Lehigh University Lehigh Preserve

Fritz Laboratory Reports

Civil and Environmental Engineering

1965

Elastic-plastic analysis of plane flexural frames

H. B. Harrison

Follow this and additional works at: http://preserve.lehigh.edu/engr-civil-environmental-fritz-lab-reports

Recommended Citation

Harrison, H. B., "Elastic-plastic analysis of plane flexural frames " (1965). *Fritz Laboratory Reports*. Paper 1845. http://preserve.lehigh.edu/engr-civil-environmental-fritz-lab-reports/1845

This Technical Report is brought to you for free and open access by the Civil and Environmental Engineering at Lehigh Preserve. It has been accepted for inclusion in Fritz Laboratory Reports by an authorized administrator of Lehigh Preserve. For more information, please contact preserve@lehigh.edu.

LEHIGH UNIVERSITY

DEPARTMENT OF CIVIL ENGINEERING

ELASTIC - PLASTIC PLANE FRAME ANALYSIS

(1) A compiled Fortran programme is now available which will carry out a first-order elastic-plastic analysis of plane frames using the GE225 computer. The method was outlined in a paper by C. K. Wang of Wisconsin in the December, 1963 Journal of the Structural Division, ASCE. The analysis is by the Displacement method with a sequential determination of the location and load factor when plastic hinges are formed. At each stage, the deformations and bending moments are printed and the angular rotations of plastic hinges are output after the collapse mechanism has been found. The maximum size frame that can be analysed using the GE225 would consist of 10 members with 15 degrees of freedom. Point application of loads, moments only can be considered and load application positions must be treated as joints. For larger problems the source programme is available in Fortran so that other larger computers could be used. In its present form, the programme does not take into account directly the effects of axial load upon stiffness or plastic moment, and only flexural members can be accomodated, so that braced frames cannot be analysed.

(2) In using the compiled programme on the GE225 machine, all that is necessary is to prepare the relevant data in the appropriate form as below: Card 1. (a) Frame number (for identification) in Fortran Format 15. (b) Card 2. Degrees of freedom and TWICE the number of members in Format 215. Cards 3,---J

The statics matrix (all elements) in Format 7F10.4.

(c)

-1-

(d) Cards L,---N The stiffness matrix in Format F10.4 in the following sequence: S11, S12, S22, S23, S33, S34,-----Snn. Cards M----P (e) Elements of the plastic moment vector in Format 7F10.4. (f) Card Q The unit load set number in Format I5 (must be positive). Cards R----S (g) The unit load set in Format 7F10.4 For more load sets, continue with set number, the stiffness matrix again, and the load set Card T (h) If no more load sets, a negative integer in Format I5. (i) Cards W----W Further frames, repeating the sequence (a) to (h). (j) Card X For no further frames, a negative integer in Format 15. Hence the run will end when two negative integers have been read sequentially; (k) Cards Y,Z Blank cards.

Note on Fortran Format (b denotes space) examples of I5: Card 1 bbbb2, Card 2 bbb35, Card 3 bbb-4 examples of 215: Card 1 bbbb2bbb35, Card 2 bbb23bbbb3 examples of F10.4: Card 1 bbb-63.832, Card 2 bbb0.0bbbb for 7F10.4, 7 such entries per data card are permitted, each within field of width 10.

(3) <u>The Stiffness Matrix</u> This matrix represents the assembled load-displacement relationship for all the frame elements and the form chosen follows the usual slope-deflection convention. For a member 1-2,

$$\begin{bmatrix} M_{12} \\ M_{21} \end{bmatrix} = \begin{bmatrix} \frac{4EI}{L} & \frac{2EI}{L} \\ \frac{2EI}{L} & \frac{4EI}{L} \end{bmatrix} \times \begin{bmatrix} \emptyset_1 \\ \\ \emptyset_2 \end{bmatrix}$$

For the whole frame, $M = S \circ \emptyset$ where M and \emptyset are column vectors and S is a triple-diagonal square matrix of order equal to twice the number of frame members. The ends of each member must be identified by numbers quite distinct from any joint numbering system.

<u>The Statics Matrix</u> This matrix represents the equilibrium equations for the frame.

$$W = A \cdot M$$

W is a column vector with as many elements as degrees of freedom and M is the column vector as above, listing the internal moments at member ends. Hence there will be twice as many elements in M as there are frame members.

The Plastic Moment Matrix is a column vector similar to M listing the moment capacities available at each end of all members.

The unit load set is the matrix W as above.

<u>Note:</u> The statics matrix A is the transpose of the more familiar displacement matrix A^{T} which relates kinematically the relative to absolute deformations.

$$\phi = A^{T} \cdot \Delta$$

Both matrices are readily assembled and if this is done, a useful check on mistakes is available.

Limitations:

In addition to the general limitation on frame size that can be accomodated by the Lehigh computer, there are two other important limitations

-3-

on the efficiency of the programme.

1

- (1) It is assumed that a plastic hinge once formed stays formed and if this is not the case for a frame, the results will not be of much use except that the load factor at collapse will err on the safe side. This follows from the fact that equilibrium and yield conditions will have been satisfied but not so the mechanism condition.
- (2) It is also assumed that no strain reversal takes place in the frames of progressively detereorated stiffness that are analysed. However, the printed output is sufficient to indicate whether this phenomenon has occurred. It is not likely that this weakness will seriously limit the usefulness of the programme as the phenonemon has occurred only once in ten frames that have been analyzed by the author.

H. B. Harrison March 26, 1965

-5-

Assume $M_p = 40$ Ton ft. Assume EI = 5000 Ton-ft.²

Statics Matrix (external loads as functions of stress resultants).

$$\begin{bmatrix} M_1 \\ M_2 \\ Y_3 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 1 & 0 \\ -0.2 & -0.2 & 0.2 & 0.2 \end{bmatrix} \mathbf{X} \cdot \begin{bmatrix} M_{12} \\ M_{21} \\ M_{34} \\ M_{43} \end{bmatrix}$$

Stiffness Matrix (stress resultants as functions of relative and slopes).

M ₁₂	=	4000	2000	0	0	Х	Ø ₁₂
м ₂₁		2000	4000	0	0		Ø ₂₁
M ₃₄		0	0	4000	2000		Ø ₃₄
м ₄₃		0	0	2000	4000		ø ₄₃
- -	•	L					

The computer output for this example follows.

ELASTIC PLASTIC FIRST ORDER ANALYSIS OF FRAME NO. 2

THE STATICS MATRIX A

ROW	ï	0.1000000F 01	0.	0.	0.
ROW	Ś	0.	0.1000000E.01	0.1000000E 01	0.
RÚW	3	-0.200000E-00	-0.200000E-00	0.2000000E+00	0.200000E-00
THE	STIF	FNESS MATRIX S			
ROW	Ĩ	0.4000000E n4	0.2000000E 04	υ.	0.
ROW	2	0.2000000E n4	0.400000E 04	0.	0.
ROW	3	0.	0•	0.4000000E 04	0.2000000E 04
ROW	4	0.	0.	0.2000000E 04	0.4000000E 04

THE EXTERNAL LOAD VECTOR SET NO. 1

ROW	1	0.	
ROW	2	0.	
ROW	3	0.100000F 01	
DEFL	EČT	IONS DUE TO UNIT LOADS	
ROW	Ĩ.	0.6250000F+03	
ROW	2	-0.1562500E-03	
ROW	3	0.1822917E-02	
MOME	NŤS	DUE TO UNIT LOADS	
ROW	ĭ	0.	
RÓW	Ż	-0.1562500F 01	
ROW	3	0.1562500E 01	
ROW	4	0.1875000E 01	

	PLAS	TIC.	HINGE	<u>NO.</u>	1	FORMEI	DAT	POINT	4			
, 	LOAD	FAC	TOR	ADDI	r'i On	AL		CUMUL	ATI	I V E		
	STAG	EÌ	1)	0.21	1333	333E 0	?	0.21	333	33E 02		
	DEFL XI XI XI XI	EĈT 1] 2] 3]	1 O N	ADD1 0.13 -0.3 0.3	F T O M 3 3 3 1 3 3 3 3 3 3 3 3 8 8 8	NAL 333E-0: 333E-0: 889E-0:	1 2 1	CUMUL 0.13 -0.33 0.36	AT 1 3333 3333 3888	IVE 333E=01 333E=02 389E=01		
	MOME M [M [M [M [NT 1] 2] 3] 4]		ADD1 -30 -30 -4	TION 3.33 3.33 3.37	NAL 333 333 100		CUMUL (-33 33 4(ATJ). 5.33 5.33).00	4 V E 3 3 3 3 3 0 0	PLAS 40. 40. 40. 40.	MOM 0000 0000 0000 0000
	DEFL	ECTI	IONS DL	ЈЕ ТО	UN	T LOAT	DS					
	ROW	1	0.12	250001	0E-1	n 2						
	ROW	Ś	0.									
	ROW	3	0.41	6666	7E=1	Ú 2						
	MOME	NŤS	DUE TO) (INT	T L	NANS						
	ROW	1	0.									
	ROW	Ż	-0.25	>0000		n 1						
	ROW	3	0.2	500001	DE (n 1						

ROW 4 0.

PLASTIC HINGE NO. 2 FORMED AT POINT 2

LOAD FACTOR	ADDITIONAL	CUMULATIVE	
STAGE[2]	0.2666667E 01	0.2400000E 02	
DEFLECTION	ADUITIONAL	CUMULATIVE	
X[1]	0.3333333E-02	0.1666667E=U1	
X[2]	0.	-0.3333333E-02	
xt 31	0.111111E-01	0.500000E-01	
MOMENT	ADDITIONAL	CUMULATIVE	PLAS MOM
MC 11	Ο.	0.	40.0000
M[2]	=6.6667	-40.0000	40.0000
M[3]	6.6667	40.0000	40.0000
Mf 41	0.	40.0n00	40.0000

DIVISION BY ZERO IN INVERSION

COLLAPSE MECHANISM HAS REEN REACHED

			HINGE ROTATIONS
<u>A</u> T	POINTE	1]	-0.2182787E-10
AT	POINTE	51	-0.2910383E-10
A T	POINT	31	-0.4345575E-10
AT	POINTE	4]	-0.3333333E-02

Plastic Design in High Strength Steel

THE ELASTIC-PLASTIC ANALYSIS

OF PLANE FLEXURAL FRAMES

Ъy

H. B. Harrison

FRITZ ENGINEERING

This work has been carried out as part of an investigation sponsored jointly by the Welding Research Council and the Department of the Navy with funds furnished by the following:

American Institute of Steel Construction American Iron and Steel Institute Institute of Research, Lehigh University Column Research Council (Advisory) Office of Naval Research (Contract No. 610(03)) Bureau of Ships Bureau of Yards and Docks

Reproduction of this report in whole or in part is permitted for any purpose of the United States Government.

July 1965

Fritz Engineering Laboratory Department of Civil Engineering Lehigh University Bethlehem, Pennsylvania

Fritz Engineering Laboratory Report No. 297.16

SYNOPSIS

An account is given of a Fortran program for the elastic-plastic analysis of plane flexural frames. The program has been developed from one first written by Professor C. K. Wang and has proved to be useful in the study of steel structures.

With a minimum of input data, the program will enable a computer to carry out a series of elastic analyses of a steel structure. The position of each plastic hinge will be determined as it is formed and the load factor and deformed state of the structure will be output as each such event occurs. When the collapse mechanism is found, the rotations at each plastic hinge are computed as well as the deformations and load factor at the outset of failure.

Frames of moderate size can be analyzed by currently operating machines but an upper limit will exist for the frame size that can be handled by any given machine.

The limitations of the program are discussed in detail and several examples are given of its application.

i.

CONTENTS

		Page
	SYNOPSIS	i
I	INTRODUCTION	1
II	ELASTIC-PLASTIC ANALYSIS	3
III	ELASTIC FLEXURAL ANALYSIS	7
IV	DESCRIPTION OF PROGRAM	11
v	PROGRAM LIMITATIONS	15
VI	CONCLUSION	19
VII	ACKNOWLEDGEMENTS	20
VIII	NOMENCLATURE	21
IX	APPENDICES	23
	Appendix A The Fortran Program	25
	Appendix B Propped Cantilever Solution	32
	Appendix C The Neal-Finzi Problem	34
	Appendix D The Heyman Frame Solution	36
х	FIGURES	39
XI	REFERENCES	46

I INTRODUCTION

Professor C. K. Wang of the University of Wisconsin first described the basic principles of a computer program to analyze elasticplastic structures in 1963⁽¹⁾ and made available to the author the Fortran coding of his scheme which was in a form suited to the CDC 1604 machine of Wisconsin. In modifying the program to suit the GE 225 machine at Lehigh University it soon became apparent that with the reduced storage capacity available, some attention should be paid to the reduction of the dimensioned arrays used by the program so that frames of reasonable size could be accommodated. The efficiency of the program has been improved in various ways which will be outlined in this report but the basic operating principles and solution techniques used originally by Wang are retained and due acknowledgement is paid for the ingenious way in which he has achieved his goal.

Basically, the program will carry out a series of first-order elastic analyses of a frame in which free hinges are successively introduced at those sections at which localized plastic hinges are assumed to develop at the load system is increased uniformly. Accordingly, it can be appreciated that the program must incorporate two distinct capabilities. The first is a system of "bookkeeping" in which a record is kept of the moments existing at all possible plastic hinge positions in a frame. The moments are compared with the available plastic moment capacity to detect whether or not the next plastic hinge is to form at any given position. The second capability is the utilization of a form of first order elastic analysis which can be applied simply and successively to frames of deteriorated stiffness as hinges are inserted. The type of displacement analysis

described by Clough⁽²⁾ and used by Wang is well suited for this purpose. Brief explanations will be given of both sections of the program since the functioning and limitations of the scheme can only be understood in their light.

II ELASTIC-PLASTIC ANALYSIS

It is often the case that the form of an analysis carried out by hand would not be a desirable one to program for a computer. Neal and Symonds⁽³⁾ have proposed a method for estimating the deformations near collapse of rigid frames and it has been used by Heyman⁽⁴⁾ and Vickery⁽⁵⁾ in a study of the effects of deformation and strain hardening on the collapse load. Heyman⁽⁶⁾ has subsequently used a different approach based on Virtual Work to achieve the same end. In all methods, the mechanism of failure is found previously and the deformations at failure are determined by first finding the position where the last-to-form plastic hinge would occur. These methods have had the common aim of avoiding the onerous computation of load factors and deformations as each plastic hinge is formed when the load intensity is progressively increased. This latter approach is probably the best to use with a computer as intuitive judgements are eliminated. In such a method of computation, once it-has been decided that a plastic hinge exists at some position, the next stage in the analysis concerns the same initial frame with a free hinge at the position nominated, but subjected to a new loading system. The new system would consist of the original set of unit loads together with a moment of the full plastic value acting as an external action on the ends of the members meeting at the "hinge". The method is demonstrated in Fig. 1 for a propped cantilever where the results of the first elastic analysis shown in Fig. 1 (b) indicate that the first plastic hinge will form at position C. Inserting a free hinge at C, it can be seen that the second and final analysis shown in Fig. 1 (c) is that of a simply supported beam with an extra external action, namely the moment M_p, acting at C. This approach presents no problems for

a hand solution, but it would be inefficient for a machine solution because of the necessity of providing for the extra degree of freedom and the corresponding new loading term in the dimensioning of the various matrices affected by the degree of freedom. If provision had to be made for an extra degree of freedom at every position where a hinge was likely to form, a small frame would rapidly fill the available data storage capacity of a computer.

The alternative system used by Wang does not involve the same difficulties and is illustrated for the propped cantilever shown again in Fig. 2. The results of the first elastic analysis are shown in Fig. 2(b)and in row 4 of Table I. The load factors in row 5, obtained by dividing the available moment capacity at each position by the unit moment at the same position, determine where the first plastic hinge will form. This will be the case at that position where the load factor is smallest as shown in row 6. The moments at all positions when the first hinge has formed are shown in row 8 and the residual moment capacity is shown in row 9 of the table and also in Fig. 2(c). With a free hinge inserted at position 4 in Fig. 2, the frame is again analyzed for the original loading system as in row 10 with the load factors determined by dividing the residual moment capacities by the unit load moments. It is in this respect, illustrated in Fig. 2(c) that the machine solution devised by Wang differs from the hand solution technique.

It can also be seen from Table I that the procedure is essentially cyclical. It is feasible to calculate the deformation at each stage but these results have not been included in the tabulation. A collapse mechanism will have been reached in the analysis when the structure has

been converted into a mechanism. The numerical indication of such a phenomenon can be in several forms. It may be that the coefficients in the stiffness equations would form a singular matrix so that zero division would be encountered in an attempted solution and would end the analysis. If this does not occur, the computed deformations would be very large which would indicate that the load-deflection diagram has become horizontal. Wang has explained the computer indications of frame failure in reference (1) though some of his collapse criteria have been eliminated in the present program for reasons which will be explained later.

The method chosen for systematizing an elastic-plastic analysis has been explained and its success as part of a computer program will obviously depend upon the provision of a method of elastic analysis which will deal in a simple fashion with the insertion of hinges in rigid frames.

Та	Ъ]	Lе	Ι
_	_	_	_

Numerical Analysis of Propped Cantilever Problem

	Position in Beam (Fig. 2)	1.	2.	3.	4.
1.	Initial moment capacity	40	40	40	40
2.	Cumulative moments to date	0 0	0	0	0
3.	Available moment capacity	40	40	40	40
4.	<u>Elastic Analysis l</u>				
	Moments due to unit loading	0	-1.56	1.56	1.83
5.	Load factors (row 3 ÷ row 4)*		25.64	25.64	21.33
6.	Smallest load factor (SLG)				21.33
7.	Unit moments x SLG	0	-33.33	33.33	40
8.	Cumulative moments to date	0	-33.33	33.33	40
9.	Avail. capacity (row 1 - row 8)	40	6.67	6.67	0
10.	<u>Elastic Analysis 2</u>				
	Moments due to unit loading				
	with hinge at position 4	0	-2.5	2.5	0
11.	Load factors (row 9 ÷ row 10)*	-	2.66	2.66	*
12.	Smallest load factor (SLG)		2.66	· · ·	
13.	Unit moments x SLG	0	-6.67	6.67	Ò
14.	Cumulative moments to date	0	-40	40	40
15.	Avail. capacity (row 1 - row 14)	40	0	0	0
16.	Elastic Analysis 3 with	(Either	zero divi	sion or ver	ry large
	hinges at positions 4 and 2	deform	ations wil	l result)	

* Positions where moment is near zero are not included in search for smallest load factor to avoid premature zero division stop.
(The computer output for this problem is shown in Appendix B)

III ELASTIC FLEXURAL ANALYSIS

The displacement method of frame analysis can be formulated in many forms, all with the common characteristic that the load-displacement behavior of a frame as a whole is built up from a knowledge of the loaddisplacement relationship for its component members. In the case of a flexural frame, the elementary component will be a straight prismatic member as shown at (a) in Fig. 3 and if axial and shear stiffnesses are assumed infinite, the load displacement relationships take the form of the simple slope-deflection equations,

$$M_{AB} = \frac{2EI}{L}(2 \ \emptyset \ AB + \emptyset \ BA)$$

$$M_{BA} = \frac{2EI}{L} (\phi AB + 2 \phi BA)$$

which can be expressed in the matrix form,

$$\begin{bmatrix} M_{AB} \\ M_{BA} \end{bmatrix} = \begin{bmatrix} \frac{4EI}{L} & \frac{2EI}{L} \\ \frac{2EI}{L} & \frac{4EI}{L} \end{bmatrix} \cdot \begin{bmatrix} \emptyset AB \\ \emptyset BA \end{bmatrix}$$

$$(SR_{AB}) = (S_{AB}) \cdot (\emptyset_{AB})$$

$$(1)$$

or

For all the members of a frame, the similar equations for each member may be assembled in the matrix equation,

$$(SR_{AB}) = (S_{AB}) \cdot (S_{BC}) \cdot (\emptyset AB)$$

$$(SR_{BC}) = (S_{BC}) \cdot (\emptyset BC) \cdot (\emptyset BC)$$

$$(SR_{CD}) \cdot (S_{CD}) \cdot (\emptyset CD)$$

or

$$SR) = (S) \cdot (\phi)$$

(

(2)

where (S) is called the member stiffness matrix and (SR) will be a column matrix or vector listing the moments acting at the ends of all frame members. It is usually a simple matter to write down the equations of statics which relate these moments (called stress resultants) to the applied loads.

5

 $(W) = (A) \cdot (SR)$ (3)

The load vector (W) must have as many terms as the degree of freedom of the structure since deformations are measured by the movement of loads (whether real or virtual) in a displacement analysis. If the degree of freedom is \vec{L} and the number of members is NM, then the statics matrix (A) will be of order $\vec{L} \ge 2NM$. Only for a statically determinate structure will $\vec{L} = 2NM$ so that inversion of(A) is then possible and the stress resultants will be known in terms of loads without any further analysis. Finally, the relative deformations within each member (\emptyset) can be expressed in terms of movements of the loads (X) by a kinematics matrix C,

$$(\phi) = (C) \cdot (X) \tag{4}$$

and it can be shown⁽¹⁾ that the matrix (C) is the transpose of the statics matrix (A). Hence, the load-displacement equations for the whole structure can be expressed,

 $(W) = (A) \cdot (S) \cdot (A^{T}) \cdot (X)$ (5)

where the triple matrix product $(A \cdot S \cdot A^T)$ is the stiffness matrix (K) of the frame. For a given set of loads (W), the displacements can be determined by standard equation solution programs. Thereafter, the moments at the ends of each frame member can be computed from Eqs. (2) and (4),

$$(SR) = (S) \cdot (A^{T}) \cdot (X)$$
 (6)

This form of first order frame analysis can accommodate the modification associated with the insertion of a hinge within a structure. There are two ways in which the modification can be made. The obvious way is to consider the extra degree of freedom involved and to add a row to the matrix (A) (and a corresponding column to A^{T}) leaving the member stiffness matrix (S) unchanged. It has been explained earlier that this approach would be impracticable in a computer program as all possible changes in the degree of freedom would have to be accounted for in the initial dimensioning and establishment of the statics matrix (A). The alternative approach adopted by Wang was to keep (A) and effectively \overline{L} unchanged and modify the member stiffness matrix (S). The procedure can be understood by referring

to Fig. 3(b). If a hinge is present at the end A of member AB, the slope-

deflection equations become,

$$M_{AB} = 0 = \frac{2EI}{L} (2\phi_{AB} + \phi_{BA}) ; M_{BA} = \frac{2EI}{L} (\phi_{AB} + \phi_{BA}) \text{ and hence,}$$

$$\begin{bmatrix} M_{AB} \\ M_{BA} \end{bmatrix} = \begin{bmatrix} 0 & 0 \\ 0 & \frac{3EI}{L} \end{bmatrix} \cdot \begin{bmatrix} \phi_{AB} \\ \phi_{BA} \end{bmatrix}$$
(7)

Similarly, if a hinge were to exist at the end B as in Fig. 3(c),

M _{AB}	-	<u>3E1</u> L	0		ØAB	(8)
M _{BA}		0	0	•	ØBA	

By adopting a numerical system rather than an alphabetic system for identifying the ends of each member, with the odd number always smaller than the even number, Wang was able to achieve the necessary changes to the matrix (S) in accordance with Eqs. (7) and (8) using the computed location of any hinge. For example, the substitution of a hinge at a

position 16 in any frame would necessitate the following alterations to the (S) matrix.

$$S^{1}$$
 (15,15) = $\frac{3}{4}$ S(15,15)
 S^{1} (15,16) = S^{1} (16,16) = S^{1} (16,15) = 0

where the primes denote the new values. If a hinge occurred at position 15,

$$s^{1}$$
 (15,15) = s^{1} (15,16) = s^{1} (16,15) = 0
 s^{1} (16,16) = $\frac{3}{4}$ S(16,16)

Simple tests exist in computer languages for detecting whether a number is odd or even and then the appropriate changes to the member stiffness matrix (S) can be made.

IV DESCRIPTION OF PROGRAM

The Fortran program is included in the Appendix A and the principal stages in its operation are shown in the flow diagram in Fig. 4. The first step is to dimension the arrays and it should be understood that the program will analyze frames whose arrays cannot exceed the initially set sizes but which can be of any size smaller than the initially set values. A discussion of the limitations on frames sizes that can be accommodated by a given machine will be given in the next section. The first item of data must be the identifying number of the frame which if negative, is regarded as the exit signal. Next, the degree of freedom L and the member count NM are read and these two numbers will control the sizes of all the subsequent arrays built within the store for the frame being studied. All the elements of the statics matrix are then read in row by row. This is followed by the member stiffness and plastic moment data with one card per member containing the EI/L and M_{P} values. From this information, the member stiffness matrix (S) and the plastic moment vector will be constructed in the store. The (S) matrix is output for checking, together with headings and the full statics matrix (A). Wang's original program has been modified considerably in this region by incorporating the ability to analyze the same frame for a series of different loading conditions. Accordingly, the next item input has to be the identifying number of the load set which is to follow. For load sets other than the first, the completely deteriorated member stiffness matrix is reconstructed before the analysis proceeds. It the load set number is negative, the program will look for data for a new frame and if no further frames are to be studied, the final card has to contain a negative integer

in the place of a frame identifying number. Hence, the final two cards in any run will contain negative integers. With the load set input and printed for checking purposes, the program proceeds with the analysis by building the frame stiffness matrix (K) from the member stiffness matrix (S) and the statics matrix (A) according to equation (5). The equations are solved for deformations and if these are too large, an indication is given that the frame has reached the collapse condition. Deformations exceeding the value of 10^4 are regarded as being too large. It this is not the case, the moments are computed using Eqs. (2) and (4) and the smallest load factor sought so that the position of a plastic hinge can be found.

This part of the program follows Wang's original scheme except for one alteration. It was found that erroneous results were produced for some frames by the original program because the load factors were computed by dividing the residual moment capacity by the absolute value of the moments caused by unit loading. Such a procedure is satisfactory provided the unit load moments at the critical positions are of the same sign in the successive analysis of the frames of deteriorated stiffness. It may well be the case that the moment at the position with the least reserve of strength may be decreasing under increasing load. A test has been incorporated in the section of the program concerned with the finding of the smallest load factor to determine whether such is the case and if so, the position in question is not included in the search for the smallest load factor.

In his program, Wang incorporated four separate tests to determine whether the collapse load for a frame had been reached. One of those tests involved the minimum load factor which, if too small, would indicate that

the load-deflection curve for a frame was close to horizontal. However, it was found that this test would frequently terminate prematurely the analysis for any frame where two plastic hinges might form simultaneously. This test has been omitted from the present program since it is considered that a deformation limitation will determine effectively whether or not the load-displacement curve might be horizontal. Only one of the other two tests for collapse which were provided by Wang has been retained. This is the test which outputs the message "division by zero in inversion" and it effectively determines the stage at which a row and column in the frame stiffness matrix (K) contains only zero terms. In theory, this is the only necessary test but the other is required because rounding-off errors in the floating point arithmetic could delay the program termination and invalidate the final calculation of plastic hinge rotations.

After the mechanism of failure has been found and the load factor and the cumulative moments and deformations at the maximum load are printed, the final computation concerns the amount of plastic rotation that would have occurred at the positions of all plastic hinges except the last formed. Referring to equation (2), the relative end slopes (ϕ) could be calculated by pre-multiplying the list of cumulative moments (SR) by the inverted form of the member stiffness matrix.

$$(\phi) = (S)^{-1} \cdot (SR)$$
 (9)

It can be noted that a simple inversion of (S) is not possible because at the final stages of an analysis, this matrix does not exist in its original form. Wang inverted (S) and stored the data at the beginning of his program but was aware of the fact that considerable economy of storage capacity would result if the elements of (S) were stored as a list and the matrix reconstructed in its actual or inverted form when required. This has been

done in the present program.

The slopes computed from equation (9) will be the same as those which can be calculated from equation (4) only at those positions where no plastic deformation has occurred. Accordingly, the amount of plastic hinge rotation can be expressed,

$$(\emptyset_{\rm P}) = ({\rm S}^{-1}) \cdot ({\rm SR}) - ({\rm A}^{\rm T}) \cdot ({\rm X})$$
 (10)

where the lists (SR) and (X) are the moments and deformations in the frame at the stage when the last plastic hinge has just been formed.

Finally, control is returned to see if any further load sets are to be studied for the frame in question. If so, the member stiffness matrix would need to be completely reconstructed as it would have been altered considerably in the course of the analysis for the first load set. If no further load sets are available, the program will commence the analysis of another problem. If there are no further frames to be studied, the run will terminate.

V PROGRAM LIMITATIONS

The program will perform a first-order elastic-plastic analysis of rigid planes of prismatic members and in its present form is strictly limited to this form of analysis. Since axial stiffness of members is assumed to be infinite, the axial forces present in the members are not calculated explicitly so that it is not possible to arrange for a progressive decrease in plastic moment capacity caused by the presence of axial load. However, it is always possible to account approximately for this effect by reading initial values for plastic moments, already reduced by the estimated axial loads at failure. To account explicitly for axial strains, the member stiffness matrix would consist of (3 x 3) units for each member instead of the (2×2) units currently specified so that for a limited computer store capacity, the size of frame to be handled would be curtailed drastically. To account for second-order effects in the displacement analysis, the axial forces in members would be needed with the capacity disadvantage mentioned above, but then the reduction in stiffness of each member could be readily computed and the member stiffness matrix modified progressively in essentially iterative solution procedure. Running time would increase greatly as a result.

The statics matrix also would require progressive modification to account for sway deformations and whereas programs can always be written to do this for any specific frame, it is difficult to visualize a general program that could account for the phenomenon for any type of rigid frame. The great advantage of Wang's scheme is that it can be used for any type of plane frame as a standard program.

The main limiting factor in the use of a general program for frame analysis is storage capacity since the use of matrix methods has the disadvantage that quite extensive arrays can be generated by only moderately sized structures. It is evident that methods can always be developed to utilize tapes as a backing store for a specific machine but the generality of a program is then lost. It is anticipated that core store capacities of computers of the next generation will be greatly in excess of those currently available, so that it will be possible to analyze with an elastic-plastic program the range of sizes of steel frames for which such an analysis is currently relevant.

In its original form, Wang's program required a storage capacity which can be expressed,

 $C \ge (\overline{L} + 2MN)^2 + 4NM^2 + 3\overline{L} + 14NM$ (11) where C = capacity,

> \overline{L} = degree of freedom, and NM = the number of members in a frame

As has been explained, there is no need to store the inverted form of the member stiffness matrix if this can be generated when required from a one dimensional list of member stiffness parameters. The capacity required for the modified program can be expressed,

 $C \ge (\overline{L} + 2NM)^2 + 3\overline{L} + 15NM$ (12)

As an example, a three-story, two bay rigid frame subjected to two-point loading on each beam would have 36 degrees of freedom and 27 members so that the original program would require a capacity of 11502 locations. The modified program would require the reduced capacity of 8613 locations. (The data capacity of the Lehigh GE 225 computer when using the elastic-plastic program was found to be 1860 whereas with an IBM 7074

machine, the capacity was 6850 locations.) It is apparent that load application positions have to be treated as joints so that a beam under twopoint loading constitutes three members. Consequently, the available capacity of a medium sized machine such as the GE 225 will be fully utilized by frames of only moderate size.

297.16

One further limiting factor should be mentioned. It can sometimes occur in steel frames that a plastic hinge which is formed early in the loading history may not be required in the collapse condition. The moment at such a section would decrease in magnitude and a plastic hinge would not then exist. This phenomenon cannot be accounted for in the present program as the process of free hinge insertion is irreversible. The calculated load factor for such a problem would err on the safe side since the equilibrium and yield conditions would be satisfied but not the mechanism condition. This phenomenon has been mentioned by Finzi⁽⁷⁾. The example of a two-span beam, which has been used by Neal⁽⁸⁾ to demonstrate this phenomenon, is shown in Fig. 5. For the loads shown at (a), an elastic analysis will produce a maximum moment at the point(4) as can be seen in (b). However, a simple plastic analysis will predict a failure mechanism with plastic hinges at (3) and (6) but not at (4). This can be deduced from the moment diagram shown at (d) in the figure. The results obtained from a computer analysis of this problem are in the Appendix C. It can be seen that the computer correctly detects the formation of the first hinge at position (4) and the second at (6) as shown at (c) in Fig. 5 but cannot account for the closing of the first formed hinge thereafter. Accordingly, it arrives at an invalid collapse mechanism with a load factor smaller than the correct one. Consequently, it is desirable for any frame to check the collapse mechanism arrived at by the computer to see whether or

54.

not it is valid.

A related problem is that of the formation of a plastic hinge under a distributed load. In such a case, the loading must be replaced by equivalent point loads, as many being chosen as the computer capacity will accommodate.

. . .

VI CONCLUSION

The Wang program is a very powerful tool in the analysis and design of steel structures and has been used to study the economics of steel frame design using the various grades of high tensile steel currently available. Any such study would evidently involve the analysis of many trial designs and, for frames other than simple one story portals, the computational problem would be insuperable without the use of a computer program such as the one described. As a final example, the frame analyzed by Heyman⁽⁶⁾ is shown in Fig. 6 and a selection of pages from the computer output is shown in the Appendix D. The computed load-sway curve is shown in Fig. 7. The complete print out for this frame consisted of over 40 pages and the total time for both compilation and execution on an IBM 7074 was less than 3 minutes. The preparation of the statics matrix which is the collection of all the equations of equilibrium for the structure was a simple matter taking less than half an hour. The print out of this matrix is also shown in the Appendix D. A more detailed explanation of statics matrices has been given elsewhere. (9)

The sign convention adopted in the solution of Heyman's problem is that in which clockwise moments acting on the ends of members are regarded as positive together with downward vertical loads. The program itself is not dependent upon any particular sign convention and will operate successfully as long as a self-consistent convention is adopted in the statics matrix and in the vector of applied loads.

VII ACKNOWLEDGEMENTS

The work described in this report has been carried out in the Department of Civil Engineering, Lehigh University in Bethlehem, Pennsylvania. Professor William J. Eney is Head of the Department and Dr. L. S. Beedle is Director of the Laboratory. The author gratefully acknowledges the very real assistance and advice of Professor Chu-Kia Wang of the University of Wisconsin whose program has formed the ba is of this report.

The encouragement of Dr. T. V. Galambos is very much appreciated.

The program has been run on the GE 225 Computer at Lehigh University with the assistance of Mr. J. Muir. Mr. Jackson Durkee made available the IBM 7074 machine at the Bethlehem Steel Corpration and Mr. J. R. Dawson ran the program on that unit.

At the time of writing, the author was on study leave from the University of Sydney, Australia.

297.16

NOMENCLATURE

(A)	the statics matrix
(A ^T)	the statics matrix transposed (= (C))
(C)	the kinematics matrix
C	computer capacity for data
Е	Young's modulus
I	second moment of area
I,J	identifying integers
(K)	the frame stiffness matrix
L	length of a prismatic member
Ĺ	degree of freedom
NM	count of the members in a frame
м _р	full plastic moment of resistance
MAB	moment applied at end A of member AB
(S)	the member stiffness matrix for a frame
(s _{AB})	member stiffness matrix for member AB
(SR)	stress resultant vector for a frame
(SR _{AB})	stress resultant vector for member AB
SLG	smallest load factor
S(I,J)	an element in the member stiffness matrix
S'(I,J)	a new value for S(I,J)
(S) ⁻¹	the inverted member stiffness matrix
(W)	the applied load vector
W	an applied point load
(X)	the frame deformation vector
(Ø _{AB})	relative deformation vector for member AB

- (Ø) relative deformation vector for a frame
- (ϕ_{p}) plastic hinge rotation vector

IX APPENDIXES

Appendix A

The Fortran Program

The statements of the program are contained in the following pages. (pp. 25 - 31) They are shown in the form used by the IBM 7074 computer but the only changes necessary for the GE 225 machine are the following substitutions:

READ for READ INPUT TAPE 1,

and

PRINT for WRITE OUTPUT TAPE 2,

Format requirements in Fortran impose some limitations on the choice of names for variables but as far as possible, the names used correspond with those used in the text. The identification of the principal variables used in the program is shown in Table II.

Table II Identification of Variables

,

Variable	In Text	In Program
the statics matrix	(A)	A(I,J)
load factors	-	ALG(I)
frame stiffness matrix	(K)	ASAT(I,J)
frame deformation vector	(X)	ASAT(I,L+1)
relative deformation vector	$(A^{T}) \cdot (X) = (\phi)$	ATX(I)
cumulative load factor	-	CLG
cumulative moment vector	-	CM(1)
relative deformation vector	(S^{-1}) $(SR) = (\emptyset)$	DM(1)
plastic hinge rotation vector	(Ø _P)	H(1)
frame identification number	.	JJ
load set identification number	-	KK
location of plastic hinge	-	NPH
analysis stage number	-	NCYCL
the applied unit load vector	(W)	P(I)
initial plastic moment vector	-	PM(1)
the member stiffness matrix	(S)	S(I,J)
an intermediate matrix product	$(S) \cdot (A^{T})$	SA T(1,J)
smallest load factor	-	SALG
moments caused by unit loads	(SR)	SATX(I)
member stiffness data vector	-	SDAT(1)

297.16

C LEHIGH UNIVERSITY FRITZ LABORATORY APRIL, 1965. C FIRST MARER ELASTIC PLANE FRAME ANALVSIS. OC RASIC PROGRAM BY C.K.WANG, UNIV. OF WISCONSIN, 1963. OC MODIFIED FOR IHM 7074 HY H.B.HARRISON. OC SPECIFY THE MAXIMUM SIZES OF ALL THE MATRIGES. OC DIMENSION ALTO, 431, ST484, ANI, SATLAB, 301, SATX481 OC DIMENSION ALTO, ALTO, SIAS, SIAT, SATALAB, AND, SATX481 OC OTHERSION ALTO, ALTO, SATALAB, SATLAB, SATLAB, AND, SATX481 OC OTHERSION ALTO, ALTO, SATALAB, SATLAB, ALTO, ALTO, ALTO, SATX481 OC OTHERSION ALTO, ALTO, SATALAB, SATLAB, ALTO, ALT	-			······	
C LEHIGH UNIVERSITY FRITZ LABORATORY APRTL, 1965. C FIRST ORDER ELASTIC PLANE FRAME ANALOSIS. C RASIC PROGRAM BY C.K.WANG, UNIV. OF WISCONSIW, 1963. C MODIFIED FOR IBM 7074 RY H.B.HARRISON. C SPECIFY THE MAXIMUM SIZES OF ALL THE MATRICES. C SPECIFY THE NUMBER. EXIT IF NEGATIVE. C SPECIFY THE NUMBER. EXIT IF NEGATIVE. C SPECIFY TAPE 1. 13, JJ 13 FORMAT [115] 14 F CJJ] 99,5,5 C SPECIFY THE SIGNES OF THE STATICS MATRIX A. C SPECIFY THE MEMBER PROPERTIES. EIVL AND MP. C SPECIFY THE MEMBER PROPERTIES. EIVL AND MP. C SPECIFY THE MEMBER STIFFNESS MATRIX S. C SPECIFY THE MEMBER STIFFNESS MATRIX S. C SPECIFY THE SIGNES MATRIX S. C SPECIFY SIGNES STORES SIGNES MATRIX S. C SPECIFY SIGNES STORES SIGNES STOR	Ċ		•		000
FIRST ARDER ELASTIC PLANE FRAME ANALÝSIS. C RASIC PROGRAM BY C.K.HANG, UNIÝ, OF WISCONSÍN, 1963. MODIFIED FOR IBM 7074 RY H.B.HARRISON. C MODIFIED FOR IBM 7074 RY H.B.HARRISON. C SPECIFY THE MAXTMUM SIZES OF ALL THE MATRICFÉ. DIMENSION AI30,441. SI48,441, SATL48,301, SATX1481 DIMENSION AI30,441. SI48,441, SATL48,301, SATX1481 DIMENSION CXISO1, CMI481, SDAT[24], UM[46] DIMENSION AT7(481, HIAR] C INPUT FRAME NUMGER, EXIT IF NEGATIVE. 9 GEAD INPUT TAPE 1, 13, JJ 13 FORMAT [115] 14 FORMAT [115] 5 GEAD INPUT THE DEGREES OF FREEDOM L, MEMBER COUNT NM. C INPUT THE DEGREES OF THE STATICS MATRIX A. C INPUT THE DEGREES OF THE STATICS MATRIX A. C INPUT TAPE 1, 23, L, NM 23 FORMAT [215] M = 2 + NM C INPUT TAPE 1, 35, [(ATT,J], J=1,M], I=1,L] 35 FORMAT [216] C INPUT THE MEMBER PEOPERTIES, EI/L AND MP. DO 106 I = 1,NM G INPUT THE MEMBER PEOPERTIES, EI/L AND MP. DO 106 I = 1,NM G INPUT THE MEMBER PEOPERTIES, EI/L AND MP. DO 106 I = 1,NM G INPUT THE MEMBER STIFFNESS MATRIX S. C INFOLMAT [25]0.41 C INPUT THE MEMBER STIFFNESS MATRIX S. C INFOLMAT [25]0.41 C INFOLMATIZES STIFFNESS MATRIX S. C INFOLMATIZ	C		LEHIGH UNIVERSITY FRITZ LABORATORY	APRIL, 1965.	000
$ \begin{array}{c} C \\ RASIC PROGRAM HY C.K.WANG, UNIV. OF WISCONSIN, 1963. 000 \\ MODIFIED FOR IHM 7074 BY H.B.HARRISON. 000 \\ MODIFIED FOR IHM 7074 BY H.B.HARRISON. 000 \\ SPECIFY THE MAXIMUM SIZES OF ALL THE MATRICFS. 000 \\ DIMENSION AT30,441, SI48,441, SATI48,301, SATI441 000 \\ DIMENSION PI301, ASATI40,301, SATI44,000 \\ DIMENSION AT4(40), CH401, SDAT(24), UN(46) 001 \\ DIMENSION AT7(40), HIARI 000 \\ C \\ INPUT FRAME NUMBER, EXIT IF NEGATIVE. 000 \\ 9 READ INPUT TAPE 1, 13, JJ \\ 13 FORMAT [15] 000 \\ 14 FORMAT [15] 000 \\ 15 SEAD INPUT TAPE 1, 23, L. NM \\ 23 FORMAT [25] 000 \\ M = 2 + NM \\ 000 \\ C \\ INPUT ALL FLEMENTS OF THE STATICS MATRIX A. 000 \\ SEAD INPUT TAPE 1, 35, ([AIT,J], J=1,M], I=1,L] \\ 000 \\ 166 I = 1.NM \\ READ INPUT TAPE 1, 167, SDAT[1], PMI \\ K = 2 + I \\ MR(K = 1) = PMI \\ 000 \\ 166 I = 1.NM \\ READ INPUT TAPE 1, 167, SDAT[1], PMI \\ K = 2 + I \\ M(K + 1) = PMI \\ 001 \\ 167 FORMAT[25] 000 \\ C \\ INPUT THE MEMBER PERPERTIES, EI/L AND MP. 000 \\ 000 \\ C \\ INPUT THE MEMBER PERPERTIES, EI/L AND MP. 000 \\ 000 \\ C \\ INPUT THE MEMBER STIFFNESS MATRIX S. 000 \\ 000 \\ 000 \\ 160 \\ 160 \\ 160 \\ FOUTHWE \\ 160 \\ 000 \\ 160 \\ 1 = 1,M \\ 000 \\ 000 \\ 160 \\ 1 = 1,M \\ 000 \\ 000 \\ 160 \\ 1 = 1,M \\ 000 \\ 000 \\ 160 \\ 1 = 1,M \\ 000 \\ 000 \\ 160 \\ 1 = 1,M \\ 000 \\ 000 \\ 160 \\ 000 \\ 1 = 1,M \\ 000 $	с С		FIRST ORDER ELASTIC PLASTIC PLANE FRAME	ANALYSIS.	000
MODIE THE MEMBER PERPERTIES, EI/L AND MP. MODIE C MODIFIED FOR IBM 7074 BY H.B.HARRISON. 000 C SPECIFY THE MAXIMUM SIZES OF ALL THE MATRICES. 000 DIMENSION AIX3,4AI, SI4B,4AI, SATLAB,3DJ, SATLAB,3DJ, SATLAB1 000 DIMENSION AIX3,4AI, SI4B,4AI, SATLAB,3DJ, SATLAB1 000 DIMENSION AIX14,4AI, SIGLAJ, UM(40) 001 DIMENSION AIX14,4AI, SIGLAJ, UM(40) 001 C INPUT TAPE 1, 13, JJ 13 FORMAT [15] 000 14 FORMAT [215] 000 5 READ INPUT TAPE 1, 23, L, NM 000 23 FORMAT [215] 000 M = 2 + MM 000 C INPUT ALL FIEMENTS OF THE STATICS MATRIX A. 000 100 166 I = 1,35,([AiTI,J], J=1,M], I=1,L] 35 FORMAT[7E10.4] 000 C INPUT TAPE 1, 167, SDAT[1], PMI 00 166 I = 1,MM	C C		BASTE PROCEAM HY C. P MANG. UNITY OF MISE	ONST. 4047	000
C MODIFIED FOR IBM 7074 BY F.B.HARRISON. C MODIFIED FOR IBM 7074 BY F.B.HARRISON. C SPECIFY THE MAXIMUM SIZES OF ALL THE MATRICES. DIMENSION AI30,491. SI48,491, SATI48,30], SATX1481 DIMENSION AI30,491. SI48,491, SAT148,30], SATX1481 DIMENSION AI30,491. SI41(36,31), PP(48), AL4(491 DIMENSION AIX0,30], CH(46), SDAT(24), UM(483 DIMENSION ATX142), H(48] C INPUT FRAME NUMBER, EXIT IF NEGATIVE. C 9 GEAD INPUT TAPE 1, 13, JJ 13 FORMAT [115] IF (JJ) 99,5,5 C INPUT THE SEGREES OF FREEDOM L, MEMBER COUNT NM. C S 9EAD INPUT TAPE 1, 23, L, NM 23 FORMAT [215] M = 2 + NH C INPUT ALL FIEMENTS OF THE STATICS MATRIX A. C INPUT ALL FIEMENTS OF THE STATICS MATRIX A. C INPUT TAPE 1, 35,([ATI,J], J=1,M], I=1,L] 35 FORMAT[7F10,4] C INPUT TAPE 1, 167, SDAT[1], PM1 K = 2 + I 00 C INPUT TAPE 1, 167, SDAT[1], PM1 C INPUT INPUT INPUT INPUT INPUT 00 C INPUT INPUT INPUT 00 C INPUT INPUT 00 C INPUT INPUT 00 C INPUT INPUT 00 C INPUT 00 C INPUT 00 C INPUT 00 C INPUT 00 C	Č.		- PASTO ENGINER OF OFRIMANDE ONICE OF WISE	UNSIN, 1903.	000
C SPECIFY THE MAXIMUM SIZES OF ALL THE MATRICES. 000 C DIMENSION AIX0,441. SI48,481, SAT(48,301, SATX(481) 000 DIMENSION P(30), ASAT(36,31), PP(48), ALG(481) 000 DIMENSION AXX(30), CH(48), SDAT(24), UM(48) 000 DIMENSION AT/(481, H(48) 000 C INPUT FRAME NUMBER, EXIT IF NEGATIVE. 000 C INPUT TAPE 1, 13, JJ 000 13 FORMAT (115) 000 000 14 FORMAT (115) 000 000 C INPUT THE DEGREES OF FREEDOM L. MEMBER COUNT NM. 000 C INPUT THE DEGREES OF FREEDOM L. MEMBER COUNT NM. 000 C INPUT TAPE 1, 23, L. NM 000 C INPUT ALL FLEMENTS OF THE STATICS MATRIX A. 000 C INPUT ALL FLEMENTS OF THE STATICS MATRIX A. 000 C INPUT TAPE 1, 35, ((ATT,J), J=1,M), I=1,L) 000 C INPUT TAPE 1, 167, SDAT(1), PMI 000 C INPUT TAPE 1, 167, SDAT(1),	C C		MODIFIED FOR IBM 7074 BY H.B.HARRISON.		0009
C SPECIFY THE MAXIMUM SIZES OF ALL THE MATRICES. 000 DIMENSION AIND, 401. SIDENCE OF ALL THE MATRICES. 000 DIMENSION AIND, 401. SIDENCE, SATIAB, 301. SATX(401 000 DIMENSION AIND, 401. SIDENCE, SAT(40, 301. SATX(401) 000 DIMENSION AIND, 401. SIDENCE, SAT(40, 301. SATX(401) 000 DIMENSION AIND, CHA0D. SIDENCE, SAT(401. SUBT(241), UM(401) 000 C INPUT FRAME NUMBER. EXIT IF NEGATIVE. 000 C INPUT FRAME NUMBER. EXIT IF NEGATIVE. 000 C INPUT TAPE 1. 13. JJ 000 13 FORMAT (115) 000 000 IF (JJ) 90,5,5 000 000 C INPUT THE TEGREES OF FREEDOM L. MEMBER COUNT NM. 000 C INPUT THE TEGREES OF FREEDOM L. MEMBER COUNT NM. 000 C INPUT ALL FLEMENTS OF THE STATICS MATRIX A. 000 C INPUT ALL FLEMENTS OF THE STATICS MATRIX A. 000 C INPUT ALL FLEMENTS OF THE STATICS MATRIX A. 000 C INPUT ALL FLEMENTS OF THE STATICS MATRIX A. 000 C INPUT TAPE 1. 35. ((ATT.J), J=1.M), J=1.L) 003 C INPUT THE MEMBER PHOPERTIES. ELON MP. 000 <td>č</td> <td></td> <td></td> <td></td> <td>001:</td>	č				001:
C Intervention Altervention	C		SPECIES THE MAXIMUM STRES OF ALL THE MAT	PICES	0013
DIMENSION AI30, 4AI, SI48, AI, SAT(48,301, SATX(48) DIMENSION PI301, ASAI(36,31), PP(48), ALG(48) DIMENSION ATX(48), H(48) C C OTHERSION ATX(48), H(48) C OTHERSION ATX(48), H(48) C	č			AIGES.	0014
DIMENSION CX(30), GM(48), SDAT(24), UM(48) DIMENSION ATV(48), HI4R] C C G 9 READ INPUT TAPE 1. 13, JJ 14 FORMAT (15) 15 FORMAT (15) 15 FORMAT (15) 16 C C 10 DIT THE DEGREES OF FREEDOM L. MEMBER COUNT NM. 00 C 5 READ INPUT TAPE 1. 23, L. NM 23 FORMAT (215) M = 2 + NM C C 10 DIAG L = 1, NM READ INPUT TAPE 1, 35, ((ATT,J), J=1,M), L=1,L) 00 00 166 L = 1, NM READ INPUT TAPE 1, 167, SDAT(1), PML K = 2+1 MIK1 = PML 00 166 CONTINUE 167 FORMAT(2F10.4) C C C C C C C C C C C C C		DIMEN DIMEN	<pre>\SION A[30,48]. S[48,48], SAT[48,30], SAT} \SION P[30], ASAT[30,31], PM[48], ALG[48]</pre>	[[48]	001
DIMENSION ATX(481, H(481) 001 C INPUT FRAME NUMBER, EXIT IF NEGATIVE. 002 0 READ INPUT TAPE 1, 13, JJ 002 13 FORMAT (1151) 002 14 FORMAT (1151) 002 15 FORMAT (1151) 002 16 INPUT THE DEGREES OF FREEDOM L. MEMBER COUNT NM. 002 C INPUT THE DEGREES OF FREEDOM L. MEMBER COUNT NM. 002 C INPUT TAPE 1, 23, L. NM 003 23 FORMAT (215) 003 M = 2 + NM 003 003 C INPUT ALL FLEMENTS OF THE STATICS MATRIX A. 003 C INPUT TAPE 1, 35,((ATT.J), J=1,M), I=1,L) 003 35 FORMAT(7F10.4) 004 C INPUT THE MEMBER PROPERTIES, EL/L AND MP. 004 C INPUT THE MEMBER PROPERTIES, EL/L AND MP. 004 C INPUT TAPE 1, 107, SDAT(I), PMI 004 C INPUT TAPE 1, 10		DIMEN	SIUN CX(30], CM(48], SDAT(24), DM(48)		001
[NPUT FRAME NUMBER, EXIT IF NEGATIVE. 000	с	DIMEN	VSION ATX[48], H[48]		0014
C INPUT FRAME NUMBER, FXIT IF NEGATIVE. 002 9 READ INPUT TAPE 1. 13, JJ 002 13 FORMAT [115] 002 IF (JJ) 99.5.5 002 C INPUT THE DEGREES OF FREEDOM L. MEMBER COUNT NM. 002 C INPUT TAPE 1. 23, L. NM 003 C INPUT TAPE 1. 23, L. NM 003 C INPUT TAPE 1. 23, L. NM 003 C INPUT ALL FIEMENTS OF THE STATICS MATRIX A. 003 C INPUT ALL FIEMENTS OF THE STATICS MATRIX A. 003 C INPUT TAPE 1. 35.[[AITI.J]. J=1.M]. I=1.L] 003 35 FORMAT[7F10.4] 004 004 C INPUT TAPE 1. 167. SDAT[1]. PMI 004 C INPUT TAPE 1. 167. SDAT[č				0.01
9 READ INPUT TAPE 1. 13, JJ 000 13 FORMAT [115] 000 1F [JJ] 99,5,5 002 002 002 003 002 004 002 005 002 005 002 006 002 007 002 008 002 009 001 001 002 002 1NPUT THE PEGREES OF FREEDOM L. MEMBER COUNT NM. 002 003 003 003 004 003 005 003 006 1NPUT TAPE 1. 23, L. NM 003 003 004 003 005 003 006 1NPUT ALL FLEMENTS OF THE STATICS MATRIX A. 003 003 004 003 005 003 006 1NPUT TAPE 1. 35,[[Ai(1,J], J=1,M], J=1,L] 007 00166 1 = 1.NM 00166 1 = 1.NM 004 00166 1 = 1.NM 004 00166 1 = 1.NM 004 004	C C		INPUT FRAME NUMBER, EXIT IF NEGATIVE.		002
13 FORMAT [115] IF (JJ] 99,5,5 C C C INPUT THE DEGREES OF FREEDOM L, MEMBER COUNT NM. 002 5 READ INPUT TAPE 1, 23, L, NM 003 C 5 READ INPUT TAPE 1, 23, L, NM 003 C C INPUT ALL FIEMENTS OF THE STATICS MATRIX A. 003 C C INPUT TAPE 1, 35, ([ATT.J], J=1,M], J=1,L] 03 C C INPUT THE MEMBER PROPERTIES, EI/L AND MP. 04 05 C INPUT THE MEMBER PROPERTIES, EI/L AND MP. 04 05 04 04 05 05 05 05 05 05 05 05 05 05		9 READ	INPUT TAPE 1, 13, JJ		0023
$ \frac{110011}{100} \frac{11001}{1000} \frac{11000}{1000} 1$	1	3 FORMA			0024
C INPUT THE DEGREES OF FREEDOM L. MEMBER COUNT NM. 002 C SEAD INPUT TAPE 1.23, L. NM 003 23 FORMAT [215] 003 M = 2 + NM 003 C INPUT ALL FIEMENTS OF THE STATICS MATRIX A. 003 C INPUT ALL FIEMENTS OF THE STATICS MATRIX A. 003 C INPUT TAPE 1.35, ([ATT.J], J=1,M], I=1,L] 003 C INPUT TAPE 1.35, ([ATT.J], J=1,M], I=1,L] 003 C INPUT TAPE 1.35, ([ATT.J], J=1,M], I=1,L] 003 C INPUT THE MEMBER PEOPERTIES, EI/L AND MP. 004 C INPUT THE MEMBER PEOPERTIES, EI/L AND MP. 004 C INPUT TAPE 1.167, SDAT[1], PMI 004 <td>С</td> <td>IF C</td> <td></td> <td></td> <td>002</td>	С	IF C			002
INPUT THE MEMBER OF FREEDOM LY MEMBER COORT NM. 002 5 READ INPUT TAPE 1, 23, L, NM 003 23 FORMAT [215] 003 M = 2 + NM 003 C INPUT ALL FLEMENTS OF THE STATICS MATRIX A. 003 C READ INPUT TAPE 1, 35,[[ATT.J], J=1,M], I=1,L] 003 35 FORMAT[7F10.4] 003 003 C INPUT THE MEMBER PROPERTIES, EI/L AND MP. 004 C INPUT TAPE 1, 167, SDAT[1], PMI 004 C INPUT TAPE 1, 167, SDAT	ç				0027
5 READ_INPUT TAPE 1, 23, L, NM 003 23 FORMAT [215] 003 M = 2 + NM 003 C INPUT ALL FIEMENTS OF THE STATICS MATRIX A. C 003 READ INPUT TAPE 1, 35, ([AIT,J], J=1,M], J=1,L] 003 35 FORMAT[7F10.4] 003 C INPUT THE MEMBER PROPERTIES, EI/L AND MP. 00 166 1 = 1.NM 004 C INPUT TAPE 1, 167, SDAT[1], PMI C 004 00 166 1 = 1.NM 004 C INPUT TAPE 1, 167, SDAT[1], PMI 004 0044 C INPUT TAPE 1, 167, SDAT[1], PMI C 004 D0 166 1 = 1.NM 004 V0 166 1 = 1.NM 004 V0 166 1 = 1.NM 004 VM[K1 = PM] 004 VM[K1 = PM] 004 VM[K1 = PM] 004 166 CONTINUE 004 167 FORMAT[2F]0.4] 005 C ILD THE MEMBER STIFFNESS MATHIX S. C ID 160 J = 1.M	C		INFUT THE TERREES OF FREELOW L3 MEMBER C		0028
M = 2 + NM = 003 $M = 2 + NM = 003$ $C = INPUT ALL FIFMENTS OF THE STATICS MATRIX A. = 003$ $READ INPUT TAPE 1, 35, [(Ait,J], J=1,M], I=1,L] = 003$ $S5 FORMAT[7F10.4] = 003$ $C = INPUT THE MEMBER PROPERTIES, EI/L AND MP. = 004$ $C = 004$ $D0 166 I = 1.NM = 004$ $READ INPUT TAPE 1, 167, SDAT[I], PMI = 004$ $C = 004$ $PM(K) = PMI = 004$ $O04$ $C = 004$ $O04$ $READ INPUT TAPE 1, 167, SDAT[I], PMI = 004$ $C = 004$ $O04$ $READ INPUT TAPE 1, 167, SDAT[I], PMI = 004$ $C = 004$ $O04$ $READ INPUT TAPE 1, 167, SDAT[I], PMI = 004$ $C = 004$ $O04$	2	5 READ	TNPUT TAPE 1, 23, L, NM		0030
$ \begin{array}{c} C \\ C \\ C \\ \hline \\ \hline \\ READ INPUT TAPE 1, 35, ([AIT,J], J=1,M], I=1,L] \\ \hline \\ 35 FORMAT[7F10,4] \\ C \\ C \\ \hline \\ \hline \\ C \\ C \\ \hline \\ \hline \\ C \\ C$		5 FURMA M = 2	2 + MM .	•	0032
C INPUT ALL FLEMENTS OF THE STATICS MATRIX A. 003 QEAD INPUT TAPE 1, 35,[[ATT,J], J=1,M], I=1,L] 003 35 FORMAT[7F10.4] 003 C INPUT THE MEMBER PROPERTIES, EL/L AND MP. C 004 D0 166 1 = 1,NM 004 READ INPUT TAPE 1, 167, SDATIIJ, PMI 004 K = 2+I 004 OMIK1 = PMI 004 MIK1 = PMI 004 166 CONTINUE 004 167 FORMAT[2F10.4] 004 C INPUT TAPE 1, 167, SDATIIJ, PMI 004 004 Secontinue 004 OU4 004 OU4 004 OU4 004 Secontinue 004 OU4 004 OU4 004 OU4 004 OU4 004 OU5 004 OU4 004 OU4 004 OU5 005 OU5 005 OU4 1 OU5 005 OU4 1 <	C				0033
C 003 READ INPUT TAPE 1, 35, [[ATT,J], J=1,M], I=1,L] 003 35 FORMAT[7F10.4] 003 C 004 C 00166 1 = 1.NM 00 166 1 = 1.NM 004 004 READ INPUT TAPE 1, 167, SDAT[1], PMI 004 READ INPUT TAPE 1, 167, SDAT[1], PMI 004 NC 004 NC 004 NC 004 READ INPUT TAPE 1, 167, SDAT[1], PMI 004 NC 005 NC 005 NC 005 NC 005 <t< td=""><td>c</td><td></td><td>INPUT ALL FLEMENTS OF THE STATICS MATRIX</td><td>Α.</td><td>0035</td></t<>	c		INPUT ALL FLEMENTS OF THE STATICS MATRIX	Α.	0035
35 FORMATI7F10.41 003 C INPUT THE MEMBER PROPERTIES, EI/L AND MP. 004 C 00166 1 = 1.NM 004 C 00166 1 = 1.NM 004 READ INPUT TAPE 1, 167. SDAT[I]. PMI 004 VM[K1 = PMi 004 PM[K-1] = PMK1 004 166 CONTINUE 004 C Iff FORMAT[2F10.4] 004 C 005 005 C PMILD THE MEMBER STIFFNESS MATHIX S. 005 C PO 140 I = 1.M 005	C	0540		· · · .	0036
C <u>INPUT THE MEMBER PROPERTIES, ELVL AND Mp</u> . 003 004 004 004 004 004 004 004	.7	S FORM	NPO APE 1, 37,1(Art,J], J=1,M], 1=1,(] Ar[7F10.4]		0036
C INPUT THE MEMBER PROPERTIES, EI/L AND MP. 004 C 00166 1 = 1.NM 004 READ INPUT TAPE 1, 167, SDAT[I], PMI 004 VM[K] = PMi 004 PM[K] = PMi 004 166 CONTINUE 004 167 FORMAT[2F10.4] 005 C EUILD THE MEMBER STIFFNESS MATHIX S. C 005 D0 140 I = 1.M 005	C				0039
C 004 DO 166 1 = 1,NM 004 READ INPUT TAPE 1, 167, SDAT[I], PMI 004 VM[K] = PMI PM[K-1] = PMIK1 004 PM[K-1] = PM[K] 004 166 CONTINUE 004 167 FORMAT[2F10.4] 004 167 FORMAT[2F10.4] 004 C PUILD THE MEMBER STIFFNESS MATHIX S. 005 C PUILD THE MEMBER STIFFNESS MATHIX S. 005 DO 140 I = 1,M 005 DO 140 J = 1,M 005	Č		INPUT THE MEMBER PROPERTIES, ELL AND ME	•	0040
00 100 1 = 1100 004 READ INPUT TAPE 1, 167, SDAT[I], PMI 004 K = 2*I 004 PM[K] = PMİ 004 PM[K-1] = PM[K] 004 166 CONTINUE 004 167 FORMAT[2F10.4] 004 C 005 C PUILD THE MEMBER STIFFNESS MATHIX S. C 005 00 140 I = 1,M 005 00 140 J = 1,M 005	С	00 14			0042
K = 2*I 004 PM[K] = PM[004 PM[K-1] = PM[K] 004 166 CONTINUE 004 167 FORMAT(2F10.4) 004 C 005 C 005 C 005 00 160 J = 1,M		READ	INPUT TAPE 1, 167, SDATLIJ, PMI		0043
OM(K) = PMI 004 PM(K-1) = PM(K) 004 166 CONTINUE 004 167 FORMAT(2F10.4) 004 C 005 C 005 C 005 00 140 I = 1,M 005 00 140 J = 1,M 005		K = 2	2 * I		0045
166 CONTINUE 004 167 FORMAT(2F10.4) 004 C 8005 C 805 C 805 C 805 C 905 C 905 C 905 C 905 005 905 90160 1 = 1, M 905 905 905 905 905 905 905 905 905 905 905 905 905 905 905 905 905 905 905 905 905 905 905 905 905 905 905 905 905 905		PM (K-	1 = PM(K) -1] = PM(K)		0046
167 FORMAT[2F10.4] 004 C 005 C 005 C 005 C 005 00 160 I = 1,M 005 005 00160 J = 1,M 005	16	6 CONTI	INUE		0048
C <u>RUILD THE MEMBER STIFFNESS MATHIX S.</u> C <u>DO 160 I = 1,M</u> DO 160 J = 1,M 005	16 C	FORM	ין (20 ז ה. 4)		0049
C BUILD THE MEMBER STIFFNESS MATKIX S. 005 C 005 005 D0 160 I = 1,M 005 005	Ċ				0051
005 00160 l = 1,M 005 00160 J = 1,M 005	C C		BUILD THE MEMBER STIFFNESS MATRIX S.		0052
$00 \ 160 \ J = 1.M $.,	00 10	40 I = 1,M		0054
		00 16	50 J = 1.M		0055

Appendix A

Fortran Statements

160 S[[,J] = 0. 0056 DO 161 - I = 1,M 0057 1TEST = 1/2+2-1 0058 TELITESTI 162,161,101 0059 162 K = 1/2 + 10060 S[1,1] = 4.0 + SDAT[K] 0061 S[1+1, 1+1] = S[1, 1]0062 S[1+1,1] = 0.5 + S[1,1]0063 S[I], I+1] = S[I+1], I0064 161 CONTINUE 0065 С 0066 С 0067 C CUTPUT TITLES, THE STATICS MATRIX A, STIFFNESS MATRIX 'S. 0068 C 0060 WRITE OUTPUT TAPE 2, 97, JJ 0070 97 FORMAT (50H14LASTIC PLASTIC FIRST ORDER ANALYSIS OF FRAME NO., 13/1 0071 WRITE OUTPUT TAPE 2, 7 0072 7 FORMATIZIHOTHE STATICS MATRIX//1 0073 no 1 1=1.L 0074 1 WRITE OUTPUT TAFE 2, 21,1, [A(1,J), J = 1,M] 0075 21 FORMATE4HOROW, 13.1X, 7E16.7/18X,7E16.7]] 0076 WRITE CUTPUT TAPE 2, 17 0077 17 FORMATIZAHITHE STIFFNESS MATRIX//1 0078 NO 2 1=1,M 0070 2 WRITE OUTPUT TAFE 2, 21, T, [S[1,J], J = 1,M] 0080 C C 0081 INPUT THE LOAD SET NO. KK.IL NEG. COMMENCE THE NEXT FRAME. 0082 C 0083 /08 READ INPUT TAPE 1, 13, KK 0084 TETKK-1] 9,707,800 0085 С 0086 IF KK IS UNITY, BYPASS THE NEXT BLOCK OF INSTRUCTIONS. С 0087 TE KK IS GREATER THAN UNITY, REBUILD THE S MATRIX. 0.088 Ç Ċ 0089 600 00 901 I = 1,M 0090 00 901 J = 1,M 0091 0092 S[1,J] = 0.901 CONTINUE 0093 00 931 I = 1+M 0094 ITEST = [1/2+21 - 1 0095 IF [ITEST] 932,931,931 0096 932 8 = 1/2 + 1 0097 S[[+]] = 4.0 + SDATEK1 0098 S[1+1, 1+1] = S[1, 1]0009 $S[I_{+}I_{+}1] = 0.5 + S[I_{+}I]$ 0100 S[1+1, 1] = S[1, 1+1]0101 431 CONTINUE 0102 0103 Ç 707 URITE OUTPUT TAES 2. 27. KK 0104 27 FORMATI33HITHE EXTERNAL LOAD VECTOR SET NO., [3] 0105 С 0106 0107 Ċ C INPUT THE LOAD SET VERTOR P. 0108 0109 С READ INPUT TAPE 1, 35, [P[1], I = 1,L] 0110

3	PO 3 T=1+L WRITE OUTPUT TAFE 2, 21, 1, P(1)
	SET TO ZERO THE MARIARIES NOYCL, ULG AND THE ARRAYS CX, CM, SAT.
24 26	NCYCL = 0 CLG = 0. DO 24 1=1.L CX(1) = 0. DO 26 I=1.M CM(I) = 0.
	PE ENTRY POINT FOR SUCCESSIVE ANALYSES OF DETERIORATED FRAMES.
15	DO 10 J=1,M DO 10 J=1,L SAT(Y,J]=0.
	DOCT WELTING S BY TRANSPOSED & TO GET MATRIX OAT
20 10	DO 20 K=1,M SAT[I,J]=SAT[I,J]+S[I,K]*A[J,K] CONTINUE
	PREMULTIPLY SAT BY A TO GET MATRIX ASAT.
4 N 3 N	DO 30 [=1;] DO 30 J=1;] ASATII;J]=0. DO 40 K=1;M ASATII;J]=ASATII;J]+A[T;K]+SAT[K;J] CONTINUE
	SOLVE THE SLOPE DEFLECTION EQUATIONS FOR THE GIVEN LOAD SET. STORE THE SCILTION IN THE LAST COLUMN OF THE MATRIX ASAT.
50	LP1=L+1 D0 50 I=1,L ASAT(I,LP1)=P[I] D0 60 I=1,L IP1=I+1 TEMP=ABSF[ASAT[I,I]]
65	N-1 N0 61 J=I,L TF LABSFLASAT(J,T)1-TEMP <u>1</u> 61,61,62 K=J TEMP - ARSELASAT(J,T)1
61.	TENE = ABSELASATIJ,171 CONTINUE TF [K-1] 72,71,72
72	10 45 J=L, LP1

		TEMP = ASAT(1.1)	0166
		ASATIT.II = ASATIK.II	0167
			0169
	4 5	NSATIR, JJ = TEMP	0100
	71	TF [6SAT(1,1)] 16,147,16	0109
	147	URITE OUTPUT TAFE 2: 347	0170
	547	FORMAT FJOHDOTVISION BY ZERO IN INVERSIONI	0171
	,		0472
		30 17 47	01/2
	16	TEMP = 1./ASATIL, II	0173
		00 70 J≐T+LP1	0174
	70	ACATIN DEAGATIN DETEMP	0175
	,		0474
		10 60 J=1+L	01/0
		TF [T=J] 59,60,50	0177
	59	TEMP=ASATIJat1	0178
	**		0179
			0400
	80	ASATIJ,KJ=ASATIJ,KJ=IEMP*ASAILLIKI	0180
	60	CONTINUE	0181
С			0182
- A			0183
ц. 		THE THE PERSON AND AND TO WAR TO THE TOO LARDE	0100
C		PRINT THE DEFORMATIONS DUE TO UNIT LUADSTEST IF TOU LARGE.	0184
С			0185
		WRITE OUTPUT TAPE 2, 511	0186
	644		0187
	571	FURMAL LOUPDREACTIONS DOPEND WITH COADOL	0101
		70 51 I=1,L	0158
	51	WRITE OUTPHT TAPE 2, 21, 1, ASATLI,LP11	0189
		20 311 I=1.4	0190
		$\frac{1}{2} = \frac{1}{2} = \frac{1}$	0101
		TEMP = ABSELASATTI, LTTTT = 1.6404	0191
		TF_LTEMP1_311,647,647	0192
	311	CONTINUE	0193
		CO TO 303	0194
	6 4 7		0105
	04/	WRITE COTPUT TAPE 2, 847	0195
	847	FORMAT (21HODEFLECTION TOO LARGE)	0196
		GO TO 47	0197
c			0108
Š			0190
С			0199
∵C		COMPUTE AND OUTPUT MOMENTS DUE TO THE UNIT LOADS:	0200
°C			0201
	303	DO 110 [=1.M	0202
			0207
			0203
•		120 K=1,L	0204
	120	SATXIT]=SATXII]+SAT[I,K]=ASAT[K+LP1]	0205
	110	CONTINUE	0206
	.= <u>1</u>		0207
	600	wr(1 - QV(PB) - (A - Z) - 7CC	0207
	222	FORMAT LECHUMOMENTS PUE IN UNIT LOADST	0208
		DO 52 I=1,M	0209
	52	WRITE CUTPUT TAFE 2, 21, 1, SATX[1]	0210
C	-		0210
š			0211
U			0212
C		CALCULATE THE LOAD FACTOR ALG AT EACH END OF EACH MEMBER.	0213
С	·		0214
			0045
			0213
		TELAHSEISATX(11) = 1.01 202,202.203	0216
	202	ALG[]] = 1.620	0217
		GN TO 201	0218
	207		0010
	_ ∠ U 3	ALVIII - LEMPIII - ABSELUMIIII/ABSELSA'XLIJ	0219
	201	CONTINUE .	0220

. Maria

0 2 2 4

1.25 CA

	ETND POSITION AND VALUE OF SMALLEST LOAD FACTOR SALG.
	SALG = 1.E20
	no 204 J = 1,M
	TEST = CM(T) + SATX[1]
205	TELLESTI 204,295,295
1206	$\frac{1}{2} \left[A \left[G \right] \right] = \frac{1}{2} \left[A \left[A \left[G \right] \right] = \frac{1}{2} \left[A \left[A \left[G \right] \right] = \frac{1}{2} \left[A \left[G \right] \right] = \frac{1}{2} \left[A \left[G \right] \left[A \left[G \right] \right] = \frac{1}{2} \left[A \left[A \left[G \right] \right] = \frac{1}{2} \left[A \left[A \left[G \right] \right] = \frac{1}{2} \left[A \left[A \left[A \left[G \right] \right] = \frac{1}{2} \left[A \left[$
	NPH = 1
204	CONTINUE
	· ·
	FACTOR UNIT MEMENTS BY SALG AND BEL CUMULATIVE MOMENTS.
502	00 207 1=1.M
Φ U 2.	SATY(T) = SA(G*SATX[1])
207	CM(1) = CM(1) + SATX[1]
	CALCULATE THE CUMULATIVE LOAD FACTOR. CLG.
004	
	MULTIPLY UNIT DEFLECTIONS BY SMALLEST LOAD FACTOR SALG.
	DO 206 1=1.L
	$ASAT(I, LP1) = SA(G \bullet ASAT(I, P1))$
	CALCULATE CUMULATIVE DEFLECTIONS.
506	CXIII = CXIII + ASATIT, LPII
	UPDATE THE CYCLE NUMBER NCYCL.
	NCYCL - NCVCL + 1
	CUTPUT CYCLE NO. AND INCATION OF PLASTIC HINGE, LOAD FACTOR ETC
401	WRITE BUTPHT TAPH 2, 401, NOTULE NPH Formatiisuir Actic Hinge no , tà, 20, 158Former Af Doint.33/1
.01	WRITE OUTPUT TAFF 2. 402
402	FORMATI12HOLDAD FACTOR, 3X, 10HADUITIONAL, 9X, 10HCUMULATIVEL
	WRITE CUTPHT TAFE 2, 403, NCYCL, SALG, CLG
413	FORMAT 16H0STAGE, 14, E18.7, E18.71
	CUTPUT ADDITIONAL AND CUMULATIVE DEFLECTIONS.
	WRITE OUTPUT TARE 2. ANA
404	EDEMATI12HODEEDEMATION. 3V. 10HAPDITIONAL.9X.10HOUMULATIVE/1

```
00 208 l=1,L
                                                                                 0276
  208 WRITE OUTPHT TAPE 2, 405, 1, ASAT[1,LP1], CX[1]
                                                                                 0277
  405 FORMAT [3H AT, 14, E22.7, F19.7]
                                                                                 0278
С
                                                                                 0279
С
                                                                                 0280
Ċ
           CUTPUT ADDITIONAL AND CUMULATIVE MOMENTS WITH PL.MOMENT CAP,
                                                                                 0281
С
                                                                                 0282
      WRITE OUTPUT TARE 2, 405
                                                                                 0283
  406 FORMATI7HOMOMENTAX, 10HADDITIONAL, 9X10HCUMULATIVE10X, 8HPLAS MOM/]
                                                                                 0284
      DO 209 I=1,M
                                                                                 0285
  209 WRITE CUTPUT TAPE 2, 407, 1, SATX[1], CM[1], PM[1]
                                                                                 0286
  407 FORMAT [3H AT, 14, F18.4.2F19.4]
                                                                                 0287
С
                                                                                 0288
C
                                                                                 0289
С
          CHANGE THE STIFFNESS MATRIX ACCORDING TO WHERE THE LAST
                                                                                 0290
C
          PLASTIC HINGE WAS FOUND.
                                                                                 0291
С
                                                                                 0292
      ITEST = INPH/2 + 21 - NPH
                                                                                 0293
      IF (ITEST) 211.210.210
                                                                                 0294
  210 S[NPH-1, NPH-1]=0.75*>[NPH-1, NPH-1]
                                                                                 0295
      S[NPH,NPH] = 0.
                                                                                 0296
      S[NPH-1,NPH] = 0,
                                                                                 0297
      S[NPH, NPH-1] = 0.
                                                                                 0298
      GO TO 212
                                                                                 0299
  211 S[NPH+1, NPH+1] = 0.75+S[NPH+1,NPH+1]
                                                                                 0300
      S[NPH,NPH] = 0.
                                                                                 0301
      S[NPH, NPH+1] = 0.
                                                                                 0302
      S[NPH+1,NPH] = 0.
                                                                                 0303
С
                                                                                 0304
С
                                                                                 0305
          PETURN CONTROL TO ANALYSE THE DETERIURATED FRAME.
С
                                                                                 0306
С
                                                                                 0307
  212 GO TO 15
                                                                                 0308
С
                                                                                 0309
Ç
                                                                                 0310
С
          COMPUTE THE WINGE ROTATIONS ONCE THE COLLAPSE MECHANISM HAS
                                                                                 0311
C
          BEEN FOUND. FIRST, INVERT THE S MATRIX.
                                                                                 0312
C
                                                                                 0313
   47 WRITE OUTPUT TAFE 2, 408
                                                                                 0314
  408 FORMAT 136HOCOLLAPSE MECHANISM HAS BEEN REACHEDI
                                                                                 0315
      DO 163 I = 1,M
DO 163 J = 1,M
                                                                                0316
                                                                                 0317
  163 S[1,J] = 0.
                                                                                 0318
      00 164 I = 1,M
                                                                                 0319
      1TEST = 1/2 + 2 - 1
                                                                                 0320
      TF[[TFST] 165,144,164
                                                                                 0321
  165 K = 1/2 + 1
                                                                                 0322
      S[[+T] = 1,0/[3.0 * SDAT[K]]
                                                                                 0323
      S[I+1, J+1] = S[I, I]
                                                                                 0324
      S[T_{+}]+1] = -0.5 + S[T_{+}]
                                                                                 0325
      S[I+1,I] = S[I],I+11
                                                                                 0326
  164 CONTINUE
                                                                                 0327
      DO 133 l=1,M
                                                                                 0328
      DMII1 = 0.
                                                                                 0329
      DO 134 K=1,M
                                                                                 0330
```

	· · · · · · · · · · · · · · · · · · ·	
13	S4 DM(1) = DM(1) + S(1,K) + ČM(K)	0331
13	3.5 CONTINUE	0332
	DO 135 1=1.M	0333
		0334
	DO 136 K=1.1	0335
1 7	(6 - 4) $(1 - 4)$ $(1 -$	0336
1 7		0337
μ, L ()		0338
4 7	$\frac{1}{1} \frac{1}{1} \frac{1}$	0330
40	$\frac{1}{1} = \frac{1}{1} = \frac{1}$.0340
	WRITE DUTHT FAFE 23 300	0040
15	38 FORMAL LINDIAXISHMINGE ROTATIONS/1	0341
	DO 139 I=1,M	0342
13	39 WRITE CUTPUT TAFE 2, 140, I, H(I)	0343
1.4	10 FORMAT [9H AT PCINT, 14,E15.7]	0344
С		0345
Ċ		0346
ñ	RETURN CONTROL TO SEE IF ANY MORE LOAD SETS.	0347
Č.		0348
	CO TC 708	0349
~		0350
С		0354
9	JY CALL EXIT	0351
	END	0352

END

297.16

THE	STA	TICS MATRIX		بی م ر، وربید بر در در مربع ورور میرور میرور ا		
	 1	0-1000006-01	0-0000005-00	0-000000E 00	0-0000000	00
004		0.00000005.00	0 10000005 01	0 100000000 00	0.00000005	
ROW	3	-0.2000000E 00	-0.2000000E 00	0.2000000E 00	0.2000000E	00
		· · · · · · · · · · · · · · · · · · ·				
THE	STI	FFNESS MATRIX				
ROW	1	0.4000000E 04	0.2000000E 04	0.000000E 00	0-000000E	00
ROW	2	0.200000E 04	0.400000E 04	0.000000E 00	0.000000E	00
ROW	3	0.000000E 00	0.0000000E 00	0-4000000E 04	0.200000E	04
ROW	4	0.000000E 00	0.0000000E 00	0.200000E 04	0.4000000E	04
		· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·			
IHE	EXIE	KNAL LUAU VELTUR	<u>SEI NU. I</u>		-	
KUW	1	0.000000E 00				
RUW	2	0.000000E 00				
RUW	3	0.1000000E 01				
DEFL	ECTI	UNS DUE TO UNIT	LUADS			,
ROW	1	0.6250000E-03				
ROW	2	-0.1562500E-03		. —		
ROW	3	0.1822917E-02		17 - FFX		
MOME	NTS	DUE TO UNIT LOAD	<u>s</u>	-		
ROW	1	-0.1000000E-06				
ROW	2	-0.1562500E 01				
ROW	3	0.1562500E 01				

Appendix B Solution to Propped Cantilever

PLASTIC HINGE NO. 1 FORMED AT POINT 4

D FACTOR	ADDITIONAL	CUMULATIVE	
GE 1	0.2133333E 02	0.2133333E 02	
ORMATION	ADDITIONAL	CUMULATIVE	
1	0.1333333E-01	0.13333338-01	
2	-0.33333338-02	-0.3333333E-02	
3	0.3888889E-01	0.3888889E-01	
ENT	ADDITIONAL	CUMULATIVE	PLAS MOM
1	-0.0000	-0.0000	40.0000
2	-33.3333	-33.3333	40.0000
3	33.3333	33.3333	40.0000
4	40.0000	40.0000	40.0000
	D FACTOR GE 1 DRMATION 1 2 3 3 ENT 1 2 3 4	D FACTOR ADDITIONAL GE 1 0.2133333E 02 DRMATION ADDITIONAL 1 0.1333333E 02 DRMATION ADDITIONAL 1 0.1333333E 02 1 0.13333333E 02 0.3888889E 01 2 -0.3888889E 01 0.1333333 02 ENT ADDITIONAL 1 -0.0000 2 -33.3333 3.333333 4 40.0000	D FACTOR ADDITIONAL CUMULATIVE GE 1 0.2133333E 02 0.2133333E 02 DRMATION ADDITIONAL CUMULATIVE 1 0.1333333E-01 0.1333333E-01 2 -0.3333333E-02 -0.333333E-02 0.38888889E-01 0.3888889E-01 ENT ADDITIONAL CUMULATIVE 1 -0.0000 -0.00000 2 -33333 -33.3333 3 33.3333 33.3333 4 40.0000 40.0000

DEFLECTIONS DUE TO UNIT LOADS

ROW	1	0.1250000E-02
ROW	2	0.000000E 00
ROW	3	0.4166667E-02
MONE	NTS	DUE TO UNIT LOADS
ROW	1	-0.3000000E-06
ROW	2	-0.2500000E 01
ROW	3	0.2500000E 01
ROW	4	0.000000E 00

PLASTIC HINGE NO. 2 FORMED AT POINT 2

LOAD	FACTOR	ADDITIONAL	CUMULATIVE	
STAGE	2	0.2666667E 01	0.2400000E 02	
DEFOR	RMATION	ADDITIONAL	CUMULATIVE	
AT	1	0.3333333E-02	0.1666667E-01	
AT	2	0.000000E 00	-0.3333333E-02	
AT	3	0.1111111E-01	0.5000008-01	
MOMEN	N T	ADDITIONAL	CUMULATIVE	PLAS MOM
AT	1	-0.0000	-0.0000	40.0000
AT	2	-6.6667	-40.0000	40.0000
AT	3	6.6667	40.0000	40.0000
AT	4	0.0000	40.0000	40.0000
MOMEN AT AT AT AT	1 2 3 4	ADDITIONAL -0.0000 -6.6667 6.6667 0.0000	CUMULATIVE -0.0000 -40.0000 40.0000 40.0000	PLAS MO 40.00 40.00 40.00 40.00

DEFLECTIONS DUE TO UNIT LOADS

ROW	1	0.1000000E	05
ROW	2	-0.1000000E	05

ROW 3 0.500000E 05

DEFLECTION TOO LARGE

COLLAPSE MECHANISM HAS BEEN REACHED

HINGE ROTATIONS

AT	POINT	1 -0.8000000E-09
AT	POINT	2 0.2000000E-08
AT	POINT	3 -0.1000000E-08
At	POINT	4 -0.3333334E-02

Appendix B (cont.)

<u></u>	3110	PLASTIC FIRST UND	ILK ANALYSIS UP P	RANE NO. 13			NEAL - FINA	I PROBLEM		
THE	514	ATICS MATRIX								
ROW	ı	0.0000000E 00 0.0000000E 00	0.00000000 00	-0.1000000E U	1 -0.100000E	01 0.	1000000E 01	0.100000E	01 0.0000	0000E 00
ROW	2	0.0000000E 00 0.1000000E 01	0.0000000E 00	0.000000E 0	0.000000E	00 -0.	1000000E 01	-0.100000E	01 0.1000	0000E 01
ROW	ŝ	0.1000000E 01 0.0000000E 00	0.0000000E 00	0.000000E 0	0.000000E	00 0.0	00000008 00	0.0000000E	00 0.0000	0000E 00
ROW	4	0.0000000E 00 0.0000000E 00	0.10000C0E' 01	0.10000000 0	1 0.000000E	00 0.0	000000E 00	0.000000E	00 0.0000	000E 00
ROW	5	0.0000000E 00 0.0000000E 00	0.0000000E 00	0+000000E 0	0 0.100000E	01 0.1	1000000E 01	0.0000000E	00 0.0000	000E 00
ROW	6	0.0000000E 00 0.0000000E 00	0.0000000E 00	0.0000000E 0	0 0.000000E	00 0.0	0000000E 00	0.1000000E	01 0.1000	0000E 01
ROW	7	0.0000000€ 00 0.1000000E 01	0.000000E 00	0.000000E 0	0 0.0000000E	00 0.0	0000000E 00	0.0000000E	00 0.0000	000E 00
THE	511	FFNESS MATRIX								
ROW	1	0.1333333E 01 0.0000000E 00	0.6666667E 00	0.000000E 0	0 0.000000E	00 0.0	0000000E 00	0.000000E	00 0.0000	000E 00
ROW	2	0.6666667E 00 0.0000000E 00	0.1333333E 01	0.000000E 0	0 0.000000E	00 0.0	00 3000000 00	0.000000E	00 0.0000	000E 00
ROW	3	0.0000000E 00 0.0000000E 00	0.000000E 00	0.4000000E 0	1 0.200000CE	01 0.0	0000000E 00	0.000000E	00 0.0000	000E 00
RON	٠	0.0000000E 00 0.0000000E 00	0.000000E 00	0.200000E 0	1 0.4000000E	01 0.0	000000E- 00	0.000000E	00 0.0000	000E 00
ROW	5	0.0000000E 00 0.0000000E 00	0.000000E 00	0.0000000000000000000000000000000000000	0.000000E	00 0.4	0000006 01	0+2000000E	01 0.0000	000E 00
ROW	6	0.0000000E 00 0.0000000E 00	0.0000000E 00	0.0000000E 00	0 0,000000E	00 0.2	000000E 01	0.400000E	01 0.0000	000E 00
ROW	7	0.0000000E 00 0.2000000E 01	0.000000E 00	0.0000000E 00	30000006+0	00 0.0	0000000E 00	0.000000E	00 0.4000	000E 01
ROW	8	0.0000000E 00 0.4000000E 01	0.000000E 00	0.000000E 00	0 0.000000E	00 0.0	0000000E 00	0.0000006	00 0.2000	000E 01
·			•							
THE	EXTE	RNAL LOAD VECTOR	SET NO. 1							
ROW	1	0.1300000E 01								
ROW	2	0.700000E 00								
ROW	3	0.0000000E 00								
ROW	4	0.0000000E 00			1 1		2 3	4 5	6.7	8
ROW	5	0.0000000E 00								
ROW	6	0.000000€ 00								1
ROW	7.	0.0000000E 00						CROIRNOR		
DEFL	EÇTI	ONS DUE TO UNIT LO	DADS			TURIDER		SEQUENCE		
RDW	1	0.5629626E 00								
ROW	z	0.5870367E 00								
ROW	3	-0.2583332E 00								
ROW	4	0.5166664E 00						ų	2	
ROW	5	0.3972220E 00								
ROW	6	-0.3444443E 00		/	<u> </u>		$ \frown $	<u>+</u>		
ROW	7	-0.7083330E 00					A	4		
HOME	NTS	DUE TO UNIT LOADS					*	3	0	1
ROW	1	0.2000000E-07			•		I			1
ROW	z	0.5166664E 00				DEPORMAT	ION IDENTIFICA	TION SEQUENCE		
ROW	3	-0.5166663E 00				-				
ROW	4	-0.755552E 00								
ROW	5	0.7555549E 00				1	NEAL - FINZI P	ROBLEM		
ROw	6	-0.7277775E 00								
ROW	7	0.7277773E 00								

Appendix C

-0.10000008-06

RO

Solution to Neal-Finzi Problem

PE	ASTIC	HINGE	NO.	1	FORMED	AT	POINT	- 4

PLASTIC HINGE NO. 2 FORMED AT POINT 6

LOA	D FAC	TOR ADDITIONAL	CUMULATIVE		LOAD FACTO	R ADDITIONAL	CUMULATIVE	
STA	θE	1 0.1323530E 01	0.1323530E 01		STAGE 2	0.1050416E 00	0.1428572E 01	
DEF	DRMAT	ION ADDITIONAL	CUMULATIVE		DEFORMATIO	ADDITIONAL	CUMULATIVE	
AT	1	0.7450979E 00	0.7450979E 00		AT 1	0.2310912E 00	0.9761892E 00	
AT	2	0.7769607E 00	0.7769607E 00	and a set of the second statement of the second	AT 2	0.1278005E 00	0.9047611E 00	
AT	3	-0.3419117E 00	-0.3419117E 00		AT 3	-0.8665922E-01	-0.4285709E 00	
AT	4.	0.6838235E 00	0.6838235E 00		AT 4	0.1733184E 00	0.8571419E 00	
AT	5	0.5257352E 00	0.5257352E 00		AT 5	-0.9716337E-01	0.4285718E 00	
AT	<u>6</u> .	-0.4558823E 00	-0.4558823E 00		AT6	0.1155456E_00	0.5714279E_00	
AT	r	-0.93749992 00	-0.93749998 00		AT 7	-0.1339279E 00	-0.10/1428E 01	
MOM	ENT	ADDITIONAL	CUMULATIVE	PLAS MOM	MOMENT .	ADDITIONAL	CUMULATIVE	PLAS MOM
AT	1	0.0000	0.0000	1.0000	AT 1	0.0000	0.0000	1.000
AT	2	0.6838	0.6838	1.0000	AT2	0.1733	0.8571	1.000
AT	3	-0.6838	-0.6838	1.0000	AT 3	-0.1733	-0.8571	1.000
AT	4	-1.0000	-1.0000	1.0000	AT .4	0.0000	-1.0000	1.0000
AT	5	1.0000	1.0000	1.0000	· AT 5	-0.0000	1.0000	1.000
AT	6	-0.9632	-0.9632	1.0000	AT 6	. 0 .0368	-1.0000	1.000
AT	7	0.9632	0.9632	1.0000	AT 7	0.0368	1.0000	1.000
AT	8	-0.0000	-0.0000	1.0000	AT8	-0.0000	-0.0000	
DEFI	ECTI	ONS DUE TO UNIT LOADS			DEFLECTION	S DUE TO UNIT LOADS		
ROW	1	0.2199998E 01			ROW 1	0.1820832E 01	· · · · ·	
ROW	2.	0.1216666E 01			ROW_2(0.4375000E 07		
ROW	3	-0.8249992E 00		-	ROW 3(0.7374996E 00	• • • · ·	
ROW	4	0.1649998E 01				0-1474999E 01	• •	
ROW	5	-0.9249992E 00			ROW5(0.4374999E_07		
ROW	6	-0.1099999E 01	·		RON 6 -0	0.4375000E 07	· · · · · · · · · · · · ·	
ROW	7	-0.1274999E 01			ROW 7 -0	0.4375001E 07	· · · · · · ·	
MOME	NTS	DUE TO UNIT LOADS			DEFLECTION	TOO LARGE	an a	
ROW	• 1	0.100000E-06	,		COLLAPSE M	ECHANISM HAS BEEN RI	EACHED	
ROW	2	0.1649998E 01	···· · · · · · · · · · · · · · · · · ·		·	HINGE ROTATIONS		
ROW	3	-0.1649998E 01	· · · ·		AT_POINT	1_0.200000E-07	·	
					AT POINT	2 -0.400000E-07		
RUW	4	0.000000E 00	·····		AT POINT	3_0.0000000E_00		
BOH	6	-0.14000005-05			AT POINT	4 0.3571410E 00		
KUN	2	-0.14000005-03			AT DOINT	5_+U.4000000E-07		
808	6	-0-3500009E 00			AI PUINI			
	v		······			8 -0- 8000000E-07		
ROW	7	0.3499996E_00			A1 FUINI			

a mater state

ROW 8 -0.4000000E-06

зs.

ELASTIC PLASTIC FIRST ORDER ANALYSIS OF FRAME NO. 9

THE STATICS MATRIX

BON		-0 44444705.01	0	0				
KUW	ı	-0.8866870E-01 0.0000000E 00 0.0000000E 00 0.0000000E 00	-0.6666670E-01 0.0000000E 00 0.0000000E 00 0.0000000E 00 0.0000000E 00	0.6666670E-01 0.0000000E 00 0.0000000E 00 0.0000000E 00 0.0000000E 00	0.6666670E-01 0.0000000E 00 0.0000000E 00 0.0000000E 00 0.0000000E 00	0.0000000E 00 0.0000000E 00 0.0000000E 00 0.0000000E 00	0.0000000E 00 0.0000000E 00 0.0000000E 00	0.0000000E 00 0.0000000E 00 0.0000000E 00 0.0000000E 00
ROW	2	0.0000000E 00 0.6666670E-01 0.0000000E 00 0.0000000E 00 0.0000000E 00	0.0000000E 00 0.0000000E 00 0.0000000E 00 0.0000000E 00 0.0000000E 00	0.0000000E 00 0.00000000E 00 0.0000000E 00 0.0000000E 00 0.0000000E 00	0.0000000E 00 0.0000000E 00 0.0000000E 00 0.0000000E 00 0.0000000E 00	-0.6666670E-01 0.0000000E 00 0.0000000E 00 0.0000000E 00	-0.6666670E-01 0.0000000E 00 0.0000000E 00 0.0000000E 00	0.6666670E-01 0.0000000E 00 0.0000000E 00 0.0000000E 00
ROW	3	0.0000000E 00 0.0000000E 00 0.0000000E 00 0.0000000E 00 0.0000000E 00	0.0000000E 00 -0.6666670E-01 0.0000000E 00 0.0000000E 00 0.0000000E 00	0.000000E 00 -0.6666670E-01 0.0000000E 00 0.0000000E 00 0.0000000E 00	0.0000000E 00 0.6666670E-01 0.0000000E 00 0.0000000E 00 0.0000000E 00	0.0000000E 00 0.6666670E-01 0.0000000E 00 0.0000000E 00	0.0000000E 00 0.0000000E 00 0.0000000E 00 0.0000000E 00	0.0000000E 00 0.0000000E 00 0.0000000E 00 0.0000000E 00
ROW	•	0.0000000£ 00 0.0000000£ 00 0.6666670E-01 0.0000000£ 00 0.0000000£ 00	0.0000000E 00 0.0000000E 00 0.6666670E-01 0.0000000E 00 0.0000000E 00	0.0000000E 00 0.0000000E 00 0.0000000E 00 0.0000000E 00 0.0000000E 00	0.0000000E 00 0.0000000E 00 0.0000000E 00 0.0000000E 00 0.0000000E 00	0.0000000E 00 0.0000000E 00 0.0000000E 00 0.0000000E 00	0.0000000E 00 -0.6666670E-01 0.0000000E 00 0.0000000E 00	0.0000000E 00 -0.6666670E-01 0.0000000E 00 0.0000000E 00
ROW	5	0.0000000E 00 0.0000000E 00 0.0000000E 00 0.0000000E 00 0.0000000E 00	0.0000000E 00 0.0000000E 00 0.0000000E 00 -0.833330E-01 0.0000000E 00	0.0000000E 00 0.0000000E 00 0.0000000E 00 -0.833330E-01 -0.8333330E-01	0.0000000E 00 0.0000000E 00 0.0000000E 00 0.0000000E 00 -0.8333330E-01	0.0000000E 00 0.0000000E 00 0.0000000E 00 0.0000000E 00	0.0000000E 00 0.0000000E 00 0.0000000E 00 0.0000000E 00	0.0000000E 00 0.0000000E 00 0.0000000E 00 0.0000000E 00
ROW	6 	0.0000000E 00 0.00000000E 00 0.0000000E 00 ~0.8333330E-01 -0.8333330E-01	0.0000000E 00 0.0000000E 00 0.0000000E 00 0.8333330E-01 -0.8333330E-01	0.0000000E 00 0.0000000E 00 0.0000000E 00 0.8333330E-01 0.8333330E-01	0.0000000E 00 0.0000000E 00 0.0000000E 00 0.0000000E 00 0.8333330E-01	0.0000000E 00 0.0000000E 00 0.0000000E 00 0.0000000E 00	0.0000000E 00 0.0000000E 00 0.0000000E 00 0.0000000E 00	0.0000000E 00 0.0000000E 00 -0.833330E-01 0.0000000E 00
ROW	7	0.0000000E 00 0.0000000E 00 0.0000000E 00 0.8333330E-01 0.8333330E-01	0.0000000E 00 0.0000000E 00 0.0000000E 00 0.0000000E 00 0.8333330E-01	0.0000000E 00 0.0000000E 00 0.0000000E 00 0.0000000E 00 0.0000000E 00	0.0000000E 00 0.0000000E 00 0.0000000E 00 0.0000000E 00 0.0000000E 00	0.0000000E 00 0.0000000E 00 -0.8333330E-01 0.0000000E 00	0.0000000E 00 0.0000000E 00 -0.8333330E-01 -0.8333330E-01	0.0000000E 00 0.0000000E 00 0.8333330E-01 -0.8333330E-01
ROW	8	0.0000000E 00 0.00000000E 00 0.00000000E 00 0.0000000E 00 0.0000000E 00	0.0000000E 00 0.00000000E 00 0.00000000E 00 0.00000000E 00 0.00000000E 00	0.0000000E 00 0.0000000E 00 -0.8333330E-01 0.0000000E 00 0.0000000E 00	0.0000000E 00 0.0000000E 00 -0.8333330E-01 -0.8333330E-01 0.0000000E 00	0.0000000E 00 0.0000000E 00 0.8333330E-01 -0.8333330E-01	0.0000000E 00 0.00000000E 00 0.8333330E-01 0.8333330E-01	0.0000000E 00 0.0000000E 00 0.0000000E 00 0.8333333E-01
ROW	9	0.1000000E 01 0.00000000E 00 0.00000000E 00 0.0000000E 00 0.0000000E 00	0.0000000E 00 0.00000000E 00 0.00000000E 00 0.0000000E 00 0.0000000E 00	0.0000000E 00 0.0000000E 00 0.0000000E 00 0.1000000E 01 0.0000000E 00	0.0000000F 00 0.0000000E 00 0.0000000E 00 0.0000000E 00 0.0000000E 00	0.0000000E 00 0.0000000E 00 0.0000000E 00 0.0000000E 00	0.0000000E 00 0.0000000E 00 0.0000000E 00 0.0000000E 00	0.0000000E 00 0.0000000E 00 0.0000000E 00 0.0000000E 00
ROW	10	0.0000000E 00 0.0000000E 00 0.0000000E 00 - 0.0000000E 00 0.0000000E 00	0.1000000E 01 0.0000000E 00 0.0000000E 00 0.0000000E 00 0.0000000E 00	0.1000000E 01 0.0000000E 00 0.0000000E 00 0.0000000E 00 0.0000000E 00	0.0000000E 00 0.0000000E 00 0.0000000E 00 0.0000000E 00 0.0000000E 00	0.0000000E 00 0.0000000E 00 0.0000000E 00 0.0000000E 00	0.0000000E 00 0.0000000E 00 0.0000000E 00 0.0000000E 00	0.0000000E 00 0.0000000E 00 0.0000000E 00 0.0000000E 00
ROW	11	0.0000000E 00 0.0000000E 00 0.0000000E 00 0.0000000E 00 0.0000000E 00	0.0000000E 00 0.0000000E 00 0.0000000E 00 0.0000000E 00 0.0000000E 00	0.0000000E 00 0.00000000E 00 0.0000000E 00 0.0000000E 00 0.0000000E 00	0.1000000E 01 0.0000000E 00 0.0000000E 00 0.0000000E 00 0.1000000E 01	0.0000000E 00 0.0000000E 00 0.0000000E 00 0.0000000E 00	0.0000000E 00 0.00000000E 00 0.0000000E 00 0.0000000E 00	0.0000000E 00 0.0000000E 00 0.0000000E 00 0.0000000E 00
ROW	12	0.0000000E 00 0.0000000E 00 0.0000000E 00 0.1000000E 01 0.0000000E 00	0.0000000E 00 0.0000000E 00 0.0000000E 00 0.1000000E 01 0.0000000E 00	0.0000000E 00 0.0000000E 00 0.0000000E 00 0.0000000E 00 0.0000000E 00	0.0000000E 00 0.0000000E 00 0.0000000E 00 0.0000000E 00 0.0000000E 00	0.1000000E 01 0.0000000E 00 0.0000000E 00 0.0000000E 00	0.0000000E 00 0.0000000E 00 0.0000000E 00 0.0000000E 00	0.0000000E 00 0.0000000E 00 0.0000000E 00 0.0000000E 00
ROW	13	0.0000000E 00 0.0000000E 00 0.0000000E 00 0.0000000E 00 0.0000000E 00	0.0000000E 00 0.00000000E 00 0.00000000E 00 0.00000000E 00 0.00000000E 00	0.0000000E 00 0.00000000E 00 0.00000000E 00 0.0000000E 00 0.0000000E 00	0.0000000E 00 0.0000000E 00 0.0000000E 00 0.0000000E 00 0.0000000E 00	0.0000000E 00 0.0000000E 00 0.0000000E 00 0.0000000E 00	0.1000000E 01 0.0000000E 00 0.0000000E 00 0.0000000E 00	0.1000000E 01 0.0000000E 00 0.0000000E 00 0.0000000E 00
ROW	14	0.0000000E 00 0.1000000E 01 0.0000000E 00 0.0000000E 00 0.0000000E 00	0.0000000E 00 0.0000000E 00 0.0000000E 00 0.0000000E 00 0.1000000E 01	0.0000000E 00 0.00000000E 00 0.0000000E 00 0.0000000E 00 0.1000000E 01	0.0000000E 00 0.0000000E 00 0.0000000E 00 0.0000000E 00 0.0000000E 00	0.0000000E 00 0.0000000E 00 0.0000000E 00 0.0000000E 00	0.0000000E 00 0.0000000E 00 0.0000000E 00 0.0000000E 00	0.0000000E 00 0.0000000E 00 0.0000000E 00 0.0000000E 00
ROW	15	0.0000000E 00 0.0000000E 00 0.0000000E 00 0.0000000E 00 0.0000000E 00	0.0000000E 00 0.1000000E 01 0.0000000E 00 0.0000000E 00 0.0000000E 00	0.0000000E 00 0.0000000E 00 0.0000000E 00 0.0000000E 00 0.0000000E 00	0.0000000E 00 0.0000000E 00 0.0000000E 00 0.0000000E 00 0.0000000E 00	0.0000000E 00 0.0000000E 00 0.0000000E 00 0.0000000E 00	0.0000000E 00 0.0000000E 00 0.1000000E 01 0.0000000E 00	0.0000000E 00 0.0000000E 00 0.1000000E 01 0.0000000E 00
ROW	16	0.0000000E 00 0.0000000E 00 0.0000000E 00 0.0000000E 00 0.0000000E 00	0.0000000E 00 0.0000000E 00 0.0000000E 00 0.0000000E 00 0.0000000E 00	0.0000000E 00 0.1000000E 01 0.0000000E 00 0.0000000E 00 0.0000000E 00	0.0000000E 00 0.1000000E 01 0.0000000E 00 0.0000000E 00 0.0000000E 00	0.0000000E 00 0.0000000E 00 0.0000000E 00 0.0000000E 00	0.0000000E 00 0.0000000E 00 0.0000000E 00 0.0000000E 00	0.0000000€ 00 0.0000000E 00 0.0000000E 00 0.0000000E 00
ROW	17	0.0000000E 00 0.0000000E 00 0.0000000E 00 0.0000000E 00 0.1000000E 01	0.0000000E 00 0.0000000E 00 0.0000000E 00 0.0000000E 00 0.0000000E 00	0.0000000E 00 0.0000000E 00 0.0000000E 00 0.0000000E 00 0.0000000E 00	C.0000000E 00 O.0000000E 00 O.0000000E 00 D.0000000E 00 O.0000000E 00	0.0000000E 00 0.1000000E 01 0.0000000E 00 0.0000000E 00	0.0000000E 00 0.0000000E 00 0.0000000E 00 0.0000000E 00	0.0000000E 00 0.0000000E 00 0.0000000E 00 0.1000000E 01
ROW	18	0.0000000E 00 0.0000000E 00 0.0000000E 00 0.0000000E 00 0.0000000E 00	0.0000000E 00 0.00000000E 00 0.0000000E 00 0.0000000E 00 0.0000000E 00	0.0000000E 00 0.0000000E 00 0.0000000E 00 0.0000000E 00 0.0000000E 00	0.0000000E 00 0.0000000E 00 0.1000000E 01 0.0000000E 00 0.0000000E 00	0.0000000E 00 0.0000000E 00 0.1000000E 01 0.0000000E 00	0.0000000E 00 0.1000000E 01 0.0000000E 00 0.0000000E 00	0.0000000E 00 0.0000000E 00 0.0000000E 00 0.0000000E 00
RÖW	19	0.0000000E 00 0.0000000E 00 0.1000000E 01 0.0000000E 00 0.0000000E 00	0.0000000E 00 0.0000000E 00 0.0000000E 00 0.0000000E 00 0.0000000E 00	0.0000000E 00 0.0000000E 00 0.0000000E 00 0.0000000E 00 0.0000000E 00	0.0000000E 00 0.0000000E 00 0.0000000E 00 0.0000000E 00 0.0000000E 00	0.0000000E 00 0.0000000E 00 0.0000000E 00 0.0000000E 00	0.0000000E 00 0.0000000E 00 0.0000000E 00 0.0000000E 00	0.00000005 00 0.1000000E 01 0.0000000E 00 0.0000000E 00
ROŅ	20	0.0000000E 00 0.0000000E 00 0.0000000E 00 0.0000000E 00 0.0000000E 00	0.0000000E 00 0.0000000E 00 0.1000000E 01 0.0000000E 00 0.0000000E 00	0.0000000E 00 0.0000000E 00 0.0000000E 00 0.0000000E 00 0.0000000E 00	0.0000000£ 00 0.0000000£ 00 0.0000000£ 00 0.000000£ 00 0.000000£ 00	0.0000000E 00 0.0000000E 00 0.0000000 F 00 0.1000000E 01	0.0000000E 00 0.0000000E 00 0.0000000E 00 0.1000000E 01	0.0000000E 00 0.0000000E 00 0.0000000E 00 0.0000000E 00

HEYMAN'S FRAME

Appendix D

Computer Solution for Heyman Frame

PLASTIC HING	E NO. L FORMED	AT PUINT 16
LOAD FACTOR	ADDITIONAL	CUMULATIVE
STAGE 1	0.1742112E 01	0.1742112E 01
DEFORMATION	ADDITIONAL	CUMULATIVE
AT 1	0.7561517E-01	0.7561517E-01
AT 2	0.5351284E-01	0.5351284E-01
AT 4	0.53077216-01	0.556425256-01
AT 5	0.2291726E 00	0.2291726E 00
AT 6	0.2061622E 00	0.2061622E 00
AT 8	0.72130386-01	0.15327382 00
AT 9	0.5519973E-02	0-5519973E-02
AT 10	-0.3615000E-03	-0.3615000E-03
AT 12	-0.40/39/46-02	-0.40/39/42-02
AT 13	-0.1030965E-02	-0.1030965E-02
AT 14	0.2119359E-03	0.2119359E-03
AT 15	0.5899208E-02	0-58992086-02
AT 17	0.1305644E-02	0.1305644E-02
AT 18	0.7413990E-02	0.7413990E-02
AT 19 AT 20	-0.2335401E-02 0.1927612E-02	-0.2335401E-02 0.1927612E-02
MOMENT	ADDITIONAL	CUMULATIVE
AT 1	-109.8803	-109.8803
AT 2	-255.2833	-255-2833
AT 4	163.5027	163.5027
AT 5	-96.6562	-96.6562
AT 6	-218.8554	-218-8554
AT 8	249.5827	249.5827
AT 9	-16.8987	-16.8987
AT 10	-227.3768	-227.3768
AT 12	312.2976	312.2976
AT 13	33.0057	33.0057
AT 14	-233.4777	-233.4777
) AT 16	350.0000	350.0000
AT 17	-126.8332	-126+8332
AT 18	-38.2772	-38.2772
AT 20	-12-8215	-12-8215
AT 21	29.7204	29.7204
AT 22	5.9834	5.9834
AT 124	109.8804	109.8804
AT 25	-192.3649	-192.3649
AT 26	-169.3407	-169.3407
AL 27 AT 28	-180.6593	-180.0883
AT 29	-124.2090	-124-2090
AT 30	-137.2727	-137.2727
AT 31	-112.3098	-112-3098
AL 32	-163.5026	-103.5020

PLAS NON

314, 3330 316, 3330 316, 3330 316, 3330 316, 3330 316, 3330 316, 3330 350, 0000 213, 3330 213, 3

PLAS MOM

 $\begin{array}{c} 318, 3330\\ 318, 3330\\ 318, 3330\\ 318, 3330\\ 318, 3330\\ 318, 3330\\ 318, 3330\\ 318, 3330\\ 318, 3330\\ 350, 0000\\ 350, 0000\\ 350, 0000\\ 350, 0000\\ 350, 0000\\ 350, 0000\\ 350, 0000\\ 350, 0000\\ 350, 0000\\ 213, 3330\\ 213, 330\\ 213, 300\\ 213, 300\\ 213, 300\\ 213, 30$

213.3330 213.3330 213.3330 213.3330 213.3330 213.3330

PLASTIC HINGE NO. 2~ FORMED AT POINT 25

LOAD FACTOR	ADDITIONAL	CUMULATIVE
STAGE 2	0.1608411E 00	0.1902953E 01
DEFORMATION	ADDITIONAL	CUMULATIVE
AT 1 AT 2 AT 3 AT 4 AT 5 AT 6 AT 7 AT 10 AT 11 AT 12 AT 14 AT 15 AT 16 AT 16 AT 17	0.7022406E-02 0.4815532E-02 0.548834E-02 0.1484072E-01 0.3892903E-01 0.3065761E-01 0.1452562E-01 0.1452562E-01 0.5177058E-03 -0.370476E-03 0.3630792E-03 0.3630792E-03 0.5482599E-04 0.7730907E-03 -0.2412891E-03	0.8263758E-01 0.5832837E-01 0.5832837E-01 0.7126597E-01 0.2681016E 00 0.1840570E 00 0.1840570E 00 0.8665599E-01 0.635599E-02 0.3961646E-03 -0.4353022E-02 0.4275002E-02 0.2667619E-03 0.667519E-02 0.2042502E-02 0.2042502E-02
AT 18	0.16085776-02	0.9022567E-02
AT 19	-0.3557223E-04	-0.2370973E-02 0.3803549E=02
MOMENT	ADDITIONAL	CUMULATIVE
AT 1 AT 2 AT 3 AT 4	-9.9812 -23.6370 23.6370 15.1231	-119.8615 -278.9204 278.9204 178.6258
AT 5	-8.4408	-105.0970
AT 6 AT 7 AT 8 AT 9	-19.9998 19.9998 23.9381 5.6614	-238.8552 238.8552 273.5207 -11.2373
AT 10	-22+0650	-297.4918
AT 12 AT 13 AT 14 AT 15	33.9100 5.8339 -39.1062 39.1062	346.2076 38.8396 -272.5839 272.5838
AT 16	0.0000	350.0000
AT 17	-24.1615	-150.9947
AT 19	-0.8859	4-3859
AT 20	-10.8653	-23.6868
AT 21 ·	5.2039	6.2899
AT 23	8.1343	98.8074
AT 24	9.9812	119.8616
AT 26	1.4390	-167.9017
AT 27	-1.4389	-182.0982
AT 28	-21.5518	-209-6402
AT 30	-12.3581	-136.5671
AT 31	-9.9408	-122.2506
AT 32	-15.1231	-178.6258

HEYMAN'S FRAME

DEFORMATION IDENTIFICATION SEQUENCE

HEYMAN'S PRAME

Appendix D (cont.)

۰

FEASTIC HING	E NG. 11 FURMED	AT PUINT 7	
LOAD FACTOR	ADDITIONAL	CÚMULATIVE	
STAGE 11	0.20172496-01	0.22331898 01	· ·
DEFORMATION	ADDITIONAL	CUMULATIVE	
AT 1	0.7338172E-01	0.21267571 00	· · · ·
AT	0.14328356-01	0.9152327-01	
AT 4	0.13864381 00	0.20578288 00	
AT 5	0.30180416 00	0.91255871 00	
AT 6	0.2580480E 00	0.81391636 00	
AT 7	0.2038937E 00	0.6510125E 00	
AT 8	0.1071458E 00	0.3350324E 00	
AT 10	-0.4892073E-02	-0.8470476E-02	
AT 11	-0.4892077E-02	-0.1271767E-01	
AT 12	0.2404476E-02	0.9047118E-02	
AT 13	-0.2776098E-03	-0.1809422E-02	
AT 14	0.4079600E=02	0.19086315-01	
AT 16	-0.6986274E-02	-0.9450560E-02	
AT 17	0.4729477E-02	0.1119317E-01	
AT 18	0.9021518E-02	0.3055573E-01	
AT 19 AT 20	0.93536268-02	0.1610212E-01	
AT 20	0.84955712-02	0.23311332-01	
MUMENT	AUDITIUNAL	CUMULATIVE	PLAS MU
AT 1	-9.0792	-154.9372	318.33
	0.0000	-318.3350	318.33
AT 4	0.0031	213.3363	318.33
AT 5	41.1791	-49.9351	318.33
AT 6	-25.1280	-318.3329	318.33
<u>AI 7</u>	25,1282	318.3330	318.33
AT 9	-9.0772	45-0656	350.00
AT 10	0.0000	-350.0000	350.00
AT 11	0.0003	350.0002	350.00
AT 12	0.0000	350.0000	350.00
AT 13	-9.0776	-349,9998	350.00
AT 15	0.0000	350.0000	350.00
AT 16	0.0000	350.0000	350.00
<u>AT 17</u>	0.0000	-213.3330	213.33
AT 19	1.6609	-59.4314	213.33
AT 20	-19.5373	-122,6293	213.33
AT 21	28.6153	77.5649	213.33
AT 22	-23.4674	-42.3477	213.33
AT 23	-17.7110	92.2839	213.33
Ar 25	0.0000	-213.3330	213.33
AT 26	-7.7623	-189.2230	213.33
AT 27	7.7624	-160.7768	213.33
AT 28	0.0000	-213.3330	213.33
MI 27	0.0001	103 0333	213.33
AT 30	7.7626	-107.9727	213.33
AT 32	0.0000	-213.3330	213.33
DEFLECTION T	DO LARGE	ACHEO	
	HINGE RUTATIONS		
	-0.3000000F-09		
AT POINT 2	0.1615364E-01		
AT POINT 3	0.900000E-09		
AT POINT 4	-0.3000000E-09		
AT POINT 5	0.00000000 00		
AT POINT 7	-0.1700000E-08		
AT POINT 8	-0.8707182E-02	•	
AT POINT S	-0.1900000E-08		
AT POINT 10	0.1408325E-01		

~ ~ ~

.....

....

)

AT.	POINT	1	-0.3000000E-09	
AT	POINT	2	0.1615364E-01	
AT	PDINT	3	0.900000E-09	
AT	POINT	4	-0.3000000E-09	
AT	POINT	5	0.0000000E 00	
AT	POINT	6	0.1400000E+08	
, AT	POINT	7	-0.1700000E-08	
AT	POINT	8	-0.8707182E-02	
· AT	POINT	9	-0.1900000E-08	
AT	POINT	10	0.1408325F-01	
AT	POINT	11	0.400000E-09	
AT	POINT	12	-0.2064373E-01	
AT	POINT	13	-0.1500000E-08	
Αľ	POINT	14	0.0000000000000000000000000000000000000	
AT	POINT	15	-0.3702211E-01	
AT	POINT	16	-0.4423154E-01	
AT	POINT	17	0.1767095E-01	
AT	POINT	18	-0.1100000E-08	
AT	POINT	19	0.2600000E-08	
AT	POINT	20	0.2800000E-08	
AT	POINT	21	0.1600000F-08	
Αſ	POINT	22	0.1000000E-08	
AT	POINT	23	0.2700000E-08	
AT	PDINT	24	0.1300000E-08	
AT	POINT	25	0.2129304E-01	
AT	POINT	26	0.1800000E-08	
AT	POINT	27	0.49000000-08	
AT	POINT	28	0.77183266-02	
AT	POINT	29	0.2700000E-08	
AT	PDINT	30	0.2400000E-08	
AT	POINT	31	0.4500000E-08	
A T	POINT	32	0.1266886E-01	

Appendix D (cont.)

(c) Second Analysis

Fig. 1

Elastic-Plastic Analysis (manual computation)

Fig. 2 Elastic-

Elastic-Plastic Analysis (machine computation)

297.16

M_{AB}= O

Load Displacement Relations

Fig. 4 Flow Diagram

297.16

Fig. 5 N

Neal-Finzi Problem

297.16

Heyman's Frame

IO x IO UC.60 (213.33)

TOP

SWAY

0.229

0.268

0.273

0.287

0.375

0.379

0.390

0.429 0.500

0.611

r^{an, l}

XI REFERENCES

- Wang, C. K. GENERAL COMPUTER PROGRAM FOR LIMIT ANALYSIS, Jrnl. of Str. Division, ASCE, ST6, Dec. (1963)
- 2. Clough, R. W. STRUCTURAL ANALYSIS BY MEANS OF A MATRIX ALEBRA PROGRAM, Conf. on Electronic Computation, ASCE, Nov. (1958)
- 3. Symonds, P. S., and Neal, B. G. RECENT PROGRESS IN THE PLASTIC METHODS OF STRUCTURAL ANALYSIS, J. Franklin Insti., 252, p. 383 (1951)
- 4. Heyman, J. PLASTIC DESIGN OF PITCHED ROOF PORTAL FRAMES, Proc. I.C.E., Vol. 8, Oct. (1957)
- 5. Vickery, B. J.

THE INFLUENCE OF DEFORMATIONS AND STRAIN-HARDENING ON THE COLLAPSE LOAD OF RIGID FRAME STRUCTURES, C.E. Trans. of Instit. of Engrs. Aust., Vol. CE3, No. 2, Sept. (1961)

6. Heyman, J.

ON THE ESTIMATION OF DEFLECTIONS IN ELASTIC-PLASTIC FRAMED STRUCTURES, Proc. I.C.E., Vol. 19, May (1961)

7. Finzi, L.

UNLOADING PROCESSES IN ELASTIC-PLASTIC STRUCTURES, 9th Int. Congr. of Appl. Mech, Brussels (1957)

8. Neal, B. G.

THE PLASTIC METHODS OF STRUCTURAL ANALYSIS, Chapman and Hall, London (1963)

9. Harrison, H. B.

COMPUTER ANALYSIS OF PLANE FRAMES, Fritz Lab. Rep. No. 297.15, Lehigh University, July (1965)