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(d) Cards L.---N

(e) Cards M----P

(f) Card Q

(g) Cards R----S

(h) Card T

(i) Cards W----W

(j) Card X

(k) Cards Y,Z

-2-

The stiffness matrix in Format FIO.4 in the following
sequence: 811, 812, 822, 823, 833, 834,-------8nn.

Elements of the plastic moment vector in Format 7FIO.4.

The unit load set number in Format IS (must be positive).

The uni t load set in Format 7FIO. 4
For more load sets, continue with set number, the
stiffness matrix again, and the load set

If no more load sets, a negative integer in Format IS.

Further frames, repeating the sequence (a) to (h).

For no further frames, a negative integer in Format IS.
Hence the run will end when two negative integers have
been read sequentially~

Blank cards.

Note on Fortran Format examples of IS: Card 1 bbbb2, Card 2 bbb3S, Card 3 bbb-4

(b denotes space) examples of 21S:Card 1 bbbb2bbb3S, Card 2 bbb23bbbb3

examples of FIO.4:Card 1 bbb-63.832, Card 2 bbbO.Obbbb

for 7FIO.4, 7 such entries per data card are permitted,
each within field of width 10.

(3) The Stiffness Matrix This matrix represents the assembled load-displacement

relationship for all the frame elements and the form chosen follows the usual

slope-deflection convention. For a member 1-2,

=

4EI
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2EI
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ZEI
L

4EI
L
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For the whole frame, M = S where M and 0 are column

-3-

vectors and S is a triple-diagonal square matrix of order equal to

twice the number of frame members. The ends of each member must be

identified by nymbers quite distinct from any joint numbering system.

The Statics Matrix This matrix represents the equilibrium equations for

the frame.

W = A M

W is a column vector with as many elements as degrees of freedom and

M is the column vector as above, listing the internal moments at member

ends. Hence there will be twice as many elements in M as there are frame

members.

The Plastic Moment Matrix is a co!tiilfrj Vector SImilar to M listing the

moment capacities available at each end of all members.

The unit load set is the matrix W as above.

Note: The statics matrix A is the transpose of the more familiar

displacement matrix AT which relates kinematically the relative to

absolute deformations.

= .6

Both matrices are readily assembled and if this is done, a useful check on

mistakes is available.

Limitations:

In addition to the general limitation on frame size that can be

accomodated by the Lehigh computer, there are two other important li~itatio~s
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on the efficiency of the programme.

(1) It is assumed that a plastic hinge once formed stays formed

and if this is not the case for a frame, the results will not

be of much use except that the load factor at collapse will err

on the safe side. This follows from the fact that equilibrium

and yield conditions will have been satisfied but not so the

mechanism condition.

(2) It is also assumed that no strain reversal takes place in the

frames of progressively detereorated stiffness that are analysed.

However, the printed output is sufficient to indicate whether

this phenomenon has occurred. It is not likely that this

weakness will seriously limit the usefulness of the programme

as the phenonemon has occurred only once in ten frames that

have been analyzed by the author.'

H. B. Harrison
March 26, 1965

I
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Example: Frame No. Z

Degrees of freedom 3

Number of members Z

Assume

Assume

k- 5'

~ ::: 40 Ton ft.

Z
EI = 5000 Ton-ft.

-5-

i1'0 ~ Ions.

I51

Number member ends as shown

Statics Matrix (external loads as functions of stress resulcants).

Ml = 1 0 0 0 X· M1Z

MZ 0 1 1 0 MZl

Y3 -0. Z -0. Z O.Z 0.2 M34

Stiffness Matrix (stress resultants as functions of relative end slopes).

M12 = 4000 Zooo a a x 012

MZl ZOOO 4000 0 0 0Zl

M34 a 0 4000 2000 034

M43 a a ZOOO 4000 043

The computer output for this example follows.



ELASTic PLASTIC ~IRST CRQER ANALY~IS OF FRAME NO. 2

T~E STATtr,~ MATRJY A

ROW 1

ROW ?

ROW 3

o.100nonOF 01 O.

o. n.l000nnOr .01

-0.2UOOOOOE-00 -0.2000000E-00

O.

0.100nOOOE 01

0.2000000E .. 0[l

O. Jo•

0.2000000E~OO _

THE STIFFNESS MATRIX S

ROW

ROW ?

ROW 3

ROW 4

n.4 UonnnOF n4 0.20000001:: 04 U. o•

Q.200npnOF 04 C.4000onOE n4 o• o.

n· O' 0.4000000E 04 0.2000000E U4

[I. o• O.2UOO OOO e 04 0.4000000E 04

T~E EXTERNAL LUAU VECTOR SeT NO.1

ROw 1. o•

ROw 2 (1.

ROW :3 o.100nOOOF n1

DEFLEcTIONS DUE TO UN IT I"OADS

ROw 1 o.6250nOOF-03

ROW ? -0.1562500F-03

ROW 3 O.1 82?9j7E-02

MOMENTS VilE TO ll~' , T LOllI'S

ROW t O.

ROW ? -O.15625flOF n1

ROW 3 n.l56::>~d'OF 01

ROW 4 n.187c:;onOE 01



_____ PLAS TIC Ii I NGE N() • 1 FOR MED AT POI NI 4

.I,.OAD F'ACH1R

STAGEr :tl

DEFLEr-T r 0'-1
x[ 11
X [ 21
X[ 31

MOMENT
M[ 11
M[ 21
M[ 31
M[ 41

n.?U3~33E U2

An[)YTIO~IAl

!1.t3~3",BI::-Ol
-0.3J33333E-02

0.3888889E-I)1

AnOITIO'-IAL
o.

-:~3.3~:n

:n. 3~3~
40.0'100

c U~I LLAT I VE
0.1333333E-01

-O.j3333,LSI:-02
O.3Atl88d9E-01

cu~j LLAT I vE
O.

-33.3333
33.~333

40.0000

Pus MOM
40.0000
40.000n
40.0000
40.onoo

OErLEr,TIONS DUE Tl'l IINTT LOADS

ROW t Q·125nnnOE-n2

ROW ? O.

ROW ~ o.416HI'-7F-n2

MOMENTS DUf;= TO lINIT LnADS

ROW O.

ROW , -O.2500QOOF n1

ROW ~ 0.250!1000F 01

ROW 4 O.

PLASTIC HINGE NO. 2 F'ORMED AT POINT 2

LOAD F'ACTOR

STAGEr 21

DEFLECT ION
X [ 1]
X [ 21
X [ 31

MOMENT
M[ 11
M[ 21
M[ 31
Mr 41

AnD[TYO~IAL

1)."6~61\67E: 01

ADLJITIONAL
o. 3333:n3E- u2
O.
0.1.111111E-01

ADDJTIO"IAL
o•

""6.61\(,:'
6.6667
O.

CUMLLATyVE

0.2400000E 02

CUMlil,ATlvE
o•166",,(,7E .. U1

-0.33333 33E-02
0.5000000F-Ol

CU~1ULATivE

o.
-40.onOO
1I0.aouu
40.0000

Pus MOM
40~OOOO

40.000n
40.0000
40.000n

DIVISION BY ZE~O IN INVE~SION

COLLA~SE MECHANIS~ HAS REEN REACHED

AT POINT[
AT POiNT[
AT POINT[
AT PoiNT[

HINr,F: RnTATIoNS
11 -n.?1P27~7E-l0

?I -n.'910."A3F.-10
31 -O.43~5~7~E-10

41 -O.33~3~3~E-02
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SYNOPSIS

An account is given of a Fortran program for the elastic-plastic

analysis of plane flexural frames. The program has been developed from

one first written by Professor C. K. Wang and has proved to be useful in

the study of steel structures.

With a minimum of input data, the program will enable a computer

to carry out a series of elastic analyses of a steel structure. The

position of each plastic hinge will be determined as it is formed and the

load factor and deformed state of the structure will be output as each

such event occurs. When the collapse mechanism is found, the rotations

at each plastic hinge are computed as well as the deformations and load

factor at the outset of failure.

Frames of moderate size can be analyzed by currently operating

machines but an upper limit will exist for the frame size that can be

handled by any given machine.

The limitations of the program are discussed in detail and

several examples are given of its application.

i.
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I INTRODUCTION

Professor C. K. Wang of the University of Wisconsin first

described the basic principles of a computer program to analyze e1astic­

plastic structures in 1963(1) and made available to the author the Fortran

coding of his scheme which was in a form suited to the CDC 1604 machine of

Wisconsin. In modifying the program to suit the GE 225 machine at Lehigh

University it soon became apparent that with the reduced storage capacity

available, some attention should be paid to the reduction of the

dimensioned arrays used by the program so that frames of reasonable size

could be accommodated. The efficiency of the program has been improved in

various ways which wi11,be outlined in this report but the basic operating

principles and solution techniques used originally by Wang are retained and

due acknowledgement is paid for .the ingenious way in which he has achieved

his goal.

Basically, the program will carry out a series of first-order

elastic analyses of a frame in which free hinges are successively introduced

at those sections at which localized plastic hinges are assumed to develop

at the load system is increased uniformly. Accordingly, it can be

appreciated that the program must incorporate two distinct capabilities.

The first is a system of "bookkeeping" in which a record is kept of the

moments existing at all possible plastic hinge positions in a frame. The

moments are compared with the available plastic moment capacity to detect

whether or not the next plastic hinge is to form at any given position. The

second capability is the utilization of a form of first order elastic

analysis which can be applied simply and successively to frames of deterio­

rated stiffness as hinges are inserted. The type of displacement analysis

1.



described by Clough(2) and used by Wang is well suited for this purpose.

Brief explanations will be given of both sections of the program since the

functioning and limitations of the scheme can only be understood in their

light.

2.
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II ELASTIC-PLASTIC ANALYSIS

It is often the case that the form of an analysis carried out by

hand would not be a desirable one to program f~r a computer. Neal and

symonds(3) have proposed a method for estimating the deformations near

collapse of rigid frames and it has been used by H~yman(4) and Vicker/ 5)

in a study of the effects of deformation and strain hardening on the

collapse load ... Heyman (6) has subsequently used a different approach based

on Virtual Work to achieve the same end. In all methods, the mechanism of

failure is found previously and the deformations at failure are determined

by first finding the position where the last-to-form plastic hinge would

occur.' These methods have had the common aim of avoiding the onerous

computation of load factors and deformations as each plastic hinge is formed

when the load intensity is progressively increased. This latter approach is

probably the best to use with a computer as intuitive judgements are

eliminated. In such a method of computation, once it-has been decided that

a pl'astic hinge exists at some position, the next stage in the analysis

concerns the same initial frame with a free hinge at the position nominated,

but subjected to a new loading system. The new system would consist of the

original set of unit loads together with a moment of the full plastic value

acting as an external action Qn the ends of the members meeting at the

"hinge". The method is demonstrated in Fig. 1 for a propped cantilever

where the results of the ·first elastic analysis shown in Fig. 1 (b) indicate

that the first plastic hinge will form at position C. Inserting a free

hinge at C, it can be seen that the second and final analysis shown in

Fig. 1 (c) is that of a simply supported beam with an extra external action,

namely the moment MP' acting at C.
, '

This approach presents no problems for

3.
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a hand solution, but it would be inefficient for a machine solution because

of the necessity of providing for the extra degree of freedom and the

corresponding new loading term in the dimensioning of the various matrices

affected by the degree of freedom. If provision had to be made for an

extra degree of freedom at every position where a hinge was likely to form,

a small frame would rapidly fill the available data storage capacity of a

computer.

The alternative system used by Wang does not involve the same

difficulties and is illustrated for the propped cantilever shown again in

Fig. 2. The results of the first elastic analysis are shown in Fig. 2(b)

and in row 4 of Table I. The load factors in row 5, obtained by dividing

the available moment capacity at each position by the unit moment at the

same position, determine where the first plastic hinge will form. This

will be the case at that position where the load factor is smallest as

shown in row 6. The moments at all positions ~hen the first hinge has

formed are shown in row 8 and the residual moment capacity is shown in row

9 ·of the table and also in Fig. 2(c). With a free hinge inserted at

position 4 in Fig. 2, the frame is again analyzed for the original loading

system as in row 10 with the load factors determined by dividing the

residual moment capacities by the unit load moments. It is in this respect,

illustrated in Fig. 2(c) that the machine solution devised by Wang differs

from the hand solution technique.

It can also .be seen from Table I that the procedure is essentially

cyclical. It is feasible to calculate the deformation at each stage but

these results have not been included in the tabulation. A collapse

mechanism will have been reached in the analysis when the structure has

4.
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been converted into a mechanism. The numerical indication of such a

phenomenon can be in several forms. It may be that the coefficients in the

stiffness equations would form a singular matrix so that zero division

would be encountered in an attempted solution and wo~ld end the analysis.

If this does not occur, the computed deformations would be very large which

would indicate that the load-deflection diagram has become horizontal.

Wang has explained the computer indications of frame failure in reference

(1) though some of his collapse criteria have been eliminated in the present

program for reasons which will be explained later.

The method chosen for systematizing an elastic-plastic analysis

has been explained and its success as part of a computer program will

obviously depend upon the provision of a method of elastic analysis which

will deal in a simple fashion with the insertion of hinges in rigid frames.

5.



Table I

Numerical Analysis of Propped Cantilever Problem

Position in Beam (Fig. 2)

1. Initial.moment capacity

2. Cumulative moments to date

3. Available moment capacity

4. Elastic Analysis 1

Moments due to unit loading

5. Load factors (row 3 ~.row 4)*

6. Smallest load factor (SLG)

7. Unit moments x SLG

8. Cumulative moments to date

9. Avail. capacity (row 1 - row 8)

10. Elastic Analysis 2

Moments due to unit loading

with hinge at position 4

11. Load factors (row 9 ~ row 10)*

12. Smallest load factor (SLG)

1.

40

o

40

o

o

o

40

o

2.

40

o

40

-1.56

25.64

-33.33

-33.33

6.67

-2.5

2.66

2.66

3.

40

o

40

1. 56

25.64

33.33

33.33

6.67

2.5

2.66

4.

40

o

40

1.83

21.33

21. 33

40

40

o

o

*

13. Unit moments x SLG 0

14. Cumulative moments to date 0

15. Avail. capacity (row 1 - row 14) 40

-6.67

-40

o

6.67

40

o

o

40

o

16. Elastic Analysis 3 with

hinges at positions 4 and 2

(Either zero division or very large

deformations will result)

* Positions where moment is near zero are not included in search

for smallest load factor to avoid premature zero division stop.

(The computer output for this problem is shown in Appendix B)

6.
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III ELASTIC FLEXURAL ANALYSIS

The displacement method of frame analysis can be formulated in

many forms, all with the connnon characteristic that the load-displacement

behavior of a frame as a whole is built up from a knowledge of the load-

displacement relationship for its component members. In the case of a

flexural frame, the elementary component will be a straight prismatic

member as shown at (a) in Fig. 3 and if axial and shear stiffnesses are

assumed infinite, the load displacement relationships take the form of the

simple slope-deflection equations,

MAB = 2~I(2 0 AB + 0 BA)

ML = 2EI(0 AB + 2 0 BA)--aA L

which can be expressed in the matrix form,

MAB
.4EI 2EI 0AB

= L L

MBA
2EI 4EI 0BA
L L

or
(SRAB) = (SAB) . (0AB) ( 1)

For all the members of a frame, the similar equations for each member may

be assembled in the matrix equation,

(SRAB)

(SRBC )

(SRCD)

or

(SR) = (S) . (0)

7.

(0AB)

(0BC)

(0CD)

(2)



where (S) is called the member stiffness matrix and (SR) will be a column

matrix or vector listing the moments acting at the ends of all frame members.

It is usually a simple matter to write down the equations of statics which

relate these moments (called stress resultants) to the applied loads.

(W) = (A) (SR) (3)

The load vector (W) must have as many terms as the degree of freedom of the

structure since deformations are measured by the movement of loads (whether

real or virtual) in a displacement analysis. If the degree of freedom is

L and the number of members is NM, then the statics matrix (A) will be of

order L x 2NM. Only for a statically determinate structure will L = 2NM

so that inversion of (A) is then possible and the stress resultants will be

known in terms of loads without any further analysis ..Finally, the relative

deformations within each member (0) can be expressed in terms of movements

of the loads (X) by a kinematics matrix C,

(0) = (C) (X) (4)

and it can be shown(l) that the matrix (C) is the transpose of the statics

matrix (A). Hence, the load-displacement equations for the whole structure

can be expressed,

(W) = (A) (S) (X) ( 5)

where the triple matrix product (A.S.AT) is the stiffness matrix (K) of the

frame. For a given set of loads (W), the displacements can be determined

by standard equation solution programs. Thereafter, the moments at the ends

of each frame member can be computed from Eqs. (2) and (4),

(SR) = (S) (AT). (X)

8.

(6)
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This form of first order frame analysis can accommodate the

modification associated with the insertion of a hinge within a structure.

There are two ways in which the modification can be made. The obvious way

is to consider the extra degree of freedom involved and to add a row to the

matrix (A) (and a corresponding column to AT) leaving the member stiffness

matrix (8) unchanged. It has been explained earlier that this approach

would be impractiq.able in a computer program as all possible changes in the

degree of freedom would have to be accounted for in the initial dimensioning

and establishment of the statics matrix (A). The alternative approach

adopted by Wang was to keep (A) and effectively L unchanged and modify the

member stiffness matrix (8). The procedure can be understood by referring

to Fig. 3(b). If a hinge is present at the end A of member AB, the slope-

deflection equations become,

(7)

Similarly, if a hinge were to exist at the end B as in Fig. 3(c),

=

3EI
L

o

o

o

0AB

0BA

(8)

By adopting a numerical system rather than an alphabetic system for

identifying the ends of each member, with the odd number always smalle~

than the even number, Wang was able to achieve the necessary changes to

the matrix (S) in accordance with Eqs. (7) and (8) using the computed

location of any hinge. For example, the substitution of a hinge at a

9.
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position 16 in any frame would necessitate the following alterations to the

(S) matrix.

Sl (15,15)

Sl (15,16)

= 1. S(15,15)
4

= Sl (16,16) = S1(16,15) = a

where the primes denote the new values. If a hinge occurred at position 15,

Sl (15,15) = 8 1 (15,16) = Sl(16,15) = a

sl (16,16) =1. S(16,16)
4

Simple tests exist in computer languages for detecting whether a number is

odd or even and then the appropriate changes to the member stiffness

matrix (S) can be made.

10.
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IV DESCRIPTION OF PROGRAM

The Fortran program is included in the Appendix A and the

principal stages in its operation'are shown in the flow diagram in Fig. 4.

The first step is to dimension the arrays and it should be understood that

the program will analyze frames whose arrays cannot exceed the initially

set sizes but which can be of any size smaller than the initially set

values. A discussion of the limitations on frames sizes. that can be

accommodated by a given machine will be given in the next section. The

first item of data must be the identifying number of the frame which if

negative, is regarded as the exit signal. Next, the degree of freedom L

and the member count NM are read and these two numbers will control the

sizes. of all the subsequent arrays built within the store for the frame

being studied. All the elements of the statics matrix are then read in

row by row. This is followed by the member stiffness and plastic moment

data with one card per member containing the EI/L and Mp values. From

this information, the member stiffness matrix (S) and the plastic moment

vector will be constructed in the store. The (S) matrix is output for

checking, together with headings and the full statics matrix (A). Wang's

original program has been modified considerably in this region by

incorporating the ability to analyze the same frame for a series of different

loading conditions. Accordingly, the next item input has to be the

identifying number of the load set which is to follow. For load sets other

than the first, the completely deteriorated member stiffness matrix is

reconstructed before. the analysis proceeds. It the load set number is

negative, the program will look for data for a new frame and if no further

frames are to be studied, the final card has to contain a negative integer

11.



in the place of a frame identifying number. Hence, the final two cards in

any run will contain negative integers. With the load set input and

printed for checking purposes, the program proceeds with the analysis by

building the frame stiffness matrix(K) from the member stiffness matrix (S)

and the statics matrix (A) according to equation (5). The equations are

solved for deformations and if these are too large, an indication is given

that the frame has reached the collapse condition. Deformations exceeding

the value of 10 4 are regarded as being too large. It this is not the case,

the moments are computed using Eqs. (2) and (4) and the smallest load

factor sought so that the position of a plastic hinge can be found.

This part of the program follows Wang's original scheme except

for one alteration. It was found that erroneous results were produced for

some frames by the original program because the load factors were computed

by dividing the residual moment capacity by the absolute value of the

moments caused by unit loading. Such a procedure is satisfactory provided

the unit load moments at the critical positions are of the same sign in the

successive analysis of the frames of deteriorated stiffness. It may well

be the case that the moment at the position with the least reserve of

strength may be decreasing under increasin~ load. A test has been

incorporated in the section of the program concerned with the finding of the

smallest load factor to determine whether such is the case and if so, the

position in question is not included in the search for the smallest load

factor.

In his program, Wang incorporated four separate tests to determine

whether the collapse load for a frame had been reached. One of those tests

involved the minimum load factor which, if too small, would indicate that

12.
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the load-deflection curve for a frame was close to horizontal. However, it

was found that this test would frequently terminate prematurely the

analysis for any frame where two plastic hinges might form simultaneously.

This test has been omitted from the present program since it is considered

that a deformation limitation will determine effectively whether or not the

load-displacement curve might be horizontal. Only one of the other two

tests for collapse which were provided by Wang has been retained. This is

the test which outputs the message "division by zero in inversion" and it

effectively determines the stage at which a row and column in the frame

stiffness matrix (K) contains only zero terms. In theory, this is the only

necessary test but the other is required because rounding-off errors in the

floating point arithmetic could delay the program termination and invalidate

the final calculation of plastic hinge rotations.

After the mechanism of failure has been found and the load factor

and the cumulative moments and deformations at the maximum load are printed,

the final computation concerns the amount of plastic rotation that would

have occurred at the positions of all plastic hinges except the last formed.

Referring to equation (2), the relative end slopes (0) could be calculated

by pre-multiplying the list of cumulative moments (SR) by the inverted form

of the member stiffness matrix.

(0) = (S) -1 . (SR) (9)

It can be noted that a simple inversion of (S) is not possible because at

the final stages of an analysis, this matrix does not exist in its original

form. Wang inverted (S) and stored the data at the beginning of his program

but was aware of the fact that considerable economy of storage capacity

would result if the elements of (S) were stored as a list and the matrix

reconstructed in its actual or inverted form when required. This has been

13.



done in the present program.

The slopes computed from equation (9) will be the same as those

which can be calculated from equation (4) only at those positions where no

plastic deformation has occurred. Accordingly, the amount of plastic hinge

rotation can be expressed,

(¢p) = (S-l) • (SR) _ (AT) . (X) (10)

where the lists (SR) and (X) are the moments and deformations in the frame

at the stage when the last plastic hinge has just been formed~

Finally, control is returned to see if any further load sets are

to be studied for the frame in question. If so, the member stiffness matrix

would need to be completely reconstructed as it would have been altered

considerably in the course of the analysis for the first load set. If no

further load sets are available, the program will commence the analysis of

another problem. If there are no further frames to be studied, the run will

terminate.

14.



V PROGRAM LIMITATIONS

The program will perform a first-order elastic-plastic analysis of

rigid planes of prismatic members and in its present form is strictly

limited to this form of analysis. Since axial stiffness of members is

assumed to be infinite, the axial forces present in the members are not

calculated explicitly so that it is not possible to arrange for a

progressive decrease in plastic moment capacity caused by the presence of

axial load. However, it is always possible to account approximately for

this effect by reading initial values for plastic moments, already reduced

by the estimated axial loads at failure. To account explicitly for axial

strains, the member stiffness matrix would consist of (3 x 3) units for

each member instead of the (2 x 2) units currently specified so that for a

limited computer store capacity, the size of frame to be handled would be

curtailed drastically. To account for second-order effects in the dis-

placement analysis, the axial forces in members would be needed with the

capacity disadvantage mentioned above, but then the reduction in stiffness

of each member could be readily computed and the member stiffness matrix

modified progressively in essentially iterative solution procedure.

Running time would increase greatly as a result.

The statics matrix also would require progressive modification to

account for sway deformations and whereas programs can always be written to

do this for any specific frame, it is difficult to visualize a general

program that could account for the phenomenon for any type'of rigid frame.

The great advantage of Wang's scheme is that it can be used for any type of

plane frame as a standard program.

.,
•.•.i'!N
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The main limiting factor in the use of a general program for

frame analysis is storage capacity since the use of matrix methods has the

disadvantage that quite extensive arrays can be generated by only

moderately sized structures.· It is evident that methods can always be

developed to utilize tapes as a backing store for a specific machine but

the generality of a program is then lost. It is anticipated that core store

capacities of computers of the next generation will be greatly in excess

of those currently available, so that it will be possible to analyze with

an elastic-plastic program the range of sizes of steel frames for which

such an analysis is currently relevant.

In its original form, Wang's program required a storage capacity

which can be expressed,

where C

c ~ (L + 2MN) 2 + 4NM2 + 31 + 14NM

capacity,

( 11)

L = degree of freedom, and

NM = the number of members in a frame

As has been explained, there is no need to store the inverted

form of the member stiffness matrix if this can be generated when required

from a one dimensional list of member stiffness parameters. The capacity

required for the modified program can be expressed,

C ~ (1 + 2NM)2 + 31 + 15NM (12)

As an examp1e,a three-story, two bay rigid frame subjected to

two-point loading on each beam would have 36 degrees of freedom and 27

members so that the original program would require a capacity of 11502

locations. The modified program would require the reduced capacity of

8613 locations. (The data capacity of the Lehigh GE 225 computer when using

the elastic-plastic program was found to be 1860 whereas with an IBM 7074

16.
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"l,Ilachine, the capacity was 6850 locations.) It is apparent that load

application positions have to be treated as joints so that a beam under two-

point loading constitutes three members. Consequently, the available

capacity of a medium sized machine such as the GE 225 will be fully

utilized by frames of only moderate size.

One further limiting factor should be mentioned. It can some-

times occur in steel frames that a plastic hinge which is formed early in

the loading history may not be required in the collapse condition. The

moment at such a section would decrease in magnitude and a plastic hinge

would not then exist. This phenomenon cannot be accounted for in the

present program as the process o~ free hinge insertion is irreversible.

The calculated load factor for such a problem would err on the safe side

since the equilibrium and. yield conditions would be satisfied but not the

mechanism condi tion. This paenomenon has been mentioned by Finzi (7). The

example of a two-span beam, which has been used by Neal(8) to demonstrate

this phenomenon, is shown in Fig. 5. For the loads shown at (a) ,an

elastic analysis will produce a maximum moment at the point(4) as can be

seen in (b). However, a simple plastic analysis will predict a failure

mechanism with plastic hinges at (3) and (6) but not at (4). This can be

deduced from the moment diagram shown at (d) in the figure. The results

obtained from a computer analysis of this problem are in the Appendix C.

It can be seen that the computer correctly detects the formation of the first

hinge at position (4) and the second at (6) as shown at (c) in Fig. 5 but

cannot account for the closing of the first formed hinge thereafter.

Accordingly, it arrives at an invalid collapse mechanism with a load factor

smaller than the correct one. Consequently, it is desirable for any frame

to check the collapse mechanism arrived at by the computer to see whether or

17.



not it is valid.

A related problem is that of the formation of a plastic hinge

under a distributed load. In such a case, the loading must be replaced by

equivalent point loads, as many being chosen as the computer capacity will

accommodate.

18.
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VI CONCLUSION

The Wang program is a very powerful tool in the analysis and

design of steel structures and has been used to study the economics of

steel frame design using the various grades of high tensile steel

currently available. Any such study would evidently involve the analysis

of many trial designs and,for frames other than simple one story portals,

the computational problem would be insuperable without the use of a

computer program such as the one described. As a final example, the frame

analyzed by Heyman(6) is shown in Fig. 6 and a selection of pages from the

~omputer output is shown in the Appendix D. The computed load-sway curve

is shown in Fig. 7. The complete print out for this frame consisted of

over 40 pages and the total time for both compilation and execution on an

IBM 7074 was less than 3 minutes. The preparation of the statics matrix

which is the collection of all the equations of equilibrium for the

structure was a simple matter taking less than half an hour. The print out

of this matrix is also shown in the Appendix D.

. (9)
of statics matrices has been given elsewhere.

A more detailed explanation

The sign convention adopted in the solution of Heyman's problem

is that in which clockwise moments acting on the ends of members are

regarded as positive together with downward vertical loads. The program

itself is not dependent upon any particular sign convention and will

operate successfully as long as a self-consistent convention is adopted in

the statics matrix and in the vector of applied loads.

19.
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C

E

I

1,3

(K)

L

L

NM

Mp

MAB

(S)

(SAB)

(SR)

(SRAB)

SLG

S(I,3)

S I (I ,3)

(S)-l

(W)

w

NOMENCLATURE

the statics matrix

the statics matrix transposed ( = (C»

the kinematics matrix

computer capacity for data

Young's modulus

second moment of area

identifying integers

the frame stiffness matrix

length of a prismatic member

degree of freedom

count of the members in a frame

full plastic moment of resistance

moment applied at end A of member AB

the member stiffness matrix for a frame

member stiffness matrix for member AB

stress resultant vector for a frame

stress resultant vector for member AB

smallest load factor

an element in the member stiffness matrix

a new value for S(I,3)

the inverted member stiffness matrix

the applied load vector

an applied point load

the frame deformation vector

relative deformation vector for member AB

21.
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relative deformation vector for a frame

plastic hinge rotation vector
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IX APPENDIXES

Appendix A The Fortran Program

The statements of the program are contained in the following

pages. (pp. 25 - 31) They are shown in the form used by the IBM 7074

computer but the only changes necessary for the GE 225 machine are the·

following substitutions:

READ

and

PRINT

for

for

READ INPUT TAPE 1,

WRITE OUTPUT TAPE 2,

Format requirements in Fortran impose some limitations. on the choice of

names for variables but as far as possible, the names used correspond with

those used in the text. The identification of the principal variables used

in the program is shown in Table II.

23.



Table II Identification of Variables

Variable

the statics matrix

load factors

frame stiffness· matrix

frame deformation vector

relative deformation vector

cumulative load factor

cumulative moment v~ctor

relative deformation vector

plastic hinge rotation vector

frame identification number

load set identification number

location of plastic hinge

analysis stage number

the applied unit load vector

initial plastic moment vector

the member stiffness matrix

an intermediate matrix product

smallest load factor

moments caused by unit loads

member stiffness data vector

24.

In Text

(A)

(K)

(X)

(AT) • (X) =(0)

(S-l) (SR) =(0)

(0p)

(w)

(SR)

In Program

A(I,J)

ALG(I)

ASAT(I,J)

ASAT(I,L+l)

ATX(I)

CLG

CM(I)

DM(I)

H(I)

JJ

KK

NPH

NCYCL

P(I)

PM(I)

S(I,J)

SAT(I,J)

SALG

SATX(I)

SDAT(I)



297.16

I~PUT ,ILL ~1r:M!:'NTS OF THE STATICS MATRiX A.

SP~CIFY TH~ MAXIMUM SIZES OF ALL T~E MATRICF~.

0001
0002
0003
0004
0005
0006
0007
0008
oon9
0010
0011
0012
0013
0014
0015
0016
0017
0018
0,019
0020
0021
0022
0023
0024
0025
0026
0027
0028
0029
0030
0031
0032
0033
0034
0035
00.~6

0037
0038
0039
0040
0041
OU42
0043
0044
0045
0046
0047
0048
0049
0050
0051
0052
0053
0054
0055

APRil, 1965.rRITZ LABORATORYLEHIGH UNlvF~SITY

1)0 l~ n I = 1. M

DO lf-O J = 1,1'1

qEAU INPUT TaPE 1. 35,[[Arl.J), J=1,MI. 1=1,L)
~s FORM,rr7Fln.41

Q READ INPUT TaPE 1. t~. JJ
U FORMAT [11'i1

IF [JJI 9Q,5,'i

FIRST nRnE1 EI.A~TIC PLASTIC PLANE FRAMEANALYSI~.

AASI~ PROGRAM ~YC.~.WANG, UNI~. OF WIScONSi~, 1963.

MODIFIPD FnR IBM 7074 RY h.B.HARRISON.

DIME~SION A[~0.4Al. Sr48,4AI, S4T[48,301, SATX[481
D11'1 t: NS I UIII P ( ;30 ). ASAI [30, 311, P" ( 4 8 ), ALou ( 48 J
[)P-1t:~'SIUIll CX[30J. CMl48), S[)AT[~4), UM{4i:l)
nlME~SION ATi{4Bl. H[4A)

'i qEAn INPUT TAPF '. 23. L. NM
2,~ FORMAT [21'i)

"'1 = ? • ~'M

00 166 I = t,N"
READ INPUT TAPF 1. 167, SOAT{I), PMI
~ = 2*1
""irKl =PMi
DM[K-tl = PMII<1

1 Ii 6 I~ aNT I NLJ E
1~7 FORMAT[2Ftn. A )

r.
C
r.
r.

r:
c
C
c

r.
c

C
r:
r:
G

r:
r:
~

r:

c
c
c

'C
r:
c
c
r:
c
c
r:
c
r:
r:

Appendix A Fortran Statements
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16n <;(I,Jl = n.
no 11"1 1 = 1,M
TTEST = 1/'?*2~T

TFflTFSTl 1~2.1~1.161

162 K = T12 + 1
Sfl,T) = 4.0 * 5~ATI~l

';[1+1.1+1] = sr!.11
S[l+j,Tl = 0.5 * sridl
S[T"+l] = srI+l,rl

Hi r;O~IT f NUt:

r:
r: QIJTPtlT TTT!!::", THE STATICS MATRIX A, STIFFNESS MATF<IX '5.
r:

!~RIrr: cUTPliT TAFe: 2,97, .J.j
q; rORMAT [~OH1CLA5TTC PLASTir: FIRST ORUER ANALYSIS n~ FRAME NO •• T3 / l

i~RTTr: r)UTPtl'f TaFr:?, 7
7 ~ORMnTr21HnT~E ~TaTIr:s ~ATRIXlll

no 1. l=l.L
!~RIP: GUTPIIT TAF:::,. ;:Ji.l. IA[I.Jl. J = 1,Ml

21 ~ORMaTI4HORO~.T3.1X. 7E16.7/[~X,7E16.7l1

'~RITF r;UTPilT TAP;: '? 17
17 rnRM'T[2~H1T~E ~TTFFNFSS MATRIX/Il

no 2 T=l.M
? !.jRITF CUTPi'T TAPF ?, 2i, T. ISCI,J). J = 1.Ml

C INPUT TH~ LeAD stT NO. KK,lt NEG. COMMENCE THE NEXT FRAME.
C

'OB R~AD I~PUT TAPE 1. lJ. ~~

IFf l( ~: - 1] 9 • 7 !l 7 • C .) n
c
r: IF K~. TS lHIITY. l'yPAS~ TH,: I\EXT bLO(;1\ Of INSTHUCTICNS.
r: IF KK IS GRE~TFR THA~ UNITY, R~aUILD THE 5 MAT~IX.
C

bu'} :)0 \lUi I = l,M
flO ge1 J = 1.M

" [ I , ..J) = O.
" n1 r: MiT 1 ~J UE

<10 q,.~l I = 1.M
TTEST = [1/?~21 ~ I
IF CITEST] 932.~~1.9~1

.; :, ? :( = 1 I? + 1
"[!.T] = 4.0 * 5'HT[Kl
"fl+1.T+1) " sr!.T1
QloT.ll = 0.5 .. srloT l
S[T+l,TJ = S'),I+l1

'-':S 1 r: 0 NT I !II UE

7n.' 'JRITF rUTPllT T~Fr. 2, ?7. K~,

?7 rORM~T[J3~1T~F F~T~RMAL LOAD VECTOR SET NO., 131
r.
r,
r: , NPU1 TH.. l C~!' SF. T VF,. T(1 R P.

9EAD TNPUT T/PE 1 , 3~,lP[i), I = 1 , l1

26.

0056
0057
0058
0059
00';0
0061
0062
0063
0064
OOt'5
0066
0067
0068
0069
0070
0071
0072
0073
0074
0075
0076
0077
0078
0079
0080
OOAl
0082
0083
0084
00R5
0086
00fl7
00~8

0009
0090
00'91
OOQ2
00Q3
0094
00Q5
00Q6
oon
0098
00Q9
0180
0101
0102
0103
0104
0105
0106
0107
bl08
0109
0110
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;'0 :3 1=1, L
:1 l' R J n Glj TP II T TAF l' ?, ? j , . T, r. I t I

r.
r:
r. "'FT TO ZCp[1 Tf'r. "'APIAI'li fiS ~ICYCL,CLf~ ANn THE ARRAYS CX,GM,SAT,
C

NcyeL = u
r.ll; ". f1.
no 2~ l=l,L

;!4 (:x r I J = n.
nO 2f. 1=1,~

?A r:M{IJ = O.
r.
c
G PE ENTPY POINT FOR SUCCESSIVF AN~LYSES OF DETERIORATED FRAMES,
C

15 (10 E 1=1,1'1
no In J:t,L.
<;ATI!,jl=O.

r.
c
C posT ~1,LllpLv S Hy TRANSPOSt:U A TOlicT MATRIX ~AT.

C
no 2(; K=l,M

20 SA1I!,jJ=SAT[I'w]+SI!,Kj*AIJ,KI
10 r.ONT1NUE

c
r:
c PRF. I'll! L TIP L Y <: A T fl Y A TI) GET MAT R I X ASAT.
r:

no 3r 1:1,1
no 3(' j=l,i
ASATrT,Jl=n.
no 40 1(·=1,""

40 hSAT[I,Jl=hSATrl.jl+A[I,Kl*SATrK,JJ
30 r:ONTINUE

C
C
C SOLVE TH~ SLnpE OFFLE~TION EQUATIONS FOR THE GIvEN LOAD SET,
C STOR!: THE' C:;CI I TI eN I N THE LAST CULUMN of THE MATR, X Ac:;AT.
C

LP1=L+l
DO ~!J I=l,L

50 ASAT[I,LP11=PIIl
1')0 tor I=1,L
TPj=l+l
TEMP"ABSF[ASATrI,11J
K=!
'10 61 j=I,L.
TF rARSFIAC:;A T IJ,Tll· TEMPt 61,61,62

62 K=J
TEMP = A8SQASATrJ,IJ,

61. r:ONT J NuE
TF [K-[J 72,71,7?

7? no 4".' j=t,I.Pl

27.
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0111
0112
0113
0114
0115
0116
0117
0116
0119
0120
0121
0122
0123
0124
0125
0126
0127
0126
0129
0130
0131
0132
0133
0134
0135
0136
0137
0136
0139
0140
0141
0142
0143
0144
0145
0146
0147
0148
0149
0150
0151
0152
0153
0154
0155
0156
0157
0158
0159
0160
0161
0162
0163
0164
0165
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4rj
71

147
,S47

~ ~

7n

50

lin
60

C
r:
C
c

~11

51

,~ 11.

647
i.<47

C
C
C
r:

:3 n:\

12G
lin

522

52
C
C
C
C

202

<' o,~
2(J1.

TF''''f-' :: ASAT!',.J]
,\SATrl,Jl = tsnr~"JJ

~SATrK,JJ = TI-IVfO
IF UC;ATrl.IIJ 1';.1 4 7,16
~RIT~ OUTPUT rAI-~ ? 347
FOQMAT [30HOUIVISION 8Y l~RG IN INV~KSIU~1

,0 Tf' 47
TPMP = 1./A5 6 Tfl .11
'10 7n J=I,LP1.
ASATfl,JJ=AS'Tfl.Jl- TpMP
,-, 0 ~.rl .J =1 • l
IF (I-Jl 5Q,1'0,5')
TE'~ p:: ASAT r .J, ' J
rJO 80 K=IP1.i P1
ASATrJ,Kl=ASAT[J.Kl- TpMP*ASAT[I,K)
rOI\JT I Nllf-:

[,'RITF QUTPI'T HP:: ?, 511
FOR Mf T [3 lJ i--I 0''i' r v= r TI [)~, s 0'1 >= Tel. ~ I T LOA DS 1
"10 51 1=1.1..
to/RITF r.LJTPIiT TAPe :;>, :;>1, I, 'ASATII,LP1)
:) 0 ,31. 1 I =1 .L
TEMP = A8SF[hSAlrl.L P1 J) ~ 1.E+04
IF [lFMPJ ~11,647.647

r;ONT!NUE
1';0 Tr 303
'J RI Tr: r Ij TPII T TA F::C :;>, !l 4 7
.0Rrol/,T [2tHonHLcCTlrJN TOn LARGE]
r,o TO 47

"10 11n l=t,M
C::ATXfl) = n.
'-'0 120 K=l,L
C;ArXfll=SATXfll+SAT[I.K]-ASAT[K,LP1 ]
r;O'JTINlJE
WRITP TUTPIiT TAFt: 2, 522
rORM"T l2MJO~)Ot~E\iTC:: LUF T" UN I T LOADS)
DO 5' 1=1,1'1
t./RITF ('UH,"T TAl-Fe 2, 21. I, SAHli]

CALCULATt T~F. LOAD FACTO~ A~G AT EA~rl ENU OF EACH MEMijEH.

00 2n1 1=1,"1
IF[Ap~F{SATX!Il] - '.oJ 20?202.?03
&UH~' = l.E20
qO T" 201
ALG[1 l = [PMrll-~Rsrr~M(Il1J/APSFISA1X[I)J

r:ONT I ~J1)E
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0166
0167
0168
0169
0170
0171
0172
0173
0174
0175
0176
0177
0178
0179
0180
0181
0182
0183
0184
0185
0186
0187
0188
0189
0190
0191
0192
0193
0194
0195
0196
0197
0198
0199
0200
0201
0202
0203
0204
0205
0206
0207
U208
0209
0210
0211
0212
0213
0214
0215
0216
02t7
0218
0219
0220
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~~04 r:LG = ClG + ql G

206 eXIl) = CXll] + ASAT[I,LP{l

!'IO 2D6 1=1,L
ASATrI,lP11 = QIG*ASATII.I.P1)

0221
0222
0223
0224
0225
0226
0227
0228
0229
0230
0231
0232
0233
0234
0235
0236
0237
0238
0239
0240
0241
0242
0243
0244
0245
0246
0247
0248
0249
02';0
0251
0252
0253
0254
0255
02';6
0257
0258
0259
021'>0
0261
02(,2
02t>3
0264
0265
0266
0267
02f18
0269
0270
0271
0272
.0273
0274
0275

rUTPUT AnDI1IC~AL AND rUMLLATlvE DEFLECTioNS.

UPDATE T~Ecvr;LE NUMBER NeyCl.

~Ar:TOR U~IT ~C~ENTS YY SALG ANn GET CUMULATlVF MOMFNTs.

rllTPIlT eyci E NO. ANlJ loeATlCN OF PLASTIC H.lNGE;lOAIJ F"Ar:TOR ETc

~IRIH CUTPI.IT TApr: ?, 404
.0RMAT [12 ~ 0DFFC' f; '-1 AT 1r,~;, ,~X, to HA r. D1T ION A'•• 9 X, 1"0 He IJ toi Ul ATI vEI]

NeYCL = NCyel. + 1.

DO ~iI-; l=l.M
SATXfI) = <;ALG.SATX[IJ
r;Mfll = CI~rIl + "An!I]

WRITE OUTP~T TAFe " 401. NeYCL. NPH
FORMAT[lHH1PL ASTIC HING~ NO.' IJ, 2X' l~HFORMED Aj POiNT.i3/1
wRITE OUTPUT TAF~ 2, 402
F"ORMATI12HnLOAD I'"ACTUR.3X.l0HAD~ITIONAl,9X.10HCUMUlATlVE]

WRITE cUTP0T TAF~ 2, 403. NeYCl, SALG. CLG
FORM6T l6HOSTAGt. 14, E1A.7. Eie.71

r;
C
e

c
c
c
C

401

402

4~3

C
C
e
c

404

S~LG = l.~?n

f)02~4 1=1,""
TEST = CM[!) * ~~TX[II

IF [TFSTJ ~04,;;l",~ii';

IFIAI.GrIJ - <;ALGl 12~6,204.2(14

SAI.('; = AI.Gril
,IPH = I
~ONT!NUE

20"
1?~"

;>n4
C
r.
r:
c

~O2

207
C
C
C
C

C
C
c_ ,-lJLTIPLY .1I~t1T I)EFLECTTfH,S flY SMAllEST lOAD FACTOR SALG,
C

c
c
e CALCULAT~ rL~LLATIVE n~FLEC110NS.

e

r:
r:
c I'" T~' n p 1'1 S TTl C,' ~ Nf) VAL !I e OF ~ .. ALL t: S r l. 0 AD FACT OIl SAL G•
r:

29.
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J.lO 2 H l=l,L
t::j;l,.iillr CUTPrlT TAFi: 2,40'5, I, ASAT(I,LP1J, eXII]
dn~ ~ORM T 13~ AI, I~. Ei~.7, ~1~.7]

e
c
c U ETURII; C/1 NTh ,) L T(\ flo 11,,1 I YS f' n-" n FIE RI lJ RAT t:: D F RAM E•
C

0276
0277
0278
0279
0280
0281
0282
0283
0284
0285
0286
02117
0288
0289
0290
0291
0292
0293
0294
0295
0296
0297
0298
0299
0300
0301
0302
0303
0304
0305
0306
0307
0308
0309
0310
0311
0312
0313
0314
0315

-0316
0317
0318
0319
0320
0321
0322
0323
0324
0325
0326
0327
0328
0329
0330

I'UTPUT Ar'!l!lTl~~IAL AND rUI"ULATIVE MOMENTS wiTH PL.MOMENT CAP,

rHA~G~ TUE 5TIFF~FSS MATRIX ACr,OHDING TO WHERF THE LAST
FLASTlr H\NG~ WAS FOUNn.

'~R I If 0 UTPI ITT AF r: ?, 4 O~
FOR~~Tr7HnMo~E~'Tgx,10~ADnITIn~AL.9Xl0HCUMULATIVE10x,8HPL.~ 1'101'11]
no ;;109 1=1.""
!-'RIT" CUTPllT TAF': ?, 411'1, I, SAlXII], eMIL]. PM!I1
~n~M~T 13H AT, 1-. F1R.4,?~iQ.4]

e
r
r,
r:

411"

?nQ
;\ n7

c
r;
r:
r:
c

;;to

ITEST = fNPH/2 • ?] - NPrl
! r [I TF S T] ? ~,1 • ~ 1, 0 • 2) 0
S [ Nf' t- -1 , NPH- 1 J =0 • 7OJ,, ~ [ I" to' H-1 • I\; PH-1 ]
S[NPII,tljPH] = U.

S[NP~-l,NpH] = O.
S(NP~,NPH-l] = O.
GO Tr ?12

211 ~[NPH+"NPH+l J = U.75*S[~PH+1,NfH+11

S[\lP'-,NP'<1 = O.
S[NPH,NPH+l] = n.
<; [ ~J f' H + 1 , NP I~] = O.

c
c
c rO~PUT~ THE 'II~GE RUTiT\GNS CNrE THE COLLAPSE ~ECHANISM HAS
C r'f:EN FrHWD. I"JRSr, INv~RT THF: S MATRIX.
C

47 WRITE OUTPUT TAF~ ~, 408
4ns FORMAT [36HOCOLLAFSE MECHA~ISM HAS REEN REACHED]

1')01f,:,: 1= "r-
no 1~3 J = t,M

l.fd S [ I, ,I 1 = O.
r'lO 1'" 4 I = 1, M

'TEST = 1/2*'?-1
I F r I TF S r ] 1 t, 5 , 1', 4 • 1. 6 4

165 K :: 1/2 + 1
S[I,IJ :: 1.0/[3.0 * ~DAIIK]J

S r [+!" J "1.] = sri. I 1
S ( T • 1 + 1] = '- 11 • OJ • <; [ T • I J
SlI+1,1) = Srl,I+'1

164 CONTINUE
no 1q 1=1, M
nM r I' = n.
no 1:~4 K::l.M

30.



134 nMf IJ = 8~rll • ~rl,~l * r~{~l
U.~ rONT J ~JI!t

DO 1:~C; I=l.M
ATXfT.l = o.
no 1:;6 l<=l,L

1~~ ATX[ll = ATX£ll • A[K,I)*rx[l<]
13<; COIIIT I Nl;t:

no ion I=t,M
137 4[1) = UM[I) - ATxrII

WRITF OUTPIIT TAF;;:;l, 138
138 FORMAT [lHn'14X,,~HHING~ ROTATIONS/]

00 1-19 l=l,M
139 WRITE- OUTPIJT TAF" 2, 14U, I, H[l)
1.40 FORMhT [91< AT PClt\T, 14,E1C;.")

c
c
C P.FTUR~ cnNTR01 TU SEE IF ANY MOR~ LOAD St:TS.
C

GO TC 70/3

99 CALL ExIT
f7ND

31.
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0331
0332
0333
0334
0335
0336
1)337
0338
0339
0340
0341
0342
0343
0344
0345
0346
0347
0348
0349
0350
0351
0352



297.16

I PROPPED CANTILEVER PROBLEM [

THE STATICS MATRIX

ROW 2 O.OOOOOOOE 00 0.1000000E 01 0.1000000E 01 O.OOOOOOOE 00

THE STIFFNESS MATRIX

ROW 0.4000000E 04 0.2000000E 04 O.OOOOOOOE 00 O.OOOOOOOE 00

·0.2000000E 042ROW
-- -_."_., "_.".....•" .._,.,•._.",,_ _.._,,.,,-,,.,.'--- .."_.""-_.,,,,._.,,-_.""--"--""-'."-'-'-_." '" _ ..,-,--'-"--'-- --, -." - ..__ _..,----_ __..,-_ _-•.._-_ ..__ -_ _--, _,..•_..,.--_ _--"-_.,--,,.,,'._.

0.4000000E 04 O.OOOOOOOE 00 o.oOaOOOOE 00

ROW 4 O.OOOOOOOE 00 O.OOOOOOOE 00 0.2000000E 04 0.4000000E 04

-'--T.rEEXfE'fNAll(rA-D-VE-CT(fRSEf-NO~---T-----.------------

--ROW--C-----O-;OOOOOOOE--(Hr-----~----------

ROW 2 O.OOOOOOOE 00

---ROW3---0:Toooo06r(ff"'--

---oeFI.ECfi(n~rD1iE-TouNTrT-.:jAos-----------

ROW 1 0.6250000E-03

----Roii---3--------o-~fij'2'29f7E::Oi--------------------------

--MOMENTS DUE TO UNIT LOADS

Row·'··---f·-··'···-o-~-fb·oooO"ijE-(j'6-"-'-·- _.....---------.-._-----.-.

."·-·Ro1r"'·--2--···'-~o'~-T5·62-5·o6E ··i:ff---------------- .-----.,---.-------

ROW 3 0.1562500E 01

Appendix B Solution to Propped Cantilever
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PLASTIC HINGE NO. FOR~I:D AT PC I'NT ,4

297.16

LOAD FACTOR ADDIT I ONAL

STAGE 0.2133333E 02

DEFORMATION ADDITIONAL

AT 1 0.1333333E-Ol
AT 2 -0.3333333E-02
AT 3 0.388888'lE-01

MOMENT ADOITIONAL

AT I -0.0000
AT 2 -33.3333
AT 3 33.3333
AT 4 40.0000

OEFLEC TI ONS OUE TO UNIT LOAOS

ROW 0.1250DOOE-02

ROW 2 O.ODOOOODE 00

ROW 3 0.4166667E-02

MOMENTS DUE TO UNIT LOADS

ROW -0.3000000E-06

ROW 2 -0.2500000E 01

ROW 3 0.2500000E 01

ROW 4 O.OOOOOOOE 00

CUMULAT;I.YE

0.21333331: 02

CUMULATIVE

0.1333333E-Ol
-0.3333333E-02

0.388888'lE-01

CUMULATIVE

-0.0000
-33.3333

33.3333
40.0000

PLAS MOM

40.0000
40.0000
40.0000
40.0000

PLASTIC HINGE NO. 2 FORMED AT POINT 2

LOAD FACTOR ADDITIONAL

STAGE 2 0.2666667E 01

DEFORMATION ADDITIONAL

AT I 0.3333333E-02
AT 2 O.OOOODOOE 00
AT 3 O.lllllllE-OI

MOMENT ADDITIONAL

AT I -0.0000
AT 2 -6.6667
AT 3 6.6667
AT 4 0.0000

CUMULAT lYE

0.2400000E 02

CUMULATIVE

0.1666667E-01
-0.3333333E-D2

0.5000000E-OI

CUMULATI YE

-,0.0000
-40.0000

40.0000
40.0000

PLAS MOM

40.0000
40.0000
40.0000
40.0000

DEFLECTIONS DUE TO UNIT LOADS

ROW O.IOOOOOOE 05

ROW 2

ROW 3

-O.IOOOOOOE 05

0.50DOOOOE 05

DEFLECTION TOO LARGE

COLLAPSE MECHANISM HAS BEEN REACHEO

HINGE ROTATIONS

"

AT POINT
Ar POINT
AT POINT
AT POINT

1 -O.8000000E-09
2 0.• 2000000E-08
3 -0.1000000E-D8
4 -0.3333334E-02

Appendix B (cont.)
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297.16

ELASTIC PLASTIC FIRST lJRu£R ANALYSIS uF "'R~~l: NO. 13

I IWEAL ~ FINZI PROBLEM

THE STATICS ~ATRIX

ROW \ 0.0000000£ 00 O.OOOOOOOE 00 -a.lOOaOOOE vi -a.IOOODaDE Ol O.looaOOQE 01 O.looooaDE 01 O.OOOOOOOE 00
o.aCOODCOE 00

RD. , O.OOOOOOOE 00 O.OOOOOOOE 00 0.00000001:: 00 O.OOOOOOOE 00 -0.1000000E 01 -0.1000000£ 01 O.lOOOOOOE 01O.1000000E OJ

RO, , 0.1 aOOOOOE 01 O.OOOOOOOE 00 O.DnaOOCOE 00 o.aCCODCOE 00 o. aeOODeoE 00 o.aeOODeOE 00 O.OOOOOOOf 00
0.00000001: 00

ROW • o. aCOODcOE 00 D.IOOOOOOE' 0\ O.lOOOOOOE 01 a.aCOODeOE 00 o. aCOODCOE 00 o.OOOOOOOE 00 o.aOOOOOOE 00
O.OOOOOOOF. 00

ROW S o. aaDODOOE 00 O.DeOODeOE 00 o. aeOODeoE 00 D.IOOQOOOE 01 O.IaOaOQOE 01 O.OOOOOOOE 00 O.OOOOOOOE 00a.aeooceOE 00

ROW • 0.0000000£ 00 Q.OOOOOOOE 00 o.oooooooe 00 0.0000000£ 00 060000000£ 00 061000000£ 01 061000000£ 01
060000000£ 00

ROW 1 0.0000000£ 00 060000000£ 00 0.0000000£ 00 060000000£ 00 0.0000000£ 00 0.0000000£ 00 0 60000000£ 00
0.1000000£ 01

1HE STlFFN£SS MATRIX

ROW 1 061333333£ 01 0.66666607£ 00 0.0000000£ 00 O.OOOOOOO\: 00 060000000£ 00 060000000£ 00 O.OOOOOOOE 00
060000000£ 00

RD. , 0.6666661£ 00 061333333£ 01 060000000£ 00 0.0000000£ DC 060000000E 00 0.0000000£ 00 0.0000000£ 00
0.0000000£ 00

ROW , 060000000E 00 060000000E 00 0 64000000£ 01 0.2000000£ 01 060000000£ 00 0.0000000£ 00 0.0000000£ 00
0.0000000£ 00

ROW • 0.0000000£ 00 0.0000000£ 00 062000000£ 01 064000000£ 01 060000000£" 00 060000000£ 00 0.0000000£ 00
060000000£ 00

ROW S 0.0000000£ 00 0.0000000£ 00 0 60000000£ 00 060000000£ 00 0 64000000£ 01 062000000£ 01 O.OOOOOOOE 00
0.0000000£ 00

ROW • 0.0000000£ 00 0.0000000£ 00 0.0000000£ 00 06,0000000£ 00 062000000£ 01 0.4000000£ 01 0.0000000£ 00
0.0000000£ 00

ROW , 0.0000000£ 00 0.0000000£ 00 060000000£ 00 O.OOOOOOOE 00 0.0000000£ 00 0.0000000£ 00 0.4000000£ 01
0.2000000£ 01

ROW • 0.0000000£ 00 0.0000000£ 00 060000000£ 00 0.0000000£ 00 0.0000000£ 00 0.0000000£ 00 0 62000000£ 01
0.4000000£ 01

TH£ EXTERNAl LOAD Y£CTOR SET NO.1

ROW 1 0.1300000£ 01

ROW 2 0.7000000£ 00

ROW , 0.0000000£ 00

ROW • 060000000£ 00

ROW S O.OOOOOOOE 00

ROW • 0.0000000£ 00

ROW , 0.0000000£ 00

"DEfLECTIONS DU£ TO UNIT LOADS

KEMBER lDENTIFlCATlOO SEQUENCE

J7 i
ROW 1 0.5629626£ 00

ROW , 0.5870361£ 00

ROW , -062583332£ 00

ROW • o. 5166664£ 00

ROW S 0.3912220£ 00

ROW • -0.3444443£ 00

ROW , -0.1083330£ 00

MOMENTS DU£ TO UNIT LOADS

1)
5

ROW 1 0.2000000£-01

ROW , 065166664£ 00

ROW , -0.5166663E 00

ROW • -0.1555552£ ~o

ROW S 0.1555549£ 00

ROW • -06 72717751:: 00

ROW , 0.1277173£ 00

ROW • -0.1000000£-06

Appendix C

DEFORMATION IDENTIFICATION SEQUENCE

NEAL • FlNZI PROBLEM

Solution to Neal-Finzi Problem
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• rJIIII_- ....a---_..- ....a_--....--

PLASTIC HINGE NO. FORMED AT POINT 4 . PLASTIC HINGE NO. 2 FORMED AT POINT 6

UiAD FACTOR "'ADDITIONAL CUMULATIVE

0.1428512E 01

CUMULATIVE

0.1050416E 00

ADDITIONAL

2STAGE

DEFORMATION

---C'="U~M""U""L,-A:c:T'"'I'"'"V:c:E;---------------~-..LOA-D-F-ACTOR-ADDI TIONAL

--. ~-(I:·i32j53(iE of- -_. __._--~- -_.- ---.---.... _._- -------------.---
0.1323530E 01

ADDITIONAL

STAGE

DEFORMATI ON

1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000

.1.0000

PlAS MOMCUMULATIVEADDITIONAL

0.1 ...14999E 01

0.1820832E 01

MOMENT

ROW 4

ROW 1

AT 1 0.2310912E 00 0.9161892E 00
._,. AT 2 0.1218005E 00 0.9041611E 00

AT 3 -0.8665922E-Ol -0.4285709E 00
........ AT It 0.1733184E 00 0.8571419E 00

AT 5 -0.9716331E-Ol 0.4285718E 00
.• AL_6 .=0.i.155!t56E_00 ::.0.• 5.U4219E_00 .

AT 1 -0.1339219E 00 -0.1071428E 01

_...COLLAPSE MECHANISM HAS BEEN REACHED

.....HINGE ROTATIONS ..

-0.9374999E 00

CUI4UUIT.i'if

0.7450919E 00
0.7169607E 00

-0:34iiiiT7E '00'­
0.6838235E 00

... '-0. 525i352e 00
-0.4558823E 00

_______________________ROW_.5_-,-0.••1t.3_1!t.9.9.9.E_0], _

ROW. 6 __""0....375000E 01

ROW 10 ·.,.0.4375001E 07

jlEI'LEC.UON.TOO LARGE

______....:. ....:. -AL~OlNJ__l_0.•.2000..ll00E:=:-.!!-01!:-__
AT POINT 2 -0.ltOOOOOOE-07

.... _....__.._.. _. __ .... .._.._.._....._0._0 .. • .._.. AT.. ..0INT._.....3_·0.0000000E_00_......_. __ .. .. _...
AT POINT It 0.3571ltl0E 00

_...._. ..._._ ... __.. .__.__.... .._.._....__.... .._ .. ...__.AT_ POI NT_ .. 5...-0 .....0.000.00E.,..01. ......_
AT POINT 6 -0.1000000E-01
ALPOlNJ__l-=.0 •.20.0.0.0.D.OE::D_l _
AT POINT 8. -0.8000000E-07

_________________________ItOW_Z__0.•!t.3.r5.0_0_0.E_03

ROW _3. -0.737.49.96E .00

"'--'o~<iool'-- ·---··-·-----·-·--T~·oooo· AT I 0.0000 0.0000
0.6838 1.0000 AT_._2_ 0.•.U33 ..__.0.•85_n ._ .._._._•..•_.__ .

-0.6838 1.0000 AT 3 -0.1133 -0.8511
-1.0000 1.0000 AT .. 4 0.0000 -1.0000
1.0000··--··---- --~i;ooo()"---- AT 5 -0.0000 1.0000

-0.9632 1.0000 AT· 6 .~0 •.0368 -1.0000
···-()~·9632-·---·-----·-----·-C.-oooi)'- .-... -- -. - AT 7 0.0368 1.0000

.~ -..=0~.~0~0~0~0~ -'I~.~0~0~0~0~ AJ__8 ---=-0•.0.00.0 .__:"_0_._0_01l0 ... _..

DEFLECUONS DUE TO.UNIT LOADS

AT 1 -"-'o;';-450979E 00
AT 2 0.7769601E 00
AT 3 -0.3419111E 00
AT 4 0.6838235E 00
AT 5 0.5251352E 00
AT 6 -0.4558823E 00
AT 7 • _•. --=-O.9-374999E 00

MOMENT ADDITIONAL

AT 1 0.0000
AT 2 0.6838
AT 3 -0.6838
AT It -1.0000
AT 5 1.0000
AT 6 -0.9632
AT 1 '0.9632
AT 8 -0.0000---_.+- ._--

DE FLEC TI ONS DUE TO UNIT LOADS

ROW 0.2199998E 01

v..> ROW 2 0.121666~1;_0~
VI

ROW 3 -0.8249992E 00

ROW 4 0.1649998E 01

ROW 5 .-0. 92lt9992E .09___._ ..

ROW 6 -0.1099999E 01

ROW 7 -0.121lt999E 01

MOMENTS DUE TO UNIT LOADS

ROW 0.1000000E-06

ROW 2 0.16lt9998E 01

ROW 3 -0.16lt9998E OL

ROW 4 O.OOOOOOOE 00

ROW 5 -0.lltOOOOOE-05

ROW 6 -0. 350000~~.90.....__

ROW 1 0.3499996E.00

ROW 8 -0.ltOOOOOOE-06



297.16

no\sTlc PLASH' FIRST ORDER ANAl'l'~IS OF FRA,,,,e NO.9 I HEYMAN'S FRAME I
THE STATICS fIIIATRlx

ROW 1 -O.6666670E-Ol
O.OOOOOOOE 00
O.OOOOOOOE 00
O.OOOOOOOE 00'
O.OOOOOOOE 00

-O.6666610E-Ol
O.OOOOOOOE 00
O.OOOOOOOE 00
O.OOOOOOOE 00
O.OOOOOOOE 00

0.6666610£-01
O.OOOOOOOE 00
O.OOOOOOOE' 00
0.00000001: 00
O.OOOOOOOE 00

O.6666610E:-Ol
O.OOOOOOOE 00
O.OOOOOOOE 00
O.OOOOOOOE 00
0.00000001: 00

o.oooaOOOE 00
O.OOOOOOOF 00
O.OOOOOOOE 00
o.OOOOOOOE 00

O.OOOOOOOE 00
O.OOOOOOOE 00
0.0000000£ 00
0.0000000£ 00

O.OOOOOOOE 00
0.0000000£ 00
O.OOOoOOOE 00
0.0000000£ 00

ROW 2 O.OOOOOOOE 00
O.6666670E-Ol
O.OOOOOOOE DO
O.. OOOOOOOE 00
O.OOOOOOOE 00

O.OOOOOOOE 00
O.OOOOOOOE 00
O.OOOOOOOE 00
O.OOOOOOOE 00
O.OOOOOOOE 00

O.OOOOOOOE 00
O.OOOOOOOE 00
O.OOOOOOOE 00
O.OOOOOOOE 00
O.OOOOOOOE 00

O.OOOOOOOE 00
O.OOOoOOOE 00
O.OOOOOOOE 00
O.OOOOOOOE 00
o.oOOOOOOE 00

-O.6666670E-Ol
O.OOOOOOOE 00
O.OOOOOOOE 00
O.OOOOOOOE 00

-0 .. 666b610E-0 l
O.OOOOOOOE 00
O.OOOOOOOE 00
O.OOOOOOOE 00

O.6666b10E-01
O.. OOOOOOOE 00
O.OOOOOOOE 00
o.oOOOOOOE 00

ROW 10 O.OOOOOOOE 00
O.OOOOOOOE 00
O.OOOOOOOE 00

_____ O.OOOOOOOE 00
O.OOOOOOOE 00

O.OOOOOOOE 00
o.oOOOOOOE 00

-0.8333330£-01
O.OOOOOOOE DO

O.1000000E 01
O.OOOOOOOE 00
o.OOOOOOOE 00
o .. OOOOOOOE 00

O.. OOOOOOOE 00
0.0000000£ 00
O.OOOOOOOE 00
O.. OOOOOOOE. 00

0.0000000£ 00
0.0000000£ 00
O.OOOOOOOE 00
O.OOOOOOOE 00

O.OOOOOOOE 00
0 .. 0000000£ 00
O.OOOOOOOE 00
O.OOOOOOOE 00

O.OOOOOOOE DO
O.OOOOOOOE 00
0.0000000£ 00
O.OOOOOOOE 00

0.0000000£ 00
O.OOOOOOOE 00
o.OOOOOOOE 00
0.6333333£-01

0.0000000£ 00
O.OOOOOOOE 00
0 .. 1000000£ 01
O.OOOOOOOE 00

O.. OOOOOOOE 00
O.OOOOOOOE 00
o.oOOOOOOE 00
o.oOOOOOOE 00

O.OOOOOOOE 00
o.OOOOOOOE 00
O.. OOOOOOOE 00
O.OOOOOOOE 00

0.0000000£ 00
O.OOOOOOOE 00
O.OOOOOOoE 00
O.OOOOOOOE 00

O.OOOOOOOE 00
0.0000000£ 00
0.0000000£ 00
O.OOOOOOOE 00

O.OOOOOOOE 00
O.OOOOOOOE 00
0 .. 8333330E-Ol

-O.8333330E-Ol

O.OOOOOOOE 00
-0.6666610£-01

O.OOOODOOE 00
o.OOOOOOOE 00

O.OOOOOOOE 00
O.OOOOOOOE 00
O.OOOOOOOE 00
O.OOOOOOOE 00

O.OOOOOOOE 00
O.OOOOOOOE 00
O.OOOOOOOE 00
O.OOOOOOOE 00

O.OOOOOOOE 00
O.OOOOOOOE 00
O.OOOoOOOE 00
O.OOOOOOOE 00

O.OOOOOOOE 00
O.OOOOOOOE 00
O.OOOOOOOE 00
O.OOOOOOOE 00

O.. OOOOOOOE 00
o.. OOOOOOOE 00
0.1000000E 01
0.0000000£ 00

O.OOOOOOOE 00
O.OOOOOOOE 00
0.8333330£-01
O.8333130E-Ol

O.OOOOOOOE 00
0 .. 0000000£ 00
O.OOOOOOOE 00
O.OOOOOOOE 00

0.0000000£ 00
O.OOOOOOOE 00
O.OOOOOOOE 00
O.. OOOOOOOE 00

O.OOOOOOOE 00
O.OOOOOOOE 00
O.. OOOOOOOE 00
o .. OOOOOOOE 00

O.OOOOOOOE 00
0 .. 0000000£ 00
O.OOOOOOOE 00
O.OOOOOOOE 00

O.1000000E 01
O.OOOOOOOE 00
O.. OOOOOOOE 00
0.0000000£ 00

O.OOOOOOOE 00
0.0000000£ 00
O.OOOOOOOE 00
O.OOOOOOOE 00

O.OOOOOOOE 00
-O.6666610E-01

O.OOOOOOOE 00
O.OOOOOOOE 00

O.OOOOOOOE 00
O.OOOOOOOE 00
O.OOOOOOOE 00
O.OOOOOOOE 00

O.OOOOOOOE 00
O.6666670E-Ol
O.OOOOOOOE 00
O.OOOOOOOE 00

0.0000000£ 00
O.OOOOOOOE 00
O.OOOOOOOE 00
O.OOOOODOE 00

O.OOOOOOOE 00
O.OOOOOOoE 00
O.OOOOOOOE 00
O.OOOOOOOE 00

O.OOOOOOOE 00
0.0000000£ 00
O.OOOOOOOE 00
O.OOOOOOOE 00

0 .. 0000000£ 00
O.OOOOOOOE 00
O.OOOOOOOE 00
O.. OOOOOOOE 00

O.OOOOOOOE 00
O.OOOOOOOE 00
O.OOOOOOOE 00
O.OOOOOOOE 00

O.OOOOOOOE 00
O.OOOOOOOE 00
O.OOOOOOOE 00
0.0000000£ 00

0.0000000£ 00
O.OOOOOOOE 00
O.OOOOOOOE 00
O.OOOOOOOE 00

O.OOOOOOOE 00
O.OOOOOOOE 00
O.OOOOOOOE 00
O.. OOOOoOOE 00

O.OOOOOOOE 00
O.OOOOOOOE 00
0 .. 0000000£ 00
0;OOOOOOOE 00

O.1000000E 01
O.OOOOOOOE 00
O.OOOOOOOE 00

·O.OOOOOOOE 00

O.OOOOOOOE 00 0.0000000£ 00
0.0000000£ 00 O.OOOOOOOE 00

-0. 8333330E-Ol -0.8333330E-Ol
O.OOOOOOOE 00 -O.8333330E-Ol

O.. OOOOOOOE 00
O.OOOOOOOE 00
0 .. 8333330E-01

-0 .. 8333330E-Ol

O.OOOOOOOE 00
O.OOOOOOOE 00
O.OOOOOOOE 00
O.OOOOOOOE 00
O.OOOOOOOE 00

O.1000000E 01
O.OOOOOOOE 00
O.OOOOOOOE 00
O.OOOOOOOE 00
O.1000000E 01

O.OOOOOOOE 00
O.OOOOOOOE 00
O.OoOOOOOE 00
O.OOOOOOOE 00
O.OOOOOOOE 00

O.OOOOOOOE 00
O.. OOOOOOOE 00
O.OOOOOOOE 00
O.OOOOOOOE 00
O.8333330E-Ol

O.. OOOOOOOE 00
O.OOOOOOOE 00
O.OOOOOOOE 00
O.OOOOOOOE 00
O.OOOOOOOE 00

O.OOOOOOOE 00
O.OOOOOOOE 00
O.OOOOOOOE 00
O.OOOOOOOE 00
O.OOOOOOOE 00

0.0000000£ 00
O.OOOOOOOE 00
O.OOOOOOOE 00
0 .. 00000001: 00

-0. 8333330E-0 1

O.OOOOOOOE 00
O.OOOOOOOE 00
O.OOOOOOOE 00
O.OOOOOOOE 00
O.OOOOOOOE 00

O.OOOOOOOE 00
O.1000000E: 01
0.00000001:: 00
O.OOOOOOOE 00
O.OOOOOOOE 00

O.OOOOOOOE 00
0 .. 00000001: 00
O.OOOOOOOE 00
O.OOOOOOOE 00
O.OOOOOOOE 00

O.OOOOOOOE 00
O.6666670E-Ol
O.OOOOOOoE 00
O.OOOOOOOE 00
O.OOOOooOE 00

o.oOOOOOOE 00
o.oOOOOOOE 00
O.OOOOOOOE 00
O.OOOOoooE 00
O.OOOOOOOE 00

O.. OOOOOOOE 00
O.OOOOOOOE 00
O.OOOOOOOE 00
O.OOOOOOOE 00
O.OOOOOOOE 00

O.OOOOOOOE 00
O.OOOOOOOE 00

-O.8333330E-Ol
-0 .. 8333330E-Ol

O.OOOOOOOE 00

O.OOOOOOOE 00
0.0000000£ 00
O.OOOOOOOE 00

-O.8333330E-Ol
-O.8333330E-Ol

O.. OOOOOOOE 00
O.. OOOOOOOE 00
O.OOOOOOOE 00'
O.8333330E-01
O.8333330E-Ol

0.1000000E 01
O.. OOOOOOOE 00
O.OOOOOOOE 00
O.OOOOOOOE 00
O.. OOOOOOOE 00

O.OOOOOOOE 00
O.OOOOOOOE 00
0.0000000£ 00
O.. OOOOOOOE 00
O.OOOOOOOE 00

O.OOOOOOOE 00
O.OOOOOOOE 00
O.OOOOOOOE 00
O.OOOOOOOE 00
O.OOOOOOOE 00

O.OOOOOOOE 00
O.OOOOOOOE 00

-0. 8333330E-0 1
O.OOOOOOOE 00
0 .. OOOOOOOE 00

O.OOOOOOOE 00
O.. OOOOOOOE 00
O.OOOOOOOE 00
0.1000000E 01
O.OOOOOOOE 00

O.OOOOOOOE 00
O.OOOOOOOE 00
0 .. OOOOOOOE 00
O.OOOOOOOE 00
0.1000000E 01

O.. OOOOOOOE 00
O.OOOOOOOE 00
O.OOOOOOOE 00
O.OOOOOOOE 00
O.OOOOOOOE 00

O.OOOOOOOE 00
O.. OOOOOOOE 00
O.OOOOOOOE 00
O.OOOOOOOE 00
O.OOOOOOOE 00

O.OOOOOOOE 00
O.1000000E 01
O.OOOOOOOE 00
O.OOOOOOOE 00
O.OOOOOOOE 00

O.OOOOOOOE 00
O.OOOOOOOE 00
O.OOOOOOOE 00
0 .. ooOOOOOE 00
O.. OOOOOOOE 00

O.. OOOOOOOE 00
-0.6666670£-01

O.OOOOOOOE 00
O.OOOOOOOE 00
O.OOOOOOOE 00

O.OOOOOOOE 00
O.OOOOOOOE 00
O.. OOOOOOOE 00
O.OOOOOOOE 00
O.OOOOOOOE 00

O.OOOOOOOE 00
O.OOOOOOOE 00
O.OOOOOOOE 00
O.OOOOOOOE 00
O.OOOOOOOE 00

0 .. 1000000E 01
O.. OOOOOOOE 00
O.OOOOOOOE 00

_ O.OOOOOOOE 00
O.. OOOOOOOE 00

O.OOOOOOOE 00
O.OOOOOOOE 00
0 .. 0000000£ 00
0.0000000£ 00
0.0000000£ 00

O.OOOOOOOE 00
O.. OOOOOOOE 00
0.0000000£ 00
O.1000000E 01
O.OOOOOOOE 00

O.OOOOOOOE 00
O.. OOOOOOOE 00
O.. OOOOOOOE 00
O.OOOOOOOE 00
O.OOOOOOOE 00

O.OOOOOOOE 00
O.OOOOOOOE 00
O.. OOOOOOOE 00
0 .. 0000000£ 00
0 .. 1000000E 01

O.OOOOOOOE 00
0 .. 1000000E 01
o.. OOOOOOOE 00
O.OOOOOOOE 00
O.OOOOOOOE 00

O.OOOOOOOE 00
O.OOOOOOOE 00
O.OOOOOOOE 00
O.OOOOOOOE 00
O.OOOOOOOE 00

O.OOOOOooE 00
O.OOOOOOOE 00
O.OOOOOOOE 00

-O.8333330E-Ol
O.OOOOOOOE 00

O.OOOOOOOE 00
O.OOOOOOOE 00
O.OOOOOOOE 00
O.8333330E-Ol

-O.8333330E-Ol

O.OOOOOOOE 00
O.OOOOOOOE 00
O.OOOOOOOE DO
O.OOOOOOOE 00
O.8333330E-Ol

O.OOOOOOOE 00
O.OOOOOOOE 00
O.OOOOOOOE 00
O.OOOOOOOE 00
O.OOOOOOOE 00

O.OOOOOOOE 00
-O.66b6610E-01

O.OOOOOOOE 00
O.OOOOOOOE 00
O.OOOOOOOE 00

O.OOOOOOOE 00
O.OOOOOOOE 00
O.b666610E-01
O.OOOOOOOE 00
O.OOOOOOOE 00

O.OOOOOOOf 00
O.OOOOOOOE 00
O.OOOOOOOE 00
O.OOOOOOOE 00
o.OOOOOOOE 00

O.OOOOOOOE 00
O.OOOOOOOE 00
O.OOOOOOOE 00
O.OOOOOOOE 00
O.OOOOOOOE 00

O.OOOOOOOE 00
0.1000000E 01
O.OOOOOOOE 00
O.OOOOOOOE 00
O.OOOOOOOE 00

O.OOOOOOOE 00
O.OOOOOOOE 00
O.OOOOOOOE 00
O.OOOOOOOE 00
O.OOOOOOOE 00

O.OOOOOOOE 00
O.OOOOOOOE 00
O.OOOOOOOE 00
O.OOOOOOOE 00
O.OOOOOOOE 00

ROW 3

ROW '"

ROW 6

ROW 5

ROW 8

ROW 9

ROW 14

RON 15

RON 16

RON 13

ROW 12

ROW 11 O.OOOOOOOE 00
O.OOOOOOOE 00
O.OOOOOOOE 00

----g:ggg~g~g~gg
O.OOOOOOOE 00
O.OOOOOOOE 00
O.OOOOOOOE 00

_0.1000000E 01
O.OOOOOOOE 00

O.OOOOOOOE 00
O.OOOOOOOE 00
O.6666610e-Ol
O.OOOOOOOE 00
O.OOOOOOOE 00

O.OOOOOOOE 00
O.OOOOOOOE 00
O.OOOOOOOf 00
O.OOOOOOOE 00
O.OOOOOOOE 00

O.OOOOOOOE 00
O.OOOOOOOE 00
O.OOOOOOOE 00

-O.8333310E-Ol
.-O.8333330e-Ol

ROW 1 O.OOOOOOOE 00
_________ O.OOOOOOOE 00

O.OOOOOOOE 00
O.8333330E-Ol
O.8333330E-Ol

O.OOOOOOOE 00
O.OOOOOOOE 00

------ -O~OOOOOOOE 00
O.OOOOOOOE 00
O.OOOOOOOE 00

O.1000000E 01
O.OOOOOOOE 00

---.--- -O--;OOOOOOOE 00

O.OOOOOOOE 00
O.OOOOOOOE 00

0.0000000£ 00 0.0000000£ 00
O.OOOOOOOE 00 O.OOOOOOOE 00.
0.0000000£ 00 O.OOOooOOE 00
0.0000000£ 00, O.1000000E 01

RON 17

ROW 18

O.OOOOOOOE 00
O.OOOOOOOE 00
O.OOOOOOOE 00
O.OOOOOOOE 00
0.1000000E 01

O.OOOOOOOE 00
O.OOOOOOOE 00
O.OOOOOOOE 00
O.OOOOOOOE 00
O.OOOOOOOE 00

O.OOOOOOOE 00
O.OOOOOOOE 00
O.1000000E 01
O.OOOOOOOE 00
O.OOOOOOOE 00

O.OOOOOOOE 00
O.OOOOOOOE 00
O.OOOOOOOE 00
O.OOOOOOOE 00
O.OOOOOOOE 00

O.OOOOOOOE 00
O.OOOOOOOE 00
o.ooOOOOOE 00
O.OOOOOOOE 00
O.OOOOOOOE 00

O.OOOOOOOE 00
o.oOOOOOOE 00
o.OOOOOOOE 00
O.OOOOOOOE 00
o.OOOOOOOE 00

O.OOOOOOOE 00
O.OOOOOOOE 00
O.. OOOOOOOE 00
O.OOOOOOOE 00
O.OooOOOOE 00

O.OOOOOOOE 00
0.0000000£ 00
O.. OOOOOOOE 00
O.OOOOOOOE 00
O.OOOOOOOE 00

O.OOOOOOOE 00 ~

o.oOOOOOOE 00
o.ooOOOOOE 00
0.0000000£ 00
0 .. 0000000£ 00

0.00000001: 00
O.OOOOOOOE 00
O.OOOOOOOE 00
O.OOOOOOOE 00
O.OOOOOOOE 00

O.OOOOOOOE 00
O.OOOOOOO( 00
O.1000000E 01
O.OOOOOOOE 00
O.OOOOOOOE 00

O.OOOOOOOE 00
O.OOOOOOOE 00
O.OOOOOOOE 00
O.OoOOOOOt: 00
O.OOOOOOOE 00

O.OOOOOOOE 00
0.1000000£ 01
O.. OOOOOOOE 00
O.OOOOOOOE 00

O.OOOOOOOE 00
O.OOOOOOOE 00
O.1000000E 01
O.OOOOOOOE 00

O.OOOOOOOE 00
o. 0000000£ 00
o.oOOOOOOE 00
0.00000001: 00

O.OOOOOOOE 00
O.1000000E 01
o .. OOOOOOOE 00
O.OOOOOOOE 00

O.OOOOOOOE 00
O.OOOOOOOE 00
0.0000000£ Oll
0.0000000£ 00

O.OOOOOOOE 00
0.0000000£ 00
0.0000000£ 00
O.OOOOOOOE 00

0.0000000':: 00
0.1000000£ 01
o.OOOOOOOE 00
o.OOOOOOOE 00

"'"0.'1 20 0.0000000£ 00
O.OOOOOOOE 00
O.OOOOOOOE 00
O.OOOOOOOE 00
O.OOOOOOOE 00

O.OOOOOOOE 00
O.. OOOOOOOE 00
O.1000000E 01
O.OOOOOOQI: 00
O.OOOOOOOE uu

0.00000001: 00
O.OOOOOOOE 00
0 .. OOOOOOOE: 00
0 .. OOOOOOOE 00
o!OtlOOOOOE 00

O.OOOOOOOf, 00
O.OOOOOOOc 00
o. euDOOOOE 00
O.01100000t: no
o.ouonooQl.; 00

O.OOOOOOOE 00
o.OOOOOOOE: 00
o.OOCOOOOf 00
O.looooOOE 01

O.OOOOOOOE 00
o.. OOOOOOOE 00
O.OOOoooOE 00
0 .. 1000000E 01

O.OOOOOOOE 00
O.OOOOOOOf 00
o.oooooooE 00
O.OOOOOOOE 00

Appendix D Computer Solution for Heyman Frame
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PLASTIC HINGt: ~O. 1 FOR"eO AT Plil~T L6 297.16
LOAD FACTOR ADDITIONAL

suce O.17to2112E 01

OEFORMAT I ON AOOIT I O:-lAl

tU~ULAT IVE

0.17to2112E 0 L

CUMULATIVe

., 1
AT 2
AT 3
AT •
AT 5
AT •
AT 1
AT 8
AT •
AT 10
AT 11
AT 12
AT 13
AT H
AT 15
AT 16
AT 11
AT 18
AT 19
AT 20

MOMENT

AT 1
., 2
AT 3
AT •
AT 5
AT •
AT 1
AT 8
AT •
AT 10
AT 11
AT 12
AT 13
AT 14

'):~ t:
AT 11
AT 18
AT 19
AT 20
AT 21
AT 22
AT 23
AT '.... 2"'
AT 25
AT 26
AT 21
AT 28
AT 29
AT 3D
AT 31
AT 32

0.n61~17E-01

0.535128.4e-Ol
0.530712IE-Ol
0.5642525E-Ol
0.2291726E 00
0.2061622E 00
0.1532138E 00
0.121l038E-OI
O.S519973E-02

-O.3615000e-03
-0.4013914E-02

0.3911923E-OZ
-0.1030965E-OZ

0.21193S9E-03
0.5899208E-02

-0.1801213E-02
0.130561t4E-OZ
0.1413990E-02

-0.Z335401E-02
0.1927612E-OZ

ADDITIONAL

-109.8803
-255.2833

255.2833
163.5027
-96.6562

-218.8554
218.8554
249.5827
-16.8987

-227.3768
227.3768
312.2976

33.0057
-233.4771

2:33.4717
350.0000

-126.8332
-38.2772

5.2711
-12.8215

29.1204
5.9834

90.6731
109.8804

-192.36",9
-169.3It07
-180.6593
-188.0883
-124.2090
-137.2727
-1l2.3098
~163.5026

0.15b1511E-Ol
0.535128-4E-Ol
0.B0712IE-OI
0.5b42525E-OI
0.Z291126E 00
0.Z0616Z2E 00
O.IS32738E 00
0.1213038E-OI
O.5519913e-02

-O.3615000e-03
-O.4013914E-02

0.3911923E-02
-0.1030965E-02

0.2119l59E-03
0.5899208E-02

-0.1801Z13E-02
0.1305644e-02
0.1't13990E-02

-0.Z335401E-02
0.1927612E-02

CUMULATIVE

-109.8803'
-255.2833

255.2833
163.5021
-96.6562

-218.8554
218.8554
249.5821
-16.8981

-227.3768
227.3768
312.2976

33.0051
-233.4777

233.4177
350.0000

-126.8332
-38.2712

5.2111
-12.8215,

29.7204
5.9834

90.6731
109.8804

-192.3649
-169.]407
-180.6593
-188.0883
-IZ4.2090
-137.2721
-112.]098
-163.5026

PUS MOM

318.3330
318.3330
318.3330
318.3330
318.3330
318.3330
318.3330
318.3330
350.0000
350.0000
350.0000
350.0000
350.0000
350.0000
350.0000
350.0000
213.3330
213.3330
213.3330
213.3330
213.3330
213.3330
213.3330
213.3330
213.3330
213.3330
213.3330
213.3330
213.3330
213.3130
213.)]30
213.3330

23

24 32

23 31
5 6 , 8

22 30

21 29, 10 11 12

20 ""

1. 2'
13 " 15 16

18 26

17 25- '-- - '--

MEMBER IDENTIFICATIOO SEQUENCE

HEYMAN'S FRAME

PLASTIC HINGE NO. Z- FORMED,AT POINT 25

LOAD FACTOR ADDITIONAL

STAGE O.1608411E 00

DEfORMATI ON

AT 1
AT 2
AT 3
AT •
AT 5
AT •
AT 1
AT 8
AT •
AT 10
AT 11
AT 12
AT 13
AT H
AT 15
AT 16
AT 17'
AT 18
AT 19
AT 20

MOMENT

AT 1
AT 2
AT •
AT •
AT 5
AT •
AT 1
AT 8
AT •
AT 10
AT 11
AT 12
AT 13
AT H
AT 15
AT 16
AT 17
AT 18
AT 19
AT 20
AT 21
AT 22
AT 23
AT 24
AT 25
AT 26
AT 21
AT 28

" 29
AT 30
AT 31
At 3Z

ADDITIONAL

0.7022406E-02
0.4Bl5532E-02
0.5488834E-02
0.1484012E-Ol
0.3892903E-01
0.3667161E-Ol
0.3078326E-01
0.1452562E-Ol
0.5177058E-03

-0. 346M57E-04
-0.3790476E-03

0.3630792E-03
-0.1044163E-03

0.5482599E-04
0.173090lE-03

-0.241289IE-03
0.1920655E-03
0.1608577E-02

-0.3557223E-04
0.1875937E-02

ADDIT 10NAL

-9.9812
-23.6370

23.6370
15.1231
-8.4408

-19.9998
19.9998
23.9381

5.6614
-22.0650

22.0650
33.9100
5.8339

-39.1062
39.1062

0.0000
-24.1615
-4.9480
-0.8859

-10.8653
5.2019
0.3065
8.1343
9.9812

-20.9681
1.4390

-1.4389
-21.5519
-12.3581
-13.9:.173
-9.9,.08

-n.1 :t)l

CUMULATlVE

0.1902953E 01

CUMUlATlYE

0:8263758E-Ol
0.5832837E-OI
0.5856605E-Ol
0.7126597E-01
0.2681016E 00
0.2428399E 00
0.1840570E 00
O. 8665599E~01
0.6037679E-02

-0.3961646E-03
-0.4453022E-02

0.",21,002E-02
-0. 113S44lE-02

0.2667619E-03
0.6612299E-02

-0.2042502E-02
0.1497709E-02
0.9022567E-02

-0.2310973E-02
0.3803S",9E-02

CUMULAT lYE

-119.861'
-278.9204

278.9204
178.6258

-10'.0970
-238.8552

2315.8552
273.5201
-11.2313

-249.4418
249.4418
346.2016

38.8396
-212.5839

212.5838
350.0000

-150.9941
-43.2252

4.3859
-23.6868

34.9243
6.2899

98.80'4
119.8616

-213.)]30
-161.9011
-182.098Z
-209.6402
-136.5611
-151.2101
-121.2506
-118.6258

PlAS MOM

318.3330
318.3330
318.3330
318.3330
318.3330
318.3330
318.3330
318.3330
Ho.OOOO
350.0000
350.0000
150.0000
350.0000
350.0000
350.0000
350.0000
213.3))0

1 213.3330
213.3330
213.3330
213.3330
213.3330
213.3330
213.3330
213.3330
213.3330
213.3130
2ll.H)/)
213.3))0
213.3)10
211. ))30
213.3330

DEFORMATIOO IDENTIFICATION SEQUENCE

HEYMAN'S FRAME

Appendix D (cont.)
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297.16
TO·40 FAC TOR

STAGE 11

·OE FORMAT I ON

'\DO I f I ONAl

0.2017249E-Ol

1\00 IT lONAl

CUMUL rdt VE

(l.223JltH:; lJl

.. ·cuM"lii.·..:;i fv'(-

.. "AT". -r- --.-- .. 0.7338172E-Ol 0.212c7·jH'-'"""0"'0.-----
AT 2 0.1432.35"-01 0."152}2h-UI
AT·· ·3 .. - 0: i04 "j94-1T 0·o-·-·--o-.Td-S7828E·-OO-· .---------.--
4T 4 O.Li86438t: 00 0.'37'82;01:: 00
AT' . 5'~'- '0'. JOIHO'4It:' 60" 6-~-9T25'~-8YC "oli--······
AT 6 O.2580480~ 00 O.A13q16)~ 00

-A-T--7-----0:2038937E 00 0.6'IOI2SE 00
AT 8 0.107145810 00 o. B'50324E 00
AT ..... -ij"····-· 6;464 7iB6{~-6i·-·---6-;·i429i44I~0T"··--·--

AT 10 -b.48no73E-02 -0.8470476E-02
A'T'" ·'-i i -~O-:·4·8ci2(ff7I=-oi· -----:·:6-:iiTCi6·jC:-oT···'-· ---.--------.--~

AT 12 0.240447"'-07. 0.9047118<-02
AT 13 -0.2776098E-03 -0.1809422E-02
AT 14 0.4079600.1:-02 0.66917'>8E-')2

-A""T-f5--------~·o-:67K4Ke5E-02-'---- -b-.-l<i·o-o63TE7 6r------
AT 16 -0.6986274E-02 -0.94'50560E-02

"""AT-1-7-----·0.4fi'i4rn-oi---·-(l":TITf3T7E-oi--··-·--·---.-

AT 18 0.9021518E-02 0.3055573E-Ol
AT 19 0.9353626E-02 0.1610212E-Ol

--.!.!..--1.Q..~ ~__o. B!!!t_~~J_Ls-02 .9. 2;} 3!..!2?-f::Q.L ~__~__

____M.Q~E!!.L.___ ADQ.!.:r.!.Q.£'~.~. __. ._~lJ'<~.L~'!-'-.'J.~_.__.__._-".I,.~.~._M..[J~ .

AT -9.0792 -154.93n 31e.3330
AT 0.0000 318 • .B30 318.3330
AT 3 0.0032 318.3365 31b.3330

-AT4---------"Q.OO~---·-··zH:-33C;T-·---·-·-_rru:3)j0---··-

AT 5 41.1791 -49.9351 318.3J30
~-----6-------"25:i280-----··-·---3fli;ci"j"[ij-··------···-J·i1J--;-3 3 30-·---·

AT 7 25.1282 318.3330 318.3330
AT 8 0.0000 318.3330 31H.3330
AT 9 -9.0772 4S.06Sb 350.0000--AT-· TO·--------··O·;-OOOO---···-·-·--·::3S·0-;-o1i"(jo--···· 350:lilyoci··

AT 11 0.0003 350.0002 350.0000----iiT-if-··· ···0;6000--···- ·T5o-:6000···········--··-···-~150.-00·0·o···

AT 13 -9.0776 45.06')5 350.0000
AT 14 0.0001 -34Y.9998 350.0000
AT 15 0.0000 350.0000 350.0000

--Ar-T6-·---···--0-:0OO0--------35-0--:6000-···-- -3~o-:00i16-

AT 17 0.0000 -213.3330 213.3330-.-...1C··T8--···-···-··-_·-·-1";·6609 -.. . ··~·S 'I:43Ti, ·······zT'i:D·lo·
AT 19 7.4169 14.3666 213.3330
AT 20 -"'.5373 122.6293 213.3330
AT 21 28.6153 77.5649 213.3330

- AT-ZZ----··--=TI;·i,674·-····-····---.:4Z:347Y--·-2-D-:-13-·j0-

4T 23 -17.7110 92.28l9 21l.3330
--li·T24--·-----·---ii:·0"faz····--···- ·-Ts4:ii363---·--·-·zT..:333o·········--

AI 25 0.0000 -213.3330 213.3330
AT 26 -7.7623 -169.2230 213.3330

,AT 27 7.7624 -160.7768 213.3330
--A"r-'---n--·--·-·-----·---~-···o:·oooo--·-------·-- ~2T3 •) 336'--·---·--------- -·---iT3-:-~fl-T(j

AT 29 0.0001 ..._.:.l.3.~~_6"6_"__.•.._ 2..1.3-,.3..330

·AT 30 -7.7624 -187.9727 2l"l.33·W
-Af-31---·----··----7;-76Z-6~-···- ···-=UO-:3-6·0e ·--·-1D-:) 330-

AT 32 0.0000 -213.3330 71.1.3330

DEFLECTION TOO LARGE

_._.c0LLAPSE MECHANISM HAS BEEN REACHEO

HI NGE RUTAT IONS

AT· POINT 1 -0.3000000E-09
---n-p01NT-· --2 ··-·0;r6153-64E"OC-

AT POINT 3 0.9000000E-09
---AT-P a r Nr---4--'::'0'~· 3'00 0 0 a 0 e=:O(F--- ----------------.-------------..----.

~{}:~~ ~ t~~ggggg·~<:-::;g""'~;---------------
AT POINT 7 -0.1700000E-08
AT POINT B -0.8707162E-02

-·-Af-p-oTNT~-9--=-(f:-1900-0(,.OE- 08----------------------------
AT POINT 10 0.1408325F-Ol
AT POINT 11 0.4000000E-09
AT POINT 12 -0.2064373E-Ol
Al POINT 13 O.1500000E-OR -~-----_._------------.-

Ar POINT 14 o.OOOOOOOE 00
--ArP6TN"f-E--=O;-3f022T1T~-------·-----·-·----

AT POINT 16 -0.4423154E-Ol
AT POINT 17 0.1767095E-Ol
AT POINT 18 -0.1100000E-08
AT POINT 19 0.2600000E-08
AT POINT 20 0.2800000E-OB

--'''-Cj'6iNi--zl·o-;-1600 00·C1F ~()B· -..- ...--..-----

AT POINI 22 0.1000000E-08
AT POINT 23 0.2700000E-OH
AT POINT 24 0.1300000F-08

-A-i-,,6fN"f--T5-·-0:2129304-f=-6T·---
AT POINT 26 0.1800000£-08

ATi'6iNTTi·--O;490boo oe::oa--- ..-.-..
:~ :g:~~ ~~ ~:~~~~~~~;-::~--:=~~;7;~---
AT POINT 30 0.2400000E-08

--AT-·pb-iNY··-3T·-u·;-450-iioo-liE"~O-8

. 2!..f.Q).!'!!.....3.L..Q~J.~.6_08.6~j'__,:9.L..
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W

IA B C

L 51 51~

(0) Assume EI =5000 kip. ft.

Mp =40 kip. ft.

( b) First Analysis

1.5625 W

1.875 W

w
~ ........L' q'y M

p

L~

(C) Second Analysis
Mp

Fig. 1 Elastic-Plastic Analysis (manual computation)
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(0)
LJc-~-----------------r~

/

- 7140
Available
moment
capacity 20

-- -- -- -- .....----

fL--=="===========t=t====~~-===d0
( b)

20

Unit load analysis

Unit load analysis x load foetor

40

20

~ . .r Available
/ "(: moment

/ '" capaci-ty

/ "
Unit load analysis

Unit load analysis x load foetor

o~====~=====E2~=i==~~
(e)

Fig. 2 Elastic-Plastic Analysis (machine computation)
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BA

I
~AB_

0
MBA

.,
-

t
t¢AB

(0)

BA

I
¢BA

~~
MBA

( b)

M =0AB,

BAI
I

¢AB
-¢BA

l

GMAB

----(e)

M =0BA

Fig. 3 t RelationsD"splacemenLoad 1 .
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Output Hinge Rotations

Dimension the Matrices I t
t Build Invert of Member

Stiffness Matrix

+Read Frame Number (JJ)
Collapse Reached
Output Reasons

Test -
JJ Exit
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Mp= I
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Fig. 6 Heyman's Frame
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