the strength and behavior are considerably influenced by axial

force effects due to gravity loads (7). This is especially so when the frames

are subjected to combined gravity and wind (or sei~mic) loads .

The chief concern for gravity loads is the magnitude of additional over­

turning moment (P6 moment) that causes the frame to fail by instability. As the

frame sways under the action of the combined loads, the total gravity load, P,

above a given story acts through the relative sway displacement, 6, of the story

to produce an overturning moment which the frame is required to resist.

Much research effort is being directed towards the development of plastic

methods which will be suitable for the analysis and design of unbraced multi­

story frames. Typical of the results being obtained are the second-order elastic­

plastic methods of analysis (15). They can include P~ moments and can predict

the lateral-load versus sway-deflection behAvior of the frame or portions of it

up to failure. Such methods however find their major application only for the

a.For presentation at the Sept. 30 to Oct. 4, 1968 ASCE Annual Meeting and
Structural Engineering Conference held at Pittsburgh, Pa.·

1.Assist. Prof. of Civ. Engrg., Fritz Engrg. Lab., Lehigh Univ., Bethlehem, Pa.
2.Assoc. Prof. of Civ. Engrg., Fritz Engrg. Lab., Lehigh Univ., Bethlehem, Pa.
3.Numerals in parenthesis refer to corresponding items in the Appendix. -
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final design stages since a complete, albeit preliminary, design of the frame

must already be available. Relatively simple design procedures have been developed

which are suitable for the preliminary design stage of unbraced frames (7,8,9,10).

The most successful is plastic moment balancing, because it can include an esti­

mated p~ moment in each story of the frame (7,9). The p~ moments are estimated

on the basis of the expected S1vay deflection corresponding to either the forma­

tion of a mechanism in each story or to the attainment of the maximum load.

Following the preliminary design by moment balancing, a lateral-load

versus sway-deflection analysis is required in order to check the estimated sway

deflection used to compute the p~ moments, and to determine the sway deflection

at the working load level of the combined loads. This paper presents the theore­

tical basis for an approximate method of analysis which can be used for this

purpose (4). It is particularly applicable to the middle and lower stories of an

unbraced frame where the p~ moments become significant. The method is based on

the concept of sway subassemblages (12), and uses directly the results of recent

studies of restrained columns permitted to sway (11). It accounts for P~moments
~

(in columns and frames) as well as plastification and residual stresses in columns

and plastic hinges in beams. In this method, a story with known member sizes is

analyzed by subdividing it into sway subassemblages. Each sway subassemblage is

then analyzed either manually or with a computer for its load-deflection behavior

(1,5). Specially prepared design charts can be used to assist the manual analysis

(4,6,14). The resulting load-deflection curves are then combined to give the com­

plete load-deflection curve for the story up to and beyond the maximum load. The

adequacy of the preliminary design can then be determined on the basis of maximum

strength, maximum deflection (at working or factored load) or any other suitable

load or deflection criteria. If a revision of member sizes is necessary the pre­

vious analysis will assist in the selection of revised members. The final design

step using a second-order elastic-plastic analysis, for example, could proceed

once the sway subassemblage analysis has indicated that the preliminary design is

satisfactory.

Restrictions and Assumptions.- The following restrictions and assumptions are

applied to the frame and its members:

-2-
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1. Unbraced frames considered are regular, plane, rectangular multi­

story steel frames of approximately equal story height, one or more

bays in width, h~ving rigid connections and no bracing or cladding

in the plane of the frame to resist sway. The number of stories

considered is less than that for which column shortening effects

become significant (15).

2. Steel members must have one axis of symmetry. They mAy be rolled

or welded shapes such as wide-flange or I sections and may include

welded hybrid sections. These members can be made of different steels

with different yield stress levels.

3. Out-of-plane deformations of the frame as well as lateral-torsional,

local buckling of the members is prevented. Biaxial bending of the

columns does not occur. The effect of axial and curvature shortening

of the beams and columns is neglected.

4. Lengths of beams and columns will be taken as the distance between

centroidal axes of the members. The centroidal axes of the beams and

columns are each assumed to be collinear. The minor axis of each

member coincides with the plane of the frame which is a plane of sym­

metry.

Loading Conditions.- The sway subassemblage method is applicable only for the

combined gravity and wind load condition. All loads are assumed either horizontal. - ..•.

or vertical and acting in the plane of the frame. Gravity loads may be concen-

trated or distributed. Lateral wind loads are distributed loads, but are assumed

concentrated at the floor levels. It is unlikely that the gravity and lateral

loads would increase proportionally in a practical frame. It is more likely that

the gravity loads will remain virtually unchanged as the lateral loads are applied.

Therefore, it is assumed that the factored gravity loads are applied first, fol­

lowed by monotonically increasing lateral loads. The choice of load factor is

arbitrary, although, where ~ndicated will be tAken in accordance with that esta­

blished in Ref. 7, namely 1.30. The probability that the full gravity loads are

not likely to be present at all times can be accounted for by live load reduction

factors (7).

-3-



Application of the S,vay Subassemblage Hethod.- The method is limited to the

analysis of those stories in an unbraced multi-story frame where the columns are

bent into nearly symmetrical double curvature. In general this will comprise the

middle and 10\ver stories. The member design in the upper several stories is

normally controlled by the gravity· load condition alone. Therefore a separate

analysis is required in this region. It is assumed that the unbraced frame and

its gravity loads are sufficiently symmetrical that sidesway under gravity loads

alone is small and can be neglected.

Sign Convention.- The sign convention adopted in the analysis is as follows (11):

1. External moments acting at a joint are positive when clockwise.

2. Moments and rotations at the ends of members are positive when

c lock,vise, and

3. Horizont,ql shear is positive if it causes a clockwise moment about a

joint.

THE SWAY SUBASSEMBLAGES IN AN UNBRACED FRAME

One-Story Assemblage.- In a well-proportioned regular unbraced multi-story frame

such as shown in Fig. 1, the member sizes in a region containing the middle and

lower stories will likely increase at a relatively small and uniform rate with

increasing distance from the top of the frame. Although the factored gravity

loads (1.3 w) within each bay will likely be constant in this region, the beams

and columns will increase in s~~e due to the increasing wind and p~ moments which..

must be carried by the lower stories. The columns will also increase in size due

to the accumulation of gravity loads on the beams. In addition, although the

wind loads may not be uniformly distributed over the height of the frame, and the

sway deflection may not be uniform for each story, the variation over two or

three stories is probably small. As a result, if level n is within this region

(Fig. 1) the load deflection behavior at levels n + 1, n, and n - 1, could be

expected to be nearly the same. Therefore, it is assumed that the behAvior of

one story of the frame containing level n can be represented by the behavior of

a one-story assemblage of beams and columns which contains level n.

-4-
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On the basis of recent studies (5,15) it is assumed that a point of

inflection will occur at the mid-height of each column above and below level n.

A one-story assemblage can now be isolated from the frame by passing horizontal

cuts through the assumed inflection points. The resulting assemblage is shown

in Fig. 2 together with the forces acting on the members and the resulting defor­

mations. The total shear between levels nand n - 1 is L: H l' Similarly, the
n-

total shear between levels nand n + 1 is L: H where L: H ::: L:H 1 + H. The con-
n n n- n.

stants AA' ~, ---etc. define the distribution of the total wind shear to the col-

umns and is assumed to be the same above and below level n. The axial forces in

the columns above and below level n are designated as P 1 and P respectively,
n- n

and are assumed to remain constant in the analysis. For a particular column,

P 1 is calculated as the algebraic sum of the estimated shear forces at the two
n-

column faces resulting from:

1. The factored gravity loads on the tributary length of each beam

connected to the column above level n (7), and,

2. The moments present in each beam connected to the column above

level n, due to the factored wind loads and the estimated P~ effect.

These moments are computed for the assumed mechanism or instability

load of each story and are easily obtained from the moment balance

process (9).

The axial loads P are calculated in a similar manner but include the
n

shear forces from the beams at level n.

Half-Story Assemblage.- In Figs. 1 and 2, the shear forces L:Hwere calculated

from the design ultimate value of lateral load. In the analysis L:H is to be

compared with the lateral load, L:q, versus sway deflection, ~, response of the

one-story assemblage. Therefore in the sway subassemblage analysis, the shear

forces L:H 1 and L:H acting on the one-story assemblage (Fig. 2) will be replacedn- n
by shear forces L:Q 1 and L:Q where L:Q is a function of ~.The one-story assem-·n- . n
blage may also be simplified by replacing each column above level n with the

equivalent joint forces. Such a simplification is shown in Fig. 3. Each column­

above level n applies a vertical and horizontal force and a bending moment to

the joint at level n. The horizontal force L:Q 1 may be combined with the force
n-

-6-
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M =-
n-l

Q to give a total force at level n of LQ where
n, n

2:Q = 2:Q 1 + Qn n- n

Also the bending moment at each joint will have a magnitude of

h ~
n-l _ p n-l
2 n-l 2

(1)

(2)

As shown in Fig. 3, from statics, the internal moments, M , in the columns imme-
n

diately below level n will be given by

h ~

M (A2:Q )
n p n (3)- - 2 2n n n

Now, the factor' A was assumed to have the same value for a column above and

below level n. In addition, h was assumed to be approximately equal to h l'
. n ~

Since 2:Q > 2:Q 1 and P > p 1 then if ~ is approximately equal to ~ l' Mn n- n n- n n- n
will likely be greater than M l' In fact, if h ~ h 1 and ~ ~ ~ l' thenn- n n- n n-
M will always be greater than M l' With the ideal behavior of the middle and

n n-
lower stories assumed of a well proportioned frame it can then be conservatively

\

assumed that M 1 is equal to M and acts in the same sense.
n- n

The Sway Subassemblages.- To facilitate the load-deflection analysis of the half- '

story assemblage (Fig. 3), it will be subdivided into smaller units called sway

subassemblages. A sway subassemblage will consist of one restrained column plus

the adjacent beams at the column top. Three types of sway subassemblages which

are possible in any multi-bay unbraced frame are shown in Fig. 4. In each sway

subassemblage the beams are considered as the restraining members which provide

rotational restraint to the column top.

Rotational restraints are also imposed at the free ends of the beams in

each sway subassemblage to account for the restraining effects of the members

either side of a sway subassemblage. These restraints are represented as springs

in Fig. 4.

THE RESTRAINED COLUMN IN A SWAY SUBASSEMBLAGE

The method of analysis developed in this paper for the sway subassemblages

described above requires an understanding o( the behavior of restrained columns.
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A restrained column depends on the rotational restraint provided by the adja­

cent beams to resist the applied shear forces. For the columns in the half-

story assemblage, this restraint is a function of the stiffnesses of all the beams

and columns. In this study, two types of rotational restraint will be considered:

(1) linearly elastic restraint for all values of sway deflection, and (2) linearly

elastic restraint which decreases abruptly at discret~ intervals of sway deflec­

tion. The results of this study will then be applied to determine the load­

deflection behavior of a sway subassemblage where the beams initially provide

linear elastic rotational restraint which decreases abruptly at discrete intervals

of sway deflection. with the formation of plastic hinges in the beams.

Equilibrium and Compatibility.- Figure 5(a) shows a typical restrained column

to be treated in this study. It is subjected to a constant vertical load, P ,
n

The resulting deformationand to varying lateral force, Q , and moment, M .
n n

configuration is shown in Fig. 5(b). A linearly elastic rotational restraint at

the column top provides a restraining moment of M. The three rotations, 6 /h ,
r n n

e, and yare measured from the reference lines shown in Fig. 5(b) and are positive

when clockwise (y as shown is therefore negative). From statics the moment at

the upper end of the column will be given by

[
h 6 ]n· n

M = - Q .-- + P --n n 2 ·n 2
(4)

Equilibrium of moments at the joint then requires that

2M + M = 0
n r

(5)

For small deformations, the rotations e, y, and 6 /h in Fig. 5(b) are related
n n

by the compatibility condition:

6
n

h
n

= e - y (6)

The load-deflection relationship, Q versus 6 /2 of the restrained
. n n

column with linear restraint stiffness can be determined by solving Eqs. 4, 5 and

6 together with the known moment-rotation relationship, M versus y, for the
n

column (7). .'
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Moment-Rotation Relationship.- For small values of sway deflection t.n , it can

be assumed that the restrained column is axially loaded by the vertical forces

The restrained column will then be subjected to unsymmetrical single curva-P .
n

ture bending under the system of forces shown in Figure 5(b). However, this

column is actually the upper hAlf of a column of length h (Fig. 3) which will be
n

subjected to symmetrical double curvature bending. The moment-rotation relation-

ship for such a column can be determined following the procedures described in

Chapters 4 and 9 of Ref. 7 or it can be obtained from curves such as those shown

in Charts 111-1 to 111-7 of Ref. 14 for specified values of the axial load ratio

P IP and slenderness ratio h Ir P is the axial load corresponding to full
n y - n x y

yielding of the column cross-section and r is the radius of gyration of the
x

column for strong axis bending. The charts shown in Ref. 14 give the moment-

rotation curves for columns which have moment applied at one end, are pinn.ed at

the .other·' end and are of length h. These curves can be used for columns which
n

are bent in symmetrical double curvature where the half-length is h 12, by using
. n

an equivalent slenderness ratio equal to one-half of the actual slenderness ratio

·of the column.

An examination of the curves in Charts 111-1 to 111-7 of Ref. 14 indicates

that for sym~etrical.double curvature. bending and for P Ip less than or equal
n y

to 0.90, ,.1themaximum value of M wi 11 be equal to or slightly below the reduced
n

plastic moment M , (reduced due to P ) for columns with h /r less than 40.
pc n n x

Therefore it is assumed in this paper that a plastic hinge can develop at the

. top of the column.

Load-Deflection Equation for Constant Restraint Stiffness.- Since Eqs. 4, 5 and

6 are valid for any restrained column in the story below any level n, the subscript

n can then be deleted and Eq. 4 re-arranged and written

or equivalently

Qh ::: _ [M + pt.]
2 2

(7)

Qh
2M

pc
::: - [~ + ;~ ]

pc pc

-13:"
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For 0.15 < pip < 1.0, can be approximated by (2)
Y

M = 1.18 (l-P/P ) M
pc Y P

(9 )

in which M is the full plastic moment of the column section. If M is taken as
p p

2
r

M
P

= (J fS = 2P f
y y d

x (10)

(13)

in which (J is the yield stress of the column, f the shape factor, S the section
y

modulus and d the column depth, then

P h d 6.-
P6.

P r 2r h
y x x (11)

2M R. )pc 2.36 f(l -
P

Y

When Eq. 11 is substituted into Eq. 8, the following non-dimensional load-deflec­

tion relationship is obtained

,- P h d 6.

1.-9.b..... 1 M
P r 2r h

-1- + y x x
I (12)2M M Ppc Lpc 2.36 f(l - Ii ) J

y

The above equation may be simplified by noting that f and d/2r can be approxi­
x

mated by their average values of 1.11 and 1.15 respectively for wide-flange shapes

normally used for columns (13). With these substitutions, Eq. 12 becomes

2~:c ~ -[*PC + 2~;8:: ~ ~ )J
y

This equation can be further simplified to become

~ = -[~ 6.'"'
2M M + C hJpc pc

in which C is a constant given by

p h
P r

C y x

2.28 (1 - R. )
P

Y

(14)

(15)

Load-Deflection Behavior for Constant Restr~int Stiffness.- For all values of e

M = k e
r

-14-



or equivalently

M = k eMr pc
(17)

in which k is the stiffness of the restraint and k = kiM Since the moment M,
pc

at the top of a restrained column cannot be expressed in terms of the chord

rotation, y, except in the elastic range, Eq. 14 cannot be solved explicitly.

However a tabular form of solution is possible (11).

The non-dimensional load-deflection relationship, Qh/2M versus 6/h,pc
for a particular restrained column with slenderness ratio, hlr , constant axial

x
load ratio, PIP, and constant restraint stiffness, k, is shown by curve O-a-b-~ e

y
in Fig. 6.

(18)M
pc2M - -

The maximum value of restraining moment will be reached when a plastic

hinge forms at the, top of the column, that is

M
r

The load-deflection relationship for the restrained column after the formation

of this plastic hinge (and thus a mechanism) can be found from Eqs. 14 and 18 as

(19)6
1 - C ­h

Qh
2M

pc

Equation 19 appears in Fig. 6 as the straight line segment d-e. Curves O-a-b-c-e

and d-c-e intersect at point c when a plastic hinge forms at the top of the column.

The restraining moment corresponding to point c can be found from Eq. 18 as

M = 2M
r pc (20)

The angle, e , corresponding to the formation of the plastic hinge may be found
p

by equating Eqs. 17 and 20

e =
p'

2
k

(21 )

It should be apparent from the derivation of Eq. 14 that lines O-d and

d-c-e in Fig. 6 define the second-order, rigid-plastic load-deflection curves

for the column shown in the figure. It is evident then that the restraining

moment, M will have a constant value, M' everywhere on d-c-e, which is equal tor r'

-15-
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M' :;;: 2M
r pc (22)

Additional load-deflection curves may also be obtained for the column

shown in Fig. 6. Each curve would correspond to a different value of restraint

stiffness, k, 0 ~ k ~~. All curves would be similar in shape to O-a-b-c-e and

all would pass through point O. In addition, all curves would intersect the

line d-e (or its extension for greater values of ~/~), since the maximum restrain­

ing moment, M' for all curves is independent of the restraint stiffness k.
r

Load-Deflection Behavior for Variable Restraint Stiffness.- In general, the

restraint stiffness, k, will not remain constant for all values of joint rota­

tion, 6, but will decrease abruptly at discrete intervals as 6 increases due to

the successive formation of plastic hinges in the various members. Of the infinite

number of k - 6 relationships possible, only two of them are fundamental to the

sway subassemblage method of analysis. These two may be described as-follows:

1. Constant - Zero Restraint Stiffness:

k :;;: k
l (0 :s 6 :s 61 ) (23)

k :;;: k
2

:;;: 0 (6
1

< 6 :s; ~)/ (24)
l

where 61
< 6 (Eq. 21).

p

2. Constant - Constant Restraint Stiffness:

k :;;: k
l (0 ~ 6 :s; 6

1
)

k :;;: k
2

(6
1

< 6 ;S; ~)

where k
2 < k l ·

(25)

(26)

Constant - Zero Restraint Stiffness.- The restraining moment at the column top

will be defined by the equations

M :;;: k
1

6M
r pc

M :;;: M' = k 6 M - P Mr r 1 1 pc - 1 pc

(0 ~ 6 _~ 61)

(6
1

< 6 ~ ~)

(27)

(28)

in which Pl is a constant and by the definition of 6
1

, 0 ~ Pl <~, (Eq. 21).

The solution of Eq-. 14 for the restraining moment defined by Eq. 27 will give

-17-
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the load-deflection curve 0 - g in Fig. 7. For equal values of p/p ,h/r and
y x

k ; k
l

curve 0 - g would be the initial segment of the complete load-deflection

curve shown as O-b-c-e in both Figs. 6 and 7. At point g, however, the restraint

stiffness becomes zero. Therefore additional restraining moment cannot be gen­

erated and a mechanism condition results. The restraining moment after the forma­

tion of the mechanism becomes constant (M' ) and is given by Eq. 28. Using Eqs.
r

5 and 28, the maximum column moment is given by

PI
M; - - M

2 pc
(29)

The load-deflection curve following the formation of the mechanism can be obtained

by substituting Eq. 29 into Eq. 14 to give

(30)C Q
h

Qh
2M

pc

Equation 30 is shown in Fig. 7 as the straight line f-g-h. Since the derivatives

with respect to ~/h of Eqs. 19 and 30 are equal, f-g-h will be parallel to d-c-e.

From the previous discussion, 0 - f and f-g-h in Fig. 7 will define the second-

order rigid-plastic load-deflection curves for the rigid-plastic column with

maximum restraining moment given by Eq. 28. The moment, M, at the top of the

column, and the column chord rotation, Y, will be constant everywhere on f-g-h.

Constant - Constant Restraint Stiffness.- The restraining moment at the column

top will now be defined by the equations

M ; k
l

M
r pc

M k
2

M
r pc

(0 S; e ~ e
l

)

(e
l

< e ;:::; (0)

(31)

(32)

The solution of Eq. 14 for M defined by Eq. 31 gives curve segment 0 - g
r

in Fig. 8. For equal values of p/p and h/r , 0 - g in Figs. 7 and 8 are the same.
y x

However, at point g in Fig. 8 the restraint stiffness reduces to k
2

. Additional

restraining moment, M , can be developed after point g but at a smaller rate than
r

before (Eq. 26). The resulting ,load-deflection curve is shown as curve g-j-m

in Fig. 8, which intersects the line d-e at point m with the formation of a

plastic hinge in the column top.
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Superposition of Load-Deflection Curves.- Consider the two load-deflection curves

shown in Fig. 9(b). Curve O-a-b-c represents the load-deflection curves for a

column whose restraint stiffness decreases from k
l

to k
2

at point a. Curve

Q-a'-b'-c', hO~vever, represents the load-deflection curve for the same column

but with constant restraint stiffness k
2

. Segment O-a of curve O-a-b-c and the

complete curve O-a'-b'-c' may both be obtained by solving Eq. 14, where the

restraining moments M , are def{ned by kteM and k
2

eM respectively. The load-
r . pc pc

deflection equation for segment a-b-c of curve O-a-b-c can be derived considering

the restrained column shown in Fig. 9(a). The forces acting on the restrained

column are shown together with the resulting deformations. The initial conditions

(point a in Fig. 9(b» are given by Ql' ~l' el , Yl' Ml and Mrl . Following the

same procedure used to derive Eq. 14, the load-deflection relationships for

curve segment a-b-c of Fig. 9(b) is ~iven by

(Ql + Q)h

2M
pc

= +
(~l + ~) ]

C h . (33)

A linear transformation of axes in Fig. 9(b) 'with the new origin at

point a will reduce Eq. 33 to Eq. 14. Equation 14 also applies to the segment

a'-b'-c' with origin at .point a'. It can be shown that curve segments a-b-c

and a'-b'-c' are identical since the intersection of the two curves with the

straight line defined by M'r = P2Mpc' where Pl ~ P2 ~ 2 (such as points band

b') have identical slopes (5). Therefore it is not necessary to derive the

load-deflection equation corresponding to each reduced value of restraint stiff~

ness, k. Instead the load-deflection curve may be built up from segments of

complete load-deflection curves which are given by Eq. 14 for the appropriate

values of k.

Design Charts:- The solutions of Eqs. 14 and 30 have been presented in Ref. 6

in the form of 78 design charts to assist the manual analysis. A typical chart

for P = 0.45 P and h = 22 r is shown in Fig. 10. Such charts can be prepared
y x

using a tabular solution similar to those shown in Ref. 11. The charts in Ref.

6 have been prepared for use only with ASTM A36 Steel wide-flange column shapes

with a nominal yield stress level of 36 ksi. However they can be applied to

steels of other yield stress levels by substituting an equivalent slenderness

ratio
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36
(5

y
(34 )

This substitution will yield exact results providing the residual stress has

the same distribution pattern over the cross-section and the same proportion

of the yield stress for the different steels.

covered by the charts are

The ranges of P/P and h/r
y x

0.30 ::;;;, ~ ::;;;, 0.90 intervals of 0.05 P
P

Y Y

20 ::;;;, ~ ~ 30 interva Is of 2 ~
r rx x

Each load-deflection curve was constructed for a constant value of

restraining moment, M , which is defined by Eq. 17. Also shown on each chart
r

are the straight lines representing constant values of maximum restraining

These lines have been constructed for values of p varying frommoment, MI
•

r
a to 2 at intervals of 0.1.

RESTRAINING CHARACTERISTICS OF BEAMS AND COLUMNS

Initial Restraint.- The term "initial restraint" will be used in this paper to

denote the rotational restraint provided to the top of a restrained column by the

restraining system prior to the formation of the first plastic hinge in the

restraining system. The restraining system will consist of all the beams and

columns on both sides of the column.

Initial Restraint Coefficients.- The interior region of a half-story assemblage

is shown in Fig. ll(a) together with the vertical forces, P, and joint moments,

M, which were previously determined. The deflected configuration is consistent

with a relatively small applied shear force, Q, acting towards the right. The

behavior of all the beams and columns is assumed to be elastic. The sway defle~

tion, ~/h, will also be relatively small.

Consider the restrained column at joint i. It is desired to calculate

the initial elastic va~ue of restraint stiffness, k., which is provided by the
~

beams and columns of the half-story assemblage. The restraining moment, M , at
r

joint i ~ill be the sum of the restraining moments on either side of the joint

and can be written

-24-
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M = =rK E I qi_l ) + K E Ii j ] 8
r Mi(i_l) + Mij Li(i-l) Li(i_l) ij Lij i

(35)

in w'hich Mi(i_l) and M.. ,are the moments at i for beams i(i-l) and ij respectively
~J

and Ki(i_l) and K.. are the initial restraint coefficients for the same beams. Also
~J

\ (i-I)
and 1.. are the moments of inertia of beams i (i-I) and ij; 8. is the

~J ~

rotation of joint i and E is the modulus of elasticity.

Equation 35 may also be written in non-dimensional form as follows:

~
E 1. (. 1) E I .. ]

M =K.. ~~- +K.. ~J 8.M. (36)
r ~(~-l) L. (0 l)M. ~J L..M. ~ pc~

~ ~- pc~ ~J pc~

where M . is the reduced plastic moment capacity of the restrained column at
pc~

joint i corresponding to the axial load ratio PIP of column i. Equating Eqs.
y

17 and 36 yields:

E Ii(i_l) E I ij
k. = K. (. 1) L' M + K.. L M
~ ~ ~- . (. 1)£' ~J. . 0

~ ~- pc~ ~J pc~

(37)

2.

3.

The solution of Eq. 37 requires only the determination of the initial

restraint coefficients K. (. 1) and K.. since all other terms are'known.
'~ ~- ~J

The initial restraint coefficients can be closely evaluated by considering

only the members shown in Fig. ll(b). The following simplifying assumptions will

be made:

1. The restraining moment Mi(i_l) on the windward side of joint i is

known.

The restraining effect of the members to the right of joint (j+l)

will be approximated by taking 8(j+l) = 8j .

For P. > 0.70 P yielding of the restrained column at i will occur
~ y

due to residual stresses. Thus, the moment of inertia, I
j

, of the

column will be calculated using the remaining elastic core. Simi­

larly for the column at joint j.

4. No gravity loads exist on beams ij and j(j+l).

The initial restraint coefficient K.. may be determined if the relation­
~J

ship between M.. and e. can be found when joint .. i, j,and (j+l) each undergo a
~J ~.
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small sway displacement equal to 6/2. At joint i, the moment, M., the joint
~

rotation, e., and the sway deflection, 6/h, are related as follows:
~

6E I -

Mi =~ Lei - ~J (38)

The restraining moments, M , at joint i can be obtained from Eq. 35. Equilibrium
r

of moments yields:

so that

(39)

E 1. [ h6 J-12 ---!. e -
h i

E 1i(i_l)
+ M.. + K. (. 1) L e. = 0

~J ~ ~- i(i-l) ~
(40)

6E I; (;+1)
+ L e. = 0

j (j+l) J

At joint j the stress-resultants can be expressed as

6E I .. [
- ~]M. ~J e

J h j

E 1. . [
+ 2eJM.. = L. ~J _ 4ejJ~

~J

Mj(j+l) =
6E 1j (j+l)

e.
L j (j+l) J

Equilibrium of moments at joint j then requires that

12 .:...2i[e. - ~l + E 1ij l- 4e. + 2eJ
h J h J L. . J

~J

The sway deflection, 6/h, can be evaluated from Eqs. 40 and 44 as:

A[I ] M..h
J.::. - 1 + 0' K e ~Jh - 12 i(i-l) i + l2E I.

~

and

in which

_ h 1i(i_l)
0" --

- L. (. 1)1.
~ ~- l.

hr..
~J

L .. 1.
~J J
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h I. C 1)
1l - 1]+
1-

L. (. '1)1.J J. J

(49)

Now e. can be expressed as a function of e.
J 1.

e.
J

H.. L ..
1. J q

2E I ..
1.J

2e.
1.

(50)

Equating Eqs. 45 and 46 and using Eq. 50 yields the moment H.. as.
1.J

H..
1.J

f3 + 0.5S + 11 + ~~ Ki(i_l) "I E I..
6
1
'-----------"'...:..--'--1 L. ~]
_ 3 - 0.5a + S + 1.511 1.J

e.
J

(51)

where

h 1..
a=~

L .. 1.
1.J 1.

(52)

Hence

(53)

The initial restraint coefficient to the left of joint j, K
ji

, is related

to K.. as follows:
1.J

[
K. . 43]K = 4 -....:::.1.J",---;-

ji K ..
1.J

(54)

Similarly

:K
= 4/1 (i-l)i

Ki(i_l) K
L (i-l)i

- 3j-
4 (55)

where joint i is an interior joint.

(56)

+ 2'1" + 3:;) ]

+'1"+1.5:;

Q"
+ 72 Ki (i_l)(6 - 11

+ l~ (12 + 3'1" + 6S)

A more accurate expression for K.. can be obtained by including one1.J .
more bay to the right of joint (j+l) in Fig. ll(b) and assuming that e(j+2)

e(j+l)' The resulting expression for Kij is:

= 6 [3 + f2(6 + 2'1" + 3S) -1- -&(6 + 20r + L~:;) + 1. 5:; + '1"
K. . 13

1.J 3 - l~ (6 - 11 + 2'1" + 3:;) + 12 (12 + 4'1" + 6:;)
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in which

h 1(;+1) (;+2)

(57)

(58)

It has been found that for many unbraced frames the values of the initial

restraint coefficients, K.. , K.. , etc. may be approximated by.using the constant
~J J~

value of 6.0 (2). The resulting loss of accuracy may be relatively small for

many frames (1).

Reduced Restraint Coefficients.- As the lateral shear force, ~Q on a half-story

assemblage increases in magnitude from zero, the successive formation of plastic

hinges in the beams and columns will reduce the restraint stiffness at the top of

each restrained column. For a particular sway subassemblage, it has been shown

(5) that the formation of plastic hinges within the sway subassemblage will have

the greatest effect on the reduction of the restraint stiffness. Figure 12 shows

the locations of the possible plastic hinges within an interior sway s.ubassemblage.

Also shown are the plastic hinges which can form at the top of columns (i-l) and

j. The sequence in which these plastic hinges form will be a function of the

relative member stiffnesses, plastic moment capacities and the intensity of the

factored gravity loads. Plastic hinges 1,3,4,6 and 7 will usually be the first

to form and will occur at the ends of the members. In certain cases, plastic

hinges 2 and 5 may also form at the windward ends of the beams. A method of

determining the positions of plastic hinges 2 and 5 with distributed gravity loads

is discussed in Ref. .7. Although all the plastic hinges shown are possible for

interior sway subassemblages only 4,5,6 and 7 can occur in windward sway sub~

assemblages while 1,2,3 and 4 are possible plastic hinge locations for leeward

sway subassemblages.

Referring to the numbered locutions of pLlstic hinges shown in Fig. 12,

and assuming that 3 and 6 will form before 2 and 5, respectively, the reduced

restraint coefficients can be determined as follows:
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1. 1 occurs before 3: Since additional moment cannot be developed at

joint (i-l), beam i(i-l) may be considered pinned at (i-l). Thus

Ki(i_l) reduces to 3.0.

2. 3 occurs after 1: Ki(i_l) reduces from 3.0 to O.

3. 3 occurs before 1: Ki(i_l) reduces to zero.

4. 6 or 7 occurs: K.. reduces to 3.0.
~J

5. 5 occurs after 6 or 7: K.. reduces from 3.0 to O.
~J

6. 4 occurs: Ki(i_l) and K
ij

remain unchanged from their values at the

time 4 develops.

LOAD-DEFLECTION BEHAVIOR OF A STORY

Evaluation of M' The distribution of bending moments in an interior sway
r

subassemblage for distributed gravity loads on the beams is shown dashed in Fig.

13. In general, an initial lateral shear force, ~Q, will be required to main-

tain Mh = O. The effect of the gravity loads on the evaluation of M' will be
r

discussed later.

Consider now the effect of a small increment of lateral shear force oQ

acting from the left. The moments at the leeward ends of the beams will be

and oM .. while at the windward ends the moments will decrease
J~

These small increments in moment will be related to the

increased by OMi(i_l)

by OM(. 1)' and Oi\1 ..•
~- ~ J ~

small increments of joint rotation as fo llows:

E I ..
oM .. K.. 1.J 6e.

J~ J~ L.. J1.J

E 1..
oM.. = K.. -2:J, oe.

~J ~J L.. 1.
~J

(59)

(60)

E Ii(i_l)

Li (i-l)

E Ii(i_l)

Li(i_l)

oe.
~

6e
(i-l) .

(61)

(62)
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FIG. 13 DISTRIBUTION OF BENDING MOMENTS
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in which K.. , K.. , etc., are the initial restraint coefficients, assuming that
J~ ~J .

initial sway is completely elastic. It can be shown that the joint rotations 08.
J

and 08. are related as fo Hows (5),
~

(63)

Similarly

Substitution into Eqs. 59 and

r
I 2

=lK(i_l)

62 gives

(64)

08.
~

oM ..
J~

OM..
~J

K ..
J~

K ..
~J

E I .. :- K. . 41
_--=::~~1 1 --:;;:;~....]-:-_ 108

L.. l 2 J i
~J

E I ..
~1

L ..
~J

(65 )

(66)

E
\ (i-l)

OMi (i.., 1) Ki (i-l) 08. (67)
Ki(i_l) ~

OM(i_l)i K(i_l)i
E I qi_1 ) [ 2 - 4}6Si

(68)
Li(i_l) K(i_l)i

Referring again to Fig. 12 and assuming that plastic hinges 3 and 6

will form before plastic hinges 2 and 5, respectively, then oM .. and oM. (. 1)
. J~ ~ ~-

can be taken equal to the increments in moment required to form the plastic

hinges at 6 and 3, respectively. The solutions of Eqs. 65 and 67 will yield

two values of moment for the increment of joint rotation 68.; the minimum value
.~

will correspond to the formation of the first plastic hinge. The corresponding

value of M' will then be given by
r

where

M ' =
r

(69)

p = k 68
i i

(0 :::; p ;:; 2.0) (70)

and ki is given by Eq. 37 for the initial values of Ki(i_l) and K
ij

. Substitution

of the minimum value of 68. found above into Eqs. 65 to 68 will determine a set
~

of moment increments which when added to the initial moments will yield the dis-

tirbution of moments corresponding to the formation of the first plastic hinge .
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One or more values of initial- restraint coefficient, K, can now be

reduced as discussed earlier. The reduced values are now used in Eqs. 65 and

68 when determining the second plastic hinge in the sway subassemblage and so

forth until a mechanism has been formed.

The final result after the sway subassemblage has been reduced to a

mechanism will be a set of values of M and M '. The load-deflection curve
r r

of the restrained column and thus of the sway subassemblage can then be deter-

mined from the appropriate design chart given in Refs. 6 and 14.

Construction of a Typical Load-Deflection Curve.- Figure 14 illustrates the

method of constructing a typical load-deflection curve for an interior sway

subassemblage. It is assumed that a mechanism occurs with the formation of three

plastic hinges at a, band c, in that order. An analysis determined that the

initial restraint stiffness was k l and that the first plastic hinge formed at

a joint rotation 091 = 9
1

so that Pl = k19l . Similarly, prior to the second

and third plastic hinges the restraint stiffness was found to be k
2

and k
3

respectively, and it was found that the second and third plastic hinges

formed at joint rotation~ of 92 and 9
3

. Therefore P2 = k292 and P3 ~ k3 9
3

•

A design chart can now be selected which will correspond to the axial

Aload ratio PIP , and slenderness ratio, h/r, of the restrained column.
y

simplified chart is shown in Fig. 14. The set of M values previously deter­
r

mined will define the three load-deflection curves O-e, O-f, and a-g. Similarly,

the set of M I values will define the three sloping straight lines in Fig. 14
r

which intersect the vertical axis at Pl/2, P2/2, and P3/2. The initial segment

of the load-deflection curve is a-a. This segment terminates with the formation

of the first plastic hinge at point a. The second segment of the load-deflection

curve is shown as a-b, where point b corresponds-to the formation of the second

plastic hinge. This segment is obtained by translating segment al-b l of curve

O-f parallel to the lines M '. Similarly, segment b-c is obtained by trans-
r

lating segment bll-c" of curve O-g and point c corresponds to the formation of

the third plastic hinge and a mechanism. The final segment c-d of the load­

deflection curve is the second-order plastic mechanism curve and follows the

straight line Mr3 ' = P3Mpc
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Non-dimensional load-deflection curves must be constructed for each sub-

assemblage in the one-story assemblage. Before combining these curves to obtain

the load-deflection curve for the one-story assemblage, it is necessary to tran~­

form them to Q versus 6/h curves by multiplying the ordinates of each curve by

the appropriate values of 2M Ih.
pc

Effect of Gravity Loads on Beams.- Gravity loads on the beams will result in

initial joint moments when 6/h = O. These moments may be obtained by a Hardy

Cross moment distribution analysis on the one-story assemblage, or approximated

by using fixed-end moment values. If for a particular joint the net moment from

the beams is M then the initial value of M
,

will be given by M' poMpc
where

e' r r

M
e

(0 ~ p ~ 2) (ll)Po M a
pc

Assuming that no plastic hinges form in the beams (that is k. = constant), Fig.
~

15 shows three restrained column curves that are possible depending on whether

M is positive, negative or zero. Curve 1 is for M = 0 and passes through point
e e

O. This is the same as the curve shown in Fig. 6. Curves 2 and 3 are for posi-

From the previous discussion in

in Fig. 15 are identical

parallel to the lines M '.
r

b to obtain the initial portion

tive and negative values of M respectively.
e

this paper it is apparent that all three curves shown

above the line M I = 0, but displaced from each other
r

For Curve 3 it is extended backwards from 0" to

of the load-deflection behavior.

Load-Deflection Curve of a Story.- Figure 16 illustrates the method of combining

the load-deflection curves of each of the sway subassemblages in a one-story

assemblage. The method requires that the ordinates, Q, corresponding to a con­

stant value of sway deflection 6/h be added algebraically to determine the total

shear resistance ~Q of the one -story assemblage.
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FIG. 16 CONSTRUCTION OF LOAD-DEFLECTION CURVE FOR A ONE-STORY ASSEMBLAGE,
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SUMMARY

The sway subassemblage method of analysis described in this paper will

enable the determination of the approximate lateral-load versus sway-deflection

curve of a story in the middle and lower stories of an unbraced frame which is

subjected to combined loads. Such a curve will allow a check to be made on the

sway deflection estimates used in the preliminary design of the frame. In

addition, the adequacy of the preliminary design may be checked on the basis

of the sway deflection at working loads, the maximum lateral load capacity and

the mechanism load or any other load or deflection criterion.

The method of analysis is based on the concept of sway subassemblages

and uses directly the results of previous research on the strength and behavior

of restrained columns permitted to sway. In the analysis a one-story assemblage

is isolated from the frame by passing cuts through the assumed inflection points

of the columns, located at mid-height of a story. The one-story assemblage is

further subdivided into a number of sway subassemblages, each consisting of a

restrained column and either one or two adjacent restraining beams. The latera~

load versus sway-deflection relationship of each sway subassemblage is determined

either manually with the aid of specially prepared charts, or with a computer.

These individual load-deflection curves are then combined to produce the load­

deflection curve of the one-story assemblage. The story of the frame at the

level of this one-story assemblage is assumed to have identical behavior,.

The sway subassemblage method of analysis accounts for the reduction in

strength of a frame due to P6 effects. It also considers plastification of the

columns including residual stresses as well as plastic hinges in the beams.

The sway subassemblage method does not consider unbraced frames with

significantly large initial sway deflections under factored gravity loads alone.

The effect of differential column shortening on the strength and deflection of

the frame is also not considered.
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