Elastic-plastic plane frame analysis.

H. B. Harrison

Follow this and additional works at: http:// preserve.lehigh.edu/engr-civil-environmental-fritz-labreports

Recommended Citation

Harrison, H. B., "Elastic-plastic plane frame analysis." (1965). Fritz Laboratory Reports. Paper 1846.
http://preserve.lehigh.edu/engr-civil-environmental-fritz-lab-reports/1846

LEHIGH UNIVERSITY
 DEPARTMENT OF CIVIL ENGINEERING
 ELASTIC - PLASTIC PLANE FRAME ANALYSIS

out a first-order elastic-plastic analyais of plane frames using the GE225 computer. The method was outlined in a paper by C. K. Wang of Wisconsin in the December, 1963 Journal of the Structural Division, ASCE. The analysis is by the Displacement method with a sequential determination of the location and load factor when plastic hinges are formed: At each stage, the deformations and bending moments are printed and the angular rotations of plastic hinges are output after the collapse mechanism has been found. The maximum size frame that can be analysed using the GE22S would consist of 10 members with 15 degrees of freedom. Point application of loads, moments only can be considered and load application positions must be treated as joints. For larger problems the source programe is available in Fortran so that other larger computers could be used. In its present form, the programe does not take into account directly the effects of axial load upon stiffness or plastic moment, and only flexural members can be accomodated, so that braced frames cannot be analysed.

In using the compiled programe on the GE225 machine, all that is necessary is to prepare the relevant data in the appropriate form as below:
(a) Card 1. Frame number (for identification) in Fortran Format 15.
(b) Card 2. Degrees of freedom and TWICE the number of members in Format 2 I 5.
(c) Cards 3,---J The statics matrix (all elements) in Format 7F10.4.
(d) Cards L,---N
(e) Cards M----P
(f) Card Q
(g) Cards R----S
(h) Card T
(i) Cards W----W
(j) Card X
(k) Cards Y,Z Blank cards.
(b denotes space)

Note on Fortran Format

The stiffness matrix in Format Fl0.4 in the following sequence: S11, S12, S22, S23, S33, S34, ---.---Snn.

Elements of the plastic moment vector in Format 7F10.4.

The unit load set number in Format 15 (must be positive).
The unit load set in Format 7F10.4
For more load sets, continue with set number, the stiffness matrix again, and the load set

If no more load sets, a negative integer in Format IS.
Further frames, repeating the sequence (a) to (h).

For no further frames, a negative integer in Format I5. Hence the run will end when two negative integers have been read sequentially.
examples of I5: Card 1 bbbb2, Card 2 bbb35, Card 3 bbb-4 examples of 215:Card 1 bbbb2bbb35, Card 2 bbb23bbbb3 examples of F10.4:Card 1 bbb-63.832, Card 2 bbbO.Obbbb for 7F10.4, 7 such entries per data card are permitted, each within field of width 10 .
(3) The Stiffness Matrix This matrix represents the assembled load-displacement relationship for all the frame elements and the form chosen follows the usual slope-deflection convention. For a member 1-2,

$$
\left[\begin{array}{l}
M_{12} \\
M_{21}
\end{array}\right]=\left[\begin{array}{cc}
\frac{4 E I}{L} & \frac{2 E I}{L} \\
\frac{2 E I}{L} & \frac{4 E I}{L}
\end{array}\right] \times\left[\begin{array}{l}
\emptyset_{1} \\
\\
\phi_{2}
\end{array}\right]
$$

For the whole frame, $M=S \cdot \emptyset$ where M and \emptyset are column vectors and S is a triple-diagonal square matrix of order equal to twice the number of frame members. The ends of each member must be identified by numbers quite distinct from any joint numbering system.

The Statics Matrix This matrix represents the equilibrium equations for the frame.

$$
\mathbf{W}=\mathbf{A} \cdot \mathbf{M}
$$

W is a column vector with as many elements as degrees of freedom and M is the column vector as above, listing the internal moments at member ends. Hence there will be twice as many elements in M as there are frame members.

The Plastic Moment Matrix is a columin vector similar to M listing the moment capacities available at each end of all members.

The unit load set is the matrix W as above.

Note: The statics matrix A is the transpose of the more familiar displacement matrix A^{T} which relates kinematically the relative to absolute deformations.

$$
\emptyset=A^{T} \cdot \Delta
$$

Both matrices are readily assembled and if this is done, a useful check on mistakes is available.

Limitations:
In addition to the general limitation on frame size that can be accomodated by the Lehigh computer, there are two other important limitations
on the efficiency of the programme.
(1) It is assumed that a plastic hinge once formed stays formed and if this is not the case for a frame, the results will not be of much use except that the load factor at collapse will err on the safe side. This follows from the fact that equilibrium and yield conditions will have been satisfied but not so the mechanism condition.
(2) It is also assumed that no strain reversal takes place in the frames of progressively detereorated stiffness that are analysed. However, the printed output is sufficient to indicate whether this phenomenon has occurred. It is not likely that this weakness will seriously limit the usefulness of the programme as the phenonemon has occurred only once in ten frames that have been analyzed by the author:
H. B. Harrison

March 26, 1965

Degrees of freedom 3
Number of members 2

Assume

$$
M_{p}=40 \text { Ton } \mathrm{ft} .
$$

Assume

$$
\mathrm{EI}=5000 \text { Ton-ft. }{ }^{2}
$$

Number member ends as shown

Statics Matrix (external loads as functions of stress resulcants).

$$
\left[\begin{array}{c}
M_{1} \\
M_{2} \\
Y_{3}
\end{array}\right]=\left[\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 1 & 1 & 0 \\
-0.2 & -0.2 & 0.2 & 0.2
\end{array}\right] \times \cdot\left[\begin{array}{c}
M_{12} \\
M_{21} \\
M_{34} \\
M_{43}
\end{array}\right]
$$

Stiffness Matrix (stress resultants as functions of relative and slopes).

$$
\left[\begin{array}{l}
M_{12} \\
M_{21} \\
M_{34} \\
M_{43}
\end{array}\right]=\left[\begin{array}{rrrr}
4000 & 2000 & 0 & 0 \\
2000 & 4000 & 0 & 0 \\
0 & 0 & 4000 & 2000 \\
0 & 0 & 2000 & 4000
\end{array}\right] \times\left[\begin{array}{l}
\emptyset_{12} \\
\emptyset_{21} \\
\emptyset_{34} \\
\emptyset_{43}
\end{array}\right]
$$

The computer output for this example follows.

- ELASTIC PLASTIC FIRST CRDER ANALYSIS OF FRAME NO. 2

THE STATICS MATRIX A
ROW
ROW
ROW
3 $\left[\begin{array}{llll}0.10000 \cap O F ~ n 1 ~ & 0 . & 0 . & 0 . \\ 0 . & 0.1000000 E .01 & 0.1000000 E 01 & 0 . \\ -0.2000000 E-00 & -0.2000000 E-00 & 0.2000000 E-00 & 0.2000000 E-00\end{array}\right]$

THE STIFFNESS MATRIX S

ROW	1	0.40000008	$n 4$	$0.2000000 t$	04	0.	0 .
ROW	$?$	0.2000000 F	04	0.4000000 E	04	0 .	0 .
ROW	3	$0 \cdot$		ก.		0.4000000 O	0.2000000 E 04
ROW	4	0.		0 .		O.2000000E 04	0.400000004

THE EXTERNAL LUAU VECTOF SET NO. 1
ROW 10 .
ROW 20 .
ROW $3 \quad 0.1000000 \mathrm{~F} \quad 01$
DEFLECTIONS DUE TO UNIT LOADS
ROW $1 \quad 0.6250000 F=03$
ROW ? -0.1562500F-03
ROW 3 0.182?997E-02
MOMENTS DHE TO LINIT LOARS

ROW	1	0.	
ROW	$?$	-0.1.5625010F	01
ROW	3	0.15675005	01
ROW	4	O.1875000E	01

PLASTIC HINGE NO. 1 FORMED AT POINI 4

PLASTIC HINGE NO. 2 FORMED AT PCINT 2

Plastic Design in High Strength Steel

THE ELASTIC-PLASTIC ANALYSIS

OF PLANE FLEXURAL FRAMES
by
H. B. Harrison

FRUTZ EAGINEERING
HASORATORY LIERARY

This work has been carried out as part of an investigation sponsored jointly by the Welding Research Council and the Department of the Navy with funds furnished by the following:
American Institute of Steel Construction American Iron and Steel Institute Institute of Research, Lehigh University Column Research Council (Advisory) Office of Naval Research (Contract No. 610(03)) Bureau of Ships
Bureau of Yards and Docks
Reproduction of this report in whole or in part is permitted for any purpose of the United States Government.

July 1965

Fritz Engineering Laboratory Department of Civil Engineering Lehigh University Bethlehem, Pennsylvania

SYNOPSIS

Abstract

An account is given of a Fortran program for the elastic-plastic analysis of plane flexural frames. The program has been developed from one first written by Professor C. K. Wang and has proved to be useful in the study of steel structures.

With a minimum of input data, the program will enable a computer to carry out a series of elastic analyses of a steel structure. The position of each plastic hinge will be determined as it is formed and the load factor and deformed state of the structure will be output as each such event occurs. When the collapse mechanism is found, the rotations at each plastic hinge are computed as well as the deformations and load factor at the outset of failure.

Frames of moderate size can be analyzed by currently operating machines but an upper limit will exist for the frame size that can be handled by any given machine.

The limitations of the program are discussed in detail and several examples are given of its application.
Page
SYNOPSIS i
I INTRODUCTION 1
II ELASTIC-PLASTIC ANALYSIS 3
III ELASTIC FLEXURAL ANALYSIS 7
IV DESCRIPTION OF PROGRAM 11
V PROGRAM LIMI TATIONS 15
VI CONCLUSION 19
VII ACKNOWLEDGEMENTS 20
VIII NOMENCLATURE 21
IX APPENDICES 23
Appendix A The Fortran Program 25
Appendix B Propped Cantilever Solution 32
Appendix C The Neal-Finzi Problem 34
Appendix D The Heyman Frame Solution 36
X FIGURES 39
XI REFERENCES 46

I INTRODUCTION

Professor C. K. Wang of the University of Wisconsin first described the basic principles of a computer program to analyze elasticplastic structures in $1963^{(1)}$ and made available to the author the Fortran coding of his scheme which was in a form suited to the CDC 1604 machine of Wisconsin. In modifying the program to suit the GE 225 machine at Lehigh University it soon became apparent that with the reduced storage capacity available, some attention should be paid to the reduction of the dimensioned arrays used by the program so that frames of reasonable size could be accommodated. The efficiency of the program has been improved in various ways which will, be outlined in this report but the basic operating principles and solution techniques used originally by Wang are retained and due acknowledgement is paid for the ingenious way in which he has achieved his goal.

Basically, the program will carry out a series of first-order elastic analyses of a frame in which free hinges are successively introduced at those sections at which localized plastic hinges are assumed to develop at the load system is increased uniformly. Accordingly, it can be appreciated that the program must incorporate two distinct capabilities. The first is a system of "bookkeeping" in which a record is kept of the moments existing at all possible plastic hinge positions in a frame. The moments are compared with the available plastic moment capacity to detect whether or not the next plastic hinge is to form at any given position. The second capability is the utilization of a form of first order elastic analysis which can be applied simply and gaccessively to frames of deteriorated stiffness as hinges are inserted. The type of displacement analysis
described by Clough ${ }^{(2)}$ and used by Wang is well suited for this purpose. Brief explanations will be given of both sections of the program since the functioning and limitations of the scheme can only be understood in their light.

II ELASTIC-PLASTIC ANALYSIS

It is often the case that the form of an analysis carried out by hand would not be a desirable one to program for a computer. Neal and Symonds (3) have proposed a method for estimating the deformations near collapse of rigid frames and it has been used by Heyman ${ }^{(4)}$ and Vickery (5) in a study of the effects of deformation and strain hardening on the collapse load.: $\operatorname{Heyman}^{(6)}$ has subsequently used a different approach based on Virtual Work to achieve the same end. In all methods, the mechanism of failure is found previously and the deformations at failure are determined by first finding the position where the last-to-form plastic hinge would occur. These methods have had the common aim of avoiding the onerous computation of load factors and deformations as each plastic hinge is formed when the load intensity is progressively increased. This latter approach is probably the best to use with a computer as intuitive judgemeats are eliminated. In such a method of computation, once it-has been decided that a plastic hinge exists at some position, the next stage in the analysis concerns the same initial frame with a free hinge at the position nominated, but subjected to a new loading system. The new system would consist of the original set of unit loads together with a moment of the full plastic value acting as an external action on the ends of the members meeting at the "hinge". The method is demonstrated in Fig. 1 for a propped cantilever where the results of the first elastic analysis shown in Fig. 1 (b) indicate that the first plastic hinge will form at position C. Inserting a free hinge at C, it can be seen that the second and final analysis shown in Fig. 1 (c) is that of a simply supported beam with an extra external action, namely the moment M_{p}, acting at C. This approach presents no problems for
a hand solution, but it would be inefficient for a machine solution because of the necessity of providing for the extra degree of freedom and the corresponding new loading term in the dimensioning of the various matrices affected by the degree of freedom. If provision had to be made for an extra degree of freedom at every position where a hinge was likely to form, a small frame would rapidly fill the available data storage capacity of a computer.

The alternative system used by Wang does not involve the same difficulties and is illustrated for the propped cantilever shown again in Fig. 2. The results of the first elastic analysis are shown in Fig. 2(b) and in row 4 of Table I. The load factors in row 5, obtained by dividing the available moment capacity at each position by the unit moment at the same position, determine where the first plastic hinge will form. This will be the case at that position where the load factor is smallest as shown in row 6. The moments at all positions when the first hinge has formed are shown in row 8 and the residual moment capacity is shown in row 9 of the table and also in Fig. 2(c). With a free hinge inserted at position 4 in Fig. 2, the frame is again analyzed for the original loading system as in row 10 with the load factors determined by dividing the residual moment capacities by the unit load moments. It is in this respect, illustrated in Fig. 2(c) that the machine solution devised by Wang differs from the hand solution technique.

It can also be seen from Table I that the procedure is essentially cyclical. It is feasible to calculate the deformation at each stage but these results have not been included in the tabulation. A collapse mechanism will have been reached in the analysis when the structure has
been converted into a mechanism. The numerical indication of such a phenomenon can be in several forms. It may be that the coefficients in the stiffness equations would form a singular matrix so that zero division would be encountered in an attempted solution and would end the analysis. If this does not occur, the computed deformations would be very large which would indicate that the load-deflection diagram has become horizontal. Wang has explained the computer indications of frame failure in reference (1) though some of his collapse criteria have been eliminated in the present program for reasons which will be explained later.

The method chosen for systematizing an elastic-plastic analysis has been explained and its success as part of a computer program will obviously depend upon the provision of a method of elastic analysis which will deal in a simple fashion with the insertion of hinges in rigid frames.

Table I
Numerical Analysis of Propped Cantilever Problem

Position in Beam (Fig. 2)	1.	2.	3.	4.
1. Initial moment capacity	40	40	40	40
2. Cumulative moments to date	0	0	0	0
3. Available moment capacity	40	40	40	40
4. Elastic Analysis				
Moments due to unit loading	0	-1. 56	1.56	1.83
5. Load factors (row $3 \div$ row 4)*	-	25.64	25.64	21.33
6. Smallest load factor (SLG)				21.33
7. Unit moments x SLG	0	-33.33	33.33	40
8. Cumulative moments to date	0	-33.33	33.33	40
9. Avail. capacity (row 1 - row 8)	40	6.67	6.67	0
10. Elastic Analysis 2				
Moments due to unit loading				
with hinge at position 4	0	-2.5	2.5	0
11. Load factors (row $9 \div$ row 10)*	-	2.66	2.66	*
12. Smallest load factor (SLG)		$\underline{2.66}$		
13. Unit moments x SLG	0	-6.67	6.67	0
14. Cumulative moments to date	0	-40	40	40
15. Avail. capacity (row 1 - row 14)	40	0	0	0
16. Elastic Analysis 3 with	(Either zero division or very large			
hinges at positions 4 and 2	deformations will result)			

[^0]
III ELASTIC FLEXURAL ANALYSIS

The displacement method of frame analysis can be formulated in many forms, all with the common characteristic that the load-displacement behavior of a frame as a whole is built up from a knowledge of the loaddisplacement relationship for its component members. In the case of a flexural frame, the elementary component will be a straight prismatic member as shown at (a) in Fig. 3 and if axial and shear stiffnesses are assumed infinite, the load displacement relationships take the form of the simple slope-deflection equations,

$$
\begin{aligned}
& M_{A B}=\frac{2 E I}{L}(2 \emptyset A B+\emptyset B A) \\
& M_{B A}=\frac{2 E I}{L}(\emptyset A B+2 \emptyset B A)
\end{aligned}
$$

which can be expressed in the matrix form,
or

$$
\left[\begin{array}{l}
M_{A B} \\
M_{B A}
\end{array}\right]=\left[\begin{array}{cc}
\frac{4 \mathrm{EI}}{\mathrm{~L}} & \frac{2 \mathrm{EI}}{\mathrm{~L}} \\
\frac{2 \mathrm{EI}}{\mathrm{~L}} & \frac{4 \mathrm{EI}}{\mathrm{~L}}
\end{array}\right] \cdot\left[\begin{array}{l}
\emptyset \mathrm{AB} \\
\emptyset \mathrm{BA}
\end{array}\right]
$$

$$
\begin{equation*}
\left(\mathrm{SR}_{\mathrm{AB}}\right)=\left(\mathrm{S}_{\mathrm{AB}}\right) \cdot\left(\emptyset_{\mathrm{AB}}\right) \tag{1}
\end{equation*}
$$

For all the members of a frame, the similar equations for each member may be assembled in the matrix equation,
or

$$
\left[\begin{array}{l}
\left(\mathrm{SR}_{\mathrm{AB}}\right) \\
\left(\mathrm{SR}_{\mathrm{BC}}\right) \\
\left(\mathrm{SR}_{\mathrm{CD}}\right)
\end{array}\right]=\left[\begin{array}{ccc}
\left(\mathrm{s}_{\mathrm{AB}}\right) & \cdots & \cdot \\
\cdot & \left(\mathrm{s}_{\mathrm{BC}}\right) & \cdot \\
\cdot & \cdot & \left(\mathrm{S}_{\mathrm{CD}}\right)
\end{array}\right] \cdot\left[\begin{array}{c}
\left(\emptyset_{\mathrm{AB}}\right) \\
(\emptyset \mathrm{BC}) \\
(\emptyset \mathrm{CD})
\end{array}\right]
$$

$$
\begin{equation*}
(S R)=(S) \cdot(\emptyset) \tag{2}
\end{equation*}
$$

where (S) is called the member stiffness matrix and (SR) will be a colum matrix or vector listing the moments acting at the ends of all frame members. It is usually a simple matter to write down the equations of statics which relate these moments (called stress resultants) to the applied loads.

$$
\begin{equation*}
(\mathrm{W})=(\mathrm{A}) \quad \cdot \quad(\mathrm{SR}) \tag{3}
\end{equation*}
$$

The load vector (W) must have as many terms as the degree of freedom of the structure since deformations are measured by the movement of loads (whether real or virtual) in a displacement analysis. If the degree of freedom is $\overline{\mathrm{L}}$ and the number of members is $N M$, then the statics matrix (A) will be of order $\overline{\mathrm{L}} \times 2 \mathrm{NM}$. Only for a statically determinate structure will $\overline{\mathrm{L}}=2 \mathrm{NM}$ so that inversion of (A) is then possible and the stress resultants will be known in terms of loads without any further analysis. Finally, the relative deformations within each member (\varnothing) can be expressed in terms of movements of the loads (X) by a kinematics matrix C,

$$
\begin{equation*}
(\emptyset)=(C) \cdot(X) \tag{4}
\end{equation*}
$$

and it can be shown ${ }^{(1)}$ that the matrix (C) is the transpose of the statics matrix (A). Hence, the load-displacement equations for the whole structure can be expressed,

$$
\begin{equation*}
(W)=(A) \cdot(S) \cdot\left(A^{T}\right) \cdot(X) \tag{5}
\end{equation*}
$$

where the triple matrix product $\left(A \cdot S \cdot A^{T}\right.$) is the stiffness matrix (K) of the frame. For a given set of loads (W), the displacements can be determined by standard equation solution programs. Thereafter, the moments at the ends of each frame member can be computed from Eqs. (2) and (4),

$$
\begin{equation*}
(\mathrm{SR})=(\mathrm{S}) \cdot\left(\mathrm{A}^{\mathrm{T}}\right) \cdot(\mathrm{X}) \tag{6}
\end{equation*}
$$

This form of first order frame analysis can accommodate the modification associated with the insertion of a hinge within a structure. There are two ways in which the modification can be made. The obvious way is to consider the extra degree of freedom involved and to add a row to the matrix (A) (and a corresponding column to A^{T}) leaving the member stiffness matrix (S) unchanged. It has been explained earlier that this approach would be impracticable in a computer program as all possible changes in the degree of freedom would have to be accounted for in the initial dimensioning and establishment of the statics matrix (A). The alternative approach adopted by Wang was to keep (A) and effectively $\overline{\mathrm{L}}$ unchanged and modify the member stiffness matrix (S). The procedure can be understood by referring to Fig. 3(b). If a hinge is present at the end A of member $A B$, the slopedeflection equations become,

$$
\begin{align*}
& \mathrm{M}_{\mathrm{AB}}=0= \frac{2 \mathrm{EI}}{\mathrm{~L}}\left(2 \emptyset_{\mathrm{AB}}+\emptyset_{\mathrm{BA}}\right) ; \mathrm{M}_{\mathrm{BA}}=\frac{2 \mathrm{EI}}{\mathrm{~L}}\left(\phi_{\mathrm{AB}}+\emptyset_{\mathrm{BA}}\right) \text { and hence, } \\
& {\left[\begin{array}{c}
\mathrm{M}_{\mathrm{AB}} \\
\mathrm{M}_{\mathrm{BA}}
\end{array}\right]=\left[\begin{array}{cc}
0 & 0 \\
0 & \frac{3 \mathrm{EI}}{\mathrm{~L}}
\end{array}\right] \cdot\left[\begin{array}{c}
\emptyset \mathrm{AB} \\
\emptyset \mathrm{BA}
\end{array}\right] } \tag{7}
\end{align*}
$$

Similarly, if a hinge were to exist at the end B as in Fig. 3(c),

$$
\left[\begin{array}{c}
M_{A B} \tag{8}\\
M_{B A}
\end{array}\right]=\left[\begin{array}{cc}
\frac{3 \mathrm{EI}}{\mathrm{~L}} & 0 \\
0 & 0
\end{array}\right] \cdot\left[\begin{array}{c}
\emptyset \mathrm{AB} \\
\emptyset \mathrm{BA}
\end{array}\right]
$$

By adopting a numerical system rather than an alphabetic system for identifying the ends of each member, with the odd number always smaller than the even number, Wang was able to achieve the necessary changes to the matrix (S) in accordance with Eqs. (7) and (8) using the computed location of any hinge. For example, the substitution of a hinge at a
position 16 in any frame would necessitate the following alterations to the (S) matrix.

$$
\begin{aligned}
& S^{1}(15,15)=\frac{3}{4} S(15,15) \\
& S^{1}(15,16)=S^{1}(16,16)=S^{1}(16,15)=0
\end{aligned}
$$

where the primes denote the new values. If a hinge occurred at position 15,

$$
\begin{aligned}
& S^{1}(15,15)=S^{1}(15,16)=S^{1}(16,15)=0 \\
& S^{1}(16,16)=\frac{3}{4} S(16,16)
\end{aligned}
$$

Simple tests exist in computer languages for detecting whether a number is odd or even and then the appropriate changes to the member stiffness matrix (S) can be made.

IV DESCRIPTION OF PROGRAM

The Fortran program is included in the Appendix A and the principal stages in its operation are shown in the flow diagram in Fig. 4. The first step is to dimension the arrays and it should be understood that the program will analyze frames whose arrays cannot exceed the initially set sizes but which can be of any size smaller than the initially set. values. A discussion of the limitations on frames sizes that can be accommodated by a given machine will be given in the next section. The first item of data must be the identifying number of the frame which if negative, is regarded as the exit signal. Next, the degree of freedom \bar{L} and the member count $N M$ are read and these two numbers will control the sizes of all the subsequent arrays built within the store for the frame being studied. All the elements of the statics matrix are then read in row by row. This is followed by the member stiffness and plastic moment data with one card per member containing the $E I / L$ and M_{P} values. From this information, the member stiffness matrix (S) and the plastic moment vector will be constructed in the store. The (S) matrix is output for checking, together with headings and the full statics matrix (A). Wang's original program has been modified considerably in this region by incorporating the ability to analyze the same frame for a series of different loading conditions. Accordingly, the next item input has to be the identifying number of the load set which is to follow. For load sets other than the first, the completely deteriorated member stiffness matrix is reconstructed before the analysis proceeds. It the load set number is negative, the program will look for data for a new frame and if no further frames are to be studied, the final card has to contain a negative integer
in the place of a frame identifying number. Hence, the final two cards in any run will contain negative integers. With the load set input and printed for checking purposes, the program proceeds with the analysis by building the frame stiffness matrix (K) from the member stiffness matrix (S) and the statics matrix (A) according to equation (5). The equations are solved for deformations and if these are too large, an indication is given that the frame has reached the collapse condition. Deformations exceeding the value of 10^{4} are regarded as being too large. It this is not the case, the moments are computed using Eqs. (2) and (4) and the smallest load factor sought so that the position of a plastic hinge can be found.

This part of the program follows Wang's original scheme except for one alteration. It was found that erroneous results were produced for some frames by the original program because the load factors were computed by dividing the residual moment capacity by the absolute value of the moments caused by unit loading. Such a procedure is satisfactory provided the unit load moments at the critical positions are of the same sign in the successive analysis of the frames of deteriorated stiffness. It may well be the case that the moment at the position with the least reserve of strength may be decreasing under increasing load. A test has been incorporated in the section of the program concerned with the finding of the smallest load factor to determine whether such is the case and if so, the position in question is not included in the search for the smallest load factor.

In his program, Wang incorporated four separate tests to determine whether the collapse load for a frame had been reached. One of those tests involved the minimum load factor which, if too small, would indicate that
the load-deflection curve for a frame was close to horizontal. However, it was found that this test would frequently terminate prematurely the analysis for any frame where two plastic hinges might form simultaneously. This test has been omitted from the present program since it is considered that a deformation limitation will determine effectively whether or not the load-displacement curve might be horizontal. Only one of the other two tests for collapse which were provided by Wang has been retained. This is the test which outputs the message "division by zero in inversion". and it effectively determines the stage at which a row and column in the frame stiffness matrix (K) contains only zero terms. In theory, this is the only necessary test but the other is required because rounding-off errors in the floating point arithmetic could delay the program termination and invalidate the final calculation of plastic hinge rotations.

After the mechanism of failure has been found and the load factor and the cumulative moments and deformations at the maximum load are printed, the final computation concerns the amount of plastic rotation that would have occurred at the positions of all plastic hinges except the last formed. Referring to equation (2), the relative end slopes (\varnothing) could be calculated by pre-multiplying the list of cumulative moments (SR) by the inverted form of the member stiffness matrix.

$$
\begin{equation*}
(\emptyset)=(S)^{-1} \cdot(S R) \tag{9}
\end{equation*}
$$

It can be noted that a simple inversion of (S) is not possible because at the final stages of an analysis, this matrix does not exist in its original form. Wang inverted (S) and stored the data at the beginning of his program but was aware of the fact that considerable economy of storage capacity would result if the elements of (S) were stored as a list and the matrix reconstructed in its actual or inverted form when required. This has been
done in the present program.

The slopes computed from equation (9) will be the same as those which can be calculated from equation (4) only at those positions where no plastic deformation has occurred. Accordingly, the amount of plastic hinge rotation can be expressed,

$$
\begin{equation*}
\left(\phi_{\mathrm{P}}\right)=\left(\mathrm{S}^{-1}\right) \cdot(\mathrm{SR})-\left(\mathrm{A}^{\mathrm{T}}\right) \cdot(\mathrm{X}) \tag{10}
\end{equation*}
$$

where the lists (SR) and (X) are the moments and deformations in the frame at the stage when the last plastic hinge has just been formed.

Finally, control is returned to see if any further load sets are to be studied for the frame in question. If so, the member stiffness matrix would need to be completely reconstructed as it would have been altered considerably in the course of the analysis for the first load set. If no further load sets are available, the program will commence the analysis of another problem. If there are no further frames to be studied, the run will terminate.

V PROGRAM LIMITATIONS

The program will perform a first-order elastic-plastic analysis of rigid planes of prismatic members and in its present form is strictly limited to this form of analysis. Since axial stiffness of members is assumed to be infinite, the axial forces present in the members are not calculated explicitly so that it is not possible to arrange for a progressive decrease in plastic moment capacity caused by the presence of axial load. However, it is always possible to account approximately for this effect by reading initial values for plastic moments, already reduced by the estimated axial loads at failure. To account explicitly for axial strains, the member stiffness matrix would consist of (3 x 3) units for each member instead of the (2 x 2) units currently specified so that for a limited computer store capacity, the size of frame to be handled would be curtailed drastically. To account for second-order effects in the displacement analysis, the axial forces in members would be needed with the capacity disadvantage mentioned above, but then the reduction in stiffness of each member could be readily computed and the member stiffness matrix modified progressively in essentially iterative solution procedure. Running time would increase greatly as a result.

The statics matrix also would require progressive modification to account for sway deformations and whereas programs can always be written to do this for any specific frame, it is difficult to visualize a general program that could account for the phenomenon for any type of rigid frame. The great advantage of Wang's scheme is that it can be used for any type of plane frame as a standard program.

The main limiting factor in the use of a general program for frame analysis is storage capacity since the use of matrix methods has the disadvantage that quite extensive arrays can be generated by only moderately sized structures. It is evident that methods can always be developed to utilizé tapes as a backing store for a specific machine but the generality of a program is then lost. It is anticipated that core store capacities of computers of the next generation will be greatly in excess of those currently available, so that it will be possible to analyze with an elastic-plastic program the range of sizes of steel frames for which such an analysis is currently relevant.

In its original form, Wang's program required a storage capacity which can be expressed,

$$
\begin{equation*}
\mathrm{C} \geqslant(\overline{\mathrm{~L}}+2 \mathrm{MN})^{2}+4 \mathrm{NM}^{2}+3 \overline{\mathrm{~L}}+14 \mathrm{NM} \tag{11}
\end{equation*}
$$

where $C=$ capacity,

$$
\begin{aligned}
\overline{\mathrm{L}} & =\text { degree of freedom, and } \\
\mathrm{NM} & =\text { the number of members in a frame }
\end{aligned}
$$

As has been explained, there is no need to store the inverted form of the member stiffness matrix if this can be generated when required from a one dimensional list of member stiffness parameters. The capacity required for the modified program can be expressed,

$$
\begin{equation*}
\mathrm{C} \geqslant(\overline{\mathrm{~L}}+2 \mathrm{NM})^{2}+3 \overline{\mathrm{~L}}+15 \mathrm{NM} \tag{12}
\end{equation*}
$$

As an example, a three-story, two bay rigid frame subjected to two-point loading on each beam would have 36 degrees of freedom and 27 members so that the original program would require a capacity of 11502 locations. The modified program would require the reduced capacity of 8613 locations. (The data capacity of the Lehigh GE 225 computer when using the elastic-plastic program was found to be 1860 whereas with an IBM 7074
machine, the capacity was 6850 locations.) It is apparent that load application positions have to be treated as joints so that a beam under twopoint loading constitutes three members. Consequently, the available capacity of a medium sized machine such as the GE 225 will be fully utilized by frames of only moderate size.

One further limiting factor should be mentioned. It can sometimes occur in steel frames that a plastic hinge which is formed early in the loading history may not be required in the collapse condition. The moment at such a section would decrease in magnitude and a plastic hinge would not then exist. This phenomenon cannot be accounted for in the present program as the process of free hinge insertion is irreversible. The calculated load factor for such a problem would err on the safe side since the equilibrium and yield conditions would be satisfied but not the mechanism condition. This phenomenon has been mentioned by Finzi ${ }^{(7)}$. The example of a two-span beam, which has been used by Neal ${ }^{(8)}$ to demonstrate this phenomenon, is shown in Fig. 5. For the loads shown at (a), an elastic analysis will produce a maximum moment at the point(4) as can be seen in (b). However, a simple plastic analysis will predict a failure mechanism with plastic hinges at (3) and (6) but not at (4). This can be deduced from the moment diagram shown at (d) in the figure. The results obtained from a computer analysis of this problem are in the Appendix C. It can be seen that the computer correctly detects the formation of the first hinge at position (4) and the second at (6) as shown at (c) in Fig. 5 but cannot account for the closing of the first formed hinge thereafter. Accordingly, it arrives at an invalid collapse mechanism with a load factor smaller than the correct one. Consequently, it is desirable for any frame to check the collapse mechanism arrived at by the computer to see whether or
not it is valid.

A related problem is that of the formation of a plastic hinge under a distributed load. In such a case, the loading must be replaced by equivalent point loads, as many being chosen as the computer capacity will accommodate.

VI CONCLUSION

The Wang program is a very powerful tool in the analysis and design of steel structures and has been used to study the economics of steel frame design using the various grades of high tensile steel currently available. Any such study would evidently involve the analysis of many trial designs and,for frames other than simple one story portals, the computational problem would be insuperable without the use of a computer program such as the one described. As a final example, the frame analyzed by Heyman ${ }^{(6)}$ is shown in Fig. 6 and a selection of pages from the computer output is shown in the Appendix D. The computed load-sway curve is shown in Fig. 7. The complete print out for this frame consisted of over 40 pages and the total time for both compilation and execution on an IBM 7074 was less than 3 minutes. The preparation of the statics matrix which is the collection of all the equations of equilibrium for the structure was a simple matter taking less than half an hour. The print out of this matrix is also shown in the Appendix D. A more detailed explanation of statics matrices has been given elsewhere.

The sign convention adopted in the solution of Heyman's problem is that in which clockwise moments acting on the ends of members are regarded as positive together with downward vertical loads. The program itself is not dependent upon any particular sign convention and will operate successfully as long as a self-consistent convention is adopted in the statics matrix and in the vector of applied loads.

The work described in this report has been carried out in the Department of Civil Engineering, Lehigh University in Bethlehem, Pennsylvania. Professor William J. Eney is Head of the Department and Dr. L. S. Beedle is Director of the Laboratory. The author gratefully acknowledges the very real assistance and advice of Professor Chu-Kia Wang of the University of Wisconsin whose program has formed the bais of this report.

The encouragement of Dr. T. V. Galambos is very much appreciated.

The program has been run on the GE 225 Computer at Lehigh University with the assistance of Mr. J. Muir. Mr. Jackson Durkee made available the IBM 7074 machine at the Bethlehem Steel Corpration and Mr. J. R. Dawson ran the program on that unit.

At the time of writing, the author was on study leave from the University of Sydney, Australia.

NOMENCLATURE

(A)	the statics matrix
$\left(A^{T}\right)$	the statics matrix transposed ($=$ (C))
(C)	the kinematics matrix
C	computer capacity for data
E	Young 's modulus
I	second moment of area
I , J	identifying integers
(K)	the frame stiffness matrix
L	length of a prismatic member
\bar{L}	degree of freedom
NM	count of the members in a frame
M_{P}	full plastic moment of resistance
$\mathrm{M}_{\text {AB }}$	moment applied at end A of member $A B$
(S)	the member stiffness matrix for a frame
$\left(S_{A B}\right)$	member stiffness matrix for member $A B$
(SR)	stress resultant vector for a frame
$\left(\mathrm{SR}_{\mathrm{AB}}\right)$	stress resultant vector for member $A B$
SLG	smallest load factor
$S(I, J)$	an element in the member stiffness matrix
$S^{\prime}(I, J)$	a new value for $S(I, J)$
$(\mathrm{S})^{-1}$	the inverted member stiffness matrix
(W)	the applied load vector
W	an applied point load
(X)	the frame deformation vector
$\left(\emptyset_{\mathrm{AB}}\right)$	relative deformation vector for member AB

(0) relative deformation vector for a frame
$\left(\emptyset_{\mathrm{P}}\right)$. plastic hinge rotation vector

IX APPENDIXES

Appendix A

The Fortran Program

The statements of the program are contained in the following pages. (pp. $25-31$) They are shown in the form used by the IBM 7074 computer but the only changes necessary for the GE 225 machine are the following substitutions:

READ for READ INPUT TAPE 1, and

PRINT for WRITE OUTPUT TAPE 2,

Format requirements in Fortran impose some limitations on the choice of names for variables but as far as possible, the names used correspond. with those used in the text. The identification of the principal variables used in the program is shown in Table II.

Table II Identification of Variables

Variable	In Text	In Program
the statics matrix	(A)	A(I, J)
load factors	-	ALG(I)
frame stiffness matrix	(K)	ASAT (I, J)
frame deformation vector	(X)	ASAT($\mathrm{I}, \mathrm{L}+1$)
relative deformation vector	$\left(\mathrm{A}^{\mathrm{T}}\right) \cdot(\mathrm{X})=(\varnothing)$	ATX (I)
cumulative load factor	-	CLG
cumulative moment vector	-	CM(I)
relative deformation vector	$\left(\mathrm{S}^{-1}\right)(\mathrm{SR})=(\varnothing)$	DM(I)
plastic hinge rotation vector	$\left(\emptyset_{\mathrm{P}}\right)$	H(I)
frame identification number	-	JJ
load set identification number	-	KK
location of plastic hinge	-	NPH
analysis stage number	-	NCYCL
the applied unit load vector	(W)	P(I)
initial plastic moment vector	-	PM(I)
the member stiffness matrix	(S)	S(I, J)
an intermediate matrix product	(S) $\cdot\left(\mathrm{A}^{\mathrm{T}}\right.$)	SAT(I, J)
smallest load factor	-	SALG
moments caused by unit loads	(SR)	SATX (I)
member stiffness data vector	-	SDAT(I)


```
    167S{1,J)=0. 0056
    no 1*1. I = 1,M
    \TFST = I/つ*2-1
    IF[\TFST] 162,161.101
16?k=T/2+1
16? K = T/2 + 1 
            S[I+1,I+1)=S[1,1)
            S[I+1,I+1)=S[1,1)
            S[I,T+1)=S{I+1,\)
1at. continue
C
C% OUTPIIT TITIES, THE STATICS MATRIXA, STIFFNESS MATFIX 'S.
            WRITF GUTPUT TAFE ?, 97, .J.J
    Q) FORMAT [SOHILLASTTCPPLASTIC, FIRST ORUER ANALYSIS OF FRAME NO.,I3/]
            WRTTE \capUTPUT TAFE ?, 7
        ? FORMATIOIHNTHE GTATICS MATFIX//I
            nO 1. i=1,L
            WRITF: CUTFITT TAF:= 2, 21,I, {A(I,J},J=1,M}
            0057
                    0058
        0059
0060
0061
0061
0063
0064
0045
0067
0068
0069
0070
0070
0071
0072
    2. FORMATI4HOROM,!3,TX,7E10.7/[8X,7E16.7)] 0076
    WRITF SUTFUT TAFF }2,17%007
    17 FORMATI2XHITHE STIFFNFSS MATRIX//I. OD78
    70 2 T=1,M
    0079
    OWRITF CUTP!!T TAFL2, 21, i, [S[l,Jl,J=1,M] 0080
C
OOR1
    108 READ INHUT TAPE I, 1J, NK
0082
0083
    [F!KK-1] 9,7!7,E!n
C
0084
0085
IF KK IS UMITY, BYPASS THE NEXT bLOCN OF INSTKUCTICNS. 0086
            IF KK IS GNEATFK THAN UNITY, REGUILD THE S MATRIX.
C
    bu:1 00 yu1 I = 1,M
0048
0089
0090
    M0 9r. J=1,M 0.M 0001
    S[1,j]=0. 0002
    On^ CONTINLE 0093
0092
    10 4.31 J = 1.M
    1TFST}=(1/2-2)-
00.94
    .. 0095
    IF (ITFST) 932,>z1., प31 0096
```



```
    G:7 : < = !/Z + 4 
0097
    C{!,!}=4.0*SYAT{K! 0008
    S[!+1,!+1]=S!I,I! 0009
    5!T,!+1]=0.5*S!!,1] 0100
```



```
    G3! MONTTNUE
    0102
C
7n? JRITF OUTPIIT TAFI. ?, 27. KK
0103
    Kk 0104
    O7 FOPMAT[S3H9THF EOTERNAL LOAD VECTOR SET NO., I3J O105
C
0106
饣
0107
OHFUT THE LCANSETVFOTOHP. OTOR
C
0109
    QFAD TMPUT TAPF &, 35,LH[i],I=1,LI 0110
```



```
    TEMP =ASAT[`,J] 0166
    ASAT[l,J] = nSAT!k,J]
    0167
        45 ASATIK,N]= THNF
0168
    6.147,16
0 1 6 9
    147 NRITE OUTPUT TAFK 2. 347 [ERO IN INVEHSIUN]
0170
    SO Tr 47
0171
172
1m TFMP = 1./ASATYI:II 0173
70 70 j=I,IPY 0174
7п ASAT!{,J}=\DeltaSGTII,NI=TFMH:}017
no A! J=1,L 0176
IF[I-J) 50,*0,5, 0177
50 TEMP=ASATIJ,T]O
n0 &O K=IP1,iP1
0179
    80 ASAT J,K)=ASAT[J,Kl-TFMP*ASAT(I,K]
    GO CONTINUF
C
C
C
DRINT THF: DESORMATIONS DUE IO UNIT LOADS,TEST IF TOO LARGE.
    WRITF GUTPITT TAF= ?, 511
    S11 FORMAT [3OHOOEFLFCTIONS D!FF TC LNIT LOADS]
    70 51 I=1,1
51 WRITE OUTPIIT TAFE 2, 21, 1, 'ASAT\I,LP1]
7) 311 I=1.L
    TE:AP = ABSF[ASAT 1,!Pq]]=1.EE+04
    IF [TEMP] 311.64%.647
    311 FONTINUE
    GO TO 303
    647 WRITF OUTPIIT TAF= ?, 847
    *47 FORMAT {?&HONFFLCOTION TOO LARGEI
    CO TO 47
C
303 n0 140 I=1,M
201
    SATXPI]= = .
    no 120 K=1,L
204
    120 SATXPT]=SATXPI]+SATII,K]*ASAT[K,LP11 0205
    11\cap CONTTNUE 0206
    WRTTF OUTP|T TAFC ?, 5?2 0207
    522 FORMAT [26HOMUMEXTS LIF TN UNIT LOADS] U208
    DO 5? l=1,M
0209
52 WRITE CUTPHT TAFF 2, 21, I, SATX[1, 0210
C
C
C
CALCULATE THE LOAD FACTOH ALG AT EAU'H END OF EACH MEMBER.. 0213
0211
0213
0214
    DO 201 I=1.M
0215
    001 I=1,M 0215
    IF[AASF(SATX!I)]-1.0) 20?.202.203 0216
202 4LG|I|=1.EつO
0217
    GO Tn 201
0218
203 ALG[I]=[OMPII-ARSF[CM[II|]/ARSF[SATX[I]] 0219
201 CONTINUE
0220
```

```
C. 0221
C
```



```
    SAILG=1.E?O
    no 2.74 J = 1,N
    TEST = CM[!]*SATX[l]
        IF [TFST) 2O4, ¢, \, 2i55 0228
    205 IF[AIG[I]-SALG1 1206,204,204 0229
IOnK SAIG =AIG!II 0230
    VPH=1
    2n4 CONTINUE 0232
C
son 100 2a7 1=1,M
        SATXIJJ=SALG*SATX[1]
2ח7 \GammaMIII=CM[IT + SATX[I] 0239
C
C
S04 CLG = CLG + SAIG
            MULIPLY,UNIT NEFLECTIONS RY SMALLEST LOAD FACTOR SALG.
        no 206 1=1.L
    ASATII,LP1I= SA!G*ASAT[I.IID1)
            GALCULAT: RUALLATIVE NEFLECTIONS.
206 CX[I] = CX[I] + ASAT[I,LPI]
C UPDATE THF CVCLE NUMBFR NCYCL. 
    NCYCL =NCYCL. + 1 0258
C. CUTPUT CYCIE NO, ANU IOCATICN OF PLASTIC HINGE.LOADFACTOR ETC
WRITE OUTPIIT TAFE ?, 401, NCYCL, NRH
401 FORMATIIOHIPLASTIC HINGE NO., IS, 2X, 1כHFORMED AÖ POINT,F̈3/J
    WRITE OUTPUT TAFE 2, 402
    402 FORMATI12HOLOAD FACTUR,3X,10HADLITIONAL,9X,10HCUMULATIVEI 0267
    WRITF CUTPIIT TAFE 2, 4O3, NCYCL, SALG. CLG 02AB
    4#3 FORMAT LOHOSTAGE, 14, E1H.7.E18.71 0269
C
            CALCULATE THF CUMULATIVE LOAD FAC!TOR. CLG.
C
C SO4 CLG = CLG + SAIG
C
C
            FACTOR.UE:IT UCMEINTS GY SALG AND GET CUMULATIVF MIGMENTS.
0222
0224
0225
0226
    205 IF[AIGII]=SALGI 1206,204,204
0231
0232
0233
```



```
0234
0235
0236
0237
0238
C CALCULATF THF ruMULATIVELOAD FAU゙TOH. CLG. 0244
0239
0240
024.1
0242
0243
0244
0245
0246
0247
0248
0249
0249
0251
0251
0 2 5 3
0253
0255
C. 0256
C NÖCL 0258
NCYCL = NCYCL + ? 0259
C
0261
0262
.0263
0264
0265
0266
    4\cap3 FORMAT LGHOSTAGE, I4, EIH.7.E18.71%0269
0270
C O
C
MRITF OUTPIIT TAPF ?.404 0, 0273
404 FORMATII2HODEFOFMATITN, 3X, 1OHARDITIONAL,9X,1OHCIMULATIVE/I
C
0258
0273
0275
```

```
        1008 l=1.L 0276
    <UK NRITE CUTDIT TAFE 2, 4U5, I, ASAT[I,LPII, CXII]
        0277
```



```
C
C
NRIT: OUTPIIT TAFR 2, 40.5
    40G FORMATITHOMONFNTAX,IGHADIITIONAL,9XIOHCUMULATIVE1OX, SHPLAG MOM/I
    \capO 2n? I=1,M
    2\capO WRITF CUTPIIT TAFE 2, 4|%, I, SATXIIJ, CMIII, PMIII 0286
    A07 FORM!T [3H AT. [^.F18.4.2F10.4] 0287
C
C
C
        CHANGE THE STIFFNFSS MATHIX ACCORDING TO WHERF THE LAST
        Fl\triangleSTIC HINGF WAS FOUNO.
        ITFST = \NPH/2 * \ NPN
        !F []TEST] 241,210.210
    21\capS(NH+-1)NPH-1)=0.75* \ (NPH-1,NFH-1)
        S[NPH,NPH]= U.
        S(NPR:-1,NPH)=0,
        S(NDH,NPH-1)=0.
        80 TO 21?
    211 & [NPH+1,NPH+1]= 0.75*S[NPH+1,NFH+1)
    S[NFm,NPN})=0
    S[NPH,NPH+1] = 0.
    S[NPH+1.,NDH] = 0.
C
        OETURN CONTHOL TO ANAIYSH THE DFTERIURATED FRAME.
    21? @% T! 15
C
CONPUTF THF WINGE ROTATIUNS ONNE THE COLLAPSE MECHANISM HAS
        GEFN FOUND. EIHST, INUFRT THE S MATRIX.
    47 URITE OUTPIIT TAFE 2, 408
    40日 FORMAT {3GHOCOLLAFSE MECCHAMISM HAS REEN REACHEDI
        กO 163 I= 1,M
        10 1*3 J = 1,N
    1.63S[1,N]=0.
        00 1/4 I = 1,M
        !TEST = 1/2*?-1
        IF[ITFSI] 1^5,1^4.1.04
    165 K=1/2 + 1
    S[!:T]= i.U/[3.0)*SDAT[K])
    S[I+1,I+1] = S!I,I!
```



```
    S[I+1,1]=S[I,I+1)}0032
164 CONTINUE
    NO 133 I=1,M 0328
    nM111=n.
    MO134 K=1,M 湆 % % 0329
```

 0331
13.3 COMT INUE 0332
no 1:5 $1=1$, M 0333
ATX[1]=1. 0334
no $156 \quad k=1 . L$ 0335
 0336
135 CONTINUE 0337
חO 177 I=1, M 0338
$1374[1]=\mathrm{UM}[1]-\Delta T X[1]$ 0339
WRITF NUTPIT TAF: ?, 138 0340
138 FORMAT [1HO,94X,95HHINGE RUTATICNS/I 0341
DO 1.3: $\quad 1=1, M$ 0342
139 WRITE QUTPITT TAFE 2,140 . I, H(I) 0343
140 FOPMAT [9H AT PC:AT, [4,E15.7] 0344PFTURN CONTFOI TU SEE IF ANY MORE LUAD SETS.0345
0346
0347
GO TE 708 03490348
C 35099 CALL EXIT
FN! 0352

ROW 20.0000000 E OO 0.1000000E 01 0.1000000E $01 \quad 0.0000000 E 00$
ROW $3 \quad-0.2000000 E 00 \quad-0.2000000 E \quad 00 \quad 0.2000000$ E OO $0.2000000 E 00$
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

THE STIFFNESS MATRIX

ROW	1	0.4000000 E 04	0.2000000 E 04	0.0000000E 00	0.0000000 E 00
ROW	2	0.2000000 E 04	0.4000000 E 04	0.0000000 E 00	0.0000000 E 00
ROW	3	0.0000000 E 0	0.0000000 E OO	0.4000000 E 0.	0.2000000 E 04
ROW	4	0.0000000E 00	0.0000000 E 00	0.2000000 E 04	0.40000000E 04

IHE EXTERNAL LOAD VECTOR SET NÕ. 1
ROH $1 \quad 0.0000000 \mathrm{E} 00$
ROM 20.0000000 E 00
ROW 30.1000000 E
DEFLECTIONS DUE TO UNIT LOADS
ROW $1 \quad 0.6250000 \mathrm{E}-03$
ROW $2-0.1562500 E-03$
ROW 3 0.1822917E-02
MOMENIS DUE TO UNIT LOADS
ROW $1-0.1000000 \mathrm{E}-06$
ROW. $2-0.1562500 E 01$
ROW 30.1562500 E 01
ROW $4 \quad 0.1875000$ E 01

Appendix B Solution to Propped Cantilever

PLASTIC HINGE NO. 1 FORMED AT PCINT... 4

LOAD	FACTOR	ADOITICNAL	CUMULATIVE	
StAGE	1	0.2133333 E 02	$0.2133333 E 02$	
DEFORMATION		ADOITICNAL	CUMULATIVE	
AI	1	0.1333333E-01	$0.1333333 \mathrm{E}-01$	
AT	2	-0.3333333E-02	-0.3333333E-02	
AT	3	$0.3888889 \mathrm{E}-01$	$0.3888889 E-01$	
MOMENT		ADOITIONAL	CUMULAT IVE	PLAS MOM
AT	1	-0.0000	-0.0000	40.0000
AI	2	-33.3333	-33.3333	40.0000
AT	3	33.3333	33.3333	40.0000
AT	4	40.0000	40.0000	40.0000
DEFLECTIDNS DUE TO UNIT LOADS				
ROW	10	250000E-02		
ROW	20	O00000E 00		
ROW	30	$166667 \mathrm{E}-02$		
MOMENTS DUE TO UNIT LOADS				
ROW	$1-0$	000000E-06		
ROW	$2-0$	500000 EL		
ROW	3 0	500000E 01		
ROH	4	O00000E 00		

PLASTIC HINGE ND. 2 FORMED AT POINT 2

LOAD	FACTOR	ADDIIIONAL	CUMULATIVE	
STAGE	E 2	$0.2666667 E 01$	0.2400000 E 02	
DEFORMATION		ADDITIONAL	Cumulative	
AT	1	0.3333333E-02	$0.1666667 E-01$	
AT	2	0.0000000 E 00	-0.3333333E-02	
AT	3	$0.1111111 \mathrm{E}-01$	$0.5000000 \mathrm{E}-01$	
MOMEN		ADDITIONAL	Cumulative	PLAS MOM
AT	1	-0.0000	-0.0000	40.0000
AT	2	-6.6667	-40.0000	40.0000
AT	3	6.6667	40.0000	40.0000
AT	4	0.0000	40.0000	40.0000

DEFLECTIONS DUE TO UNIT LOADS
ROW 10.1000000 E 05
ROW $2-0.1000000$ E 05
ROW 30.5000000 E 05
DEFLECTION TOO LARGE
COLLAPSE MECHANISM HAS BEEN REACHED
HINGE ROTATIONS

| AT POINT | 1 | $-0.8000000 E-09$ |
| :--- | :--- | ---: | ---: |
| AI POINT | 2 | $0.2000000 E-08$ |
| AT POINT | 3 | $-0.1000000 E-08$ |
| AT POINT | 4 | $-0.3333334 E-02$ |

Appendix B (cont.)

the stiffness matrix

Raw	1	0.1333333801 0.0000000 E 00	$0.6666667 E$	00	0.0000000E	00	0.0000000 E	00	0.0000000 E	00	0.0000000 E	00	0.0000000	00
ROW	2	0.6666667E 00 0.0000000E 00	0.1333332	01	0.0000000 E	00	0.0000000 E	00	0.0000000 E	00	0.0000000E	00	0.0000000E	00
ROw	3	0.0000000 e 00 0.0000000 e 00	0.0000000 E	00	0.40000008	01	0.20000006	01	0.0000000 E	00	0.0000000E	00	0.0000000E	00
ROW	4	0.0000000 e 00 0.0000000 OD	0.0000000E	00	0.2000000 E	01	0.4000000 E	01	0.0000000 E .		0.0000000 F	00	0.0000000 E	00
Raw	5	0.0000000E OO 0. 0000000E 00	0.0000000 E	00	0.0000000 E	00	0.0000000 E	00	0.6000000 E	01	0.2000000 E	01	0.0000000E	00
Row	6	0.0000000E OD 0.0000000 E 00	0.0000000 E	00	0.0000000 E	00	0.0000000 E	00	0.20000008	01	0.4000000 E	1	0.0000000 E	00
ROW	7	0.0000000 E 00 0.2000000 OL	0.0000000E	00	0.0000000 E	00	0.0000000 E	00	0.0000000 E	00	0.0000000E	00	0,4000000E	01
ROW	8	$\begin{aligned} & 0.0000000 E \text { OO } \\ & 0.4000000 E \\ & 0 . \end{aligned}$	0.0000000 E	00	0.0000000 E	00	0.0000000E	00	0.0000000E	oo	0.0000000 E	00	0.2000000E	01

THE EXTERNAL LOAD VECTOR SET NO. 1

ROM	1	0.2300000802
ROW	2	0.7000000E OO
ROw	3	0.0000000E 00
ROW	4	0.0000000E 00
ROW	5	0.0000000E 00
ROW	6	0.0000000E 00
ROW	7.	0.0000000e 00

OEFLECTIIONS DUE TO UNIT LOADS

herber identification sequence

ROW 1 . $0.5629626 E 00$
ROK $20.5 B 70367 E 00$
ROW $3-0.2583332 \mathrm{E} 00$
ROW $40.5166664 E 00$
ROW $50.3972220 E 00$
ROH $6-0.3444443 E 00$
ROM $1-0.7083330 \mathrm{E}$ DO
MOMENTS DUE TO UNIT LOADS
ROW $10.2000000 \mathrm{E}-07$
ROW 20.5165664 E 00
ROW 3 -0.5166663E 00
ROW $4-0.7555552 \mathrm{E} 00$
ROW 50.7555549 E 00
ROW © -0.7271775E 00
ROW γ 0.1277773E 00
ROW A $-0.1000000 \mathrm{E}-06$

Appendix D
Computer Solution for Heyman Frame

PLASTIC Hinge NO. 1 formeo at plitivt 16

LOAOO FACTOR	ADOITICisAL	cumulativé	
stage 11	$0.2017249 \mathrm{E}-01$	0.2233139501	
deformation	adoitional	cumulitive	-
AT ${ }^{\text {I }}$	$0.7338172 \mathrm{E}-01$	0.2120757100	
..- AI 2	$0.1432835 E-01$	$0.4152327 \mathrm{t}-01$	
$\cdots \mathrm{Ar}{ }^{-}$	0.1047941 E 0	0.2057828 Co	
4 T .4	0.1386438600	0.3718240600	
AT 5	0.301 RO4IE 00	0.912558700	
AI 6	0.2580480 E 00	0.8137163500	
AT 7	0.2038937 E 00	0.6510125 CO	
AI 8	$0.1071458 E 00$	$0.3350324 E 00$	
4 T 9	$0.4647286 E-02$	0.1429244E-01	
AT 10	-0.4892073E-02	-0.8470476E-02	
At 11	-0.4892077E-02	-0.1271767E-01	
AT 12	0.2404476E-0?	$0.9047118 \mathrm{t}-02$	
AT 13	-0.2776098E-03	-0.1809422E-02	
AI 14	$0.4079600 \mathrm{E}-02$	$0.6897758 \mathrm{c}-\mathrm{j}^{2}$	
AT 15	0.6764 H85E-02	$0.19066316-01$	
$4 \mathrm{~T} \quad 16$	-0.0986274E-02	-0.9450560E-02	
AT 17	$0.4729477 \mathrm{E}-02$	0.1119317E-01	
AI 18	$0.9021518 \mathrm{E}-02$	$0.3055573 \mathrm{E}-01$	
Ar 19	0.9353626E-02	$0.1610212 \mathrm{E}-01$	
At 20	0.8495571E-02	0.2331155E-01	
MOMENT	AODITIONAL	cumulat I ve	PLAS MOM
AT 1	-9.0792	-154.9372	318.3330
AT 2	0.0000	-318.3330	318.3330
AT 3	0.0032	318.3365	315.3330
AT 4	0.0031	213.3363	316.3330
AI 5	41.1791	-49.9351	318.3330
AI 6	-25.1280	-318.3329	310.3330
AI 7	25.1282	318.3330	318.3330
AI 8	0.0000	318.3330	3119.3330
AT 9	-9.0772	45.0656	350.0000
AT 10	0.0000	-350.0000	350.0000
AT 11	0.0003	350.0002	350.0000
AT 12	0.0000	350.0000	350.0000
AT 13	-9.0776	45.0655	350.0000
AT 14	0.0001	-349.9998	350.0000
AI 15	0.0000	350.0000	350.0000
AI 16	0.0000	350.0000	350.0000
AI 17	0.0000	-213.3330	213.3330
AT 18	1.6609	-59.4314	213.3330
AT 19	7.4169	14.3666	213.3330
AT 20	-17.5373	-122.6293	213.3330
AI 21	28.6133	77.3649	213.3330
AT 22	-23.4674	-42.3477	213.3330
AT 23	-17.7110	92.2839	213.3330
4 C	9.0782	154.9363	213.3330
AI 25	0.0000	-213.3330	213.3330
AT 26	-7.7623	-189.2230	213.3330
AT 27	7.7624	-160.7768	213.3330
AT 28	0.0000	-213.3330	213.3330
AT 29	0.0001	-136.6064	213.3330
AT 30	-7.7624	-187.9727	213.3330
$A \mathrm{~T} 31$	7.7626	-130.3601	213.3330
AT 32	0.0000	-213.3330	21.3.3330

- DEFLECTION TOO LARGE

COLLAPSE MECHANISM HAS BEEN REACHED
hinge rutations

Appendix D (cont.)
(a)

$$
\begin{array}{ll}
\text { Assume } & E I=5000 \text { kip. ft. } \\
& M_{p}=40 \text { kip.ft. }
\end{array}
$$

(b) First Analysis
1.875 W

Fig. 1 Elastic-Plastic Analysis (manual computation)
(b)
(a)

Fig. 2
Elastic-Plastic Analysis (machine computation)

$$
M_{A B}=0
$$

(c)

c)

$$
M_{B A}=0
$$

Fig. 3 Load Displacement Relations

Fig. 4 Flow Diagram

(a)

(b) $w=1.324$

Fig. 5 Neal-Finzi Problem

HINGE NO.	AT POINT	LOAD FACTOR	TOP SWAY
1	16	1.742	0.229
2	25	1.903	0.268
3	12	1.920	0.273
4	28	1.950	0.287
5	17	2.145	0.375
6	8	2.150	0.379
7	15	2.161	0.390
8	2	2.171	0.429
9	32	2.191	0.500
10	10	2.213	0.611
11	7	2.233	0.913

Fig. 6
Heyman's Frame

Fig. 7 Computed Load-Sway Curve

XI REFERENCES

1. Wang, C. K.

GENERAL COMPUTER PROGRAM FOR LIMIT ANALYSIS, Jrnl. of Str. Division, ASCE, ST6, Dec. (1963)
2. Clough, R. W.

STRUCTURAL ANALYSIS BY MEANS OF A MATRIX ALEBRA PROGRAM, Conf. on Electronic Computation, ASCE, Nov. (1958)
3. Symonds, P. S., and Neal, B. G. RECENT PROGRESS IN THE PLASTIC METHODS OF STRUCTURAL ANALYSIS, J. Frank1in Insti., 252, p. 383 (1951)
4. Heyman, J.

PLASTIC DESIGN OF PITCHED ROOF PORTAL FRAMES, Proc. I.C.E., Vol. 8, Oct. (1957)
5. Vickery, B. J.

THE INFLUENCE OF DEFORMATIONS AND STRAIN-HARDENING ON THE COLLAPSE LOAD OF RIGID FRAME STRUCTURES, C.E. Trans. of Instit. of Engrs. Aust., Vol. CE3, No. 2, Sept. (1961)
6. Heyman, J.

ON THE ESTIMATION OF DEFLECTIONS IN ELASTIC-PLASTIC FRAMED STRUCTURES, Proc. I.C.E., Vol. 19, May (1961)
7. Finzi, L.

UNLOADING PROCESSES IN ELTASTIC-PLASTIC STRUCTURES, 9 th Int. Congr. of Appl. Mech, Brussels (1957)
8. Neal, B. G.

THE PLASTIC METHODS OF STRUCTURAL ANALYSIS, Chapman and Hall, London (1963)
9. Harrison, H. B.

COMPUTER ANALYSIS OF PLANE FRAMES, Fritz Lab. Rep. No. 297.15, Lehigh University, July (1965)

[^0]: * Positions where moment is near zero are not included in search for smallest load factor to avoid premature zero division stop. (The computer output for this problem is shown in Appendix B)

