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A B S T RAe T

In this study, an investigation has been made of the static

and fatigue properties of liZ-in. 270 ksi 7-wire prestressing strand.

The specific properties investigated were the stress-strain relationship

up to ultimate load, fatigue life under laboratory conditions, and the

effect of low temperature on the fatigue life.

Samples of strand from five different manufacturers were used

to establish the stress-strain relationships. The results indicate

that all samples meet the minimum requirements specified in ASTM A4l6-64.

The;S~Nrelationshipswere developed for strand from three

of the manufacturers. In each case, two different minimum stress

levels (40% and 60% of the minimum specified ultimate strength) were

used.

A statistical analysis was made of the data, and equations

are developed which express the fatigue life as a function of the

minimum and maximum stress levels. The resulting S-N relationships

are compared with those developed in earlier work for 7/l6-in. 250 ksi

7-wire strand.

Finally, a pilot study was made of the effect of low tempera-

o
ture (0 F) on the fatigue life of the l/2-in. 270 ksi strand. Samples

from all five manufacturers were included in this part of the investi-

gat ion. The specimens tested at low temperature were compared with a

-1-
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group tested at normal laboratory temperature. One stress range

(0.56 f' - 0.80 f' ) was used in all tests. The results indi-
s-ms. s-ms

cate that this decrease in temperature apparently has little effect

on the fatigue life of the strand .



I.

1. IN T ROD U C T ION

1.1 BACKGROUND

In 1949, a new era in construction was begun with the start

of the erection of the Walnut Lane Bridge in Philadelphia. Completed

in 1951, it was the first major prestressed concrete structure to be

erected in the United States. Since that time, prestressed concrete

has moved forward and taken its place as a major construction method.

Its importance is emphasized by the results of a U.S. Bureau of Public

Roads survey for the years 1957-60, which showed that 2052 prestressed

concrete bridges has been authorized for construction. (8) In the years

since then, prestressed concrete has gained significant importance in

other construction areas such as buildings, towers and foundations.

The initial fabrication methods were adopted, in most cases,

from European practice where prestressed concrete has been used ex
!"

tensively since the 1930's. In the years since 1949, however, con-

struction procedures and methods have been geared to American manu

facturing and labor conditions, (7) and as a result, most prestressed

concrete flexural members in the United States are now manufactured

by the pre-tensioning method utilizing 7-wire strands (Fig. 1), as

compared to the individual wire elements more commonly used in

Europe.

With each new improvement in material or technique, there

follows the necessity for research to insure that the product meets

-3-
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the standards established for safe, useable, and economical life span

of the structure.

1.2 PREVIOUS RESEARCH

In the literature investigated, a common comment made by the

authors is that research in prestressed concrete has lagged behind

actual usage. In many cases, what was termed research was generally

nothing more than user acceptance tests designed to indicate that a

particular member was safe under the design loading which was simu

lated by the test conditions. In recent years, this trend has changed,

and actual test programs have been organized to obtain the relevant

properties, first, of the basic components, and then, of the manu

factured members.

In Europe, as previously mentioned, individual wires of

various diameters are commonly used as the primary prestressing ele

ments, and as a result, their properties are tabulated in most manuals

on the subject. Therefore, the use of the 7-wire strand in the United

States has required a completely new series of tests to establish

structural behavior characteristics. To further complicate matters,

the manufacturers are producing new strands of higher strength and

larger diameter at a faster rate than comprehensive tests can be

planned and conducted. As a result, the latest static test results

for 7-wire strand were reported by Lin, (8) Fisher and Viest(6) for

3/8-in. 250 ksi strand, Warner and Hulsbos(l) for 7/l6-in. 250 ksi

strand, Hanson(22) and Brecht(23) for 7/l6-in. 270 ksi strand, and



Badaliance and VanHorn(24) for 1/2-in. 270 ksi strand.

-5-

In the tests

,

•

reported, no indication was explicitly given as to the mode of strand

failure, that is, whether the test results represented a true ultimate

failure within the gage length, or the more common failure in the

gripping devices due to stress concentration. Since the results of

the strand tests were of secondary emphasis in the investigations

cited, the latter is probably the case. Fisher and Viest(6) indicated

the difference between the stress-strain relationship for the 7-wire

strand as compared with an individual wire element, while Warner and

Hulsbos, (1) and Badaliance and VanHorn(24) indicated the difference

between the stress-strain relationship of one of the individual wires

of a 7-wire strand to that of the 7-wire strand itself.

The minimum requirements for the conventional 1/2-in. 7-wire

prestressing strand are set forth in ASTM A4l6-64. (17) The principal

requirements are: (1) a minimum of 3.5% elongation must be developed

in a 24-in. gage length, and (2) 85% of the minimum specified ultimate

load must be reached at 1% elongation. The 270 ksi strand is manu-

factured and tested within the provisions of this Standard, except

that the specified minimum ultimate strength is 270 ksi, and the

cross-sectional areas are slightly larger than the conventional nomi-

nal sizes.

The research conducted on the fatigue behavior of concrete

beams was reviewed and summarized by Nordby(5) in 1958. It would be

duplication to review most of the literature covered prior to this
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date, but it is worthwhile to quote the summary of the results of pre-

vious research involving prestressed concrete structural elements:

Summary of Prestressed Concrete Results

Again, these statements should not be regarded
as definite conclusions.

1. In none of the tests did concrete fail by
fatigue. The current working stresses seem to
give adequate protection in this regard.

2. Fatigue failure of stressing wires or
strands was the cause of all failures reported.
These failures seemed to be related to the ex
tent and severity of the cracks .

. 3. Bond failures were rare and were found
only under unusual circumstances, i.e., short
beams, short shear span.

4. The ultimate strength of prestressed beams
for static loads was unaffected by repetitive
loading if they did not fail by fatigue.

5. Safety factors seemed to be approximately
2 against fatigue failure for most of the beams
tested.

6. Prestressed beams seemed superior to con
ventional beams for resisting fatigue loading.
In fact, in a recent paper, Ekberg and Walther
analytically verified this by relating the modi
fied Goodman diagram of both the concrete and
prestressing steel to the theoretical stresses
in both types of beam.

7. Further research is needed on bond failure
and the action around cracks. Little progress
can be made in this direction until these phe
nomena are understood for static loads. Efforts
should be made toward establishing modified
Goodman diagrams for both high strength con
crete and steel as an aid to the analysis of
prestressed beams subjected to fatigue loading.

Conclusions

Most of the research up to this time has been
exploratory and investigators now know what to
look for in their experiments. More research is
needed in every phase of fatigue of concrete and
future investigations should be well organized
to isolate a particular variable. Research on
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the fundamental properties of concrete fatigue
to describe the mechanism of fatigue failures
may be particularly fruitful. An understand
ing of this mechanism would make previous tests
more valuable as well as improving those made
'in the future.

More research is needed to investigate the
effect of moisture, aggregates, aggregate bond,
curing, rest periods, microcracks in the paste,
different environments of corrosive agents,
specimen size, range of stress, combined loading,
freezing and thawing, air entrainment, admixtures,
temperature cycles, moisture cycles, accumulative
fatigue damage, and previous stress histories on
fatigue of both plain and reinforced concrete.
In reinforced concrete efforts must be toward
understanding the mechanism of bond and the mech
anism of failure around tension cracks. A solu
tion to this problem may be found in the newer
x-ray methods pioneered by Evans. Other work
must relate the results of fundamental properties
to reinforced concrete structures.

The potential economic return for evaluation of
these problems is almost fantastic. The saving
in highway construction alone would be enormous
if the life of concrete pavements could be pro
longed 10 years by an understanding of fatigue.
But greater funding for fundamental research
wil~ be necessary from both state and federal
governments as well as industry to accomplish
the task. Industry especially must modify its
viewpoint to consider such investigations as
long-time investment which will pay dividends
in increased use of concrete over the years.

It is interesting to note that in all of the literature

cited to that data, no mention was made on the fatigue properties of

the individual strands. The fatigue studies on the individual wires

conducted in Europe are not of much value, since the properties of

individual straight wires are considerably different from those of

7-wire strand, as indicated by Preston (7) and Lin. (8)



r

I

-8-

The material covered in the above review, and the resulting

conclusions were reflected in the trends in research which followed

its publication.

In 1956, Nuwaysir(4) conducted a pilot study to determine,

among other things, the best method for gripping prestressing strand.

Using the results of seven tests incorporating 7/l6-in. 7-wire strand,

all having a minimum stress of 55.6% of static ultimate strength, but

with different maximum stresses, an S-N curve was plotted. This pilot

study was then used by Lane and Ekberg(3) to conduct a more extensive

study of creep. In this study, thirteen specimens were tested, and

two S-N curves were plotted for the 7/l6-in. 7-wire strand used.

Test results from seven specimens having a minimum stress of 54.5%

were used for one curve, and the results from six specimens with a

minimum stress of 65.2% were used for the other. The number of test

specimens used to develop these three curves did not permit the draw

ing a significant conclusion, but this study represented the important

first step upon which later research could be built. This study was

not extensive enough to give Endurance Limits, but it did indicate

that under reasonable working loads, nearly 1,000,000 stress cycles

could be achieved prior to failure. Also, the first indication of

the problem of scatter was mentioned, although not in detail due to

the lack of information.

The next significant research was that of the AASHO Road

Test as reported by Fisher and Viest. (6) In this test series, 18 speci-
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mens of 3/8-in. 7-wire strand were tested, along with individual

wires and normal reinforcing material. Although the number of samples

was small, the test series was devised so as to bring out the maximum

effect. This was achieved by using a 2 x 2 factorial arrangement in-

volving two minimum stress levels and four maximum stress levels.

From this data, two graphs were plotted using the mean of three values

for each of the six points. Two straight lines were then drawn be-

tween each set of three mean values and the following mathematical

model was obtained for the range of stresses covered by the tests:

where

log N

N

9.354 - 0.0423 8 - 0.0102 8 .
r m~n

number of cycles to failure

8 = range of stress, (8 -8 )
r max min

8 = maximum stressmax

8 = minimum stress
min

A statisitcal analysis was made to obtain the standard Error of Esti-

mate and Coefficient of Correlation. The effect of 8. was signifi
m~n

cant at the 10% level, but not at the 5% level, of the goodness-of-

fit test. It was stated in the summary that the stress range was

clearly the most important independent variable.

Closely following Fisher's work was a test program reported

by Warner and Hulsbos(l) in which 122 specimens were tested. Of the

total, 69 were tested in a constant-cycle fatigue test series, while

the remainder were part of a cumulative damage fatigue test. The

specimens incorporated 7/l6-in. 250 ksi 7-wire strand; and were sub-
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. jeotedto e·ither· ·of two minimum stress levels, 40% or 60% of static

ultimate strength obtained by testing, and several maximum stress

ranges. The tests were grouped so as to have at least six repeti~

tions of the same test in each of seven groups. To simulate infi-

nite testing, four specimens were tested at stress levels low enough

to insure no failure at less than three million cycles. One of the

seven groups, having 20 specimens to enable a goodness-of-fit to be

made, yielded a value well within the 5% signiftcance level. The

test results obtained indicated that only a statistical approach would

provide answers with some degree of meaning.

Warner used the fatigue studies made by Freudenthal, (18)

(20). (21) (25)Muller-Stock, We~bull, and Grover, et ale as the basis

for his statistical approach. These studies indicate that the log-

normal relationship is generally indicative of the statistic pro-

perty of fatigue studies. Considering the small number of test speci-

mens and the inherent scatter that was observed in fatigue studies,

the log-normal distribution was considered suitable and adequate.

A second goodne.ss-of-fit test was conducted on all of the

constant cycle test results by reducing all of the data for the

different stress ranges to a common parameter Z, given by the

expression:

where

Z = log N - log N
D

[1 n 2]1/2
D = ln~l ~ (log N - log N)



and log N
')

= log of number of cycles N to failure

-11-

log N = mean of log N

D = standard deviation of log N

n = number of specimens in group

The parameter Z reduces the various groups to one with a mean of

zero and a standard deviation of unity. Using these results, a

histogram was plotted and compared to a normal frequency distribu-

t,ion curve.

The normal 8-N curves were also plotted and Endurance

Limits were estimated to be 55% and 71% for the two minimum stress

levels of 40% and 60%, respectively. The Endurance Limit was assumed

to be a linear variation between these two levels, as expressed by

the equation:

= 0.8 8. + 23
m~n

The stress range R was then defined as follows:

R = 8 - 8Lmax

where 8
L

= Endurance Limit as a percent of
static ultimate strength

8min
minimum stress as a percent of
static ultimate strength

8 = maximum stress as a percent ofmax static ultimate strength

The values of R were then plotted with log N and an equa-

tion was obtained by a least squares method as follows:

log N = 1·i332 + 5.5212 + 0.0486 R
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Similarly, a least squares fit was also used to obtain an

equation for the results of a plot of R versus D, and was given

as:

D = 0.2196 - 0.0103 R.

In 1965, Hilmes and Ekberg(2) published a report in which

56 specimens of 7/l6-in. 250 ksi, 7-wire strand were tested. All

specimens had a minimum stress level of 50% of static ultimate strength

obtained by testing. Various maximum stress levels were used.

In this study, a more refined statistical approach was taken

in the preparation of the program. A probit test was based on 5 groups

of specimens. The result indicated the requirement of at least 50

specimens in variable group sizes. The normal goodness-of-fit test

was conducted to test the reliability of the results obtained.

An assumed Endurance Limit of 2,000,000 cycles was used

as a basis to determine the percentage of tests that would survive

at each level, the values of percent passing at each level and maxi-

mum stresses were transformed to develop a response curve according

to the ASTM recommendations. (26) The results were plotted, and a

least squares fit was used to obtain a sample standard deviation.

Using the results to obtain values of percent survival, along with

tabulated values from Ref. 26, S-N envelopes were plotted on a

Stress range S was used as the ordinate,
r

instead of maximum stress, and was defined by:

double logarithmic scale.

S = S - Sr max min



,.

Smax

S .
m~n

maximum stress as a percent
of static ultimate strength

= minimum stress as a percent
of static ultimate strength.

-13-

The results obtained indicated curves formed by two straight lines

with breaks at 400,000 cycles. The equations of the curves obtained

were as follows:

S = (1640 - 11.5 S . ) N- 0 . 320
r m~n

S = (115.5 - 0.78 S . )N- 0 •1l54
r m~n

N .::; 400,000

N > 400,000

The equations obtained included data from Warner and Hulsbos(l) and

therefore, have the limitations 40% ~ S. <
m~n

60%. The test data

..,

agreed to within 5% of the values given by the equations.

In the literature reviewed, no mention was made of the

effect of temperature on the static or fatigue properties of the

7-wire prestressing strand. As a result, only a general metallur-

gical fatigue concept will be reviewed. In general, the strength

'of steel increases as the temperature changes from a high of 500
0

F

ad indicated by AISC(16) and Timoshenko(15) down to a low of -2500 F

. (12)
given by Parker. Beyond this range of temperatures, ultimate

strength is greatly reduced, as reflected by the change in failure

mode. Parker states that below -2500 F there is a transition from

shear to cleavage failure •

Similarly, Forrest(14) states that the fatigue strength is

increased as the temperature is reduced within approximately the

same bounds. This concept is generally difficult to envision, since
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the tendency is to associate brittle fracture with fatigue failure.

Finally, to emphasize that this is not the case, it is appropriate

to quote Jastrzebski:(13)

"There is no relation between increasing
brittleness of steel at low temperatures
and the fatigue strength."



..

2.1 OBJECT

2. OBJECT AND S COP E

•.

In general, the object of this research was to determine the

static and fatigue properties of l/2-in. 270 ksi, 7-wire prestressing

strand. The specific areas investigated are as follows:

1) The stress-strain relationships of prestressing strand

up to ultimate load and elongation.

2) The fatigue life of the prestressing strand under labora-

tory conditions.

3) The effect, on the fatigue life, of lowering the tempera-

oture of the test specimens to 0 F.

4) Comparison of the results obtained in 2) above with

results obtained by Warner and Hulsbos, (1) and Hilmes and Ekberg. (2)

2.2 SCOPE

The test: series consisted of 16 accepted static test results

and 178 fatigue test specimens. The tests were conducted on samples

of prestressing strand obtained from five manufacturers of prestressing

strand in the United States. The manufacturers are listed alphabeti-

cally in Table 1, and the order has no correlation to the designations

A, B, C, D, and E, used in the tables and figures. As a result, the

manufacturer is not directly identified, as the intent of the investi-

gat ion was to obtain results generally applicable to l/2-in. 270 ksi,

-15-
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7-wire prestressing strand produced in the United States within the

ASTM designation A4l6-64.

The static tests were conducted on samples obtained from

all five of the manufacturers listed. Of these five groups of samples,

four groups represented samples taken from one roll of strand from

each of the manufacturers. The fifth group of samples was taken from

two separate rolls, manufactured two years apart.

Of the fatigue specimens tested, 140 comprised the main test

series,
othat is, those tested at the laboratory temperature (70 F).

.,
•

The specimens for this series were divided into three approximately

equal groups, representing the prestressing strand manufactured by

firms A, B, and C. Each group of specimens was fabricated from an

individual roll of prestressing strand.

The remaining 38 fatigue specimens were used to investigate

the effect of low temperature on the fatigue properties of prestress-

ing strand. This series was divided into five groups, which in turn

were separated into two equal groups, one group being tested at labora

tory temperature (70oF), and the other at OOF. The five groups repre-

sented one roll from each of the five manufacturers •



,

3. T EST S P E C I MEN S AND

3.1 STATIC TESTS

T EST I N G PRO C E D U RES

•.

The prestressing strand specimens used for the static tests

were taken from different locations along the length of the samples

obtained from the previously mentioned manufacturers. Each specimen

was examined to insure that there were no obvious faults such as nicks

or weldments within the gage length.

A requirement of the static test procedure was the develop-

ment of the ultimate load, defined as the failure load occurring when

the strand failed in the gage length. The most common method of test-

ing prestressing strand was simply to use a commercial type of grip

positioned tightly against a steel plate. In most cases, the teeth

of the grip would cut into the strand, and the resulting stress con-

centrations around the indentations would cause premature failure.

As a result, the ultimate load obtained in this manner would not re-

fleet the full strength of the strand.

There have been various methods devised over the years to

overcome this problem, and each one has its merits depending on the

facilities and equipment available. The methods that have been used

are briefly: (1) dulling the teeth of the strand grips, (2) coating

the strand in the gripping region with molten tin, and (3) use of a

molten zinc grout to secure the strand in a cast iron end-fitting.

-17-
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The method finally adopted was a modification of the one

used at Bethlehem Steel's Homer Research Center. In this method,

the load is transferred by friction, from the strand through copper

bars, to the testing machine head, over a relatively large area, and

therefore, minimizing the effect of stress concentration. The friction

force was achieved by a lateral force in the machine heads, which, prior

to testing, squeezed the copper bars around the prestressing strand.

This feature of laterally squeezing aspec~meri.~n:the grips

is not available with the machines in Fritz Engineering Laboratory,

but the same effect was achieved by placing a steel block across the

exterior ends of the V grips (Fig. 3). The strandvise was then

positioned tightly against the steel block. As the load was applied,

the pressure exerted by the strandvise on the steel plate, and there-

fore to the machine grips, forced the machine grips to squeeze the

copper bars as desired. In several tests, calibrated dynamometers

were placed between the strandvise and the steel plates to determine

the effectiveness of the copper bars (Fig. 4). The gripping ability

of the copper bars was improved by winding fine (O.02S-in.) steel

wire around the strand before placing the copper bars.

Considerable difficulty is usually encountered in trying

to obtain strain readings when testing prestressing strand. The

normal commercial extensometers are difficult to use because the

strand is very hard, thereby preventing efficient gripping. More

important, however, is the problem of the strand twisting as the
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load is increased. The strain indicators are disturbed as the strand

twists, giving inaccurate strain readings.

This problem had been overcome in previous research at

Fritz Engineering Laboratory by using an extensometer as shown in

Figs. 5 and 6. The two brackets are placed 24 inches apart to pro-

vide the gage length required by ASTM Standard A4l6-64. To prevent

abrasion from occurring when the steel clamps were tightened, plastic

tubing was placed around the prestressing strand in the vicinity of

the clamps. The strand elongation was measured by placing Ames dials

(lease count = 0.001 in.) on each end of the top bracket, and connect-

ing them to the bottom bracket by paino wire. Readings of elongation

'. were also obtained by afixing a horizontal cross-bar to two vertical

straps attached to the top bracket. The horizontal cross-bar was

silhouett~d against a vertical strip-scale which was attached to the

bottom bracket (Fig. 5).

Initial readings were taken on both the Ames dials and the

strip-scale. Then, only Ames dial readings were taken at close inter-

vals, until the stress-strain relationship was well out on the rela-

tively level plateau. At this point, readings were again taken on

the strip-scales. The Ames dials were then removed to prevent dam-

.
•

,.

age at strand failure. The strip-scale and cross-bar readings of

O.Ol-in. elongation over a 24-in. gage length were continued up to

failure. This was possible since the actual readings were taken by

using the telescope from a transit mounted at a safe distance from

the test.
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FATIGUE TESTS

For this test series, the prestressing strand samples were

~.

cut from the rolls in quantities as required for the fabrication of

the specimens. Each portion of strand that would be located in or

near the gage length was inspected for nicks of weldments.

An attempt was made to obtain a gage length of 24-in. for

the fatigue specimens, but without success. Several arrangements were

attempted, including those used in the static tests. However, the pre-

stressing strand always failed in the grips at a number of cycles much

less than was indicated in the previous investigations.

The method finally employed was identical to the one formerly

used here at Fritz Engineering Laboratory (Fig. 9). The method con-

sisted of cement-grout-encased prestressing strand, supported by

steel clamps for attachment to the testing frame set-up (Figs. 10 and

11). Initially, the strand was pre-tensioned to 70% of the minimum

specified ultimate load. Next, the steel clamps were aligned on the

specimen using plastic tubing placed around the strand in the vicinity

of the clam~ end pieces. The spacing block was then placed in between

each set of clamps, after which the strandvises were pressed against

both ends. The prestressing load was then released and the excess

strand was trimmed off. The space in between the steel clamps was

then filled with a cement grout having a sand, cement, water ratio

of 1.00:0.80:0.33. After the grout had cured, the transverse tension

bolts were tightened to insure that a compressive force existed on

the grout. Then,the specimen was ready for testing.
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The prestressing strand was pre-tensioned to insure that a

high percentage of the testing load was carried by the strandvises

bearing on the end plates of the clamps. The remainder of the test-

ing load was then transferred to the steel clamps by bond between

the strand and the concrete. The initial twisting that occurs when

a strand is subjected to loading was also eliminated. This secondary

result would then improve the contact conditions between the strand

and grout, resulting in a lower loss of load. The amount of prestress

force remaining in the gage length was determined when the specimen was

placed on the test set-up and loads applied. In most cases, the load

required to remove the spacer block was between 50% and 60% of the

minimum specified ultimate, and inspection of the specimen revealed

that the length of bond lost after testing was generally less than

2 inches at the end of the gage length. The principal test set-up

consisted of a cantilever arrangement (Fig. 10) activated by an

A~sler pulsator. The one end of the specimen was connected to a

fixed base while the other end was attached to the cantilever. The

position of the specimen in the cantilever arrangement resulted in

testing loads 1.33 times the pulsator dial readings.

When the initial set-up was made, several specimens had

SR-4 gages mounted to permit dynamic strain readings to be taken.

A comparison of strains with those of static tests indicated that

the inertia effects were negligible.
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To obtain an indication of the temperature of the prestress

ing strand under test condition, calibrated thermo-couples were

attached to the strand using elastic insulation tape. The four

thermo-couples were manufactured to give linear calibration curves,

with sensitivity of 200 micro-inches-per-inch per degree Fahrenheit,

in the range of temperatures of interest. As a result, it was possible

to obtain accurate temperature readings under test conditions.

With the temperature control, it was possible to lower the

temperature of the test conditions to OOF as indicated in Figs. 10 and

11. This was achieved by bubbling nitrogen gas through liquid nitro

gen. The valve on the nitrogen gas cylinder was regulated until the

desired temperature was maintained.

The size of the thermo-couples permitted a reasonable contact

between the edges of two exterior wire elements. However, it was

impossible to get an indication of the temperature of the interior

surfaces. The insulation tape also helped provide results with a

reasonable degree of quality.

The actual procedure for testing a specimen can now be

explained. After the grout had cured, and the transverse tension

bolts tightened, the specimen was placed in the test set-up (Fig. 10).

A gradually increasing static load was applied until the spacer block

could be removed. The static load was then adjusted until only

slightly larger than the desired minimum load. The dynamic load

was then gradually applied until the maximum load value was obtained,
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• and then minor adjustments were made to both the minimum and maximum
~

loads until the required load levels were obtained. The Amsler

pulsator operates on a positive and negative hydraulic pressure

system which means that the applied load varied sinusoidally be-

tween minimum and maximum load at 250 cycles per minute. This

loading was continually applied until strand failure occurred,

after which the specimen was broken apart, if necessary, to permit

an inspection of the failure mode.

In order to complete the test program in a reasonable time,

and at the same time, to allow coordination of the work with other

research being conducted at Fritz Engineering Laboratory, it was

necessary to use another test set-up. The second test set-up was

a commercial alternating stress machine. In this set-up the specimen

was attached to the base of the machine and to the moveable head.

The moveable head was then activated by an Amsler pulsator. Inthe

overall testing program, including both test set-ups, three differ-

ent pulsators were used at different times.

The initial part of the test program was carried out in

1964 as a pilot study when 18 specimens were tested between the load

ranges of 0.56 f' and 0.80 f'
s-ms s-ms

The specimens were divided into

three groups of six, each group representing one of the manufacturers

A, B, or C. Each group of six had three specimens tested at labora-

o 0tory temperature (70 F) and three at a low temperature (0 ~).

The main part of the test program was continued in 1965,

with the testing beind conducted group-by-group. The specimens
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from group C were tested first, followed by those from group B, and

finishing with the specimens from group A. The specimens in each

group were randomly arranged as far as the order of testing was con-

cerned. The specimens in this group had a minimum of either 40% or

60% of the minimvm specified ultimate strength.

The test program was completed with the testing of the last

20 specimens between load ranges of 0.56 f' and 0.80 f' The
s-ms s-ms

series consisted of six specimens from group B, used as a comparison

with the pilot study, w{tn three specimens tested at laboratory tempera-

oture and three at low temperature (0 F). The next group represented

manufacturer D with six specimens, again with three at each of the two

test conditions of 700 F and OOF. The final group represented manu-

facturer E with eight specimens divided into two sets of four each.

The first set was tested at laboratory temperature conditions (70oF)

oand the second set at a low temperature of 0 F•
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4.1 STATIC TESTS

4. T EST RES U L T S

The final results obtained from the static tests, based on

the actual cross-section area in each case, are given in Table 2,

and Figs. 2 to 8. The results were obtained from 16 accepted tests

as previously indicated. A test was considered acceptable if the

failure occurred in the gage length (Fig. 6), as compared to failure

in the gripping devices. As a result, there were several test speci-

mens from each manufacturer's sample, which did not meet the above

requirement •. However, they were within the ASTM(17) requirement,

• with P
u

greater than Psm'
f greater than 0.85 f' at 1% e1onga-

s s-ms

•.

tion, and a total elongation greater than 3.5% at failure.

The difference in test results between the ASTM criteria

for yield strength (1% elongation) and the often used value of 0.2%

offset is illustrated in Fig. 2, and tabulated in Table 2.

To give an indication of how the load was distributed be-

tween the strandvise and the copper grips, the values obtained from

the previously calibrated dynamometers, as shown in Fig. 3, were

plotted in Fig. 4. These curves are only representative, since the

curves changed considerably as the copper grips became worn •

The load-strain and stress-strain relationships are plotted

in Figs. 7 and 8 respectively, along with the pertinent ASTM require-

ments. The actual values are tabulated in Table 2.

-25-
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4.2 FATIGUE TESTS

The data from the fatigue test series is tabulated in

Tables 3, 4, and 5 followed by a compilation of various statistical

properties in Tables 6 to 10.

The majority of the specimens subjected to a low stress

range exhibited single wire element failure in the gage length

(Fig. 12). The testing machines would automatically stop when a

wire failed, leaving the remaining wires intact. In the case of

the specimens tested at the high stress ranges, there generally

was a chain reaction failure, even though the machine would stop.

The brake on the machine was not capable of reducing the speed of

the flywheel fast enough, and the dynamic load would then be near

the ultimate load of the remaining wires. For most cases, this pro-

cess would continue until all seven wires had failed.

Generally, it was possible to determine by inspection which

wire element had failed first, as it was characterized by the fati-

gue failure mode (Fig. 12), as compared to a direct tension failure

mode res~lting from the chain reaction.

Whenever a specimen failed inside the gripping devices, a

thorough check was made to insure that the failure was not caused by

abrasion at the edge of the steel clamps. The specimens that failed

as a result of this condition are marked with an asterisk in the

tables.
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Of the total of 178 fatigue specimens tested, the majority

displayed a fatigue failure in a single exterior wire element, several

had nearly simultaneous fatigue failure in two exterior wires, and in

only one case did the central wire fail in fatigue.

Several of the tests having intermediate stress ranges were

re-started after the first wire failed, with a proportioned reduction

in load so as to obtain the same minimum stress and stress range as

was used prior to failure. In several of these re-runs, the number of

cycles required to cause the second wire to fail was nearly as large

as the number which caused the initial failure. This phenomenon was

not made part of the study, but mentioned only to further indicate the

complexity of fatigu~ studies on prestressing strand.

~hroughout the testing, it was noted that the temperature of

the prestressing strand rose a considerable amount. As a result, the

calibrated thermo-couples used to control the temperature of the low-

temperature tests were also used to give an indication of the labora-

tory temperature test conditions. The temperature was found to rise

25
0 F and 450 F b 1 b d"" f " d ta ove a oratory con ~t~ons or spec~mens teste a

stress ranges of 0.60 f' to 0.85 f' , and 0.40 f' to 0.70 f'
s-ms s-ms s-ms s-ms

respectively. These results reflect the rise in temperature for a

thermo-couple attached to the outside edge of two exterior wire ele-

ments, and do not necessarily represent the rise in temperature of

the interior surfaces.

The results of the fatigue tests at laboratory temperature

for manufacturers A, B, and C are plotted in Figs. 13, 14 and 15,
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respectively! The curves are drawn smoothly through the point, at

each maximum stress level, which represents the mean of the logarithms

of the individual number of cycles to failure. The effect of scatter,

so commonly observed in fatigue studies, is quite eVident! This is

especially noticeable for each sample at the following stress levels:

0.60 f' to 0.80 f'
s-ms s-ms

Fig. 13 Specimen A

0.60 f' to 0.76 f'
s-ms s-ms

0.60 f' to 0.80 f'
s-ms s-ms

Fig. 14 Specimen B

0.60 f' to 0.76 f'
s-ms s-ms

.
Fig. 15 Specimen C

0.60 f' to 0.80 f'
s-ms s-ms

0.40 f' to 0.60 f'
s-ms s-ms

•.

In Fig. 16 a comparison is made of the results. from strand

samples from the three manufacturers, by overlaying the resulting

curves shown in Figs. 13, 14, and 15. Similarly, another comparison

is made in Fig. 17 between the results of the current tests and the

results reported in previous studies. In this figure the curves re-

pr~senting the present study are an average, at each minimum stress

level, of the three curves from Figs. 13, 14, and 15. The effect of

low temperature (OoF) on the prestressing strand is compared to that

of laboratory test conditions (700 F) in Fig. 18. The curve represent-

ing 0.56 f' was interpolated from Fig. 17 and intersects the hori-
s-ms
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zonta1 0.80 f' maximum stress line at N = 110,000 cycles. The
s-ms

vertical line then represents the intersection point of the 0.56 f'
s-ms

minimum stress curve and the 0.80 f' maximum stress level for each
s-ms

sample.

The data tabulated in Tables 6, 7, and 8 represent the

statistical computations of Tables 3, 4, and 5, respectively. Each

one of the three pairs of tables represents the results having a

minimum stress of 0.60 f'· ,0.40 f' , or 0.56 f' •
i s-ms s-ms s-ms

Each of the statistical tables is divided into three parts;

(1) ~dentifying variables, (2) fatigue life statistical properties,

and (3) logarithmic fatigue life properties.

The fatigue life properties are the mean fatigue life given

by:

N =
n

and the Standard Deviation from the mean as given by:

D =
N [ ]

~
1 n 2

- 1: (N - N)n-1
1

The ratio of DN/N then gives an indication of the extent

of the scatter for each set of test specimens. Similarly, the mean

of the 1qgarithms for each set of test specimens was found by:

•.
Log N =

1: Log N
n

This quantity was then used to find the logarithmic

Standard Deviation:



D
[

1 n
n-1 ~ (Log N - ]~

Log N)2
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These statistical properties were then used to make graphi-

cal presentations. In Fig. 20, the load range, R , was plotted as
s

the ordinate, with Log N as the abscissa, for all laboratory tempera-

ture test specimens. A least squares solution was then obtained,

yielding the second order equation:

where:

Log N = 6.356 - 0 .. 1373 R
s

+ 0.00303 R 2
s

•

R = S S
s max L

= 1.05 S. + 8
m~n

The equation for the Endurance Limit, SL' is based on an assumed

straight line relationship within the following limitation:

40% ~ Smin ~ 60%

and thereby restricting Rs :

o < R < 20%
s

,.

Similarly, R was correlated to the Standard Deviation, D,
s

in Fig. 21, and a least squares fit was again applied to give a first

order equation:

,.J

D 0.153 - 0.0035 R
s
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In Figs. 22 ~nd 23 the stress range S was plotted with
r

respect to Log N to obtain two equations. The first (Fig. 22), is

a log-normal function:

LogN = 8.213 - 0.2077 S + 0.00316 S 2
r r

The second (Fig. 23), is a log-log plot:

Log N = 9.998 - 3.566 Log S
r

The equations are restricted to the range of stresses covered by the

tests.

The statistical information required for a Chi-Square

goodness-of-fit test is tabulated in Table 9. To enable all of

the results from the laboratory test specimens to be used, it was

necessary to use a change-of-variable parameter Z as the abscissa

for a frequency distribution curve:

where Z = log N - log N
D

The nine increments of Z were chosen so that the resulting area

under the Theoretical Normal Curve (see Fig. 19, or Refs: 10 and 11)

1
y = J 2n

was equal for each increment. The goodness-of-fit test is then

•. expressed as:

2
X

L:(OB - EX)2
EX
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Z, the number of degrees of freedom is eight,

2
X

O
.
05

can be determined from any set of stand-

ard statistical tables as:

2
XO.05 = 15.51

The values of 2
X

O
•05 for the test series were:

A 6.65

B = 21.86

C = 4.73

"

•..

A+B+C . - 16.44

Another comparison of the distribution of the fatigue tests

with the Theoretical Normal Curve can be made by constructing a

Histogram (Fig. 19). In:this case, the increments of Z are chosen

to be equal, and the number of observed failures in each increment is

tabulated in Table 10. This number of observed failures then repre-

sents the vertical dimension of the shaded rectangles, to some conven-

ient scale. 'The scale is chosen so that the sum of the area of the

individual rectangles is approximately unity. The area obtained for

the rectangles is then used as a scaling factor to proportionately

change the ordinates of the Theoretical Normal Curve. The result of

the above scaling is that the area of the shaded rectangles is equal

to the area under the curve, between the limits of Z considered~

The distribution of the test results is very similar to those obtained

by Warner and Hulsbos, (1) in that the maximum number of failures occurr-

ed either to the right or left of the center line, with a marked absence

in the range of Z between -0.25 and -0.75.
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5.1 STATIC RESULTS

In making a comparison of the properties of the various

strands, the difference in the cross-sectional area should be borne

in mind, as well as the minimum requirements of ASTM Standard

A4l6-64. (17) The Standard does not specifically cover the high

strength strand, and therefore, the minimum specified ultimate

load of 41.3 kips and nominal area of 0.153 sq. in. as quoted by

the manufacturers will be used~as a basis for the discussion.

Based on these two quantities, a specified minimum ultimate stress

of 270.0 ksi would be implied.

The range of the average ultimate loads was found to be

from 42.6 kips to 44.3 kips, or 3.15% to 7.26% above the minimum

specified ultimate load. In terms of stress, based on actual areas,

the range was from 276.9 ksi to 284.6 ksi, or 2.56% to 5.40% above

the specified minimum ultimate stress. The fact that all 16 of the
I

accepted tests fell within such a narrow band, and above the minimum

requirements, indicates the consistency of the prestressing strand.

Similarly, the requirement for a minimum elongation of

3.5%, based on a 24-in. gage length, was surpassed in each test.

The minimum elongation for the test series was 21.4% above the re-

quired 3.5%.

-33-
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The ASTM requirement that the yield strength (85% of the

specified minimum ultimate load at 1%) was also achieved in every

test. The lowest average for the strand from any manufacturer was

36.5 kips or 237.5 ksi, which were 3.99% and 3.49% greater than the

minimum specified values of 35.1 kips and 229.5 ksi. The maximum

value of 252.1 ksi is 9.85% above the minimum specified value. The

9.85%, when coupled with the 3.49%, again indicates the consistency

of the strand tested. It is interesting to note that when considering

the often-used definition of yield strength as the stress at 0.2% off-

set, the test results indicate a variation of from 1.5 ksi below to

3.9 ksi above the value obtained at 1% elongation. The difference

between the two quantities for this specific type of prestressing

strand is negligible, and for all practical purposes, these two

definitions produce equivalent results.

The final property tabulated in Table 2 is the modulus of

elasticity for the strand. The values listed are again the average

I

of several tests for each manufacturer. The actual range of values

obtained was from 27,700 ksi to 30,600 ksi, with the former belong-

ingto a group with an average of 28,500 ksi, while the latter be-

longed to the group with an average of 29,800 ksi. The values listed

are higher than those generally quoted. The difference might be

attributed to the pre~loading required to seat the copper grips,

as described in ,Chapter 3. This pre-loading would undoubtedly re-

duce the slack between the individual wires. The method of cutting
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the short specimen lengths (60 inches) from the reels may have had

an effect also, as it was found that unless care was taken to fuse

the" individual wires together, the exterior wires had a tendency to

become ldose in the end regions. A review of the data from previous

research at Fritz Engineering Laboratory, obtained by several other

methods, yielded results similar to the tabulated values.

5.2 FATIGUE RESULTS

5.2.1 Laboratory Temperature

In the preceding section describing static tests, it was

possible to use an arithmetic mean to adequately express the static

properties of prestressing strand. However, an examination of

Tables 3 and 4 indicates that this approach could be misleading for

fatigue studies. The major difficulty encountered in a fatigue study

is due to the inherent scatter of test results. Studies have shown

that the fatigue life of a specimen~d~pends upon the individual fiber

stresses and 'stress concentration. However, due to the nature of

testing procedures, most tests are performed using average stresses,

based on a load as measured by machine indicator, and the average

cross-sectional area of the specimen. In studies of solid, homo-

geneous material, results have been obtained where the divergence

from the mean value is greater than the mean itself. With this in

mind, it is understandable that so much scatter was obtained, parti-

cularly when considering the nature of 7-wire prestressing strand.
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The fatigue failure shown in Fig. 12, represents the fail-

ure mode of the majority of the test specimens. The fatigue failure

begins on the interior face of an exterior wire element and proceeds

approximately mid-way through the wire. At this point the stress on

the area remaining intact is so great that final failure suddenly

occurs by a direct tensile mode. This failure pattern indicates

that the friction between the face of the wire that failed,the

center wire, and.the adjacent exterior wire may produce an undesir-

able stress ooncentration which initiates the fatigue failure.

The stress ranges at which excessive scatter occurred were

previously indicated and can be seen in Figs. 13, 14, and 15, or

from the ratio DN/N in Tables 7 and 8. There are two factors which

appear to influence the extent of the scatter. The first, is the

magnitude of the maximum stress. The greatest amount of scatter

occurred when the maximum stress was either 0.76 fl or 0.80 fl ,
s-ms s-ms

which is generally in the vicinity of the beginning of the inelastic

region of the stress-strain relationship. The second factor is the

magnitude of the stress range S. This factor overlaps with the
r

first in most cases, but it also appears to account for the scatter

which occurs when both the maximum and minimum stress are relatively

low. These two factors are a result of the spinning process by

which prestressing strand is manufactured. As a result of this pro-

cess, the individual wire elements of the strand ane under variable

loads. Therefore, when the average stress on the strand is near the

~nelastic region(:d':f the stress-strain relationship, some wire elements
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will still be in the initial elastic region,_while others will be in

the inelastic region. Studies have shown that the fatigue life of a

specimen is increased if it has been strained into the inelastic region.

This phenomenon occurs because, under these conditions, the load is

distributed uniformly across the cross-section. In the cutting pro-

cess, the center wire was observed to pull in when a poor cut was

made. This indIcates that the center wire is under tension and as

a result, would be the first wire stressed into the inelastic region.

Since this wire is relatively straight compared to the exterior wires,

its stress would be more uniformly distributed than the others. These

two facts may account for the occurrence of only one center wire fati-

gue failure out of 178 test specimens.

The difference in load distribution also accounts for the

scatter with a high stress range, at stresses well below the inelastic

region. Some wires will be stressed considerably higher than others,

and therefore, the fatigue life will be lower.

The cause of the scatter was investigated by constructing

various relationships between the load range, stress range, and number

of cycles to failur~, as illustrated in Figs. 19 through 23. As was

previously mentioned, the Histogram (Fig. 19) displayed a frequency

distribution very similar,to that .obtained by Warner and Hulsbos. (1)

The ma'jori~y of the. values of Z which fell into the ranges that
c, •. ll. ~:' ,'::" ::','C::" ,~,:

produced the two highest ordinates of the Histogram were from stress

ranges that had considerable scatter, whereas the other stress ranges
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are proportioned throughout the range of Z considered. No exp1ana-

tion can be given as to why the maximum number of points fell into the

same region in both the Warner and Hu1sbos report, and the current

study.

The equations for Log N, derived from Fig. 20 and Fig. 22,

indicate the difference obtained when the load range, R , is used as
s

compared to the stress range, S. The advantage of the latter para-
. r

meter is that the Endurance Limit for the material need not be deter-

mined. In this study it was possible to make a reasonable estimate

for the Endurance Limit, but since. the number of specimens tested

in the low stress range level was small, the accuracy was limited.

On the other hand, the stress range is clearly defined within the

range of stresses considered. A second order equation was found

to be the most reasonable mathematical model in both cases. In

Fig. 23, Log N is plotted with Log S to obtain another equation
r

which was found best suited to a linear form. To emphasize the com-
,

parison, the values of N are tabulated below for each of the three

equations for two different testing conditions.

0.60 f' 0.40 f'
s-ms s-ms

0.80 f' 0.52 f'
s-ms s-ms

Fig. 20 233,000 1,240,000

Fig. 22 210,000 1,495,000

Fig • 23 228,000 1,410,000

The above numbers indicate that for this study, the difference in the
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results obtained from the various equations is not too significant

when compared to the scatter obtained in the actual testing •

In previous studies, a correlation was indicated between

the Standard Deviation, D and the range of stresses. An examina-

tion of Fig. 21, indicates tHat~there is some validity in the relation-

ship in that as the load range, R , is reduced, the deviation increases.
s

The relationship would be more pronounced if points corresponding to

the test results at the lowest load ranges were neglected, since these

points represent only two or three specimens. On the other hand, the

points at the higher stress ranges generally represent 6 or more test

specimens.

The results of the goodness-of-fit test indicate that for

2test series for manufacturers A and C the X values of 6.65 and 4.73

2
.are well within the X

O
•
05

value of 15.51, whereas the value of 21.86

for manufacturer B indicates that generally there was too much scatter.

2Considering the results of the three groups as one, the X value of

16.44 is just beyond the theoretical value of 15.51. The value of

X
2

gives an indication of the reliability of the testing procedure

and the control of the inherent variables during testing. The above

values, therefore, indicate that for specimens made from the sample

from manufacturer B some variable may not have been accounted for •

In Fig. 16 a comparison is made between the individual

S-N curves of Figs. 13, l~ and 15. Considering the previous dis-

cussion on scatter, the relative difference between the three curves
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can be considered negligible and as a result, a curve representigg

the average result will be used in the subsequent discussion •

In the comparison between the current research with that

of previous research (Fig. 17) it can be seen that the difference is

not too significant. It should be remembered that the previous

Lehigh(l) test series and the Iowa State(2) test series were based on

"7/l6-in. 250 ksi 7-wire strand, whereas the present study is:"based on

l/2-in. 270 ksi 7-wire strand. The Iowa State study had only one mini-

mum stress level (0.50 f') while the previous Lehigh study included
s

two minimum stress levels, 0.40 f' and 0.60 fl. The present study,
s s

however, used two minimum stress levels of 0.40 f' and 0.60 f'
s-ms s-ms

to enable a comparison to be made between the strand obtained from

the various manufacturers. This difference is not significant as

the maximum difference between f' and f' was previously given a~
s s-ms

5.40%.

The curves obtained from the present study do not explicitly

indicate an Endurance Limit, but when compared to the previous Lehigh

study it is obvious that at the 0.60 f' minimum level, it would
s-ms'

require only a small reduction of maximum load to achieve much more

than 2,000,000 cycles of loading. At the 0.40 f' minimum level
s-ms

..
."•

however, it appears that a. greater decrease in maximum load should

have been employed to reach cycles well beyond the 2,000,000 level •

Values of 0.71 f' and 0.50 f' were taken as the Endurance Limit
s-ms s-ms

for the minimum stress levels of 0.60 f' and 0.40 f' respectively,
s-ms s-ms
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or roughly 10% of· the minimum specified ultimate stress above the mini-

mum stress level.

It is interesting to note that for a 10% increase in stress

in the elastic region in the prestressing strand,there would be a

corresponding increase of 2.8 ksi in the adjacent concrete. This

would indicate that for prestressed concrete members governed by. the

present design codes, the stress range to which a member is subjected

would rarely exceed 0.10 f'
s-ms

Therefore, the member would have a

•

•.

fatigue life in the vicinity of approximately 2,000,000 cycles. The

literature reviewed indicated that whenever a prestressed member

failed in fatigue, the failure was generally attributed to fatigue

in the prestressing strand, indicating a discrepancy between the above

statement and the actual condition. This discrepancy has been ex-

p1ained by other investigators who have found that even though the

prestressing element has a reasonable fatigue life when tested alone,

the fatigue life is lessened when the element is tested in conjunc-

tion with concrete. Initial studies have indicated that when a crack

pattern develops in a concrete member and extends to the reinforcing

element, the resulting stress conditions tend to reduce the fatigue

life of the element considerably. It was found, and explained earlier,

that whenever stress concentrations were introduced, as a slight

mis-alignment of specimens, the fatigue life of a prestressing strand

was considerably reduced, thereby substantiating the previous reason-

ing.
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5.2.2 Low Temperature

The results from the low temperature test series are pre-

sented in Table 8, and shown graphically in Fig. 18. The amount of

scatter was considerably less than in the main test series, as re-

fleeted in the ratio DN/N and D in Table 8, and Fig. 18.

In general, the results indicate that the fatigue life in-

creases as the temperature of the test specimen is lowered. An

examination of the Low-Fatigue-Life data will show that for the

samples obtained from manufacturers B, D, and E the fatigue life

increased 32,600, 30,600, and 16,300 cycles respectively, for the

low temperature condition, whereas, for A, and B, there was only

a decrease of 1,300 and 9,800 cycles, respectively. This indicates

that the result is somewhat in agreement with the metallurgical

concept which indicates an increase in fatigue life with lowered

temperature, when the temperatures considered fall between 5000 F

o
and -250 F. The range of temperatures considered was not great

enough to produce a conclusive result, but did indicate that the

results of the tests are in agreement with this concept.

The curve representing 0.56 f' in Fig. 18 was inter-s-ms

preted from Fig. 17, to enable a comparison to be made with the main

test series. The interpretation was made assuming a linear re1a-

tionship between 0.40 f' and 0.60 f'
s-ms s-ms

Only the specimens from

manufacturer A fell to the right of the vertical line representing

a minimum stress of 0.56 f' and a maximum stress of 0.80 f'
s-ms s-ms
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The other four sets of specimens exhibited mean values very close

to the line, as can be seen from Table 8 and Fig. 18. This would

indicate the validity of the linear assumption within the range of

stresses considered •
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6. SUMMARY AND CON C L U S ION S

....

.
~

The objective of this research was to determine the static

and fatigue properties of 1/2-in. 270 ksi 7-wire prestressing strand

and compare the results obtained with those from tests of the con-

ventiona1 250 ksi 7-wire strand. The effect of lowering the tempera-

ture of the test specimens was also investigated to determine the

possibility of a change in the fatigue life at low temperatures.

A total of 16 accepted static tests and 178 fatigue tests

were conducted on samples obtained from five U.S. manufacturers of

the high strength prestressing strand.

The results of the static tests indicate that the static

properties of all five samples are fairly consistent and within the

provisions of ASTM Standard A416-64. The variation observed in the

results can be considered as negligible in comparison to the usual

variation encountered in the surrounding concrete.

The fatigue life of the high strength 1/2-in. 270 ksi

7-wire prestressing strand compares favorably with that of the con-

ventiona1 250 ksi strand. The small difference in the results may

be due to the fact that the previous studies were conducted on

7/16-in. 250 ksi 7-wire as compared to the 1/2-in. strand used in

this study. The use of the specified minimum ultimate load as a

base upon which to perform the tests, as compared to the actual u1ti-

mate load, would not change the results appreciably. In an attempt

-44-
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to eliminate the effect of scatter, three equations were developed

for the fatigue life of a specimen, using three slightly different

parameters.

The fatigue life of a specimen was found to increase

slightly as the temperature of thei:test specimen was reduced. This

was as expected from a metallurgical point of view. However, the

increase was not significant, as the change in temperature was not

great enough to affect the properties.

It was observed that at stresses in the working load range,

the fatigue life ..of a specimen was in the vicinity of approximately

2,000,000 cycles of loading. Since studies of prestressed concrete

flexural members have shown that the prestressing strand fails in

fatigue at a significantly lower number of cycles, it is suggested
t.

.
•

that more tests be conducted at the low stre~s range level, using

a test set-up that could simulate cracks in concrete crossing the

strand. At the same time, it would be useful to conduct a dynamic

strain study to determine the actual distribution of load among the

seven wire elements •
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Tab le 1 List of Manufacturers
and Plant Locations

-49-
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Armco Steel Corporation
(Union Wire & Rope)

Bethlehem Steel Corporation

Colorado Fuel & Iron Corporation
(John A. Roebling's Sons Division)

Florida Wire & Cable Company

United States Steel Corporation
(American Steel & Wire Division)

Kansas City
Missouri

Sparrows Point
Maryland

Trenton
New Jersey

Jacksonville
Florida

Waukegan
Illinois
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Table 2 Static Properties

-50-

Properties Units Manufacturer

A B C D E

A in.
2

0.154 0.158 0.155 0.154 0.153

P kips 42.6 44.3 43.3 43.8 42.7u

f' ksi 276.9 281.5 279.8 284.6 279.5
• s

e % 4.86 5.68 5.19 4.83 4.25

" P kips 36.3 39.0 39.1 39.4 38.3
s-0.2

f ksi 236.0 247.6 252.9 256.0 250.7
s-0.2

P kips 36.5 38.5 38.7 38.8 37.9
s-1.0

f ksi 237.5 244.4 250.5 252.1 248.0
s-1.0

E ksi 29,500 28,500 29,500 29,800 29,300str

..•
••
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Table 5 Low Temperature Fatigue Test Results

Stress Levels = 0.56 ft - 0.80 ft
s-ms s-ms

-53-

Manufacturer OOF 70°F

A 160,300 158,700

207,400 242,500

147,600 130,500

B 92,500 54,100

122,400 79,900..
86,500 53,400

112,100 73,300

104,700 107,900

148,500 111,600

C 139,800 112,500

99,600 138,100

104,200 119,900

D 90,800 59,800

127,800 87,200

103,300 82,800

E 124,100 56,800*

121,100 88,900

119,800 114,000

104,800 101,500

~ * Failure at grip due to abrasion

....
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Table 6 Statistical Results for Tests on Specimens A, B, and C

Minimum Stress = 0.60 f's-ms

Manf. No. Max. Stress Fatigue Life Log Fatigue Life
of % of f'

-1Sample s s-ms N D
N DN/N Log N D Log (Log N)

A 6 85 86,700 5,600 0.0648 4.9370 0.0308 86,500

A 6 80 173,500 50,200 0.2893 5.2216 0.1357 166,600

A 7 76 377 ,800 202,700 0.5364 5.5301 0.2046 338,900

A 3 72 1,377,200 223,000 0.1619 6.1331 0.0888 1,358,500

B 6 85 82,800 17,200 0.2081 4.9072 0.1090 80,800

B 6 80 160,500 60,800 0.3792 5.1718 0.1915 148,500

B 8 76 440,900 130,900 0.2970 5.6200 0.1668 416,900

B 3 72 1,020,900 216,000 0.2116 5.9981 0.1225 995,600

C 6 85 123,000 43,000 0.3493 5.0670 0.1487 116,700

C 6 80 243,800 115,000 0.4718 5.3405 0.2184 219,000

C 5 76 347,200 74,300 0.2141 5.5318 0.0949 340,200

C 3 72 1,948,100 156,600 0.0804 6.2881 0.0440 1,941,500

I
\Jl
~.

I
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Table 7 Statistical Results for Tests on Specimens A, B, and C

Minimum Stress = 0.40 f's-ms

. Manf. No. Max; Stress Fatigue Life Log Fatigue Life
of % of f' -1Samples s-ms N D DN/N Log N D Log (Log N)

N

A 6 70 65,800 9,000 0.1367 4.8136 0.0687 65,100

A 6 65 96,100 13,400 0.1390 4.9}83 0.0689 95,100

A 6 60 224,200 45,300 0.2022 5.3411 0.1017 219,400

A 3 56 866,200 203,500 0.2349 5.9266 0.1175 844,400

A 3 52 1,765,200 702,100 0.3978 6.1989 0.2694 1,580,800

B 6 70 71,400 5,400 0.0756 4.8523 0.0382 71,200

B 6 65 109,400 15,100 0.1378 5.0347 0.0654 108,300

B 5 60 277 ,500 58,600 0.2112 5.4325 0.1116 270,700

B 3 56 597,100 136,800 0.2291 5.7641 0.1262 580,900

B 3 52 1,464,800 529,300 0.3614 6.1382 0.1878 1,374,700

C 6 70 73,900 14,600 0.1975 4.8602 0.0940 72 ,500

C 6 65 132,400 41,700 0.3151 5.l008 0.1483 126,100

C 7 60 317,100 165,200 0.5211 5.4452 0.2361 278,800

C 4 56 957,700 158,900 0.1659 5.9752 0.0837 944,500

C 3 52 1,691,7:00 197,400 O~ 1167 6.2252 0.0640 1,679,700

• •

I
.VI

VI,
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Table 8

• •

Statistical Comparison of Low Temperature Fatigue Test Data

Stress Levels = 0.56 f' - 0.80 f's-ms s-ms

. .. •

Manf.Temp. No. Fatigue Life Log Fatigue Life
(oF) of -1Samples N D

N DN/N Log N D Log (Log N)

A 0 3 171 ,800 25,700 0.1498 5.2303 0.0771 169,900

A 70 3 177 ,200 47,600 0.2684 5.2336 0.1376 171,200

B 0 6 111,100 20,500 0.1844 5.0387 0.0851 109,300

B 70 6 80,000 23,100 0.2886 4.8848 0.1392 76,700

C 0 3 114,500 18,000 0.1569 5.0539 0.0800 113,200

C 70 3 123,500 10,800 0.0871 5.0901 0.0456 123,000

D 0 3 107,300 15,400 0.1432 5.0262 0.0750 106,200

D 70 3 76,600 12,000 0.1569 4.8784 0.0888 75,600

E 0 4 117,500 7,500 0.0636 5.0689 0.0330 117,200'

E 70 3 101,500 10,200 0.1010 5.0041 0.0540 100,900

I
V1
0'\
I
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Table.9 Grouping Data for Chi-Square Goodness-of-Fit Test
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Table 10 Grouping Data for Histogram Construction

-58-

Z Manufacturer

A B C A+B+C
------

OB OB OB OB y Z. A
~nc~

-2.25 ~ Z<-1.75 0 2 0 2 0.025 0.05 0.0125

-1. 75 ~ Z < -1.25 5 3 2 10 0.125 0.05 0.0625

-1.25 ~ Z < -0.75 8 9 11 28 0.350 0.05 0.1750

~ -0. 75 ~ Z < -0.25 6 5 5 16 0.200 0.05 0.1000

-0.25 ~ Z < 0.25 8 6 13 27 0.3375 0.05 0.16875

0.25 ::; Z < 0.75 13 16 6 35 0.4375 0.05 0.21875

0.75 ::; Z < 1.25 6 10 6 22 0.275 0.05 0.1375

1.25 ~ Z < 1. 75 2 1 6 9 0.0875 0.05 0.04375

1.75.:5 Z < 2.25 1 0 0 1 0.0125 0.05 0.00625

L 49 52 49 150 0.9250

•..
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Fig. 1 Cross-Sectional Arrangement of Seven-Wire Strands
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(a) Initial

Fig. 6

(b) Near failure

Static Test Setup with Extensometer
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(a)
oLaboratory temperature (70 F) (b)

o
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Fig. 11 Specimens in Fatigue Test Setup
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(a) Typical fatigue failure
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Fig. 12

(b) Failure surface

Mode of Strand Failure in Fatigue Tests
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