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SYNOPSIS

A detailed description is given of a computer program to carry
out a genefal first order elastic analysis of any type of plane frame. It
is capable of analyzing pinned or rigidly jointed frames, or mixtures of
both systems, Shear and axial deformations may be taken into account in
rigidly jointed frames. 1In addition, strains caused by temperatufe
changes’, shrinkage or lack-of-fit can be allowed for with little extra
effort in data preparation. The source program has been written in the
Fortran language so that it can be used on most currently available
computers. Analysis is carried out by the displacement method.so that
considerations of frame redundancy do not arise. For a given machine there
will be afmaximum size of structure that can be accommodated,depending
primarily upon the number and type of its members, the degrees of freedom
of the frame, and the number of alternative load sets for which an analysis
is desired. The program was developed to check the elastic behavior of a
series of b;aced and unbraced multi-story steel frames being.tested in the
Fritz Engineering Laboratory of Lehigh University's Department of Civil
Enginéering as part qf a program of research into the plastic behavior and

design of multi-story steel frames.
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\ I INTRODUCTION

Since the widespread introduction of electronic computers
considerable attention has been directed to automating the analysis of
structural frames. Many computer programs which achieve the linear-elastic
analysis of plane frames are in existence(l)’(z) but the published accounts
are principally descriptive and some do not include any more detailed
information about the solution processes than can be contained in a general
flow diagram. Many computers in the mid-fifties had highly individualized
coding systems which took a long time to master and which were not compat-
ible with machines from other makers. An awareness of this communication
problem has resulted in the increasing use of algorithmic languages such
as Fortran and Algol and most machines now have available compilers to
handle one or both of these systems. In addition, these source languages
are very compact in the sense that it-is not necessary to state epricitly
every arithmetic step in a program. This report includes the Fortran
statements for the .structural analysis program so that it will be of
immediate use to engineers already famiiiar with Fortran and for those

who are not so familiar, it will serve as a suitable introduction.

The program described in this report will handle any type of
plane frame consisting of prismatic members. It will apalyze for any
number of load sets so that it is possible to obtain a complete matrix of
influence coefficients for stress or deflection. For most structures,
these are not reqﬁired and the storage layout has been designed in such a
way that for any given computer, larger frames can be accommodated if the
information required concerning them is restricted. It is possible to

either ignore, or take into account shear and axial strains in predominantly

1.



flexural structures. Pin jointed frames and mixtures of

flexural and axially strained members, as in braced multi-story frames,
rfmay also be handled. 1In addition, the effects of temperature, shrinkage or
lack of fit can be included. The basic method of analysis used is tﬁe
displacement method which is generally to be preferred to the alternative

(3)

force method for structural frames on the grounds that it requires less
data preparation at a cost of somewhat more arithmetic operations within
the computer. This is certainly the case for frames of few redundancies
but many degrees of freedom. This method is also simpler to understand,

being a more general form of the traditional method of slope-deflection

analysis.

The basic data to be presented to the computer consists of
information about the degree of freedom, the number of flexural and axially
strained members and their relevant stiffnesses. The frame topology is
conveniently described by a statics matrix which can be prepared almost by
inspection for most plane frames so that it is not necessary to construct
it within the program from more basic data. The load-sets also are required,
together with information about the temperature or shrinkage deformations of
each frame element considered in isolation. The output has been arranged
so that moments at each end of each flexural component are tabulated
,separately from the axial tensions for cases when both are reéuired so
that bending moment diagrams can be simply constructed. The frame
deformations are also listed for each load set and a check computation of
the load sets is finally made to give some idea of any accuracy loss due

to rounding-off or machine errors during the computation.
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ITI DISPLACEMENT ANALYSIS

The basic objectiﬁe of any method of structural analysis is the
determination of deformations and.strésses and in order to compute the
latter, the stress—resﬁltants, that is, moments, shears, thrusts at any
section are required. If tﬁe stress~resultants are known at any one section
in a frame member , fhe complete stress condition for that member will be

determined by statical considerations alone.

In Fig. 1(a) is shown part of a rigidly jointed plane frame ‘and
attention is confined to a typical member AB. It is evident that the
complete stress condition for this member will be available if the values
of the stréss-resqltants T, V and MAB in Fig. 1(b) are known. An
alternativé arrangement of stress-resultants is shown in Fig.vl(c) where

again the stress condition for the member can be determined from T, MAB’ and

Mga.

2.1 The member stiffness matrix

The deformations associated with the first system of stress
resultants(Fig.1(b) have been shown in Fig. 2(a) where the deformations ﬁT’
Uy and © correspond to the forces T, V and the moment Myg. For this system

and neglecting at this stage deflections due to shear, the load-deformation

relationships may be expressed conveniently in the matrix equation,

T |- EA/L 0 0 ' U£T

: 2
vV 0 12E1/1.° -6EI/L uy (1)
Myp 0 -6EI/L2 4EI/L. | OAR

I - L.




For the alternative system of stress-resultants (Fig. 1(c¢)) shown in

Fig. 2(b5, the load-deformation relationships take the form of the

traditional slope-deflection equations for a prismatic member.

= -1 [r—— —— - —
T = | EA/L 0 0 | up
Mg |- 0 4EI/L 2EI1/L % | (2)
My, 0 2EI/L  4EI/L P5a

Representing either of the above load-deformation equation
sets by the matrix equation

(SRup) = (Spp) *  (xap) (3)

it is evident that the similar relationships for all members of a frame

can be assembled in the one matrix equation,

N _ = -
(sr,)] =[5, (%)
(SRy,)| T (S3y) - : (x5, %)
_EFRMN) K . . Gyl | e
and the equation is represented conveniently as
(SR) = (8) ' (x) (5)

It should be noted that while it is often convenient to group
together in the above expressions the three load-deformation equations
for each ﬁember, this procedure is not a nécessary one and in the
computer program described later, the axial load-deformation eqﬁations
have been separated from the other pairs of equations and have all been
placed together at the bottom of the lists. If axial strains are
neglected, as in many flexural problems, these equations do not appear and

hence for each member there are only two load-deformation relationships.



i~
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2.2 The Statics Matrix

The equations of statics for any frame represent mathematically
the fact that the internal stress resultants must be in equilibrium with
the applied loads. For a stable structure that is statically determinate,
a unique set of stress resultants will equilibrate the external loads but
an infinite set will do so for a redundant'frame. The purpose of the
analysis then is to find the particular set which also satisfies
continuity. Since deformations can be measured conveniently by the
movement of loads, whether real or virtual, it is neceséary for the

analysis to be undertaken with as many loads acting as the degree of freedom.

The degree of freedom of a structure is the count of all possible
displacements and rotations of the joints. For the program described in
this report, a change in direction of a member must be considered to take
place at a joint and the same applies shouid any movement be restrained
within a straight length such as at a support of a continuous beam. Load
application positions along a beam may be considered as joints and then the
computer will produce the deformations at the loads. However transverse
loading on beams whether caused by point or distributed loads can be.
replaced with no loss of accur;cy by the equilibrants of the fixing moments

and shears (and tensions) if computer storage capacity is limited.

For a plane rigid frame, the degree of freedom (L) is readily
determined. If there are j joints altogether in the structure, 3 j

deformations will determine the deformed shape of the frame since each

joint may translate in two directions and may rotate as well. However,

fixed bases do not deform and hinged bases only rotate so that if there are

f fixed bases and h hinged supports,



L =3j - 3f - 2h

At an internal hinge, an additional degree of freedom will be present since
“two displacements and two rotations will be needed to define movement at
such a node and consequently the degree of freedom of the frame can be

expressed,

e ——

L =3j-3f-2h+hy
Finally, for a flexural frame in which axial strains are neglected, the
length of any meﬁbet will not change so thata little consideration will ﬂ
show that if such a frame consists of m members, | 6
L=3j-3-2h+h -m ~ |
An alternative method of determining the degree of freedom of a
frame depends upon the relationship between the degrees of‘freedom and of

redundancy.

For any plane structure,
L+ R =2 NFM + NAM
where NFM is the count of the flexgral members, NAM is the count of the
axially strained members and R is the degree of redundancy. If axial
stiffnesses are regarded as beingindefinitely large,the relationéhip is
L+ R =2 NFM | |

Hence, the degree of freedom can be determined simply if the degree

of redundancy of a structure is known.

Acqordingly, it can be seen that for the whole structure there
will be L equations of statics and most éf these can be written down
by inspection. In matrix form, these L equations of statics may be
gxpressed,

W) = (a) - -(SR) (6)
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The matrix.(A) is called the statics matrix and will be of order L x M
where M is a count of the stress resultants necessary to define conditions
within the frame. For pin jointed frames, M will equal the number of frame
members; for general flexural frames, M will be three times the member

count or twice if axial strains are neglected. It can be noted that only
for a determinate structure is the matrix (A) square so that an inversion

of it will provide complete information about stress resultants as functions
of the applied loads.

2.3 The Kinematics Matrix

The combination of Eqs. (5) and (6) will produce a matrix
equation relating the applied loads to the relative deformations within
members. What is required fundamentally is the relationship between loads
and absolute deformations of the joints of a frame. This can be achieved
if an equation relating relative to absolute deformations is available.
Such a relationship takes the form,

x) = (©) * (%) o
The matrix (C) is of order M x L -and can be established by considering the
relatiQe deformations resulting from unit absolute displacements given to
each load application point sequentially. It is referred to as the
kinamatics matrix.(4) In establishing this matrix for anylframe,Ait is
soon noted that it is in fact the transpose of the statics matrix (A), and
it can be shown from the principle of virtual work that this is necessarily

(4)

the case.

2.4 The Frame Stiffness Matrix

The combination of Egqs. (5), .(6) and (7) will result in a matrix

equation relating the applied loads to their movements.



@ = -6 - 6D @ T (e

‘The triple matrix product (A - S - AT) effectively exprégses
the values of load to produce unit deformations so that it can be called
the frame stiffness métrix,-denoted by (K). It will be a square matrix
of Ordér L x L and is invariably well conditioned and non-singular in a
first-order analysis so that its invert will be the flexability matrix (F)_

for the structure.

W) = (R) * (X (8b;
® = ®DH - W
= (F) * (W) | )

Thereafter, the stress resultants may be computed from the.equation,
, T
(SR) =(8) - (&) - (F) * (W) (10)
and, having proceeded this far, it is worthwhile to pre-multiply (SR) by

the statics matrix (A) to recompute the load vector (W).

T

(A) - (SR) =(4) - (S - A" - F - W

= (W) - an
: (5) .
This procedure, suggested by Clough , provides a useful check upon the
build up of error during the computation and the consequent significance of

the results.

At this stage, it should be éointéd out that thé procedﬁre’
implied in Eq. (9) of first inﬁerting the sfiffness matrix (K)xandvthen
post-multiplying the result (F)lﬁy thé load veétor W) willlbe wasteful of
computer time unless as many load sets were to be considered as the degree
of freedom of the frame. If only one load set is to be considered, it will
 be more efficient merely to solve the set of L simultaneous Eqs. (8b)
and even if several sets are involved, equation solution will involve less

machine time especially if a suitable solving routine is employed. The
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one used in the program described in this report is the system called Gauss-

(6)

Jordan elimation as outlined by Salvadori

2.5 Temperature Change Effects

A change of temperature will alter some deformations in all
structures and in the case of redundant frames can affect the stress
condition as well. Shrinkage strains and strains due to lack of fit of
members.in a frame will have results -similar to those caused by temperature
change. All‘can be accounted for in the deformation method of analysis by
computing beforehand the effective '"lack-of-fit'" of each member of a
structure, whether caused by temperature or shrinkage or by a genuine lack-

of-fit, and listing them in a column matrix or vector which will be

denoted by (xH).

These deformations will be relative within each member so
there will be as many terms in (XH) as in the relative deformatioh vector
(x), that is, as many as there are stress resultants to be compufed. The
overall effect on the frame is calculable since the only change in the
procedure outlined above will be to modify Eq. (5),

(sR) = () - () - Gy (12)
Eq. (12) represents in matrix form the physical situation that Within each
member the deformation is caused partly by stress and partly by initial
lack-of-fit. The equations of statics and kinematics are unaffected by
these considerations so that the basic frame equation to be solved, Eg.(Sa),

becomes ,

. o T . . - H .
W) =8 * () - (A7) =+ X)) 7 (A - (8 * (x) (13)
if the temperature terms are moved to the left hand side of Eq. (13), the

effect is either to add more terms to the existing load vector or, if

temperature stresses alone are of interest, the vector (A) * (8) * (x )



becomes the load vector. In the program developed in this report, it was

decided to aceommodate any number of alternative load vectors but the
computed temperature load vector would be added only to the first real load
vector, not to all of them. It was thought that a more useful program would

result from such a technique.

2.6 Shear Deformations

Shear deformations will be taken into account in a general
deformation analysis program by including appropriate terms in the elements
of the member sfiffness matrices shown in. equations (1) or (2). It is
readily shown from eiementary analysis that the more correct form of

Eq. (1), allowing for axial, shear and flexural deformations is,

p— — — e
L
v 0 12EI —6EI uy
-6EI k)
M 0 25 - e
A
AB k3L2 k3 B—J
where ky =1 + IZEI s
L7AG

2 —
ky = &%1 + 12(%1)/ LAG,

G = shear modulus
A = cross-sectional area, and a5
A = section area effective in resisting shear.

The alternative form of the member stiffness equations would
appear as in Eq. (2) when allowance is made for shear deformations, with
the substitutions of kl/k3 for the term 4EI/L and k2/k3 for the term 2EI/L.

. ' i 2, —
For this case, k, ='Z%L - 12(EL) /LAG
: . - . L
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III THE COMPUTER PROGRAM

A principal objective in writing the program was the provision of
an ability to enalyze all types of plane frames without profligate use of

computer storage capacity.

The limitation was accepted that members had to be prismatic
but the program was devised to deal with triangulated or rigid frames. 1In
thé case of the latter, it could either take into account or ignore axial
and shear strains. For any frame, the effects of temperatufe or shrinkage

or lack-of-fit could be allowed for, if desired.

Accordingly, the program takes the form shown in the flow diagram
of Fig. 3. The principal steps begin with reading of an integer which is
regarded as the frame number if positive and if negative it is treated as a
signal to terminate the program. Next, the degree of freedom, the count of
flexural members, the count of axially strained members and the number of
alternative load sets to be considered are input. The statics métrix is
then input in an unabridged form and basically it will determine the
form of output of deformations and stress resultants. This will be made
clear in the examples given in Sect. V. Next, the data to construct the
member stiffness matrix and'thg'temperature vector are iﬁput. The first
item for each membe: will be the flexural stiffness parameter'(EI/L)
followed by the shear stiffness factor (l/LXG), the inQerse form being
chosen so that it may be set to zero if infinité shear stiffness is assumed,
as is often the case in steel frames. The third term will be an angle
representing the slope change along the member considered in isolation due

- to temperature strains if these are to be considered. Data for each

11.



flexural member is first input and is followed by data for each axially

strained member. For these, there will be two items per member, the axial
stiffness parameter (EA/L) and the initial oversize due to temperéture or
lack-of-fit. Even though the same member may be both flexurally and

axially strained, the form of input set out above should be preserved. The
member stiffness matrix is const?ucted with all flexural members delt with
at first and then the axially strained members as is shown in Fig. 4.
Finally, the load sets are read and these may be chosen in such a manner to
utilize the progfam's ability to add temperature effects only to the first
load set but not to the subsequent sets. Hence, if the effects of
temperature or lack-of-fit alone are of interest, a null vector would be
prepared for the first load set with the actual load set or sets following
afterwards. If it is desired to obtain a complete flexability matrix by
the inversion of the frame stiffness matrix, it is only necessary to
specify at the beginning that as many load sets are to be analyzed as the
degree of freedom and then to finally arrange for the input of load vectors
which, if viewed side by siée,.would resemble a unit matrix. The form of
eqqation solving routine used is that of Gauss-Jordan elimation with the
largest pivot chosen at each stage and is the same uéed by C. K. Wang(4)but

modified to deal with a succession of load sets.

A series of different frames can be analyzed by feading in more
data beginning with the frame number as before and Wwhen this integer is

negative the run will terminate.

The computer output will commence with the statics matrix (for
verification) and is followed with the member stiffness matrix so that one

may feel confident that it has been constructed correctly. The temperature
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vector is also output for the same reason. Next, the frame stiffness
matrix will be printed and it should take a symmetrical form. The input
load sets are printed out for verification and then a table entitled
"deformation matrix for the frame' is output and it will be a flexibility
matrix in the strict sense if the load sets took the form of a unit matrix
as mentioned above. Otherwise as many columms.will appear as the number
of load sets and the elements will be the frame deformations caused by the
loads in each set (with temperature deformations added to the first.column

if non-zero température terms had been previously input.)

If the fraﬁe undergoing analysis were rigid, the next table would
consist of columns of member end moments, one column for each load set.
The order of terms in each column will correspond to the order decided upon
in the construction of the statics matrix. If axial strains were also
considered, the next table will list the tension forces existing in each
member. Finally, a check on compﬁtational accuracy is made by recalculating
the load vectérs and these are odtput and an inspection will provide some

estimate of error build-up during the computation.

It should be noted that the type of input must necessarily

correspond with the Fortran format statements in the source program.(7)

13.




IV PROGRAM LIMITATIONS

The dimension statements at the head of the source program
(Appendix A) will provide an upper limit on the size of structure thét can
be analyzed by the resulting object program. For any computer, it will be
necessary to ensure that the total‘number of storage locations implied
in the dimension statements is within the machine's capacity after
allowing for the storage of the object program. It has been found that
appfoximately 1900 locations are available for the arrays in the GE225
computer at Lehigh University. Within this upper limit, it is possible to
vary the maximum values for degrees of freedom and numbe; of load sets so
that as many frame members as possible can be accommodated. The available
store capacity C must not be exceeded by the total number of matrix

elements which can be expressed,

C> (2L + 1) (2NFM + NAM) + (2NFM + NAM)Z + L(L + N) (14)
where L= degree of freedom
NFM = count of flexural members
NAM = count of axially strained members
N = number of load sets

For a determinate pin-jointed frame, there will be as many
members as the degree of freedom and a store capacity of approximately
1900 locations will be filled by a frame of 21 members if only one load
set is applied., On the other hand, a flexural frame in which axial strains
are neglected will be determinate if the degree of freedom is twice the
number of members and 1900 locations would be filled by a frame of 11

" members. The efficiency of the program increases with the degree of

redundancy since the insertion of extra members in a determinate pin—jointed

14,
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frame will not increase the degree of freedom. 1In a flexural frame the
sum of the degrees of freedom L and of redundancy R will equal twice the
count of the members so that for a giﬁen frame, the more redundant it is
made through joint rigidity, the smaller will be the degree of freedom and
hence the larger the frame to fill any available capacity.
L +R =2 NFM | ' (15)

The ratio of L to R for multi-story rectangular frames with fixed
bases is independant of the number of stories and is given by

L/R = 1/3 + 2/3b (16)

where b is the count of.the bays. It can be seen that the ratio decreases
from 1 for a single bay frame of any number of stories and approaches a
value of 1/3 for a large number of bays. For single bay frames, 5 stories
with 15 members would require a capacity of 2070 storage locations and.
would just exceed the capacity of the GE225 machine. On the other hand, a
7 bay, single story frame with 15 members would require 1560 locations and
would be well within the available capacity. It can be seen that it is a
relatively simple matter to decide whether a given frame is within the

capacity of any given computer.

It has already been mentioned that a member in a flexural frame

. can sustain any type of lateral loading which in the analysis can be

replaced by the equilibrants of the end fixing moments and shears so that
load application positions do not necessarily have to be treated as joints.
If this procedure is adopted, the computer will in effect produce a
hcomplementary solution"(g) for the frame which should be added to the
"particular solution' of zero deformation associated with the fixing

moments and shears.

15.



V  DATA PREPARATION

The first card in the data set must contain a positive integer
in Format IS5 and it is regarded as the identifying number for the frame.
The last card can be any negative integer in the same format and its
function is to terminate the run. The second card, in Formét 415, must
list the degree of freedom, fhe count of the flexural members, the count
of the axially strained members and the number of different load sets. The
construction of the matrices shown in Fig. 4 will be governed by these four
integers. The major effort in data preparation concerns the staticé matrix
which is next input. Several examples will be shown later of the
construction of this matrix. After the statics matrix, the elements of the
member stiffness matrix are input, the flexural members being first with
one card per member listing in Format 3F10.5 the flexural stiffness
parameter (EI/L) the shear parameter (1/LAG) and the slope change angle
caused by temperature. If one or both of the latter quantities are
ignored in the analysis, zero should be punched in their place. However,
if there are no flexural members, only the cards containing the axial
stiffness terms (EA/L) and the initial oversize due to temperature for each
member are read; These cards should be punched in Format 2F10.5. Finally
the load sets are input, each in Format 7Flb;5, and the order of terms
must correspond with that already decided upon when the statics matrix was

established.

The preparation of the statics matrix is best explained by
examples., Referring to Fig. 5, the pih-jointed frame numbered 1, will be
studied. Such a frame clearly has only 2 degrees of freedom associated

with the 2 possible displaceménts of the joint O. The equations of statics

16.
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relate the applied loads X and Y to the stress resultants which are
called Tpg, Tpgs Tggs Tpg and Tgp. These will be as follows,

X =1/2 Tpg - 1/2 T - ‘2/__2. Tpo - Tgo

e

_\V3 . V3 2
X -g_—T_Ao*‘TBo““z—Tco’f)Z[—_TDo
Expressing these equations in matrix form, _
Ta0
’ T

x|=]0.5 0.0 -0.5 -0.707 -1.0]|-| B0
Teo

Y 0.866 1.0 0.866 0.707 0.0 Tpo
Tro

I

or (W) = (A) . (SR)
where A is the statics matrix. The solution for this problem is shown in

Appendix B.

The frame number 2 in Fig. 5 has 7 degrees of freedom as
indicated and the equations of statics can be expressed in matrix form by

referring to the joint force diagrams in the figure.

— - (e —— ~— —
Ma | = 1 0 0 0 0 0 0 0 .| Map
_MB 0 1 1 0 0 0 0 0 MBA
Xg | - 0 0 0 0 1 -1 0 0 Mpe
YB 1/360 1/360 -1/360 -1/360 0 0 1 0 MtB
MC 0 0 : 0 1 0 0 0 0 TAB
X 0 0 | 0 0 0 1 0 0 Tpe
_?C_ L_.O 0 1/360 1/360 0 0 0 E_J Tap
Tce

Frame 2 will be studied in detail to demonstrate how flexural,
shear, axial and temperature strains, as wéll as lack-of-fit, may be taken
into account. Suppose that at construction, the temperature was 7d°F and
the spring support CE was 1.5 in too short. At working conditions, the

temperature above the beam is 120°F and below the beam, 80C°F,

17.



For the 18WF50 beam, EI/L = 66,716.6 kip. in. and EA/L =
1225.1 kip/in. For the springs BD, CE, EA/L is effectively 10.0 and 4.0 ‘
és shown on figure. The shear parameter (l/LXG) for the beam is computed
to be 0.000 000 036.kvip-l in.- Considered in isolation, the spring BD
would increase in length 0.061608 in. due to a 10°F rise in temperature.
The spring CE would increase by 0.000804 in. in length, but it is initially

too short by 1.5 in. so both effects are accommodated by specifying its

initial oversize as -1.499196 in.

With regard to the effect of temperature on the beam, it can be
assumed that a uniform temperatufe gradient exists between top and bottom
flanges. For a mean temperature rise of-30°F, each beam would increase in
length by 0.072360 in. The higher temperature at the top of the beam_will
produqe a negative curvature in each isolated beam with a slope change angle

readily computed as 0.00536 radians.

The load vector can be formed from the equilibrants of the fixing
moments and shears associated with the live load intensity of 0.1 kip/ft.

together with the dead load of the beam. The fixing moments and shears will

be,
Mpyp = -135.0 kip in. Vpap = 2.25 kip
Mppsy = 135.0 kip in. Vppa = 2.25 kip
Mppg = -45.0 kip in.  Vpgg = 0.75 kip
Mpeg = 45.0 kip in. Vpep = 0.75 kip

‘The equilibrating joint loads and momentsyare simply deduced

from the above values so that the applied load vector becomes,

18.




My

135.0

My Xp

-90.0 0.0

Yg Mc
-3.0  -45.0

297.15

Xg Y¢

0

.0 -0.75

The data cards for the analysis of frame 2 would be ordered as follows:

Data

Form

at Card No.

2
7 2 4 2
(statics matrix)

66716.6

10.0
4.0
(load vector)

-2

.000 000 036

.001608

-1.499196

-.00536

11"

15
415

7F10
3F10

2F10

7F10.

I5

1
2
.5 ].3-10
.5 11
12
5ol 13
15
16
5 17,18

19

The computer solution for this problem is

given in Appendix C

It has been explained that the preparatioh of fhé\statics matrix

constitutes most of the preparatory work necessary in using the program.

For rectangular frameworks of a rigid kind, this can be done by inspection

but more work is required for frames with sloping members such as pitched-

roof po-tals. The statics matrix for these frames has been found to be

somewhat easier to prepare when axial strains are taken into account rather

than when they are neglected which is the usual approach to this type of

problem. A simple example is shown in Fig. 6 and the forces acting on the

joints are shown in Fig. 7 for the case when axial strains are neglected.

The rafter thrust (Th) is evaluated in terms of member end moments from the

19.



 condition'of vertical equilibrium at the joint C. There is no independent

freedom for vertical movement at C since the horizontal movements at both
éolumn-rafter connections have been treated as independent degrees of
freedom. It it had been desired to obtain directly the vertical movement
at the apex, a degree_of freedom could have considered at that position
rather than at the right hardd column. Alternatively, é joint'with'Z
degfees of freedom similar to joint B could have been considered as
existing slightly'to one side of the apex. This problem does not exist
when axial strains are accounted for as in Fig. 6(c). For this case, the
joint forces (moments are omitted for clarity) are shown in Fig. 8. The

statics matrices for both cases are shown in the Appendix D.

The sign convention adopted in thevéxamples is ‘that in which
clockwise moments are regarded as positive and the positive di;ections of
displacements are those éoinciding with the force directions on the various
figures. However, it should be noted that the program itself is not
dependent upon any sign conveﬁtion and it will work for any consistent

convention adopted in the preparation of the input data.

20.
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VI CONCLUSION

The Fortran program described in this report has been thoroughly

tested and run on both the GE 225 computer at Lehigh University and the

'IBM 7074 machine at the Bethlehem Steel Company. The only changes

necessary for the iatter computer concerned the input and output
statements. The word READ was replaced by READ INPUT TAPE 1, and the word
PRINT was replaced by WRITE OUTPUT TAPE 2, with the rest of the program
remaining identical. The appropriate call cards were required for both
machines. Compile time on the GE225 was approximately 8 minutes and running
time for a problem of maximum size for this machine was approximately 4
minutes, The IBM 7074 would compile and run in the one operation and the

same frame would be analyzed in a total time of approximately 2 minutes.

The storage capacity available for data with the GE 225 was

‘approximately 1900 locations but it was found that 6900 locations were

available with the IBM 70747 Since the required capacity for a frame is
proportional to the square of the number of members, as in Eq. (14), the
IBM machine was capable of analyzing frames of approximately twice the size
that could be accommodated by the GE 225. It is evident that a structural
engineer will always have structures which can exceed the.available capacity

(9)

of a high speed store in a computer and methods have been proposed for

dealing with specialized problems.
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VIII NOMENCLATURE

the statics matrix

the transposed statics matrix
cross-sectional area

section area effective in redisting shear
count of the bays in a rectangular frame

the kinematics matrix (= (AT))

computer storage capacity available for data
Young's modulus

the frame flexibility matrix

count of the fixed bases in a frame

shear modulus

count of the hinged supports of a frame
count of the internal hinges in a rigid frame
an applied horizontal load, Nth in a list of loads
second moment of area

count of the joints in a frame

the frame stiffness matrix (= (F_l))
parameters defined in the text

length of a prismatic member

degree of freedom of a structure

an applied bending moment

count of the stress resultants in a frame

an external moment applied to joint A

moment applied at end M to member MN

23,
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NAM

NFM

(X)
(x)
(¥AB)

(xH)

@AB

an applied external moment,
moment to fix the end A of

count of the members in a r

count of the alternative lo

count of axially strained.members of a frame

count of flexural members o
degree of redundancy
the.member stiffness matrix

matrix vector of stress res

the stiffness matrix for member MN

an applied tension force

the tension‘fqrée in member
displacements in directions
an applied normal shear for

an applied vertical load, N

shear to fix the end A o6f member AB

matrix vector of the applie
applied joint forces
matrix vector of frame disp

matrix vector of relative m

matrix vector of relative d

matrix vector of relative displacements caused by temperature or

similar effects
slope at end A relative to

slope at end A relative to

Nth in a list

member AB
igid frame

ad sets

f a frame

ultants

AB

of forces T,V

ce

h, - ..

t in a list

d forces, moments
lacements

ember displacements

isplacements for member AB

the tangent at B

the line AB
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Appendix A Fortran Statements

The statements which follow are in a form used as a source
program for the IBM 7074 machine. The names chosen for the variables and
the arrays conform in general to the terminology used in the text. There
are some differences due to Fortran variable requirements and some of the
dimensioned arrays are used several times in the program to conserve

storage spaces.

Variable In Text In Program
Statics matrix (a) A(T,J)
Member stiffness (s) ' S(1,3)
Frame stiffness matrix (K) ASAT(I,J)
Temperature vector . (xH) FIH(I)
Degree of freedom L L
Stiffness parameter EI/L EK
Shear parameter 1/LAG SK
Temperature slope change - TFY
Appliéd load vector W) ASAT(I,L+1)
Deformation vector | x) ASAT(I,L%I)
Stress resultant vector (SR) S(1,J) (reused)

25.



Appendix A Fortran Statements

26.

C 0001

c FORTRAN FRUCGRAN 6. FUR 1IBM 7074 0002

c FIFST ORDER ANALYSIS OF PLANE STRUCTURES, 8003

C ACCCUNTING FOR FLEXURAL ANI/COR AXIAL STRAINS AND/OFR 0004

o TEMPFRATURF OR SHRINMKAGE CR LACK OF FIT OF MEMBERS. 0005

c 0006

C AUTHOR, .H.R . HARRISCY AFRIL, 1965, 0007

C 0008

c 0009

C SPECTFICATIGN OF MATRIX DJMENSIONS, 0010

C 0011

C 0012

DIMENSION AT27,%11,5(51,%1) 0013

DIMFNSICON SATI51,27),ASAT(27,410) 0014

DIMENSION FEJH[51) 0015

C 0016

C READ FRAME  NUMBEK AND  EXIT IF  NEGATIVE. 0017

c . 0018

1 READ INPUT TAPF 1, 10, JJ 0019

1n FORMAT [IS) 0020

IF (JJ)- 11,20,00 0021

11 MALL EXIT 0022

c 0023

c v ' 00624

o READ TPEGRFES oF FRFEDCM, NUMBER 0F FLEXURAL MEMBERS, 0025

c NUMBER 0OF AXTALLY STRAINED MEMBERS, NUMBFR OF LOAD SETS. gggg
o

20 READ INPUT TAPE 1, 30, Ls NFM, NAM, N 0028

IN FORMAT [(4]15) 0029

M = 2 % NFM 0030

JK = M + 1 0031

_ JL = M + NAM 0032

[ . 0033

v 0034

C INPUT TwE STATICS MATRIX 4. 0035

) ‘ 0036

READ INPUT TAPF 1, 40, [lAf1,J)s J = 15dL1, 1 = 1,L1) 0037

40 FORMAT (7F10.5) ' 0038

c 0039

c ' ‘ 0040

C INPUT _ THE MAIN E|EMENTS, RBUILD THE STIFFNESS MATRIX. 0041

c 0042

1F [NFM)  50,100,50 0043

53 N0 60 1 = 1.M 0044

N0 60 J = 1,M 0045

Sl1,J1 = 0, 0046

AN PONT‘NLb 0047

no 90 1 = 1,M 0048

ITEST = 1/2 « 2 - 1 0049

IF [ITEST] 70,%7,90 0050

79 READ INPLT TAPF 1, Bl, EK, SK, TFY 0051

BY) FORMATI[2F10.%) 0052

81 FORMATI3F10.5) 0053

R o= 12,0 + Ex # <K 0054

S{1,11 = (4.0 « Fg + R * =x1/(1 0+ R} 0055



Q[1+1,1+1) = S(I.1]

0056

S{I1+1,1) = [2.0 « EK - R « EK}/([1.0 * R] 0057
SQ[T.7T+4) = SIT+1.11 0058
FIH[T) = TFY / 2,0 0059

FIWH (1 + 1) = -FIw(]] 0060

90 CONTINUE 0061

c 0062
TFINAM} 93,140,233 0063

93 IF [¥) 94,100,641 0064

94 DO 95 [ = 1,M 0065

DO 95 J = JK,Jt 0066

95 S(I,J) = 0. 0067

no 96 I = JK,JL 0068

N0 96 J = 1,M 0069

96 S{1,J) = 0, 0070
100 no 130 [ = UK,JL 0071
no 430 J = JK,Jl 00672

IF [1-J) 110,120,110 0073

110 SI1,4) = 0. 0074
50 To 130 0075

1720 READ [NPUT TAPE 41, 80, S{],Jl, FIH{II 0076
130 CONTINUE 0077

c 0078
c 0079
C QUTPUT IDENTIFICATIAN AND THE INPUT MATRICES. 0080
c ' 06081
149 WRITE QUTPUT TAPE 2, 150, JJ . poap
150 FORMATI[43H1 | INEAR ELASTIC ANALYSIS OF FRAME NO,.,, 13777} 0083
WRITE QUTPUT TAFE 2, 160 0084

160 FORMAT (22KH0 THE STATICS MATRIX//] 0085
DO 170 1 = 4, 0086

170 WRITE QUTPUT TAFE 2, 180, I, (Al1,J)s J = 1,40} 0087
180 FORMATI4HQROW, 13, 1X, 7E16,72/18%s 7E16.71) 0088
WRITE CUTPUT TAFE 2, 190 0089

190 FORMAT([32H1 THE. MEMARER STIFFNESS MATRIX//|I 0090
N0 200 I = t,JL , ' 0091

200 WRITE QUTPUT TAFE 2, 1680, 1, (Sl1,J1s» J = 1,J4L1 0092
WRITE QUTPUT TAFF 2, 201 ' 0093

201 FORMAT(4BHO THE TEMPERATURE, SHRINKAGE, LACK OF FIT VECTCR//) 0094
WRITE QUTPUT TAFF 2, 203, (FIHII), I = 1,JL) 0095

203 FORMAT[14HQCOLUMN VECTORs1X,7E15,7/(15Xs 7E15.71] 0096

c 0097
c . 0098
c FORM THE MATRIX PRODGCI S o+ AT 0009
o 0100
DO 220 1 = 31,4L 0101

DO 220 J = 1,} 0102

SAT (1,J) = 0, 0103

no 210 K = 1,JL , 0104

€10 SATI[T1,J) = SATIl,4) + SII,k) = ALJ,K) 0105
220 NONTINUE 0106
— - 0107
c 0108
c FORM THE MATRIX PRODUCT A + SAT 0109
c 0110
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no 240 1 = 1,1 0111

no 240 J = 1,L 0112
ASATIT,J) = 0. 0113

ng 230 K = 1.,4L 0114

230 ASAT{I,Jd) = 8SaTr1,J) + ArI,K) *» SAT[K,J) 0115
240 CONTINGE 0116

c 0117
c 0118
c QUTPUT THSE FHRAME STIFFAESS MAFRIX 0119
C 0120
WRITE QUTPUT TaF= 2, 250 0121

250 FORMAT(31H1 THE FRAME STIFFNESS MATRIX//] 0122
no 240 I = 1,) 0123

260 WRITE QUTPUT Tars 2, 180, 1, (ASAT(I,J), J = 1,11 0iz24
o 0125
c ) 0126
Iy INPUT THE LOAp SETS, STORE BESIDE ASAT MATRIX. 0127
c 0128
PO 270 K = 1,N 0129

J T+ K 6130

270 READ INPUT TAPE 1, 40, [ASATII.J), | = 1.L) 0131

[ 0132
C ) 0133
C ADD TEMPERATURFE ETC, EFFECTS, IF ANY, TQ FIRST LOAD SET, 0134
o 0135
K = t + 1 0136

No 275 1 = 3,1 0137

ng 275 J = 1,JL 0138
ASATIT1,K] = ASATI1.K) + SaT(J,1) « FIH[J) 0139

275 CONTTNUE 0140

c 0141
c 0142
c CUTPUT ThiE LCAD SETS FCR IDENTIFICATION, 0143
c ' ‘0144
WRITE QUTPUT TAFE 2, 280 0148

280 FORMAT[26H1 THF APPLIED LOAD SETS//) 0146

: KK = L+ 1 0147
KJ = L + N 0148

no 230 I = 1,1 0149

290 WRITE CUTPHT TAPE 2, 180, 1, [ASAT(I.J)» J = KK,K 0150

C 0151
c 0152
c SOLVE EQLATIONg Hy GAUSS JURDAN ELIMINATION. 0153
c 0154
DO 410 1 = 1,L 0155

Pl = [ + 1° 0156

TEMP = ARSFI{asaTrI,11] 0157

K = 1 0158

no 310 J = 1,L 0159
IFIARSFEASATIY,IV) = TEMP) 310,310,300 0160

S00 ¥ = . 0161

‘ TEMP "= AESF(aSAT(j,11) 0162
310 CONTINLE 0163
1F (k-1) 320,340,320 0164

320 N0 320 J = T,KJ 0165
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TEMP = ASAT(i,J) : 0166

ASATUI,J] = ASATIK,J! 0167

530 ASATI(K,J)] = TEMF 0168
340 1F [ASATII,11) 270,350,570 . 0169
850 WRITE QUTPUT Taky 2, 36U 0170
360 FORMAT[IOHADIVISTUN 3Y 7ZERO IN INVERSION] 0171
RO _Tc 600 0172

370 TEMP =z 1./ASATI(I, 1] 0173
N0 IR0, J = [aKyg : 0174

380 ASATII,J) = 4SATt1,J) » TewmP 0175
N0 410 J = 1,} 0176

1F (1-J) 390,410,300 0177

390 TEMP = ASAT..U,1) 0178
N0 400 K = 1P1,¢J 0179

400 ASAT(J.K) = nSATry,kK1 - TemPp « ASAT[I,K] i 0180
419 CONTINUE 0181

c 0182
[ : 0183
c QUTPUT THE FRAME DEFQRrMATIQN MATRIX. 0184
c 0185
WRITE QUTPUT TaFc 2, 420 0186

420 FORMATI43H) THE DEFORMATTON MATRIX FOR THE FRAME///) 0187
N0 430 1 = 1,1 0188

430 WRITF QUTPUT TAF= 2, 180, 1, [ASATI!sJ1s J = KKsKJ 0189

c 0190
c - . 0191
C COMPUTE S.F[Hs STORE [N S AND TRANSFER 10 Fyu | ATER. 0192
c , 0193
DU 436 1 = 1,JL 0194
TEMP = 0,0 : : 0195 .

N0 435 J = 1,JL 0196

435 TEMP = TEMP + SIl1,J] « Flu(Jl 0197
S{1,11 = TEMP . 0198

434 NONTINUE 0199
no 437 1 = 4, JL 0200

437 FIH(IYT = S(1,3) . 0201

c - 0202
c . ' 0203
[ COMPUTE TWE STRESg RESLL TANT  MATRIX SAT o DELTA 0204
c ' 0205
no 450 1 = 1,JL 0206

NO 450 J = 1,N 0207
s{r,J) = 0, ) 0208

UN = L + J 0209

no 440 K = 1,} 0210

440 S[I1,J) = St1,J] + SAT[IsX) » ASAT(K,JN] ' U211
450 CONTINUE 0212

! c ' 0243
c 0214
c SUBTRALUT §,FIK FROM FIRST COLUMN UF SIRESS RESULTANTS. 0215
c 0216
no 4%5 I = 1,JL 0217

455 SI11,1) 2 SI1,11 = FIH{1) 0218

- c 0219
C 0220
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c QUTPUT THE STRESS RESULTANT INtQRMATIQN. 0221
c 0222
IF{naAM) 490,460,490 0223

460 WRITE QUTFUT TaFr: 2, 470 0224
470 FORMAT({47K1 THE MOMENTS AT TrRE ENDS OF ALL MEMBERS///) 0225
o N0 430 [ = 1,m n226
480 WRITE QUTPUT TAFE 2, 180+ 1, (SUI,J)s J 5 1sN} 0227
GO Th 555 0228

C _ 0229
490 YFINTMT 538u,500,53U 0230
500 WRITA QUTPUT TAFe 2, 51U 0231
510 FORMATr40H1 THFE axIAL TENSIONS TN ALL MEMBERS//7] 0232
ng 50 I = 1,4l 0233

520 WRITE QUTPUT TAFE 2, 180, 1, [(S{l.J32 J = 1,N) 0234
50 T2 55% 0235

[ 0236
530 WRITE QUTPUT TAFE 2, 470 0237
no %40 I = 1,M 0238

540 WRITE QUTPOT TAFE 2, 180. I, [SI1,J1s J 5 1,N) 0239
WRITE QUTPUT Tarr 2, 8510 0240

no %0 1 = UK, J! ’ 0241

550 WRITE GUTPUT TafFe 2, 160, 1, [S{1,J1s J = 1,N) 0242
c . 0243
C _ 0244
c INTERNAL NHECK ON COMPUTATIONAL ACCURACY 0245
C RECALCULATE THE LnApD SET MATRIX. 06246
C 0247
555 nn 70 1 = 1,1 0248

- PO BN J = 1,N 0249
8SATIT,J) = u. 0250

no 560 K = 1, JL 0251

560 ASATII,JT = ASAT(t,Jd] + A[I,K] * S[K,J] 0252
570 CONTINUE 0253
WRITE QUTPUT TAFF 2, 58U 0254

‘5801 FOPMAT[I45HI ACCLwACY CHERK, THE AppLIED LOAD SETS//] 0255
nog <o I = 1.1, 0256

590 WRITF QUTPUT TAFE 2, 180, 1, (ASATIIs+J)» J = 1.N] 0257
00 WRITE CUTPUT TAFS 2, 610, JJ 0258
£10 FORMAT{3RHN ANALYSIS COUMPLETED FOR FRAME NO,» 13) 0259
[0 T 1 0260

FND 0261
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LINEAR ELASTIC ANALYSIS QF FPAME  wuld

THE STATICS MATRIX

TROW T LT 0L 5060000 T0CT 0 6000000E 00
ROW 2 >

=O 30000000 0 S0 TUrTASTIE T 00T =0VITGNOOGE O

TBOGUZS4GE 00 OJTUTICETE 7007 TTOT0000CU0ET0D

THE MEMBER STIFFNESS MATRIX

ROW 1 0.8060254E 00 0,0000000E_00

0.0000000E 00 0.0000u00E 00 0.000C000E 00

ROW_ 2 0.0000000€ 00 0.1000000€ 01

0.0000000E 00 0.0000000E 00 0.000000NE 0N

ROW 3 0.0000000E 00 0.00000UV0E 00

0.8660254E 00 0.00000V0E 00 0.0000000E 00

ROW 4 0.0000000E 00 0.0000000E 00

0.0000000E 00 0.7071067E 00 0.0000000E 00

ROW 5 0.0000000E 00 0.0000000E 00

0.0000000€ 00 0.0G00000E Q0 0.1000000E 01}

THE TEMPERATURE, SHRINKAGE, LACK OF FIT

VECTUR

COLUMN VECTOR 0.0000000¢ 00 0.0000000

E 00 0.0000000E 00 0.0000000E 00 0.000U0Q0OE 00

THE FRAME STIFFNESS MATRIX

ROW 1 0.1786566E 01 -0.3535533E 00

ROW 2 -0.3535533E 00 0.2652591E 01

THE APPLIED LOAD SETS

0.3000000E 01

ROW__1 0.1000000E 01 0.0000000E 00

ROW_ 2 0.0000000E 00 0,1000000E vl

0.5000000E 01

THE DEFURMATION MATRIX FOR THE FRA

ME

ROW 1 0.5748969E 00 0.7662571E~01

0.2107819¢t 01

TRUW ™ 2 0.766257IE-01 0.3872030E G0

07216589201

THE AXTAL TENSIONS IN _ALL _MEMBERS

ROW 1 0.3064070E 00 043235821k €0 042537131k Ot
ROW 2 0.7662571E-01 0.3872030€E 00 0.2165892¢8 01
ROW 3 -0.1914684E 00 0.2572223E 00 0.7117065k 00
ROW & -0.2491355E 00 0.15528E6E Q0 0.2903640E-01
ROW 5 -0.5748969E 00 -0.7662571E-01 -0,

SETS

ACCURACY CHECK. THE APPLIED LOAD

ROW 1 0.1000000L_ 91 0.1800000E-07

0.3\’!1){()')(")& U! .

ROW 2 0.2000000£-07  0.1000000¢ 01

ANALYSIS CUMPLETED FOR FRAME NU, L

Appendix B

0.50060C0E 01

Machine Solution to Problem 1

31.
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LINEAR ELASTIC ANALYSIS VOF FRAME  NO. 2

ROW 1 0 T0060000E 0

_... 00000000

0.0600000E

T 0l0000000E T00T T

GTO00GOTEE™To
09

G OTOTOTOE O OU00CO0ET00T T 0TOGCHOUGE DY 0T O0GOD00DE

00 _ 0.1000000E ol

[8]¢]

0. 000DGHOE 00—

0.1C000C08 U1

0.0000000E 00 0.0G000COE GO 0.0000000E GO0 0.0000000E 00

ROW 3 6. 0000000€ 00 0.00000G0E 00 0.0000000€ 00 6.0000000¢ 00 GATOOOGOE 017 =0, 1TU0GONOE OV~ . UGGOY00E 00

e ...0<0000000E 00 O e e e e e e et e et e

ROW 4  0.2777770E-02  0.27777706-02 -0.27771770E-02 S2777770E-02 __0.0C00000€_00__ 0.1000000E 01

T T TR 00000008 60 -

ROW™ 5 0. G000G00E™ 00 0. 0000000E 00 — 0.0000000F G0 A+ 10000TOE U1 H-C000000E 00 0.0TGO0ONOE" G0 0. 00000M0E 00"
0.0000000E_ 00 o _

\

ROW & 0.0000000E 00 0.0000000E 00  0.00000U0F 00  0.0000000Z 00  0.0000000E 0C  0.10U0000E bl  9.0000000F 00

T 0T 000U 000E T 00 o

ROW 7 " 0.0000000E 00 0.0000000c 00 0. 27771 70E=02 " 0.277Y170E=G2 (. 0COCOU0E 00 0.0000DTUE— U0 U, 0UU0UU0E 00
0.1000000E_01 ) .

__THE MEMBER STIFFNESS MATRIX  _ .~~~

ROW 1 0.2612596E 06  0.1278263E 06 _ 0.0000000E 00 0.0000000E 00 _ 0.0000000E 00  0.0000000E 00 0.0000000E 00
0.0000000E 00

ROW 2 G.1278263€ 06  0.2612596E 06  0.0000000F 00  0.0000000E 00  0.0000G00E 00  0.0000000& 60  0.000000DE 00
0.0000000E 00

ROW 3 0.0000000E 00 0.0000000E 00  0.2612596E 06  0.1278263E 06 0.0000000E 00  0.0000000E 00  0.0000000E 00
0.0000000E 00

ROW 4 0.0000000E 00~ 0.0000000E 00  0.1278263f 06 ~ 0.2612596E 06  0.0000000E 00 ~ 0.0000000E 00  0.00G000GE 60
0.0000000E 00 .

ROW_ 5 0.0000000E 00 0.0000000E 00  0.0000000E 00  0.0000000E 00  0.1225083E 04  0.0000000E 00  0.00UO0NOE 00
"0.0000000E 00 . : B

ROW & 0.0000000E 00 0.0000000E 00 0.0000000¢ 00  ©0.0000D0CE 00 0.0000000E 007  0.1225083€ 04 0.0000000E 00
0.0000000E 00

ROW 7 0.0000000E 00 0.0Q000000E 00  0.0000000E 00  0.0000000E 00  0.0000000E 00  0.0000000E 00  0.1000000E 02
0.0000000E 00 )

ROW 8 0.0000000E 00 0.0000000€ 00 ~ 0.0000000E GO~ 0.0000000E 00 0.0000000€ 00 0.0000000€ 00 0.0000000E 00
0,4000000E 01

__JTHE TEMPERATURE, SHRINKAGE, LACK OF FIT VECTOR

COLUMN VECTOR —0.26B0000E-02  0.2680000E-02 -0.2680000E-02 0.2680000E-02  0.7236000E-01 0.7236000E-01  0.1608000E-02
~0.1499196¢t 01
:llﬁémw;;Ame STIFENESS  MATRIX
_ROW_ 1 0,2612596E V6 0.1278263E 06  0,0000000E 00 _ 0.1080791E 04 __0.0000000E 00 _ 0.0000000E 00 _ 0.0000000F 00
TROWTT 2T ZTEZ63E 06 6 B225T92E 06 0T 0000666E 00 0. 6006U00E 00 0T 127826 306 T 0 00G00G0E 00 UL T0E07ITE 04
RUW 3 0.0000000€ 00  0.0000000E 00  0.2450167¢ 04  0.0000000£ 00  0.0000000E 0N -0.1225083F 04  0.0000D0VE 0O
'Row”“k’“'”b:fhad79TE'U«""“otobobdﬁOE"bb““"b?obobohbs"oU“”‘0;12003765”01"'-0?1bhb7§rs"bz’”"0:00600605"00”'Jo:aoo«37ae“bl“'
RUW 5  0.0000000€ 00  0.1278263E 06 _ 0.0000000€ 00 =-0.1080791E U4  0.2612596F 06  0.00C000OF 00  0.1080T9LF 04
"ROW "6 17 0.0000000E G0 TOH0NGE00E 00T S0 122508 IE 0% 0L 0000000 8077 0L000000CET 00° TC. 12250438 24 9.C0G0D00E 00
h;ou 7 0.0000000E VU "woxlggglélg_gi"hgfgpggooqgAggun-q;§00437ae 01 04 o.ononno;L 00 “;:I;;;;;;E«;;_

Appendix C

0-1080791E

Machine Solution to Problem 2
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e APPLIED LUAD SETS

ROW 1 -0.2226013E U3 0.1350009E 03

ROW 2 -0.900V000E G2 =-0.900000CE C2 .
_ﬂng 3 0.0050000E e 0.0000000F 00

RUW &  -0.2983920E 01 -0.3000000E 01
RUA 5 0.3126013E 03 _-0,4500000¢ 02
_RUW__6 0.8864703E 02 __ 0.0000000€ 00

KOW 7 -D,6746TB4E 01 -0.75000006 00

THE DEFORMATIUN MATRIX FOR THE FRAME

ROW 1 7 TF0LTTI4b326X0% T TOTTEI2E92EF07
TROW 27T T 002068202E-027 “UTHIB2499ET04
TROWTTS 0T T235999¢E=01 0. 0000000E 00
RUW™ 470026215978 00707301484 58700
ROW ST T0U626501TE-027 T =0L6633544E-03 o
ROW & 0.1447200E 00  0.0000000F 00
RUW 0 1731986E 01 =0TLITHI444E 00
__THE MOMENTS AT THE ENDS OF ALL MEMHERS
ROW 1 0.1350001E 03  0.1349999€ 03
ROW 2 -0.2002184E 03 -0.1215279€ 03
ROW 3 0.1102183E 03  0.3152187€ 02
ROW 4 -0.4500012E 02 -0.4500006€ 02
THE AXIAL TENSIONS IN _ALL MEMBERS
ROW 5 ~0.1500000E-04 0.0000600€ 00
RGW™ & 9000000E=0% 0. 0000000E™ 00
TROWTTTTTEOUZE3T6TIE 01 —0.3074845C 01
ROW "8 T-0.931V612E 7007 IO TIN5 TT4ETO0T T -

_ _ACCURACY

CHECK. THE

APPLIED LUAD

SETS

JROM L U.1350001E 03 _0.134999%€ 03
RuW 2 =0.9000011k 02 ~0.900000%¢ 02 _____ '
RUw 3 -0.6000000E~35 0.00000008 00

ROW 4 -0.3000000t 01, -0.3000GUCE 01

KUH 5 -0.4500014€ 02 -0,45000008 ©2

ROW 6 =0.900000UE=C5  0.0000GUOE_ Q0
RUW 7 -0.7500000€ 00 -0.7500001¢ oan

ANALYSIS COMPLETEC FOR  FRAME  ni. 2
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L INEAR

ELASTIC

ANALYSIS OF

FRAME NO. 3

1

TTHE __STATICS MATRIX

ROW T -0.1000000E70C =0, 10000G0E 00  0.00000C0F G0 UsDG00000E 00 0TI S0000E 06 0s T Z50000E 00 =076 7500C00=01
: ~0.6250000E-01 _ 0.0000000E 00  0.0UOVOUGE 00 o
_ROW 2 0.0000000E 00  0.0000000E 00 =-0.1000000E QO -0.1000000E 00  0.10000GOE IC  0.1008D00E 00  -N,D0U0000E 0O
UL 0600000E 007000006 00E 00 T B TAOEHGHoE oy T T T T ) [
ROW ™3 0.000000GE 06 0.0000000E 00 0<00000COE 30 0, GCUO000E 00 =00 12560008 00 =0 I 2500000 60 T3 250 TIE =07
e 0202300006201 20, 10000008 00 =0.10000008 00 U
“ROW__4 _ 0.0000000E 00 10000GOE 1 9.100DC00E 01  0.000I000E 0O 0.0000000E GA  0.0D09600E 00 0.0000000E 00

0.1000000€ 01

.9« 1v00000E 01

Appendix D

J.0800000E 00

Statics Matrices for Problem 3

Case 1

Axial Strains Neglected

"70.0000000E" G0 < 000G0TOETH0 ™ 0U0T000TT -
TROWTS 0T0000000E™ 00~ 0.0000000% 00 05 0000000E ™ 00 0T T080CU0E ™ ™ 0T T0 0w 0 E0E ™y 1™ 0T n Iy 0 000 0T 0G0 505
w02 00000008 00 0.0000000E 00 0.0000800E 00 ;
RUW 6  0.0000000E 00 _ 0.0000000E 00  G.UIGOCOOE 00 OCOOE 00 6.GOCCCUOE D0 O.L0CHOOLE 0L £, 10000608 01
77 T0.0000000E 00 TT0VO0UGG00E TG0 THL0UTHO0N0E 00 T T T
TROW 7T OTHO00000E TGO TUON0T0TE B0 0T 00000 GOE 00T R T GU0UN0E 00T O TOU00THGE T O0 T GO G0GE TG0 T 0 TO0N 00 G0E D
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LINEAR ELASTIC ANALYSIS OF FRAME NO. 32 . e e et e e e e e mann e o e+ e e e o

"GE

-0.100000GE 00
0.0000000E 0O

-0.1000000E 00
O,QQQQQOOE 09

0.37139CCE-01
.0000000E_00

0.3712)00k~01
0.15000000E 0O

G.GO0N00NE Ho
~-0.928475NE Q0

G.0GCNI00NE O
0.08009000E VO

0. 00D0NGHE 0D
0.0C00000E 00

0.0060000E 0OU

0.0000000& 00

0., 00000008 G0
3.00900098 00

0.0000000k 00

L0313 00F-01

C.02000GOE 0O

0.3 713960E-01
0.9284T50F 00

0.371390GE-01
“0.9264750E 00

T0V00E0006E 08
5. 0009000E V0

ROW ™1
ROW 2
ROW 3
RUW &4
ROW 5
ROW 6
RUW "7‘
RUW 8
ROW 9
RUW 10
RUw 11
ROw 12

0.0000000E 0O

" 0.0000000E V0
-0.1856950E-01

0.0000000E CO

" 6.0000000E 00
..0.0000000E_00

0.3000000€ 00
0.00000C0E 00

0.CUE0000E 00

0.0000000E 00

~0. 37139060E-01

0.6900000€ DO

SEUATII06E-01
0.9284756E 00

Z0.1856950ESDT
2E6T500 00

-0,

0.0000000€ UG
. 021856350
0.0600000E 0C

0.0000000E 00

0.0000000E 0O

950E-01 A

0.0000000E 0O

0.0000009E 0OV

0.000000U0E 0O

T0.0000085E 00 T 0. 9264750601

0.J0U000C0E GO

0.00000C0E 00

0c0E on - (

0.00C00uGE 00

200V0O0E 00

G-1856350F-01
L£.9284750F 00_

T 9284 750E-01

-0, 150000CE €L

"TG. 60006008 06

0.3713900C o0

0.0GHGONDE GO
N.00003008 00

3.000000GE 00
0. 0CHO00NE 00

0.0000000t 0O

0.0000000F 00

0.0000000E 00
0.0000000E 00

0.0000060E GO

—0.9284750E~-01

‘ —OLH2ERETSOESET T
..9:0000000E 00 0.0000000E 2G _ 0.00000Y0E 00  =0,3713%00F 00 -0.3713300F 00

0.92E4 7505201

07784 T,0E-01"

TTECGB0G00E

0o
0.0099000E 09

G.0000000& 00
. 0.4642370E-01
0.0000000E 00
0.0000000E 60
-0.4642370E-01

0.0000000t 00

. 0.000006G0E 00

T 0.0000G00E 00T T

0,0000000t 00

0.0000000E 00

_.0:00000GOE 00

0.00G0000E 60
0.CO00000E 00

-0 9284750801

00000000 00 _

0. 0000000E 00

0.000630600E 30T 0L 00606

0. 0000Cu0E 0D

0.0600000€.00

-0.97E4T50E-01

-0.3113390E 00

0.00C0000E 00

0,6662370F=01

Ge 0677 0. G000000E 00 0LU0GONGUE 007 2066423705201

G.3713200FE 99

-0.1000006E 0T

0.0000000E 0D

0.0000000E 00

0.0000000E 00

0.000000

7000060000 00

0.0090000E 00
0.60CO000E 0U

0.0000000E 00

© 0.0000000E GO

0. U000000E_ G0

_0.0000000E

0.0000000E 00

_.0.DU00VOJE 00

N
0.T000CO0E 71
0.0000000€ 00 0.0000000E GO ° 0.0C0COGOE 08  9.CC00)H00E

0. 00000CCE U0~ T0.0000000E 00 T, 0G00006E 00

0.000000CE CO

1.0000000E Q0

0.0000090E 00

G TOROTH0E YT e THGO0U0E 6T T OTUI00CN0E 00 0T E I UU0E 50T 0L 00GU0OET UG TN S 0T0a 00T
60 0.0000000t 60 ©.0400Cu0F 00 0.0000000F 00 _ 0.0000000L 0C

0.,00G0000% B

0. T0000C0E O1 OTOOTEONOE 00 T TCCOOTRURT 0T

0.0200000E 00

0L0006000€E G0

0. 1G00000E 0L

0.0000000€ 00

oe

“g.lo060eat 01
7. 00000008 00

TTT00CUG000E 00

0.0000000E 00
0.1000000E U1
0.0000000E 00

.0+ 1000000E 01

Q0. 0000000E 00

0. 00000G0E 60 0 00000008 00 0L 0000006E 00T 0 0000G00E 00
0.0000000E GO

0.0000000E 00

CIO0GOON0E 00
0.0000000E 00

0700000 U0E 6L
0.0000000E QO

Case 2

Axial Strains'Considered



Fig. 1 Stress Resultants for a Member
of a Plane Frame
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(a)

Fig. 2 Alternative Load-Deformation Systems
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DIMENSION ARRAYS

1

READ FRAME NO.

READ DEGREES OF FREEDOM,
NUMBER OF FLEXURAL MEMBERS,
NUMBER OF AXIALLY STRAINED
MEMBERS, LOAD SET COUNT

+

READ IN THE STATICS MATRIX

READ DATA, CONSTRUCT THE
FLEX, PART OF MATRIX S
INCLUDING SHEAR EFFECT

BUILD FLEXURAL PART
OF TEMPERATURE VECTOR

TEST

RECALCULATE LOAD SETS,
AND OUTPUT AS ERROR CHECK.

OUTPUT STRESS RESULTANTS,
MOMENTS FIRST, TENSIONS NEXT

COMPUTE STRESS RESULTANTS
AND COMPUTE Sx~ AND ADD TO
THE FIRST SET OF STRESS
RESULTANTS

OUTPUT DEFORMATIONS

SOLVE EQUATJONS
- A .

W=A 8§ X

READ LOAD SETS, ADD SA x'
TO THE FIRST LOAD SET
OUTPUT LOAD SETS

COMPUTE SAi, ASAT AND
OUTPUT ASA’ .- THE FRAME
STIFFNESS MATRIX

+

+

Y NAM »

| | BUILD AXIAL PART OF S MATRIX

OUTPUT: STATICS AND
MEMBER STIFFNESS MATRIX
AND TEMPERATURE VECTOR

)

Y

BUILD AXIAL PART OF THE
TEMPERATURE VECTOR

Fig. 3 Flow Diagram for the Displacement

tnalysis Program
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- M| ——

I

I .
: o Statics Matrix A
| | S

I

I

|

Fig. 4

i X X [
X X |
| A | o | Member Stiffness
gleecxft;;gl | w x| I Matrix S
[~ | X X I
ONFM+NAM xx| |
X %X
X X
————— x - =
[ -=1—Axially Strained .
' x| Section
l x| |-
1 I X
N
Temperature
Matrix S-AT Vector x"
2NFM +NAM
1 - Load Sets
. MATRIX (Initially)
A-S-AT  |Deformations
1 (Later)
= E ‘ - N —

Arrays Used in the Displacement Program
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Ea

(\ go;l k/ft. B, | =

A
77577 V2 L 277

Frame |

Yoo Yo

Iy,
Joint A
_ _MagtMg, -
ViT—as
_ MgctMcg
Vz = BC

c
D P (G
BA 7 V2 *Tec -Tac
Vi ‘ . ~Tas 2 ‘ |
- 1Teo R AL:

Joint B | Joint C

Fig. 5 Ffame Examples 1,2
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— 40" ‘ -
77777777 - (a) Member identification 7)77777'/l

(b) Degrees of freedom when

T axial strains are neglected R v

N

| Vs Hs
Vg Hy

(c) Degrees of freedom when *: .= =

— axial strains are considered T

Fig. 6 Frame Example 3
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~ Th 1 @ Th T Hs
o ——
| | A Fs

( Solve for T, ds-F,:Fz).

Fig. 7 Joint Forces for Frame 3 When
Axial Strains are Neglected
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Fe =

Fg =

297.15

Mzt M _
—34|—O£Cos 8+T,Sin8 ; F7=T,20039--M3ﬁ%w—ﬁs.in9
MLﬁI)MﬁCos&T Sin8;, F=T4Cos8- —Misloﬂ-s 8

l Fa | 6
_ Msg+Mgy .
T F,O—TCOSG-TMSmB

20

—————— —_—
8 F
10
Tis
Fig. 8 Joint Forces for Frame 3 When

Axial Strains are Considered

43.



XI REFERENCES

Livesley, R. K,
" THE APPLICATION OF AN ELECTRONIC DIGITAL COMPUTER TO SOME
PROBLEMS OF STRUCTURAL ANALYSIS, The Structural Engineer,
London, Vol. 34, No. 1, January (1956)

Bennett, J. M.
STRUCTURAL ANALYSIS BY STATISTICAL PROGRAM, Basser Comp Dept.,
Univ. of Sydney, Tech. Rep. No 16, (1961)

Mc Minn, S. J.
MATRICES FOR STRUCTURAL ANALYSIS, E. and F. N. Spon Ltd.,
London (1962) '

Wang, C. K.
GENERAL COMPUTER PROGRAM FOR LIMIT ANALYSIS, Jrnl, of Str.
- Division, ASCE, ST6, December (1963)

Clough, R. W.
STRUCTURAL ANALYSIS BY MEANS OF A MATRIX ALGEBRA PROGRAM,
Conf. on Electronic Computation, ASCE, November (1958)

Mc Cormick, J. M. and Salvadori, M. G.
NUMERICAL METHODS IN FORTRAN, Prentice Hall, New York (1964)

Mc Cracken, D, D.
A GUIDE OF FORTRAN PROGRAMMING, John Wiley and Sons, Inc.
New York, (1961)

Hall, A. S., Woodhead, R. W.
FRAME ANALYSIS, John Wiley and Sons, New York (1961)

Clough, R. W., Wilson, E. L., King, I. P.
LARGE CAPACITY MULTI-STORY FRAME ANALYSIS PROGRAMS, Jrnl. of
Str. Div., ASCE, Vol. 89 No. ST4, August (1963)

44,




	Lehigh University
	Lehigh Preserve
	1965

	Computer analysis of plane frames, July 1965
	H. B. Harrison
	Recommended Citation


	tmp.1349753097.pdf.1NxRd

