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ABSTRACT

Both the static and fatigue behavior of plate

girders are influenced by the stiffeners. Girder

strength could be substantially increased by the

~~~r use of stiffeners. The objective of this

is to review the requirements for stiffen~rs

of welded plate girders.

Two types of stiffeners are commonly used,

namely, transverse (vertical) stiffeners and longi-

tudinal (horizontal) stiffeners. In order to effec~

vely fulfull their role in reinforcing the web of a

plate girder, the stiffeners must meet rigidity and

strength requirements.

The stiffeners must have sufficient rigidity to

ensure the formation of a nodal line during web buck-

ling, and be strong enough to help the web-panel

framing.

These requirements are presented in a form which

can be used for design specifications.

- 1 -



1. INTRODUCTION

The objectives of the study presented herein were

to examine the requirements for stiffeners of plate

girders. A plate girder is a deep flexural member

subject to web instability. The buckling and ultimate

strength of plate girders are greatly influenced by

the behavior of the principal component parts, namely,

the flanges, the web, and the stiffeners. There are

Longitudinal

two types of stiffeners which are commonly used, that

is, transverse (vertical) stiffeners and longitudinal

(horizontal) stiffeners.

Transverse stiffeners are to provide rigidity for

the web-panel framing and can increase the resistance

of the web to buckling in shear but are not efficient

in increasing resistance to buckling in bending unless

h d (1,2,3)
t ey are very closely space .

stiffeners located in the compression zone of the web

can effectively control the lateral web deflection and

Drevent the stress redistribution from the web to the

compression flange, therefore, the resistance of the

web to buckling due to bending can be increased

b · . 11 (4,5)su s~antla y.

In order to serve their functions, the stiffeners

have to meet several requirements which were established

based upon both analytical and experimental studies.

- 2 -



Finally,

This eals with the analytical and experimental

stiffener requirements in detail.

-3

~, .'--

realistic design recommendations for the stiffeners of

plate girders are given for practical use.



2. BRIEF REVIEW ON THE BUCKLING ANALYSIS OF PLATES

2.1 Elastic Buckling of Plates

The linear buckling theory of plates was initiated

The impetus

by Bryan in 1890 when he studied the problem of a simply

. ( 6)
compresslonsupported flat plate under

for the analysis of the stability of plate was provided

by the solution of problems pertaining to the ship

plating which was encountered by many early investigators.

- h "1900' T' h· (7) d' (8) dln t e early _ s, lmos enko an Relssner ma e

extensive studies of the buckling problems of rectangular

plates under various boundary conditions.

In comparison with the theory of stability of

columns, the problem of the stability of plates is more

complicated due to the fact that the critical buckling

load may deviate substantially from the ultimate load

which the plate can sustain. Whereas the buckling load

for practical 'purposes may define the strength of a

1 (9,10,11) 1 . bl .co umn , pates may be a e to sustaln external

(

loads in the buckled state noticeably which is due to

The differences between

the contribution of the post-buckling strength of web

plate as shown in Fig. 1.(2)

buckling and ultimate loads become substantial espec-

ially for very thin plates and for materials with low

modulus of elasticity, such as aluminum alloys. The

determination of the ultimate load of a plate girder is

- 4 -



not a stability problem. The web buckling behavior is

-5

influenced by the boundary conditions which are furnished

by the stiffeners and flanges. In order to examine the

,
1
r

stiffener requirements, it is of interest here to describe

the concept of treating the problem of stability of plates.

Because of its technical importance and simplicity, the

buckling of a simply supported, rectangular plate under

pure bending will be illustrated on the basis of the

following assumptions:

a. The plate is initially perfectly flat.

b. The plate is made of an elastic and

homogeneous material.

c. The bending moments are applied in the

plane of the middle surface of the plate.

d. The transverse deflections are small

compared to the thickness of the plate.

As shown in Fig. 2, a rectangular plate, with

dimensions D, d , and a thickness, t , is subjected to
o w

pure bending in the x-direction. The differential equa-

tion for the plate subject to small lateral deflection

. (7 12)
can be expressed as follows: '

4
() VI

+') 4ux

4o ,-l+3"4
y

( 2 .1)
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Where

D'= flexural rigidity of the plate per unit
. Et 3

width D' = w
, 12(1-17 2 )

w = z displacement

x,y,z = Coordinates

N ,N ,N = forces per unit length acting in the middle
x y xy

plane of the plate (Fig. 3).

For a plate subjected to pure bending (Fig. 2) ,

N = N = o , and N = (Jt 3.x.. where (J is the tensile
y xy x w D

,

at
D

The boundary conditions be shownstress y = 2"' can

as

a2
w

2
0 and + 11~ 0 for + d /2 (2.2a)w = = x =

Ox 2 dy2 0

2 2
0 and

a V7
z/

o w
0 for + D/2 (2.2b)w = + = y =

oy 2
ax

2

The deflection of the buckled plate simply supported

on all sides can be taken in the form of the double trigo-

nometric series

00 00

w = I: I:

m=l n=l

a mn
sin

2m7Tx
-d-

o
sin

2n7fy
-D- ( 2 .3)
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By substituting membrane forces, deflection equation

Eq. 2.3 into Eq. 2.1, the general solution of Eq. 2.1

can be determined. Again, by imposing the boundary

conditions, Eq. 2.2, the lowest characteristic value of

~ which corresponds to the buckling stress a of the
. cr

plate can be expressed in terms of the so-called Euler's

~ h" , " d f" - (13)rererence stress w lcn lS e lneQ as

a e = ( 2 .4)

where E is the modulus of elasticity and V is Poisson's

ratio, t is the plate thickness, and D is the web depth
w

or clear distance between flanges. The critical buckling

stress a can therefore be written as
cr

a cr
a

e
( 2 • 5 )

.
"

)

where the quantity k
b

is commonly referred to as the

buckling coefficient which is a function of the plate

geometry, loading conditions, and the boundary conditions .

Figure 4 gives values of the buckling coefficient k
b

fo.'·
" (11)

~~ates subjected to pure bendlng. Similarly, the

critical buckling stress 7 of a plate subjected to
cr

pure shear in its plane can be expressed as

Y = k
s

a ecr
( 2 .6)
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The buckling coefficient for a simply supported

plate subjected to pure shear is shown in Fig. 14. (15)

If the plate is subjected to combined action of external

forces such as bending and shear, compression and shear,

etc, the buckling stresses will be defined by the inter-

~. -F 1 (7,14,15)aCLlon _ormu a

(J
f (~~(J0

cr
( 2 .7)

where (J and yare the direct stresses and shearing
cr cr

stresses which cause plate buckling when applied simul-

o "To h' . 1 .taneously; and (J , G are t e crltlca buckllng stresses
cr cr

of the plate subjected to direct stresses or shearing

stresses alone. For example, in the case of a simply

supported plate under combined action of pure bending

and shear, the interaction curve, which lS derived from

T · h . t l' ~ h' bl (16)lmOSLenko s so utlon or t lS pro em , can be repre-

sented by the equation which is part of a circle (Fig. 5)

.'
"

I

( 2 .8)

The descriptions developed so far have been given to the

problem of buckling of plate in the elastic range only.

In other words, the intensity of stress, (Ji' defined by

the critical buckling stresses (J and 7 can be deter-- _ cr cr

mined by the plasticity hypothesis of Huber, Von Mises,

and Hencky, the so-called energy of distortion theory.

'~



(J.
l

=
2+ (J

Y
(J (J + 31 2

x y xy

-9

( 2 .9)

NOH, He substi tute (J =(J ,(J =0 ,... = 'T into Eq. 2.9,xcr y 'L xy Lcr

the yield criterion can be expressed as

(J.. =
l

(2.10a)

HOHever, if the Tresca yield criterion is used, the equi-

valent stress Hill be

(J.. =
l Jcr e r 2 + 4 (e r 2 (2.10b)

0, may be considered as an equivalent tensile stress pro-
.1.

Ciucing the same strain as the combined stresses (J and'7 .. cr· cr

When the buckling of plate occurs elastically, the equiva-

lent stress (J. must be less than the proportional limit of
l

the material Hhich for practical purposes is taken to be

.'o,

equal to (J ,
Y

yield point of the

(J. < (J
l Y

material,

(2.11)

2.2 Inelastic Buckling of Plates

Analogous to the findings in the column theory, iT

is possible that the critical buckling stres~ of plates

exceeds the proportional limit of the material. In other
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~

w0 r d s, if & E'q. 2. 11 i s vi 0 1 ate d, the b u c k 1 i n g 0 f

plates occurs in the inelastic range and the phenomena

become more complicated. The theory of inelastic buck-

ling of plates was developed during the 1940's by

tat ion of inelastic stability theory of plates is bas~d

. (17 18 19)upon Stowel~ls theory. ' ,,.
Bijlaard, Illyushin, and Stowell. The'following presen-

In considering the buckling of plates in the elastic

range, the stress and strain,are linearly related by the

modulus of elasticity, E. Beyond the proportional limit,

the basic assumption of plasticity theory suggests the

following plastic stress-strain relation which may be

written as

CJ = E Cs
(2.12)

In Eq. 2.12, E is the secant modulus which is a function
s

of stress or strain. It is assumed that when the plate

1S stressed beyond the proportional limit, buckling and

increase in load proceed simultaneously so that no strain

~ reversal occurs in any part of the plate. In such a case,

~ Poisson's ratio is taken to be equal to 0.5 which

~ impl1es that the material is incompressible in the plastic

state. The effects of inelastic behavior are incorporated

into a single parameter ~ which is referred to as the

plasticity reduction factor. -
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By definition~

a (plastic)r ---=-c.::..r-.,-__--:---,-
= a cr (elastic)

(2.13)

elastic buckling by the plasticity reduction factor ~ .
,
,

..

'T".ne

can

critical buckling stress for the inelastic case then

be obtained by mUltiplying the critical stress for



3. PLATE GIRDERS WEB STIFFENED TRANSVERSELY

3.1 Theoretical Requirements for Transverse Stiffeners

3.1.1 Rigidity Requirement

If a plate girder web is stiffened transversely,

the transverse stiffeners serve two purposes: to provide

rigidity for keeping the cross-section of girder in

shape and to insure post-buckling strength. When the

plate girder is subjected to external loads, the web

panel boundary is assumed not to deflect laterally per-

pendicular to the plane of the web. This requires that

all transverse stiffeners have proper rigidity in that

direction. If the transverse stiffener is not rigid

. .

enough, it will deflect laterally with the web. The

deflected web panel will have a horizontal cross section

as shown in Fig. 6a. However, when the transverse stif-

fener provides sufficient rigidity, the web plate will

now deflect on each side of the stiffener and the stif-

fener will remain straight, forming a ~l line (Fig. 6h).

The relationship between the rigidity o~ transverse stif-

feners and the buckling of the web described herein can be

d . ' d b F . 7 (13) Th 1 .,. f h b' .ep~cte y ~g.. e va ue, or tea sc~ssa ~s

the relative rigidity of the stiffener which is defined

as the ratio of the flexural rigidity (EI) of the stiffener

to the product of panel length (do) and the flexural

rigidity (D') of the corresponding web portion,1= EI/D'd .
. 0

- 12 -

•
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The ordinate is the buckling stress of the plate, 0" or
cr

~l Point A in the figure corresponds to the bucklingcr' ary
stress of the plate without stiffener at all, namely, r = o.

. f\ .
The portion AB of this curve corresponds to the case of ~

stiffener deflected with the web. When the rigidity of a ~

stiffener is just sufficient for it to remain straight

o
or L cr '

optimum.

o
0" cr

theconsidered

same value,

during the web buckling (point B) this rigidity value is
(]v

With larger value of stiffener
f\ at

rigidity, the critical buckling stress will remain the

/\

The optimum rigidity 1
0

needed to produce a ~l

1 , b b ' , b ~ h ·h d (15)lne can e 0 talneQ y means or t e energy me~ 0 .

The expression for the potential energy of a plate with

transverse stiffeners (Fig. 8) can be written as

I = V + U + V
w s

( 3 .1)

in which

I = total potential energy

.. V = strain energy of bending of the plate,

U = the change of the potential energy of the
w"

external forces when the plate deflects from

its original position to the deformed shape.
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v = strain energy of stiffeners,
s

d
2 2 d2~ 2 d0 2

( __w) + Elw (-_'fJ
2

) + GKT(dy) ] dy
dy2 dy

Usually, in calculating the strain energy contributed by

transverse stiffeners, it is assumed that both the St.

Venant torsion stiffness (GK
T

) and the warping stiffness

(El ) of the stiffeners can be neglected, and the strain
C;) .

energy includes the bending energy of each stiffener only.

Thus, dy

o
The critical buckling stress (0

cr
o

or 7: )cr
can be determined

from the theorem of stationary potential energy. The opti-

mum rigidity l then is the relative rigidity of the stif
o

fener which is required to ensure this critical buckling

stress for the web plate. Various investig~tors~obtained

For the case of a

)

different results through the Rayleigh-Ritz and Lagrangian

muitiplier methods.(15,20,21,22,23)

plate subjected to pure bending, the optimum rigidity of

the transverse stiffener is, according to Refs. 20 and 24:

;.

Hoere,

0-
0

6.2 12. '/ ex - r:: Ct 2= - + 6 • ~)

for 0.6 < c(~ 0.935

panel length
d

d aspect ratio
0= = =panel depth D

( 3 • 2 )
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For a> 00935, the transverse stiffeners have practically

no effect on the plate buckling by bending. When the

Dlate o d h h . . °d o
0 (20,24)lS un er pure s. ear, t.e optlmum rlgl lty lS

.
5.4

ex.
2 . 5

0:.2
1 _ 1) for 0.5 < et~ 2.0

a 3
( 3 . 3 )

A comparison is made on the different results from various

investigators of the optimum rigidity for transverse stif-

feners which is shown in Fig. 9.

It was pointed out in Ref. 24 that for the transverse

stiffeners to remain practically straight up to the rupture

load of the girder, the optimum rigidity r
o

should be multi

plied by a factor of 20 which was based on the experimental

results; whereas a multiplying factor of only 3 was reported

~f' 0 (25)sur lClent.

3.1.2 Width-to-Thickness Ratio Requirement

The strength of transverse stiffeners may be affected

.'
by the buckling of the stiffener plate itself in two ways:

the buckling may cause an overall failure by making the

stiffener plate element fully ineffective in providing

rigidity along web plate boundary, or it may produce a re-

distribution of stresses an~ thus influence the function

of stiffener as

panel.

to insure post-buckling.strength of web

!: '



does not buckle at a stress below the yield point of the

. ( 26)
materJ.al.

-16

limitingprevented

such that the stiffener plate

(i;) kocal buckling is

the width-thickness ratio

(cr ) plate
cr

> cr
y

( 3 .4)

( 3 • 5 )

b '
t

< 0.951 ( 3 • 6)

where

b ' =-the projecting width of the stiffener plate

t = the thickness of the stiffener

3.1.3 Area Requirement

The area requirement for transverse stiffeners is

determined when a plate girder is subj~cted to shear force.

When a plate girder 1s under bending moment, there is no

such area requirement. ~

Th ' fl' d . h ./ I

t::
arr _J..ng cap-acJ. 0 pate gJ.r ers J.n sue/,J.s

generally described into two parts, namelY~.~beam

action up t~~J.tical buckling stress and~ tension field

action in the post-bucklin~ range up to yielding in the web.(2)

The behavior of a plate girder panel resisting external

shear forces is similar to a Pratt truss as illustrated in

Fig. 10: When the tension field is developed, the diagonal
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strip of the web acts as a tension member, while the trans-

the transverse stiffeners must resist the vertical compom-

The compressive force on

force is

Consequently,

ent of the tension field force.

a transverse stiffener~ to the tension field

derived in Ref. 2 ~n can be expressed as

. verse stiffeners act as compression struts.

f\
D (~ cx. 2

F = (5,,- t
s L 'itT 2

2Jl+CX
2

( 3 .7)

At ultimate load,

( 3 • 8 )

Then Eq. 3.7 becomes

the stiffener lS practically equal to the yield

the vertical component of the tension field force

(( 3 .9)(5
y

t
w

lS prevented, the ultimate axial

( Ci.. -l-C
2=

Thus the required area for transverse stiffener

F
s

If

stress 0
Y

to carry

stress in

will be

where

)

A
s

=
F

s
(5

y
= l-C

2
( ct:-

0'2- )
~ l+CX.2

YDt
w

(3.10)



",

The facto'

steel to t point of stiffener steel. Equation

3.10 is adopted as Formula (10) in AISC specification.(27)

In Eq. 3.10, the constant C is the ratio of cri~ical

shear buckling stress, according to the linear buckling

theory, to the shear yield point of web material.

C = =
? cr

(J I f3y -.Iv

(3.11)

.'
')

..
~,

Where (Jylj3 is the yield stress in shear by Mises' Yield

condition, for webs with simply supported edges, the shear

buckling coefficient is

(~)2
d

k 4.00 5.34 for
0 < 1 (3.l2a)= + Dd

0

(~) 2
d

k 5.34 .+ 4.00 for
0 > 1 <3.12b)= d D

0

For webs with ~ransverse edges simply supported and the

longitudinal edges clamped,

d
k = 5.3 1+ <d

D
)2 + 6.55 <;-J) - J.3.'71 + 11.f.10 <If)

o 0

d
for

0' < 1
D

k = 8.98 + 6.18 (~)2 2.88 (~)3
d d

0 0

d
for

0 > l'
j)

(3.13a)

(3.13b)
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Equations 3.12 and 3.13 are plotted in Fig. 11.

3.2 Design Recommendations for Transverse Stiffeners

3.2.1 Rigidity Requirement

The optimum rigidity for transverse stiffeners to

form a nodal line during web buckling was suggested to be

a equation given in Ref. 15 and Ref. 23 with slight

modifications. The optimum rigidity was obtained for an

infinitely long plate with identical, equally spaced,

transverse stiffeners. The plate was assumed to be simply

supported at all four edges and subjected to shear forces

as shown in Fig. 12. The transverse stiffeners were

assumed to have bending stiffness but no torsional stiff-

ness and were assumed to be concentrated along transverse

1 • ._lnes In the middle plane of the plate.

The results were found by means of the Lagrangian

multiplier method and were presented in the form of plate

buckling coefficient k versus relative rigidity 1 curves

for three different stiffener spacings, namely D, O.5D,

O.2D. (23)

increases.

Theoreticall~, k continues to increase as r
However, for practicai purposes there is an

optimum value ~ beyond which the increase in k lS small.- f 0

The three curves obtained by Stein and Fralich(23) were

,. - b Bl . h(15) ~mp~" •stUQlea y elC an~ wltn an approXlmate

equation for the buckling coefficient k. The optimum
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rigidity can be expressed as follows: (Fig. 9)

D 2
= 28 d 2

o
- 20 (3.14)

This equation has been adopted by AASHO(28) but with

a slightly modified value of

)\..

and not to be less than 5.

(3.15)

By definition, ~ = EI/D'd .
f 0 0

The moment of inertia for the transverse stiffener is

I = (d D'/E) ,. The flexural rigidity of the plate D' is
o 0

Et
3
/12(1-V

2
). By assuming Poisson's ratio is 0.3, the

w

following equation is obtained.

I =
d t 3

o w
10.92

(3.16)

')

-'-::-,

Equation 3.15 has been plotted in Fig. 13 as a com-

parison with the specifications of European countries. It

is of interest to note that except for the range of aspect

ratio between 0.5 and 0.7, both the British(29) and the

G (30) 'f' . . th AASHOerman specl-lcatlons are more conservatlve an .

3.2.2 Width-to-Thickness Ratio Requirement

In the design of transverse stiffeners, it is expected
, .

that the stiffener plate can develop yield point stresses



without premature local elastic buckling.
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It is reported

failure of stiffener

( 25)
prevented.

that for a value of ~ = 0.5 in the non-dimensional plate

buckling curve, where A. = J ~ /a ,the
A y cr

plate element by local buckling.can be

Then by substituting Eq. 3.5 into the equation,

A = JoOY =
cr

0.5 (3.17)

2nd taking for steel J/ = 0.3, E = 29 x 10
6

psi. The expres-

sion for. limiting the width-to-thickness ratio will be

b r

t
<

3070 [k
(3.18)

For the case of stiffeners on plate girders, the

lowest value £or~Ckling coefficient k is considered to

bee qua 1 toO. 7 2 . ( 1 5 , 2 6 ) The E qu a t ion 3. 1 8 b e com e s

b r

t
< 2600 (3.19)

The AISC(27) and AASHO(28) Specificationa adopt the

following equation for limiting the width-to-thickness

ratio which is derived from the assumption that A= 0.7.

b r

t
< 3000 (3.20)
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The AASHO Specification specifies that the transverse

stiffener may be A36 steel which implies that b'/t 2 16 .

3.2.3 .!I.rea Requirement

In deriving the required area of transverse stiffeners

..'

for plate girders (Eq. 3.10), it was assumed that the

vertical component of tension field force was resisted by

the transverse stiffeners alone which acted as compression

struts in a Pratt truss.

to be too conservative.

This assumption was pointed out

Where F is the theo
s

The experimental results obtained previously at

Lehigh(3) is summarized in Table 1.

retical stiffener force computed by Eq. 3.9, A is the
s

actual area of transverse stiffener designed, and 0 is, s

the stress of transverse stiffener measured at ultimate

load. It is worthwhile to note that all values of the

ratio of existing stresses to the hypothetical stresses

are much less than unity. The first and second largest

percentages of stiffener forces compared to the theoretical

. '"'il-

values are equal ~o 54% and 34%, respectively.

results have been reported in Ref. 31 .

The similar

For the practical range of~, the expression,

21 2<X.- 0<: / 'IJ IH)( , varies betwee.n 0.2 and o .3. By arbitrarily

choosing an average 'value of 0.26, the Eq. 3.9 becomes

F = 0.13 (I-C) Dt 0
s w y

(3.21)
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Taking into consideration the material property,

the ratio of applied load to the shear capacity V/V ,
- - u

the reouired gross area of the stiffener will be

0.13 YDt
w
(l-~

V
u

.,
Furthermore, similar to the practice of bearing stiffeners,

a small portion of the web strip with 12t in width is
H

assumed to 'participate in resisting the compression force

coming from the required

A = [0.13 Dt (l-C)
s w

area of the

(3.22)

Table 2 substantiates that the latter assumption is also

conservative.

To find the factor C in Eq. 3.22 is an involved

( 2 )
procedure . In an attempt to serve the practical design

purposes, the simplification and approximation have been

made. These equations for k (Eqs. 3.12)are combined into

one by approximation:

k = 5.34 + 5.00 (D/d )2
o

't1 hichi s s how n in Fig s. 11 and' i 14 .

( 3 . 23)



The formula for C is rather

approximation is made as follows:

1 · d (2)comp lcate . An
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'.

t
8000 (-2:.)

D

5.34 + 5(D/d )2
o

(]
y

- 0.3 < 1. a (3.24)

which is plotted in Fig. 15 as compared to the corresponding

values obtained from Ref. 2. For a given material and panel

geometry~ the value of C varies linearly with the reciprocals

of slenderness ratio, t /D.. w The value of C then can be

easily obtained with the aid of plots such as the one shown

in Fig. 16.

, ! l



stiffener.
".

4. PLATE GIRDERS WEB STIFFENED LONGITUDINALLY

4.1 Theoretical Requirements for Longitudinal Stiffen~rs

The most effective type of stiffener for web plates

subjected to bending is the longitudinal or horizontal

I . - . 1 (1,3) h htwas pOlnted out prev~ous y t at w en

a plate girder was subjected to bending, the compressed

portion of the web did not carry the stress (Me/I) pre-

dicted by beam theory because of the gradual lateral

deflection of the web. In other words, some of the

ofti

compressive force supposedly to be carried by the web

was redistributed to the compression flange. The stress

in the compression flange, therefore, exceeded the value

- . db' b th (~. 17) (32)obtalne y uSlng earn eory, tlg. .

The main purposes of using the longitudinal stiffener

are to control the lateral web, deflections andc:revev

stress redistribution from the web to the compression

flange, and to increase the web buckling strength. In

order to fulfill its purposes, there are several require-

ments which must be met by a longitudinal stiffener.

4.1.1 Position ,Requirement

For the case of web buckling by pure bending, in

order to be able to control the lateral web deflection

effectively, the longitudinal stiffener has to be located

in the compression portion of the web.

- 25

As long as shear



is DPesent- , the stiffener~s place' In a lowep

of a longi-diagonal tension field action.

position to eliminate'the bulging out of web due to the

tudinal stiffener was sugg~sted to be determined by means

of an auxiliary chart. For each given value of shearing

", stress to bending stress ratio (L/a) and aspect ratio

(d /D) of a web plate panel, the position of a stiffener
o

can be obtained by a set of interaction curves as shown

in Fig. 13 of Ref. 13.

4.1. 2 Rigidity Requirement

In order to insure the formation of a nodal line in

the stiffened panel, the longitudinal stiffener must

provide sufficient rigidity. The optimum rigidity of a

longitudinal stiffener can be obtained by the same method aD
us~d for transverse stiffeners. For the case of a web

plate under pure bending, it was pointed Dut that the

optimum rigidity for a longitudinal stiffener located at

1/5 of the ?epth from
( 20)

the compression flange was

1,

2
= 3.87 + 5.1 OL + (8.82 + 77.6 b) ct .. (4.1)

< /V <for 0.5 ~- 1.5

Hhere

the optimum rigidity 'of 'a longitudinal

stiffener, 'I'o = EI (D'
DID '= flexural rigidity

of web plate, D ='depth of plate girder),

• ! ., I I



panel depth (D)
ex.. = aspect ratio =

panel length (d )
o
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6 =
area of stiffener
area of web

".

)
l

When the longitudinal stiffener was placed at one-quarter

depth from the compression flange, the following expression

(15) <
was suggested for ~- 1.6:

"')'{ = (12.6 + 506) «2 _ 3.4 c(3
(10

( 4 . 2)

For the case of a web plate subjected to pure shear

and reinforced by one longitudinal stiffener at mid-height

of the depth, the expression for optimum rigidity of the

stiffener will be

1'0 = 5.40(2 (2C{ + 2.50.::
2

- a. 3
- 1)

.- ~tatic

for 0.5. <o<.:s. 2.0

tests of welded plate girders, it was

observed that the theoretical web buckling phenomenon did

;f n (> tea usc: i rn III c d i Cl t e fa i 1 ureo :r: t 1"1 e g i r d e r . The e,,:pcri-

mental investigation showed that the post-buckling

. .c 1 . ;; .. 1(3) Th '.cstrength o~ pate glruer was s~bstantla . . e Stl~-

feners used to reinforce the plate girder practically

remain straight up to the ultimate load of the girder.

The required rigi~ity of an actual stiffener then will



be larger than
------

the optimum rigidity which lS

". lreq = n r0
(4.4)

The factor n depends mainly on the location of the stif-

fener and is suggested to be of the value as follows:

Value of

Distance between Longitudinal

Stiffener and Compression Flange

D/2

D/3

D/4

D/S

4.1.3 Width-to-Thickness Ratio Requirement

n

3

4

6

7

The" longitudinal stiffener

is susceptible to ~~ilure.by

as a flat plate element

local buckling if the

proper width-to-thickness ratio is not selected. The

:<
theoretical analysi~ of the local buckling problem was

discussed in" Article 3.1.2 which. could also be applied to

the longitudinal stiffener.

4.1.4 Strength Requirement

! '

As far as the buckling of the web is conce!ned, the

longitudinal stiffener serves as a column, just as the
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comnression flange of a plate girder does. The stiffener

must have enough rigidity to maintain a linear distribution

of bending stress along a cross section of the girder. In

other words, the stiffener column consisting of the

".

fener and a part of the web must be strong enough to with

stand~without lateral buckling. The detailed derivation

of a requirement for the longitudinal stiffener column to

) sustain the lateral bucklini stress will be given later on

in Article 4.2.4.

4.2 Design Recommendations for Longitudinal Stiffeners

4.2.1 Position Requirement

From the viewpoint of web buckling, the increase of

web buckling strength as well as the reduction of lateral

web deflection can be best achieved so long as the longi-

tudinal stiffener is placed in the most effective position,

the so-called optimum position.

The optimum position of a longitudinal stiffener,

when the web panel is subjected to pure bending, has been
.'

one-fifth depth location be adopted for all panels as

fener at any location still controls the lateral web

accompanied by bending moment, and the longitudinal stif-

itis recommended he~e that thed -1 . . h (4)er ectlons In sear,

shown theoretically to be at one-fifth of the depth from

,- . fl (33) Th' l' 1The compresslon ange . lS cone USlon was a_so

. ' (4 5)
conflrmed by test results ' . Since the shear is always

I



long as a longitudinal stiffener is used .
.

to the current bridge design practices.

4.2.2 Rigidity Requirement

-30

This conforms

use

..
Those equations (Eqs. 4.1, 4.2, and 4.3) for com-,

puting the optimum rigidity of longitudinal

are too lengthy ~et ·the design pu~. The equation

( 34) .
presented here lS the same one which is adopted for

in current AASHO Specifications(28).

I > Dt 3
w

d
[2.4 (~)2 _ 0.13J ( 4 . 5 )

From these curves

The ratio of required moment of inertia for longitudinal

stiffener to web plate rigidity has been plotted against

panel aspect ratio for the AASHO(28), British(29),

( 30) ,
German Specifications (Fig. 18).

it reveals that both the British and the German Specifica-

tions are more conservative than AASHO in the range of

d /D < 1, which is the upper limit of aspect ratio per
o

mitted by AASHO Specifications.

4.2.3 Width-to-Thickness Ratio Requirement

The provision for preventing the failure of longi-

tudinal stiffeners by premature local buckling lS proposed

to be the same one for the transVerse stiffeners (Eq. 3.19).

The yield point should be that of the stiffener if it
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differs from the girder in yield point. Equation 3.19,

based on the yield point of the stiffener, is more con-

servative than what is specified in Article 1.7.73 of

h A 0 S 'f' . (28) h' h b h h ft e ASH pecl. l.catl.on w l.C can e s own ere or

referencO

)
t >

b,j"f;;
2250

( 4.6)

where t = the thickness of the longitudinal stiffener

b ' = width of stiffeners

f
b

= calculated compressive bendin~ stress in

the flange, f b < 0.55 cry

residual stresses due to welding as well as to prevent

Longitudinal stiffeners are usually placed on only one

the reduction of fatigue strength, they need not be con-

In order to avoid the problem ofside of the web plate.

tinuous and may be cut at their intersections with the

transverse stiffeners.

4.2.4 Strength Requirement

; Beyond buckling of the web, if the longitudinal

stiffener is properly proportioned, a linear distribution

of bending stress is main~ained along a cross section of

the plate girder. The longitudinal stiffener at one-

fifth depth is then subjected to a compressive stress of

0.6 times that of the comp~ession flange as shown in



Fig. 19.
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If the critical buckling stress lS taken to be

'-

l

equal to the yield point of the material used in the flange,

the stiffener column must be rigid enough to withstand a

stress of 0.6 0 without lateral buckling.
y

Making use of the Column Research Council basic
II \)

column strength formula and taking into account the im-

perfections, such as the eccentricity of load, initial

out-of-straightness and a partially restrained end condi-

tion for the .stiffener, a formula to evaluate the required

radius of gyration of the longitudinal stiffener is

established.

and

( 4 • 7 )

r =
dro
o'-i~y

23000
( 4 • 8 )

To anchor. he tension field forc , the longitudinal stif--- '\ ~,f ene~ mus t have s UfJhC ient area. IIit~ th~ reqUi~ements ,

Eq. 0.19,4.5,4.8, shown above'la su1:flclent stlffener

area is provided f0r; thus no additional provision is

,I.'

needed.
:' I. ;'')'



5. PLATE GIRDER WtB STIFFENED

TRANSVERSELY AND LONGITUDINALLY

In oraer to effectively increase the strength of a

plate girder and to obtain an economical design, a com-

bination of both transverse and longitudinal stiffeners

is often used. Little study has been made on a plate

girder reinforced by both transverse and longitudinal

.. ~~SLlLreners. The following discussion gives some results

of study on this problem.

5.1 Theoretical Requirements for Stiffeners

5.1.1 Rigidity Requirement

The case of a web plate under pure shear and rein-

forced by both transverse stiffeners and a central longi-

tudinal stiffener was reported in Ref. 35. It was pointed

I.

out that if the transverse stiffeners possess the optimum

rigidity, then the optimum rigidity for the longitudinal

stiffener is

I

( ~)2= .11.25 d
a

( 5 .1)

It was also found that the total weight of transverse

and longitudinal stiffeners required to achieve a given

web buckling stress 'can be one half of the stiffener weight

required when only transverse

- 33 -

. (11 35)
stlffeners are used. '
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The ultimate strength of a plate girder stiffened

with transverse stiffeners can be substantially improved
•

by using one or more longitudinal stiffeners. This

phenomenon is the same as that which occurs in the field

of aircraft structures investigated at the N.A.C.A.

Structures Laboratory. In such cases the rigidity of

the transverse stiffeners must be greater than that

specified previously, so that they will remain straight

until the increased ultimate strength is reached. The

concept of an equivalent web with a thickness twas
e

(11 25) ..
proposed ' . WhlCh was based on the assumption that

the critical buckling stress of the equivalent web with-

out longitudinal. stiffeners will be equal to the critical

buckling.stress.of the given web plate of thickness t
w

·with longitudinal stiffeners. The design of the trans-

:

verse stiffeners then will be based on the equivalent web

thickness t e , and this results in greater rigidity.

5.1.2 Strength Requirement

A longitudinal. stiffener is used to form a nodal

line in the deformed. pattern of the web; to control

lateral web deflections and to prevent the stress re-

distribution from the web to the compression flange.

Those actions will subject the longitudinal stiffener

to lateral load and the adjacent transverse stiffeners

to concentrated forces at the intersection of the two

Off (4)stl eners.
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By considering the possible deflections and the

location of the longitudinal stiffener, a relationship

between the section moduli of the transverse and long i-

tudinal stiffener can be derived as shown in the follow-

ing to make sure that the former does nDt fail under

the concentrated forces.

If the longitudinal:stiffener were removed from

the web, the deformed. shape of the web between transverse

stiffeners could be approximated by a sinusoidal curve.

Hence, it is reasonable to assume that the web subjects

the longitudinal. stiffener to a sinusoidal lateral. load

as shown in Fig~ 20(a).

load is

The resultant of the sinusoidal

Resultant
7Tx

Po sin d
o

dx = 3. P d
71 0 0

( 5 .2)

and the reactions at the ends of the stiffener will be

R = (p d )/71. The moment at midspan can be found as
o 0

follows:

..

_.Jd O
/ 2(p

.. • 0

o

d
sin7Tx)(~ - x) dx

d 2
. 0

( 5 .3)

After performing the integration, this expression is

obtained:

P d 2
o 0

7(2
( 5 .1+)
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By assuming the normal bending stress in the longi-

tudinal stiffener to be as high as the yield point, the

following derivation for the concentrated force R to be

applied to the transverse stiffener can be performed.

Equating Eqs. 5.5 to 5.4, we end up with

( 5 .5)

and

p
o =

. S 2
cr L 7Ty

d 2
o

( 5 .6)

( 5 .7)

flanges' .:

At its intersection with the longitudinal stiffener,

a transverse stiffener is subjected to a concentrated force

2R from the two adjacent web panels, as indicated in

Fig. 20(b). For a.welded plate girder, the flanges are

relatively rigid.when compared to the web, flange rotations

( 36)
are generally very small. It is reasonable to assume

that a transverse stiffener is clamped at both ends by

. v·~
By considering the. partial restrained end condition ~~..~\.

of transverse ·stiffeners and the common practice of making .~

a discontinuity for longitudinal stiffeners at their inter- ~

sections with the ~ransverse stiffeners, the moment under

~



~oncentrated load is considered to be ess

Amining the.required secti~m~ulus Sr

s t iff e n e r . The mom entat ~ i n~s e c t ion

Mr = Oolol RD

ntial for deter-

the transverse

found to be:

( 5 .8)

Substituting Eqs. 5.7 into 5.8, the moment can be

written as

( 5 .9)

The r~quired section modulus of the trans~erse

stiffener ST is obtained based on the assumption that the

bending stress in.thetransverse stiffener is permitted

to reach yield. point.

M
T

o
Y

(5.10 )

..

The relationship between the section moduli of the

transverse stiffener and. the longitudinal stiffener is

then established by substituting the expression for M
T

,

Eq. 5.9, into Eq. 5.10 .

S = 0.321 (~) ST d L
o

( 5 .11)
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5.2 Design Recommendations for Stiffeners

5.2.1 Rigidity Requirement

When a plate girder is stiffened transversely and

longitudinally, the web panel is separated into subpanels,

each subpanel.behaves in the manner as that of an indi-

vidual panel. Consequently, the subpanels may be treated

independently with the depth of the subpanel as the panel

depth and the design recommendations,presented in Chapters 3
. I

and 4 can be appli~d ~ccordingly.

When a web panel is reinforced by several longitu-

dinal stiffeners, it is. suggested and examined by tests

that each stiffener may be designed as if it were alone(13,24).

5.2.2 Area Requirement

For the case of a web panel stiffened with transverse

stiffeners and one longitudinal stiffener at a distance

D/5 from the compression flange, the effect of longitudinal

stiffener.on the shear strength is relatively small(4),

and it is suggested that the .longitudinal stiffener be

neglected in computing the shear strength of the plate

.. girder . The required area for the transverse stiffeners

will then be computed based on the overall panel depth.

5.2.3 Strength Requirement

When a plate girder panel is stiffened transversely

and .longitudinally, the transverse stiffener must provide
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enough section modulus 5 T to avoid the failure at its

intersection with the longitudinal stiffeners. The

expression for the required section modulus of the trans-

verse stiffener, for a plate girder reinforced with longi-

tudinal stiffeners at one-fifth depth from compression

flange, is proposed as in the following .

.,

> N (~)
6 d 5 L

o •
(5.12) I

:

where 5 T = section modulus of transverse stiffeners

5
L

= section modulus of longitudinal stiffeners

at DiS from inner surface of compression I

flange.

N = 1 or 2 corresponding to the cases of the

transverse stiffeners intersect with the

. longitudinal stiffener on. one side or two

sides, respectively'.
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6. PLATE GIRDER WEB STIFFENED

BY ONE-SIDED STIFFENERS

6.1 ,Theoretical Requirements for Stiffeners

•
6~1.1 Rigidity Requirement

For the design of st~ffeners of a plate girder,

the requirement. which generally governs the stiffener

sizes is the rigidity, or the moment-of-inertia

criterion, that is, the stiffeners are designed to main-

tain the shape of girder cross section. It is of inter-

est to compare. the effect of different arrangements by

using two-sided and one-sided stiffeners.

The moment-of~inertia of double stiffeners is

taken about an. axis passing .. through the centerline of the

web plane, and that of one-sided stiffeners is usually

taken about the axis at the interf~ce between stiffener

and web.

With reference to Fig. 21(a), neglecting the web

thickness, the moment of inertia of the two-sided stif-

fener is

t(2b)3
I = 12

2tb 3
= -3- ( 6 .1)

- 1+0 -
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The momeht of inertia of the one-sided stiffener about

the stiffener-web interface is

I' =

•

( 6 .2)

By assuming these two cases provide the same moment

of inertia, I = I I, and the same thickness, t = t I, we

have

b ' = 1.26 b ( 6 .3)

It is readily seen that the same moment-of-inertia

is provided by these two different arrangements with the

outstanding leg of a one-sided stiffener being only 26%

greater than the width of one half of a stiffener pair.

The area of the two-sided arrangement is 2bt and

that of the one-sided arrangement is.l;26bt. It shows

that. the use of a,one-sided stiffener requires only 63%

..
~:. "

of the total area ~f a two-sided stiffener when only

stiffener moment-of-inertia is the basis of design . This

.. favors the use of one-sided stiffeners. For this reason

transverse stiffeners are often placed on one side of the

web and the longitudinal stiffeners on the other. It

also saves on fabricating time and cuts down production

costs.
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The method for determining the optimum rigidity

still holds for. one-sided stiffeners. The following

formula for. the optimum value 7 of one-sided stiffeners
o

b . d f . 1 . .' (22)was 0 talne rom an experlmenta lnvestlgatlon.

2
= 21.5 (..Q..)

d
o

- 7.5 ( 6 .4)

which is plotted in Fig. 9 for a comparison with various

results. It was recommended that this formula could be

used only when the thickness of the stiffener leg is equal

to or greater than the thickness of the web plate.

6.1.2 Area Requirement

In the post-buckling range, the stiffener axial

force resulting from the tension field action is applied

in the plane of.theweb. Thus the one-sided stiffeners,

like a beam-column, will be ~ubjectedto bending moment as

well as axial. compression force since. they will be loaded

eccentrically . For this reason, a one_sided stiffener

:

. will be less efficient in carrying the compression load,

and it would need to have larger cross-sectional area than

the stiffener pairs.

6.2 Design Recommendations for Stiffeners

6.2.1 Rigidity Requirement

The design recommendations presented in Sections 3.2

and 4.2 are applicable for one-sided stiffeners. It was
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recommended that the moment-of-inertia of the one-sided

stiffener taken about the neutral axis of the cross

section composed of the stiffener and a portion of the web

of 20 t , as
w

an effective

shown in Fig. 21(e).(13) For this purpose,

. . (15 )
web wldth of 30 t was also suggested. .

w

To conform to the current rules for bridge design,

it is recommended here that a web strip of 18 t is to be
w

included as a part of the stiffener column. (Fig. 19)

6.2.2 Area Requirement

By allowing the one-sided stiffener to become fully

yielded under the combined bending moment and axial force,

(Fig. 22), and using the case of a two-sided stiffener as

a reference, the expression for the required area of trans-

verse stiffeners, Eq. 3.22, will become

A
s

= [0.13 BDt
w

- 12 t 2 J Y
w

( 6 .5)

:

where B = 1.0 for stiffener pairs, Fig. 21(a).

= 1.8 for single angle stiffeners, Fig. 21(d).

= 2.4 for single plate stiffeners, Fig. 21(c).

6.2.3 Stiffener Details Requirement

In previous.tes~s conducted at Lehigh, no movement

of the tension flange with respect to the transverse
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stiffeners was observed until after the ultimate load was

(3)
reached. It was concluded that transverse stiffeners

could be stopped short of the tension flange a distance

not to exceed 4 times the web thickness. However, the

transverse stiffeners should always 'be fitted to the com-

pression flange. When one-sided stiffeners are used they

should be welded to the compression flange as to resist

any flange torsion.

•

In order to provide for possible nonuniformity in

shear flow, the stiffener force F is to be developed
s

over a distance of one-third of the web depth. The maxi

mum value of the stiffener force is found to be(2)

F = 0.015 2 .J cr / .s D E ( 6 .6)
./

The connectors then are proportioned to count for a total

shear transfer of 3 F ID.
s

of transverse stiffeners is

The shear flow per unit length

.
"

.'

~
V3 .

q = 0.045 D ~Eu (6.7)

By assuming the factor of safety of 1.65, and the

modulus of elasticity of steel Of 29.000s000 psis the

Eq. 6.7 can be written as(27)

q > D I
~3
3400) (6.8)
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where q = shear flow between girder .web and transverse

stiffeners, in pounds per linear inch of

stiffeners.

D = depth.of girder panel, in inch

CJ = yield point of steel, in psi
y

Equation 6.8 specifies the required shear flow for

which the connectors (fillet welds or rivets) must be

designed.to insure an adequate shear transfer between

stiffener-web interface.

Because of their relatively high. torsional rigidity,

the tubular stiffeners are. greatly superior to the stif~ e

fenerplate in increasing ~he web frame stability, namely,

. ( 37)
the strength of a plateglrder. In the meanwhile,

however, the theoreticai basis for the design of. the web

plates reinforced.by tubular stiffeners has not yet been

well developed. For instance,.the values of the buckling

coefficient k, and the optimum rigidity of the stiffeners

are still unknown. The design recommendations for this

:

type of stiffeners, Fig. 21 (f) ·and (g),. are not avai~able

at present.



7. BEARING STIFFENERS

7.1 Stability Considerations

The external loads or reactions in direct bearing

on the flanges of a plate girder can cause the following

detrimental effect in cases where proper bearing stif-

feners are absent. The resulting bearing pressure on

the web can cause local web yielding result'ed in web

crippling~ also the web may collapse as a result of

overall buckling. Therefore, bearing stiffeners shall

be used over. the end bearings. and along the length of

the girder where concentrated loads must be carried.

7.2 Design Recomm~ndations for Bearing Stiffeners

Th~ bearing stiffener is designed like a column.

The effective width of a.centrally located web strip to

be included as a part of the column is equal to 25 t atw

interior stiffen~rs.and 12 t for the stiffeners at thew
(27)

end of the web, or 18 t for bothw
(28)

cases. The

effective length is to be taken as not less than 3/4 of

the length of the stiffeners in computing the slenderness
:

ratio 1/r.(27) The radius of gyrati~n is to be computed

about the axis through the center line of the web plate.

Their connection to the web shall be designed to transmit

the entire end reaction to the bearings. Such stiffeners

usually consists of,two plates, shall have a close bearing

- 46 -
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against the flange, or flanges, through which they receive

their loads or reactions, and shall extend approximately

to the outer edges of the flange plates.

The AASHO Specifications also gives the following

equation for the required thickness of the bearing stif

(28)
fener plates ..

b ' = width of stiffeners

{ = the thickness of the bearing stiffeners

a = yield point of stiffener material
y

..

where

t > b '
12~

y .
,33,000 .

( 7 .1)
. i

I

I
I

I

I
i

I
I

I
I

I
f
I
!



8. SUMMARY AND CONCLUSION

The following is a summary of the design recommen-

for plate girders:

dations presented heretofore on stiffener

1. Transverse Stiffeners ReqUiremen~

reqUirements. ~

~~.

1.1 Rigidity

The moment of inertia of a transverse stiffener

shall not be less than:

I =
3

d ,t
o w

10.92 J

i•'"
'J
'1

1
I
1
1
.1

'j
i

i
!
!
1

,{
·1
I

'J

I

:

..

h (_D) 2 h 5 0were J = 25 d - 20~ but not less t an ..
o

d = distance between transverse stiffeners.
o

When stiffeners are in pairs~ the moment of inertia

shall be taken about the center line of the web plate.

When one-sided stiffeners are used, the moment of inertia

shall be taken about the neutral axis of the, cross section

comprising a web strip of 18 t and the stiffener.
w

- 48 -
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1.2 Width-to-Thickness Ratio

The width-to-thickness ratio of transverse stif-

feners shall be such that

b l

t
2600

rcr;
where b l = the projecting width of the stiffeners,

in inch C6

cr - yield point of stiffener material, in
y

pounds per square inches.

1.3 Area

The gross cross-sectional area, in square inches, of
•

transverse stiffeners shall be. not less than:

A = [0.13 BDt Cl-C) Cl) - 12 t 2 J Ys w V wu

~- ...-/
oint of web steel

point of stiffener steel

B = 1.0 for stiffener pairs

:
= 1.8 for single ang1e stiffeners

= 2.4 for single plate stiffeners

V = applied shear, in .pounds per square inches

V· = shear capacity in pounds per square inchesu

"



In addition, the section modulus of the transverse

When. a web panel is stiffened both transversely and

according to Sections 1.1 to 1.3 in this chapter, except

-50

5.34 + 5 {D/d O )2 <
- 0.3 1.0cr

Y

>

SL = section modulus of longitudinal stiffeners

at DIS from inn~r surface of compression

flange.

D = clear, unsupported distance between flanges

t
C = 8000 (~)D

stiffener shall be such that:

longitudinally, the transverse stiffener shall be designed

total panel. depth, D.

where ST = section modulus of, transverse stiffeners

1.4 Strength

that the depth of subpanels shall be used instead of the

I

I,
1
j
j

I

1
1,.

I

I

I
I

1

I
I
1

1
i
j
j

j
i,
I
l

I
j
l

•

N = 1 for the transverse ~t1ffenersintersect

:
with the longitudinal stiffener on one side

= 2 for the transverse stiffeners intersect

with the longitudinal stiffener on two

sides.
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1.5 Stiffener Detail

The transverse stiffeners may be stopped short of

the tension flange a distance not to exceed 4 times the

web.thickness. The one-sided stiffeners must be attached

to the compression flange~

The transverse stiffeners shall be. connected for

a shear transfer, in pounds per linear inch of stiffener,

such that

q > D

where cr = yield point of web steel
y

/
. 2. Longitudinal Stiffeners Requirements

2.1 Position

The longitudinal stiffeners shall be placed at a dis-

tance D/? from the inner surface of the compression flange

component.

2.2 Rigidity

The longitudinal stiffener shall be proportioned
. - .

so that:

d
I > D~w3 [2.4 (;)2 - 0.13J
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The moment of inertia I of the longitudinal stif-

fener shall be taken the same way as that of the trans-

verse stiffeners.

2.3 Width-to-Thickness Ratio

The width-to-thickness ratio of the longitudinal

stiffener shall be controlled by the same equation as

that for the transverse stiffener.

2.4 Strength

The radius of gyration of the longitudinal stiffener

is not less than:

r >
d~
o~~y

23000

In computing the value of r, a centrally located web

strip not more than 18 t in width shall be considered asw

a part of the stiffener column.

In conclusion, th~ design recommendations presented

in this paper may now be applied to the plate girder

design.

However, a further study on the rigidity requirement

for transverse stiffeners can be made. The investigation

on the problem of an infinitely long plate reinforced by

~quidistant transverse stiffeners was made in Ref. 38.
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The plate was assumed to be either clamped or simply-

-53

supported along the longitudinal edges and subjected to

shear forces. Since the flanges of plate girders do

provide some r~straints along the boundary, it may be

. (38)
of interest to digest the results presented and to

see if there is any conclusion which will add to the

proposed design.recommendatioris. This task is being

. ..

:

undertaken as one of the current research efforts.
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Table 1. FORCES ON TRANSVERSE STIFFENERS

\J\
~t,

d
D F A FGirder 0(=

0 (J (J- s s s s s
D t (kips) (sq.in.) - (ks i) fAw A Fs s s

-36.8 2.0 -lB.8 -10.2 0.555
G6 1. 50 259

-36.8 2.0 -18.8 - 8.3 0.451

G7 1. 00 255 -42.8 2.0 -21.2 - 6.2 0.290

-40.0 2.0 -20.0 - 6.5 o.325
G8 1. 50 254

-40.0 2.0 -20.0 - 5.4 0.270

G9 1. 50 382 -33.8 2.0 -16.9 - 7.5 0.444

El 1. 50 131 - 51. 2 2.0 -25.6 - 6.6 0.258

E2 1. 50 99 - 7.3 2.0 - 3.7 0 0

E4 1. 50 128 -48.5 2.0 -24.3 - 3.6A
0.148

-20.0 2.0 -10.0 Ob. 0
E5 0.75 128

-26.2 2.0 -13.1 OA 0 .

* Theoretical value by tension field action

Measured stress on stiffene~ not adjacent to failed panel

•



Table 2. FORCES ON TRANSVERSE STIFFENERS

(PARTICIPATION OF WEB).
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..

A

2 2 F (j

Girder 12 t A 12 t s s= + F7A.. w .. s w A
(sq.in.) (sq.in.) s

-15.0 0.68
G6 0.45 2.45

-15.0 0.55 ~ \
~ \1\1 ,

G7 0.46 2.46 -17.4 o .36

J-16.2 0.40
G8 0.47 2.47

-16.2 o .33 .A

~

G9 0.21 2.21 -15.3 0.49

El 1. 75 3.75 -13.7 0.48

E2 3.09 5.09 - 1.4 0

E4 1. 84 3.84 -12.6 0.29
/ ..

- 5 . 2 0
E5 1. 84 3.84

- 6.8 0
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Fig. 2 Plate Buckling Due to Pure Bend~ng
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. f Loaded Edges Simply Supported.
Other Edges Clamped
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(ASPECT RAT 10)

Buckling Coefficients for Pl?tes in Pure Bending
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Fig. 19' Stress at Longitudina~ Stiffener



Loading Moment Diagram

-75

p:: Po Sin ;;

~
Rt· x

do ~R
(a). Longitudinal Stiffener

2R

L! ~

.. (b) Transverse Stiffeners

r~g. 20- Relationship Between the Section

Moduli of Transverse S~iffeners

and Longitudinal Stiffeners



\.

r Web
~ "

(0)

STIFFENER PAIRS

-76

(b)

1'>-------, .1. t I

..----...1 ,
bl

(e) (d)

ONE - SIDED STIFFENERS

.. (1) (g)
•

.TUBULAR STIFFENERS

Fig. 21 Stiffener Arrangements



-77

ct. of Web

~ ... Compression
Force Fs

.," I'

(+)

(-)

1t' -ctof Stiffener

Fig. 22 Stress at One-Sided Stiffener

Due to Compression Force F
s



)

11. REFERENCES

1. Basler~ K. and Thurlimann~ B.
STRENGTH OF PLATE GIRDERS IN BENDING, Proceedings,
ASCE~ Vol. 87~ No. ST6, August 1961.

Basler~ K.
STRENGTH OF PLATE GIRDERS IN SHEAR~ Proceedings,
ASCE, Vol. 87~ No. ST7, October 1961.

Basler, K., Yen, B. T., Mueller~ J. A., and Thurlimann, B.
WEB BUCKLING TESTS ON WELDED PLATE GIRDERS,
Bulletin No. 64~ Welding Research Council, New
York~ September 1960.

2 .
~!'

1\

~.
3.

4. Cooper, P. B.
STRENGTH OF LONGITUDINALLY STIFFENED PLATE GIRDERS,
Proceedings, ASCE~ Vol. 93~ No. ST2, April 1967.

5. D'Apice, M. A., Fielding, D. J., and Cooper, P. B.
STATIC TESTS ON LONGITUDINALLY STIFFENED PLATE
GIRDERS, Bulletin No. 117, Welding Research
Council, New York, October 1966.

6. Bryan~ G. H.
ON THE STABILITY OF A PLANE PLATE UNDER THRUSTS
IN ITS OW~ PLANE WITH APPLICATIONS ON THE BUCKLING
OF THE SIDES OF A SHIP~Proceedings, London Math.
Soc., Vol. 22, December 1890.

7. Timoshenko, S. P.
THEORY OF ELASTIC STABILITY~ McGraw-Hill Book
Company, Inc., New York, 1936.

8. Reissner, H.
UBER DIE KNICKSICHERHEIT EBENER BLECHE, Zentralblatt
der Bauverwaltung, 1909.

Beedle, L. S. and Tall, L.
BASIC COLUMN STRENGTH, Proceedings, ASCE, Vol. 86,
No. ST7, July 1960 .

Tall, L.
RECENT DEVELOPMENTS IN THE STUDY OF COLUMN BEHAVIOR,
Journal, Inst. of Engineers, Australia, December
1964.

l
9.

..
~

10.

11. Johnston, B. G. Editor
The Column Research Council Guide to: DESIGN CRITERIA
FOR METAL COMPRESSION MEMBERS, 2nd Edition, John
Wiley & Sons, Inc., New York, August 1967.

- 78 -



j
1
j
1
1
j
I
I
I
\

1:(
,j

1'\
,J

j
11
:.1
IJ,
I;
I
,j
j

.J
,1 \

0,

I
1 ,
1

,-,
)

'j

Ii
'..

r

I
.!

..

-79

.
12. Timoshenko, S. P. and Woinowsky-Krieger, S.

THEORY OF PLATES AND SHELLS, McGraw-Hill Book
Company, Inc., New York, 1959.

13. Massonnet, C. E.
STABILITY CONSIDERATIONS IN THE DESIGN OF STEEL
PLATE GIRDERS, Trans., ASCE, Vol. 127, Part II,
1962.

14. Stowell, E. Z., Heimerl, G. J., Libove, C., and
Lundquist, E. E.

BUCKLING STRESSES FOR FLAT PLATES AND SECTIONS,
Trans., ASCE, Vol. 117,1952.

15. Bleich, F.
BUCKLING STRENGTH OF METAL STRUCTURES, McGraw-Hill Book
Company, Inc., New York, 1952 .

16. Timoshenko, S. P.
STABILITY OF THE WEBS OF PLATE GIRDERS, Engineering,
Vol. 238, 1935.

17. Stowell, E. Z.
A UNIFIED THEORY OF PLASTIC BUCKLING OF COLUMNS
AND PLATES, NACA TN No. 1556, (Rept. 898), 1948.

18. Stowell, E. Z;
CRITICAL SHEAR STRESS OF AN INFINITELY LONG
PLATE IN THE PLASTIC REGION, ~ACA TN No. 1681,
August 1948.

19. Stowell, E. Z.
PLASTIC BUCKLING OF A LONG FLAT PLATE UNDER ~,

COMBIN~D SHEAR AND LONGITUDINAL COMPRESSION, NACA
TN No. 1990, December 1949.

20. Massonnet, C.
VOILEMENT DES PLAQUES PLANES SOLLICITEES DAN LEUR
PLAN (BUCKLING OF PLATES LOADED IN THEIR PLANE),
CECM TN B-13.2, Brussels -.

21. Moore, R. L.
AN INVESTIGATION OF THE EFFECTIVENESS OF STIFFENERS
ON SHEAR-RESISTANT PLATE GIRDER WEBS, NACA TN 862,
September 1942.

22. Rockey, K. C.
THE DESIGN OF INTERMEDIATE VERTICAL STIFFENERS ON
WEB PLATES SUBJECTED TO SHEAR, Aeronautical
Quarterly, Vol. VII, November 1956.

23. Stein, M. and Fralich, R. W.
CRITICAL SHEAR STRESS OF INFINITELY LONG SIMPLY
SUPPORTED PLATES WITH TRANSVERSE STIFFENERS, NACA
TN 1851, April 1949.



r

-80

24. Massonnet, C.
ESSAIS DE VOILEMENT SUR POUTRES A AME RAIDIE,
(BUCKLING EXPERIMENTS ON GIRDERS WITH STIFFENED
WEB), Publ. Intern. Assoc. Bridge and Structural
Eng., Vo 1. 14, 1954.

25. Skaloud, M.
DESIGN OF WEB PLATES OF STEEL GIRDERS WITH REGARD
TO THE POST-BUCKLING BEHAVIOR (APPROXIMATE SOLUTION)
Str. Engr., Vol. XL, No.9, September 1962.

26. Tall, L.. , Editor-in-Chief
STRUCTURAL STEEL DESIGN, The Ronald Press Company,
New Yo r k, 1 9 6 4 .'

27. AISC •
SPECIFICATION FOR THE DESIGN, FABRICATION AND
ERECTION OF STRUCTURAL STEEL FOR BUILDINGS,
American Institute of Steel Construction, New
York, April 1963.

28. AASHO
STANDARD SPECIFICATIONS FOR HIGHWAY BRIDGES, American
Association of State Highway Officials, 1965. '

29. British Standards Irtstitution
SPECIFICATION FOR STEEL GIRDER BRIDGES, British
Standard 153, Parts 3B & 4, British Standards
House, London, 1958.

].

30. Deutscher Normenausschuss
GERMAN BUCKLING SPECIFICATIONS, DIN 4114, Beuth
Vertrieb GmbH, Berlin and Cologne, July 1952.

31. Goodpasture, D. W. and Stallmeyer, J. E.
FATIGUE BEHAVIOR OF WELDED THIN WEB GIRDERS AS
INFLUENCED BY WEB DISTORTION AND BOUNDARY RIGIDITY,
Structural Research Series No. 328, Civil
Engineering Studies, University of Illinois,
Urbana, Illinois, August 1967.

Yen, B. T.
ON THE FATIGUE STRENGTH OF WELDED PLATE GIRDERS,
Fritz Engineering Laboratory Report No. 303.1,
Lehigh University, Bethlehem, Pa, November 1963.

Rockey, K. C. and Leggett, D. M. A.
THE BUCKLING OF A PLATE GIRDER WEB UNDER PURE
BENDING WHEN REINFORCED BY A SINGLE LONGITUDINAL
STIFFENER, Proceedings, Inst. of Civil Engrs.,
Vol. 21, London, England, January 1962 ..

1 32.

..,

33.



\...

-81

34. Moisseiff, L. S. and Lienhard, F.
THEORY OF ELASTIC STABILITY APPLIED TO STRUCTURAL
DESIGN, Trans., ASCE, Vol.- 106, 1941.

35. Rockey, K. C.
SHEAR BUCKLING OF A WEB REINFORCED BY VERTICAL
STIFFENERS AND A CENTRAL HORIZONTAL STIFFENER,
Publ·' Intern. Assoc. Bridge and Struc. Engr.,
Vol. 17, 1957.

36. ' Mueller, J. A. and Yen, B. T.
GIRDER WEB BOUNDARY STRESSES AND FATIGUE, Bulletin
No. 127, Welding Research Council, New York, January
1968.

37. Bornscheuer, F. W.
CONTRIBUTION TO THE CALCULATION OF FLAT, UNIFORMLY
LOADED RECTANGULAR PLATES, REINFORCED BY A LONGITUDINAL
STIFFENER, ,(in German), Dissertation, Darmstadt,
1947.

38. Cook, I. T., and Rockey, K. C.
SHEAR BUCKLING OF CLAMPED AND SIMPLY-SUPPORTED
INFINITELY LONG PLATES REINFORCED BY TRANSVERSE
STIFFENERS, The Aeronautical Quarterly, Vol. XIII,
February 1962.


	Lehigh University
	Lehigh Preserve
	1968

	Stiffener requirements for plate girders, June 1968
	J. S. Huang
	B. T. Yen
	Recommended Citation


	tmp.1349783643.pdf.Ow7pN

