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ABSTRACT

~ The basic relationship is established between the
stress-stréin cufve obtained from a stub column test and
the basic column strength curve. Charts are prepared to allow
the prediqtion of the buckling load of steel columns from
stub column results. This approach simpiifies the process
of predicting column strength and eliminates full-scale

column tests and the measurement of residual stresses.



290.18 -1

1. INTRODUCTION

Two approaches can be taken for the computation of the
tangent modulus flexural buckling load of columns. One is
based on the measured or assumed residual stress pattern and
the stress-strain relationship, employing a numerical
procedure or an analytical method; the other is based on
stub column test results and is a semi-empirical method.

The first approach has been subjected to extensive

investigation.(l through 4)

However, the method itself is
complicated in general and usually needs experimental
verification by full scale column tests, except for a few
simple cases. The second approach is simpler, more economical
and gives solutions closer to the actual behavior of columns.
The second approach is discussed in this report.

A stub column is defined as a column long enough to
retain the original magnitude of residual stresses in the
section and short enough to prevent any premature column
failure from occurring before the yield load of the section

(5)

is obtained. A stub column test is performed in order
to obtain an average stress-strain curve for the complete
cross section which takes into account the effects of

;
residual stresses.

The application of stub column test results to

the prediction of column strength has been developed and used
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widely during the past decade. However, the method has

been applied ﬁosfiy for rdlled shapes made of steel with an

elastic-perfectly—pla;tic stress-strain relationship.
fﬂTherefore,'all the relevant relationships between the stress-

strain curve obfained from a sfﬁb column test and the basic

column strength were established for rolled shapes of mild
~steel only.

:.Tﬁié study is to e#tend the previous research into
shapes which have residual stresses of this welded type
and/or ére made of matérial which does not have an elastic

perfectly-plastic stress-strain relationship.
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2. BASIC CONCEPTS

Figure 1 illustrates diagramatically the stress-
strain curve of a material and the stub column curve
(average stress-strain curve of the whole cross section
obtained from a stub column test). The slopes of the
stress-strain curve and the stub column curve are referred
to as tangent modulus, Et and effective tangent modulus
E» respectively. In the elastic range, both Et and Em
are the modulus of elasticity, E. The stress at the
proportional limit of the stress—strain curve is gp,
whereas that of the stub column curve is opm"

From a stub column test, the relationship between

effective tangent modulus and the tangent modulus can be

expressed as

where, doave = the average stress increment, de = the
corresponding strain increment, dP = increment of axial
force, and A = the total cross-sectional area. If the

effective area is defined as

(1)
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A= da (2)

where Am can be considgred as'an gquivalent elastic section
that functions in a manner identical to the actual section in
which parf or all.of the section is in the inelastic range,
as far as column buckling strength is concerned, then, from
Egqs. 1 and 2,

E

.
E

Am
S (3)

For a cehtrally loaded column, the_critical load,

(6)

P __, based on the tangent modulus concept is

cr
E
'IT2 E f £ y2dA
A E

(u)
12

P
cr

E
Comparing the term ‘anE- y2dA which is defined as the
effective moment o6f inertia Im, with the expression in
Eq. 2, then, I is simply the moment of inertia of the

effective area. Consequently

L ()
Im = f\ r =» f T
where the f function is dependent on the shape of the

effective area. The critical load can be expressed simply
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as

P = n (5)

or, in a nondimensional form

1 /1
_ m
N

er'y

v = L [
ﬂ E

B

To apply the results of the stub column test to
the prediction of the column buckling load, the

E

relationship between fm-obtained from the stub column test
I

and the corresponding Tm3 or the shape of effective area,
needs to be known beforehand. For simple cross sections
such as a rectangle, or a circular tubé, which also has a
residual stress pattern of cooling after rolling and exhibits
an elastic perfectly-plastic stress-strain behavior,
constant relation;hip between Em and Im can be established,
since the shape of Am remains the same throughout the
complete loading process. However, for more complicated
sections, or for shapes which do not have the rolling type
residual stresses in the cross section and/or do not
follow the elastic-perfectly-plastic stress-strain law,

the rel: tionship between Im and Em could be very much

involved and usually is a function of not only the cross-

sectional proparties but also of the stress-strain curve
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and of both the magnitude and pattern of the residual stress

distribution.

To illustrate this point, an example is given here

for a rectangular section with a triangular type residual

stress distribution and a stress-strain curve represented

by two straight lines connected by a parabolic transition

curve as shown in Fig. 2., Only one-dimensional residual

stresses, that is, no variation of residual stress across

the thickness, t, are considered, and the principal axis

which is parallel to the direction along which residual
stress varies is designated as the x—axié and the other
axis as the.y-axis. For bending ébout the x-axis, the
modified moment of inertia, Imx’ can be expressed as

2
fy dA_

A A
m

~
jag]

. / *, -
where dA = ( _t . dx}) ~ t = 4 - dx
. - E

Since only the width of a differential element is changed

after loading, the shape of the effective section will
remain as a rectangle.

Em and Imx is simply

I E
mx o_ o m

I E
X

Therefore the relationship between

(7)

(8)
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This expression is true even for a stress-strain curve
and for a residual stress pattern other than those described
in this example.
However, for buckling with respect to the y-axis
(Fig. éc), the modified moment of inertia, Imy’ is-

N /'1
g
-t %% aa = x2 an_ (9)

Yoy =) B A

where dp = ;E . t; + dx = t dx. In this case
the width of a differential element of the area of the effective
section depends on its distance, x, from the y-axis, and |
therefore the shape of the effective section could vary from
load to load as shown in Fig. 2c. In this example, because
the assumed Et vs. € relationship is linear in the inelastic
range, the effective areas are boundéd by straight lines.
The explicit expressions of Imy/Iy vs. Em/E are given in the
Appendix.

For most practiéal sections such as wide flange
shapes, the explicit exact relationship between Im/I and
Em/E is more complicated and sometimes impossible to derive
especially for shapes made of non-linear materials. It is

)

proposed tere that the Im/I vs. Em/I relationship for complex

cases should be presented in the form of charts. A numerical

procedure is adopted to compute the exact solutions. The
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numepiCal,computation is accomplished as follows:
1. bivide fhe section into a sufficient number of
finite areé elements as shown in Fig. 3.
2. Record the,fesidual strain at the center of
each element as§uming that the residual stresses
distributed over each element are uniform with the
magnitude the same as that at the center.

ﬂ 3...Apply a uniform'stfain larger than the difference
between-yield strain and maximum compression residual
strain on the cross section. The totai strain at an
element is equal to the residual strain plus the
apblied uniform 1ongitudinal strain.

4, From the tangent modulus strain equation, determine
the tangent,modulus corresponding to the total

strain computed in step 3 for each element.

N . N
5. Compute, Em = .2 (Et)i * AA and Im f.z (Et).
i=1l i=1 1
y.2 + AA where N is the total number of finite area

1

elements into which the section is divided.
6. Increase the applied uniform longitudinal strain
and repeat steps 1 through 5 until the entire cross-

section is yielded or strain-hardened.
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3. EFFECTIVE TANGENT MODULUS VS. EFFECTIVE

MOMENT OF INERTIA RELATIONSHIPS

Tﬁe efféctive tangent modulus vs. effective
moment of inertia relationship for rolled wide flange
sections and for‘welded H-shapes are discussed. Two
kinds of sfress—strain relationships, the elastic
perfectly-plastic and the nonliﬁear (such as that of
AS51h4 steel); are considered. TFor the complex cases,

the Em vs. Im relationships are presented in charts.

Shapes with an Elastic Perfectly-Plastic Stress-Strain Curve:-

For material having an elastic perfectly-plastic stress-strain
relationship, the tangent modulus Et must be either

equal to E or zero. Therefore, from Egs. 2 and 3, for

E A
a given section with residual stress, Am = Ae and EE-= =

g

where Ae is the remaining unyielded area, or elastic
area. The effective moment of inertia simply is the
moment of inertia of the elastic area, Ié.

For small and medium-size rolled shapes made of
mild steel, the stress-strain curve of the material and
the patterns of resjdual stress distributions can be
represented as shown in Fig. 4. If the web of the wide

flange is neglected, the effective area, or elastic
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area in this case, will remain as two separated identical

rectangles parallel to each other. Then

Imx Ae Em
I K T F (10)
X - )
and
I A 2 g 3 |
W, e . om (11)
‘ Iy A E

These approximate solutions were first presented by

Huber and Beedle.(7)

However, it would be interesting

to examine thé effect of the web area which is neglected
in Eqs. 10 and li. - Four sections, naﬁely, 8WF31l, 12WFLO,
10WF49 and 14WF426, which represent typical column sections
are se;ected for illustration. The relationship between
Em and Im'is presented in chart form with Em/E as ordinate
and Im/f abscissa. Figure 5 shows the exact solutions
considering the web afea, bending with respect to

strong axis, and Eq. 10 is represehted by a straight line
of 45 degrees. Compare the exact solutions for the

four representative section with the approximate solufibn;
it indicates that the maximum diffefence is approximately’
4% of that obtained from Eq. 10, and the Em/E VS'.Imx/Ix

relationship is independent of the magnitude of residual

stress. Therefore, Eq. 10 may be applicable to all the
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wide flange shapes, if a maximum error of 4% can be
considered acceptable.

For weak axis bending, the Em/E vs. Imy/Iy
relationships for all four shabes coincide with the
line which represents Eq. 11, as shown in Fig. 6.

This indicates that the web area has practically no
effect on Imy’ and Eq. 1l can be considered as the

exact solution for columns of rolled wide flange shapes,
buckled with respect to the weak axis.

In Fig. 4, the penetration of yielding on the
cross section is shown. When the load is applied, as
long as the residual stress distributioh causes
yielding to be initiated at the flange tips and web
cenfer and gradually move towards fhe junctures of
flange and web, that is, the patterns of residual stress
is such that the maximum compressive residual stress is
at flange tip and web centef and the residual stress
magnitude decreases toward the junctures of flanges
and web, then Egs. 10 and 11 are always applicable.

Welded H-shapes built-up from mild steel plates
with the preparation of the plate edges as flame-cut or
universal mill, may have residual stress patterns

considerably different from those of rolled shapes.
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Figure 7 shows the typical residual stress patterns in
- welded H?shépés; one with universal mill plates and
the other with flamg—cut plafés.

It is apparent that when the external load is
applied the paftially yielded cross section of welded
shapes with universal mill plate is the same as that of
rolled shapes; as shown in Fig. 4. Hence, Egs. 10 and
11 ére still applicable for welded columns built-up from
universal mill plates.

However, for welded H-shapes with flame-cut
p;atés, the residual stress distribution is somewhat
different from those aforementioned. Due to the
flame-cutting process, a tensile residual stress of
approximétely 75% of the yield stress exists at the
flange tips, and due to fhe welding, a tensile residual
stress apprbximately equal to the yield stress exists
at fhe juncture of flange and web. The compressive
residual stress is nearly constant and distributed over
the flanges away from the center and edges, and on the
web near its center portion, as shown in Fig. 7. The-
mégnitude of compressive rgsidual stress is in general
inversely proportional to the width-thickness ratio of
the component -plate. For strong axis buckling, the.
exact Em/E vSs. Imx/IX felationéhips for fgur columns
sections are shown in Fig. 8.. It is observed that thé

curves are very close to those obtained for rolled shapes.
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Apparently, the shifting of the location of the remaining
elastic area on the flanges in the x-axis direction,
caused by the tensile residual stress at flange tips,
does not change the Em/E vs. imx/IX relationship.
Equation 10 therefore, can be extended to cover welded
H-~shapes with flame cut plates.

For the weak axis bending, because of the
tensile residual stress at flange tips, welded H-shapes
built-up froﬁ flame-cut plates behave considerably
different from rolled shapes or welded shapes with UM
plates. The Em/E vs. Imy/Iy relationship for a 12H40
is shown in Fig. 9. The magnitude of compressive
residual stresses used in Fig. 9 varies from 0.20
to 0.880y. It is observed that the exact solutions are
far removed from the solution given by Eq. 11 and, in
addition, the Em/E vs. Imy/Iy relationships are
dependent on the magnitude of the compressive residual
stress. However, the differences among the curves are
not significant. |

The effect‘of sectional properties was also
investigated for four different column sections, and it
was found that the dimensions of the section do not
change the shape of the curve. Figure 10 shows.the curves

for 0_  equil to 0.88 o .
rc v
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In Fig. 9, it is observed that the
differences aﬁong the five curves, representing O
varying from 0.20y.to O.BSGy, are insignificant. The
curve for crc gqual to 0.880‘y (extreme case for this
pattern of residual stress) gives the most conservative
prediction of column strength. This curve, which is
.shown in Fig. 10, should be used to.represent the
Em/ﬁ vs. Imy/Iy relationship for all the welded shapes

with flame-cut plates.

Shapes with a Nonlinear Stress-Strain Curve: -

For the purposes of this study, A514 steel was considered.
A514 steel has a nonlinear stress-strain relationship
which consists of an elastic range, a transition range,
and a Stfain—hardening range. The stress-strain curve

(6)

can be described by the following three equations

o _ € o
E' = _E- when 0 s E s 0.8 (12)
v y y
o} € | > S
S = 1.0 +0.005 ( S - 1.517) 4 03847 S - 1.517)
y y y
+ 0.3276 (5-' - 1.517) °
. € . /
"y
when 0.8 <2 < 1.0 ' . (13)
o\ ~

"%
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and I = 1.0 +0.005 (5= - 1.517)
‘ Oy b y
" when 9. < 1.0 ’ ©(1s)
) ) Gy e

where g = stress,-gy = yield stress determined by the

' 0.2% offset method,(s) é ='sfrain, andidybz yield

‘strain (= ay/E). Figureill shows the complete stress-

(6)

" strain curve for A51l4 steel. Due to the nonlinearity
of the stress-strain curve, it was found that, contrary
to the case of sections with an elastic perfectly-plastic

stress-strain curve, the magnitude of compressive

residual stress has a pronounced-influence on the Em/E

>
A

| o | . Teo  Ac: Em
vs. Imy/Iy'relationship, However, for strong axis I~ A E

bending, Eq. 10 is still Qalid, as mentidﬁed above. Since
'the sectional properties haQe no signifiéant influénce,(7)
Em/E vs. Imy/Iy relationships are obtained for an H—Shéped
 section-having dimensions corresponding to an 8WF31 shape,
_ and the results should berapplicable.to H-shapes §f othef
dimensions as well. |
| . Three types'ofzfésiduél stress distfibﬁtioh are

considered, which reﬁreseﬁt pQésible péttefns 6f fesidual
stress in folled'shaﬁés and'iﬁ welded'shapés with éheared—

edge plates and with flame-cut piatés.’ The Em/E'vs. I.my/Iy
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relationships are presented in the form of charts as
shown .in Fig. 12 to Fig. 14. 1In these figures, it
is apparent that the magnitude of compressive residual

stress could alter the shape of the curve considerably.
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4. APPLICATION OF STUB COLUMN TEST RESULTS

The application of the stub column test results
and of the E /E vs. I /I relationship for the determination
of column strength is described:

1. The approximate pattern of residual

stress distribufion in the cross section and

the stress-strain relationship of the

material must be known; then, the corresponding

chart can be selected.

2. The effective tangent moduli are determined

by drawing lines tangént to the stub column

stress-strain relationship at different values
of P/Py; the slopes of these lines defiﬁe the
corresponding effective tangent moduli.

3. To determine the maximum compressive

residual stress, OLcs the proportional limit

stress, Gpm’ of the stub column stress-strain
curve must be first determined. This can be
accomplished by locating the point on the stub
column sfress-strain curve where the slope
starts to deviate from that of the modulus

of elasticity, E. Then, Ore is simply equal

to the difference between Gp (stress at the
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proportional limit on the stress-strain curve

of the material) and Gpm‘ That is,

o = 0 -0 (15)

4, Based on the Oy determined, the
corresponding chart and the exact or interpolated

curve for O, are used. The corresponding

I . E
TE for each measured Em' can then be determined.
5, The cofresponding slenderness function, A,
. E I
- for a set of ;— . Em-, and Tm-can be obtained
y .
from Sor  bending
: atoout weale
ANES ( e 15\)
A (16)

6. The slenderness fﬁnction, A, is calculated

at different P/_Py levels and the P/Py vs. A curve
plotted; this is the column curve based on the
stub column test results.

The results of tests of two stub columns, one

. 'welded 7H28 shape with sheared edgé plates and the other a

' welded 7H28 shape with flame-cut plates, both of A51Y4 steel,

.are selected here as an example. The load-strain curves
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of the stub columns are shown in Fig. 15a. The column
curves based on these fwo stub column tests are shown

in Fig, 15b. Column curves based on the measured

.residual stresses obtained byvmeans of a numerical

analysis are also presented in Fig. 15b. The comparison

of column curves. obtained by these two differenct abproaches
shows that good correlation exists between them. The small
qifference can be accounted for in the error induced in

the determination of the effective modulus; also the

actual residual stress distribution in the section could

be slightly different from that assumed in the development
of the Em/E vs. Im/I curves. The column test points are
also shown on the same figure (Fig. 15b) to give some
indications of the accuracy of the theoretical curves.

The advantage of using stub column tests to
predict the column strength is that, if the stub column
test is conducted carefully, there is no need to perform
- full size column tests and residual stress measurements.

E I

As long as the related Em-vs. TE' relationship is

available, column strength can be predicted rather accurately

from the results of stub column tests. "
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. | 5. SUMMARY AND CONCLUSIONS

The basic relationship between the stress-~
strain curve obtained from a stub column test and the
basic éolumn_strengthHCurve'is established.

These relationships are given by

m EIm
= u (5)
gr .L2 A .
Imx _ A_e_ _ Eln_ (10)
I ~ A  E
X
' Im Ae3 Em 3
el o (L)
y
where Pcr = tangent modulus buckling load
Im = effective moment of inertia
Ae = area remaining elastic
Em = effective tangent modulus

(tangent modulus from stub golumn test)
Charts are prepared to ac;ommodate the prediction

from stub column test results of the tangent modulus

buckling load of columns made of either mild steel or

A51y steel, wel&ed or rolled shapes. This approach

éimplifies the process of prediction 6f column strength

and eliminates the necessities of full-scale column tests

and residual stress measurement. The following conclusions
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may be drawn from this study:
1. The appréximate relationship (Eqs. 10 and
11) between the effective tangent modulus
(obtained from a stub column test) and the
elastic moment of inertia is valid for shapes
which have an elastic—perféctly-plastic
stress-strain curve and have the maximum
compressive residugl stress at the flange
tips with decreasing values towards the center
of the flange. For other shapes, the relationship
between the average tangent modulus and the
"effective moment of inertia" with respect to
the weak ;xis is very involved and must be
treated individually.
2. Tor strong axis buckling of H-shapes, the
relationship between the effective tangent
modulus and the effective moment of inertia
is practically linear irrespecfive of the
stress-strain relationship and the pattern of
residual stresses.
3. ForAweak axis buckling, Eq. 11 is applicable,
for rolled shapes and welded shapes built up from
universal mill plates made of steel which has

an elastic-perfectly-plastic stress-strain’
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relationship. Each other.case must be treated
separately. A numerical method is employed
to determine the relationship between the
effective tangent medulus and the effect moment
of-intertia. The results are presentedvin the
form of charts. Each of these charts represents
a combination of a stress-strain relationship
and a certain pattern of residual stress. By
usihg these charts, the corresponding eéfective
' moment of inertia for a given effective tangent
modulus can be easily determined.
4. The sectional properties of an H-shaped
section do not affect the Em/E vs. Imy/Iy
relationship but do affect slightly the
Em/E vs. Imx/Ix relationship; however, the

difference is insignificant.

Column strength may be predicted accurately and
directly from the stress-strain relationship of the stub

column test.
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7. NOMENCLATURE AND DEFINITIONS

Area of cross section

_ Et
Effective Area ( = | — dA)
Width of flange
Effective width-
Depth of section
Subscript denoting elastic
Modulus of elasticity

- Effective tangent modulus, determined from
stress-strain relationship of stub column test

Strain-hardening modulus
Tangent modulus
a function

Moment of Inertia - subscripts x and y refer
- to the x and y axes (strong and weak axes),
respectively

Moment of inertia of elastic portion of cross
section - subscripts x and y refer to the
x and y axes, respectively
Bt 2
Effective moment of inertia ( = T dA)-subscripts
: A
x and y refer to the x and y axes, respectively.

Column length

Subscript denoting effective

. Axial load
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cr

Buckling load, or critical load; tangent modulus
concept

Yield load in a column

Radius of gyration = subscripts x and y refer to
strong and weak axis radii.

Thickness of flange

Displacement in the x, y, and z directions,
respectively

Coordinate axes, coordinates of the point with
respect to x,y, and z axes

Strain

Strain at proportional limit
Residual strain

Maximum compressive residual strain
Maximum tensile residual stfain
Strain at start of strain hardening
Yield strain ( = oy/E)

Stress

Critical stress

Stress at proportional limit

Proportional limit stress determined from a stub
column test

Residual stress
Maximum compressive residual stress
Maximum tensile residual stress

Yield stress (determined by 0.2% offset method for
non-linear stress-strain relationship)

Summation
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APPENDIX:

EFFECTIVE MOMENT OF INERTIA AND EFFECTIVE

TANGENT MODULUS RELATIONSHIP FOR A

RECTANGULAR SECTION

Stress-Strain Relationship of the Material (Fig.2a):

Q_.=.%_ Elastic Range
9% %y
1 3 € 1 € 2
9 -2+ 2 () -z (& Transition Range
o g7 7 ¢ 2 '€
y y y
L= Perfectly-Plastic
o'y Range

Residual Stress Distribution (Fig.2b):

Triangular type with maximum compressive stress

Ope = 0.3o'y.

Average Stress-Strain and Tangent Modulus-Strain

“Equations (Stub Column Curves, Fig. 2a)

when 0 Si_f_ 0.2
y
o .¢e
9% &
Em
7= 1.0
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Fig. 7 Residual Stress in Welded H-Shapes.
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