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ABSTRACT

A method is presented for anaiyzing the elastic-plastic be-

havior of frames which account for the reduction of plastic moment

capacity due to the presence of axial force. .A computer program, based

on the one originally developed by Wang and modified by Harrison, is

presented. . While the originél program could produce the elastic-plastic

load-deflection curve for a frame, it could not account for the grad-

ually decreasing bending capacity of the frame members which resulted

from the increasing axial force pfesent in them. The reported program-

has been modified to include thisveffect.' .

An explanation of theé basic method used by the original pro-

gram is presented. Following a discussion on
force with moment capacity, the new method is

quired modifications to the original computer
Explanation of input data and sample

Some possibilities for design use of

sented and discussed in detail.

N

Problems and limitations encountered

\

the interaction of axial
presented and the re-

program are described.
runs have been included.

the program are pre-

in the use of the pro-

gram are discussed and several suggested solutions to these difficulties

are outlined.
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1. INTRODUGCTTION

When a structural steel section is subjected to seme axial force
P, its full plastic moment, Mp’ is reduced to some lesser value which is
called the reduced plastic moment and is denotedxby Mpc' The relation
between Pvand M o can be determined anelytically for most cross-sections.
Consequently, if P has some known value and if the relationship between -
the loads applied to the member and the moments induced in it is known,
then the lead required to form a plastic hinge at some point in the
member can also be determined. (When the momen t in a member reaches Mp
(of no axial force is present) or Mpc’ a»plastic hinge is said to have

formed.  Rotation can occur with no change in moment.)

However, if this member is a part of some frame its axial force
will usually be some complex function of the loads en«jhe structure, The
problem of finding the frame load required to form’; plastic hinge at a
particular location therefore becomes mueh more involved. A direct
solution to this problem is difficult and a trial-and-error procedure

becomes the logical approach in the analysis.

A method is presented in this report for determining the load-

deflection history of a frame, accounting for this axial force effect.

For the purpose of explanation and illustration the simple one-
bay, one-story frame shown in Fig. la will be considered. This frame is
used to approximate the behavior of the bottom story of the six-story

frame in Fig. 1b.

1,2
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Each column top load of SWFberesponds to one-half of the gravity
loading on the uppér stories of the larger frame. The lateral load used
will be some percentége of the total gravity load. Designation of a par-
ticular percentage fully.defines thé.réiatiVe proportions of the lateral

and gravity loads.

The analysis reported is based upon a method for performing a

first-order, elastic-plastic analysis of a general plane frame which

ignores the effect of axial load. The method was originallyAdeveloped by
C. K. Wang3 of the University of Wisconsin and later modified by H. B;
Harrison4 at Lehigh Uniyefsity. " The approaches to the elastic-plastic
analysis develbped by Wang and Harriéon felied heavily on the use of a
cdmputer as does the approach presented here. However, an undersfanding
of the mechanics of the compUter“program used here is not necessarily a'
pre-requisite to an understanding of the method. The report is organized
with this purpose in mind. In the second chapter the theory of the -
simple-plastic éomputer analysis as Wang and Harrison developed it is
presented. Tﬁe chapter also explains the.interaction between axial

force on a member and its moment éapacity. Chapter 3 deals with the

effect that axial force has on the analysis of a frame.

The computer proéram used in the analysis is presented in chapter
four. Examples of input data énd output results are discussed and some
of the major difficulties'encounfered are mentioned. The fifth chapter
céntains an analysis of the example frame mentioned above. Much ofvthe

data obtained from the computer program is explained and discussed.

It'is'hopéd'that this explanation along with the accompanying

examples will enable one who is unfamiliar with computer methods to maké
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intelligent use of the program. Also, for the benefit of those who may
wish to attempt further modifications énd for those who have some pro-
gramming backgrqund and desire more detailed information, a flow diagram
for the main program is contained in Appendix A. A listing of each sub-

routine used in the Fortran program is contained .in Appendix B.
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2, BAST S‘ OF ANALYSTIS

2.1 THE ELASTIC, SIMPLE-PLASTIC‘ANALYSIS

The'elaStic simple-plastic analysis as developed by Wang and
Harrison, provides the foundatlon for the method of ana1y51s reported
here. A schematic 1oad-def1e¢tipn Chrve, typical of Harrison's solution
is shown in Fig. 2, where_H is the latefal load and AHtis the sway de-

flection of the column tops.

The method begins with an elastic analysis of the frame which
determines the siope of line OA. P01nt A represents the formation of the

first plastic hlnge in the frame and it is located as follows. At each

- of i possible plastic hinge locations in the frame, the moment corre-

sponding to a given load can be'expressed as:

M, =m, H | ‘ (1)

in which m, is the moment resulting from the application of a unit load

'
A

to the frame and H is the applied load. If axial load is assumed to
have no effect, a plastic hinge will form at a point when Mi = Mpi'
The location and load corresponding to the formation of the first

plastic hinge can be determined by substituting Mpi for Mi in Eq. 1,

solving for H, and then'selecting the lowest value.

The analy31s contlnues by 1nsert1ng a real hinge in the frame

at the 1ocat10n of the plastlc h1nge (shown as (1) in Fig. 2) and
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performing another elastic analysis. In this way, new values of m, are
found, and the slope of the second segment is determined. A new version
of Eq. 1 can be written in order to locate point B which corresponds to

the formation of the second plastic hinge.

mi1 Hl + ?iz H2 = Mi : . | 2)

Double subscripts have been introduced to the m's to indicate
which point or location on the frame they refer to (i) and which elastic
analysis they result‘frbm 1 or 2). For values of load between Hlnand
H2 (see Fig. 2),.Eq. 2 computes the moment at each point. (Note that

m., = 0 for the first plastic hinge location due to the presence of a
real hinge there). As before, substituting Mpi for Mi, solving for'Hz,

and éelecting the lowest value will locate point B on:the plot.

The proéédure of analyzing a successive series of elastic
frames with real hinges at the plastic hinge locations is continued until
a.failufe mechanism forms, as indicated by a horizontal line for some

appropriate 1oad-def1ectioﬁ‘plot for the frame.

In general, the equations which govern the loads corresponding to
the various stages of hinge formation and the locations of these hinges

can be written in the following form.

m H, + m H, +

~y

1,1 72 128t ey By ey By TNy
m2,1 H1 + mz’z'H2 + .00 .. m2,h-l Hh-l + m2,h Hh = Mp2 B
o 3)

a1 By Ty g By Ty iy By T By T M
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in which h is the number of the plastic hinge under investigation and a

'is the number of possible hinge locations for the frame.

The values of H are known between H, and Hh-l inclusive by

1

previous celculations. Also, once Hi’ HZ’ e Hh-l are found, their
values do not change as additiohal 1oad is applied. Therefore, Eqs. 3

are a series of equations in one Unknown with each equation resulting

in some value for Hh. Comparison of these values determines the

‘location of the new hinge. A similar series must be examined for each

new hinge. Because the values of H,, H

10 By oo Hh-l do not change after

they are first determined,_one pass up the load-deflection curve is
sufficient to evaluate the complete load-deflection history of the frame.
In other words, once a plestic hinge forms at some point, it is not in-

fluenced by any additional load that may be placed on the frame at a

later time.

It should be noted'fhat regardless -of the magnitude of the
column top- loads in Fig. 2 fhey haVevno effect on the capacity of the
frame when it.is analyzed in the above manner, since it is assumed that
the presence of axial lead in a member has no effect on its moment

capacity. The validity of this_éssumption.is investigated next.

2.2 THE EFFECT OF AXIAL FORCE ON MOMENT CAPACITY

If a member is subjected -to some:axial'fofCe P, its availaBle
moment capacity Mp is reduced. _This-reduced'value of Mp’ defined as
Mpc’ can be determined aﬁalytieally, and for most sections, curves
and equations baVe been deveiopedehich relate P to MpC once Mp and

the yield load Py are Rnownnl’g ”For'mpSt wide-flange shapeé bent about
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their major axis, such curves fall in a relatively narrow band, and

simple expressions can be used to épproximate them.

Figure 3 shows‘a non-diﬁénsional plot of the moment versus axial
force relationship for strong-axis”bending of wide-flange shapes. The
solid curves represént the upper and lower limitsrof the exact inter-
action relations for wide-flénge_shapes.z Tﬁe dotted straight lines
are the usual approximations for these.curves as suggested in Ref. 1.

The approximate curves a?e expfeséed analytically by the following

equations:

M =M ' : . (0<P<.15 Py) %)
M =1.18M (1 - P/P 15 P <P<P 5
LW L (L-B/R) (1SR <PSR)  (5)

Note that Eq. 4 indicates there is no reduction of moment

‘capacity due to axial force if P is less than 0.15 Py' The limits im-

posed on the épplication_bf'Eq. 4 therefore provide an upper bound to

the axial loads which may be éresent in a stfucture if én elastic simple-
plastic anaiysis of it is to bé vélid. If the axial loads reach some
yalue greater thaﬁ 0.15 Py Eq. 5 must be used and various modifications
in the analysis are reduired. These modifications are the subject of

the next chapter.



297.21 | - | Y

3. INCLUSION OF THE AXIAL FORCE

EFFECT IN A FRAME ANALYSTIS

The effect of éxial forcg can be included in phe analysis by
modifying the equations which govern the_fofﬁation of plastic hinges in_;
the frame. Previously, 311 plastic hiﬁges had‘to satiﬁfy the.requirements
imposed by Egq. 3. If the effect of axial force ié considered, these
requirements are applicaBlé only to those plastic hinges which. form under
an aXial force less ;han-O.lS:Py,'aslis shown by Eq. 4. All other plastic

hinges mﬁst satisfy Eq. 5.

The generalized formsbof Eqs..4 and 5 are

h ‘ll .

,S.m.'H. =M §='M for 0 < P< .15 P (6)

L 1- 1 pc. . p - } . -— -— y

i=1

b
h }; n, H
. ‘ ii ‘
ZJm. H, = 1.18 M |1 -"i=1_ for .15 P <P <P (7)
1 Pl T3 . y -y

i=1 y

where n is the dnit axial force in.the member, b is the number of the
point on the load-defléétion'éurve Which is.currently being computed, and_
h .is the numbef of ﬁhe plastié hinge the equation is being applied to.
Note that b is always greatér than or equal to h. The reason fdr this
will be seen beloﬁ. Equation é.was_presentea and discussed in Chaptef

2 (aé'Eq..3)? but. some addition31 exb1an§tion will be of value in under-

standing its function-in the modifiéd.analysis.
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Let the line AB below represent the plastic moment capacity:M

at some point in a structural member whose axial force never exceeds

0.15 P .
Y

A S D B

As load is placed on the struéture, a Bending moment equal to the unig
moment m times the applied 1oa& will be induced at the.poinf. The line
segment AC is the moment pregent at ﬁhe point (m1 times Hl) when the first
plastic hinge forms in the ffame.  (The-first plastic hinge is assumed to
form somewherg other than at thé point in question.) Additional incre-

ments of load on the frame will result in similar additions to the

2 tlmes-Hz; -If the

moment at the point, such éS‘CD; which is equal to m
pdint in queétion is involved in the failure mechanism fo? the. frame, the
Bending moment at the point will finaily?reach Mp.and a plastic hinge
will form. At this stage in.thg ioading,‘Eq. 6.is satisfied as shown

below:

m1 H1 + m2 H2 f m3 H3 = Mp

o A (8)
(AC + CD + DB = AB)

Axial force had no effect in the above case because it was less than the

critical value of‘0.15 Py'

If the axial. force at some point exceeds 0.15 Py’ the behavior
of the point through various stages of loading can be traced with the aid

of the diégram.beIOW;
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]
1

Aé before, let thé line AB represent Mp for the ﬁoint. When the first
increment of load is applied to the frame, some moment and some axial
load will be induced at this location. Because the axial force P is
assumed to exceed 0.15 Py, some reductioﬁ in Mp wili take place. When
the first plastic hinge forms in fhe frame, conditiéns at this point

are represented by a reduction in capacity DB due to axial force and

a bending moment at the point equal to AC, Of the remaining bending
capacity that Portion which isvusable (Mpclj’,is now CD r;ther than CB
as in the previous case. If the second plaétic'hinge forms at this
location, the next increment of load will cause the added moment CE and
redﬁction in capacity due to axial forcé ED;to meet at point E thereby
satisfying Eq. 7 for this location in the frame. As more load is applied
to the frame, no additional moment will occur at this location because a
real hinge is inserted at the location of each plastic hinge for the
purpose of each subsequent elastic analysis. Hence all further unit
moments for this point will be zero. This is not the case for the unit
axial force at this location. In most cases, the unit axial force will
continue to have some value other than zero until the mechanism load is
reached. Unless the formation of a hinge at the point under discussion
resulted in the formatién of a failure mechanism, additional frame loads
will be added to those already present. In order to reach this mechanism

load Eq. 7 shows that at the location in question, the additional axial
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force resulting from this increase in frame loads causes Mpc to decrease.
This in turn requires adjustment of segments AC and CE in order to

maintain equilibrium at the point.

In summary the analysis of a frame can be thought of as the
determination of a series of points on its load-deflection curve. Each
of these points represents the formation of one new plastic hinge. The
curve becomes horizontal and the analysis terminates when enough hinges
have formed to produce a failure mechanism. At each of the points on the
load-deflection curve, all the plastic hinges then formed must satisfy
either Eq. 6 or Eq. 7 depending on the value of axial force at each
point. Those for which Eq. 7 is applicable experience a weakening or
an inability to carry their previous moment. due to an increase in axial
force as more load is applied to the frame. Hence, as each of the
plastic hinges form, a readjustment or a redistribution of moment must
take place in the frame to account for the weakening of the previous
hinges. This redistribution must be such that each hinge will satisfy
its pertiﬁent equation. . This redistribution can be accomplished in many

ways.

One method is to apply some internal moment to each Plastic
hinge that is effected by axial force. This internal moment would be
equal in magnitude to the reduction in moment capacity at each point
due to the increase in axial force. Because the value of these internal
moments cannot be determined until the increment of load to form the
next plastic hinge is determined and because the increment of load
cannot be determined until the internal moments are known, the problem

is non-linear, and a trial-and-error procedure becomes the most logical
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approach for computer anélysis. This method has the disadvantagg of
introducing to the frame an additional degree of freedom for each in-
ternal moment applied to the frame. If a computer-matrix solution Based
on the displacement method is used, the introduction of additional de-
grees of freedom to the frame will use up a noticeable percentage of the
available computer storage space and may severely limit the size of

frame which can be handled by a particular machine.

A second approach, and the one which is used by the present
analysis, is to make sucéessive'adjustments on the various increments
of load between the formation of plastic hinges until either Eq. 6 or
Eq. 7 is satisfied at each plastic hinge location. This procedure can
be exemplified by reference to Fig. 4. The upper curve in Fig. &4 is
a schematic of the elastic, simple-plastic load-deflection curve for
the frame shown where the effect of axial force on bending capacity is

neglected. Points A , B, C , and D represent the formation of plastic
o} o’ o '

o
hinges on the frame at points 1, 2, 3, and 4 respectively. For the
purpose of explaining the method of solution, it will be assumed that.
the axial force does not alter the order of formatien of the plastic
hinges from thét of the elastic, simple-plas;ic analysis. For the most
part this is a correct assumption for simple frames. However, in complex
frames involving a large number of hinges in the failure mechanism, it
may not always be true. The solution begins with an elastic analysis of
the original unalfered frame which produces unit moments and unit axial
loads for each of the possible hinge locations on the frame. Equation 7

~

is applied to each of these points and a value of load required to form
a plastic hinge at each is determined. If axial force is found to be

less than 0.15 Py, Eq. 6 is substituted for Eq. 7. In an actual
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analysis, the magnitude of P is checked against 0.15 Py for the location
involved and the proper equation is applied at each hinge. For this
explanation, P will be assumed greater than 0.15 Py for all members. The
smallest of these loads determines that the first plastic hinge forms at

point 1 on the frame and at a 1oédvcorresponding to A, on the plot. The

1

axial force effect lowers A from AO tb,Al. A real hinge is then in-
serted at location 1 and a second elastic analysis is performed to deter-

mine the slope of the next segment. On the basis of Eq. 7, point B, is

1
found and the second plastic hinge forms at location 2 on the frame.
The increase in load in moving from Al to Bl increases the axial force
at location 1 and thus reduces the moment capacity at that point. In

order to satisfy Eq. 7 at location 1, P, must decrease to the value

1

represented by point A Point B is computed again and the cycle is

9
repeated until Eq. 7 is satisfied at. points A and B (Locations 1 and 2)
simultaneously. Once agreement is obtained for both points, point B

is recorded as a point on the actual load-deflection plot.. Next, a
third elastic analysis on a frame with two real hinges is performed

and the process repeats. Successive hinges are introduced until a

mechanismfis formed, ending the analysis.

Figure 5 is a schematic plot comparing the curves produced by
the elastic, simple-plastic analysis of Wang and Harrison (dashed) and
the analysis including the effect of.axial force (solid). The general
trend is for axigl force to decrease the slope of each segment on the
curve. Straight lines are not stfictly correct for the lower curve
beyond the first segment. Each segment is a curve which starts at the
19wer point, tangent to tﬁé elasticuslopevfor the frame (the slope of .

the corresponding segment of the upper curVe) and gradually curves
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to reach the next higher point. The curves have been drawn straight
because the information which is necessary to produce the exact line is

not produced by the analysis presented in this report.
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4. THE COMPUTER PROGRAM

4.1 INDEXING SYSTEMS

To write a successful computer program for even the simplest
of problems it is necessary to institute some convenient and logical

system of identifying the quantities involved. Some of the systems

- used by the program are shown in Fig. 6.

Figure 6a shows the method of identifying members in a frame.
Each point of load aﬁplicatioh is éonSidered to be a joint in the frame
and as a result, a beam subjected to quarter point loading is broken
down into three members}. (Inferméaiate suppofts in a continuous beam
would be treated in the séﬁe manner.) Each member is assigned a number
(circles on Fig. 6a) as is éégh member end (squares on Fig. 6a). The
even end number is equai to twice the member number and the odd end

number is taken as one less than the even number.

These member end numbers are used to identify the internal
forces acting on the member ends. The sign convention for these irternal
forc;s (Fig. 6b) is moment pesitive counter-clockwise on the member end 
and axial forée positive in tension. The choice of a sign convention is
purely arbitrary and any consistent convention can be used. The
numbering of these end forces is exemplified in Fig. 6b. The member

numbering system is also used to identify which location the unit moments

and axial loadS‘produced;by'each elastic analysis pertain to;x;Ihdée
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unit quantities are indexed in exactly the same manner as the member end

forces and the same sign convention is followed.

The second indexing’system, shown in Fig. 6c, arises from the
need to identify deflections and loads. Each joint, unless it is
restrained, has three degrees of freedom; a horizontal and vertical de-
flection and a rotation. For each'degree of freedom there is a cor-
responding load whosevpoint of application and direction coincides with

the possible movement.

. Although loads will not'usually be acting at all possible
locations on the frame at one time, the matrix methods used require
space to be reserved for all possibilities. Hence,.the numbering system
for loads and deflections is the same. Figure 6c shows the deflections
and loading possibilities fbr the example frame. There are four vertical,
four horizontal, and four fotationa& deflections possible as well as
their corresponding loads, and they are indicated in their positive
directions. The sequence of numbering is éompletely arbitrary although

listing all vertical, all horizontal, and all rotational quantities in

sequence lends order to the output.

The step-wise nature of the analysis brovides the need for a
third indexing system.. Each of the initial elastic slopes on the load-
deflectioh plot is producéd by an elastic analysis which also produces
the unit moments and axial fqrces mentioned previously as well as the
unit deflections. Each of these pieces of data must be associated with
a location on the frame and with the analysis which produced it. vFér
example, a unit moment is.of no valﬁé unless it is known that it abplied

to location number 2 and that it was produced by an analysis of the frame
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with plastic hinges formed at locations 4 and 7. Hence, two subscripts
will be necessary to completely identify unit axial loads, moments, and
deflections. The first subscript will be the number of the location

(2 for the above example) and the second would be a 3 if the analysis
of a frame with plastic hinges at locations 4 and 7 is the -third one

to be performed.

A fourth system of subscripts evolved partly because of the
trial-and-error system employed in the analysis and the resulting
necessity for the program to bevable to refer to previous results; and
secondly because of a need for some mechanism to terminate the run if
convergence could not be‘obtained in a reasonable number of tries. The
procedure adppted in the program could be improved on to increase its
efficiency. However, the method used enjoys the advantage of simplicity

over other possibilities.

This fourth system introduces a second subscript to the incre-
ment of applied load H indicating which trial number it is a result of.
(The first subscript refers to the segment_of the load-deflection curve
if pertains to.) For example, on the first try at satisfying Eq. 6 énd/

or Eq. 7 at each of three plastic hlnge locatlons,'H(l,l), H(Z,l)’ and

H(3,l) would be produced, while the second try would result in H(l,Z)’

Ha,2y> @ Heg p

)2 énd S0 on.

Cy.

4.2 INPUT DATA

After labeling the various quantities in the manner described

in Section 4.1, the data required for aq&analyéis can be assembled.
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The program is designed to accommodate more than one analysis
with each run so at the start of each analysis an identifying frame
number JJ is read in. This number may be any fixed point Integer from

0 to 99999. It is used as an identifying number which appears on the

first page of the output for each analysis. 1In addition, after the data

for the last frame to be analyzed, a negative fréme number should be-

included. This will serve as a trigger to terminate the run.

Next, in order that the program might construct internally
several of the arrays required by the analysis, two more fixed point
integers are input. They are the degrees of freedom L and the number of
members NM. (qu the example fraﬁe L and NM would be 12 and 5 re-
spectively.) From NM two other»quantities are found which are also used

internally for matrix operations:

M 2 x NM - (9

N

3 x NM (10)
where M is the number of member ends in the frame and N is the number of

internal forces in the frame.

The statics matrix A which relates the applied loads on the
frame to the internal member end forces follows L and NM as input data.
The matrix is determined by knowing that for each degree of freedom in

the frame an equation of equilibrium can be written.

For example (Sge Fig. 7) the upper left column top joint on the

frame of Fig. 6 produces 3 equations.
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EF =0
X
M, + M
T2 1
W5 = —__ZT__ - PZ (1D
1 .
*F =0
y
M, + M
- 3 4 '
LA (12)
2
TM =0
w9 = M2 + M3 _ _ (13)

Writing equilibrium equations similar to Eqs. 11, 12, or 13 for each
degree of freedom in the frame and presenting the results in matrix form
results in the statics matrix of Table 1. The size of this matrix is

(L x N).

The development of the statics matrix for a non-rectangular
frame such as a gable frame is more involved, but the same techniques

apply.

A list of section properties. for each member in the frame follows
the statics matrix. The four variables required are indicated and defined

below:

SDAT = EI/%
PM =M
P (14)
EAOL = EA/%
PY = P .
: y

where E = modulus of elasticity, I = moment of inertia, A = cross-sectional

" area, and [ = member length.
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A 1oad set number, KK, is next in the input data. It is
treated in much the same manner as was the frame number JJ'above. KK
is used to identify a particular load set on the output and if it is
negative, the program assumes there are no additional load sets to be
applied to the current frame and goes to the beginning to see if there
is another frame to be énalyzed. As mentioned previously, should it
encounter a negative‘frame number' there, it will exit from the program.
Following KK is a column matrix (L x 1) of the applied loads. The load
matrix (PL) for the example frame subjected to gravity loads at the
quarter points' of the beam and é horizontal force .to the right (equal
in the magnitude to the gravity loads) applied at the left column top
appears in Table 2. Note that all possible applied forces must appear in

the array even if they have no value for the given loading case.

For a particular frame, any number of load sets may be applied
during a single run with a negative KK as the final card in the deck of
load sets. A sample deck setup for the analysis of two frames with two

sets of applied loads each is shown in Table 3.

Experience with the Lehigh GE225 computer has indicated that a
card with "END" appearing in the first 3 columns should be fhe last card
in the data deck. With the large number of data cards required for
each analysis, it is quite conceivablevthat one may be lost causing the
machine to read into the next analyéisvor even the next program in its
attempt to obtain the required amount of data. Encountering any card

with alphaneumeric characters on it will halt the analysis.
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In ‘the preparation of the data for an analysis, care should be
taken to use consistent units throughout. All of the numerical examples
in this report are based on kips and inches.

4.3 PROGRAM OUTPUT

Copies of the progrém and some example outputs are contained in
their entirety in B and C. Most questions concerning specific diffi-
culties can be resolved by referring to this area. However, some gen-

eral explanation is in order and this can be found in Table 4.

4.4 PROBLEMS

4.4.1 Storage Space

The program storage requirements severely limit the size of
frame which can be accommodated on all but the largest machines. Several

alternative solutions to this limitation are available.

The simplest and perhaps most obvious move would bé to use é
larger capacity machine. However, this is not always possible or desir-
able. It seems that regardless of the available machine capacity, there
will always be frames Qf interest which exceed this capacity. Hence,
several things have been done to the program to economize on the available

capacity within a particular machine.

One way to eliminate wasted storage is to utilize common storage.
Ordinarily if each of two subroutines use a variable of the same name,
it is considered by the machine to be two separate and discrete quantities

in each of the subroutines. If it is desired to transfer the value of
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this variable from one subroutine to the other, it must be listed in
the subroutine call statement as an argumeng. As a result, althoégh
both subroutines are using the same variable, two storage locations are
required in the machine memory.‘ If this variable is an array of 100
points, 200 locations would then be required. By listing the variable
in identical common statements at the beginning of each subroutine,
each subroutine will store the value or values of the variable in the
same or common storage locations so they will be freely available to

each.

Hence, one location is all that is necessary to store one
variable. The program contained in this report uses nine subroutines
and a main program. The use of common statements reduces its data

storage requirements to one-tenth of that required previously.

Additional economyzﬁay be obtained through the use of magnetic
tapes. With most installatioﬁs,.it is possible to store segments of a
program on tape until they are called for by other segments of the
program. It is also possible to store data on tapes for future use.
Although, conceptually it is boséiblé to use both of these mechanisms
simultaneously to reduce storage requirements, most machines lack the
necessary hardware to accommodate the large number of tapes required

and only one can usually be used. The reported program uses tapes for

data storage. On the GE225 computer, three tapes are needed to accomplish

this, which, combined with the systems tape which controls the program

execution, equals the total tape capacity of the machine.
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0f the methods used to fit a particular size frame into the

storage available within a given machine, the above mentioned ones are

concerned primarily with making more efficient use of a machine through
modifications to the program and its use of machine hardware. However,
it is possible in some cases to decrease the size of the data arrays
which must be stored. If some beforehand knowledge can be‘obtained,
either through hand calculations, another program, intuition, etc., of
the location of the plastic hinges in the failure mechanism, the loads on
members which are not directly involved in the mechanism can be replaced
with fixed end moments and shears. This, by eliminating some degrees

of freedom, will reduce the size of all the arrays involved and may

mean the difference between ruhning a problem and not running it on a

particular machine.

4.4.2 Change in the Order of Formation of Plastic Hinges

As was mentioned in Chapter 3, during the trial-and-error
procedure to satisfy eiﬁher Eq. 6 or 7 at each plastic ‘hinge location
on the frame, successive adjustments are made in each of thevlegs of
the load-deflection curve. 1If, for example, three plastic hinges are
present in the frame, the first to form and the lowest on the load-
deflection curve is in the beam (a .member insensitive to axial load),
the second is in the column (a member sensitive to axial load) and if
the point which is being investigated for being the third and next
hinge to form is a location with a large amount of remaining moment
capacity, the following is likely to occur. With each trial, the
location of the first point on the plot will not vary noticeably because

of its comparative insensitivity to axial load. The second point on the
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plot will however be lowered due to the increasing axial load at its
location resulting from the third increment of load. It is conceivable
that the length of the second segment could be reduced to - -zero or a
negative value. Zero indicates that plastic hinge Nos. 1 and 2 now
fbfm at identical loads. A negétive.value for the second segment in-
dicates that ﬁow the plastic hinge that previously formed second will
form first. 1In other words, fhere has been a change in the order of
formation of the hinges. This, however, does not imply that if the
frame were to be tested the plastic hinges would form in this new order
but rather that the equation governing the second hingelnow is satisfied
at a lower load than that which satisfies the equation governing the

first hinge.

The solution to this difficulty can be shown with the aid of
Fig. 8. At the point where this change in hinge order occurred, frames

A, B, and C had been analyzed. Traveling up the load-deflection curve

" entailed utilizing the unit moments and axial loads, etc. from these

elastic analyses of the frames to satisfy the governing equations at
each plastic hinge. (Eqs. 6 and 7) Now, with the negative second
segment and with the rgsulting new order of formation for the hinges, a
new frame must be analyzed (Frame‘E in Fig. 8). After this frame is
analyzed the regular analysis can proceed using the unit values of frames
A, E, and C in the usual fashion. If by chance the second segment had
become exactly zero, analyses of frames A and C would be sufficient and

no new frame analysis would be required.

One of the major difficulties involved in this procedure is how

 to identify a given frame with hinges at various locations and how to
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record whether or not it has been previously analyzed. This may seem
to be a trivial problem until one considers that for the example frame,
with an assumption that four hinges would be required in most failure
mechanisms, the computer could be called on to analyze any of more than
50 different frames. In view of the storage problems mentioned abeve,
numbering all 50 would use an excessive number of machine storage
locations. The solution to this problem would be based on the creation
of a column matrix whose number of columns equals the number of hinges
in‘the failure mechanism (more if thé/exact number is unknown). Each
row would record the analysis of one frame. If hinges formed at
locations 4, 7, and 11 (in order), the first four rows would be as

shown below:

4 7 0 0

4 7 11 0

This array indicates that the first frame analyzed contained no plastic

hinges, the second contained one at location 4, and so on.

An element by element search of this matrix would determine
whether or not a given frame had been analyzed and, if it had been,
which one it was (first, second, third, or fourth analysis). Knowing

the number of the frame in which certain plastic hinges were present

would allow the program to locate the unit axial forces, unit moments, and

unit deflections pertaining to that frame. In summary, once a change
in hinge formation occurs, reference to the above matrix would deter-
mine if the new required frame (Frame E in Fig. 8) had been solved.

If not, it would be analyzed and that fact would be recorded in the
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matrix. If it had been previously analyzed and recorded the analysis
could continue immediately using the previously computed information.
From the standpoint of storage, note that this matrix would require
approximately twenty-four locations to record all pertinent data as
compared to fifty or more lqcations if all possible frames which could
be analyzed were simply numered. The occurrence of the hinge reversal
phenominon increases ré%idly as iarger frames are encountered, and it
is in this area that the easé of'identifying frames with this matrix
becomes most apparent. For -frames énly slightly larger thén the example
frame, the matrix can be.expectea to fequire less than one-quarter as

many storage locations as there are possible.frames to be analyzed.
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5. RESULTS AND DESIGN CHARTS

FOR THE EXAMP LE FRAME

Much of a computer program's value lies in its ability to
perform a large number of computations'in a short period of time. The
program contained in this repoft produces a complete load-deflection
history of the example frame under some prescribed loading in approxi-
mately five minutes on the GEZZS machine. Therefore, with only a
minimum of effort on the paft of the operator, curves can be developed
which, for a given frame, will completely predict the behavior of the
frame throughout its range of loading possibilities. The development

of such curves for the example frame is the subject of this chapter.

5.1 BOUNDS ON POSSIBLE FRAMES

If the only limieation impesed‘on the construction of a frame
is that its geometry must coincide with that of the example frame, an
almost unlimited number of such. frames couid be constructed from the
various rolled steel wide;flange shapes available.5 However, many of
these possible frames would behave in a similar fashion when subjected
to the same loading. Therefere, if some bounding cases could be

analyzed, nearly all behavior possibilities could be predicted with a

minimum of effort.

In order toepick‘sﬁch*bounding?éeées, it is"helpfal .to use some

parameters which indicate some of the properties of a given frame.
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The first of these is the ratio of the column stiffness to

beam stiffness, G, as shown'below6

IC/L.

C

G = :
Ly/4,

(15)

where IC = the moment of inertia of the column, &c

length of the

column, I = moment of inertia of the beam, and Lb = length of the

b
beam. The second parameter is the slenderness ratio, ,{’,/rx where

r. = the radius of gyration of a section about its major axis.

For most building frames, Ref. 6 places the upper andblower
limiting values of G at 3.0;and D,S respectively. For each of these
values of G, several combinations of /f,/rX for the beam and column are
possible. Using some common values of L/rx, Fig. 9 represents some

theoretical possibilities for each extreme of G.

In general, for most frames and in particular for the example
frame, many of the possible:combinations of G, {,/rx for the column,
and /r;/rx for the beam cannot be constructed with the rolled shapes
currently available. For instance, for the example frame with

;= 180", a G of 0.5 would require that

I, =4I (16)
and if,

{,C/rxc = 30 _ : ' (17)
and .

&b/rxb 25 ‘ | (18)
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Then
r v
x, = 6.0 (19)
and .
rxb = 14.4 ‘ (20)

The "Plastid Sec¢tion Modulus Table"‘of Ref. 5 shows that there are no
rolled sectionéiwith r ~ 14.4 whose moment of inertia equals approxi-
mately four times the momeﬁt'ofinertia of any section With r. ~ 6.0.
(The sections listed iﬁ thev”Plastic Section Modulus Table'" have been
rearranged and listed for convenience in.Table 5 in order of their
radius of gyration.) . Similafly, several other combinations of ,f,/rX
and G are impossible to éoﬁstruct'for the example frame and all such

cases are indicated by crosses in the appropriate boxes in Fig. 9.

Frames satisfying the conditions corresponding to each of the
remaining boxes in Fig. 9 can be constructed and two typical cases are
indicated by circles. The analysis of these two cases will provide the

bounds mentioned above on the behavior of the example frame.

5.2 RESULTS FOR EACH CASE

Figure 10:shows the two frames represented by the circles of
Fig. 9. The case gf G = 0.5 will be referred to as the strong beam-
weak column case while for.G = 3.0 the term strong column-weak beam
will be used. The sections indicated on the frameg of Fig. 10 were

chosen by the procedure explained above (Eqs. 15 to 20).

As shown in Fig. 1 the example frame is assumed to be the bottom

story of a.six-story frame which results in a 5:1 ratio between column.
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top loads and beam gravity loads. The ratio of a point load on the beam
to the side load is given by B. TFor the six-story frame the side load

is given as a percentage of the total vertical load by 100/12 8.

Figures 11 and 12 are blots of horizontal load versus horizontal
deflection of the column tops for several loading conditions on each
frame. Each curve represents a different ratio of horizontal to
vertical loading as indicated by the values of B. The horizontal load,

as a percentage of the total vertical load, is also shown.

Each point shown on each curve corresponds to the formation of
a plastic hinge in the frame. ' The location and order of formation for
these hinges is shown on the small diagram of the frame at the end of
each curve. The numbers located next td each plastic hinge indicate:

the sequence of formation.

Note the preponderence of sway mechanisms for the strong
beam-weak column case and the corresponding presence of beam mechanisms
for the strong colﬁmn-weak beam case. The relative strengths of the
beam and column obviously play a key role in the determination of the

type of failure mechanism.

In Fig. 11 the case of H.= 1% bf the gravity load was not
produced by the program. This is because, by coincidence, the hinge
reversal phenomenon of Section 4.4 occurs for this particular ratio of
loads. This is evidenced by comparing the order of hinge formation&for
B =4.16 and B = 16.7. By iptro&ucing slightly different values of B
than that correspbnding to.the 1% case, close approximation to the 1%

line could be obtained. However, this was.not attempted for this figure.
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In Fig. 11 the analysis of the frame with B = 16.7 produced.
some unusual resuits. The third and fourth segments of the load-
deflection plot for this case indicate an increase in frame stiffness
over that shown by the second segment. This would not.normally be
expected because the introduction of each successive:plastic hinge to
the frame brings it closer to failure byvremoving one degree of
indeterminancy. As a result the stiffness of the frame will usually

be reduced with the formation of each new plastic hinge. However, in

~this case, the results produced by the program are correct and they

can be explained with the aid of Fig. 13.

The four frames of Fig. 13 are the frames corresponding to
each of the four segments of the load-defléctibn plot of Fig. 11 for
B = 16.7. Because a symmetrical frame subjected to symmetrical gravity
loading (W) will experience no sidesway, .the unif deflection (6H) at the
column tops of such a frame is a function of horizontal 1oad (H) oniy
as is shown by frames (A) and (C) of Fig. 13. For an unsymmetrical
frame, such as (B) or (D) of Fig. 13 symmetrical gravity load will cause
some sway. As a result, the unit column top defléction (éH) for such a

frame will be a function of both lateral (H) and gravity (W) loads.

The frames analyzed ﬁo produce the lower‘curve of Fig: 11
(B = 16.7) alternate between the-symmetrical and un;ymmetrical cases
shown by Fig. 13. Hence, only the second and fourth segments of‘the
load-deflection curve are functioné of both the gravity and lateral

loads.

If the relative contributioen of W to éH is much higher than

that of H as:would be the case for the frame of Fig. 11 with H = 1/2% (W),
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the value of the unit deflection 6H for the second analysis (frame B of
Fig. 13) would be greater th;n that for the first analysis (frame A of
Fig. 13). A flat slope would appear on the H - AH plot. Following a
similar line of reasoning, it can'Be seen that the slope of the third

segment should increase from that of the second segment, which it does.

Note that for the cases of 8 = 2.08, 2.78, and 4.16 in Fig. 11,
none of the frames analyzed are symmetric after the first. Hence, the

above effect does not appear.

This effect can also be seen in the lower three curves of Fig.
12, Heré, hoﬁever, the efﬁect of symmetry explained above is combingd
with angtbgr problem. The failure mechanism for the lower three
analyses is a beam mechanism and as a result, the plotting of H versus
AH is not too indicative of the behavior.éf the frames. For these

three cases, a plot of H versus vertical beam deflection would be more

appropriate.

In summary, the axial force effect lowers the value of the
load required to form a particular mechanism in a frame and quite often
will cause the plastic hinges involved in that mechanism to form in a
different order. If the influence of the axial force is great enough,
a failure mechanism which“is at least partly different from that pre-
dicted by simple plastic theory (neglecting the effect of axial force

on moment capacity) will result.

Usually the stiffness of the structure decreases as the effect
of axial force increases. This can be seen by comparing the slopes of

corresponding segments on each of two load-deflection plots such as those
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in Figs. 11 or 12. Again, note that straight lines are not strictly
correct as was explained at the end of Chapter 2. However, the fact that
the exact curves for each segment are curves which are concave downward

in itself indicates that axial force decreases frame stiffness.

5.3 DESIGN CHARTS

For any particular "frame geometry, non-dimensional interaction
curves can be constructed Whiqh will allow rapid and easy design of the
frame under combined vertical and horizontal loading while at the
same time accounting for the effect of axial load. Figure 14 is an
example of such curves as developed for the example frame. The non-
dimensional p}ots were produced by analyzing the two bounding-frames
of Fig. 10 under various combinations of loading throughout the range
of possible ratios. The'limiéing cases for these loading combinations
or ratios are gimply the case of no horizontal force (H = 0% of W)
which produces the simple beam mechanism load and secondly, the case
of no vertical force (B = Q) which produces the simple sway mechanism
load. All other failure méchanisms will be produced by some combination

of loads between these two extremes.

For each of the anaiyses within the above range, curves similar
to those of Figs. 11 and 12 are produced. Picking the peak value of
load for each curve and plotting non-dimensionally one-half the vertical
load over Py of one column against the horizontal load H over the simple
sway mechanism load results in the curves of Fig. 14. The curves of
Fig. 14 indicate-thé interaction befwéen three quantities: the lateral

load, the gravity load, and the section properties of the sections
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used. With this plot a knowledge of any two of these will allow the
determination of the third. if one of the two known quantities is

the frame section p?operties,‘thé proceduré<is a direct one. Knowing
the section properties, G can be computed and consequently the proper
curve in Fig. 14 can be picked. Eiﬁher H/HSway or 6 B H/Py can be

computed from the value of the known load, depending on which load is
known. Hence, the point on the plot which indicates the maximum load
the frame can sustain is defined by the fact that one of its coordinates

is known and it must lie on a given curve.

To design a frame if only the values of the loads are known,
it is necessary to pick a set of trial sections first. Knowing the
loads and picking some trial.section allows the proper curve (value of
G) to be chosgn and the céordinates of the point defined by the loads
to be determined. The relative locations of the point and the curve
indicate whether the trial frame has any reserve strength and if so,
how much. With a smail number of trials, it is possible to pick
sections which will cause the point defined by the loads to fall very
near the limiting curve. The closer the point'falls to the curve the

more efficient the frame will be.under the given loading.
. L]

The curves of Fig. 14 can also be used to predict the type of
failure mechanism and the order of formation of the plastic hinges in
each case. To do this it is only necessary to refer back to the load-

deflection plots which were used to produce the curves of Fig. 14.
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6. SSUMMARY

A method for analyzing frames to determine their elastic-plastic
load-deflection behavior has been presented. The method accounts for
the weakening effect of axial fércé on the plastic moment capacity of thé
members. Both the method of analysis and the computer program which
was developed to perfofm it are based on a method and a cémputer program
developed by Wang and Harrison which neglects this axial force effect.
The basic difference between the two methods lies iﬁ the fact that an
analysis which includes the effgét of axial force is non-linear while
one which does not include it is linear. As a result of the non-
linearity involved, the method presented in this report uses a trial-

and-error procedure.

"ﬁin order to use the reportedlprogram to analyze a frame, it
is necessary to systematize the various groups of input information
that are needed in the course of the analysis. The methods and systems
used are explained in. Chapter 3 and éxemplified in Fig. 6 and appendix
C. Typical program output is also given in Chapter 3 and an example

run is contained in- appendix C.

The two basic problems encountered in the use-of the program
have been discussed. They are: (1) Storage capacity, that is, how to
make efficient use of available machine capacity and how to modify a
given problem so that it requires less space in the computer.

(2) Change in the order of formation of plastic hingés during analysis.
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The solution to the first difficulty consists of program and
input data modifications discussed in Chapter 4. The second problem,
that of hinge order reversal, arises frﬁm the trial-and-error procedure
employed by the program. A detailed explanation and éolution have bgen

presented in Chapter &,

The results of several analyses and some possible uses for the

program in design have been presented. 1In particular, a method for
. . ,\Y
producing a series of curves for a given frame which show; the inter-

action of frame gravity loads, lateral loads, and some parameters

indicating frame properties have been shown.
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NOMENCLATURE AND PROGRAM SYMBOLS

Text Program

Definition

i3

i3

A

ABC

AM

AN

ASAT1

ASAT

ASM

ATX

CC

Statics matrix.

Cross-sectional area.

The increased capacity of the poiﬁt in question.
(The x-axis intersection for the straight line
approximation to the interaction formula)

Dummy variable used to read past unwanted sections
on tape.

Array of unit moments for each elastic frame
analyzed.

Array of unit axial loads for each elastic frame

analyzed.

.Temporary storage array for one column of the

matrix ASAT.

Matrix A times matrix S times matrix A transposed.

Subroutine which adjusts the stiffness matrix to
account for the formation of the last plastic
hinge.

Array used in the computation of the plastic hinge
rotations.

Total axial load at some point due to all increments
of load on the frame.

Intermediate variable (no general definition).

The axial load at the point in question which results
from previous incremenfs of load on the structure.

Intermediate variéble (no general definition).

Cumulative axial load at a'poinf.

The axial load at the point in question which results
from increments of load being applied to the
structure after a plastic hinge has formed at

the point.
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Text Program Definitign
CM Moment af a point in the frame.
Mpc CPM Reduced plastic moment capacity.

CcX An array of the deflections in the frame at the
forhation of a plastic hinge.

CXX Identical to CX.

D Intermediate variable (no .general definition).

DATA Subroutine which inputs new frame data.

Mi DD The moment induced at the point in question due to
previous incfements of load being applied to
the structure.

DELTAP Subroutine which computes the increment of load
required to form the next plastic hinge.

DM Array used in the computation of the plastic hinge
rotations;

E Modulus of elasticity.
EAOL  EAOL Matrix which stores the value of EA/L.fof each
- frame member.
mij EE The unit moment for the point in question for this
increment of load.
G Ratio of column stiffness to beam stiffness.
{G? A function of the unit axial load for this increment
| at the point in question.

H Horizontal load.
stay Sway mechanism load.

| I Counter.

I Moment of inertia.

IA Point being inveétigated for being the next hinge to
form.

IBZ Number of the location on the frame where the next
plastic hinge is known to have formed or is
currently assumed to be forming.

ICYC Cycle number in the trial and error procedure used to

find the next increment of load.
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Text Program Definition
h IH Number of the plastic hinge being investigated.

II Switching parameter used in subroutine deltap.

INDEX Switching parameter which controls where the main
program goes after control leaves a subroutine.

IORD Matrix which records the order of the plastic hinge
formation.

IPL Counter.

b IPT Number of the point currently under investigation.

IT1 Tape number.

IT2 Tape number.

Xz Index which controls the printing of intermediate
results in subroutine DELTAP.

J Counter.

JJ JJ Frame number.

K Counter.

KK KK Load set number.

Kz One less than the number of the hinge currently
under investigation.

L Degrees of freedom in the frame.

Length.

LDSET Subroutine which inputs the loads.

LOWEST Subroutine which picks the next plastic hinge.

LPL Frame degrees of freedom plus one.

M,a M Twice the number of members in a frame.

MATRIX Subroutine which performs an-elastic analysis of a
frame. | |

MM One iess than twice tne:number of members in a frame.

N N Three times the number of members in a frame.
NM NM Number of frame members.

NPASS Switching parameter which causes the stiffness and
statics matrices to be printed at the beginning
of each new framebanalyeis.

NPH The number of the location mhere the next plastic

hinge occurs.
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Definition

OUTPUT

PHR

PL

POPY

PP

PT

PY
BRAX

g B

SAT
SAT1

SAX

v}
~

Subroutine which'prints.out_a table of information
summarizing the conditions in the frame after
the formation of each plaétic hinge.

Increment of load.

Subroutiné which computes and prints the internal
rotations undargone by each plastic hinge at
collapse load.

Matrix of the applied loads. _

Matrix of the plastic moment capacities for all the
frame members.

Ratio of P to Py at a point.

Final cdmputed load required to form a plastic hinge
at some location.

Matrix which stores the value of the load to form
a plastic hinge at some location for each of
several tries.

Matrix of the yield loads for all frame members.

Axial load at a point due to loads applied to the
structure after a plastic hinge forms at the
point. V |

Induced moment at a point.

Axial load at a point.due to one increment of load

' applied after a plastic hinge appears at the
point.

Radius of gyration.

Moment induced at a point due to one increment of
load.

Stiffness matrix.

Matrix S times matrix A transposed.

Temporary storage array for one column of the
matrix SAT.

Axial load at a point due to loads applied to the
structure before a plastic hinge forms at the

point.
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Text Program Definition
SB Intermediate variable (no general definition).
SC Intermediate variable (no general definition).
SDAT SDAT Matrix which stores the value of EI/L for each
_ frame member. ‘

SS Axial load at a point due to one increment of load
applied before a plastiC'hinge appears at the
point.

TEMP Temporary variable name. ‘

UNDEFL Subroutine which cbmputes the unit deflection, moments,
énd‘axial loads. o

UXx Array of unit deflecﬁions for each elastic frame
analyzed.

W Vertical load.

B The ratio of a beam point load to the side load.
(For the example frame).

AH AHorizontai deflection.

8 Unit horizontal deflection.



TABIE 1 STATICS MATRIX (A) FOR EXAMPLE FRAME §
_ | N
Mmoo M M M M Mg M My P P Py P By .
W, 0 0 2/a 2/1 0 0 0 0 0 0 1 0 0 0 o—
) w, 0 0 -2/¢ -2/4 1/ 1/¢ 0 0 0 0 0 0 0 0 0
W, 0 0 0 0 -1/1  -1/4 2/ 2/ 0 0 0 0 0 0 0
W, 0 0 0 0 0 0 -2/4 -2/ 0 0 0 0 0 0 1
W, /2 /¢ O 0 0 0 0 0 0 0 0 -1 0 0 0
W 0 0 0 0 0 0 0 0 0 0 0 1 -1 0 0
W, 0 0 0 0 0 0 0 0 0 0 0 o 1 -1 0
Wg 0 0 0 0 0 0 0 0 1/, 1/ O 0 0 1 0
W, 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0
LIPS 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0
L 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0
W, | 0 0 0 0 0 0 0 1 1 0 0 0 0 0 OJ
weoow, Wa Wy 4 2 &,
v (R""(T\ w’é\w“x/’\ 2 ?@H]‘: ® _GL@J: '
hd “io “a iz T
0] ® R
Y I g IO‘l

Load Numbering and

. . Member Numbering
Sign Convention

€=
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TABLE 2 MATRIX OF APPLIED LOADS (PL)

w i 0_ .
o1
WZ. -1
W3 -1
W oo
W '
W 0
w-;: 0
Wy 0
Wy 0
_w'ioﬂ 0
"Wll 0
W 0
12 B .J

-44
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‘Analysis

of
First
‘Frame

Analysis
of
Second
Frame

TABLE 3  SEQUENCE -OF ‘INPUT DATA

Load

Applied

to
First
Frame

‘Load
Applied
to

.Second

Frame

INPUT ITEM(S) FORTRAN | :FORTRAN II
: ) - SYMBOL FORMAT
Frame No. KK - i 5
Degree of Freedom .and
humber of members L, NM 215
Statics Matrix A 7 F 10.4
- SDAT 3
Section Properties Ezgi .QrF 10.4
PY
Load -Set Number KK I5
Load Matrix PL 7 F 10.4
Load Set Number KK IS5
Load Matrix PL 7:F 10.4
Load.Set Number (negative) KK I5
Frame No. KK I5
Degree of Freedom and L, NM 215
number of members .
Statics Matrix A 7 F 10.4
.SDAT
Section Properties Ezgi 4 .F 10.4
PY
Load Set Number KK IS5
Load Matrix PL 7 F 10.4
Load Set Number KK I5
Load Matrix PL 7 F 10.4
Load Set Number (negative) . KK IS5
Frame No. (negative) JJ I5
END CARD END
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TABLE 4 . PROGRAM .OUTPUT SEQUENCE

ITEM

COMMENT

1. Frame Number
2, Statics Matrix

3. Member Stiffness
‘ Matrix

4. Load Set Number

5. Load Set

Printed on the top of the first page
for identification purposes.

Listed for reference and checking (to
Created internally from section
properties. Listed for reference and
checking.

Listed for identification.

Listed for reference and checking.

insure correct punching of input data.)

The following four items are repeated in sequence until
the failure mechanism is formed.

6. Unit-Deflections
Unit Moments
Unit Axial Loads

7. Number and locat-
ion of plastic
hinge

8. Table

9. Deflections

Produced by each elastic analysis
~of the frame.

Values of each load increment for each
trial, as well as the totals for each
trial are also output for examination
here.

The total moment,_MpC,bMp, axial load,
Py, and the ratio P/Py are listed
for each member end in the frame.

The value of the deflection for each
of the "L'" degrees of freedom in the
frame is computed and listed.

produced.

'

After the failure load is reached the following item is

10. Hinge Rotations

The internal rotations undergone by
each plastic hinge are listed.

again with item 4.

If additional load sets are to be run, the output begins

If no load sets remain, but additional

frames do, item 1 will appear next. If nothing remains to
be run, the machine will exit from the program.

-46
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‘"TABLE 5 SECTION PROPERTIES LISTED BY RADIUS OF GYRATION :

— N

H
SEUT AN HATTUS LF WeMERNT UF BLASITIC ARFA LEPTH SFOTLIAN RARTHN CF MOMEMT NF PLASTIR ARFA ULpTH

GYRATIOR TMERTLAS A0hLLLS GYRATINMN INERTTA “ephrs
[ LR 7 A n } Y 1x 7 A n
at 7 ) .00 10u6F 25 .20 18%.2 e 7.8%  10.nR
3 A 2.5 3.np i0WF 3y a7 47.0 11,48 e, e
41 9 %] a.00 10uWf 29 .09 KEP B3 1n.0p
41 -] (] 4.00 104F ab 4,388 bE.0 18,24 10.12
amo1s 10,4 a.nn 10AF 54 4.39 f7.3 15.4R 1n.12
awF 134 1.3 4.1k 106 19 Gadl 21.6 5.01 10.2%
St 1w 15,0 5.00 i0yF 6u 4.41 .1 17,066 10425
Si 10 171 s.n0 10WF Ak 4,44 BZ.A 19.41 10,38
s 19 R 5.00 10wF 77 4,46 Q.7 21.3F  1n,%p
SwF 1o Z1.38 5.00 16wF 77 4.8y 97,7 22.87 10.62
SufF 14 28,4 5.12 121 50 4.%5 60,7 14,57 12.00
6t 1/ z6. 0 6.00 1ouF Ao 4.65 114.4 ?26.19 16.R#
6UR 4 7.3 6.00 12JR 12 4.57 14,8 3.45 12.00
€1 1y 21,8 Ao - 10WFLan “ L AL 130,01 29,43 11.12
£ 0p Zt.7 6.00 120 16 » 4,65 20,6 A R 12,0p
om ¢ 41.0 6.00 10wWH112 a.n/ 147.%  32.92 11.38
oM 25 a7 6.00 121 3% 4.72 44.4 10,20 12.00
6% 20 38.8 6.00 121 4y a.77 52.5 11.494  12.00
B 16 3.7 £.75 128 19 % 4.81 24.5 5.62 12.16
ewF 2u 41.7 6.20 121 %2 .83 41,6  9.26 12.Pn h

71 20 41.9 7.00 24 22 a. 25.4 6.47 12,31
cwF 25 53.5 6.37 12wk 27 » & R 7,97 11.96
JUR 5 12.1 7.00 12yF 31 3 bl 44,0 9.12 12.0¢
71 1% 6.2 7.00 12w 40 & 5746 11077 11.94
g 23 4.2 8.00 12WF 3o 5 1.4 10.39 12.24
8JR & 16.7 8.60 12WF 43 5. 64,9 13.24 1z.00
ER 13 9.5 2.0n 12WF 50 5 72.6 14,71 17.30
&M 20 0.7 &.00 124F 59 s 78.2 15.59 1Z.00
&M 22 bB.S 8.00 12WF 56 = 46,5 17.00 12.19
81 14 < &.00 124F 719 =, 116.8 23.27 17.38
88 15 a.12 12WF RS 2 126.1 724,98 12,80
8M 28 8,00 148 17 % & 24.7 S.ub 14,00
aM 17 a,00 12uF 02 = 140,72 27,96 12.62
awF 17 a,nn 12uF 99 5 151,08 29.u9  12.75
BM s 5.00 12wF106 € Jsu.7 165.4 $1.19 12.88
8M 24 R.O0 12uF12y 1 35,31 13.12
BHF 24 7.93 148 22 1 LR T4 6.47 13,72
awF 20 R,14 129K 138 S.hY §%.11 13.35
&M 74 a.ng 148 26 % SRS 7.65 15.89
Auf 28 8,06 12WF 141 s.70 47,38 13,88
8M 33 A.nn 14uF 30 i ©,73 8.31 13,84
auF 15 8,19 151 Su s.74 14.5Y  15.00
8WF 40 8.25 14uF 43 % BL.RZ 12,65 13.6R
aWF aA k.50 12WF1an £.82 55.RF 14,48
8WF Sd B.75 14WF 34 B850 1u.00 14.00
8WF A7 Q9.nn 14nF a8 =.fn 14.11 13,81
101 28 ip.nn 144F 38 % .87 11.17 14.12
104R 9 3 36.0 10.60 14uF 58 5.94 15.39 15.94
104 2v 181.5% 9.88 151 43 £ . Gh 12,49 15.0D
108 15 % bpR 1a.00 14WF M1 L 17.94 13,01
108 17 % ¥1.8 10.12 14WF &8 ] 24,1 114.4 20.00 14.06
101 25 4.0/ 1271 10.00 14uF 74 a0k 706 R 128.8 21,76 14.39
10M 21 4.14 14,4 9.90 r1auf 78 £.ony [ IR 124,00 22.94 14.06
10WF 21 1,14 106.3 9.90 14WF Ha €. 19 9re.4 . 14%.4 24,71 14.18
10M 23 L K 116.6 9, AR 14UF Ly ~.73 12¢6.5 106.0 22,85 14,047

$ CHECK SHAPES SO MARKED FOR COMPLIANCE WITH FORMULA (25), SECTION 2.6 OF THE AISC SPECIFICATION, WHEN SUBJECTED TO COMBINED
AXTAL FORCE AND PLASTIC BENDING MOMENT AT ULTIMATE LOADING.

Ly-
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TABLE 5 SECTION PROPERTIES LISTED BY RADIUS OF GYRATION/(continued)

SECTION  wmADTUS €F MCMENT OF PLASTIC AREA  DEPTM SECTIAN  RADIUS NF  MOMENT OF  PLASTIC aARFA  DEPTH
CYRATIFN  [NERTIA  MADULLS ) GYRATION  [MERTIA  MOCULUS
N £ X 1x 2 A D £X 1% 4 A ]
16A 26 ¥ £.04 208, 43.9  7.65 15.65 "7 21uWF B2 f.53 17%52.4 191.6 24.10 20.86
144F119 6£.26 1373.1 210,9 34,99 14.S50 21WF 68 ¥ P59 1478.3 156.8 20,02 21,13
14WF127 £.29 1476.7 225.9 37.33 14.62 21WF 96 f8.60 20P8.9 226.3  28.21 21.14
14WF136 £.31 1593.0 242,7 39,98 14.75 21WF 73 $ 8.64 1600.3 17¢.1 21,46 21.24
14WF 142 £.32 1672.2 254,8 41.85 14.75 A TetwFit2 7T TELV92 2620.6 276.0 32.93° 21,00
14WF 150 £.37 1786.9 270.2 44.08 14.88 21WF127 8.99 3017.2 317.8 37.34 21.724
16p 31 % £.39 372.5 53,8  9.12 15.84 21wF142 9.03 3403.1 357.0 41.76 21.46
14WF158 £.40 1900.6 286.3 46.47 15.00 241 100 a.0% 2371.8 238,88 29.25 24.00
14WF1K7 fo42 2020.8 302.9 49.09 15.12 241 90 9.21 2230.1 220.5 26,30 24.00
14Wf170 £.45 2145.6 321,3 51.73 15.25 241 120 9.20 3010.8 298,0 35,13 24,00
16WF 36 % £.49 446.3 61.9 10.59 15.R5 241 80 % 7946 2067.2 203,0 23.33724.00
14WF1R4 €.49 2274.8 337.5 54.07 15.38 24WF 48 $ 6.53 1814.5% 175.5 20.00 23.71
14uF19$ €.51 2402.4 355,1 56,73 15.50 241 106 §.53 2811.5 273.0 30.968 24.00
14uWF202 £.54 2538.8 373.6 59.39 15.63 24yF 76 % 9.68 2096.4 200.1 22.37  23.91
14WF211 £.56 2671.4 391,7 62.07 15.75 24WF 8R4 8 9.78 2364.3 224.0 24.71 24.00
14WF219 6.59 2798.2 408.0 64,36 15.87 24WF 94 % .85 2663.0 253,0 27.63 24.29
16wF 40 % 6.62 $15.5 72,7 11.77 16.00 24WF100 $ ~ 10.08 2987.37 278.3 29.43 24.0%
16WF 58 62 746.4 1p6.2 17.04 15.86 24nF130 3 10.12 3315.10 3n7.7 32.36 24.16
16yF228 6.62 2942.4 427,2 67.06 16.00 244F120 3§ 16.15 3635.3 336,6 35.29 24.31
14WF320 6.68 4141.7 592.2 94.12 16.81 24WF130 3 10.24 4005.5 365.2 38.21 24.25
16WF 45 $ £.64 583.3% 82.0 13.24 16.12 24WF 145 in.34 4561.0 416.0 42,62 24,49
14uk2587 £.65 3uRd.9 445 .4 49,69 16.12 24WF160 - 10.42 511¢.3 463.7 47.08 24.72
16WF 64 £.66 833.8 117.9 18.80 16.00 274F 84§ 10.69 2824.8 243,2 24.71 26.69
164F 50 % &.68 655.4 92.7 14.70 16,25 274F 94 $  1n.A7 3266.7 777.7 27.65 26.91
144F246 f.68 $228.9 464.5 72.33 16.25 Z7WF162 $  10.96 3604.1 304.4 30.01 27.07
181 70 6. 7U 917.5 123.8 20.46 18.00 27TWF1314 §  11.03 4080.5 34z.8 33.53 27.2¢t
16WF 71 £.70 9%6.9 131.6 20.86 16.16 27NF145% §  11.26 5414.3 452.0 42.68 26.88
16nF 78 «. 79 1062 .4 145.5 22.92 14,32 274WF160 11.31 6018.6 504.3 47,04 27.06
14WF264 ha74 3526.0 5n2.4 77.83 16.5p 27uF177 11.36 6726.6 556.9 52.10 27.31
14WF 297 €A1 3912.% 551,64 R4.37 16.81 30uF 99 3 11.70 39RR . & 312.0 29.11 29.¢4
16WF @y £.R7 1222.64 165.0 25.B7 16.16 JO0WF1N8 S 11.85 4467 .( 34%.5 X1.77 29.82
14wF314 6.9U 4399.4 611.5 92.30 17.19 30WF116 5 12.00 4919,1 377.6 34.13 30.09
16uF 96 £.93 1355.1 186.0 28,22 16.32 30uF124 5 12.11 5347 .14 407,4 $6.45 3I0.16
144F 342 £.99 4911, 5 673,0 0U,59 17.54 SO0WF132 § 12.17 57%3.1 436.7 38.83 30.30
181 55 7.0/ 795.5 103,5 15,94 18.00 30yFi72 8 12.48 7891.5 593.6 50.65 29.88
144F 370 7.38 54542 737.3 08,78 17.94 30WF190 &  12.57 482%.9 56,6 5.9 30.12
14WF 598 7.1/ 0014.7 808.0 16.98 18.31 3owF210 17.64 9872.4 733.9 A1.78 30.38
144F 420 7.26 6610.3 80Y.3 25.25 18.69 33wFiis 8 12.02 58b6.9 414,3 34,71 32.86
THUF 4% % 7.0 764.5 89.6 13.24 17.86 33WF130 5 13.28 6699.0 466.0 3B8.26 33.10
18wF 50 3 7.38 B0G.6 100.8 14.71 18.00 L33WF141 & 13.39 7442 .2 512.2  41.5%1 33.31
16WF 55 7.41 889.9 111.6 16.19 18.12 33wF152 & 13.59 B147.6 558.,3 44.71 33.50
184F 64 & 7.46 1U45.8 131.8 15.40 17.87 33WF200 § 13.71 110448.2 754.4 58,79 33.00
1RWF a0 b 7.47 9R4.D 122.6 17.64 1R.25 33wF22n 3 12.79 12312.1 830,72 64.73 33.25
18WF 7u 7.49 1158.9 144,7 20.56 148.00 33nF240 13.88 13565 ,1 9168:2 70.52 33.50
18WF 77 7.54 1286.8 160.5 22,63 18.16 36WF135 & 14.01 17796.1 Su%.1  39.70 3%.55
18WF 85 7.5/ 1429.9 24,97 18.32 36HFAS0 ¢ 14,29 9012.1 579.R 44,16 $5.R4
201 as 7.59 1508,7 194.0 27.74 20.00 36wF160 14.38 9734.6 623.8 47.09 36.00
201 75 7.6U 1263.5 151.5 21.90 20.00 36WFL70 ¥ 13470.0 666.7 49.98 36.16
18wt 9s 7.7% 1674.7 206.0 28.22 1R.16 36UF1R2 ¥ 11241.5 71€.9 3,54 36,32
1RWF1NY 7.7% 1R%2.,5 226.5 30.R6 1R.32 S6WF194 % 12103.4 767.2 57.11 36.48
201 83 7.78 1501.7 177.3 24,80 20.00 36WF230 € 149RA8.4 Y4e.7 67.73 35.88
18WF114 .79 PNAZ LA 247.9 33.51 18.48 J6uF245 F 16092.2 10n8,0 72.0% 3IANEK
200 65> 7.89 1169.5 137.3 19.08 20.00 36uwF24n % 1723%.8 1076.0 76.56 In.74
214F 55 & ¥, 40 1i4u.7 S125.4  16.18 20,80 36WF260 18619.3 1167.0 Hz.3¢ 36.5y
Z44F A2 % £,53 1306 .8 144.1 $8.23 2n.00 S6HF 300 2n296.2 1£55.0 88,17 36.72

8-
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Vai
Hy
af L
W= f(H)
H 1 A"‘l'_
Hl
(o)
AH
Fig. 2 Schematic Elastic Simple-Plastic Plot Neglecting
Axial Force Effects
1.0
Mpc = ||8Mp( |- P/Py)
% o5 P
y
M
M
P
l v
0 0.5 1.0
Mpc
Mp

Fig. 3 Interaction Curves
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ELASTIGC SIMPLE - PLASTIC

NN

H
W = f(H)
H 3 \
4 2
Ay
Fig. 4 Schematic Plot Indicating Successive Trials for
the Determination of a Second Plastic Hinge
Axial force effect neglected
- - - G GEID G D WIS SEIED SERD IR G GRS —
,’
/ -
/ Axial force effect included
/
/
|
H . J.Aﬂl-—
AH

Fig. 5 Comparison of Load-Deflection Plots with and
without the Effect of Axial Force
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Fig. 6c Deflection and Applied Load Numbering and
' Sign Convention
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P =

X2
M,
"\\555_____‘—’,1 ’
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P

Fig. 7 Freebody of the Upper Left Column Top on the
Example Frame
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& ® & & (®) &

4 | |
(-)
w~ (C) L2
(+) |
! 1 .

(D) &

The quantity in parenthesis indicates the length
of the second segment on the load-deflection plot
for the frame.

Fig. 8 Change in the Order of Formation of Plastic
Hinge
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STRONG BEAM- WEAK COLUMN

25

G =05 .,
B11 40

">
60 .

WEAK BEAM- STRONG COLUMN

25

G
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W
O

L 40

60

ie

20 30 40

Fig. 9 Possible Bounding Cases for the Construction

of the Example Frame
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STRONG BEAM-WEAK GCOLUMN

SBH  BH BH  5BH
H —1 1 érwm42 l l 1
t  G=05 13
ﬁvz | 1w‘-l-
| 30° o

STRONG COLUMN- WEAK BEAM

58H  BH BH  58H

H ’N l 241100 l
¥
= G=30
o ot

Fig. 10 Bounding Frames
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STRONG COLUMN -WEAK BEAM
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B =208
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30 YA
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0 .025 .050 075 100 125

A, (ft) -

Fig. 11 Results for the Case G = 3.0
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STRONG BEAM - WEAK GCOLUMN
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Fig. 12 Results for the Case G = 0.5
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O = f(H)
(A)

Sy= f(H,W)

(B)
~%v

~
l .
¥ |
Sy= f(H)
(C) | |
2 | ‘
‘L[T ©) Wﬂlés

Fig. 13 Effect of Frame Symmetry on Unit Horizontal
Deflection

8H= f(H,W)
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Fig. 14 Design Chart for the Example Frame
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' CALL DELTAP =
(FOR EACH PLASTIC HINGE, TWO PASSES
CALL DATA THROUGH DELTAP ARE MADE., THE FIRST
> (READ IN FRAME DATA) PASS COMPUTES THE LOAD REQUIRED TO
- FORM A HINGE AT EACH OF THE
WAS DATA | REMAINING POSSIBLE HINGE LOCATIONS |jei=—
READ? NO IN THE FRAME. AFTER THE LOWEST OF
THESE LOADS HAS BEEN PICKED, THE
l YES SECOND PASS REPRODUCES AND PRINTS
THE INTERMEDIATE RESULTS.) g
CALL LDSET < FOR THE NEXT HINGE e
(READ IN LOADS) =
| [w]
NO WAS THERE < DOES THE ORDER OF FORMATION OF THE >
A SET OF LOADS YES PLASTIC HINGES CHANGE? >
READ 1IN? NO '
l YES O , Y E
P ?
TN _ —{FIRST PASS FOR THIS HINGE.I z
(PERFORM AN ELASTIC | ' VES o
ANALYSIS OF THE FRAME) *
I CALL LOWEST E
COLLAPSE CALL PHR (PICK THE HINGE WHICH WILL f——pun
MECHANISM —p==1 (COMPUTE FORM NEXT IN THE FRAME.) rj
REACHED? YES PLASTIC e
HINGE CALL OUTPUT 2
NO - {ROTATIONS) (PRINT A TABLE SUMMARIZING THE Q
' g MOMENTS, AXIAL LOADS, AND THE B
CALL UNDEFL DEFLECTIONS AT THE VARIOUS 3
(COMPUTE UNIT DEFLECTIONS, : FRAME LOCATIONS.)
MOMENTS, AND AXIAL LOADS) 1
1 CALL ASM
COLLAPSE (ADJUST THE STIFFNESS MATRIX
MECHANISM TO ACCOUNT FOR THE FORMATION
REACHED? YES OF THE IAST PIASTIC HINGE.
NO

19-
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{
]
20 (S[3911,PTIL)), (S{49), LORDI11)s [S(57), PPI41), (8171), P[1))
‘3(S(323%, Cxx(41), (PLIL), :CML1)], USDAT(1], CX{1), SAT1(1], ASATL

APPENDIX B PROGRAM LISTINGS

‘PAGE

COMMON A, S, SDAT, EAOGL, ‘PL, L, NMs M, N, MM, 1. Js K, NPASS, KK,
iJJ, IH, 114, 172, ABC, LP1, IP1, TEMP, KZ, 1XxZ, IPT, lA, lCYC,
2182, Ak, BB, CC, DD, EE, By SB, D¢ SCs» 'Co GG, SAX,» SS, RAX: AX,
3RR, RM, NPW, .CAx., :POPY; CPM, INDEX: I1

EQUIVALENCE {Al1), ASAT{1], AMt1)), (A[166), AN{1)), (S(295]), DM{1
11), (S[3091, ATX(1)), iSti), :SAT(1]), UX{11, PYd))s (ST15), PMI1)]
L
(
41))

‘DIMENSION A(15,21), 'S[21,21), SDATI71, -EAQLL7], PLIL5), PMIg4],

APY[14], CX[15]), CM[14), SAT[24,15),» ASATI15,16), PP(14], uxtis,al,

90
87
91

100
i08
112

106

98
96
99

2SATX([21), AMI$5,11), AN(25,11), IORD(8), P(68,40), PT(40], DMI14],
SATX(14), :CXX(15), :SATL[15]), ASAT1{15)

‘CALL DATA

GO YO 199, 871, iNDEX

'CALL LDSET

G0 TO 1 903 94), INBEX

CALL MATRIX o

‘60 't0 | 98, 106, -1),iNDEX

‘CALL UNDEFL = =

G0 Y0 100, 106, 981, INDEX

CALL DELTAP o o

GO 'Yo t 98, :99, 108, 112, 87), INDEX

‘CALL LOWESY

‘G0 Yo | 108, 1003, xnnex

‘CALL -QUTPUY

'CALL ASM

60 "T0 ‘91

‘CALL PHR

‘GO ‘Y0 87

‘PRINT 96 o o _
‘FORMAT {48HNONSENSE 'TEST ‘RESULT--es~ INDEX VALUE IN ERROR, )|
tgALL ExIT

END
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READ

13
88

REAPD

23

READ

35

READ

166
167

PAGE

SUBROUYINE DATA

COMMON A, S, SDAT, EAOL, PL, L, NM, M, N, MM, 1, J, K, NPASS, KK,
1JJ, IHW, 174, T2, ABCs» LP1, IPi, TEMP, KZ, IXZ, IPT, A, ICYC,
2187, AA» BR, CC, DD, EE, B, SB, D, Sc, 'C, Ga, SAXx, SS, RAX, AXs
3RR, RM, NPW, CAX, POPY, CPM, INDEXs 1] o
EQUIVALENCE [AT1), ASATI1), AMI1)), [AL166), AN[1}), (S[295), DM(1
1)), (St309), ATXr11), 1St1), SATii), UXrey, PYL4)), (S(15), PM(1))
2, [S[39114PT(1)1, (SL49), IORDt1))s (SI57), PPIL1))s [SL71])s P[1]),
3(S5(323), CxXXI[111, (PLIL), CMI1)), [SDATI1)}, CX[1), SAT1[1]), ASATL{
411) : :
DIMENSION Af15,21), S{21,21), SDATI7), EaAOLL7]1s, PLI15), PMi14),
1PY(14), cXt15), cMt14), SaT{21,15], ASATt15,16), PP(14), UX(15,8),
2SATx[21), AM{15,11), AN[15,11), JORDI(8), P(B,40), PTL40), DMIg4],
JATX[14), CxXX[151, SAT1(15), ASAT1(15]

THE FRAME NUMBER, EXIT IF NEGATIVE

READ 13, vy
FORMAT [151

IF tJJy .8a,5,5
INDEX = ¢
RETURN

REWIND 2

REWIND 3

REWIND 4

DEGREES OF FREEDOM AND NUMBER OF MEMBERS

READ 23, L NM
FORMAT (218}

M e 2 ¢ NM

N e 3 « NM

MM & M+ 1

IN THE STATICS MATRIX

READ 35, [tallsd), J3LUNY, 1=1,L)
FORMATI7F10,4)

E1/L, PLASTIC MOMENT, EA/L, AND PY FOR EACH MEMBER

DO 166 1 = 1,NM

K s 2¢) ‘

READ 167, SDATI!), PMIK], EAoLII1, PY(K)
PY([K=1} = PY[K])

PMEIK=1) = PMIK]

‘FORMATI4F1N,4) '

WRITE TAPE 2,[[Al]l,d)s 15 $,L0,Jd 8 1, N)
WRITE TAPE 2, PM[1)s I = 4, M)

WRITE YAPE '2,( PYI1)}s ! = 1, M)

WRITE 'TAPE 2,( .SDAT([I1), I = 1, NM)

WRITE YAPE 2, 'EAOLII), I = 1, NM)

NPASS s 1

INDEX ® 2

REYURN

"END
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.SUBROU¥INE LDSET

COMMON A, 'S, 'SDAT, EAOLs PL, L, NMs M, N, MM, 1, Ji K, NPASS, KK,
1JJ, 1Hs 174, IT2, ABC, LP1, iPL, TEMP, KZ, txZ, IPT, 1A, I1CYC,
2182, AA, BB, CC, DD, -EE, By SB, :Ds SC,» :C, GG, SAX:, S8, RAX:, AX,

3RR, :RM, -NFH, CAX, 'ROPY, CPM, INDEX, 1]

‘.111, (SE309), ATXI1)). [S[1), :SATLL), UXIlla PYT1)1, [S(15), PMI1
31803238, CXX1111, {PLIL), CMLL)), [SDATIL1), CX11), SATI[1), ASAT

EQUIVALENCE [Al41, ASATIL), AM{11)4 tAL166), AN[1)), [S1292}), DM(3
11
2, [SI38114PT{1)], (S(49), JORDI4)). [S(57), PPL11}, [(8[71), P(1)],
i

41]1

READ
No'.

708
13

-1

SET
B4
160

CONS

164

11
IF K
PRIN

82

/DIMENSTION A(15,21), S(21,24), SDATI7}, EAQL(71, PLI15), PMILL4],
1PY([14), CX(15), CML14], ‘SAT(21,15), ASAT(15,16), PP[14]), UX(15,8],
2SATX(21), AM{15,11), AN(15,11), 1ORD(8), ‘P18,40], PT{4U], DM[14),
3ATX(14)s CXX[48]), SATLL18], ASAT1[L5)

'THE LOAD :SBY NUMBER, 1F IY 18 NEGATIVE, READ A NEW FRAME

READ 1%, KKk

FORMAT (15} L
Ir [KKI11891'810181
INDEX :®. 1

RETURN

ALL ‘THE-ELEMENTS OF 'THE 'STIFFNESS MATRIX To Z#RO

‘DO 160 12 1,
DO 160 J:8 1,N
‘s[!QJ,’. .
REWIND 2
‘REWIND -3
‘REWIND 4 ,
READ TAPE ‘2, t[AtI.J). 183, L), W31, Ny
‘READ TAPE 2. BC

'READ TAPE '3, ABC

READ TAPE 2, [SDAT(I).:1:3 1, NM)

‘READ TAPE ‘2, ([ :BAOL{I)s» 1 °® 1, iNM]

TRUCT THWE :STIFFNESS MATRIX FROM KNOWN :DATA
DO 161 [ & 1,M, 2

K s x/2 - 1
SI1,1):%-4,0 «:gDATIK)
st!o1.¥~1l ‘s St1,1)
Stle1,1):3 0.5 « Sti,1)

SE1i1eq) v st1ed,
Bt R R

Joe loe M
St1,1) = BAOLLS)

PASS 1S POSITIVE,
T OUT THTLES, THE STATICS MATRIX, AND THE STIFFNESS MATRIX

IF [NPASS). 707, 82, 82
PRINT 97, JJ
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97

21
1

707
27

c REAR

35

FORMAT [18H1ANALYSTS OF FRAME, I3, //)

PRINT ¥ . . L
FORMAT [19HOTHE STATICS MATRIX//)
DO .1 Isl1,L

PRINT 21,1, [ALI,4), W8l 4N)

‘FORMAT4HOROW, 13,1X, ‘7E16,7/BX,7EL6,7]]

PRINT 47

FORMAT (21HITHE STIFFNESS MATRIX//)
002 Ial,N |

PRINT ‘2151, (S01,J)sJul,N)

NPASS B =1

PRINT ‘27, KK

‘FORMAT [43WiLOAD :SET NO,, 13)

IN AND PRINT OUT THE LOAD ‘SET.
READ 38, {PLI1), te1,L}

‘FORMAT (7F40.4)

DO '3 Isi.l

PRINT '21, 1, PLII

IW:s 0 e e
WRITE TAPE 2, PLEI), 1 = 4,
WRITE TAPE 2, (SI1,J15 1:»
INDEX :2 2 '
RETURN

END

%)
1.

NYod -% .15 N}
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SUBROUTINE MATRIX
COMMON A, 'S, SDAT, EAOLs 'PL, L, NM,.M, :N, MM, 1, J, K, NPASS, KK,

AdJs IHy IT1, 172, ABC, LP31, IPL, TEMP, KZ, IXZ, IPT, IA, ]CYC,
:21BZ, AA, :BB, CC,» DD, EE, ‘B -$B, Do 8C, :C, GG, SAX, SS, RAX, AX,
"3RR, RM, NPH, (CAx» ‘POPYs CPMs INDEXs

11
EQUIVALENGCE [A[11, ASATI(L], AMIL1]]). IA[1661. AN[11], [S[295], DM(1

401, (SUL309), -ATXIL}), ©St1), SAT(11, UX(iy, PYL1)),s (S{15), PMIL1])
20 (S[3913,PTI1)}, (S(49), JORDIL)}s [S(57), PPI{})s (SI71), P(1]),
3051323, :CxX(11), (PLIL), CMI4)), (SDATIL), CX(1), SAT1[1), ASATL|
411}

‘OIMENSION A{15,21), S([21s421), SDATL71, [EAOL{7), PLI15), PM(14),

APY(14], :CX115), CMI14], :SAT(21,15]s ASAT(15,16), PP[14], Ux(i5,81,
'2SATX(24), AM[15,11), AN[35,11), IORD(8), Pi8.40), PT(4U). DM(14),
SATX(141, ‘GXX[35), ‘SAT1115], ASAT1{15])

15
92

67

68

CONS
tALL
RESUL

69

28
57

58

IMe IW o+ o

IF 1IH/2 %12 w {H) 67, 68, 92
INDEX ‘2 1

RETURN

111 =8

IT2 = 4

‘GO TO 69

174 = 4

112 = §

TRUCT THE :MATRIX SAt { § ‘TIMES A TRANSPOSED)
‘THE FOLLOWING MATRIX OPERATIONS STORE THEIR INTERMED]ATE
TS ‘6N TAPE,!

‘D087 b= &, N~

‘DO 20 -Ustal

SAT11JY e 0,

DO 120 Ksi,N

SATL0J) ‘= SATLL)) ¢S
WRITE ‘TAPE IT4, tSA it
REWIND T4

D088 Y& &, N . e
READ TAPE 1T4,tSATEI JYs 1 ¢, L)

REWIND ITL . = o o
WRITE PAPE [T ((SATII.JY, 1 2.1, N),Js 1, L)

[12K) o
111, 1

CONSTRUCT TME :MATRIX ASAT (A TIMES S TIMES A TRANSPOSED!

40
63

64

DO 63 t = (, L

DO 40 JUsi.l

DO -40 K=1,N

ASATLtU) ‘s 0, _
ASATLIJ) ® ASATICJY *Afl, )_q
WRITE TAPE ITL1,(ASATL[II), I
REWIND I1T1 ,

READ TAPE 1T1, ABC

DO 64 t = ¢, L o

READ TAPE 1IT4,[ASAT (1,d), J= 1, L)
REWIND IT1

READ TAPE 171, ABC

LPisL+y

SAT(K,J)
s 1. L)
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‘DO 50 =1,

50 ASATIIGLPLY = PLIDY

SOLVE ‘THE EGUATHONS FOR THE ‘UNIY DEFLECTIONS

62

64
72
45
74
147
347,
16
78
59

8o
60

‘D0 60 V=i,
IPimlet
TEMPsABSFIASATI], 1)
‘Kat

D0 61 el o
IF [ABSFLASATIJ, 111-TEMP] .61,61,62
Kay -

TEMP = ABSP!ASATIJ m

:CONT INUE

IF tk=¥) 72,71,72

DO 45 Usl.UPYL

TEMP '8 ASAYI1,J)

ASATII,J] & ASATIK,J)

ASATIK,J] & TEMP y

IF CLASATII;I)) 16,147716

‘PRINT %47

‘FORMAT [30NODIVISiON -BY ZERO N INVERSLON}
INDEX '8 ‘2

‘RETURN

TEMP 3 1, /ASATLE, 1)

‘DO <70 JslaliPd

ASATLISJIWASATIT, UretEMP

‘DO -60 1Jelal

IF f1=4] '89,60,59

‘TEMPASAT(J, 1)

‘DO 80 KsTP{,LPL
ASATtJ.K}'ASATtJ.K!-TEMP-ASAY[! K)
"CONTINUE

INDEX ‘& 3

RETURN

‘END

PAGE
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PRIN
ADD

511

73
74

51

CHEC
IF Y

314

647
847
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SUBROUYTINE .UNDEFL

COMMON A, S, SDAT, EAOL, PL, L, Ni, M, N, MM, 1, J, K, NPASS, KK,
iJJs IMp 171, 172, ’AECI LP1_' IPL, TENP, KZ, 1XZ, IPT, lA, [CYC,
21BZ, AAa., BB, €CC, DN, EE&, B, SB, D, SC, C, GG, SAX, SS, RAX, AX,
3RR, RMs NPH, CAX, FOPY, CPM, INDEXs II

EQUIVALENGE [AL1), ASAT[i]) AMI11), (A[166), AN[11), (S[299), DM(1
11), (St309), ATX([(1}: (Sed), SAT(1), UXply, PYL1)), ([S(15), PMI1))
2, [SISRL1,PTIL]Y, tsr491. JORD(11), [S{573, PP(11], (S171), P[1)],
3813238y, Cxx{13), (PLIL], CMI1)), [SDAT[1), CX[11l, SATiti), AsSaTi{(

411}

DIMENSION A(15,21), S(21s24), SDAT(71, -EAOL(7], PLI19]), PML14],
1PY[14), CX[158), CMIL14), SAT(21,15)s ASATI15,16), PPI14)s UX(15.8),
25ATX[247, AM{15,11), AN{15,11), IORD(8], P18,40), PTL4U), DM{14],
JATX[14), CXX[15), SAT1(15]}, ASAT1[45) ‘

T OUT THE \UNIT DEFLECTIONS
A COLUMN TO THE :UNIT DEFLECTION MATRIX

PRINT ‘811

FORMAT [ 17HiUNIT BEFLECTIONS!

KZ:a [W-= 4 )

IF {1H = 1) 92, 74, 73

READ TAPE 172, ABC ,

READ TAPE IT2,0(UXITsd)s 1 8 10 L1sd ® 14 K2Z)
DO 51 Is1,l

UXIL,IM] s ASATII,LP1)

PRINT ‘21, 1, ASAT(1,LP1)

WRITE TAPE IT1,[IUX[I,d)s [ = &5 L1sJ = 1, IH]
REWIND 171

READ TAPE IT1,((SATII/J), | = 1, NloJd 3 &, L]
READ TAPE 171, ABC

K T0 SEE IF THE :DEFLECTIONS ExCEED AN ARBITRARY MAXIMUM LiMIT
HEY DO, SAY :SO AND :60 'ON TC GOMPUTE THE WINGE ROTATIONS

D0 311 l=ijL o

TEMP & ABSPLASATII,LP11] ‘= 4 Es02

IF CTEMP) 311,647,647

CONTINUE /
60 Y0 303

PRINT 847

FORMAT (21WODEFLECTION TOO LARGE)

INDEX ' 2

RETURN

COMPUTE AND PRINT UNIT MOMENTS AND AXiAL LOADS
ALSC ADD COLUMNS TO 'THE UNIT MOMENT AND .UNIT AX1AL LOAD MATRICES

IF YHE VALUE OF THE MOMENT COEF 1S BELOW A GIVEN VALUEs SET 1T Tp

303

120

ZERGC,

‘D0 120 IslgN

SATXI1) = 0,

DO 120 K=si,L
-SAYX[!!SSAYX(I)*SAY!I:K)*ASAT[K.LPl)
‘PRINT 822

1
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522
78
‘76
21

58
‘54

58
94

10
93

92

PAGE

FORMAT [L13HIUNIT MOMENTS)

IF [IH = 41 .92, 76, 75

READ TAPE 72, LTAMETSJY, 1on. 1, M)sy 9 1,KZ]
READ TAPE 1T2.UIANTT,JY, 18 &, 'M)sd = 1,K2}
0O -94 V= g, M

PRINT 21, 1, :SATXI1)

FORMATIAHORON, 13,8%, 7E16,7/18X,7E16,7))

IF 1 SATXIi)) ‘86, 94, 56

IF LABSF{SATX{1)) « ,001) i54, 54, 94
SATX({1) :z 8,

‘PRINT i85, | .
FORMAT [24x, 14WUNIT MOMENT AT, 13, X, 11MSET 70 ZERQ)

AMIT,IM) 8 iSATXED)

PRINT 6 _ S .. -

FORMAT [17HBUNTT AxTAL' .LOADS)

'D0 93 '} 4 MM, N

Kagl »iM

Jim-2 eK

PRINT .40, K, SATX{f) _
ronnAT!7uonsnaEn. 13, 9%, :B16,7)

ANEJ, IW] (8 SATX]T)

ANEJ=1,IH] -8 SATXET) _
WRITE ‘$APE T4, (1AMITIsd], 12 4, M),y & 1, te)

‘WRITE "FAPE IT4, [TANII U], 1 3 4, M), J % 1, 14)

‘REWIND :2
I11:=s L
INDEX '8 1

‘RETURN

INDEX '® '3

‘REYURN
‘END
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SUBROUTINE DELTAP

PLACE THE FOLLOWING GUANTITIES IN COMMON STORAGE SN TWEY WILL BE
AVAILABLE TO ALL SUBROUTINES,

COMMON A, S, SDAT, EAOLs PL, La» NMs» M, N, MM, 1, J, K, NPASS, KK,
1JJ, IWs 171, 172, ABC, LP1, IPL, TEMP, KZ, [XZ. IPT, 1A, ICYC,
2187, AAs BB, CC, DB, EE, B, SB, D, Sc, C, Gg, SAX, SS, RAX, AX,
3RR, RM, NFHW, CAX, POPY, CPM, INDEX, Il .

THE FOLLOWING EGUIVALENCE STATEMENTS RESULY FROM THE USE OF
TAPES, NO TWO VARIABLES OR ARRAYS WHICH ARE :EQUIVALENCED T0O ONE
ANOTKER ARE EVER NEEDED AT THE :SAME TIME.

EQUIVALENCE [A[1), ASAT{1), AMI1)1), tal166), ANt11Y» (S(292), DM{L
130, (SU309), ATX[1)), (S[1), SATC(L], UX(1), PY[1]], (SL15), PMI1]]
2, (S[39114PTIL)), (St49), 10RD(1)])s ISI57), PPI11], (S(71)s P(1]],

31513231, CXX1aly, tPLI1), CMI1)1, (SDAT(11, £Xf11, SAT1(1), ASAT1!(

41))

-D‘"ENSION THE FGLLOWING ARRAYS,

DIMENSEON at15,21), S{21,21)s SDAT{7), EAOL(7)s PLI15], PMi14),
1PY{14), CX(15), CM({14]), SAT(21,15)s ASAT(15,16), PP[14], UX[15,8],
2SATX[24), AM{15,11), AN[15,11), LORD[8), P18,40), PT(4U}, DM(14},
IATX(14Y, ‘Cxx{151, :SAT1115), ASATi(LS)

IF CONTROL IS COMING FROM THE SUBROUTINE WHICH PIEKS THE LOWEST
VALUE OF L0AD TC FORM THE NEXT (WINGE, GO :DIRECTLY TO STATEMENT

31 AND REPRODUCE 'THE PREVIOUS RESULTS. IF CONYRO| 1S COMING FROM
UNDEF [IF UNIT DEFLECTIONS AND FORCES HAVE JUST BEEN COMPUTED,]
AND THEREFORE IF 'THE NEXT PLASTIC WINGE HAS NOT YET BEEN LOCATED.
READ IN THE ARRAYS REGUIRED,

60 to ! 110, 313,11

THE FOLLOWING 6 STATEMENTS RETURN CONTROL TGO THE MAIN PROGRAM
TO DETERMINE WHAY MEANING THE THWREF VALUES OF INDEX WILL CONVEY
70O THE MAIN PROGRAM, REFER TO THAT PROGRAM,

107 INDEX = 1
RETURN

109 INDEX '8 2
RETURN

111 INDEX = 4
RETURN

FROM TAPE, READ TWE DATA REQUIRED FOR THE COMING SERIES OF
COMPUTATJIONS,

140 READ TAPE 2, ABC .
READ TAPE 2,1 PML1Y, |
READ TAPE 2,( PY(]),

IXz2 ®= ¢

-—
an
Foye
- e
b & 4
—=
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IF IW IS :ONE, THE ARRAYS 1ORD AND P HAVE NOT BEEN USED YET AND

MENCE CANNOT BE READ IN,
IF tIW » 11107, 77, 78
78 ‘READ TAPE 172,({ORDII) » I = &, KZ)
‘READ TAPE 112, [PLIPT, 1), iPT = 1, KZ)
BEGIN LOOP YO :DETERMINE TWE ‘NEXT iNGREMENT OF LOAD

77 D028 A ‘s i, M

IF THE MOMENT :COEFICIENT 1S 'ZERO® AT A .GIVEN -POINF, SET THE VALUE

OF P AT .A HIGH VALUE AND BEGIN THE LOOP AGAIN,

1ZERD MOMENT COEFFICIENT INDICATES THAT EITHER A PLASTIC HINGE WAS

ALREADY 'FORMED AT 'THE POINT OR :EL'SE .BY COINC!DENCE. THE COEFF,

1S ZERC AND THEREFORE A 'PLASTIC :MWINGE :SIMPLY 'WILL NOT FORM AT THIS

POINY DURING THIS INCREMENT OF LOAD,
(] tAM!lA.!Hl) 31, 32, 31
32 ‘PPI1A} "= 16000,
60 'TO ea
INITIALIZE TME :CYELE NUMBER,
34 1CYC = 0
INCREMENY "THE "CYCLE NUMBER,
24 ICYC -® ICYEC » 4
SET THE TOTAL LOAD FOR THWE-CYCLE f0 ZERO AT ‘THE STiRT,
:”Yloo
IF TRIS IS THE’FfﬁST‘EYCtE.‘USE'THE LAST 'TRY FOR 'THE PREVIOUS
WINGE .AS .A FIRST GUESS
THE VARIABLE KZ IS ONE LESS THAN IH,
OTHERWISE, START AT THE BEGINNING [AT THE BOTTOM iOF THE LOAD
DEFLECT1ON :CURVE)
IF {I1CYC-e» 11407, 83, 84
83 1PY & K2Z

60 ‘7O 22
84 1PY = 0

IF 40 CYCLES ‘WAVE BEEN 'COMPLETED WITHOUT CONVERGENCE, SAY SO AND

REDC THAT PARTICULAR LOOP, ‘PRINTING .AS EACH VALUE 1S FOUND,
CALL EXIY WHEN TH1S WAS ‘BEEN ‘DONE,

IF 11CYC -+ 401 :22, 22 4
4 PRINT 8, Ia _ _
8 FORMAT [4K{PT., 13, 1X, 17WWILL NOT CONVERGE //)
IF tIX2) 5, 187, 42
42 1x7 ® +1
6o ‘fo 31

=71
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INCREMENT THE PCINT NUMBER,
22 IPT = IPT « &

REFERING TO STATEMENT LARELED 12 BELOW, 1T CAN BE SEEN THAT THE

QUANYITIES AA, BB, CC, DD, EE. AND GG ARE THE MAJOR VARIABLES

INVOLVED IN THE DETERMINATION OF THE LOAD INCREMENT P[IPT,ICYCI.

[H;HE VARIABLES 0 AND Q ARE USED ONLY TO INDICATE SIGN,)

WHERE»

AA = THE {NCHEASPD ‘CAPACTTY OF THE ‘POINT }N QUESTIAN, [THE X-AX]S

INTERSECTYION FOR THE :STRAIGHT _INE APPROXIMATION Tn THE INTER-

ACTION FORMULA:])

BB & THE AXIAL .LOAD AT THE POINT IN ‘QUESTION WHICH ‘RESULTS FROM

PREVIOUS INCREMENTS OF L:0AD ON THE .STRUCTURE.

CC = THE AXIAL LOAD AY ‘THE POINT TN OUESTION WHICH RESULTS FRQM

INCREMENTS OF LLCAD -BEING APPLLED To THE STRUCTURE AFTER A PLASTIC

HINGE HAS FORMED AT THE POINT,

DD = THE MOMENT INDUCED AT TWE ‘POINT IN QUESTION -BUE TO PREVIQUS

INCREMENYS OF LCAD BEING APPLIED YO THE STRUCTURE,

SE =0TEE UNIY MOMENT FOR THE ‘POINT IN :QUESTION FOR TH{S INCREMENT
LOAD,

GG = A FUNCTION OF THE UNIT AXIAL LOAD FOR THIS INCREMENT AT THE

POINT IN :QUESTION,

THE FOLLOWING TESTS DETERMINE WHERE ON THE LOAD-DEFLECTION CURVE
THE ‘PRESENT COMPUTATIONS LIE AND CONSEQUENTLY WHETHER OR NOT EACH
OF THE VARIABLES ABOVE MWAS SOME VALUE QTMER THAN 'ZERO,

ALSO, THE TESTS 'SERVE TO DETERMINE WHETHER THE POINT IN QUESTION
1S A KNOWN PLASTIC HINGE OR WHETWER THE PROGRAM 1S JUST TESTING
THE POINT TO SEE IF IT IS THE NEXT PLASTIC WINGE.

W [IPY = 11107, 116, 117
116 IF (1Mel)l07, 118, 119
118 CC = 0,
<BB:==0.‘
DD = 0.
1BZ ‘= !A
GO ‘TO 121
116 BB := 0,
‘D :2 0,
‘GO ‘1O 122
117 s8 =2 0,
KK :s [PT=1 I _
IF [ IW -« 1PT) 107, 104, 102
104 182 = 1A
GO T0 103
102 1828 IDRDI!PT)
103 DO 123 J:® {, KK
B8 3 PlJsICYCI*ANI1RZ,J)
123 S8 = SB + A o
BB:s SB « 1,18 '« PVMI1IBZ) '/ PYLIBZI
DD = 00
DO 124 J s 1, KK
D:s PLJLICYE) ¢ AMPIBZ,J)

PAGE
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124 DD = DD ¢+ N
122 IF11CYE=11409, 126, 128
128 IFLIW=IPT)L07, 126, 127
126 CC:= 0,

IF LIW = IPTI107,:104, 108
104 1B7 = fA

G0 ‘YO 121
108 187 = tORCiIPT)

- 60 TO0 121

127 :SC := 0.

KK :s IPT 4 ¢

187 = YORD!!PTI

:no 128 'J "% KK,

C:m PLJIICYC 1)0ANtlBZ.Jl

128 sc @ §C -+ C
CC ' :S& % {.18 » PM[IBZ) / PY([LB2)
121 AA s 1,18 « PM[iB2)
‘EE 'm - AMtlﬁz IPT)
(GG ® 1,18 » PMIIRZY » Aeraz.waJ /7 PY{1BZ)

IF THE UNIT MOMENT AT THE POINT iNAS A DIFFERENT SIGN THAN THE.
MOMENT THAT ‘WAS BEEN INDUCED 'PREVIOUSLY AT THIS POINT, THE
VARIABLE 0 -ALTERS THE EQUATION FOR PLIPT,ICYE] 50 THAT THE
NUANTITY :DD ‘WILL ‘PROVIDE ADD!TIONAL MOMENT :CAPACITY AT THE: POINT
RATHER ‘THAN LESS .AS 1S 'TRE ‘USUAL BASE.

1P LDDIEET6, 7 7
6 Q- . ‘1|»

G0 ‘t0 41

Q8 1.

1F TRE UNIT AXI1AL LOAB -AT THE ‘POINT ‘MAS:A :DIFFERENT -SIGN: THAN THE
PREVIOUS .AXIAL .LOAD -AT -THE: 'POINT, 'THE :QUANTIYY :0 ALTERS THE:EQUAY
=10N FOR ‘PLIPT,ICYC) :SO THAT THE MOMENT CAPACITY .AT TWE POINT WILL
BE INCREASED.

11 IF fi'ﬁB‘Oiéé‘ll GG:) 9, 40:, 10

GO To 12
10 l 1.

COMPUTE "tME VALVUE OF THE INCREMENT :0F: LOAD,

12 PLIPT, ICYC) :m [AA®ABSF (BB » (CClw0 ~ ABSF(DD)#Q)/(ABSFLEE}*ABSF (GG
11)

BEGIN (CMECK TO SEE IF AXIAL .LOAD REDUCTION IS WARRENTED,
FIRSY, 'COMPUTE: THE AXTAL LOAD AT THE POINT UNDER GONSIDERATJON.
TWO CONTRIBUYIONS ARE CoNSIDERED, 'THE -AXIAL LOAD gAX DUE TQ
PREVIOUS INCREMENTS OF [OAD AND ‘RAX {DUE TO LATER !NCREMENTS OF
LOAD,

SAX :w O, _
DO 129 J s 1, IpT
882 AN[1B2,4) » PLULICYE]
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129 SAX = ‘8AX & 'SS
RAx = 8, L
: IFLIH=-11107, 36, 134
131 IFtICYE-11107, 36, 37
37 IFtIK=1PT1107, 36, 38
38 KK :a [PT ¢ ¢ .
DO 39 J = KK, !N
RR = AN[1BZ,J) « P1J,1CYCe1})
39 RAX = RAX + RR
36 AX .3 SAX ¢ ‘RAX
c
c NEXY, SEE IF P/PY 1S GREATER ‘THAN .15, IF IT IS, sKip THE NEXT
c BLOCK OF INSTRUCTIONS. {F ‘NOT. :COMPUTE THE INCREMENT OF LOAD P
c TO FORM THE NEXT HINGE NEGLECTING THE EFFECT OF aX1AL LOAD,
c

aaaoaaoaaoa

aoa QOoOoaoaaaa

IF LABSF [AX1/PY(1BZ1%,15] :44, :230, 230
41 'RM‘ﬂlﬂ. .

[F11PTel1107, 44, 43
43 KKz IPT = {

‘DO 133 J:9 1, KK

‘RZ = AMIIBZ,J) « PLJ,ICYC)
133 RM:z RM -+ R?

THIS TEST DEYERMINES WHETHER THE :SIGN «OF THE .MOMENT 'HAS .CHANGED
AND 1F IY HAS, THE INCREMENT :OF LOAD 18 COMPUTED AS If THERE HAD
BEEN AN INCREASE IN TWE AVAILABLE MOMENT :CAPACITY RATHER THAN .A Dg

«CREASE AS USUAL,

IF [RM/AMITBZ,1PT)) 48,107, 44
48 P{IPT,1CYCY = IPM[IBZ} -+ ABSF{RM]] / ABSF[AM[IBZ,PT]]
.60 TO 49 _
44 PLIPT,ICYC) -» [PM{1BZ] = ABSF{RM}]/ ABSF(AM[IBZ,IPT]].
49 IF (1x?) 231, 232, '232.

IF THE AXIAL LOAD .AT THE POINT [S LESS THAN ,15 PY -PRINT THIS ON
YHE OyTpyT IF IXx2 1§ NEGATIVE, { THE - VALUE OF IX7 DETERMINES
WHETHER -OR NoT INTERMgDIATE :RESULTS WILL ‘BE PRINTER, IF IXZ IS
POSITIVE, PRINTING WILL :RE ‘SUPPRESSED. I? 1T 1S NEGATIVE PRINTING
WILL OCCUR.)

23t PRINT 46, fpT
46 FORMAT (23HNO REDUCTION‘FOR HINGE » 12}

PRINT THE VALUE OF THE NEXT INCREMENTEOF LoaD,

132 PRINT 135:!PT; ICYC.,P!IPT:!CYCJ
135 FORMAT [2MP(,12,1H,,12:4H] & , Fi0.4, //}

1F TWE VALUE OF YHE INCREMENT OF LOAD :HAS TURNED NEGATIVE, THIS

INDICATES THAT THE AXIAL. LOAD AT THE POINT .HAS BUILT .UP TO THE
POINT WHERE ‘THE WINGE WILL NOW FORM AT A LOAD LESS THAN THE

PREVIOUS '‘PLABTIC 'WINGE FORMED AT, IN OTHER WORDS: THERE WAS BgEN
A CHANGE IN THE ORDER OF FORMATION OF THE PLAST]C HWINGES IN THE

FRAME, | THIS IS NOT TO INDICATE THAT IF THE FRAME WERE TESTED THE
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WINGES WOULD FORM IN A DIFFERENT ORDER, IT IS JUST THAT FOR THE
PURPCSES :OF YHE ANALYSIS, THE ORDER HAS CHANGED,)

232 IF [PLIPTSRCYC)Y 4, 79, 79
1 IF [IPT - §) 407, :32, 2
2 PRINT '8 o o . .
-3 FORMAT [27H1ABORT, HINGE :ORDER 'CHANGES )

TERMINATE THES ‘RUN,

% INDEX & 5
RETURN

IF TWIS 1S THE FIRST :PLASTIC HINGE YO FORM IN THE FRAME, ONE TRY
WILL PRODUCE AN EXACT VALUE FOR THE LOAD INCREMENT, THEREFORE
CHECK THE NEXT LOCATPUN ‘ON THE FRAME,

OTHERWISE, ‘GO :ON 'TO "THE 'NEXT LEG ON THE LOAD :DEFLERTION CURVE,

79 IF [IH -+ 1)
14 PPIIA) = P}
GO 'T0 ‘233
18 PPY = "PPT & PLIPT, iCYC)

IF (1W-= IPT3107, i9, 22
16 PYTLICYE) s :PPT

107, 14, 18
1PT, 1€YE)

CHECK THE QUANTITY X2 TO 'SEE 1F TWE RESULTS :0BTAINED SHOULD BR
PRINTED, THEY :‘WiLL BE PRINTED IF 1) THE IHINGE .HAS BEEN PICKED
ANU THE COMPUTkllONS .ARE..BEING :REDONE :SQ THEY MAY BE LISTED, OR

2) IF :CONVERGENCE :COULD NOT BE 0BYAINED,

IF [1x2) 34, :52, 82
34 PRINT :33, PPT
33 FORMAT | 27x._20HTOTAL FOR ‘THIS ‘€YCLE, Fio0,4, ///)
52 IF IICYC = 11107, "24, '25

}F TWE DIFFERENCE BETWEEN TWD SUEESSIVE VALUES OF THE TOTAL

LOAD REQUIRED TQ FORM .A PLASYIC :HINGE 'S .LESS: THAN .SOME .ARB[ TRARY
QUANTITY, CONSIDER CONVERGENCE 0BTAINEDH, OTHERWISE Do THWE
COMPUTATLON AGAIN, -

28 IF [ABSF(PT[ICYC w» 1}ePTIICYC]) « +001) 234, 234, 24
234 IF. (I1X2) 235: 26, 126

238 PRINT 238, :

238 FORMAY [30H0C0NVERSPON908TA1NED ‘FOR HINGE, - 13)

‘26 PRPLIA) = FT!ICVC!

233 IF rixg) 191, 28, ¢

GO BACK AND €HECK THE NEXT ‘POSSIBLE PLASTIC HINGE | 0CATION.

28 CONTINUE
INDEX 8 -3
RETURN
-END
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'SUBROUYINE LOWEST
COMMON A, S, SDAT, EAOLs» 'PLs Lo NM2 Mas No MM, 1o Jo Ko NPASSs KK»

AJd, IHy IT8, 172, ABCs LP1, IPL, TEMP, KZ, 1XZ, IPT, lA, [CYC,

218Z» AA, BRs CC+» Dn,» 'EE» :Bs SBs :Ds :SCs C» Gg» SAX. SS, RAXs AX,

SRR, RM, NPH, CAx, 'POPYQ CPuM, INDEXI II

EQUIVALENCE [Al[413s ASAT(1], AMi11), talle6), AN(1)), [S(295), DM{
1)1, [(SU308), ATX[11), (SC1), SATIL], UX[1), PYIL]), (S[15), PMI1)
2, [SI391),PT(41), (Std49), IORDI11)s [SL57), PPLL)), (S{71]), P(1)]
3I0S0323), CxXXt111, (PL{L), CMt13], [SDATI4), CX{1), SAT1({1), ASATL
411

DIMENSION A{15421), S[21,21), SDATI7), EAOL(7), PLI1D), PML14),
1PYl14), CX148), CM{14]), SAT[21,15), ASAT(15,16},» PP(14]), UX{15,8}),

1
}
'
(

2SATX[24), AM([15,14), AN[15,113, LORD(8)., ‘P(8,40), PTI40), DM(14),
3ATX(14), CXX(%5), SAT1[15]), ASAT1(15)

PICK
DETE

237
239

236

PRIN
AND

PRIN

242

THE SMALLEST VALUE OF THE LOAD P,
RMINE TWE .LOGATION ‘OF TWE INEXT PLASTIC HWINGE,

AA = 1000,

IF [ W= 1) 15 1, 2

ITEMP ‘2 NPH

DO 236 132 ¢4, M ‘

IF (AA - PPI1)) 236, ‘239, ‘239
AA 3 PP[1)

NPK s 1

CONTINUE

IF [ITEMP « NPH 13, 4, 3
PRINT B

FORMAT [ '24H1SAME 'WINGE PICKED TWICE )
INDEX '8 1

~RETURN

I1X? 2 =1
1A '8 NPH

T OUT THE LOCATION BECEIDED ON FOR THE NEXT WINGE AND GO BACK
RECALCULATE THE :QUANTITIES ASSOCIATED WITH THIS POINT
TING AS EACH RESULT 1S OBTAINED,

PRINT 242, [H, :NPH

FORMAT [18H{PLASTIC HWINGE INO.,, I3, 4X, 13HFORMED AT PT., 13.//7)
1182

INDEX ® '2

RETURN

END
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‘SUBROUTINE -QUTPUT

‘COMMON A, S, SDAT, EAOL, 'PL,_.L, NM, M, N, MM, 1, Js K, NPASS, KK,
tJJ, M, T4, IT2, ABCJ LPL, IP1, TE"P: K2, 1¥Z, 1PY, 1A, 1CvC,
218BZ, AA, BB, CC, DB, EE, :B, SB, D. SC, C, GG. SaX, 5SS, RAX, AX,
3RR, RM, NPM. CAX, ‘POPY, CPM, INDEX, Il

EQUIVALENCE (Al1), ASATI1), AMt1)), [Al166), AN[1]), (S{292), DM[1
111. {S{309), ATX(1)), 1Std), SAT[1), UX(11, PY(11), (S[15), PM([1))

(S13911,PTl1])), (S{49), 1ORDI1)Ys [SC57), PRIL]), [sl71], P(11),

\31313231, CxX[2)), tPLIL)}s CMC1)), (SDATI1], CXI1). SATL(1), ASATL|[
4111 ‘

‘DIMENSION a(18,21), St21,21), SDaTI7), :EAOL[7), PLI15), PM(414),
APY(L14), CX[15}, CM(14), SAT(21,15}s ASATI{15,16), PP[14], UX{15,8],
2SATX(21], AM[15,11), AN([15,11), [ORD(8], P(0.401. PT!4Ult DM[14),
JATX[%4Y, CXX[15), 'SAT1{15], ASAT1(15) -

AUD ANOTHER ‘ELEMENT 'TO 'THE LORD ‘MATRIX [ THIS MATRIX KEEPS TRACK
OF THE DRDER IN WHICH HINGES WAVE FORMED,]

240 1QRD(IM] :& NPM
WRITE ¥APE [T1,{10RDII}s :® 1, IH]
WRITE "YAPE ITLi, [PTIPT, ICYC), IPT -3 1, IH]

PRINT QUT A TABLE GIVING TME VALUES :OF TOTAL MOMENT, MPC,
PLASTIC :MOMENT, AXIAL LOAD, PY, AND "THE RATIO0 OF AX1AL LOAD TO
PY FOR EACH POINT -ON THE ‘FRAME,

PR!NY ‘P41
241 FORMAT [4HfPT.-3X.9HFOT.kMOM..bX 3HMPC,10X,2AMP, 7X 8HAX, LOAD,6X,

22HPY,108X, 4HP/PY.//1

DO 247 1:8 4, M

CMELY 8 0,

CAX = 8,

‘0o 243 J's 1. 1Y

CMLIY® CN!I) g AMrIﬂJl * P[J.!CYCI
243 CAX '3 CAX .¢ ANI1,J).» PlJs- 1EYE)

POPY ‘= ABSP[CAX]/PY[!) .

IF [POPY,'_.15 1 245, ‘246, 246
245 CPM = PMLI.}

GO ‘YO ‘247 ) .
246 CPM = 1.18 Mt!! v [1,m- POPYJ
247 PRINT 244, 1. CMETY, ‘CPM, PMi1), .CAX, PY{1), ‘POPY
244 FORMAT [ 1N0, 12, &F12,3 ) _ .

WRITE TAPE IT4,[CMITI)s [:9 i, M)

REWIND IT1

READ TAPE !Ti. ABC e L

READ TAPE TT1,0tuxtisdls 1:a {uL1sd & 4, M)

Lo 85 = {, 5
8% READ TAPE IT1, ABC

PRINT CUT THE TCTAL DEFLECTIONS UP ‘70 'THIS POINT FoR EACH DEGREE
OF FREEDOM IN THE FRAME,

PRINT 248 = o
248 FORMATI3SNOTOTAL DEFLECTIONS AY THWIS 'STAGE.,
PRINTY 249
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249 FORHAT { 4HOPT., 4X, LOWDEFLECTIONS//)
251 1% 1, L
cxtx; 04
Do 250 J 8 4, IH
250 CX{1) & cxle ¢ PLJ,ICYEY o UXEI )
251 PRINT 252, 1, €XI1} -
252 FORMAT [.13, E16,7,//) o
WRITE TAPE IT4,(CXE1) § I s 4, L)
READ TAPE -2, ABC
READ TAPE 2, ABC :
READ TAPE 2, {PLIIY , I:® 1,11
READ TAPE '2,1tS11,d1, t = 4,N1yd s .1, N}
BACKSPACE 2
REWIND 3
‘REWIND -4
RETURN
END

PAGE

2
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SUBROUTINE ASM

COMMON A, s, SDAT, EAOL» 'PLs L» NM2s Mo N+ MM» fs J2 Ko NPASS, KK
1JJ, M, 174, 1T2, ABC, kplo 1Py, TEMP, KZ, IXZ., I1PT, 1A, ICYC,
2182z, AA, Bg, CC, DD, EE, :B» SB, D :SC, 'C, GG, SAX» SS, RAX:. -AX,
3RR, RM, .NPW, .CAX, 'POPY, CPM, [NDEX,» [

‘EQUIVALENCE (A[1), ASATIL), AM{11), (A(166), AN(L11], [S[295), DM(4
1)), [St308), ATX(1]1), [SC1), :SAT{L)s UXI1), PY[1)], (S[15), PMI1])])

22 ISU30114PTLe1), [SI40], 1ORDI1])s SC8Y), PPL{1), (S(71}, P(1]),
383230, :CXX(411], (PLILT, CMIL)), USDAT(1); cXUl1), -SATL[(1}, ASATL(

41))

'DIMENSION A(15,21), S{21,24), SDAT(7), :EAOL(7], PLIL5), PMLL4),
1PY[14], (CX115), CM[14), SAT[21,15), ASAT(15,16), PP{14], UX(15,8),
2SATX(21), AM{15,11), AN(35,11), IQRD(B], P(8.,40), PT(40]), UM(24),
IATX (140 CXX{45), SATL(15), ASAT1{15]

ALTER THE STIFFNESS MATRIX ‘70 .,ACCOUNT FOR THE FORMATION OF THE

LASY

210

2114

212

PLASTIC HINGE,

IFLINPH/2 o 2]+ NPR] 241, 210, 210
SINPH=1sNPH=1120,75«SINPHe1 ,NPH=1]
SINPHINPH) 'a 0.,
'SINPH=LsNPH) ¥ 0,
'SINPHsNPHeL) :8.:0,
60 'vo-e12
SINPH*LsNPHe1] -8 B0.,754S(NPKe1,NPHeL]
SINPH/NPH) '3 0,
SINPHINPH1) o 0.
"SINPH*L,NPH) s 0,

WRITE TAPE thtS(XoJ)l [:% 4, N)sJd 214 N)
REWIND 2 L )

‘READ TAPE 2,UtALI,J), 1 B .1, LY,y % 1, Ny
"RETURN

‘END

1
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‘SUBROUTINE ‘PHR

‘ComMmMON A, S, SDAT, :EAOLs 'PL» Lo NMs M+ N» MM, I, Js Ky NPASS, KK
LJJdr IH, [T, ]T2, ABC, LP1, 1P1, TEMP, KZ, IXZ, IPT, IA, lCYC,
‘218z, AA, :88, CC, DD, EE, B, ‘SB, D: :SCy Cs GG, SAX:. S8, RAX,» AX,
JRR, RM, NEHW, ‘CAX, POPYo CPM, lNDEXo 1

EQUIVALENCE [Alf1s ASATIL), AM{1)), tAL166), AN{1]), [S(295], DM(
111, (S1309), ATX(4)), (SL1), ‘SAT(1), UXI1), PY!1)], [S[(15), PMI[1)
2 (S[3811.PTIL)), (SL49), JORDI1)])s (S[57), PPIL)]), (SL71)s P[1]))
3(S1323), CXXI41), (PLLLT, (CMLL)), [SDATIL), CXI1)s SAT1(1])., ASATL
41])

DIMENSION A[15,21), 'S[21,241, SDAT(7), :EAOL{7), PLILS), PML14),
APYU14], CX118), CMLL14), SAT(21,18), ASAT(18,161, PP(14), UX115,8),
'@SATX[21), AM135,13),:AN(25,11), LORD(8), P[8,40), PTI4U]), UM(14],
BATX 114, Cxx{451, :SATLi15), ASATi(15)

RE=-ENTRY POINT FOR THE :COMPUTATJON :OF PLASTIC HINGE ROTATIQNS.

1
]
'
{

aan

47 ‘PRINT 408 ‘ )

408 FORMAT [36HOCOLLARSE :MECHANISM iHAS :BEEN REAGHED)
'REWIND 2
REWIND IT2 A
‘READ TAPE 2, [lAf1,J)s 1 81, (), d =4, N
READ TAPE 2, ABC
‘READ TAPE 2, ABC o
‘READ TAPE 2,1SDAT (11, I= 4, NM)
D0 86 Y= {, 6

8¢ ‘READ TAPE 172, ABC.

‘READ TAPE [T2,1CMLI), 1:8 1,M}
READ TAPE IT2,tCxXt11s I:w 1, ()

¢ CONSTRUCT THE INVERTED 'STIFFNESS MATRIX [FLEXIBILITY MATRIX,)

‘DO 163 1 5 1,
DG 163 U = 1,
163 St1,J) = 0,
‘DO 164 1 8
K:a 1/92 + €
fS!!oI) " .4, u/tS 0 e SDAT[K!i
‘Sttegstet) :n SU1,1)
T iSI1,1ed) e «0,8eS01,1)
164 Stret,Y) 8801, fe1
‘DO 134 18 1, M
'D"II] L3 Y
‘D0 134 KeijM - .
134 :DM{1) s DNIII:*‘S(!.K!"ICMtK]
DO 136 1 s 1, M
ATx(1) 8.0, :
‘DO 136 K:i;L“, . _
136 ATX(1) 3 ATX(]) ¢ A(K,P)eCXXIK}

1,M, 2

¢ PRINT OUT THE :ROTATLONS AT EACK POINT,
c

PRINT 338
138 FORMAT (16HOHINGE ROTAYIONS)
PRINT 83
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RETURN 'YO THE ‘READ IN POINT FOR KK Y0 SEE |F THERE ARE ANY MQRE

53 FORMAT [4KOPT,,aXs8HROTATION,//])
DO 139 I= {, M
e pM!l] = ATX(I)
13¢ PRINT 252, 1, M
252 FORMAT [ 13, E16.7, //)
LOAD SE?TS,
RETURN
END

PAGE
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APPENDIX C ANALYSIS OF THE EXAMPLE FRAME

INDEXING SYSTEMS FOR THIS EXAMPLE

Na4ah
" } % vl

9 10 11 12

DEFLECTION AND LOAD NUMBERING

Columns - 14 W 78  Beams - 21 W 142

2o o of
o ®

1 10
XY AN
MEMBER IDENTIFICATION

(::) - Member Numbers

B

- Member End Numbers



ANALYSIS CF FRAME 7

THE STATICS MATRIX

ROW 1 0.
. 0.
0.
- kUW 2 0-
0.
0.
hOW 3

0.
0.1333833E~00
0.

kow 4 0.
=0.1333323E-ngQ
0.10v0UbUE 01

kUW 5 D+6666667E"n1
0.
0.
FOW 6 0.
0.
0.
KOoWw 7 0.
0.
0.
Kuw 8 n.
ne
0.
Kuw Y 0.
0.
- n,
Kow 1n e.
0.
ne
huw 11 0-
0.
0.
Few 12

n.
0.,10U0ULUE 021
0

0. . 0.1333333E-00 0.13338343E-00 0. 0.

0. . . 0.100uGuoE vl 0. 0.

0. -0.13533333E-00 =-0.1333353c-09 0.6666667E-01 N.6666667E-01
0. ' 0. 0. 0.

0. 0. 0. ~0.,6666067E-(1 =g, 0666667E-01
0. 0. 0. 0« 0.

0. 0. 0. 0. 0.

0. 0. 0. 0. 0.
0.66660667E-01 U. 0. 0. 0.

0. 0. 0. =0.1000000VE 01 0.

0. 0. 0. 0. 0.

0. 0. 0 0+1000000F 01  =-n.,100L0U0E U1
n. 0. 0. 0. n.

0. 0. 0. 0. nN.100G600NF N4
0. U, 0. 0. 0.
0.6666667E-01 0.6066667E-01 0. 0 ne

0.1000000g 01  ©.1UUOUOUE 01 ¢, G- 0.

0. 0._ 0. 0. n.

0. 0, 0.100u0u0E vl g,1000U0Ug U1 o,

0. 0. 0. 0. n.

i

0- 0. 0. 0 pel0UGUVOE Ul
0. u. 0. 0. 0.

n.
fte

oo
oo

0. 0.
0.1000000E 02 0.

'
U.

e
U

N.1833338E~00
[t

“0.1333333€E-00

N

U
Ve

n.

T
- lUvuGuue 01

U
0.1VUUOUUE Ul

[UN

n-1UUVU0UE 01
U

0.
i
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IHE STIFFAESS MAIRIX

fOW

kUW

ROW

hOW

HUW

KOW

HOW

koW

FOW

]

KUW

1

10

11

13

1a

15

0.47288R0F 05
0.
0.

0.2364440E 15
0.
0.

0.
0.
0.

0.
0.1eY0061UE 06
0.

L

n.3781220¢ ne
0.

0.

0.
0.458BULUE 05

0.2364440E 05
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u.

0.18%0610k 06
0.

oo

oo

0.
0.£364440E 05

0.
0.472868UF 05

o c

co

0.18%v6:0E Vo
V.
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N
O
~l
.
N
=
LoaD SE! Mo, 3 UNTT DEFLECTICNS FLASTIC HINGE NO. 1 FGRMET AT FT. @
————ee
FOW 1 ~0.2080000F N2 kow 1 -0.5390036E-03 Pl 1, 1) = 16,0349
koW 2 -1.4160000F N1 Kow 2 -0.2523466E=nzZ
FOW 3 -0.4360U00F N1 Kow 3 ~0.2291322€6-02
KOW 4 -0.2080000E 02 Kow 4 -N.5490522E-83
KOW 5 0.1000C00F N3 kOw S 0.-9683079E-n3
RCW & e KOoW 6 0-9F83555E-n3
ow 7 0. KFow 7 0.9684507E-n2
_Fthw A n. HOw R 0.95849R3E-n3
FOow 9 0. Kow 9 -0.2731933E-n2
FOW 10 0. FOW 10 -0.2040362E-03
hOW 11 . FOW 11 0.2094626E-n3
koW 12 0. Kow 12 0.2237525E-03

UNIT MOMENTS

FOow 1 -0.1738613F 01
- Fow 2 -0.8198105F 01
FOW 3 0.8198104E n1
~OW 4 0.2127302E 02
KOw S -0.2127302E n2
KOw 6 0.1781527E nz

hOW 7 -0.1781527€E n2
KOW 8 -0.1511361F 02
KOW 9 0.1511361E 2
KOW 10 0.-9823117€ n1

UNTT AX1AL LOADS

MEMBER 1 ~0.2472948F 92
MEMBER 2 ~n,166245nF 01
MEMBER 3 -0.1662449F 01
MEMBER 4 ~n.1662447¢ 01
MEMBER & -n.25190%2€ 02

68~
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N
\O
~
.
N
'—l

FT. TOT. MO, MEC MP AX. LOAD PY F/PY

1 -27.878 244.592 402,000 ~3%96.535 A25.840 L,480

2 ~131.45¢ 244.592 402.000 ~396.535 A25.840 U.480

3 131.45¢ 1071.000 1071.000 -26.657 1503.360 6,018

4 V41,111 1071.000 1071.000 -26.657 1503.360 u,018

5 =v41.111 1071.000 1071.000 -26.657 1503.360 L,018

6 285.066¢ 10/71.000 1071.000 =26.657 1503.360 t.u18

7 -285.666 1071.000 1071.000 -26.657 1503.360 v.018

8 242 .54% 1071.000 1071.000 ~26.657 1503.360 uv.018

Y 247,345 242,345 402.000 “4us,.927 825.840 U.48Y9

ig 157.513 242.345 402.000 ~403.927 R25.840 0.489

TOTAL DEFLECTIONS AT THIS STAGE,

F1, DEFLECTION
1 -0.8642870E-02

2 *0.4046353E-01

ol

-0.3824462E~01
4 ~0,.8803999E-02
5  0.1600777E-01
6 N.1584818E-01
7 #.1552901E-01
8  #.1536942E-01
9 -0.4380628E-02

10 =0.3271700E-02

11 A.33%8713E-02

12 0.3587849E-02
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UNIT DEFLECTIONS PLASTIC HINGE NO. 2 FORMEr AT FT. 10 -
e ———
ROW 1 -0.5459480E-83 Pl 2, 11 = 3.5718
kow 2 -0.3662038FE-n2 TOTAL FOR THIS CYCLE 3.5714
HOW 3 -0.3712537E~n2
Pl 1, 21 = 14,3100
KOW a4 -0.5421078F~-n3
Pl 2, 2] = 5.3361
hOW 5 0.4017866E-02
TOTAL FOR THIS CYCLE 19.6461
ROW & 0.4014089E~n2
HOW 7 0.4006534E-n2 Pl 1, 3} = 13,4589
KOW 8 0.4002757E-02 PL 2, 3) = 6.2075
KOW 9 -0.4576735€E-n2 TNTAL FOR THIS CYCLE 19.665%
FOW 10 “0.3171101E=n2
PE 1, 4) = 13.0371
fOoW 11 0-3150363E-03
PL 2, 4) = 6.6380
kOwWw 12 0.4765678E-n2
TCTAL FCR THIS CYCLE 19.6751
. UNIT MOMENTS
i PL 1, 5} = 12.8293
Fow 1 0.8178591F 91 *
Pl 2, 51 = 6.8506
FCW 2 -0.2¢42875E n1
TOTAL FOR THIS CYCLE 19.6792
FOW 3 0.2F42824F n1
oW 4 0.2921788E n? PL 1, 8} = 12.7266
KOW & -0.2921788E 02 Pl 2, 61 = 6.9%56
KOW & 0.3053930F n2 TOTAL FOR TRIS CYCLE 19.6822
KOW 7 -0.3053930F n?2
PL 4, 7] = 12.6759
k0w 8 “0.476R372E-né
UNIT MCMENT AT =m SET TO ZERO PL 2, 71 = 7.0075
0w 9 n. . TOTAL FOR THIS CYCLE 19.683%
KOW 10 0.9464278E n1
Pl 1, A) = 12.6508
UNIT AXIAL LOADS
A ——————— Pl 2, 8] = 7.0331
MEMBER 1 -0,.25048009€ 02
TOTAL FOR THIS CYCLE 19.683a
MEMBER 2 -P.63095€66E 00
MEMBER 3 -0.6309533€ 00
CONVERSIOM CBTAINED FOR HINGE 2
MEMBER 4 -0.6309784E 00
MEMBER 5 -n.2487161F 02
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PT. 107, MOV, MEC ke AX. LOAD Py Frey =
1 35.52¢ 15%,.472 402.000 -489.014 R25,840 0.592
2 -122,900 193.472 402.000 -489.014 825.84U u.592
3 122.300 1071.000 1071.000 ~25.469 1503.360 0.017
4 “/74.613 1071.000 1674.000 ‘-25.4069 1503.360 u.o17
5 =474,613 1071.000 1071.000 -25.469 1503.360 v.u17
6 440.163 107/1.000 1071.000 ~25.469 1503.360 V.u17
7 -44n,163 1971.000 1074.000 -25.469 1503.360 U.017
8 -191,200 1074,000 1071.000 -25.469 1503.360 u.,017
9 191.20n 19n.834 402.000 “493.607 R25.840 0,598
10 191,834 150.834 402.000 -493.607 825,840 0.598

J1UTAL DEFLECTIONS AT THIS STAGE.

FT. DEFLECTION

1 =0.10A5854E~01
2 ~0.5767935E-01
3 ~0.5636276E-01
4 =0.1075865E-01
5 0.4088741E~01
é 0.4073492E-01
7 0+4042999E-(1
8  0.4027752E-01
9 -0.6674977E-02
10 ~N.481148RE~0?
11 0.4BE5552E-02

12 0,6182395E-02
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UNIT BEFLECTICNS PLASTIC HINGE NO. 3 FORMER AT PT. 1
KOW 1 ~0.5430028E-03 Pl 3, 1] = 5.6614
KOW 2  -0.3941991E-n2 TOTAL FOR THIS CYCLE 5.6614
ROW 3 -0.361502BE-02
P{ 1, 2} = 9.8896
KOW 4  =0.5450530E-03
Pl 2, 21 = 6.4334
KOW & 0.5448868E-n2
Pl 3, 21 = 7.3802
KOWw 6 0.5448868E-n2
TNTAL FOR THIS CYCLE 23.7032
Fow 7 0.544886BE-n2
koW 8 0.5448867F-02 PlL 1, 33 = 9.3446
HOW © ~0-5150484E-n3 . Pl 2, 31 = 5.9513
ROW 10  -0.3269616E-03 Pl 3, 3) = 8.0136
KOW 11 0.33806RBE-N3 TOTAL FOR THIS CYCLE  23.3004
ROW 12 0.5049607E-n3
- PL 1, 4] = 9.2698
UNIT MOMENTS PL 2, 41 = 5.6447
ROW 1 0.1358903F 02 PL 3, 41 = 8.2951
Fow 2 0.1411018E 01 TOTAL FOR THIS CYCLE  23.2094
KOW 3 ~0.1411019F 01
Kow 4 0.3225827F n2 PL 1, 9) = 9.3271
L KOW 5  ~0.3225827F 02 PL 2, 9) = 5.2433
HOW 6 0.3155276E 0% PI 3% 93 = 8.5941
KOW 7  ~0.3155276E n2 TOTAL FOR THIS CYCLE  23.164%
KOW 8  -0.476B372E-n6
UNIT MCMENT AT A SET TO ZERO Pl 1,101 = 9.3299
koW 9 n. ) Pt 2,101 = 5.,2322
FOW 18 0. Pl 3,101 = 8.6019
UNIT AXIAL LOADS TOTAL FOR THIS CYCLE  23.164n
PR L LLL SN
FEMBER 1 =-0,2491297E 02
MEMRER 2 n.38146976-05 CONVERS 10N OBTAINED FGR HINGE 3
MEMBER 3 0.5245209€-05
MEMBER 4 -0.4673004F-04 . J—
MEMBER 5 -0.25007038 02 ,
L]
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ﬂ; TOT. MOM, MEC M AX. LOAD Py ﬂ -
1 143,467 143,462 402.000 -576.079 a2%,R40 U.698
2 -78,178 143.462 402,090 -576.079 825.840 u.698
3 78.178 1071.000 1074.000 -18.812 1503,360 u.U138
4 02b.831 1071.000 1071.060 - -18.812 1503.360 [T
5 ~628.831 1071.000 10714.000 -18.812 1503.360 U,013
6 597.415 1071._(100 1071.000 -18.812 1503.360 .013
7 -597.415 1071.000 1071.000 -18.812 1503.360 0.013
] -141.008 10/1.000 1071.000 -18.812 1503.360 [TER)
9 141.008 141.056 402.000 ~580.267 82%.840 v.703
10. 141,168 141.056 402.000 -580.267 825.840 u. /048

TOTAL DEFLECT{ONS AT THIS STAGE.

PT, DEFLECTION

1 -0.1255620E-01
2 -0.7661273E-01
3 -0.7541214E-01
4 -0.1264750E-01
5  0.7720692E-03
6 0.7709430E-01
7 N.7686907E-01
8  0.7675645E-01
9 -0.9373891E-02
10 -0,6461324E-07
11 0,65106256-02

iz 0,8924699g-~02
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UNIT REFLECTICNS FLASTIC HINGE NO. 4 FORMET AT FT. 2 =
ROW 1 -0.5331299€~n3 Pi 4, 1} = 7.6297 ‘
ROW 2 -0.4R80432E-07 TOTAL FCR THIS CYCLE 7.6207
KOWw 3 -0.4593806E-n2
Pl 1, 21 = 5.5598
ROW 4 ~0.5549259€-93
Pl 2, 2} = 4,3R57
KOW 5 0.1€95467E-n1
PL 3, 21 = 7.1289
KOW 6 0.1695467E-01
Pl 4, 2] = 9.5486
ROW 7 D.16954€7E-n1 :
TNTaL FCR THIS CYCLE 26.6230
ROW A 0.1695467E-91
HOW 9 ~0.7073771E-n3 Pl 1, 3) = 5.7353
ROW 10 -0.4035064E~n3 Pi 2, 31 = 3.9156
ROW 11 0.4152766E-03 PL 3, 3} = 6.4644
ROW 12 0.6001377€-03 PL 4, X) = 10,0619

TOTAL FOR THIS CYCLE 26,1772
UNIT MOMENTS

ROW 1 0. Pt 1, 8] = 6.2519
KOW 2 0.1500005E n? Pl 2, 8) = 3.5142
oW 3 -0.1500005€ n2 P( 3, 8) = 6.2000
Fow 4 0.4245004E 02 P{ 4, B] = 10,2605
ROW 5  -0.4245004E 02 TOTAL FOR THIS CYCLE 26,226+
) 0.3495001E n2
Pl 1, 9) = 6.2552
ROW 7  =0.3495001E n2
Pl 2, 9) = 3.5072
KOW B8  ~0.7152557E-n6 '
UNIT MCMENT AT R SET TO ZERO PL 3, 9} = 6.2039
FOW 9 0. PL 4, 91 = 10.2605
RKOW 10 0. ’ TOTAL FOR THIS GYELE  26.2267
UNIT AXTAL LOADS
MEMBER 1 -0.2446000F 02 CONVERSION CBTAINFD FCR HINGE 4
MEMBER 2 0.7629355€-04
MEMBER 3  -0,64849E5E-D4
MEMBER 4 0.1525879F-04
MEMBER 5 -n.254600nF 02

16-
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kT, TUT. MOM. MEC MF AX. LUAR ey r/RY CNIT PEFLECTICNS
FOWw 1 “0.5440279E~n2
3 10%.117 102,413 402.000 -645.066 R25.840 U, VRS
Fow 2 ~0.3P44%4BE~07
? jnz.112 132,113 402.000 -64%8.066 a25,8410 v, 785
kOW X -0.38448547F-03
3 “1067.112 1071.ac0 1071.000 -12.611 1503.360 G.age !
koW 4 ~N.5440279E-n2
4 ©r1.227 1671.000 10/71.000 ~12.611 13503.36U v,u0B
Fow % N.1765333F na
5 ~0/j.227 1071.0GU 10/1.000 -1<.612 1503.360 v.uod
kOW 4 0.-1265333F n4
6 176,901 1071.000 1u71.000 -12.612 1503,.300 L, u0s
’ kOWw 7 0+.1365323F na
; =//e.901 10/1.46U 1071.000 -12.0612 1503.300 u.ios
FOWw 8 0-12653533F n4
8 -94.53¢ 1071.000 1071.000 -12.612 1R03.360 0.208
KOW 9 -0-46507R0F~13
Y ¥4.239 4,582 402.000 -~66t.1/0 825.849 V.80l
FKOW 10 -0-3200519E-n32
16 94,636 S4.582 402.000 -661.176 R25,840 U,RQ1
FOw 11 0.3200519E-n32
1UTAL DefLECTIUNS AT THIS STAGE,
FOW 12 0.45507R0E-N2

FT, DEFLECTION

DEFLECTION TOO LARGE

1 -0.1431252%E-01
COLLAPSE MECHANISM HAS BEEN RFACHEL

¢ -~0.103159FE-00
FINGE ROTATIONS
3 -n.9940210E-01
FT. KOTATICN
4 -n,1441100E-01
1 =0.137673€E-01
5 0.2281047E-0D
2 -0.9094947E-11
6 n.22e0287€E-00
3 ~0.1818989E~11
7 nN.2278777E-Gn
. 4 0.3637979E-11
8 0.2278022E-00
5 0.
9 -0.1376740E-01
6 0,145519ZE-10
10 -0.8619118E-07
7 0.3637979E-10
11 0.8773426E-07
8 0.9640644E-10
i2 0.1226149€-01
9 ~N.2621697E-01

10 =0.1385121E-01

EXIT _CALLELC.

6"
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