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(1)

(2)

LEHIGH UNIVERSITY

DEPARTMENT OF CIVIL ENGINEERING

ELASTIC - PLASTIC PLANE FRAME ANALYSIS

A comﬁiled Fortran programme is now available which will carry
out a first-order elastic-plastic analysis of plane frames using the GE225
computer. The method was outlined in a paper by C. K. Wang of Wisconsin
in the December, 1963 Journal of the Structural Division, ASCE. The
analysis is by the Displacement method with a sequential determination
of the location and load factor when plastic hinges are formed. At each
stage, the deformations and bending moments are printed and the angular
rotations of plastic hinges are outpuf after the collapse mechanism hgg
been found. The maximum size frame that can be analysed using the GE225
would consist of 10 members with 15 degrees of freedom. Point application
of ioads, moments only can be considered and load.application positiqns
must be treated as joints. For larger problems the source programme is.'
available in Fortran so that other 1arger computers could be used. Inﬁifb‘
present form, the programme does not take into account directly the effggts
of axial load upon stiffness or plastic moment, and only flexural_membe?é‘

can be accomodated, so that braced frames cannot be analysed.

In using the compiled programme on the GE225 machine, all that is

necessary is to prepare the relevant data in the appropriate form as below:

(a) Card 1. Frame number (for identification) in Fortran Format IS5.
(b) Card 2. Degrees of freedom and TWICE the number of members in
Format 215.

(¢) cards 3,---J The statics matrix (all elements) in Format 7Fl10.4.




(d) Cards L,---N The stiffness matrix in Format F10.4 in the following
sequence: Sl1, S§12, S22, S23, S33, S34,------- Snn,

(e) Cards M----P Elements of the plastic moment vector in Format 7F10.4,

(f) Card Q o The unit load set number in Format IS5 (must be positive).

(g) Cards R----S The unit load set in Format 7F10.4

For more load sets, continue with set number, the
stiffness matrix again, and the load set

(h) Card T If no more load sets, a negative integer in Format I5.
(i) Cards W----W Further frames, repeating the sequence (a) to (h).
(j) Card X For no further frames, a negative integer in Format IS,

Hence the run will end when two negative integers have
been read sequentially;

(k) Cards Y,Z Blank cards.

Note on Fortran Format examples of I5: Card 1 bbbb2, Card 2 bbb35, Card 3 bbb-4

(b denotes space) examples of 215.Card 1 bbbb2bbb35, Card 2 bbb23bbbb3
examples of F10.4:Card 1 bbb-63.832, Card 2 bbb0.Obbbb

for 7F10.4, 7 such entries per data card are permitted,
each within field of width 10,

(3) The Stiffness Matrix This matrix represents the assembled load-displacement

relationship for all the frame elements and the form chosen follows the usual

slope-deflection convention. For a member 1-2,
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For the whole frame, M = S °* @ where M and @ are column
vectors and S 1is a triple-diagonal square matrix of order equal to
twice the number of frame members. The ends of each member must be

identified by nuymbers quite distinct from any joint numbering system,

The Statics Matrix This matrix represents the equilibrium equations for

the frame.
W = A * M
W is a column vector with as many elements as degrees of freedom and
M is the column vector as above, listing the internal moments at member
ends. Hence there will be twice as many elements in M as there are frame

members.

The Plastic Moment Matrix 1s a colunii Veéctor similar to M listing the

moment capacities available at each end of all members,
The unit load set is the matrix W as above.

Note: The statics matrix A 1is the transpose of the more familiar
displacement matrix AT which relates kinematically the relative to
absolute deformations.

o = AT . A
Both matrices are readily assembled and if this is done, a useful check on

mistakes is available.

Limitations:
In addition to the general limitation on frame size that can be

accomodated by the Lehigh computer, there are two other important lihitatioﬁs



on the efficiency of the programme.

(1)

(2)

It is assumed that a plastic hinge once formed stays formed

and if this is not the case for a frame, the results will not

be of much use except that the load factor at collapse will err
on the safe side. This follows from.the fact that equilibrium
and yield conditions will have Been satisfied but not so the
mechanism condition.

It is also assumed that no strain reversal takes place in the
frames of progressively detereorated stiffness that are analysed.
However, the printed output 1is sufficient to indicate whether
this phenomenon has occurred. It is not likely that this
weakness will seriously limit the usefulness of the programme

as the phenonemon has occurred only once in ten frames that

have been analyzed by the author.

H. B. Harrison
March 26, 1965



Example:

Frame No.

2

Degrees of freedom 3

Number of members 2
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The computer output for this example follows.
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ELASTIC PLASTIC FIRST CRDER ANALYSIS CF FRAME NG, 2

THE

STATICS MATRIY A

0.
N.1000000F .01

~0.2000000E=00

0.2000000E 04
C.4000000F n4
ne

0.

ROW 1 N.100006N0F N1
ROW 2 0.

ROW 3 L:o.zuoocoue-oo
THE STIFFNESS MATRIX S
ROW 1 | 0.4Uoon0og n4
ROW 2 0.200N0N0F n4
ROW % 0.

ROW 4 0.

THE EXTEKNAL LOAD VECTOR SET NO, 1
ROW 1 0.

ROW 2 0.

ROW 3 0.10000600F nt

DEFLECTIONS DUE T0 UNIT

LOADS

ROW
ROW

ROW

MOMENTS DIE TO UMIT LNADPS

i

2

3

N.6250000F~03
~0.1562500F=p3

0.1822917E-0n2

ROW
ROW
ROW

ROW

1

2

n.
~0.1562500F n1
n.1562500F 01

0.1875000F nt

Ul
0.1000000F 01

0.2000000E~0O

0.

0'
0.4000000E 04

0.2000000F 04

0.

0'

0.2000000E~00 ] _

0.
Dn
0.2000000E 04

0.4000000g 04 |




___PLASTIC.HINGE NO, 1 FORMED AT POINT 4

 LOAD FACTAR

STAGE! 1)
DEFLERTION
XU 1)
xt 21
x{ 31
MOMENT
ML 11
ML 21
ML 3
ML 4

DEFLEQTIONS DUE T IINTT LCADS

ROW 1
ROW 2 0
‘ROW 3

ADDITIONAL
0.2133333E @2

ADDITICNAL
N.1333333E-01

“0.3333333E=-02
0.3B8B889F-01

ADDITIONAL
0.
-33.3333
33.3332
ap,.onon

N.1250000F=-n2

0.416A667FE=N2

"MOMENTS DUE TO UMIT LOADS

ROW ¢ 0
ROW 2
ROW 3
ROW 4 0

PLASTIC HINGE No, 2

-0.250N000F n4

n-ZéﬂﬂUOUF ni

CUMULATIVE
0.2133333E 02

CUMULLATIVE
0,1333333E-01

~0.,53833583E=02
0.35888R889E~01

CUMULATIVE
OI
-32,3333
32,3333
4an,0n00

FORMED AT PCINT 2

LOAD FACTOR

STAGE! 2)
DEFLECTION
xI 1
XU 2y
xt 3
MOMENT
ML 11
ML 2]
Ml 3
ML 4

DIVISION BY ZERO IN INMYEHRSION

ADDITIONAL
N.2666A67E n1

ADUITIONAL
0.3333333E-02
0.
N.1111111E-01

ADDITIONAL
0.
~6.6AK67
6.6667
0.

CUMULATIVE
0.2400000E 02

CUMULATIVE
0.1666467E=01

=0.,3333333F~-02
0.5000n00F~-01

CUMKLATIVE
0.
=40.0n00
40.00U0
48.,nn00Q

COLLLAPSE MECHANTS™ HAS REEN REACHED

AT POTINTI
AT POINTI
AT POTNTU
AT POINTH

1)
2]
3]
4]

RINGE RNTATICNS

=N.21R27R7E-10
“N.?940383E-10
=0,43A5R76E=10
=Nn,3333233E~p2

PLAS MOM
40,0000
40.0000
an.0000
40.0000

PLAS MOM
40.0000
40.000nN
40,0000
ap,000n
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SYNOPSIS

An account is given of a Fortran program for the elastic-plastic
analysis of plane flexural frames. The program has been developed from
one first written by Professor C. K. Wang and has proved to be useful in

the study of steel structures.

With a minimum of input data, the program will enable a computer
to carry out a series of elastic analyses of a steel structure. The
position of each plastic hinge will be determined as it is formed and the
load factor and deformed state of the structure will be output as each
such event occurs. When the collapse mechanism is found, the rotations
at each plastic hinge are computed as well as the deformations and load

factor at the outset of failure.

Frames of moderate size can be analyzed by currently operating
machines but an upper limit will exist for the frame size that can be

handled by any given machine.

The limitations of the program are discussed in detail and

several examples are given of its application.
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I INTRODUCTION

Professor C. K. Wang of the University of Wisconsin first
described the basic principles of a computer program to analyze elastic-
plastic structures in‘1963(1) and made available to the author the Fortran
'coding of his scheme which was in a form suited to the CDC 1604 machine qf
Wisconsin., In modifying‘the program to suit the GE 225 machine at Lehigh
University it soon became apparent that with the reduced storage capacity
available, some attention should be paid to the reduction of the
dimensioned arrays used by the program so that frames of reasonable size
could be accommodated. The efficiency of the program has been improved in
various ways which will be outlined in this report but the basic operating
principles and solution techniques used originally by Wang are retaimed and

due acknowledgement is paid for the ingenious way in which he has achieved

his goal.

Basically, the program will carry out a series of first-order
glastic analyses of a frame in which free hinges are sﬁccessively introduced
at those sections at which localized plastic hinges are assumed to develop
at the load system is increased uniformly. Accordingly, it can be
appreciated that the program must incorporate two distinct capabilities.

The first is a system of "bookkeeping”‘in which a record is kept of the
moments existing at all possible plastic hinge positions in a frame. Tﬁe
moments are compared with the available plastic moment capacity to detect
whether or not the next plastic hinge is to form at any given position. The
second capability is the utilization of a form of first order elastic
analysis which can be applied simply andsngéessi&ely-to frames of deterio-

rated stiffness as hinges are inserted. The type of displacement analysis



described by Clough(z) and used by Wang is well suited for this purpose.
Brief explanations will be given of both sections of the program since the
functioning and limitations of the scheme can only be understood in their

light.
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I1 ELASTIC-PLASTIC ANALYSIS

It is often the case that the form of an analysis carried out by
hand would not be a desirable one to program for a computer. Neal and

Symonds(3) have proposed a method for estimating the deformations near

(4) (5)

collapse of rigid frames and it has been used by Heyman and Vickery
in a study of the effects of deformation and strain hardening on the
collapse load.. Heyman(6) has subsequently used a different approach based
on Virtual Work to achieve the same end. In all methods, the mechanism of
failure is found previously and the deformations at failure are determined
by first finding the position where the last—to—form.plastic hinge would
occur. These methods have had the commén aim of avoiding the onerous
computation of load factors gnd deformations as each plastic hinge is formed
when the load intensity is progressively increased; This latter approach is
probably the best to use with a computér as intuitive judgemedts are
eliminated. 1In suchva method of computation, once it-has beeh decided that
a plastic hinge exists at some position,  the next stage in the analysis
concerns the same initial frame with a free hinge at the position nominated,
but subjected to a new loading system. The new system would consist of the
original set of unit loads together with a moment‘of the full plastic Vélue
acting as an external action on the end; of the members meeting at the
"hinge'". The method is demonstrated in Fig. 1 for a propped cantilever
where the reéults of the first elastic analysis shown in Fig. 1 (b) indicate
that the first plastic hinge will form at positioh c. Insefting a free
hinge at C, it can be seen that the second and final analysis shoﬁn in

Fig. 1 (¢) is that of a simply supported beam withian extra exterﬁal action,

namely the moment Mp, acting at C. This abbroach presents no problems for



a hand solution, but it would be inefficient for a machine solution because

of the necessity of providing for the extra degree of freedom aﬁd the
corresponding new loading term in the dimensioning of the various matrices
affected by the degree of freedom. If provision had to be made for an
extra degree of freedom af évery position where a ﬁinge was likely to form,
é small frame would rapidly £ill the available data storage capacity of a

computer.

The alternative system used by Wang does not involve the same
difficulties and is illustrated for the propped cantilever shown again in
Fig. 2. The results of the first elastic analysis are shown in Fig. 2(b)
and in row 4 of Table I. The load factors in row 5, obtained by dividing
the available moment capacity at each position by the unit moment at the
same position, determine where the first plastic hinge will form. This
will be ﬁhe case at that position where the load factor is smallest as
shown in row 6. The moments at all positions when the first hinge has
formed are shown in row 8 and the residual moment capacity is shown in row
9 of the table and élso in Fig. 2(c). With a free hinge inserted at
position 4 in Fig. 2, the frame is again analyzed for the original loading
system as in row 10 with the load factors determined by dividing the
residual moment capacities by the unit load moments. It is in this respect,
illustrated in Fig. 2(c) that the machine solution devised by Wang differé

from the hand solution technique.

It can also be seen from Table I that the procedure is essentially
cyclical. It is feasible to calculate the deformation at each stage but
these results have not been included in the tabulation. A collapse

mechanism will have been reached in the analysis when the structure has }
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been converted into a mechanism. The numerical indication of such a
phenomenon can be in several forms. It may be_that the coefficients in the
stiffness.equations would form a singular matrix so that zefo division
would be encountered in an attémpted solution and would endvthe analysis.

If this does not occur, the computed deformations would be very large which
would indicate that the load-deflection diagram has become horizontal.

Wang has expiéined the computer indications of frame failure in reference
(1) though some of his collapse criteria have been eliminated in the presént

program for reasons which will be explained later.

The method chosen for systematizing an elastic-plastic anaiysis
has been explained and its success as part of a computer program will
obviously depend upon the provision of a method of elastic analysis which

will deal in a simple fashion with the insertion of hinges in rigid frames.



Table I

Numerical Analysis of Propped Cantilever Problem

hinges at positions 4 and 2

deformations will result)

Position in Beam (Fig. 2) 1. 2, 3. 4.
1. Initial moment capacity 40 40 40 40
2. Cumulative moments to date 0 0 0 0
3. Available moment capacity 40 40 40 _ 40
4. Elastic Analysis 1
Moments due to unit loading 0 -1.56 1.56 1.83
5. Load factors (row 3 +row 4)% -' 25.64 25.64 21.33
6; Smallest load factor (SLG) 21.33
7. Unit moments x SLG 0 -33.33 33.33 ‘ 40
8. Cumulative moments to date 0 -33.33 33.33 40
9. Avail. capacity (row 1 - row 8) 40 6.67 6.67 0
10. Eléétic Analysis 2
Moments due to unit loading
with hinge at position 4 0 -2.5 2.5 | 0
11. Load factors (row 9 — row 10)* — 2.66 2.66 *
12, Smallest load factor (SLG) 2.66
13. Unit moments x SLG 0 -6.67 6.67 0
14. Cumulative moments to date 0 =40 40 40
15, Avail. capacity (row 1 - row 1l4)] 40 0 0 0
. L6. Elastic Analysis 3 with (Either zero division or very large

* Positions where moment is near zero are not included in search

for smallest load factor to avoid premature zero division stop.

(The computer output for this problem is shown in Appendix B)
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III ELASTIC FLEXURAL ANALYSIS

The displacemént method éf frame analysis can be formulated in
many forms, all with the common characteristic that the load-displacement
behavior of a frame as a whole is built up from a.knowledge of the load-
displacement relationship for its component members. In the case of a

flexural frame, the elementary component will be a straight prismatic

- member as shown at (a) in Fig. 3 and if axial and shear stiffnesses are

assumed infinite, the load displacement relationships take the form of the

simple slope-deflection equations,

_ 2EI
L —f—(z @ AB + ¢ BA)

M5a

Z%l(w AB + 2 @ BA)

which can. be expressed in the matrix form,

4EI 2EI

M [4EL 2EL | | gaB

as | [T T @

2EI 4EI

Yea | | T |0

L - T -— e —d

or
(SRpp) = (Spp) + (@pp) (1)

For all the members of a frame, the similar equations for each'member:may~

be assembled in the matrix equation,

] [ ] [
(SRge)| = . (sgg) . | . |(¥BO)
(skgp)| L (s | | e
or
(SR) = (5) * (9) (2)



/

where (S) is called the member stiffness matrix and (SR) will be a columm
matrix or vector listing the moments acting at the ends of all frame members.
It is usually a simple matter to write down the equations of statics which

relate these moments (called stress resultants) to the applied loads.
W = (@ - B : (3)

The load vector (W) must have as many terms as the degree of freedom of the
structure since deformations are measured by the movement of loads (whether
real or virtual) in a displacement analysis. 1If the degree of freedom is

L and the number of members is NM, then the statics matrix (A) will be of
order L x 2NM. Oﬁly for a statically determinate sfructure will L = 2NM

so that inversion of(A)is then possible and the stress resultants will be
‘known in terms of loads without any further analysis. Finally, the relative
deformations within each member (@) can be ‘expressed in terms of movements

of the loads (X) by a kinematics matrix C,

@ = (@ - X | (4)

(1)

and it can be shown that the matrix (C) is the transpose of the statics
matrix (A). Hence, the load-displacement equations for the whole structure

can be expressed,
W = ® - ® - 6h - ® (5)

where the triple matrix product (A-S-AT) is the stiffness matrix (K) of the
frame. For a given set of loads (W), the displacements can be detefmined
by standard equation solution programs. Thereafter, the moments at the ends

of each frame member can be computed from Eqs. (2) and (4),

(SR) = () - AH - @ " (6)
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This form of first order frame analysis can accommodate the
modification associated with the insertion of a hinge within a structure.
There are two ways in which the modification can be made. The obvious way
is to consider the extra degree of freedom involved and to add a row to the
matrix (A) (and a corresponding éolumn to AT) 1eaving the member stiffness
matrix (S) unchanged. It has been explained earlier that this approach
would be impracticable in a computer program as all possible changes in the
degree of freedom would have to be accounted for in the initial dimensioning
and establishment of the statics matrix (A). The alternative approach
adopted by Wang was to keep (A) and effectively L unchanged and modify the
member stiffness matrix (S). The procedure can be uhderétood by referting
to Fig. 3(b). If a hinge is present at the end A of member AB, the slope;

deflection equations become,

L
Myg 0 O | |@aB
) 3EI M
Mpa o = @BA
Similarly, if a hinge were to exist at the end B as in Fig. 3(c),
— - [ . - —
3EI '
M 251 0 @AB
AB L | . _
- | . (8)
Mg, 0 0 @BA

By adopting a numerical system rather than an alﬁhabetic system for
identifying the ends of each.member, with the odd number always smalléf
than the even number, Wang was able to achieve the necessary changes to
the matrix (S) in accordance.with Egqs. (7) and (8) using the compufed

location of any hinge. For example, the substitution of a hinge at a



position 16 in any frame would necessitate the following alterations to the

(8) matrix.

sl (15,15) = % S(15,15)
st (15,16) = s! (16,16) = s!(16,15) =0

where the primes denote the new values. If a hinge occurred at position 15,

st (15,15) = sl (15,16) = sl(16,15) = 0

sl (16,16)

3 s(16,16)
A

Simple tests exist in computer languages for detecting whether a number is
0dd or even and then the appropriate changes to the member stiffness

matrix (S) can be made.

10,
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IV DESCRIPTION OF PROGRAM

The Fortran program is included in the Appendix A and the
principal stages in its operation are shown in the flow diagram in Fig. 4.
The first step is to dimension the arrays and it should be understood that
the program will analyze frames whose arrays cannot exceed the initially
set sizes but which can be of any size smaller than the initially set
valueé. A discussion of the limitations on frames(sizes.that can be
accommodated by a given machine will be given in the next section. The
first item of data must be theidentifying number of the frame which if
negative, is regarded as the exit signal. Next, the'degree of freedom L
and the member count NM are read and thesé two numbers will control the
sizes. of ali the subsequent arrays built within the stére for the frame
being studied. All the elements of the statics matrix are then read in
row by row. This is followed by the member stiffness and plastic moment
data with one card per member containing the EI/L and Mp values. From
this information, the member stiffness matrix (S) and the plastic moment
vector will be constructed in the store. The (S) matrix is output for
checking, together with headings and the full statics matrix (A).‘ Wang's
original program has been modified considefably in this region by
incorporating the ability to analyze the same frame for a series-of different
loading conditions. Accordingly, the next item input has to be the
identifying number of the load éet which is to follow. For load sets other
than the first, the completely deteriorated member stiffness matrix is
reconstructed before the analysis proceeds. It the load set number is
negative, the program will quk for data for a new frame and if no further

frames are to be studied, the final card has to contain a negative integer

11.



in the place of a frame identifying number. Hence, the final two cards in
any run will contain negative integers. With the load set input and
printed for checking purposes, the program proceeds with the analysié by

_ building the frame stiffness matrix (K) from the member stiffness matrix (S)
and the statics matrix (A) according to equation (5). The equations are
solved for deformétions and if these are too large, an indication is given
that the frame has reached the collgpse condition. Deformations exceeding
the value of 10% are regarded as beiﬁg too large. It this is not the case,
the moments are computed using Eqs. (2) gnd (4) and the smallest load

factor sought so that the position of a plastic hinge can be found.

This part of the program follows Wang's original scheme except
for one alteration. It was found that erroneoué results were produced for
some frames by the original program because the load factors were computed
b§ dividing the residual moment capacity by the absolute value of the
moments caused by unit loading. Such a procedure is satisfactory provided
the unit load moments at the critical positions are of the same sign in the
successive analysis of the frames of deteriorated stiffness. It may well
be the case that the moment at the position with the least reserve of
strength may be decreasing under increasing load. A test has been
incorporated in the section of the program concerned with the finding of the
smallest load factor to détermine whether such is the case and if so, the
position in qﬁestion is not included in the search for the smallest load

factor.

In his program, Wang incorporated four separate tests to determine
whether the collapse load for a frame had been reached. One of those tests

involved the minimum load factor which, if too small, would indicate that

12.
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the load-deflection curve for a frame was close to horizontal. However, it
was found that this test would frequently terminate prematurely the
aﬁélysis for any frame where two plastic hinges might form simultaneously.’
This test has been omitted from the présent program since it is considered
that a deformation limitation will determine effectively whether or not the
load-displacement curve might be horizontal. Only one of the other two
tests for collapse which were provided by Wang has been retained. This is
thé test which outputs the message 'division by zero in inversionﬁ-and'it
effectively determines the stage at which a row and column in the frame
stiffness matrix (K) contains only zero terms. In theory, this is the only
necessary test but the other is required because rounding-off errors in the

floating point arithmetic could delay the program termination and invalidate

the final calculation of plastic hinge rotations.

After the mechanism of failure has been found and the load factor
and the cumulative moments and deformations at the maximum load are printed,
the final computation concerns the amount of plastic rotation that would
have occurred at the positions of all plastic hinges except the last formed.
Referring to equation (2), the relative end slopes (@) could be calculated
by pre-multiplying the list of cumulative moments (SR) by the inverted form
of the member stiffness matrix.

@ = ()" - (sw) 9)
It can be notgd that a simple inversion of (S) is not possible because at
the final stages of an analysis, this matrix does not exist in its original
form. Wang inverted (S) and stored the data at the beginning of his program
but was aware of the fact that considerable economy of storage capacity
would result if the elements of (S) were stored as a iist and the matrix

reconstructed in its actual or inverted form when required. This has been

13.



done in the present program.

The slopes computed from equation (9) will be the same as those
which can be calculated from equation (4) only at those positions where no
plastic deformation has occurred. Accordingly, the amount of plastic hinge

rotation can be expressed,

@p) = (s7h - B - (D - ® (10)

where the lists (SR) and (X) are the moments and deformations in the frame

at the stage when the last plastic hinge has just been formed.

Finally, control is returned to see if any further load sets are
to be studied. for the frame in question. If so, the member stiffness matrix
would need to be completely reconstructed as it would have been altered
considerably in the course of the analysis for the first load set. If no
further load sets are available, the program will commence the analysis of
another problem. If there are no further frames to be studied, the run will

terminate.

14,



V__ PROGRAM LIMITATIONS

The program will perfofm a first-order elastic-plastic analysis of
rigid planes of prismatic members and in its present form is strictly
limited to this form of analysis. Since axial stiffness of members is
assuméd to be infinite, the.axial forces present in the members are not
calculated explicitly so that it is not possible to arrange for a
progressive decrease in plastic moment capacity caused by the presence of
. axial load. However, it is always possible to account approximately for
this effect by reading initial values for plastic moments, already reduced
by the estimated axial loads at failure. To account explicitly for axial
strains, the member stiffness matrix would consist of (3.x 3) units for
each member instead of the (2 x 2) units currently specified so that fsr a
limited computer store capacity, the size of frame to be handled would be
curtailed drastically. To account for second-order effects in the dis-
placsment analysis, tﬁe axial fsrces in members would be needed with the
capacity disadvantage mentioned above, but then the reduction in stiffness
of each member could be readily computed and the member stiffness matrix
modified progressively in esseﬁtially iterative solution procedure.

Running time would increase greatly as a result.

The statics matrix also would require progressive modification to
account for sway deformations and whereas programs can always be written to
do this for any specific frame, it is difficult to visualize a general
program that could account for the phenomenon for an? type of ;igid frame.

The great advantage of Wang's scheme is that it can be used for any type of

plane frame as a standard program.

.

15.



The main limiting factor in the use of a general program for

frame analysis is storage capacity since fhe use of matrix methods has the
disadvantage that quite extensive arrays can be generated by. only
moderately aized structures. It is evident that methods can always be
developed to utilize tapes as a backing store for a specific machine but

the generality of a program is then losf. It is anticipated that core store
capacities of computers of the next generation will be greatly in excess

of those currently available, so that it‘will be possible to analyze with

an elastic-plastic program the range of sizes of steel frames for which

such an analysis is currently relevant.

In its original form, Wang's program required a storage capacity
which can be expressed,
c> (T + am)? + 42 + 3L + 14NM ‘ (11)

where C = capacity,

L degree of freedom, and

NM = the number of members in a frame

As has been explained, there is no need to store the inverted
form of the member stiffness matrix if this can be generated whenArequired
from a one dimensional list of member stiffness parameters. The capacity
required for the modified program can be expressed,

C> (L+ a2 + 3L + 15\ (12)

As an example, a three-story, two bay rigid frame subjected to
two-poin; loading on each beam would have 36 degrees of freedom and 27
members so that the original program would'fequire a capacity of 11502
locations.i The modified program would require the reduced capacity of

8613 locations. (The data capacity of the Lehigh GE 225 computer when using

the elastic-plastic program was found to be 1860 whereas with an IBM 7074

16.
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~machine, the capacity was 6850 locations.) It is apparent that load
application positions have to be treated as joints so that a beam under two-
point loading constitutes three membefé. Consequently, the available
capacity of a medium sized machine such as the GE 225 will be fully

utilized by frames of only moderate size.

One further limiting factor should be mentioned. It can some-
times occur in steel frames that a plastic hinge which is formed early in
the loading history may not be required in the collapse condition. ‘The
moment at éuch absection would decrease in magnitude and a p1aStic.hinge
would not then exist. This phenomenon cannot be accounted for in the
present program as the process of free hinge insertion is irreversible.
The calculated load factor for such a problem would err on the safe side
since the equilibrium and yield conditions would be satisfied but not the
mechanisﬁ condition. This phenomenon has been mentioned by Finzi(7). The

(8)

example of a two-span beam, which has been used by Neal to demonstrate
this phenomenon, is ghown in Fig. 5. Forvthe loads shown at (a),an

elastic analysis will produce a maximum moment at the point(4) as can be
seen in (b). However, a simple plastic analysis wiil predict anailure
mechanism with plastic hinges at (3) and (6) but not at (4). This can be
deduced from the moment diagram shown at (d) in the figure. The results
obtained from a computer analysis of this problem are in the Appendix C.

It can be seen that the computer cofrectly detects the formation of the first
hinge at position (4) and the seqond at (6)‘as shown at (¢) in Fig. 5 but
cahnot account for the closing of the first formed hinge thereafter.
Accordingly, it arrives at an invalidAcollapse mechanism with a load factor

smaller than the correct one. Consequently, it is desirable for any frame

to check the collapse mechanism arrived at by the computer to see whether or

17.



not it is valid.

A related problem is that of the formation of a plastic hinge
under a distributed load. 1In such a case,'the loading must be replaced by
equivalent point loads, as many being chosen as the computer capacity will

accommodate.

18.
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VI CONCLUSION

The Wang program is a very powerful tool in the analysis and
design of steel structures and has been used to study the economics of
steel frame design using the various grades of high tensile steel
currently available. Any such study would evidently involve the analysis
of many trial designs and,for frames other than simple one story portals,
the computational problem would be insuperable without the use of a
computer program such as the one described. As a final example, the frame

(6)

analyzed by Heyman is shown in Fig. 6 and a selection of pages from the

computer output is shown in the Appendix D. The computed load-sway curve

is shown in Fig. 7. The complete print out for this frame consisted of

over 40 pages and the total time for both compilation and. execution on an
IBM 7074 was less than 3 minutes. The preparation of the statics matrix
which is the collection of all the equations of equilibrium for the
structure was a simple matter taking less than half an hour. The print out
of this matrix is also shown in the Appendix D. A more detailed explanation

. (9
of statics matrices has been given elsewhere. )

The sign convention adopted in the solution of Heyman's problem
is that in which clockwise moments acting on the ends.of members are
regarded as positive together with downward vertical loads. The program
itself is not dependent upon any particular sign convention and will
operate succeséfully as long as a self-consistent convention is adopted in

the statics matrix and in the vector of applied loads.

19.
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(8)
(A7)
()

(8)
(Sap)
(SR)
(SRup)
SLG
S(I,J)
$'(1,J)
()7t
(W)

(X)
(853)

NOMENCLATURE

the statics matrix

the statics matrix transposed ( = (0))
the kinematics matrix

computer capacity for data

Young's modulus

second moment of area

identifying integers

the frame stiffness matrix

" length of a prismatic member

degree of freedom

count of the members in a frame

full plastic moment of resistance
moment applied at end A of member AB
the member stiffness matrix for a frame
member stiffness matrix for member AB
stress resultant véctor for a frame
stress resultant vector for member AB
smallest load.factor

an element in the member stiffness matrix
a new value for S(I,J)

the inverted member stiffﬁess matrix
fhe applied léad vector

an applied point load

the frame deformation vector

relative deformation vector for member AB

21.
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(@) relative deformation vector for a frame

(¢P) . plastic hinge rotation vector .
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IX APPENDIXES

Appendix A The Fortran Program

The statements of the program are contained in the following
pages. (pp. 25 - 31) They are shown in the form>used by the IBM 7074
computer but the only changes necessary for the GE 225 machine are the’

following substitutions:

READ for READ INPUT TAPE 1,
and
PRINT for WRITE OUTPUT TAPE 2,

Format requirements in Fortran impose some limitations on the choice of
names for variables but as far as possible, the names used correspond with .
those used in the text. The identification of the principal variables used ,

in the program is shown in Table II.

23,



Table IT Identification of Variables

"Variable
the statics matrix
load factors
.frame stiffne;s-matri#'
frame.defbrmation vector
" relative deformation vector
cumulative load factor
cumulative moment vector
relative deformation vector
plastic hinge rotation vector
frame identification number
load set identification number
1ocation of plastic hinge
aﬁalysis stage number
thg applied unit load vector
initial plastic moment vector
the member stiffness matrix
an intermediate matrix product
smallest load factor
moments cause& by unit loads

member stiffness data vector

24,

In Text

(A)

(K)
(X)
(AT - (x) =(a)

s”1y (sr)=(9)
(Fp)

(W)

(s)
(s) - (AT

(SR)

In Program

A(T,J)
ALG(I)
ASAT(I,J)
ASAT(T,L+1)
ATX(I)
CLG
CM(I)
DM(T)
H(T)

33

KK

NPH
NCYCL
P(I)
PM(T)
S(1,J)
SAT(I,J)
sALE
SATX(I)

SDAT(I)




sEeRvEeRsRs R ReleoReoRe e Re Re

iy EeReNe]

QT dr N

o e e B

(¢ N e Te Rl

anan

NIMENS
DIMENS
DIMENS
NIMENS

9 QFEAD 1

N
woA

166
167

FORMAT
IF JyJ

REAN |
FORMAT
M oz 2

READ |
FORMAT

00 146
AEAD T
K = 7w
UMIK]

PM[K=1
NONTIN
FORMAT

ng 14n
ng 140

LEHIGH UNIVFRSITY FRITZ LABORATORY APRIL, 1965,
FIRST NRNER EILASTIC PLASTIC PLANE FRAME ANALYS!S,
RASIC PROGRAM BY C.K.WANGs UNIV, OF WISCONSIN, 1963.

MODIFTED FNR IBM 7074 RY K.B.HARRISON.

SPECTFY THE MAXTMUM SIZES OF ALL THE MATRICES.

TON ALX0,48), Sr48,481, SAT(48,30), SATX[48)
IUN PL30), ASAT[30,31)s PM[4B)» ALG[48)

IUN CX(30), CML48), SDATI(Z4), UM[48)

10N AT¥{4B81, HlaR)

INPUT FRA¥= NUMBER, EXIT IF NEGATIVE,
NPUT TAPE 1, 13, JJ

(115)
1 99,58

INPUT THE "ERREES CrF FREELOM L» MEMBFR COUNT NM,

NPULT TAPF 1, 23, Ls NM
(215]
« MM

INPUT ALL F{EMENTS OF THE STATICS MATRIX A,

NPUT TAPE 1, 35,(1A11,J4), J=1,M1, I=1,L1
[7F1n,4)

INPUT THE WMEMHER PRnpERTIES, El/L AND Mp,

1 = 1.nNM
NPUT TAPFE 1, 167, SDATII1,» PM]
1
= PMT
] = PMIK)
LE
f2Fin,4]

RUILD THE YEMRER ST{FFNESS MATKIX S,

I
J

1,M
1,M

Appendix A Fortran Statements

25.
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0001
0002
0003
0004
0005
0006
0007
0008
00nog
6010
0011
0012
0013
0014
0015
0016
0017
0018
0019
0020
0021
0022
0023
0024
po2s
0026
0027
0028
0029.
0030
0031
0032
0033
0034
0035
0036
0037
0038
0039
0040
0041
bv4z
0043
0044
0045
0046
0047
npag .
0049
B 0050
0051
0052
0053
0054
0055
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161

162

161

&y

anA

ERR!

70
27

S{i,J} = 0.

NO 141 . 1 = 1,M

ITESY = I/2+2-1 .
TFITIYREST)] 142,141,101
K o= /2 + 1

SI1,1) = 4,0 « SOATIR}
S[I+1,1+1) = S1I,1
QLI1+1,1) = 0,5 * S(1,7)
SIT»71+1] = SlI+1,11
AOMT INUE

QUTPUT TITLES, THE STATICS MATRIX A, STIFFNESS MATRIX -S.

WRITE GUTPUT TAFE 2, 97, 4J ,
FORMAT [SOH1ELASTIC PLASTTe FIRST NRUER ANALYSIS ofF FRAME NO,,137)
WRTITE QUTPLT TaAFS 2, 7 '
FORMaTI21HATHE  9TATIAS  MATRIX/Z/Z)

no 3 T=1.L ’

FRITE QUTROT TAF: 2, 21,1, (A{1,dY, J = 1,M)
FORMATIAKOROL,12,4X, 7E16,7/(8Xs7E16.71]
WRITF GUTRUT TAFE 2, 17

FORMAT[23HITHE RTIFFNFSS MATRIX//)

a0 2 1=1,M ' '

WRITH cUTPUT TAFE 2, 21, 1, [SU1,d), J = 1,M]

INPUT THE L GAL SET NO, KKaIF NEGs COMMENLE THE NEXT FnAmE..

READ INPUT TAPE 1, 19, KA
IFIKK=1] ¢,7n7,819

TF K 16 UNITY, uYPASS THE NEXT BLOUR OF INSTHRUCTICNS.
TF KK 18 GREATER THAN UNITY, REBUILD THE § MATRIX,

30 o1 [ = 1,M
ng 9t JoF 1,M
stl,.1 = 0.
CONT ENUE

N0 931 ] = 1M

ITRST = [fr2+21 - 1

IF [ITFST) 912,571,931
K = 172 + 1

Q1,11 = 4,0 * SOATIK]
Rf{1+1,1+1) = Srl,11

S{T.141) = 0,5 + sr1.1]
QUr+1,11 = St1,1+11
nfONTINGE

JRITE QUTPOIT TAFr 2, 27s KK _ ,
FORMAT[33W1THE EYTERMAL LOAD VECTOR SET NO,, [3)

INFUJT THE | Can SET VEATOK P,

RFEAD TNPUT T#PE +, 39,(PI11, 1 5 1,L]

26.

0056
0057
0058
0059
0060
0061
0062
0043
0064
0045
0066
0067
0068
0069
0070
0071
0072
0073 -
0074
0075
ng7ve
0077
nn7zs
8079
0080
0081
0082
0083
npg4
0085
00R6
00R7
00K8
00089
0090
0091
n0o2
0093
0094
0005
no09e6
npo7
nges
npo9
8100
0101
ning
nio3
0104
0105
03106
0107
n108
o1rg
0110



annn

anaoan

aaaan

Qaoan

aaaaaon

24

?h

20
10

40

50

62
61

72

O3 T=l.l
WRITE UTENT TAFE 2, 21,1, FL1]

SET _Tp ZYRp THE YAR[ARLES MCYCL,ULR ANN THE ARRAYS CX,CM,SAT,

NCYCL = v
LG = De

np 24 1s1.L
aoxXriy o= 0,
no 24 131,M
oMiIYy = 0,

RE ENTRY POINT FUR SUCCESSIVF ANALYDES OF DETERIURATED FRAMES,

N0 17 131,M
no 1n J=1,L
SAT{!,41=0.

PAST MILYIpLy S Hy TRANSPOSED A To GET MATRIX cAT,

N0 26 K=1,M
SATI1,J)=SATII, 1+S{1,K)*paldsK])
CONTINUE

PREMULTIPLY SAT Hy A TN GET MATRIX ASAT,

no 3c 1=1,1

ng 30 J=i,i.

ASATIT,J)=0,

nQ 4N Ks1,M
ASATIT,JISASATII.J1+AT,K1wSATIK, )
NONTINUE

SOLVE THF SLNFPE ”EFLEETION EQUATIONS FOR THE GIVEN LCAD SET.
STCRE THE gCiI.TICN IN THE LAST COLUMN nF THE MATR{X AQAT.

LP1zLe+1

D0 50 11,1

ASAT[1,LP1Y=P[])

no 60 131,

I1P1=2T+1

TEMP=ABSFLASATII, 1]

K=t

no 61 J=1l.,L

TF [ABSFLASATIJ,T11=TEMP) 61,61,62

KzJ
TEMP = ABSF[ASATIU, 1))
NONTINUE

IF [k-1] 72,71,72
no 45 gs1,1P1

27,
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0111
0112
N113
0114
0115
0116
0117
0118
119
0120
0121
0122
0123
0124
0125
0126
0127
0128
0129
0130
0131
0132
0133
0134
0135
0136
0137
0138
0139
0140
0141
0142
0143
0144
0145
0146
0147
0148
0149
0150
0151
0152
0153
0154
0155
0156
0157
0158
0159
0160
0161
162
0163
0164
0165
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45
74
147
$47

70

5Q

AN
6H0

511

51

311

647
847

203
120
110
522

52

202

ang
201

TEMP = ASATU', 4]
ASATET,J] = #SaT1k,d])
ASATITK,J] = TEMFE

TF esaTir,10) 14,147,156

HRITE QUTPUT TAFk 2, 347

FORMAT [30HUGLIVISICH BY ZERC IN INVERSIUN])
50 Tr 47

TEMP = 1,/8S8T11,71

90 79 J=1,1PY
ASATIV,d)=a8aTr ], 1=TEMP

ng A0 =1,

1F {1-4) 59,K&0,5

TEMPzASAT(, ')

no AN K=1pP1,i P1
ASATIY,K]1=ASATIU,KI1=TEMPeASAT 1K)
FONTINDE

PRINT THY NEFLRMATIONG DUE T0 UNIT LNADS,TEST IF TOO LARGE.

WRITE cUTPNT TAFS 2, 511

FORMAT [JOHONEFLECTIONS Oue TC ULNTT LOADS)
N0 51 1=1,L , .
WRITE QUTPIT TAFS 2, 21, 1, * ASATII,LP1])
N0 311 1=, .

TEMP = ABRSFIASATIT,LP1)) - 1,E+04

TF [TEMP) 11,447,447

NONTINUE

no TR 303

WRITE cUTPUT TAFZ », 847

FORMAT ([21HODEFLEATION TOD LARGE)

GO T 47 :

COMPUTE AND AL TPUT MOMENTS LUE TO THE UNTT LOARS;

no 119 [=1,Mm

SATXIT} = n.

no 120 XK=1,L
SATXTTIZSATX T 1+SATII KI=aSAT[KsLPY Y
CONTINGE

WRITF QUTPUT TaFE 2, 522

FORMAT (2600MOMENTS LUF Ta UNIT LOADSI
DO 52 [=1,M :

WRITE cUTeuT TAFE 2, 21, 1, SATX(I)

CALCULATE TrE LOAD FACTOK ALG AT EAUA END OF EACH MEMBER,

N0 2n1 l=1,M

TFLARSFISATXIIN] - 1.0) 202,202,203

ALGITT = 1.E20

a0 TN 201 , oo :
ALGIT) = [PMIT1=ARSFIAM[T 11 /ARSF(SATX(])])
TONTINUE

28.

0166
0167
0168
0169
0170
0171
0172
0173
0174
0175
0176
0177
0178
0179
0180
0181
0182
0183
0184
0185
0186
0187
0188
0189
0190
0191
0192
0193
0194
0195
0196
0197
0196
0199
0200
0201

0202

0203
0204
0205
0206
0207
208
0209
0210
0211
0212

0213

0214
0215
0216
0217
0218
0219
0220
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oo

[
=
~N

N
=
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aaaa

in
fe )
»

anaa

aaan

206

aan

anoan

401
402

4n3

aaaaa

404

FIND POASTITICe AND VALn® 0OF SMALLEST LOAD FACTaR SALG.

SALG = 1,FE20

ng 204 1 = 1,m

TEST = CM{1} « Satx(l)

TF LTEST) 204,278,208
IFIALGIT) = SALLGY 1206,204,204
SALG = ALGTIN

APH = 1

SONTINUE

FACTOR .UNIT “CMENTS RBY SALG AND GET CUMULATIVE MOMENTS,

> DO 207 1s1,M

SATX{T) = cALG#SATX(])
CMITY = €MLY « 3aTx{1)

CALCULATE THE ryMylL ATIVE LOAD FAUTOR. CLG,

MLG = CLG + SALG

“ULTIPLY UNIT REFLECTIONS RY SMALLEST _OAD FACTOR SALG.

ro 206 1=t,L _ ‘
ASATIT,LP1) = SAIGeASAT(],1P1)

CALCULATE cU“UILATIVE nEFLECTIONS.,

CXII} = CXU1Y) + ASATIT,LPY)

UPDATE THE CveoLE NUMBER NCYCL.

NCYCL = NCYCL « 1

DUTPUT CYCIE NN, AND i OCATICN nF PLASTIC HINGE,.LOAD FARTOR ETC

WRITE QUTPIT TAFE 2, 401, NCYCLs NPH

FORMATIL8HIPLASTIC HINGE NOWs T84 2x» 15HFORMED AT POiNT.73/)
WRITE QUTPUT TAFE 2, 402

FORMAT[12HNLOAD FACTUR,3X,10HADLITIONALs9X,10HCUMULATIVE]
WRITE CUTPUT TAFE 2, 403, NCYCL» SaLG, CLG

FORMeT L6HNSTAGE, 14, E18.7, E18,7)

CUTPUT ATDITIeNAL AND ryUMULATIVE DEFLECTIQNS,

MRITF QUTPUT TAFF 2, 404 ,
FORMAT[12KNDEFORMATION, 3y, 10HARDITIONAL,9X»10HCUMULATIVE/)

29.
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0221
8222
0223
0224
0225
0226
0227
0228
0229
0230
0231
0232
0233
0234
0235
0236
0237
0238
0239
0240
0241
0242
0243
0244
0245
0246
0247
0248
0249
0250
0251
0252
0253
0254
0255
0256
0257
0258
0259
0260
0261
0262
0263
0264
0265
0266
0267
0268
0269
0270
. 0271
0272
0273
0274
0275




QDO

annan

e Re e R 9]

s Ro No RoNe]

[AIR:]
ans

a0k

2nQ
an7

210

211

47
408

163

165

164

N0 258 l=1.1 . ’
WRITE CUTenT TAFE 2, 405 I, ASATII,LP1ls CXII]
FORMAT [3H Al, T4, Eép.7s F19,7]

CHTPUT ArhtTranal AND PyUMULATIVE MNMENTS WITH PL,MOMENT CAP,

WRITE QUTPUIT TaAFr: 2, 405
FORMAT7HOMOMENT 2X, LOHADDITINNAL,, 9X1OHCUMULATIVEL DY, AHPLAS MOM/)
ng 2n9 lzq,M

WRITE CUTPUT TaFe 2, 407, 1, SATX[1), CMIT1}, PMLI)

FORMAT [3H AT, 14, F18,4,2F10,4]

FHANGE THE STIFFNESS MATHIX ACCORDING 7O  WHERF THE LAST
FLASTIC HINGE WAS FOUnD, -

TTEST = [NPH/2 ¢ 2] = NPA

TF UITEST) 211,210,270
SINPr=-1sNPH=1)=0,76%3 [NPH-9 ,NPH"1}
SINPH,NPH] = U,

SINPr=-1,NPH)
SINPH,NPH-1]
a0 To 212

a,
0.

QUINPH+1,NPH+T) = J,794aSINPH+1,NFH+1]
SINP=,NPH] = 0,

S[NPH,NPH41] = 0,

SIMPH+1INPHY = 0,

SETURN GANTKAL TO ANA{YSE TRE NETERIURATED FRAME,

50 T 15

COMPUTFE THE INGE ROTATIONS CNNE THE COLLAPSE MEGHANISM HAS
GEEN FourtD, FIRST, INyERT THE § MATRIX.

WRITE QUTPUT TAFE 2, 408 )
FORMAT [36HO0COLLAPSE MECHANTISM HAS REEN REACHED)
N 163 1 = 1,m :

no 1643 J = 1,M

S{1,01 = 0.

nH 1ka 1 = 4,M

TTEST = 1/2%2-1

TFIITFSTY 165,144,164

K = 172 + 1

Sltsery 5 1,0/03.0 » SDAT{K]))

CSfI+1,7+1) = S,

SIT-1+1) = =n,5+3(7,1)
q[l’1r'] = Sllnl‘q,‘
CONTINUE

N0 133 l=g,M
MY = 0,
NO 124 K=q,M

30.

0276
0277
0278
0279
0280
0281
0282
0283
0284
0285
0286
0287
0288
0289
0290
0291
0292
0293
0294
0295
0296
0297
0298
0299
0300
0301
0302
0303
0304
0305
0306
0307
0308
0309
0310
0311
0312
0313
0314
n315

0316

0317
0318
0319
0320
0321
0322
0323
0324
0325
0326
n327
0328
0329
0330



aoaa

Q

=g
N W
D

134
135

137

138

139

140

99

NMELY = DMITY & SrT,R1 & oMIK]

rONT INLE

ATX([T) = 111 « ALK, 11epx(K]
CONTINLE

ng 137 Is1,M

4r1) = DMLT) - ATXI1]

WRITE AUTPUT TAF= 2, 138

FORMAT [1H0»14Xs»1sHHINGE ROTATICNS/)

DO 139 [=1,mM

WRITE QUTPUT TAFE 2, 140, 1, H(l)

FORMAT [9K AT PCINT, 14,E15.7]

EFTURN CONTRN) TU SEE 1F ANY MORE LUAD SETS,

G0 TC 708
caLL EXIT
END

297.16

0331
0332
0333
0334
0335
0336
N337
0338
0339
0340
0341
0342
0343
0344
0345
0346
0347
n348
0349
0350
0351
0352



297.16

TTTELASTIC PLASTIC FIRST URDER ANALYSIS GF FRAME NO. 27 7

PROPPED CANTILEVER PROBLEM

THE STATICS MATRIX

____ROW 1 0.1000000E 01 _ 0.0000060E 00 _ 0.0000000E 00 __ 0.0000000€ 00
ROW 2 0.0000000E 00  0.1000000E 01 G.1000000E 01  0.0C00QCGOE 00
ROW 3  -0,2000000E 00 ~-0.2000000E 00  0.2000000E 00 0.2000000E 00
THE STIFFNESS MATRIX -

CROW 1 0.4000000E 04 0.2000000E 04 0.0000000E 0G 0.0000000E 00
ROW 2 0.2000000€E 04 0.4000000E 04 0.0000000E 00 0.0000000E 00
ROW 3 0.0000000E 00  0.0000000E 00 0.4000000E O4. 0.2000000E 04
ROW 4 0.0000000E 00  0.0000000E 00  0.2000000E 04 0.4000000E 04

TTTIHE EXTERNAL LOAD VECTGR SET NO. 1

T ROW I 0.0000000€ 00 T ’
ROWN 2 0.0000000E 00
ROW 3 0.1000000E 01 -

DEFLECTIONS DUE TO UNIT

LOADS

ROW 1 0.6250000€-03
ROW 2~ —0.1562500€-03
TTROW T3 0.1822917E-02 T .

MOMENTS DUE TO UNIT LOADS

TTROWTTTTTTZ0.1000000E-06
RON. 27 77=0.1562500€ 01
ROW 3 0.1562500€ 01
ROW ™% 0.1875000€ 01

Appendix B Solution to Propped

32.

Cantilever



PLASTIC HINGE NO. 1 FORMED

-

AT PCI

NT .4

LOAD FACTCR ADDITIONAL
STAGE 1 6.2133333E

DEFORMATION ADDITICNAL

02

AT 1 0.1333333€-01

AT 2 -0.3333333E-02
AT 3 0.3888889E-01
MOMENT ADDITIONAL
AT 1 -0.0000
AT 2 -33.3333
AT 3 33,3333
AT 4 40.0000

DEFLECTIONS DUE TO UNIT LOADS

cu

0.2133333E 02

cu

0.1333333E-01
-0.3333333E-02
0.3888889E-01

cu

ROW 1 0.1250000E-02
ROW 2 0.0000000E CO

ROW 3 0.4166667E-02

MOMENTS DUE

TC UNIT LOADS

ROW 1 -0
ROW 2 -0
ROW 3 "0

ROW 4 0

PLASTIC HIN

«3000000E-06
«2500000E 01
+2500000E 01

-0000000E 00

MULATIVE

MULATIVE

MULATIVE

-0.0000
-33.3333
33.3333
40.0000

GE NO. 2 FORMED AT POINT 2

LOAD FACTOR

ADDITIONAL

CUMULATIVE

STAGE 2 0.2666667E 01 0.2400000E 02
DEFORMATION ADDITIONAL CUMULATIVE

AT 1 0.3333333E-02 0.166666TE-01
AT 2 0.0000000E 00 -0.3333333E-02
AT 3 0.1111111E-01 0.5000000E-01
MOMENT ADDITIONAL CUMULATIVE

AT 1 -=0.0000 -0.0000

AY 2 -6.6667 -40.0000

AT 3 6.6667 40.0000

AT 4 0.0000 40.0000
DEFLECTIONS DUE TO UNIT LOADS

ROW 1 0.1000000E 05

ROW 2 -0.1000000E 05

ROW 3 0.5000000E 05

DEFLECTION T0O LARGE M

COLLAPSE MECHANISM HAS BEEN REACHED

AT POINTY
AT POINT
AT POINT
AT POINT

HINGE ROTATIONS

1 -0.8000000E-09
2 0.2000000E-08
3 -0.1000000E-08
4 =0.3333334E-02

Appendix B (cont.)

33,

PLAS MOM

40.0000
40.0000
40.0000
40.0000

PLAS MOM

40.0000
40.0000
40.0000
40.0000

297.16



297.16

ELASTIC PLASTIC FIRST UROER ANALYSIS

THE

ROW

ROW

ROW

ROW

ROW
ROW

STATICS MATRIX

1

1

UF FRAME NO. 13
NEAL - FINZI PROBLEM

0. o = 00 -0.1 Ul -0.1000000E OL 0.1 o1 0. ot o.
0.0000000E 00
0. 00 0. 00 0. £ 00 0. 00 -0.1 01 0.1 oL 0.1
0.1000000€ 01
0.1 01 o. v o, 00 o. 00 o, 00 o w0 o
0.0000000E 00
0. 00 0.1 o1 0.1 o1 o. 00 o. 0 o o0 o.
0.0000000E 00
. 00 0 00 0. 00 0.1 o1 0.1 0 o. 00 o
0.0000000E 00
0. 00 o 00 o. 00 0. 00 0. 00 0.1 01 0.1
0.0000000€ 00
0. 00 0. 00 o. 00 o. o0 o. 00 o 0 o.
0. 1000000E 01

IHE STIFFNESS MATRIX
0.1333333€ 01  0.6666667E 00 0. 00 0. 00 0. 0 o 06 0.
0.0000000€ 00 h
0.6666667E 00  0.1333333E 01 0. 00 o. oc o, o0 o© 6 o
0.0000000€ 00
0. 00 0. o0 o, oL o. o1 o. 00 o e o
©0.0000000E 00
o. 00 o o0 0. o1 o. o1 o. 0 o 00 0.
0.0000000€ 00
o. 00 0. 0 o. o0 o©. 00 o. o1 0.2 o1 o
0.0000000€ 00
o 00 o oo o. o0 o, 00 0.2 01 0.4 or o
0.0000000€ 00 N
0. 0 o o0 0. 00 o. 00 o 00 o 00 0.4
0.2000000€ 01 A
0. 0 o o0 0. 00 0. 00 o o0 o0 00 0.2
0.4000000E 01

THE EXTERNAL LOAD VECTOR SET NO. 1
0.1300000€ 01
0.7000000E 00
0.0000000€ 00 « | |

1 28 3 ds o 7

ROW

o W » w N

7.

0.0000000E 00
0, 0000000E 00
0.0000000€ 00

0.0000000E 00

"DEFLECTIONS OUE TO UNIT LOADS

RO
ROW
ROW
RON
ROW
ROW

ROMW

MOMENTS DUE YD UNIT LOADS

ROW
ROW
ROW

ROW

1
2
3
4
5

L3

T

0.5629626E 00
0.5870367E 00
~0.2583332€ 00
0.5166664E 00
0.3972220€ 00
—0.3444443E 00

~0,7083330E 00

0.2000000E-07
0. 5166664E 00
=0.5166663E 00
~0.7555552E 00
0.7555549E 00
=0.7277775¢ 00
0.7277773E 00
-0.1000000E-06

Appendix C

MEMBER IDENTIFICATION SEQUENCE

)
D

Wy
w
A
A

DEPORMATION IDENTIFICATION SEQUENCE

NEAL - FINZI PROBLEM

Solution to Neal-Finzi Problem

34.

0o

ol

00

o0

00

o1

00

00

00

00

00

o0

[+{]

01

o1




‘Ge

2
3
4
ROW 5
6
7
8

PLASTIC HINGE NO. 1

LOAD FACTOR

STAGE 1
DEFORMATI

AT
AT
AT
AT
AT
AT
AT

~NONSWN~

MOMENT

AT
AT
AT
AT
AT
AT
AT
AT

R~NCNSWN -

DEFLECTIONS DUE TO UNIT LOADS

S h . RS
FORMED AT PCINT 4 e o PLASTIC HINGE ND. 2 FORMED AT POINT 6
TADOTTTONAL CUMULATIVE "LOAD FACTOR  ADDITIONAL CUMULATIVE
0.1323530E 01 0.1323530F 01 - o o T STAGE 2 0.1050416E 00  0.1428572E 01
ON  ADDITIONAL TTCUMULATIVE " DEFORMATION  ADDITIONAL CUMULATIVE
0.7450979€ 00 0.7450979€ 00 AT 1 0.2310912E 00 0.97618926 00
0.7769607€ 00 0.7769607E 00 . . AT 2 .. 0.1278005€ 00 . 0.904T611E 00
-0.3419117E 00 ~0.3419117€ 00 AT 3 -0.8665922€-01 -0.4285709€ 0C
0.6838235€ 00  _ _0.6838235E 00 . e S 0.1733184E 00 0.8571419E 00
0.5257352E 00 0.5257352E 00 AT 5 -0.9716337€-01 0.4285718E 00
e .m04558823E 00 -0.4558823E 00 AT___6 =0.1155456E_00_____ - ~0.5714279E 00 __ e
=0.9374999E 00 <0.9374999E 00 AT 7 ~0.1339279€ 00 Z0.1071428€ 01
ADDITIONAL TTCUMULATIVE T T PLAS MOM T T MOMENT . ADDEITIONAL CUMULAT IVE PLAS MOM
0.0000 T Hé-oo—bo 1.0000 AT 1 N 6.0000. 0.0000 1.0000
- 0.6838 0.6838 1.0000 AT 2 0..1733, 08571 _ . 1.0000
-0.6838 -0.6838 1.0000 AT 3 - =0.1733 ~0.8571 1.0000
-1.0000 o -1.0000 _1,0000 AT & - . 0.0000 ~1.0000 1.0000
1.0000 1.0000 1.0060 AT s -0.0000 1.0000 1.0000
-0.9632 .. ..=0.9632 . 1.0000 ) AT 6 . .=0.0368 -1.0000 1.0000
"0.9632 0.9632 1.0000 AT 7 0.0368 1.0000 1.0000
e -0.0000 -0.0000 1.0000 AT___ 8 ~0..0000 -0.0000__ ___ ___ _ _.1.0000

ROW 1
ROW 2
ROW 3
ROW 4
ROW 5
ROW 6

ROW 7

MOMENTS DUE TO UNIT LOADS

=0.9249992E 00

0.2199998E 01

0.1216666E 01

DEFLECTIONS DUE TO UNIT LOADS

ROW

ROW

1.

.2

0.1820832€ 01

0.4375000€E_07

-0.8249992E 00

0.1649998E 01

. ROW

ROW

3

I

ROW__.5

-0.7374996E 00

0.1474999E 01

~0.1099999E 01

=0.1274999E 01

... ROW

. 6

DEFLECTION TOQ LARGE

_0.4374999E_07

.=0.4375000€ 07
... ROW. 7. . -0.4375001€ 07

ROW 1
ROW
ROW

ROW

ROW
ROW

ROW

0.1000000E-06
'0.1649998E 01

-0.1649998E 01 _

0.0000000€ OO

-0.1400000E-05

-0.3500009€ 00

AT

AT
—-AT.

AT
AT

POINT

POINT
POINT.
POINT
POINT.

_..COLLAPSE MECHANISM HAS BEEN REACHED

 AT_POINT___1__0.2000000€=07

e ..HINGE ROTATIONS = .

2 ~0.4000000€E-07

..—AT_POINT___ 3 - 0.0000000E_0O0 _

4 0.3571410E 00

0.3499996E_00

-0.4000000€E-06

AT

POINT

oNO W

..~0.4000000E=-07
~0.1000000E-07
=0.2000000E=07
-0.8000000E-07



297.16

ELASTIC PLASTIC FIRST ORDER ANALYSIS OF FRAME NO. 9

THE _STATICS MATRIX

HEYMAN'S FRAME

~0,66666T0E~0L -0.6666670E-01  0.6666670E-01  0.6666670C-01  O. E 00 0. oo 0. 00
0. cc 0 00 . o 0. o. 00 0. 00 o. 20
. oo 0. 00 o©. E 00 0. 00 o. [ 00 0. 00
0. 00' 0 00 0. £ 00 0. o0 0. 00 o 6 o. 00
0. 00 0 00 o©. 00 o. 00

ROW 2 0. [T o0 o, 00 0. 00 -0.66666T0E-01 -0.66666T0E-0l  0.6666670E-01
0.6666670E-01 0. 00 0. 00 0. 00 . 00 0 0 0. 00
0. 00 0. 00 0. 00 0. 00 0. 00 o @ 0. 00
0. 00 0. 00 0. 0 0. 00 0. o0 0. 0 o. 00
0. 00 0. 00 0. 00 0. 00

ROW 3 0. 00 0. 00 o©. o o. 0w o 60 0 60 0. 00
0.0000000E 00 ~0.6666670E-01 ~0.66666706-01  0.66666TOE-01  0.6666670E-01 O 00 0. 00
0. 00 0. 00 . o 0. [ 00 o0 00 o 00
[ 00 0. 00 0. 00 0. o0 o. 0 o o o, 00
0. 00 0. 00 0. 6o 0. [

ROW 4 0. 0 o 00 0. 00 o. 0 0. 0 o 0o 0. 0o
0 00 0 00 0. 0 0. 00 o©. 00 -0.6666670E-01 =-0.6666670E~01
0.6666670E-01  0.6666670E-01 0. 60 0. 6o 0. 00 0 0. 00
G 00 o 0o 0. 00 o. 00 0. [ ] o0 0. 00
[N oo o 00 0. o0 o. 00

ROM S 0. o o 00 0. 0 0. oo o. 00 0. 00 0. 00
o. 00 0. 00 0. 00 o. 00 0. 0 o 00 o 00
0. 0 o 00 o. 00 o 00 0. 00 o 00 o Q0
0.0000000E 00 -0.8333330E-01 =-0.8333330E-01 0. : 00 0. 00 o 0 0. 00
[ 00 . 00 =0.8333330£-01 -0.8333330€-01

RO & 0. 00 0. 00 0. 00 0. o0 o. 00 0 00 0. 00

— _ 0 00 0. 0o 0. 0o 0. 00 o. 00 0 0 o. 00

R 0. 00 . 0. 00 0. 00° 0 o0 o 00 o 00 ~0.8333330E-01

~0.83333306-01  0.8333330£-01 0.83333306-01 0. 00 0. w o 60 o. 00
-0.8333330E-01 -0.8333330E-01 0.8333330E-01  0.8333330€-01

PoROMW T 0. 00 o [ L] 00 0. 00 0. 00 o 00 0. 00

0. o0 0. 00 0. o0 0. 00 0. 00 o 0.

[ 0 00 o. co 0. 00 -0.8333330E-01 -0.8333330E-01  0.8333330E-01

0.8333330E-01 0. 00 0. 0. 0 0. 00 -0.8333330E-01 -0.8333330E-01
0.8333330E-01  0.8333330E-01 0.0000000E 00  0.00000COE 00

' ROW B8 00 o 00 0. 00 0. 00 0. 00 o oo o, 00

0 o 00 0. 00 0. 0. [3 [
00  0.0000000E 00 -0.B333330E-01 .8333330E-01  0.8333330£-01  0.83333306-01  0.0000000E 00
W o 00 . 00 -0.8333330€-01 -0.8333330E-G1  0.8333330E-0F  0.8333333€-01
- 00 0. 00 0. 00 0. ‘00 .

ROW 9 0.1 o1 0. o0 0. 00 o. 00 o. 00 o 00 0.0C 00

.. 0,000 [ ] 00 o 00 0. o o. [L 0 o 00

0.0000000€ 00 O. 00 o 00 0. 00 O. 00 0 0 0. 00

= 0.0000000E 00  0.0000000E 00  O.1 61 0. 00 0. 00 o 0 0. 00
[ 00 . [N o0 o. 00

RO¥ 10 0.0000000E 00  0.1000000E 01 0.1 o1 0. 00 0. 00 o 00 0. 00

- 0. 00 O. 00 0. 00 0. 00 0. a0 o 00 o0 00

0. 00 0. 00 0. 00 o 00 o. o co o. 00

0. 00 .0 0c 0. 00 0. 00 o 00 o 00 o 0o
[ oo o 00 0. 60 0. 00
0. 00 o 00 O©. 00 0.1 or 0. 00 o 00 o. oo

. [ w o o0 0. 00 0. 00 0. 00 o 00 o 00

0. 00 o 00 0. [N 00 0. 00 o 0 o 00
0 [ ) 00 0. 60 0. 00 0. 00 o 00 0. 0o
0. 00 o 00 oO. 00 0.1 o1

ROW 12 0 o0 o o0 0. oo o. 00 0.1 01 o 00 0. 00
0 00 00 0. 00 0. 00 0. 00 o 00 0. 00
[ 00 00 0. co o. o0 o0 00 o 00 0. 00
0.1000000E 01 01 0. 00 0. 0o o, o0 o0 oo o. 00
] 00 0. o o. 00

ROW 13 [ 00 0. o0 oO. 00 0. o0 0. 00 0.1 o1 0.l ot

00 o 00 0. 00 0. 0w 0. 00 00 o©. 00

0. 0 o [ 60 o 00 O. 00 o 00 o. 00

SRR N 0 0. 00 o. 00 0. 00 oO. o0 o 00 o 00

o 00 o 0w o 00 0. 00

ROW 14 0. [T ) 0 0. 00 0. 00 0. 00 o 00 0. 1]

.1 01 0. 00 oO. 00 0. 0 0. 00 o 00 0. oo

0. 00 o o0 0. 00 0. 00 © co o 00 0 0o

. 4 0 o 00 o. 00 0. 00 o o0 o 00 0. 00
0.0000000€ 00  0.1000000E OF  0.1000000E 01  0.0000000E 00

ROW 15 0. o0 0. 60 0. 00 0. o0 o 60 o o 0. oo
0.0000000E 00 0.1 o1 0. 00 0. 00 o [T 00 0 oo
0. 0 o 00 0. 00 0. 00 0. 00 0.1 01  0.1000000E 0}
0. 00 o o0 0. 00 0. 0 o. [ ] oo oO. 0
0. o0 0. 00 0. 00 0. oo

ROW 16 0. [ ] 00 0. 00 0. oo o. [ 00 0. 00
0.0000000E 00  0.0000000E 00 0.l 01 0.1 ol o 00 o 00 0. 00
- 60 o 00 0. 00 0. 00 0. 00 -0 00 0. 00
o. 00 0. 00 O. 00 0. 00 o 00 o 00 0. 00
. o0 o 00 0. 00 0. 00

ROW 17 [3 00 0. oo 0. 00 0. o o 00 o 00 o. 00
(B 00 0. 00 0. 00 0. 00 0.1 01 o o0 o. 00
0. 00 " 0. oo 0. 00 0. [N 00 0. 0 0. 00
o. 0 0. 00 O. 00 0. 00 0. oo o 00 | 0.1 01
0.1 01 o 00 0. 00 0. 00

ROW 18 0. 00 0. 00 0. 00 0. 00 0. 00 o oo o. 00
0. 0 0. oo 0. 00 0. 00 0. 00 0.1 o1 o. 00
o. 00 o 00 0. 00 0.1 o1 0.1 o1 o oo 0. 00
0. 00 0. 00 0. 00 0. 00 0. 00 o ( oo o. 00
0. 00 0. 00 0. 00 0. 00 -

ROW 19 0. 00 0. oo o. 00 - 0. co 0 [T ) 00 0. € 00
0. 00 0. 00 0. 00 0. [ 6 0 o0 0.1 01
0.1 01 0. 00 0. 00 0. 00 0. 00 o ou o. 00
0. o0 0. 00 0. E 00 0. £ 00 0. o0 0. 00 0. 00
o. 0o 0. 00 0. 00 0. 00

ROW 20 o 00 0. 00 0. E 00 0. 00 0. 60 o 00 0. 00

) 0. 00 oO. co 0. 00 0. 00 . o0 0 [ 00
0.000000DE 00 0.1 o1 0. 00 0.9 o0 0. 00 0. 00 o 00
0. 00 0. o0 0. ov 0. 00 0.1 o1 0.1 oL 0. 00
0. 00 0. ve 0, o0 0. no

Appendix D

Computer Solution for Heyman Frame
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PLASTIC HINGE _NO. 1

FORMED AT PLINT

Lg

LOAD FACTOR ADDITIONAL

STAGE i 0.1742112E 01
DEFORMATION ADDITIONAL
AT 1 0.7561517€-01
AT 2 0.5351284E-01
AT 3 0.5307721E~01
AT 4 0.5642525E-01
AT 5 0.2291726E 00
AT 6 0420616226 00
AT 7 0.1532738E 00
AT 8 0.7213038E-01
AT 9 0.5519973E-02
AT 10 ~0+3615000£-03
AT 11 ~0.4073974E-02
AT 12 0.3911923E-02
AT 13 -0.1030965E-02
AT 14 0.2119359€-03
AT 15 0.5899208E-02
AT 16 -0.1801213€-02
AT 17 0.1305644E-02
AT 18 0.7413990E~02
AT 19 ~0.2335401E-02
AT 20 0.1927612E-02
MOMENT ADDITIONAL
AT 1 -109.8803
AT 2 ~255.2833
AT 3 255.2833
AT 4 163.5027
AT 5 -96.6562
AT [ ~218.8554
AT 7 218.8554
AT @ 249,5827
AT 9 -16.8987
! AT 10 -227.3768
AT 11 227.3768
AT 12 312.2976
AT 13 33,0057
AT 14 -233.4777
AT 15 233,4777
' } AT 16 350.0000
AT 17 ~126.8332
AT 18 -38.2772
) AT 19 5.2117
AT 20 -12.8215
AT 21 29.7204
' AT 22 5.9834
' AY 23 90,6731
AT “.24 109.8804
AT 25 =192.3649
AT 26 —-169.3407
AT 27 ~180.6593 -
AT 28 -188.0883
AT 29 -124,2090
AT 30 -137.2727
AT 31 ~112.3098
- AT 32 +163.5026

PLASTIC HINGE NO.

CUMULATIVE
0.1742112€ 0L
CUMULATIVE

0.7561517€-01
0.5351284E-01

297.16

‘2~ FORMED .AT POINT 25

LOAD FACTOR  ADDITIONAL

STAGE 2 0.1608411E 00
DEFORMATION  ADDITIONAL
AT 1 0.7022406E-02
AT 2 0.4815532E-02
AT 3 0.5488834E-02
AT 4 0.1484072E-01
At s 0.3892903E~01
AT 6 0.3667761E-01
AT 7 0.3078326E-01
AT 8 0.1452562€~01
AT 9 0.5177058E-03
: AT 10 ~0.346045TE-04
AT 11 ~0.3790476E-03
AT 12 0.3630792€-03
AT 13 ~0.1044T63E-03
AT 14 0.5482599E-04
AT 15 ©.7730907E-03
AT 16 ~0.2412891E-03
AT T 0.1920655E-03
AT 18 0.1608577€-02
AT 19 -0.3557223E-04
AT 20 0.1875937€-02
MOMENT ADDITIONAL
AT L -9.9812
AT 2 «23.6370
AT 3 23,6370
AT 4 15.1231
AT 5 ~8.4408
' AT 6 -19.9998
AT 7 19.9998
AY 8 23.9381
i AT 9 5.6614
. AT 10 -22.0650
AT 11 22.0650
AT 12 33.9100
AY 13 5.8339
AT 14 -39.1062
AT 15 39.1062
AT 16 0.0000
AT 17 -24.1615
AT 18 -4.9480
AT 19 -0.8859
AT 20 -10.8653
! AT 21 - 5.2039
AT 22 0.306%
AT 23 B.1343
AT 24 9.9812
AT 25 -20.9681
AT 26 1.4390
AT 27 ~1.4389
AT 28 -21.5518
AT 29 -12.3581
AT 30 -13.9973
AT 31 ~9,9408
AT 32 =13.123

0.5307721€~01 1 2,3 4
0.56425256-01 t
0.2291726€ 00 2 32
0.2061622€ 0D
0.1532738€ 00
0.7213038€-01
0.5519973€-02
-0.3615000€-03 23 3t
-0.4073974E-02 5 LI 8
0.3911923€~02 22 30
-0.1030965E-02
0.2119359E-03
0.5899208€-~02
-0.1801213E-02
0.1305644€-02 2t 29
0.7413990€-02 [} 10,11 12
-0.2335401E-02 T .
0.1927612€-02 2 s
CUMULATIVE PLAS NOM
-109.8803° - 318.3330 19 27
-255.2833 318.3330 1 % 15 16
255.2833 318.3330 +
163.5027 318.3330 18 26
~96.6562 316.3330
-218.855¢ 318.3330
218.8554 318.3330
249.5827 316.3330 - ‘
~16.8987 350.0000
-227.3768 350. 0000 17 25
227.3768 350,0000 - — =
312.2976 3500000
33,0057 350.0000
~233.4777 350.0000
233.4177 350.0000 MEMBER IDENTIFICATION SEQUENCE
350.0000 350.0000
-126.8332 213.3330
-38.2772 213.3330
5.2717 213.3330
-12.8215 - 213.3330
29.7204° 213.3330
5.9834 213.3330
90.6731 213.3330 HEYMAN'S FRAME
109.8804 213.3330 ———————
-192.3649 213.3330
-169.3407 213.3330
-180.8593 213.3330
~188.0883 213.3330
~124.2090 213.3330
-137.2727 213.3330
-112.3098 213.3330
-163.5026 213.3330
CUMULATIVE
0.1902953€ 01
1
CUMULATIVE s ~ N
. —>
0.8263758€~01 [ *, L
0.5832837€-01
0.5856605E~01
0.71265976-01
0.2681016E 00 2
0.2428B399E 00 A ‘\

0.1840570€ 00 6

0.8665599E~01 . 1 4 r 3
0.6037679€-02 12 13 . 4
-0.396]1646E-03
-0.4453022E-02
0.42750026-02 . 4
-0.1135641E-02 3
0.2667619E-03 7 71 +\ -~
0.6672299E-02 — ¥
~0.2042502E-02 15 ‘ﬁe ;
0.1497709E-02 7
0.9022567€-02
~0.2370973E-02
C.3803549€-02 4
p
CUMULATIVE PLAS MOM 8 TN *\ )
-119.8615 318.3330 ﬁ ‘/19 20
-278.9204 318.3330
278.9204 318.3330
178.6258 318.3330
~105.0970 318.3330
-238.8552 31643330
238.8552 31843330 =l .
273.5207 318.3330
-11.2373 350.0000
-249.4418 350.0000
249.4418 350.0000 DEFORMATION IDENTIFICATION
346.2076 3500000
38.8396 350.0000
-272.5839 350.0000
272.5838 350.0000
350.0000 350.0000
~150.9947 213.3330
-43,2252 7 213.3330
423859 213.3330 X
-23.6868 213.3330 HEVMAN'S FRAIE
34.9243 213.3330
6.20899 213.3330
98.8074 213.3330
119.8616 213.3330
-213.3330 213.3330
-167.9017 213.3330
-182.0982 213.3330
-209.6402 213.3330
-136.5671 213.2330
-151.2701 213.3330
-122.2506 213.3330
-178.6258 213.3330

Appendix D (cont.)
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PLASTIC nINGE

1
AT PUINT 7

"LOa0 FACTOR

STa

GE 11

DEFORMATIGN

?

NG. 11 FURMED

CADDITIONAL
0.2017249€-01

ADDITIONAL

0

COMULATLVE
L2233189¢ vl

CumMULATIve ™

AT 1 0.73381726-01 0.212¢757C 00
AT 2 0214328356201 0.9152327¢
AT T 3 0.1047941E 00 3
LAY A . U.1386438E 0O
AT 5 0.3018041€" 00 0.9125587E -
AT 6 0.2580480E_00 0.8139163€ 00
AT 7 0.2038937E 00 0.6510125E 00
_AT_ B8 _U.107145€€ 00 0.3350324E 00
AT T 0.4647286E-02 0-1429244E-01
__AT 10 ~0,4892073E-02 -0.8470476E-02
At 11 -0.4892077E-02 <0.12T1T6TE-T1
AT 12 0.2404476E-02 0.90647118E-02
AT 13 -0.27716098€-03 ~0.1809422€~02
AT 14 0.4079600£-02 _0.6837758E-02
AT 15 0.6T64RE5E-02 0.1908631E-01
AT 16 -0.6986274E-02 ~0.9450560E-02
AT 17 0.57294776-02 6. 1119317E-01
AT 18 0.9021518E-02 0.3055573E-01
AT 19 0.9353626€-02 0.1610212€-01
AY__20 . 0.B495571E-02 042331155€-01
___MOMENT ADDITIONAL CUMULATIVE PLAS MOM
AT 1 -9.0792 ~154,9372 318.3330
AT 2 6.0000 =318.3330 316.333C
AT 3 0.0032 318.3365 316.3330
AT 4 0.0031 21373363 318.3330
AT__ S 41.1791 -49.9351 318.3330
AT 6 ~25.1260 =318.3329 318.3330
AT 7 25.1282 318.3330 318.3330
AT 8 0.0000 318.3330 318.3350
AT 9 -9.0772 45,0656 350.0000
AT 10 0.0000 =350.0000 350.0000°
AT 11 0.0003 ...350.0002 350.0000
AT 12 0.0000 350.0000 350.0000 )
AT 13 -9,0776 45,0655 350.0000
AT 14 0.0001 =349,9598 350, 00C0
AT 15 0.0000 350.0000 350,0000
AT 16 0.0000 350.0000 350.6000
..... AT 17 0:0000 - s 36
AT 18 1.6609 213733390
AT 19 7.4169 14,3666 213.3330
AT 20 -17.5373 122.6293 213.3330
AT 21 28.6153 7745649 213.3330
TAT 22 -23.4674 ~42.3477 213.3330 ”
AT _ 23 -17.7110 92.28%9 213.3330
AT 24 9.0782 154.9363 213.3330
AT 25 0.0000 -213.3330 213.3330
AT 26 =7.7623 ~189.2230 213.3330
AT 21 1.7624 -160.7768 213.3330
AT 28 0.0000 -213.3330 21303350 -
AT 29 0.0001 -136.6064 213.3330
AT 30 =1.7624 -187.9721 213.3330
TAT 3L 777626 =13073607 71373330
AT 32 0.0000 -213.3330 213.3330

DEFLECTION TOO LARGE

__COLLAPSE MECHANISM HAS BEEN REACHED

HINGE RUTATIONS

AT  POINT 1 =0.3000000£-09

TTTATTPOINT T2 U065 364€E=01
AT POINT 3 0.9000000E-09

TTTATTPOINTTTT4TE073000000EX09
AT POINT 5 0.0000000E 00

TTETTPOINT 6 0. T400000E-08
AT POINT 7 -0.1700000E-08
AT _POINT__ 8 -0,8707162E-02 . _
AT POINT 9 ~0.1900000E-08
AT _POINT 10 0.1408325F-01
AT POINT 11 0.4000000E-03
AT POINT 12 —-0.2064373E-01
AV POINT 13 -0.1500000€-08
AT _POINT 14 0.000000GE 00
AT POINT 15 -0.3702211E-01
AT POINT 16 —-0.4423154E-01
AT POINT 17 0.1767095E-01
AT POINT 18 -0.1100000E-08
AT POINT 19 0.2600000€-08
AT_POINT__20 _0.280000¢ )8,
AT POINT 21 0.1600000F-0C8
AT POINT 22 0.1000000€-08
AT POINT 23 0.2700000E-08
AT _POINY 24 0.1300000£-08 :
AT POINT 25 0.2129304€-01
AT POINT 26 U.

0.7718326E-02

AT_POINT_ 28
AT POINT 29 0.2700000E-08
AT_POINT. 30 _0.2400000€-08
AT POINT 31 0.4500060E-08"
AT PQINT 32

Appendix D (cont.)
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(a) Assume EI=5000 kip.ft.
Mp=40 kip.ft.

—1.5625 W

I.875 W
(b) First Analysis

(c) Second Analysis

Fig. 1 Elastic-Plastic Analysis (manual computation)
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(a) 4
L/
/
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40
Available
moment
capacity 120
b
(b) [ . 0
Unit load analysis —
—420
Unit load analysis x load factor
40
40 |
\\ /\ Available
N / moment
N~ | capacity
_/\K';
i T
(c) Unit load analysis
Unit load analysis x load factor
Elastic-Plastic Analysis (mgchine computation)

Fig. 2
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(a)

(b)

BA

Fig. 3 Load Displacement Relations
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A

Dimension the Matrices

Read Frame Number (JJ)

+

Read Degree of Freedom, Count

of Members (L ,NM)

!

Read in the Statics
Matrix (L x 2NM)

Read in Member Properties
El MP. Build Member

Stiffness Matrix

Y

Output Titles and the
Statics and Member Stiffness

Matrices

T

Read Load Set No, (KK)

Cutput Hinge Rotations

Build Invert of Member
Stiffness Matrix

[}

Coliapse Reached
Output Reasons

¥}

Modify Member Stiffness Matrix

3

OQutput Cumulative Deformations,
Load Factor, Hinge Position
Moments

3

Find Smallest Load Factor

!

Compute Unit Load Moments

I

Solve for Deformations

;jUOTINTOS UT UOTISTATP 0197

4

Form Frame Stifiness Matrix

i

Read Unit Load Set

A

[}

Rebuild Member Stiffness Matrix

Y

Flow Diagram
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| . 1.3W 0.7W
| 2|3 4‘5 sl'/ 8

A

IS [

Assume EI=|

Mp=|
(a)
0.963
1.0 -
(b) w=1.324
1.0 10
(c) W= 1.429
~0.962 I
(d) w=1.48I

Fig. 5 Neal-Finzi Problem
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Fig. 6

44,

18 x7Y% UB.S55

t (318.33)
12"
18 x7% UB.55
(318.33)
2 @ 3
0P om
- Dml 18x7h uB6O |D™
o™l 0
=q (350.00) Qn
» = ~—
12" © o
i 18 x7% UB.60
t (350.00)
T?
30—
UB - Universal Beam
UC - Universal Column
Units - Kip , Feet
HINGE AT LOAD TOP
No. POINT | FACTOR| swaAy
I 16 1.742 | 0.229
2 25 1.903 0.268
3 12 1.920 | 0.273
q 28 1.950 0.287
5 g 2.145 | 0.375
6 8 2.150 0.379
7 15 2.161 0.390
8 2 2.171 0.429
9 32 2.191 ~ 0.500
10 10 2.213 | o.6ll
T 7 2.233 | 0.913

Heyman's Frame -
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FACTOR
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Computed Load-Sway Curve
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