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SYNOPSIS

A detailed description is given of a computer program to carry

out a general first order elastic analysis of any type of plane frame. It

is capable of analyzing pinned or rigidly jointed frames, or mixtures of

both systems. Shear and axial deformations may be taken into account in

rigidly jointed frames. In addition, strains caused by temperature

changes', shrinkage or lack-of-fit can be allowed for with little extra

effort in data preparation. The source program has been written in the

Fortran language so that it can be used on most currently available

computers. Analysis is carried out by the displacement method,so that

considerations of frame redundancy do not arise. For a given machine there

will be a_maximum size of structure that can be accommodated,depending

primarily upon the number and type of its members, the degrees of freedom

of the frame, and the number of alternative load sets for which an analysis

is desired. The program was developed to check the elastic behavior of a

series of braced and unbraced multi-story steel frames being tested in the

Fritz Engineering Laboratory of Lehigh University's Department of Civil

Engineering as part of a program of research into the plastic behavior and

design of multi-story steel frames.

i



TABLE OF CONTENTS

SYNOPSIS

I INTRODUCTION

II DISPLACEMENT ANALYSIS

2.1 The Member Stiffness Matrix

2.2 The Statics Matrix

2.3 The Kinematics Matrix

2.4 The Frame Stiffness Matrix

2.5 Temperature Change Effects

2.6 Shear Deformations

III THE COMPUTER PROGRAM

IV PROGRAM LIMITATIONS

V DATA PREPARATION

VI CONCLUS ION

VII ACKNOWLEDGEMENTS

VIII NOMENCLATURE

IX APPENDICES

A. Fortran Program

B. Solution to Problem 1

C. Solution to Problem 2

D. Statics Matrices for Problem 3

X FIGURES

XI REFERENCES

ii

297.15

Page

i

1

3

3

5

7

7

9

10

11

14

16

21

22

23

25

25

31

32

34

36

44



297.15

I INTRODUCTION

Since the widespread introduction of electronic computers

considerable attention has been directed to automating the analysis of

structural frames. Many computer programs which achieve the linear-elastic

analysis of plane frames, are in existence(l) ,(2) but the published accounts

are principally descriptive and some do not include any more detailed

information about the solution processes than can be contained in a general

flow diagram. Many computers in the mid-fifties had highly individualized

coding systems which took a long time to master and which were not compat

ible with machines from other makers. An awareness of this communication

problem has resulted in the increasing use of algorithmic languages such

as Fortran and Algol and most machines now have available compilers to

handle one or both of these systems. In addition, these source languages

are very compact in the sense that it is not necessary to state explicitly

every arithmetic step in a program. This report includes the Fortran

statements for the structural analysis program so that it will be of

immediate use to engineers already familiar with Fortran and for those

who are not so familiar, it will serve asa suitable introduction.

The program described in this report will handle any type of

plane frame consisting of prismatic members. It will analyze for any

number of load sets so that it is possible to obtain a complete matrix of

influence coefficients for stress or deflection. For most ,structures,

these are not required and the storage layout has been designed in such a

way that for any given computer, larger frames can be accommodated if the

information required concerning them is restricted. It is possible to

either ignore, or take into account shear and axial strains in predominantly

1.



flexural structures. Pin jointed frames and mixtures of

fle~ural and axially strained members, as in braced multi-story frames,

. may also be handled. In addition, the effects of temperature, shrinkage or

lack of fit can be included. The basic method of analysis used is the

displacement method which is generally to be preferred to the alternative

force method(3) for structural frames on the grounds that it requires less

data preparation at a cost of somewhat more arithmetic operations within

the computer. This is certainly the case for frames of few redundancies

but many degrees of freedom. This method is also simpler to understand,

being a more general form of the traditional method of slope-deflection

analysis.

The basic data to be presented to the computer consists of

information about the degree of freedom, the number of flexural and axially

strained members and their relevant stiffnesses. The frame topology is

conveniently described by a statics matrix which can be prepared almost by

inspection for most plane frames so that it is not necessary to construct

it within the program from more basic data. The load-sets also are required,

together with information about the temperature or shrinkage deformations of

each frame element considered in isolation. The output has been arranged

so that moments at each end of each flexural component are tabulated

~separately from the axial tensions for cases when both are required so

that bending moment diagrams can be simply constructed. The frame

deformations are also listed for each load set and a check computation of

the load sets is finally made to give some idea of any accuracy loss due

to rounding-off or machine errors during the computation.

2.



297.15

II DISPLACEMENT ANALYSIS

The basic objective of any method of structural analysis is the

determination of deformations and stresses and in order to compute the

latter, the stress-resultants, that is, moments, shears, thrusts at any

section are required. If the stress-resultants are known at anyone section

in a frame member, the complete stress condition for that member will be

determined by statical considerations alone.

In Fig. l(a) is shown part of a rigidly jointed plane frame "and

attention is confined to a typical member AB. It is evident that the

complete stress condition for this member will be available if the values

of the stress-resultants T, V and M in Fig. l(b) are known. An
AB

alternative arrangement of stress-resultants is shown in Fig. l(c) where

again the stress condition for the m~mber can be determined from T, M
AB

, and

2.1 The member stiffness matrix

The deformations associated with the first system of stress

resultants(Fig.l(b) have been shown in Fig. 2(a) where the deformations u
T

'

~ and 8 correspond to the forces T, V and the moment MAB . For this system

and neglecting at this stage deflections due to shear, the load-deformation

relationships may be expressed conveniently in the matrix equation,

T = EA/L 0 0 u
T

l2EI/L3 2
( 1)V 0 -6EI/L Uv

~B 0 -6EIIL2
4EI/L 8AB

3.



For the alternative system of stress-resultants (Fig. l(c» shown in

Fig. 2(b), th~ load-deformation relationships tak~ the form of the

traditional slope-deflection equations for a prisinatic member.

T = EA/L 0 0 uT

MAB 0 4EI/L 2EI/L 0AB (2)

~A 0 2EI/L 4EI/L 0BA

Representing either of the above load-deformation equation

sets by the matrix equation

(3)

it is evident that the similar relationships for all members of a frame

can be assembled in the one matrix equation,

=

(4)

and the equation is represented conveniently as

(8R) = (8) . (x) (5)

It should be noted that while it is often convenient to group

together in the above expressions the three load-deformation equations

for each member, this procedure is not a ~ecessary one and in the

computer program described later, the axial load-deformation equations

have been separated from the other pairs of equations and have all been

placed together at the bottom of the lists. Ifaxial strains are

neglected, as in many flexural problems, these equations do not appear and

hence for each member there are only two load-deformation relationships.

4.
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2.2 The Statics Matrix

The equations of statics for any frame represent mathematically

the fact that the internal stress resultants must be in equilibrium with

the applied loads. For a stable structure that is statically determinate,

a unique set of stress resultants will equilibrate the external loads but

an infinite set will do so for a redundant frame. The purpose of the

analysis then is to find the particular set which also satisfies

continuity. Since deformations can be measured conveniently by the

movement of loads, whether real or virtual, it is necessary for the

analysis to be undertaken with as many loads acting as the degree of freedom.

The degree of freedom of a structure is the count of all possible

displacements and rotations of the joints. For the program described in

this report, a change in direction of a member must be considered to take

place at a joint and the same applies should any movement be restrained

within a straight length such as at a support of a continuous beam. Load

application positions along a beam may be considered as joints and then the

computer will produce the deformations at the loads. However transverse

loading on beams whether caused by point or distributed loads can be

replaced with no loss of accuracy by the equi1ibrants of the fixing moments

and shears (and tensions) if computer storage capacity is limited.

For a plane rigid frame, the degree of freedom (L) is readily

determined. +f there are j joints altogether in the structure, 3 j

deformations will determine the deformed shape of the frame since each

joint may translate in two directions and may rotate as well. However,

fixed bases do not deform and hinged bases only rotate so that if there are

f fixed bases and·h hinged supports,

5.



L = 3j - 3f - 2h

At an internal hinge, an additional degree of freedom will be present since

two displacements and two rotations will be needed to define movement at

such a node and consequently the degree of freedom of the frame can be

expressed,

L = 3j - 3f - 2h + hi

Finally, for a ,flexural frame in which axial strains are neglected, the

length of any member will not change so that a little consideration will

show that if such a frame consists of m members,

L = 3j - 3f - 2h + h. - m
1

An alternative method of determining the degree of freedom of a

frame depends upon the relationship between the degrees of freedom and of

redundancy.

For any plane structure,

L + R = 2 NFM + NAM

where NFM is the count of the flexural members,NAM is the count of the

axially strained members and R is the degree of redundancy. If axial

stiffnesses are regarded as being indefinitely large,the relationship is

L+R=2NFM

Hence, the degree of freedom can be determined simply if the degree

of redundancy of a structure is known.

Accordingly, it can be seen that for the whole structure there

will be L equations of statics and most of these can be written down

by inspection. In matrix form, these L equations of statics may be

expressed,

(W) = (A) . (SR)

6.

(6)
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The matrix (A) is called the statics matrix and will be of order L x M

where M is a count of the stress resultants necessary to define conditions

within the frame. For pin jointed frames, M will equal the number of frame

members; for general flexural frames, M will be three times the member

count or twice if axial strains are neglected. It can be noted that only

for a determinate structure is the matrix (A) square so that an inversion

of it will provide complete information about stress resultants as functions

of the applied loads.

2.3 The Kinematics Matrix

The combination of Eqs. (5) and (6) will produce a matrix

equation relating the applied loads to the relative deformations within

members. What is required fundamentally is the relationship between loads

and absolute deformations of the joints of a frame. This can be achieved

if an equation relating relative to absolute deformations is available.

Such a relationship takes the form,

(x) = (C) • (X) ( 7)

The matrix (C) is of order Mx L -and can be established by considering the

relative deformations resulting from unit absolute displacements given to

each load application point sequentially. It is referred to as the

kinamatics matrix. (4) In establishing this matrix for any frame, it is

soon noted that it is in fact the transpose of the statics matrix (A), and

it can be shown from the principle of virtual work that this is necessarily

the case. (4)

2.4 The Frame Stiffness Matrix

The combination o~ Eqs. (5), .(6) and (7) will result in a matrix

equation relating the applied loads to their movements.

7.



(W) = (A) • (S) . (AT) . (X) (8a)

'The triple matrix product (A . S AT) effectively expresses

the values of load to produce uni t de forma tions s,o that it can be called

the frame stiffness matrix, denoted by (K). It will be a square matrix

of order L x L and is invariably well conditioned'and non-singular in a

first-order analysis so that its invert will be the flexability matrix (F)

for the structure.

(W) = (K) . (X) (8b:

(X) = (K- l ) (W)

(F) (W) (9)

Thereafter, the stress resultants may be computed from the equation,

= (S)
T (10)(SR) . (A ) (F) (W)

and, having proceeded this far, it is worthwhile to pre-multiply (SR) by

the statics matrix (A) to recompute the load vector (W).

(A) . (SR) = (A) . (S . AT . F . W)

= (W) (11)
(5)

This procedure, suggested by Clough ,provides a useful check upon the

build up of error during the computation and the consequent significance of

the results.

At this stage, it should be pointed out that the procedure

implied in Eq. (9) of first inverting the stiffness matrix (K),and then

post-multiplying the result (F) by the load vector (W) will be wasteful of

computer time unless as many load sets were to be considered as the degree

of freedom of the frame. If only one load set is to be considered, it will

be more efficient merely to solve the set of L simultaneous Eqs. (8b)

and even if several sets are involved, equation solution will involve less

machine time especially if a suitable solving routine is employed. The

8.
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one used in the program described in this report is the system called Gauss

Jordan elimation as outlined by Salvadori(6).

2.5 Temperature Change Effects

A change of temperature will alter some deformations in all

structures and in the case of redundant frames can affect the stress

condition as well. Shrinkage strains and strains due to lack of fit of

members in a frame will have results· similar to those caused by temperature

change. All can be accounted for in the deformation method of analysis by

computing beforehand the effective "lack-of-fit" of each member of a

structure, whether caused by temperature or shrinkage or by a genuine lack-

of-fit, and listing them in a column matrix or vector which will be

denoted by (xH). These deformations will be relative within each member so

there will be as many terms in (xH) as in the relative deformation vector

(x), that is, as many as there are stress resultants to be computed. The

overall effect on the frame is calculable since the only change in the

procedure outlined above will be to modify Eq. (5),
. .. H

(SR) = (S) . ((x) - (x)) (12)

Eq. (12) represents in matrix form the physical situation that within each

member the deformation is caused partly by stress and partly by initial

lack-of-fit. The equations of statics and kinematics are unaffected by

these considerations so that the basic frame equation to be solved, Eq.(8a),

becomes,

(W)= (A) • (8) . (AT) •
. . H
(X) - (A) . (S) . (x ) (13)

If the temperature terms are moved to the left hand side of Eq. (13), the

effect is either to add more terms to the existing load vector or, if

H·
temperature stresses alone are of interest, the vector (A) . (S) . (x )

9.
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becomes the load vec tor. In the program developed in this report ," it~. was

decided to aaaommodate any number of alternative load vectors but the

computed temperature load vector would be added only to the first real load

vector, not to all of them. It was thought that a more useful program would

result from such a technique.

2.6 Shear Deformations

Shear deformations will be taken into account in a general

deformation analysis program by including appropriate terms in the elements

of the member stiffness matrices shown in.equations (1) or (2). It is

readily shown from elementary analysis that the more correct form of

Eq. (1), allowing for axial, shear and flexural deformations is,

where k3

T

v

= 1 + l2El
L

2AG

EA
L

o

o

0 0 uT

l2El -6El Uv
k3I) k3L2

-6El kl 8AB
k3L2 k)

2
k l = 4El + l2(El)/ LAG,

L L

G = shear modulus

A = cross-sectional area, and

A = section area effective in resisting shear.

The alternative form of the member stiffness equations would

appear as in Eq. (2) when allowance is made for shear deformations, with

the substitutions of k l /k3 for the term 4El/L and k2/k3 for the term 2El/L.
2 -

For this case, k =2El - l2(El) /LAG
2 L L

10.
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I I I THE COMPUTER PROGRAM

A principal objective in writing the program was the provision of

an ability to analyze all types of plane frames without profligate use of

computer storage capacity.

The limitation was accepted that members had to be prismatic

but the program was devised to deal with triangulated or rigid frames. In

the case of the latter, it could either take into account or ignore axial

and shear strains. For any frame, the effects of temperature or shrinkage

or lack-of-fit could be allowed for, if desired.

Accordingly, the program takes the form shown in the flow diagram

of Fig. 3. The principal steps begin with reading of an integer which is

regarded as the frame number if positive and if negative it is treated as a

signal to terminate the program. Next, the degree of freedom, ·the count of

flexural members, the count of axially strained members and the number of

alternative load sets to be considered are input. The statics matrix is

then input in an unabridged form and basically it will determine the

r
I

form of output of deformations and stress resultants. This will be made

clear in the examples given in Sect. V. Next, the data to construct the

member stiffness matrix and she temperature vector are input. The first

item for each member will be the flexural stiffness parameter (EI/L)

followed by the shear stiffness factor (l/LAG), the inverse form being

chosen so that it may be set to zero if infinite shear stiffness is assumed,

as is often the case in steel frames. The third term will be an angle

representing the slope change along the member considered in isolation due

to temperature strains if these are to be considered. Data for each

11.



flexural member is first input and is followed by data for each axially

strained member. For these, there will be two items per member, the axial

stiffness parameter (EA/L) and the initial oversize due to temperature or

lack-of-fit. Even though the same member may be both flexurally and

axially strained, the form of input set out above should be preserved. The

member stiffness matrix is constructed with all flexural members delt with

at first and then the axially strained members as is shown in Fig. 4.

Finally, the load sets are read and these ~ay be chosen in such a manner to

utilize the program1s ability to add temperature effects only to the first

load set but not to the subsequent sets. Hence, if the effects of

temperature or lack-of-fit alone are of interest, a null vector would be

prepared for the first load set with the actual load set or sets following

afterwards. If it is desired to obtain a complete flexability matrix by

the inversion of the frame stiffness matrix, it is only necessary to

specify at the beginning that as many load sets are to be analyzed as the

degree of freedom and then to finally arrange for the input of load vectors

which, if viewed side by side,would resemble a unit matrix. The form of

equation solving routine used is that of Gauss-Jordan elimation with the
(4)

largest pivot chosen at each stage and is the same used by C. K. Wang but

modified to deal with a succession of load sets.

A series of different frames can be analyzed by reading in more

data beginning with the frame number as before and when this integer is

negative the run will terminate.

The computer output will commence with the statics matrix (for

verification) and is followed with the member stiffness matrix so that one

may feel confident that it has been constructed correctly. The temperature

12.
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vector is also output for the same reason. Next, the frame stiffness

matrix will be printed and it should take a symmetrical form. The input

load sets are printed out for verification and then a table entitled

"deformation matrix for the frame" is output and it will be a flexibility

matrix in the strict sense if the load sets took the form of a unit matrix

as mentioned above. Otherwise as many columns 1 will appear as the number

of load sets and the elements will be the frame deformations caused by the

loads in each set (with temperature deformations add~d to the firs·t column

if non-zero temperature terms had been previously input.)

If the frame undergoing analysis were rigid, the next table would

consist of columns of member end moments, one column for each load set.

The order of terms in each column will correspond to the order decided upon

in the construction of the statics matrix. If axial strains were also

considered: the next table will list the tension forces existing in each

member. Finally, a check on computational accuracy is made by recalculating

the load vectors and these a~e output and an inspection will provide some

estimate of error build-up, during the computation.

It should be noted that the type of input must necessarily

correspond with the Fortran format statements in the source program. (7)

13.



IV PROGRAM LIMITATIONS

The dimension statements at the head of the source program

(Appendix A) will provide an upper limit on the size of structure that can

be analyzed by the resulting object program. For any computer, it will be

necessary to ensure that the total number of storage locations implied

in the dimension statements is within the machine's capacity after

allowing for the storage of the object program. It has been found that

approximately 1900 locations are available for the arrays in the GE225

computer at Lehigh University. Within this upper limit, it is possible to

vary the maximum values for degrees of freedom and number of load sets so

that as many frame members as possible can be accommodated. The available

store capacity C must not be exceeded by the total number of matrix

elements which can be expressed,

where

C ~ (2L + 1) (2NFM + NAM) + (2NFM + NAM)2 + L(L + N)

L = degree of freedom

NFM = count of flexural members

NAM = count of axially strained members

N = number of load sets

For a determinate pin-jointed frame, there will be as many

( 14)

members as the degree of freedom and a store capacity of approximately

1900 locations will be filled by a frame of 21 members if only one load

set is applied. On the other hand, a flexural frame in which axial strains

are neglected will be determinate if the degree of freedom is twice the

number of members and 1900 locations would be filled by a frame of.11

members. The efficiency of the program increases with the degree of

redundancy since the insertion of extra members in a determinate pin-jointed

14.
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frame will not increase the degree of freedom~ In a flexural frame the

sum of the degrees of freedom L and of redundancy R will equal twice the

count of the members so that for a given frame, the more redundant it is

made through joint rigidity, the smaller ~ill be the degree of freedom and

hence the larger the frame to fill any available capacity.

L + R = 2 NFM (15)

The ratio of L to R for multi-story rectangular frames with fixed

bases is independant of the number of stories and is given by

L/R = 1/3 + 2/3b (16)

where b is the count of.the bays. It can be seen that the ratio decreases

from 1 for a single bay frame of any number of stories and approaches a

value of 1/3 for a large number of bays. For single bay frames, 5 stories

with 15 members would require a capacity of 2070 storage locations and

would just exceed the capacity of the GE225 machine. On the other hand, a

7 bay, single story frame with 15 members would require 1560 locations and

would be well within the available capacity. It can be seen that it is a

relatively simple matter to decide whether a given frame is within the

capacity of any given computer.

It has already been mentioned that a member in a flexural frame

can sustain any type of lateral loading which in the analysis can be

replaced by the equilibrants of the end fixing moments and shears so that

load application positions do not necessarily have to be treated as joints.

If this procedure is adopted, the computer will in effect produce a
. (8)
"complementary solution" for the frame which should be added to the

"particular solution" of zero deformation associated with the fixing

moments and shears.

15.



V DATA PREPARATION

The first card in the data set must contain a positive integer

in Format IS and it is regarded as the identifying number for the frame.

The last card can be any negative integer in the same format and its

function is to terminate the run. The second card, in Format 415, must

list the degree of freedom., the count of the flexural members, the count

of the axially strained members and the number of different load sets. The

construction of the matrices shown in Fig. 4 will be governed by these four

integers. The major effort in data preparation concerns the statics matrix

which is next input. Several examples will be shown later of the

construction of this matrix. After the statics matrix, the elements of the

member stiffness matrix are input, the flexural members being first with

one card per member listing in Format 3F10.5 the flexural stiffness

parameter (EI/L) the shear parameter (l/LAG) and the slope change angle

caused by temperature. If one or both of the latter quantities are

ignored in the analysis, zero should be punched in their place. However,

if there are no flexural members, only the cards containing the axial

stiffness terms (EA/L) and the initial oversize due to temperature for each

member are read. These cards should be punched in Format 2F10.5. Finally

the load sets are input, each in Format 7F10.5, and the order of terms

must correspond with that already decided upon when the statics matrix was

established.

The preparation of the statics matrix is best explained by

examples. Referring to Fig. 5, the pin-jointed frame numbered 1, will be

studied. Such a frame clearly has only 2 degrees of freedom associated

with the 2 possible displacements of the joint O. The equations of statics

16.
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relate th~ applied loads X and Y to the stress resultants which are

called TAO' TBO , TCO ' 'TDJ and TEO' These will be as follows,

X = 1/2 TAO - 1/2 TCO - Vi TDO - TEO
2

Y = V3 TAO + TBO -+ V3 TCO + ':Ii TOO
2 . 2 2

Expressing these equations in matrix form,
TAO

l]'~5
0.0 -0.5 -0.707 _1~'

TBO
TCO

Y 0.866 1.0 0.866 0.707 0.0 TDO
TEO

or (W) = (A) • (SR)

where A is the statics matrix. The solution for this problem is shown in

Appendix B.

The frame number 2 in Fig. 5 has 7 degrees of freedom as

indicated and the equations of statics can be expressed in matrix form by

referring to the joint force diagrams in the figure.

MA = 1 0 0 0 0 0 0 0 MAB

~ 0 1 1 0 0 0 0 0 ~A
XB 0 0 0 0 1 -1 0 0 MBC
YB 1/360 1/360 -1/360 -1/360 0 0 1 0 MCB
MC 0 0 0 1 0 0 0 0 TAB
Xc 0 0 0 0 0 1 0 0 TBC
YC 0 0 1/360 1/360 0 0 0 1 TaD

TCE

Frame 2 will be studied in detail to demonstrate how flexural,

shear, axial and temperature strains, as well as lack-of-fit, may be taken

into account. oSuppose that at construction, the temperature was 70 F and

the spring support CE was 1.5 in too short. At working conditions, the

temperature above the beam is l20 0 F and below the beam, 80oF.

17.



For the 18WF50 beam, EI/L = 66,716.6 kip. in. and EA/L =

1225.1 kip/in. For the springs BD, CE, EA/L is effectively 10.0 and 4.0

as shown on figure. The shear parameter (l/LAG) for the beam is computed

-1 -1
to be 0.000 000 036 kip in. Considered in isolation, the spring BD

would increase in length 0.001608 in. due to a 100 F rise in temperature.

The springCE would increase by 0.000804 in. in length, but it is initially

too short by 1.5 in. so both effects are accommodated by specifying its

initial oversize as -1.499196 in.

With regard to the effect of temperature on the beam, it can be

assumed that a uniform temperature gradient exists between top and bottom

flanges. For a mean temperature rise of JOoF, each beam would increase in

length by 0.072360 in. The higher temperature at the top of the beam will

produce a negative curvature in each isolated beam with a slope change angle

readily computed as 0.00536 radians.

The load vector can be formed from the equilibrants of the fixing

moments and shears associated with the live load intensity of 0.1 kip/ft.

together with the dead load of the beam. The fixing moments and shears will

be,

MFAB -135.0 kip in. VFAB = 2.25 kip

MFBA = 135.0 kip in. VFBA = 2.25 kip

MFBC = -45.0 kip in. VFBC = 0.75 kip

MFCB = 45.0 kip in. VFCB = 0.75 kip

The equilibrating joint loads and moments are simply deduced

from the above values so that the applied load vector becomes,

18.



MB

-90.0 -45.0

Xc

0.0

Yc
-0.75

297.15

The data cards for the analysis of frame 2 would be ordered as follows:

Data Format Card No.

2 15 1

7 2 4 2 415 2

(statics matrix) 7F10.5 3-10

66716.6 .000 000 036 -.00536 3F10.5 11

" " " " 12

1225.1 .07236 2F10.5 13

" " " 14

10.0 .001608 " 15

4.0 -1.499196 " 16

'.
17 18(load vector) 7F10.5 ,

-2 15 19

The computer solution for this problem is given in Appendix C. ,.'

It has been explained that the preparation of the" statics matrix

constitutes most of the preparatory work necessary in using the program.

For rectangular frameworks of a rigid kind, this can be done by inspection

but more work is required for frames with sloping members such as pitched-

roof po~tals. The statics matrix for these frames has been found to be

somewhat easier to prepare when axial strains are taken into account rather

than when they are neglected which is the usual approach to this type of

problem. A simple example is shown in Fig. 6 and the forces acting on the

joints are shown in Fig. 7 for the case when axial strains are neglected.

The rafter thrust (Th) is evaluated in terms of member end moments from the

19.



condition of vertical equilibrium at the joint C. There is no independent

freedom for vertical movement at C since the horizontal movements at both

column-rafter connections have been treated as independent degrees of

freedom. It it had been desired to obtain directly the vertical movement

at the apex, a degree of freedom could have considered at that position

rather than at the right harid column. Alternatively, a joint with 2

degrees of freedom similar to joint B could have been considered as

existing slightly to one side of the apex. This problem does not exist

when axial strains are accounted for as in Fig. 6(c). For this case, the

joint forces (moments are omitted for clarity) are shown in Fig. 8. The

statics matrices for both cases are shown in the Appendix D.

The sign convention adopted in the examples is that in which

clockwise moments are regarded as positive and the positive directions of

displacements are those coinciding with the force directions on the various

figures. However, it should be noted that the program itself is not

dependent upon any sign convention and it will work for any consistent

convention adopted in the preparation of the input data.

\
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VI CONCLUSION

297.15

The Fortran program described in this report has been thoroughly

tested and run on both the GE 225 computer at Lehigh University and the

IBM 7074 machine at the Bethlehem Steel Company. The only changes

necessary for the latter computer concerned the input and output

statements. The word READ was replaced by READ INPUT TAPE 1, and the word

PRINT was replaced by WRITE OUTPUT TAPE 2, with the rest of the program

remaining identical. The appropriate call cards .were required for both

machines. Compile time on the GE225 was approximately 8 minutes and running

time for a problem of maximum size for this machine was approximately 4

minutes. The IBM 7074 would compile and run in the one operation and the

same frame would be analyzed in a total time of approximately 2 minutes.

The storage capacity available for data with the GE 225 was

approximately 1900 locations but it was found that 6900 locations were

available with the IBM 7074. Since the required capacity for a frame is

proportional to the square of the number of members, as in Eq. (14), the

IBM machine was capable of analyzing frames of approximately. twice the size

that could beaceommodatedby the GE 225. It is evident that a structural

engineer will always have structures which can exceed the available capacity

of a high speed store in a computer and methods have been proposed(9)for

dealing with specialized problems.

21.
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A

A

b

(C)

C

E

(F)

f

G

h

I

j

(K)

L

L

M

M

VIII NOMENCLATURE

the statics matrix

the transposed statics matrix

cross-sectional area

section area effective in redisting shear

count of the bays in a rectangular frame

the kinematics matrix (= (AT»

computer storage capacity available for data

Young's modulus

the frame flexibility matrix

count of the fixed bases in a frame

shear modulus

count of the hinged supports of a frame

count of the internal hinges in a rigid frame

an applied horizontal load, Nth in a list of loads

second moment of area

count of the joints in a frame

-1the frame ptiffness matrix (= (F »

parameters defined in the text

length of a prismatic member

degree of freedom of a structure

an applied bending moment

count of the stress resultants in a frame

an external moment applied to joint A

moment applied at end M to member MN

23.
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m

N

NFM

R

(8)

(8R)

v

(W)

X,Y

(X)

an applied external moment, Nth in a list

moment to fix the end A of member AB

count of the members in a rigid frame

count of the alternative load sets

count of axially strained members of a frame

count of flexural members of a frame

degree of redundancy

the member stiffness matrix

matrix vector of stress resultants

the stiffness matrix for memb~r MN

an applied tension force

the tension for~e in member AB

displacements in directions of forces T,V

an applied normal shear force

an applied vertical load, Nth in a list

shear to fix the end A of member AB

matrix vector of the applied forces, moments

applied joint forces

matrix vector of frame displacements

matrix vector of relative member displacements

matrix vector of relative displacements for member AB

matrix vector of relative displacements caused by temperature or
similar effects

slope at end A relative to the tangent at B

slope at end A relative to the line AB
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Appendix A Fortran Statements

The statements ·which follow are in a form used as a source

program for the IBM 7074 machine. The names chosen for the variables and

the arrays conform in general to the terminology used in the text. There

are some differences due to Fortran variable requirements and some of the

dimensioned arrays are used several times in the program to conserve

storage spaces.

Variable In Text In Program

Statics matrix (A) A(I,J)

Member stiffness (S) S(I ,J)

Frame stiffness matrix (K) ASAT(I,J)

Temperature vector (xH) FIH(I)

-
Degree of freedom L L

Stiffness parameter EI/L EK

Shear parameter l/LAG SK

Temperature slope change - TFY

Applied load vector (W) ASAT(I,L+l)

Deformation vector (X) ASAT(I,L+l)

Stress resultant vector (SR) S(I ,J) (reused)

25.



0042
IF r~FM) 50,lnO,50 0043

4" FORMAT (7F10.5]

0002
0003
0004
0005
0006
0007

0001

0040
0041

0022
0023

0018
0019

0038
0039

0034
0035

0032
0033

0016
0017

0036
0037

0008
0009
0010
0011
0012
0013

0020
0021

0014
0015

0024
0025
0026
0027
0028
0029

. 0030
0031

AFFiIL, 1965.AUTHOR. "~.n.HARRJSCN

INPUT THt STATICS MATRIX A.

REAP FRf~~ NLMBfR AND EXIT IF NEGATIVE.

SPECIFICATION OF MATRIX DIMENSI0NS.

ACCOUNTING FOR FLEXURAL A~r/OR AXIAL STRAINS AND/OR
TE~PFRATliRr:: OR SHRlhlKAGE OR LACK OF FIT OF MFM8ERS.

NUMBER OF AXIALLY STRAINED MEM8ERS, NUMRFR OF LOAD SETS.

FOhTPA~ PROGRA~ 6. FDA ISM 7074
FI~ST O~O~~ ANALYSIS O~ PLANE" STRUCTU~ES.

INPUT THE MAIN ElEMENTS, BUILD THE STIffNESS MATRIX.

DIMFNSID~ SATr51,27J,ASATr27,40J
DIM~NSIDN F.IHr'11

READ INPUT TAPF 1. 40, ([ArI,J), J =l,JLJ,

M = ? • ~FM

JK = M + 1
.IL = M + NAI1

1 READ INPUT TApr 1, 10, JJ
in FORM"" (151 '

IF rJ.JJ 'll.2n.~n

2U HEAU I~P01 TAPE 1. 3D, L, NFM, NAM, ~

3n FORMAT (415)

1:1 r.ALL FxIl

c

c
c

c

c
c
c

c
c

c
c

c

c
c

c
c

c

c
c
c
c

c
r:
c
c

c

c

50 no 60 I = 1.M 0044
no 6" J = 1,M 0045
S(I,JJ = O. l046

hn ~ONT!NUE 0047
no 911 'I = 1,M 0048
I T(:51 = 11? • 2 - I-=-- ~O0;!..4::..9z...-
IF [TTEST] 70.9~.QO 0050

71 READ I/lJPUT HPt: 1.. Al, EK, sK, TFY 0051
RO FORM6Tr2Fln.~J 0052
1'\ 1. FOR MAT[ 3 F1 n• '?,:-'1e..-:-::-:-- -:c0-=-0.=:,5""3_

~ = 12.0 • E~ • '~~ 0054
SrI,!] = [4.n * r.~ + R * ~Kl/rl.0 + R] 0055

Appendix A Fortran Statements

26.



C

S[I+1.1+31 = SILl]
<::(1+1,11 = [2.0 • EK - R • EKI/I1.0 + RI
S[I.I+1) = Sfl+1.1]
rlHtIJ = TFY / 2.0
FIH [I + 11 = -FIH[IJ

90 r.ONTINUE

IF[NAMI 93.140.~3

IF 1"1 94r1~0,9.1

DO 95 I = 1,M
DO 9<; J = JI<.JL
s [ I. J I =. o.
no 9~ I = J~.JL

no 96 J = 1,M
5[ I. J J = o.
no 130 I = JK,~L

no 130 J = JK.~I

IF l!-JI 110.120.110
s I I ,J I = O.
GO Te 130
READ INPUT TAPE 1, 80. SII,J). ~IHIII

r.ONTINUE

OUTPUT ll1E~ITIFICATION AND TIoIE INPUT MATRiCES.

0056
0057
0058
0059
0060
0061
0062
0063
0064

. 0065
0066
0067
0068
0069
0070
0071
0072
0073
0074
0075
0076
0077
0078
0079
0080

WRITE OUTPUT TAF~ 2, 190 0089
FORMATl32H1 THE MEM~ER STIFF~~SS MATRIX//I 0090
no 2110 I = 1,jL 0091
WRITE OUTPUT TAF~ 2, 180. I, l~ll,jl, j = 1,JLI 0092
~RITE OUTPUT TAFE 2, 201 0093
~ORMAT[48HO THE TEMPERATURE, SHRINKAGE, LACK OF FIT VECTOR/II 0094
4RITE OUTPUT TAFc 2, 203. IFIHIII. I = 1.JLI 0095
FORMATl14HnCOLUMN VECTOR.jX.7E15.7/115X. 7E15.7)1 0096

FORM THE MATRIX PRODUCT S. AT

DO 220 = 1,JL
nO 22n J: l,L
~AT [T,Jl = n.
no 2·10 I< = 1,JL

~10 c::ATtl.JI = SATrl,JI + SII.Kl • AIJ,Kl
220 ~ONTINUE

c
c
C FORM THE ~ATRIX PRODUcT A. SAT
C

27.
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0100
0101
0102
0103
0104
0105
0106
0107
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no 2401 = :.1.. -.,.-- ~0~1~1~1

nO 240 J = 1.L 0112
ISATrr.J] = n. 0113
nO 2~ 0 K = 1. ,J L 0114

i30 ASATfl.J] = ,SAfrl.JI + Afl.K] * SAT[K.J] U115
240 CO;H INUt: 0116

0117

OUTPUT TI-'': FRAME STIFFf\ESS MAINIX

WRITF: OUTPIIT TAr;= 2. ?50
"ORMIT[31Hl THE ~RAME STI"FNESS MATRIXII]
n02~O [=1.1

[NPUT TH~ LOAD SETS, ~TORE BESIDE AlAT MATRIX.

DO 270 K = 1.~!

..1 = L + K

~EAD INPUT TAPF 1, 40. [A~ATrl,JI, I = 1,L]

ACD TEMPF~ITUR~ ETC. EFFECTS. I" A~Y. 10 FIRST LOAD ~ET.

0118
0119
0120
0121
0122
0123
0124
0125
0126
0127
0128
0129
0130
0131
0132
0133
0134
0135

K = L + 1 0136
no 27'5 I = 1.• L 0137
no 275 J = 1.JL 0138
ASAT r I • K 1 = A SAl (1 • K J_+-----'S'-'A:..cT'-'[o.:J:...:,:..cI:..cI:-.-*--'"_I:...:H-'--'-[J::....:....] -;0"'1'-':3;-;9;.-

275 ~ONTINUE 0140
0141

OUTPUT T~F LOAD ~F:TS FCR IDENTI"ICATION.

i~RIT<; OUTPUT TApe ". 2f10
FOQMIT[26H1 THF APPLIED LOAD SETSII]
KK = L + 1
KJ = L + N
[102-'01=1.[
'''RITC CUTPIIT TAPC 2.180. T. [ASAT[I,J], J = KK,KJl

sOLVE ~OLATIONS by GAUSS JURDAN E~IMINAtION.

0142
0143
'0144
0145
0146
0147
0148
0149
0150
0151
0152
0153
0154

DO 410 1 = 1.L 0155
!P1 = I + 1 0156
TEMP = A8Sr[ASA 1 rl.IJI 0157
K = r 0158
no 310 J = I.L 0159
rFfAFSF[ASATrJ.ll1 - TtMPI 310,310,300 0160

__.)--=-0::..0_I<~::..=~.J:--==-:--:--=-_-:-;" O11'11
TE'" p'= ,IE SF [ 4 SAT f J • I J I 011'12

31U CONflNUE 0163
IF [1<-11 320.340.320 0164

320 "0 330 J = J, K.~,,-; :- . -c0~1~6~5~

28.



\' ,.:

no 400 K = IP1.1J 0179
4SATrJ.K) = ASATrJ.K) - TEMP * ASATrl.K] 01BO
~ONTINUE 0181

0182

OUTPUT Tf'F= FRAME OEFOR"ATION MATRIX.

:~R]TF OUTPUT TAFt: ?. 420

0183
0184
0185
0186
0187
01A8
0189
0190

0209
0210

021.3
0214

0207
0208

0211
0212

SUBT~ACT S.FIH FRUM FI~ST COLUMN UF SfRESS RESULTA~TS.

no 4<'0 I = ~.JL

!'IO 4'iO J = 1.N
SIJoJ) = O.
,IN = L + J
'10 440 K =.....1.L.l-

440 SII.JI = SI!.J) + SArl!.~l * ASATIK.JN)
450 CONTINUE

c
c
c
c

0215
______.________ 0 216

no 4'i5 ! = '.JL 0217
~~SlJ2.]_.L_=.__S...LL·H._~__EI _H...Lr...LI...L) --':0'.,!;2~1~8!._

C 0219
C --:-- 02?0

c
c
~__.__ COMPIiTt 5'n" t~ORE ! N S AND TRANSFER TO F! H LATER.

C

01C11
0192
0193

DU 4J6 I = 1.JL 0194----------TE-Mp·-; o. 0--------- 0195

no 4.35." J = 1.Jl0196----4";S5TE-MP ---;-' T-EM-P·--;--S""-[-T-.-:J-::)-*--;OFC-;I-~-=l-J;-;]----------------------'0'-'1!....:q!J 7"-
__---S._LL..1L-=-_IHl,-'-P ----'----' Oll...l...9Z..l.1-B

4~~ r.ONTINUE 0199
______JllL4..:.ll._LE_....1...'-.J.'".l -'0'-'2,,-,0,,-,0,,-

437 F!H[TI = srl.l) 0201
c 0202
C 0203

~c:;--------,.c.~O:.;.M....P¥.U-=T~F=.:.T~'~.sf==;;;;;:;!;T;;H::l:E==S::::;S!:==Iol=E=S:=":.!:L~T~A~N=l~..;M;;A~T!=!R~1 X~=S~A:kT=:!:~D,5E:!::L:!:T~A=------~02..QL
C 0205

0206

29.



02;12
IFINAMJ QYO.46n.1YO 0223

.. 1> 0 '.I R ! Tf 0 UTPII·T-·.,.,T-':'p7.F..,.:"....:....::?,--.--:;;4"7,..,.Or---------------------------;=0.-;;2~2;-:;-4

470 fORMAT(47H] THF MOM~NTS AT T~E ENDS Or ALL MEMBERSIIII 6225
no 4AD ! = 1.~ 0226

41l~ "Hlrt' OUTPUT TAt:': ~. 180' I. ISII.JI, J = t,N] 0227
GO Tr.; ,55 0228

0229

c
c

oUTPllT THt: SlRtSS RESULTANT IN~ORM~rION. 0221

0244
0245
0246
0247

55'5 00 57r = t.L
____f'\"-O~<;;:,-. .:,-1::--0 J = '. fl

~SAl[I.JJ = n.
no ':ifll K = 1 ••JL

560 AS,6Tl!.JJ = A-sA!l!.J] + A[I.R] • ~lK,JI

570 CONTTNUE
W~!TF OUTPuT TAP~ ?, ':iBU

5pn FOP~AT[45Hl ACrLwACY CHE~K. THE AppLIED LOAD SETSII]---no 59 0 ~-1-,-.,---

';)90 '4RjT~ rUTPllT HFre 2, lPO, T. [ASATr!.JJ, J = l.N)
"00 t-'RfTF OUTPUT TAFe: 2. 610. JJ
fln FOR~AT[38HO ANALYSIS COMpLETE" FOR FRAME NO., 13]

1;0 Tr; 1
FND

30.
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LINt:AR ELASTIC ANALySIS OF fPI\I"'.[ ·\~IJ.l

HIE STATICS .,ATRIX

THE MEMER S T I FFNESS MT< I X .... . .__.__.. . . ...

RO~

O.OOOOOOOE 00O.OOOOOQOE 00O.IOOOOOOE UIO.OOOOOOOE 00ROW o.oooooo~~__~ _

ROW ---''-_.l;O!_'._''!O_''!O_''!O_''!0l!.00~O~E~O~O'_~O!_'._''!O_''!O_''!O_''!0l!.0l!.UO~E=_- -'0~0'_~0!_'•.!!.8.!!.b~b_"!0~2~54~E~0~0'_~0c:.-"!0~0_"!0:!.0~Ou~0~E=_--'O~O'_~O::..-"!O-"!O_"!O:;.OO~O~'~lEo...;0~O'_ _

RO"-W"--.:.4'--_-"0".-"0-"0"'00000E 00 _-"O".-"O-"O-"O-"O"-O"-OO"-E"__'O'_'O'_~O'_'._"O_"O_"O"_O~OO~O~:E"__'O'_'O'_~O'_'.-'.7-,,0_,_7IUb7E _~~.Q<l..oOOOOE_Q!l _

_~.l'._L __._<L'-.9.ll_9.0J!QQ.~_q.9-_!!._'-QQ_O'Q.l2.0.Q..U9 __....Jl..:_QgooO_'!.Q_S ~ <J..,.<l.2<l.QO_9_<l.~ __Q<l... <l_'__~O'Q.0_<l.QO~_<J.! _

THE TEMPERATURE, SHRINKAGE, LACK OF FIT VECTOR

THE FRAME S TI FFNESS MATR 1 X . . .. ..__.. .... ...... ....__..__..._.._ . ..._

..c::RO",W,,---,,-_-O.3 5 3 5 5 3 3 E 00 0.2652591E 01-_._---------------------------------,

THE APPLIED LOAD SUS .. .... .. .... .

-"-RO"-W"---"--_---'O'-'.-"O-"O-"O_"!O_"!0l!.00~E 00 .O.IOOOOOOE ul

t
~RO"_W~~__~O~.IOOOOOOE 01 O.OOOOOUOE 00 O. ]009_Q.O~..0'!...!..1 ._,------_--------_----------

O.'OOOOOOE UI

THE OEFURMATION MATRIX FOR THE FRAME

-RUw----i----6·;~r741j"ij6qE--OO---o:_ib6i5'7TE::-6T"-o~"lHf7·8T9~·oT ..----------·- -----------.-.-------------------------

-if(jw-2---o:-t6b257fE=Ol-6~y8720'i6E-OO·---..0-;2·11,_5-8-92E--01--·-------------------------------..---------

THE AXIAL TENSIONS IN ALL MIMBERS .... ......._.._ ..... .. _

ROW O. 30640-7oE~3i3-5-il2TE-O-6---o. 2'i'ill)Tf--QT-----------·----------------.. ------------------

ROw 0.7662571 E-0 1 --~8-i2o'IoToo-_____O:Z165U9 iEO[-----·--------·--------------- ..------

ROW -Ool914684E 00 O.2572223E 00

ACCURACY CHECK. TIlE APPLlEIl LOAD SETS

----------,---------------_..._-_._---------------------
~_~_.~_J_~__ _'? ~l9_'!.9Q~.Ql: _~__.._.Q~__~_i!~Q.~·~!.'.~:.~_l Q_=_~~_\~tl.O'J(1 Of. LJ 1

_~q.~__L P~_~~Q..0 O_2~~E:-:_Q.!....,__ .Q..~J._9.9.~.Q {.l.~~_. t?~. 0 • ') () 0 {j 0 CO.E [J l

ANALYSIS CU~PLETEU rOR FR~ME NU.l

Appendix B Machine Solution toProble~ 1
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RO-w-j--O:TOouo'oOEOI-·u.O"ffifmTrWEuO--O-;-OUo,,-o01lE-nO--o-;lHfOOiTO·OE-OO---·o70Ti(f(YOO-OE-Q·lj--o.OTiOCfOODE-O-U--o.Oucl)"(51i'1irou-
____.. o.OOO()()OOE DO. __._._.• • __._. ._ . _. _ _ . _

ROW O.OOOOOOOE 00
.. o;'o'OOOOOOE -00

0.00000001:: 00 O.Ol/uooeot:: 00
----- ----

O.OOOOOUOE: uO 0.00000 OOE 00

O.OOOOOOOE 00 O.OOOOOOOf 00 O.IOOOOOOE 01
------ --------- ._--.- ---- ------ -----~ ~------------ ---------------_.

TIi"w-i--,oc-.o-OOC51JOOE'-'-n0"'0-....",0-c.o"'o"'o"'o"'o"o"o"E"'O"'O:--"o--c.O"',"')O"O"o"o"O"E"'-';O"'O--O. oooonoo-roo--if;"\ocToooo E ol---=1l71-=CfJ!OToT--r;;-OOOO1l~
O. ()009000E ().L __.._.._.. .._.._. ..._.._
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DIMENSION A~RAYS
RECALCULATE LOAD SETS,

~ AND OUTPUT AS ERROR CHECK.

•
READ FRAME NO.--

OUTPUT STRESS RESULTANTS,
MOMENTS FIRST, TENSIONS NEXT

TEST -
NO. END·

+
COMPUTE STRESSHRESULTANTS
AND COMPUTE Sx AND ADD TO
THE FIRST SET OF STRESS

READ DEGREES OF FREEDOM, RESULTANTS
NUMBER OF FLEXURAL MEMBERS,
NUMBER OF AXIALLY STRAINED
MEMBERS, LOAD SET COUNT

t OUTPUT DEFORMATIONS

READ IN THE STATICS MATRIX

SOLVE EOUATiONS
W = A S . A . X

n TEST
NFM

+
READ LOAD SETS, ADD SATxH

TO THE FIRST LOAD SET
OUTPUT LOAD SETS

REA~ DATA, CONSTRUCT THE
FLEX. PART OF MATRIX S
INCLUDING SHEAR EFFECT

)

t COMPUTE S~, ASA
T AND

OUTPUT ASA . - THE FRAME
BUILD.FLEXURAL PART STIFFNESS MATRIX
OF TEMPERATURE VECTOR

TEST
OUTPUT: STATICS AND

n MEMBER STIFFNESS MATRIX
NAM AND TEMPERATURE VECTOR

+

L...- BUILD AXIAL PART OF S MATRIX .6UILD AXIAL PART OF THE
TEMPERATURE VECTOR

Fig. 3 Flow Diagram for the Displacement
Analysis Program
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(b) Degrees of freedom when
axial strains are neglected
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Fig. 7 Joint Forces for Frame 3 When
Axial Strains are Neglected
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Fig. 8 Joint Forces for Frame 3 When
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