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SYNOPSTS

A computer program is described which will carry out both a
first-order and ‘a second-order elastic analysis of plane rigid
frames; The program will aécept data describing a frame in terms
of its joint co-ordinates, member properties and connections
together with the lcads for which an analysis is required. A
sequence of load sets can be analyzed so that it is pbssible to
use the results to éompute'the elastic stability load for a frame.
In the second order analysis, account is taken of the changé in
flexural stiffness of a member caused by axial load'énd in
addition, the equilibrium equations are formulated for the
deformed shape of the frame. The analysis is based on the
displaéement method using matrix techniques with the secdnd order

solution obtained by an iterative prqcess.

- The frame size that can be handled by the program is a
function of the store capacity available in any computer and the
program 1imitation§:hlthis regard are discussed in'detail. The
program.is in the Fortran language and was developédrto aid in
the computation of frame strengths in a study of the economics of

using high-tensile steel in rigid structures.
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I. INTRODUCTION

Whén»high strehgth'steels are used in the design of rigid

frames, the weight and cost reductions are quite attractive when

‘the frame.strength"can-beﬂaccurately estimated by simple plastie

(1)

theory. ‘However, this theory will overestimate frame strength

whenever.axial stresses are large as in multi-story frames even
of mild steel and also.whenever the deformations under load are

sufficiently 1arge to 'invalidate the formulation of equilibrium

in terms of ‘the unloaded frame configuration. - The latter effect

becomes serious when lighter sections of high strength steel are

substituted in a=frame.design for-stiffer sections of equal

plastic’strength:inpmild‘steel. It has been Shdwn(z’B)'that the .

ueffectS'of‘strain-hardening in-mild. steel can compensate for the

defdrmationieffects.in'some‘frames, but such an influence is likely
to be" less significant'when more flexible frames'are proportioned .

ih-highvstrength.steél.'

In any- eeonomic study of the value in using high-strength:
steel.in.buildingjframesi:it 1s necessary to. have- available a- -
method for estimating:the maximum frame strength so that design’

comparisons mdy- be made. But the problem of Cohputingvthe'real‘“_

maximum - strength- of a -frame;  allowing for plasticity and defor=

matiOn.is“still quite a f@rmidable one. It hasubeen:suggeéted(%2;14~d"

that the .maximum strength of a steel frame ‘might be estimated



using one half of the harmonic mean of the plastic failure load

and the elastic stability load. Many formulae for pinned steel
columns are based upon a similar principle Computer programs

(5,6)

are available which can lessen con51derably the effort
required invdetermlnlng the plastic fallure load for a frame
but the accurate calculation of the elastic stability load is a
fofmidable problem. Analytical solutionsifor some classes of
ffamesvare available(7) and computatfonal methods using.the
Southwell Plot method have also been proposed. (8) -It is poss1ble
: to predlct the elastic stablllty load w1th close accuracy u51ng
results obtalned from a second- order elastlc analyS1s A second-
order analy51s dlffers from a first- order orAllnear analy51s
because of the nece851ty to take 1nto account the changes in
flexural stlffness of each member caused by axial loadlng and

as well the equatlons of equlllbrlum must be formulated for the
deformed shape of the frame rather than for its 1n1t1al unloaded
shape. A second-order deformatlon curve W1ll become close to
horizontal as the loads approach the elastic stability values.
This behavior is illustrated in Fig. 1 for the"case'of a
centrally-loaded beam subjected to axial compression. If the
numerical values for load and transverse deflection are known

at 4 or 5 points on such a load-deflection’ curve, therelastic
stability or Euler load can be predicted’accufately“by'plotting

the ratio of transverse load to transverse deflection against the

value of axial load. This is shown in Fig. 2. 1In effect, the



297.17

former ratio is a measure of the resistance to flexure or stiff-
ness of the member and the sfiffﬁess becomes zero at the Euler
load. The prediction oflthe critical load can be madé from the
results of second-order analysis carried dut at load intensities
well below the elastic values. The samé approach can be used to
estimate the stability loads of frames if a convenieﬁt method is
available to solve for deformations at-vafioﬁs intensities éf the
aﬁplied loads. The program descfibed‘in this'report has beegn

constructed with this in view.

-

For a given set of frame loads, the program will first perforr

a linear analysis, computing and printing both deformation and 7

" stress resultants and including in the latter the axial forces in

all members. With the axial forces known, new values for the
flexural stiffness of the components are computed, using the well

(9)

known stability functions. At the same time, the co-ordinates
of all joints are adjusted to correspond to the deformed state
computed in the first ahalysis and the equations of statics are
then autématically adjusted. The whéle cyclé.is repeated until
satisfactory convergence 1is detected. As changes in the statics
equations are incorporated in the program, it can be appreciated i
that the stability loads predicted from the results will be those
correspondihg td cases whére sway is not prevented in rigid frames.

If changes in the equilibrium formulation were not allowed for,

the higher non-sway critical loads would be computed.



II. BASIC PROGRAM REQUIREMENTS

If is-evident that a second—ordef eléstic analyéis program
must include tﬁree distinct capacities. Pirétly, it must have
incorporated in it a set of‘instrgctions that>Will cdnsfruct
the eqﬁétions of equilibrium of a frame using as.data the co-
ordinates of all the joints‘together withva list of the members
and data concerhing‘their individual propérties and the jointé
to which they are.connected; In addition the types of elastic.
deformation possible at each joint, or the degree of freeddm of
the joint must be specified. If such a routine were available,
it can be appreciated that in the iterative second-order analysis,
the equations of statics could be reconstructed in each cycle
using the joint co-ordinates altered slightly by the displacements

computed in the previous cycle,

The second requirement in the program is the ability to set
up and solve the linear displacement equations which relate the
frame loads and deformations. Prom a knowledgeuof displacements,
the stress resultants in each member cén be calculated and these
will include the axial forces in each member; Evidentiy an effi-
cient equation solving routine would be an important part of the
program. Finally, it is necessary to compute for each cycle in
the second-order procéss the stiffness coefficients of each
member accounting for the axial forces in each. In the éase of

tension members, the flexural stiffnesses will be larger than the

4
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values appropriate for zero axial load and the opposite is the

case for compression members.

The three requirements Qutlined above are quite,closely.
interconnected in the program. The coefficients ofithe
equations of eéuilibrium are stored.in what is éalled the
statics matrix and the coefficients of the member stiffpess
equations are stored in a member stiffnesé matrix; The |
deformation equatiéns for the complete frame are constructed

in each cycle using these two arrays.



IIT. DISPLACEMENT ANALYSIS

The linear elastic analysis of a frame is achieved inithe
displééemént method by estéblishing the load-deformation
equations for the complete structure using the loéd—deformation
equations fér its component members, together with the equili-
brium equations for the frame. The mefhod has been explained in
detail elséwhere(lo) and will be'oﬁtliﬁed briéfly here. The
loads applied to a ffame can be listed in a column matrix (W) and
there will be as many terms in (W) as the degree of freedom of
the structure since deformations are conveniently measured by the
movement of loads, whether real or virtual. The equations of
statics relate the applied loads to the internal stress resultants
of which there will be three for each member in a frame. There
could be a moment, a shgar and an axial tension at one section in
a member, or more conveniently, the moments at each end together
with the axial tension force. If the stress resultants (SR) for
all the frame members are assembled in a list, then the equations

of statics can be expressed,
(W) = (Br) - (SR) (1)

where (A) is called the statics matrix. For one member the stress
resultants are related to the relative deformations within the
member by the member stiffness equations which can take the form
of the usual slope-deflection equations of conventional analysis.

For all the frame members, these equations can be assembled in the
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matrix equation,

(SR) = (8) - (X

Finally, the relative deformations (x) are related to the
joint.displacements (X) by a kinematics matrix Which can be
shown(s) to be the transpose of the statics matrix. Hence the
loéd‘deformation equations for a frame can be expressed,

W) = (&) - (S) - (A . (X0 (3

and withuthe displaceﬁents (X) obtained by any suitable solution
technique; the streés resultants (SR) may be obtainedlf:om
Equation (2),
(SR) = (8) - &) - 0 (%)

In a first order analysis, the statics matrix (A) is formu-
lated for the undeformed shape of a frame and the member stiffness
matrix (S) involves .the flexural stiffness of each ﬁember in the
absence of.axial load. The second-order analysié can be obtained
using the first-order solution aé a starting point and altering
in each iterative cycle both of these matrices, accounting for the
computed deformations and axial loads. The way in which.these

alterations can be achieved will be explained in more detail.



IV. THE STATICS MATRIX

The establishment of a statics matrix for a plane frame is
a simple matter in a hand computation when the intuition and
structural sense of a designer can be used most effectively.
The computer does not possess these qualities and so must be
made to follow out a strictly determined course. The routine
developed for this burpose can be understood with reference to
the diagram in Fig. 3. The two joints P and Q in Fig. 3a are
joined by the member N. The end of the member at joint P is
numbered R and at joint Q is numbered S. The stress condition
within the member will be fully defined by the two end moments
My and MS énd the tension force TN as shown in Fig. 3b. The
equilibrium equations for each joint are the equations relating
the joint forces in frame co-ordinates to the stress resultants
MR’ MS and TN. All of the forces acting on the joints are shown
in Fig. 3c. The computer has to be supplied with information
sﬁfficient to define the frame geometry and the member properties
and the details of how this is done will be described in Section
VII. The construction of thé equations of statics can.bé under- -
stood with reference to the flow diagram in Fig. 4. Each joint
in a frame is studied in turn and the members framing into a given
joint are detected. If the joint has a degree of freedom in the x

direction of the frame co-ordinate system, the coefficients of the

statics matrix will be computed and stored in the appropriate array




297.17

location. The joint is then tested to see whether it may move
elastically in the y direction and then whether it may rotate.
For each joint, the computer must study all the frame members

so that it can deal with those meeting at the particular joint.
The indexing problem is quite formidable and the detailed steps
used to successfully construct the statics matrix for any frame
can be understood by studying that section of the Fortran pfbgram
shown in Appendix A. Only the basic structural‘and logical

principles are shown in Figs. 3 and 4.



V.. THE MEMBER STIFFNESS MATRIX

The membér stiffness'matrix is denoted by (S) in Eq. (2)
and it represents the collected action - displacement relation-
~ships that exist for each member of a framework expressed in
member co-ordinates. It will be a square matrix of order equal
to three times the count of the members in a frame since for
each member, as in Fig. 5 the slope-deflection equations may be
expressed in the 3 x 3 matrix equation,

[ -

T = EA/L . 0 0 ’ Uy

Moo o 4ETI/L 2EI/L B g (5)
My, 0 2EI/L 4ET/L -

e — e - = L. -

The coefficients in Eq. (5) are shown in the form used in
a linear-elastic analysis where no account is taken of the change
in flexural stiffness of a member caused by axial load. The
flexural stiffness of a member will be decreased in the presence
of axial compreséion and conversely will be increased by an axial

tension so that Eq. 5 may be expressed in a more genéraljform as

in Eq. 6.
r - ~ — - - -
T EA/L 0 0 : up
Mo 0 S-EI/L CS-EI/L P25 | (6)
My 0 CS-EI/L S-EI/L B
- - b

10



297.17

Tables for the stability functions S and C have been prepared
. . . (11,12) co s .
in various forms by different workers but it is simpler for
a computer to calculate these coefficients at each stage in an
iteration cycle for each member. It can be shown from the
elementary analysis of a single member as in Fig. 5, that, in the
case of a compression member,

1 - B Cot B

2
‘ _ B (B - Cot B + B Cot™B)
cand CS = T T o B / (8)

where B = _gﬁqT/PE and

T is the axial force in the member whereas -

P 1s the Euler critical load for the member

In the case of a tension member similar expressions are

applicable:

g - B (B - Coth B+ B Coth’B) -
B Coth B - 1 | - 9

_ | ,
and ©g = B (B + Coth B - B CothB) : (10)

B Coth B -1

11



VI. PROGREM OPERATION

The program operation is explained in the flow diagram shown
in Fig. 6. At the beginning, the maximum limits to the array
dimensions are épecified but the program will analyze structures
where the arrays are less than the maximum values stated. The
framé identification number is read and should it be negative,
it will be regarded as the signal to terminate the run. The frame
description is contained in the next three blocks on the flow
diagram. The count of the.joints including supports and the count
of the members are numberé which will largely control the |
constrﬁction within the store of all the arrays needed in the
solution. The arrays containing the input data have been set out
diagrammatically in Fig. 7, whereas those shown in Fig. 8 are the
matrices developed within the store which are needed to achieve a
solution. Referring again to Fig. 6, the statics and member
stiffness matrices are constrUéfed and the Euler loads of all
members are found. At this stage, the load set identifying
number is read and if this is negative, it serves aé an indicator
that no further load sets for a frame are to be studied and
control is feturned to begin the anal?sié of another frahe. It

can be seen that the last two items of data in any run will be

negative integers.

12
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With the reading in of the elements of the load set, the
computer will then develop the frame stiffness matrix as in
Eq. (3). As only one load set is examined at a time, this
stiffness matrix is not inverted but rather an efficient
equation solving routine is used (Gauss - Jordan elemination)(13)
to find the frame deformations and then the stress-resultants are
available using Eq. (4). The complete solution is printed after
- completing the first cycle so that the linear-elastic solution

is'available, To obtain the second-order solution, the program

will now execute an iteration procedure.

(1) Firstly, the coefficients in the member stiffness
matrix are modified using the values of axial load
computed in the first cycle and the stability

functions expressed in Eqs. (7) to (10).

(2) Secondly, the joint cc-ordinates. are adjusted to
allow for the displacements computed in the first

cycle.

(3) Then, the statics matrix is reconstructed on the

basid of the new set of joint co-ordinates.

(4) The whole cycle is repeated until satisfactory

" convergence 1s obtained.

Various tests are incorporated in the program to guard against end-
less cycling which might occur if the applied loads be near the

critical values. After the Second—order deformations and stress-

13



resultants are printed, the original member stiffness and

statics matrices are reconstructed and a further load set can

be examined.

14
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VII. DEMONSTRATION EXAMPLES

The use of the program in predicting the elastic-stability
loads for plane frames will be demonstrated for the two
structuges shown in Fig. 9. The portal frame shown in Pig. 9a
is -a case for which the analytical solution is available.(7)
The four story frame shown in Fig. 9b has been used previously

(14) The systems of

as a plastic analysis problem by Heyman.
joint and member identification chosen for each frame are also

shown in Fig. 9. The origin of co—ordinatés in each case has been

—

placed at the lower left-hand support. The co-ordinate, joint-
type, and connection matrices for example 1 would bg read from
cards punched in the appropriate Fortran fofmat. The complete
data input for this problem is set out in Table I. It can be
seen that the joint details are completely specified in the
sequence of cards from 3 - 8. The first two entries on each card
are the co-ordinates of a joint. The ﬁniﬁéor zeros in the remain-
ing three columns provide the chpﬁter with the details of the
degree of freedom of a joint. For instance the zest on card 3
show that joint 1 is not free to displace. in the x or y direction
while the'one in the finél colunn indicates freedom of rotation.
The sequence adopted corresponds with that outlined in the flow
diégram in Fig. 4. The total degree of freedom of the fréme is
the sum of the units for all joints. Cards 9 - 13 contain data

relevant to each member. The first two figures shown for card 12

15



show that member number 4 is connected to joints 4 and 5, with

member end numbers of 7 and 8 respectively shown by the next two
numbers. The elastic modulus for the material is 30,000 ksi, the
'second moment of area is 100 in.4, the cross—séctional area 1is

10 in.2 and the length- of the member is 100 in. (This last item
ié;hét strictly required since the joint co-ordinates could be
utiiized to compute the member length). Card 14 indicates that
load éet nunber 1 is to follow and the elements for the load set
aré contained in the next two cards. With 14 degrees of fredédom
for frame example 1, there are 14 elements in each load set and the
order has to follow strictly the order of the units (ones) in the.
joint-type matrix (cards 3 - 8). The first unit is shown for
rotation of joint number 1 in card 3 and hence the first statics
equation constructed by the computer will be that concerned with
the moment equilibrium of jbint 1. As no external moment is
applied to the frame at joint 1, the first entry on card 15 is
zero. The next unit is on card 4 referring to displacement of
joint number 2 and so the statics equation for equilibrium in the
x direction at that jdiﬁf will be the next constructed in the store.
For a load of 0.1 kips applied at joint 2 in the x-direction, this
figure is entered as the second element on card 15. The vertical
‘loads of 10 kips each acting on the beam of frame 1 are shown with
“negative signs on cards 15 and 16 since the positive y direction
is upwards. The final two negative integers shown on cards 17, 18

serve to terminate the run of the program.

16
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The computer output for frame 1 is shown in the Appendix B
and the load-deflection curves have been plotted in Fig. 10.  The
ratio of vertical to horizontal loading was maintained at 100 for
this example and the analysis was made for five load sets. The
convergence test adopted to determine the stage at which the
interaction could cease in the second order analysis was based
upon a comparison of deformations. Agreement to 0.5% between the
results for the final two cycles was considered satisfactory.
However, provision had to be made to exempt from testing any
deformations of less than 10_6 in absclute value. The combined
effect of rounding-off errors in a machine which worked to 8 places
and the fact that rotations as well as displacements were included
in the(test of deformations would have otherwise caused endless
cycling. A measure of the frame sway stiffness was obtained from
the ratio of the horizontal force to the second-order horizontal
displacement and the decrease in stiffness with increasing load can
be seen iniFig. 11. By extending the curvé to the horizontal axis,
a quite accurate figure can be obtained for the elastic-stability

load of the frame as can be seen in the figure.

The data for the 4-story frame used as example 2 was prepared
in a similar way. The convergence limits for this case had to be
much wider (5%) than in the previous example because of an
excessive build-up of round-off errors in a machine which worked
to 8 figures. For the same reason, larger‘values_of horizontal

load had to be applied To obtain convergence within the limit of

17



20 cycles which was imposed to ensure that estimates of running

‘time on the machine were not exceeded. It can be understood that
idéally, the frame stiffness should be estimated for an
infinitesimal disturbing force. Four points were obtained on the
load-deflection curve when the ratio of vertical to horizontal
load was kept-at 6 and three points were obtained for a ratio of
12 (Pig. 12) . The curves of deteriorated frame stiffness for both
cases .are shown in Fig. 13 and while a considerable extrapolation
is needed to estimate the critical load, the errors involved will
be less than those associated with alternative methods such as
those based upon estimates of the effective length of individdal

- column lengths.(ls)

It is also possible to estimate the elastic critical load of
a frame from the first order and second order solutions for only
one load set. This can be done by reversing the procedure devised
byIHorne(2) for finding the second order load-deformation curve
from the fifst—ofder curve and the elastic criticai load. This

method is based upon the equation,

Vo T TSNV (12)

where vi, v, are the first order and second order deformations

- respectively, associated with a loading parameter V and VC is the
corresponding critical load parameter. As the program will produce
values of vy and Vo for a given load set V, it is a simple matter

to compute Vc from Equation (12). These calculations have beeh set

18
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out in Tables II and III for the frame examples 1l and 2. In the
case of frame 1, there is a progressive increase in the computed
critical load as the load system incfeases in intensity. On the
other hand there is a scatter in the results for frame 2 which

can be attributed to the 5% convergence limits set for defofmations
in the solutions in this probiem. In exémple 1, the correspoﬁding
limit was 0.5%. In effect, the use of Equation (12) will produce
values for critical load which correspond to a linear extrapolation
in Pigures 11 and 13 of the lines jbining each plotted point to the
first order solution for stiffness which is plotted in each figure
on the vertical axis. Since it is evident that there cah be only
one reialistic critical load for a frame under a given pattern of
1oading, the question then arises as to which of the figures given
for critical load in Tables II and III are the most reliable. The
results in Table ITI for frame example 2 are not sufficiently
accurate for aﬁy significant conclusions to be reached>in this
regard although any of them would serve as a good estimate of the
critical load for practical purposes. Closer limits were applied
to the convergence of successive deformations in the case of frame
example 1 so that the five values for the critical load which
increase smoothly from 44 to 59Akips need some explanation. In

the first place, the right-hand side of Equation (12)‘represents
only the first term in an infinite series where all the remaining
terms have been dismissed(zj as being unimportant. Secondly, the

computer has allowed for the change in stiffness of the beam as

19



well as the columns and the analysis was carried out for finite,

- though small, values of horizontal load.

Since tﬁe axial shortening of members has been accounted for
~in the analysis, a horizontal deformation would exist at the beam
level in the absence of a horizontal disturbing force. If this
smali deformation were subtracted from.the total computed
deformation for any load set to obtain the extra movement associ-
ated with thé horizontal 1§ad, tHe curve shown in Fig. 11 would be
straightened and the scatter in the computed values for critical

load shown in Table IT would be diminished.

" However, the result is encouraging because the estimates of
~critical load made from analyses for loads well below the critical
values came:out to be low and consequently, on the safebside. The
computational advantage when low load values are studied lies in
the more rapid cdnvergence to the second-order results as can be
seen from Table II. The cycle count has not been shown for frame
example 2 because the results were obtained from two computer runs
with coarse convergence limits and no conclusion canrbe drawn from

such information.

20.
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VIII. PROGRAM LIMITATIONS

In the present form, the program does not make use of a tape
backing store so that the size of frame which can be accommodated
by any machine will be limited by the capacity of the high speed
store. The store required (C) for the arrays can be readily

estimated from Figures 7 and 8.
c D 3w (3 4 2T + 4) + L (L + 3) + 7 JCT (11)

wheré NM is the count of the members,
JCT is the count of the joints and

T is the degree of freedom of the structure.

A frame of 15 members with 10 joints and 30 degrees of freedom
would require a store of 5965 locations and when the program was
run on an IBM 7074 machine, the total store available after
compilation was 6315 locations. With a knowledge of the store
available for any machine, it is a simple matter (using:Equation

11) to check whether the program would work for a given framé;

Framés with pinned or fixed bases may be analyzed by the
program but the restriction applies that all other joints with%n
the frame be rigidﬁ A pinned internal joint could be simulated by
a figtitious short member of negligible inertia but such.a member
would have to be included in the overéll count of members. The
size of frame to be handled would be.reduced considerably by the

presence of a few internal hinges. Hence, the program in its

21
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present form is‘not ideally suited to the problem of the determi-
nation of deteriorated stability loads in a frame where hinges are
inserted sequentially. However, this problem could be handled
withoutAgréat complication in a modified form of the present
program, for the preserice of a hinge at ‘the end of a member could
be indicated by uSing a negative integer for the member and
idenfifier in the MCON matrix as in Fig. 7. The effect of one
hinge would be allowed for by adding one further degree of freedom
to the frame and an extra row would then be required in the statics

matrix without any other changes being necessary.

22



- 297.17

IX. CONCLUSION

The two examples-which have been analyzed demonstrate that
the program can deal just as readily with frames subjected to
primary bending mdments‘(Example 1) as with others where these
are negligible (Example 2). It allows also for the increase in
flexural stiffness of tension members as well as the decrease in
stiffness for compression members. The length changes due to
axial load are also accounted for in the analysis. Further, the
changes in stiffness of all the members/of a frame are conéidered
whereas it is usual in hand computations to consider only the most
heavily loaded compression members, The equations of statics are
formulated for the deformed state of a frame using the émended
joint co-ordinates so that in this regard the treatment may be

classified as following large deflection theory.(16)

However,
there are some inconsistences in this regard as the Euler load
for each member is computed always for the initial length and the

assumption is made that curvatures may be represented by the usual

second derivative of y with respect to x.

23
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XI. NOMENCLATURE

A Cross-sectional area

(n) Statics matrix

(AT) Transposed statics matrix .

™ T 2

B Axial load‘parameter. =5 (%E )

C : Computer capacity for data

E- Elastic modulus

I Second moment of area

JCT ' Count of frame joints

L Length of a member

L Degree of freedom of a frame

MAB Clockwise moment at end A of member AB
,MR Clockwise moment at end R of a member
N Count of members in a frame

NM Count of members in a frame

P, Q Identifying numbers of two frame joints
PE The Euler load for a member

R, S Identifying numbers of the ends of a member
(S) Member stiffness matrix

(SR) Stress resultant vector

S, CS Stability functions

T Axial force in a member

TN A*ial force in member N

25
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(W)

(x).

(X)

v

Axial defdrmation

First and second order deformations

Applied load vector

An applied lpad

Reiative deformations vector

Absolute deformations vector

Slope change at end B of member AB relative to

line AB

- 26

297.17



T TR T TR T

297.17

XII. APPENDICES

Appendix'A - Program Listing

The statements which follow are in form compatible with a
CDC 3200 computer'but only minor changes would‘be required for
other machine;ﬁ/ The input énd-output statements together with
those for the entry and exit may require correction. The listing
does/ngf/conform exactly with the flow chart of Fig.:6.in that it
wi}l'éause the deformations and stress resultants to be printed at
Athe end of each cycle in the second-order solution. A great
amount. of output is not entailed when a limit of 20 cycles is
specified for any problem, and the results at the end of each cycle

are some consolation if convergence has not occurred.
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aacoo La0aa

oNeReNe]

o NeoXeRe]

10

20

30

40
Y]

25
26

=7
28

60
01

LEHIGH UNIVERSITY

Appendix A

Fortran Program

FRITZ LABORATORY.,

SECOND URDER ELASTIC PLANE: FRAME ANALYSES, -

BEAM SHEAR STIFFVESS ASSUMED- INFINITE.

AUTHOR, 4.B.HARRISIN, - . JULY, 1965, - -

SPECIFICATION OF AIRAY DIMENSIONS, -

PROGRAM 3202

DIMENSTON
DIMENSTUN
DIMENSION
DIMENSION

DIMENSTON

A(24¢36), S(36536)» SAT(36,24)
ASA1(24,25), SOAT(48), DELTA(24) "
BULER(15), S, UAD(3U), SR(4%5)
CORNILU-2), MCINCLD, 40, JIYPE(10,3)
SCIR(L0,2)

INPUT FRAME NO,» EXIT [F NEGATIVE, -

READ(OU,20) JJ
FORMAT (1)
IF(JJ) 30,415,490

STOP

READ COUNT 0% JOINTS, COUNT--OF FRAME MEMBERS.

READ(00,50) JSTaNW- -
FURMAT(215)

M2

DO 55

RiEAUCOU,26) (CIRDUTNJY, J = 152) 0 (JTYPECL,J)y J o= 1,3)

= 2 # NM
M3 = 5 = N¥M

“

READ JOINI UD ORDINATES AnND TYPE OF DEFORMATION.

t

|

= 1,43 R

FORMAT(2F13.5,315)

READ MEM3ER SOVNICTiON DATA AND PROPERTIES E,l,AiL.

1,N4
-3
3

READ(HI,H8) (AS0NC(I»J), J = 1,4), (SDATIN), N = Ji,K)
FORMAT(415,4F10.5) :

DO o7 1
JbU 3 4n]
K = JiI +
L =0

Do o1 i
DU b1 J

:l.n J:T
1,3

HENH

L= Loy JTYRELTND)

FORMAT (7F10.3
CUNT INUE

NCYCL
DU 59

I

= 31,4010

28
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>9

611

ACTAS L) =00

DU 59 4 = 1,2
SCOR(;.J) = CURDCLL, W

BUILD THAZ: STATICS-MATRIX A -

NJ = 0

NK ]

DO 613 {Aa=1,i:
DO 613 [J=1.,v3"

1,421

DO 69 4 =
DU 68 M = i,NH
NA = NJ

< HECI=-MCON(M, 1)) - 63,62,63

62

63
64

65

56 -

67
- 681

JE = MCONEH,2)
MJd =-MCuN(M, 3}
ME = MCON(Y,4)
GO 10 65

IF(J-MCON{M,2)) ©8,564,68

JFe 2 MCON(M, 19

MJ
MF-

. MCON(M, 4)
MCON(M, 3)

0 ou i

X = CORD(JF,1) =~ CORD(J,1)
Y&2-CURDGIF 21 = CIRDC S, 2)

DIST = SYRTF(X#X + Y=aY)

SYN-=-Y/DIST

CSN = X/DIS]
NN--&—2#NM+4:

TF(JTYPE(J,1)) &/,067,586

NA--=—NA-+- 1

AINA,MJ) = SYN/DIST
AUNAS,MF)-2 SYNAULST
ACNALSNN) = —~CSN

IFCJTYPE(J,2)) 691,691,581

NA = NA + 1

CA(NA,iHJ) = -0SN/DIST
CACNASHFY s ~03N/DEST
ACNA,WN) = =-5Y\N

691
692

682
hB3
08
69

695

/0

IFCITYPE(J,3))  562,6625 692

NA = BA + 1
AINA,MJ) = 1,0

IF(NA -~ NK) 53,508,683

NK = NA
CONT INUE
NJ = NK
CONTINDR

IF(NCYCL) 240,095,280

CONJINUE

PRINT TiTLES AVD THE STATICS MATRIX (A).

WRITE(61,70) JJ

FORMAT (47H1 142 ELASTIC SZCOND ORDER ANALYSIS OF FRAME NO., 13///)

< WRITE(61,8u) .
FORMAT( 2140743 STATISS MATRIX//)

80

90
- 100

DU 90 1 = 1"_.

WRITEC6L,10U) 1, CACLL,J)s J = 1,M3)

FORMAT (4HOR04, 181X,

7215.7/4(8X, 7E16.7))

29
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loNe Ne i

loNe]

PReREe X

vian

140

120

160
1/0

150

140

200

29N
S$ud

Bulub TH3 MedBzr OTIFFNESS MAIRIX, CALC. THE EULER LOAD.

DU 133 L o= 1.Mo

pO 184 J o= 5,43

Sulsd) = .y

DU 15u [ = 1,42

TVEST = 172 # 2 = 1

TFCITEST)Y 149,120,150

K = 2#] - 1

S{I,]) = 4.0U83IdAT(K) = SDAT(K+1)/ (SDAT(K+3))
SCI+1,1+1) = sti,1)

Soi+l, ) =3.].Z7*5(151)

SCT,1+1) = SCi+ls1)

CONTINUE

buU 1oy 1] = 1.,N#

J= 4 &1 -3

K = M2 + | .
S(K,K) = S0AT(J) # SDAT(J+2)/ SUAT(JI+3)

CUNTINUE

WARTITE(HL,1L/70)

FORMAT(S2HL THZ M3IM3ER  STIFFNESS MATRIX//)

DO 13u I = 1,48

WRITE(61,100) I, (3(1, 40 J = 14M8) !

PL = 3.14139255

PO 190 | = 1,4

J = 4#] -~ §

EULER({) = Dlﬂ’l*SUAi(J)*SUAT(J*l)/(SUAT(J*&)GSDAT(J+3))
WRITE(HL,20:4)

FORMAT(S3/7HD TH2 E©JLER _UAD FUR EAUH  MEMBER//Z)
WRITE(6L,210) (EJLZR{EY, 1 5 1lsaM)

FQRMAT(UX, /218,778, 7810.7))

READ (4% LIAD SeT NO.» TEST Ir NFGATIVE
FOLLDW w]li+ THZE _0Al SET.

ReeAD(n0,20) 44

IF (KK) LyU,200,25.

REAU(OU,60) (> .080(i? o 1 = 1,L2
Uy 472 1=1,u

neELiACL)Y = 94w

NLYOL .= U

Cud i I NJE

SE) g2 avD oJiLVs THe DEFORMATION EdUA L TUNS,

) dvy i = 1,43
Pl adl J = 1.
SAT(L,J) = Y.w

i 29 K = 1.9
SATUL.d) = Sa1Chedy -+ 301,K4) # Alyg,K)
CUN e

SR Y-AY I = 14

Wi 02y J ¥ 1,

asAl({,0) = 9.3

U a1la K= LS ]
ASAT(1,0) = A=atli,d) & All,n) @ Sai(K,d)

AN e

30

124
125
126
12/
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164

165

166
167
168
169
170
171
172
173
174
17%
176
177
178
179

180

181
182
183
184
185
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3350

sS40
320

360

3/0

o NeNeoNe]

COoOan

caco

380
370

420

440
450
460

405

4/0
4580

485%

490

5ug

200

Kd = L+1
DO s34 1 = 1.,
ASATCILKYY = 5.08U(1)

B0 460 |

E
Il = 1 +

TEMP = ABSF(ASAT(L,[))

K = 1

‘DO 85y J = I;‘.,"

IF CABSFCASAT(J, 1)) = 12M3) 350,390,340

K=y
TEMP = AHSF(ASAI(J,]))
CONTINUE

IF(K=1) 360,353,350

DO s7u U = [.<J

TeMP = ASAT(1,J)
ASAT(1,J) = ASAT(K,d)
ASAI(K,J) = Tcup
IFCASAT(F,12) 420,390,420
GG TOo 670 ‘

TEMP = L.0/ASAT(]»1)

DO 430 4 = 1.4Y
ASATCL,J) = A3af(1,J) & TEMP
DU 46U J = 1.._. ’

IFCI=Jd) 440,450,440

TEMP = ASAT(J, 1)

DO 450 K = )21, Ky '
ASAT(J,K) = ASAT(J,K) -« TEMP # ASAT(I,K)
CONTINUE .

TEST 73X EXUESSIVE DEFORMATIONS.

XLMT = 10039,

Dy 462 1 = 1, . :
IFCABSF(ASATCL,KJ)) = XLMI) 469,465,710
CONTInUE

CALCULAIZ TH: STIESS RESULTANIS.

D0 48U 1 = 1,15

SROL) = vu.0

DO 47y J o= 1.,

SREI) = SRC1) + Savt(l,J) = ASAT(J,KJ)
CONTIaur

NITS = 2y

NECYCL = NCYOL ¢ 1

[r (NCYCL -~ N[i3) 432,030,090

QUiIPJI 1RSI URUZIR UDEFORMATIONS AN STRESS RESULTANTS.

[FANCYCL - 1) 490,490,5901

WRITE(6L,5Di5) KX )

FORMAT(45K1 75T ORU=R- ANALYSIS FUR LOAD SET NO., 13777)
WRITELOL,250) %< .

FORMAT(Z1HO TH42 LIAD  S=T NO.s 14)

WRITE(OL,2/70) (S_UADCLYs | = 1,10

FURMAT(BX, 7815.7/(8X,7E16.7))

31

186
187
188
189

© 190

191
192
193
194
195

196

197
198
199
200
201
202
203
204

- 205

206
207
208
209
210
211

212
- 213

214
215
216
217
218
219
220
221
222
223
224.
225
226
227
228
229

230
231

232
233
234
235

- 236

237
238
239
240
241

242

243
244
245

246

247



5501
5502
520

5350

oo

555

560

cooa

570

]

580

590

600

6us

6ub

aaoaa

WRITE(61,5502) - NCYCL. ' ' 248
FORMAT(29H0 RESULT5 AT END OF CYCLE NOL, 182/7) 249
WRITE(61,520) : 250
FORMAT (22HO  FRAME DE-ORMATIONS///) 251
WRITE(61,270) (ASAT(I,<J)s | = 1400 : - 252
WRITE(61,530) 253
FORMAT(28HU MOMENTS AT MEMBER -ENDS///) : , 254
WRITE(61,270) (SR([).I = 1,M2) : © 255
HWRITE(61,540) . . . . : .. 256
FORMAT (3S1HO AXIAL T&VSIONS IN MEMBERS///) ’ 257
J = M2 + 1 : - -258
WRITE(61,270) (SR([), I = J M&) ' 259
. . . e . - 260 -
‘ 261
COMPARISON DS [TSRATED DEFORMATIONS, - - . 262
: 263
DO _560 1 % e e e e ol L . PP . 264 -
TEST = ABSF(D:,TA(I)/IOO ) : 265
[F(ABSF(ASAT(LaKJ)) = 0.0001) 560,555,555 : : - 266
CONTINUE 267
IF (ABSF(DELTACI)=ASAT(1,4J)) = TESY) 560,560,570 : .. 268
CONT INUE 269
GO 10 610 - - - - S , e : ' 270
271
MODIFY THE MEZM3ER STIFFNESS MATRIX BECAUSE OF AXIAL LOADS. 273
DU 605 1 = 1,NM : 275
M2l = M2+1 . : ' 276
RLOAD = SR(vM2I)/EYLE R(l) S 277
[F(RLOAD) 390,580,%80 : - . : Co. 278
B2 = Pl # SQRTFLRLIAD) : 279
EZP = EXPF(82) X : : - - 280
COTH = (EZP + 1.0)/(32> - 1, u> T 281
B = B2/2.0 S : : - 282
DEN = B # COFA - 1,0 283
SK = Be(B-COTH + BeCOTH#SOTHI/DEN : e 1L
CS = B#(B + CITH - B~C3T4#LO1H)/DEN 285
© GO TO 600 : , f : ‘ ‘ 286
: 287
RLOAD = -1.0 = RLOAD ' . 2 S e e 288
B = (P1/2.0) & SQRTF(RLOAD 289
€COT = COSF(3)/35INF(B) - : —_—_ . 290
DEN = 1.0 =~ 3%307 291,
SK = B#{(B * COT = 3I#COT*Z0T)/DEN : - 292+
CS = B#(B - COT + 3#COT#C0T)/DEN : 295 -
: . 294
EIL = SDAT(4n[=3) #» SUAT(4w]=2)/SDAl(4%1) : 295
S(2#1,2#1) = 53¢ # iL: . : Lo 296
S(2#1-1,2#1-1) = Sqe®El_ : 297
S(2#],24[~1) = CS » El. R - 298
S 2#]-1,2#1) = S{28]e2%[-1) : : 299
CONTINUE - 300
DU 606 | = i,- 301
DELTACI) = ASAT(I,»gJ) : S 802
: _ e 303
_ . : 304 -
HANGE Jd4E JIINT CD- ORDINATES. ’ A 805
CHANGE 1Ak J)I | R _ 06
LeT = 0 . , _ 307
DO 6099 J = 1,4CT . - . 308~
DO 60Y8 | = 1,3 ' 309

297.17
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Qoo

(ol e Ne el

610
620

6350

640

645

650

660

[sNoNeNe!

oO0O0aa

661

6/0
680

650
700

1800

710
720

TP CJTYPECU, 1)) 6098,6093,6097

LCT = LCT + 1. _
IFCL = 3)  6055,6098,6095 o
CORD(J,[) = SCIR(J,1) + DELTACLCT)
CUNTINUE :
CONTINUE
G0-T0 611
1F_CONVERGENZE, 3RINT. SECOND ORDER RESULTS.
WRITE(61,620) KK '

FORMAT(46H0 SEJONU  OROER. ANALYSIS FOR LUDAD SET --NO,,.13//7) .

WRITE(6L,260) KK

WRITE(6L,270) (SLOADCI)Y, ] = 1,40

WRITE(61,520)

WRITE(6L,270) (ASAT(I,<J), [ = 4.0

WRITE(61,530)

WRITE(61,270) (SRU[), | = 1,M2)

WRITE(61,540)

J = M2+ 1

WRITE(61,270) (SR(1), 1 = J,M3)

WRITE(61,630) NCY=L- :
FORMAT(32H0 NJM3ER OF ITERATION CYCLES , 13//7/7)
WRITE(B1,640) JJr<K -

FORMAT(29HOANA,.YSLS COMPLETED FRAME NO.,13,13H LOAD S&T NO,,13)

RE BJILD THE MEM3ER STIFFNESS MATRIX (S).

DO 660 -1 = 1,42

I1IEST = [/2%2-1

Ir (ITEST) 650,660,600

k =z 2%] - 1

SCI»1) = 4.0#30AT(q) # SDAT(K+1) / SDAT(K+3)
SOI+1,1+1) = 5(l.1)

SCI+1,]1) = 0.2 & S(l,1)

S(I,1+1) = 3(1+1,1)

CONTINVE

REeVERT 2 INITIA_ 20 ORDINATES, REBUILD STATICS MATRIX.

b0 661 I = 1,J07

U0 661 J = 1,2
CURD([,J) = SLIRCL,J)
NCYCL = -1

GO0 T0 611

ERKOR Dz35CRI2TIONS.

WRIIE(6L,630) NCYCL

FORMAT(48H0 .- Z5RD DIVISION IN EUUATION SULUIION. CYCLE.NO.,138//)
WRITE(6L,640) JJs<K :

GO 10 645

WRITE(61,700) NIIS _
FORMAT(2ZHU V). CONVERIGENCE IN, 13, 18H ITERATIONS.//)
WRITE(61,174)

DO 1806 1 = 1,M3

WRITEC61,100) I, (3(1,0)5 J = 1,M3)

WRITE(61,640) JJs<K

CO 10 645
WRITE(61,720) KK

310
- 811
312,
313
314.
315
316
317
318.
319
320-
321
322

327
$28-
329
- 330
331
332
333
334
335
- 336
337
338
339
340
341
342

560
361
362
363
364

365

366
367

_368
369
376
371

372
373,

FORMAT (DUHD DEFORMATION LIMIT BXCEEDED BY LOAD - SET NO.:I3//?“?§:; -

WRITE(61,640) JJdr <K

N \ - § 3”7 )
CO 10 64> ' : L8297
END ‘ Eatadh

L= 33.



Appendix B
FIRST ORDER ANALYSIS FUR LOAD SET NO. 1
THE LOAD SET NO. 1
0.0000000E 0O 0.1000000E 00 0.0000000E 00
0.0000000€ 00 -0.1000000€ 02 0.0000000E 00
FRAME  DEFURMATICNS
R “C.56H3664E-02 0422579918 00 -0.9900191E-02
0.2248709E 0O -0.1449017€ 0} -0.1008310E-01
MOMENTS 4] MEMBER  ENDS
Ve 20CUQVOE~US 0.3849785E 03 -0.3849780E 03
Qe4149655E 03 -0.41490662c 03 0.3000000E-04
AxlAL TENSTChD  IN_ MEMIERS
-0.9%00191E 01 -0.1383000E UL -0.1383600€ 01
SCCO 4y CRbeF ANALYSITS FUR  LOAGC  SEI NG 1
THE LitAL  SEE Nu. 1
U.CO0CO0DE U0 0.1000000E 00 ©.0000000E 00
UL BBOVNOVE UG ~0.1000000E 02 0.0000000E 00
FRAME  LUCFORMATIONS
-0.5567435E-02 0.2921230E O¢ —0.1016T704E-01
0.2697171k 00 -0.1464517€ 01 -0.1018772€-01
MUMENTS AT MEMBER ENDS
0.1700000E-03 0.3789434E 03 -0.3789437¢ 03
0.61643151E 03 =-0.4143156E 03 0.2000000t-04
AXIAL TENSTUNS IN MEMYERS
-0.9823486€ 01 =-0.1227377E 01 -0.1372804E 01
NUMBER CF IT&RATICN  CYCLES 4
ANALYSIS COMPLETED. FRAME NOs 1 :LOAD SET NO. 1

0.0000000E 00
0.0000000€ 00

0.1358528€E-01
0.2244159c 00

-0.6050251E 03

-0.1383000& 01

0.0000C0CE 00
0.0000000E 00

0.1386222E~-01
0.2481566E 00

-0.6110624E 03

-0.1225177¢ 01

34

0.0000000E 0O
0.0000000E 00

0.2253381€ 00

" =0.1009996E-01

0.6050258E 03

-0.1009996E 02

0.0000000E 00
0.0C00000E. 00

0.2701764E 00
-0.1032126E-01

0.6110620E 03

-0.1011678E 02

Solution to Frame Example 1

-0.1000000E 02
0.0000000E 0G

-0.1460057€ 01
-0.1308416E~01

-0.5950297t 03

-0.10000008 02
0.0000000€ OO

-0.1477572E 01
-0.1327104E-01

-0.5992546E 03

0.0000000F 00
0.0000000€ 00

0.9917830E-02
0.766415TF£-02

0.5950291€ 03

0.0000000E 00
0.0000000E 00

0.9992229E-02
0.7985080L-02

0.5992536E 03
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Appendix C

FIRST ORDER ANALYSIS

FOR LOAD  SET

Solution to Frame Example: 2

NO. 5

THE LDAD SET NO. 5
0.8000000E 02
—0.4800000€E 03

0.0000000E 00

0.0000000E 0O

FRAME _DEFORMATIONS

“0.9443196E 01
-0.1110289€ 01
0.1186773E~01
0.1723719¢€ 01

-0.4800000E 03
0.0000000E 00
0.0000000€ 00

~0.4800000E 03

-0.1235885E 01
0.1248262E-01
0.4302603E 01

-0.5511608E 00

" MOMENTS'' AT MEMBER _ENDS

0.3236957E 04
. 0.5101938E 04
~0.2851429€ 04
0.3634128€ 04

0.3211677E 04
-0.3236960E 04
-0.2923794E 04
-0.2126312€ 04

~0.3185000€ 00
-0.1360532E 04

AXIAL _TENSIONS IN MEMBERS
-0.3978700E 02
-0.1007777E 04

SECOND ORDER ANALYSIS FOR

LOAD" SET

0.0000000E 00
0.0000000E 0O
-0.4800000€ 03
0.0000000E 00

0.7713683E~02
0.7018329E 01
-0.9641530E 00
0.1053157€-01

0.5382565E 04
~0.2554009E 04
~0.2786053E 04
-0.3634520E 04

0.1247000e 00
~0.1519467E 04

NO. 5

THE L0AD SET_NO. 5
0.8000000E 02
-0.4800000E 03
0.0000000E 00
0.0000000€ 00

-0.4800000E 03
0.0000000E 00
0.0000000€ 00

-0.4800000E 03

0.4322877E 04 -

FRAME  DEFORMATIONS
0.1920651E 02 -0.1839013€ O}
~0.163206%E 01 0.2019417E-01
0.2554713E-01 0.1064537E 02
0.4372563€ .01 -0.7085702E 00
MOMENTS AT MEMBER ENOS
0.4351374E 04
0.1289649E 05 ~0.43513067E 04
-0.5610487E 04 =-0.4977026E 04
-0.8310807E 04 =-0.5711592¢ 04
AXIAL TENSIUNS IN MEMBERS
-0.3929671E 02 0.1648074E 01
-0.1030335%E 04 -0.1290277E 04
NUMBER OF ITERATION CYCLES 12
ANALYSIS COMPLETED FRAME NO.

2 LUAD SET

0.0000000E 00
0.0000000E 00
-0.4800000E 03
0.0000000E 00

0.1055252€-01
0.1573737E 02
~0.1405299t 01
0.2666189E-01

0.8677881E 04
-0.3077498E 04
=0.7341795E 04
-0.8060782E 04

0.38561728 Ol
-0.1577700E 04

NG, 9

0.0000000E 0C
~0.4800000€ 03
0.0000000E 00

0.9413706E 01
-0.1238068E 01
0.1188531E-01

0.5368921E 04
-0.3211674E 04
-0.29T6961E 04

-0.2390000£-01
-0.1812186E 04

0.0000000E 00
-0.4800000E 03
0.0000000E 0O

0.1917722€ 02
-0.1863825E 01
0.2546491£-01

0.8060642F 04
-0.4322870E 04
-0.7229605E 04

0.6412107¢ 00
-0.1705608t 04

35

~0.4800000E 03
0.0000000€ 00
0.C000C00E 00

~0.1373401E 01
0.1239062E-01
0.1723736E 01

0.5702671E 04
-0.2517488E 04
~-0.2781758E 04

-0.4620871€ 03
-0.2027812E 04

-0.4800000E 03
0.0000000E 00
0.0000000E 0O

-0.2082450E 01
0.2007802E-01
0.4372163E 01

0,1229898E 05
~0.3050146E 04
-0.7308445E 04

-0.4547658E 03
-0.2130289€ 04

0.0000000E 00
0.0000000CE 00
-0.4800000E 03

0.7563234E~-02
0.4302519E 01
-0.4925535E 00

0.5705555€E 04
-0.2828556E 04
~0.2975625€ 04

-0.4979122€ 03

0.0000000E 00
0.0000000E 00
-0.4800000E 03

0.1035727€-01
0.1064285E 02
-0.5929833E 00

0.1228548E 05
-0.5600374E 04
~0.7184891E 04

-0.5030457€ 03

0.0000000E 00
-0.4800000€ 03
0.0000000E 00

0.7018565E 01
-0.8623471€ 00
0.1053464E-01

0.5102443E 04
-0.2916613E 04
-0.2125480E 04

-0.9122206E 03 .

0.0000000E 00
-0.4800000& 03
0.0000000E 00

0.1573629E 02
~-0.1212831E 01
0.2661573E-01

0.1288892E 05
-0.4951172E 0¢
~0.5659301E 04

-0.8856843E 03
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TABLE I.  DATA INPUT FOR FRAME EXAMPLE 1
Data Format Card No. Remarks
1 I5 1 Frame identification number
6 5 215 2 Count of joints, members
0+0 00 0 0 1 2P10+5, 315 3 - '
00 300°0 1 1 1 vno.ooon 4
100-0 300°0 1 1 1 " " 5. Joint details
2000 30040 1 4 1 " " 6
3000 3000 1 1 1 "o 7
30000 00 o o 1 . 8 |-
1 2 1 2 300000 1 400°0  10°0  300+0 415, 4F10°5 9. -
2 3 3 4 " " " 100°0 " " 10
3 N 5 6 " " " 1000 " " 11 . Member details
I 5 7 8 - " " " 1000 " on 12
5 6 9 10 " " [ 3000 n " 13 el
1 I5 14 Load set identification number
00 04 00 00 00 =100 00 7R0°5 15
00 -10:0 00 0°0  0-0 00 00 " 16 Load set
-1 I5. 17 Load sets complete indicator
-1 " 18 Frames complete indicator

LT L6¢C
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TABLE II.

ANALYSIS OF FRAME EXAMPLE 1

Load Unit Vertical Horizontal 1st Order Sway 2nd Order Sway Cycles for Critical Load
- Set Load - Load : Convergence

(kip) (kip) (in.) (in.) (kip)
1 10 01 0°2258 0°+2921 N INRIO'N
2 20 02 0+4516 0°7629 6 49°01
3 30 0°3 06774 1°54L70 & 5337
4 40 04 0-9032 3+0404 12 ~ 56+90
5 50 0°5 11290 7°2009 26 59°30

L1 .68



6%

TABLE III,  ANALYSIS OF FRAME EXAMPLE 2
Load Set UnitLX:;tical Hori::gtal 1st Order Sway. 2nd Order Sway Critical Load
(kip) (kip) (in.) (in.) (kip)
0 150 25 29510 34970 - 96
2 24,0 40 L7216 6°3122 952
3 360 60 7°0824 1147227 909
b 480 80 94432 192065 - Sl
5 150 12°5 14755 1°6898 1183
6 24,0 20 23608 3+0820 1026
7 360 30 35412 5+5832 - 984

LT L6



Euler Load

/ : second order curve
axial | 5(_ -
load first order curve
e |/ |
L p, 7{ W (=kP)
P A
/ > ge=— —
—P1
/

Lateral ideflection 6

FIG 1 TRANSVERSELY LOADED STRUT
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lateral
stiffness
. W/5

| | Euler load
I

P1 Po P3

axial load P T\

FIG 2 STIFFNESS - AXIAL LOAD VARIATION
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(a) TYPICAL MEMBER CONFIGURATION

JMR (c) FORCES ON JOINTS

FIG 3 MEMBER AND JOINT EQUILIBRIUM

42



297.17

next member

-~

Joint J

4

Y

O

Is member I
joined to

_“\\\\\jiint J

’Yes

Find joint at other end of member
Compute length, Sinf, Cosf etc.

will
joint J move

A

.in X direction?

Build
Y x = 0 equation

Y

will
joint J move

in Y direction?

Build
2Y = 0 equation

Has
joint J
freedom to

rotate?

Build
ZM=0 equation

/;t\\ next member .

“ next joint R
L4

FIG.4 _ COhSTRUCTINN OF STATICS MATRIX
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Mag T
T T
~— (& 5 ) —>
l MBA
V
ur—
A —_—

FIG5 MEMBER FORCES , DEFORMATIONS
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St

DIMENSION ARRAYS

READ FRAME NO.JJ

OUTPUT FIRST ORDER
RESULTS

READ COUNT OF JOINTS
COUNT OF MEMBERS

READ JOINT CO-ORDINATES

and degrees of freedom

. READ MEMBER DATA,
PROPERTIES & CONNECTION

<

BUILD STATICS MATRIX

PRINT TITLES AND
OUTPUT STATICS MATRIX

wr

BUILD THE MEMBER
STIFFNESS MATRIX
AND CALCUIATE EULER
"LOADS

Test No
lst cycle
Test Yes

20 cycles

CALC .STRESS RESULTANTS

1

SOLVE DEFORMATION
EQUATIONS. TEST FOR
LARGE DEFORMATIONS?
ZERO DIVISION?

Y

READ LOAD SET

wr

READ LOAD SET NUMBER

PIG.6 FLOW CHART FOR SECOND ORDER ELASTIC ANALYSIS

COMPARE ITERATED
DEFORMATIONS

Test
converge

Yes

Modify member stiffness
due to axial forces

T

Change joint co-ordinate
due to deformations

REBUILD STATICS MATRIX|
for deformed state

PRINT SECOND ORDER
RESULTS

1

Rebuild original member

stiffness matrix —

Change back to initial
joint co-ordinates

A

REBUILD STATICS MATRIX

OUTPUT ERROR -’—-l

DESCRIPTIONS
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o2 4 >3
) d
x-cord y-cord » (x egree (z/f freedoem )
. R
CORD (1,J) :
and - - JTYPE (1J)
SCOR(1,J)
(P xp BE e 1 1 1
Y T Y
JCT — ' - JCT

o >
SDAT(I) ~ 4NM
L H
®- >
SLOAD(I) L
4 joint joint end end
I _
I | JCT = joint count
MCON(L,J) NM = member count
(N) P Q R S - |
(as in fig 3) L = IXJTYPE (1,J)
Y | ] |
NM o >4
FIG7 DATA INPUT MATRICES
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' 3NM_ . 3NML

L
)
K
)

1 T
0 |
~ | X x| |
A (1,J) | X X 1 S(1,J)
. A 1 S
{ , | |
Y ' (flexure)
L | R S N
. X
° ST (extension)  [X
o - X
'; 3NM
L +1
; — >
SAT(1J) * | 1 ?
‘ l
R |
_______ ASAT(1J) |
]
e
- | v
Y A LY 1 | YL
- 3NM | - DELTA(D)
| : r— > NM'. o
| ]
- EULER (1)
*r— > 3NM
= —
. SR(I)

FIG8  GENERATED  MATRICES
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H, Jrv Jrv

\/

1 =100 i@
A= 10in2

25' '
E =30000ksi| || M1

M5

1l

1)  kd

identification system

83 83 83

(a) FRAME EXAMPLE 1

H;Vﬂ{ 18x7suB.5§ tY _12 @ ™ 2] @
I 18x75UB55 V+_ + - @ 3 Mo 4
| 18x75 UuB60 ' + @ [ M3 6
| 18x750B.60 ‘¥ WL @ 7 M4
'/ - ’ 77777 'L

(b) FRAME EXAMPLE 2. | |
FIG 9 ' DEMONSTRATION EXAMPLES

10 x10 UC. 60
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50

second order

- V=100H

beam sway (in) :
1 2 3 4 2 o)

FIG1O LOAD-SWAY CURVES FOR FRAME 1.
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O-3

-

?—H(kip/in) :

02
- theor |
solution
o o \ l S |
V-(kip) \, |
: 1p 29 39 4p 59 3\ ' 70

FIG 11 STIFFNESS-LOAD CURVE, FRAME 1
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800

R (kip) /\first orde}r/

770 e

top floor sway (in)
8 12 16 20

FIG 12 LOAD-SWAY CURVES FOR FRAME 2. - -
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200 400,

FIG 13 STFENESS-LOAD CURVE, FRAME 2
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