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ABSTRACT

The requirements of economy and light weight in
large size modern structures lead to the development and
the use of weldable quenched and tempered constructional
alloy steels. High strength steels with the yield
strength in excess of 200 ksi have been developed. This
paper summarizes the research conducted on welded and
rolled "T-1" steel columns, "T-1" steel is a high strength
constructional alloy steel with a minimum yield stress of

100 ksi and has the ASTM designation of A514 and A517.

Studies were concerned with the strength of T-1
steel columns of thin-walled members such as box- and H-
sections. The investigation included studies of residual
stresses and mechanical propertiés, local buckling,
centrally loaded columns; and beam-columns. The study also
included a pilot investigation into a higher strength steel,

5Ni-Cr-Mo~-V steel.

The residual stresses present in rolled heat-
treated shapes, in plates due to cutting and due to both

edge and center welds, and in welded built-up shapes, all
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of T-1 steel, were studied experimentally. It was found

that the residual stresses in T-1 steel rolled shapes are

in general much lower than the counterparts in mild steel
because of the heat-treatment process, and in welded plates
or shapes the magnitude of compressive residual stress 1is

in a reverse proportion to the width-thickness ratio of

the plate or component plate. Based on the results obtained,
thermal residual stress distribution in T-1 steel shapes

and plates can be predicted with reasonable accuracy.

The mechanical properties of the steel were
determined experimentally through eension specimen tests
and full-section stub column tests. The stress-strain
relationship of T-1 steel could not be idealized as
elastic-perfectly-plastic, and a representative stress-
strain curve which consists of elastic range, nonlinear
transition range and strain hardening range was prepared

for theoretical computations involving T-1 steel.

The buckling strength of thin-walled centrally
loaded columns made of T-1 steel was studied experimentally.
A theoretical analysis was performed for pinned-end columns,
based on the Shanley-Engesser tangent modulus theory and
considering both the effects of residual stresses and non-

linearity of the stress-strain curve. It was found that
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both the residual stress distribution in the section and
the shape of the stress strain curve have a pronounced
influence on the reduction of column strength. The results
obtained for T-1 steel columns were also compared with
those results obtained on mild steel columns; T-1 steel
columns in general exhibit a higher strength on a

nondimensional basis.

The study of the local buckling phenomenon was
carried out for both plates and shapes. Solutions were
obtained on the basis of a finite difference approximation
of the differential equation with variable coefficients.
The numerical results were presented.in the form of plate
buckling curve of stress versus width-thickness ratio for
plates with various boundary conditions, or for H- and
box-sections, containing idealized distributions of

residual stresses.

The ultimate strength and the local-deformation
behavior, as well as the local buckling phenomenon of T-1
steel beam-columns, were investigated. Because of the
nonlinearity of the stress-strain relationship of the steel
and the particular pattern of residual stress, the moment-
curvature—thrust‘of T-1 steel shapes are different ffom

those of mild steel shapes. Interaction curves were
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developed for T-1 steel beam-columns under equal end

moment conditions.

The theoretical analyses were compared with
their corresponding full scale experiments, it was shown
good correlation exists between them. Suggestions are

presented for the design of columns and beam-columns

‘made of T-1 steel.
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1. INTRODUCTION

The problem of stability in compression members
in steel structures has received a great deal of attention
from researchers in recent years. The influence on
inelastic stability of residual stresses in steel shapes,
and of the inelastic behavior of the stress-strain

relationship, has been recognized.

"T-1" steel displays mechanical prdperties
considerably different from those of the conventional
low carbon steels. It has a nonlinear stress-strain
relationship and a yield stress approximately three times
higher than that of structural carbon steels. Additionally,
previous research has shown that the magnitude of residual
stresses essentially is independent of the yield stress
if the steels are not heat-treated after rolling; heat-
treatment can reduée.the magnitude of the residual stresses
in the structural shape. Consequently, the ratio of
residual stress to yield stress for Heat—treated T-1
steel shapes and plates is much less themn that for
structural carbon steels. The use of this high strength
steel in structural members may effect a somewhat différent

behavior than that observed in the structural carbon steel
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members toward which most previous investigations have

been directed.

The objective of this study, in general, has
been to'present information for which desigﬁ criteria
could be prepared for T-1 steel columns. Specifically,
the following details are included:

1. The determination of the residual stresses

in, and the mechanical properties of, T-1
steel plates and shapes, both rolled.and
welded.

2. The investigation of the buckling strength
of centrally loaded columns, especially
those made of T-1 steel.

3. The investigation of the local buckling
strength of columns including the éolutions
for the buckling of component platés and
of plate assemblies.

4., The investigation of the ultimate strength
and load-deformation characteristics of

T-1 steel beam-columns.,

According to the objectives, the study was
divided into five phases; (1) mechanical properties and

residual stresses, (2) centrally loaded columns, (3)
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local buckling, (4) S5Ni-Cr-Mo-V steel columns, and (5)
beam-columns. Phase (4) is concerned with 5Ni-Cr-Mo-V
steel which is not T-1 steel but has certain similarities
and is included in this study as a supplementary

investigation.

Extensive studies have been made on topics
related to . elastic perfectly-plastic columns and to
aluminum columns. In the first case, it is considered
that the material has a stress-strain relationship that
can be represented by two straight lines with slopes
equal to the modulus of elésticity and zero, respectively;
the residual stresses in the section are éenerally included.
For the second case, even though the columns are loaded
into the inelastic rangé, these shapes generally are
considered as free of residual stresses since aluminum
shapes are stretched after quenching to achieve straightness;
the stretching removes most of the residual stresses. For
T-1 constructional alloy steel columns, both the residual
stresses in the section and the nonlinearity of the stress-
strain relationship must be considered in the buckling
strength analysis. Consequently, the results of previous
investigations can not be applied directly to the present
study. An”independent analysis is required for predicting

the strength of T-1 steel columns.
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The buckling strength of a plate with residual
stresses was evaluated by the energy method. Thé behavior
of the plate was analyzed by the theory of elasticity and

by the two theories of plasticity; one the total strain

(1) (2) (3) (%)
y

theor and the other the incremental theory.
To simplify the numerical computation, the stress-strain
relationship was assumed as elastic perfectly-plastic.
The numerical analysis was carried out by using a finite
difference approach and by meaﬁs of a digital computer,
Solutions were obtained for elastic, elastic—plastic, and
plastic buckling of a plate with residual stresses, when
the plate is simply supported at the loading ‘edges and

at the other edges is: (a) elastically restrainqﬁ,

(b) simply sppported, and (c) fixed; solutions for plate

assemblies which consist of cross sections of columns were

also included.

The ultimate strength and load-deformation
behavior of T-1 steel beam-columns were studied. The
term beam-column denotes a member which is subject
éimultaneously to axial force and bending moment. The
bending moment in the member may be caused‘by externally
applied end moments, eccentricity of longitudinal

forces, initial out-of-straightness of axially loaded
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columns, or by transverse forces, in addition to axial
force and end moments. In this study, only the types

of beam-columns which are subject to constant axial

force and varying eﬁd moments were investigated.
Furthermore, the beam-columns studied were assumed to

be laterally supported, that is, they were designed to
fail in the bending plane without twisting, and were
loaded at the ends with equal-moments which cause a
simple curvature bending only. The theoretical analysis
was achieved by means of a numerical integration
"procedure. The nénlinear property of the stress-strain
curvé, various patterns of residual stress resulting from
cooling after either rolling or welding, and the strain
reversal effect, all were included in determining the
moment-thrust-curvature relationship. The load-
deformation relationship of the beam-columns was obtained
by a direct stepwise integration procedure. The local
buckling behavior of beam-columns was defermined
experimentally and was compared with theoretical solutions

available.

This report presents a summary of an extensive
analysis of the-buckling strength of centrally loaded
columns, the local buckling of plates and plate assemblies,

and the ultimate strength of beam-columns made of T-1 steel.
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Both residual stresses and the nonlinearity of the stress-
strain relationship of material were found to have a

pronounced influence on the strength of compression

-members.
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2. MECHANICAL PROPERTIES AND RESIDUAL STRESS

2.1 Stress-Strain Relationship

Stress-strain curves and the related mechanical
properties are the basic means of determining the quality
and the usefulness of metals aﬁd of providing fundamental
knowledge for their ﬁse in the design of metal structures
and parts. The structural metals that are widely used
at present may be divided into four categories: (1)
structural cérbon steels, (2) high strength low-alloy
steels, (3) constructional alloy steels, and (%) aluminum
alloys. These metals have two different types of stress-
strain curves -- those exhibiting a yiéld point, and
those not indicating this. For structural carbon and high
strength low—alloy steels, the stress-strain curves are of
the first type; that is, the stress is linearly proportional
to strain up to the yield point and thereafter is constant
or nearly constant over a large range of strain. Therefore,
their mechanical properties can be characterized simply,
by such terms as modulus of elasticity, upper yield point,
static yield level, strain-hardening strains, and strain
hardening modulus as shown in Fig. 1. For constructional
alloy steels and»aluminum alloys, the stress-strain
curves are of the second type; that is, the stress deviates

from a linear relationship with strain at stresses
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below the yield strength and usually does not exhibit a
region in which the streés remains constant over a large
range of strains. There is no apparenf yield point or
yield stress level in this second type of stress-strain
curve, Usually, a nominal yield point is determined by

(5)

the 0.2% strain offset method. This stress-strain
relationship with no apparent yield point will be

described as a "nonlinear" relationship in this report.

To describe the nonlinear curves, Ramberg and
Osgood have developed a set of curves in terms of three
pafameters: namely, the modulus of elasticity and two
secant strengths.(s) The comparison of these curves
with those from tests of aluminum alloy, stainless steel

and chromium nickel steel sheets, shows a satisfactory

agreement.

Although the Ramberg-0Osgood representation fits'
the stress-strain curves of most metals used in aircraft
construction, it cannot be used to describe the stress-
strain relationships of constructional alloy steels,
such as T-1 steel, simply because the stress-strain curves
of these steels usually approach a straight_line with a
very small slope after the "knee" portion of the curve.

A new type of mathematical equation was developed to
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A total of fifty-eight tension coupon tests
and eight compression coupon tests were conducted on
specimens taken from various rolled H-shapes and plates
made of AS514 steel., The tension specimen dimensions
were determined according to the ASTM Standards for the

(6) The speed of testing for the

tension test specimen.
tension spgcimens was within the recommended ASTM
limits, that is, the crosshead speed did not exceed 1/16
in., per minute per inch of gage length. The load-
elongation curve was plotted>by an automatic recording
device. After exceeding the elastic limit, the testing
machine was stopped at appropriate strain intervals to
determine the stress-strain relationship at the zero

(7)

strain rate. A typical stress-strain curve obtained
form this type of test is shown on Fig. 2. Table 1
gives the results of all the tension coupon tests, and

Fig. 3 shows the histogram plots for the mechanical

properties of T-1 steel.

From the test curves, it can be observed that

the proportional limit ranges from 0.65 oy to 1.0 Uy with

an average value of 0.82 oy and that the curve is a

straight line after the yield stress, the yield stress being

(6)

obtained by the 0.2% offset method. In order to determine
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a representative stress-strain curve from all the test
results, a method suggested by the Column Research
Council(s) was used. From the proportional limit to

the yield stress, the strain departures from the modulus
line (Fig. 2) for various fixed percentages of

individual yield stress were recorded. For the case

when not enough static points were taken in the transition
part of the stress-strain curve, a method developed by
Cozzone and Melcon(g) was used to determine the transition
portion of the static stress-strain curve; as shown in
Fig. 4, a line OA' is drawn from the origin to the static
yield point (determined by 0.2% offset) and extended to
intersect the fdynamic” stress-strain curve at point A.
To obtain the static stress-strain curve several lines
were drawn as 0B, O0C, 0D and the corresponding static
points B', C', D' were determined. For example, the
point B' was determined by means of the equation 0B' =

OB x OA'/OA. The curve through B', C', and D' %s the
static stress-starin curve in the transition region.
Dividing the measured strain by ey’ where €y is equal

to cy/E, and averaging all the offset values at the

same stress level, a representative stress-strain curve

in dimensionless form was obtained as shown in Fig. 5a.

The stress-strain curve for T-1 steel can be
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therefore, described by the following three equations:

G ¢ o
—_ = when 0O §:“‘f§£2i?
Sy &y %y
S -, 0 + osos /%é-—ﬁsz)
S _ A , (1)
+ 0. 3047 (}g_ — ,_,5z>
J - -
+ 0. 327¢ (?{ — /,S'.'Z)
J
o
when 0.8 X S 1O
J
and
= . lo+ ooos (£~ r52)
I

g~
Y

A comparison of Eq. 1 with the experimentally
obtained typical stress-strain curve and tangent modulus
curve in the transition region is shown in Fig. 5b. The

accuracy of Eq. 1 is adequate.

~ Several compression coupon tests were conducted
and the results are shown on Table 2. The size of specimen

used for compression tests is in accordance with the

8)

recommendation of -the Column Research Council( and no
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lateral supports were used since the specimen itself was

sufficiently stocky.

It was observed that both the modulus of
elasticity and the yleld stress determined by compression
coupon tests are nearly the same as those obtained from
the tension specimen tests.. However, the compression
tests indicate that the transition portion of the stress-
strain curve has a sharper knee and a higher strain-—
hardening modulus than those of the tension tests. The
difficulty of preparation of specimens and.alignment
make the compression coupon test less desirable. In this
study, because of the limited number of compression
specimen tests conducted, no stafistical analysis could
be performed and the results obtained from the tension
spegimen tests were taken as representative of the mechanical
properties of T-1 steel for both tension and compression,
even though actually they are slightly‘differént from

each other.

2.2 Residual Stress

Due to the importance of the effects of residual
stress on the behavior of structural members, especially

compressive members such as columns, much research has
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been carried out in this fieldiduring the pasf decade.
Residual stresses are a consequence of the plastic
deformation of material; the sources of this plastic
deformation can be many, such as thermal stresses due
to uneven cooling of various parts of the structural

shapes, cold bending or straightening of the member.

During the cooling process for a rolled section,
there is usually more area of surface in contact with the
cooling medium, either air or liquid, at the edges of
the section than at its center. This causes a faster
cooling rate at the edges and normally forms compressive
residual stress there and tensile residual stress at the
center and junctions. For a welded built-up section,
welding causes temperatures to rise rapidly in the region
near the deposited weld while most of the remaining
portion of the section is unaffected. However, when the
weld-affected zone starts to cool, the rest of the section
gradually rises in temperature. The whole section on
cooling to the ambient temperature experiences non-uniform
thermal changes that cause nonhomogeneous plastification,
and thus the formation of residual stress. Residual
stresses due to welding or cooling from rolling are
simply thermal stresses remaining when the material has

cooled to ambient temperature.(lo)
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The theoretical analysis of thermal residual

stress has been studied extensively, as for example,

(11) Gruning,(lQ) Rodgers

,(15) Estuar,(lé) and

by Boulton and Lance Martin,

and Fetcher,(lB) Weiner,(lu)

Alpsten.(l7) However, the difficulty of theoretically

Tall

predicting thermal residual stress in plates or shapes

is due fo the uncertainty of many variables which affect
the'temperature distribution and thermal stresses.
Thérefore, to simplify the problem for theoretical
analysis, quite a number of assumptions, sometimes far
removed from reality, must be made.(ls) Consequently,
theorefically obtained values of residual stress generally
do not give satisfactory correlation with the actual
measurements. Furthermore, other kinds of residual
stresses such as those due to cold bending or rotary
straightening may exist together with thermal residual
stress, complicating the theoretical ahalysis even further.
This has lead to reliance on actual residual stress

measurements.

The program for the investigation of‘residuél
stresses in T-1 steel shapes and plates consisted df
three parts, all experimental: (1) residual stresses in
T-1l constructional alloy steel plates,(ls) (2) residual

(19)

stresses in welded built-up T-1 shapes, and (3) residual
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stresses in rolled heat-treated T-1 shapes.(QO)

All specimens for residual stress measurement
were sufficiently long so that a uniform state of stress
existed in the portion where the residual stresses were

7)

. . (
measured. The method of "sectioning" was used for the
measurement of residual strains, because it is simple

and gives the average strain within the gage length.

Residual Stresses in T-1 Constructional Alloy Steel
Plates

The plate siées tested were selected so as to
represent the component parts of commonly used built-up
members. The plates chosen encompassed a range larger
than any hitherto tested in any simple program. Table

3 summarizes the plate dimensions and the tests conducted.

The plates were cut to a specified size from
wide plates by flame-cutting. The blates tested included
unwelded plafes, center-welded plates and plates welded
along one or both edges, the latter two simulating the
components of welded built-up H- and box-shapes. Manual
shieldgd-metal-arc welding processes were employgd. The
electrodes used for most of the manual welds were E70

series, which are commonly used in industry and,
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correspondingly, the wire and flux combination used was

ll

L70 and L840 for automatic submerged-arc welding.

For determination of possible differences in
magnitude and distribution of residual stresses due to
the use of different electrode types, a higher strength
electrode also was used. Automatic welding, using L10O
series with 709 flux, was performed on Plates T-5-5 and

T-5-6.

The plates were welded by professional welders
in the welding shop of a large industrial plant and the
information related to welding was recorded, such as
voltage, amperage, speed of electrode travel, type of
electrode, and position of beads. Table 4 gives the

I

detailed information.

The results(le) of residual stress measurements
indicate that for most of the plates the residual stresses
at the top and bottom faces were different but that the
difference was so small compared to the yield strength
of the material that the average value could be used.

The results obtained are présented in a tabular form in
Tables 5, 6 and 7, where the values of residual stresses

are the averages of both top and bottom faces of a plate.
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For as-cut unwelded plates, the residual
stresses result from flame-cutting and other fabrication
prdcesses. Residual stresses in 6" x 1/2" and 12" x 1"
plates, with flame-cut unwelded plates included, are
shown in Figs. 6 and 7 as an illustration. For plates
of different size and welding method, the patterns of
residual stress distribution are similar. Table 5
shows the fesidpal.stresses distribution in all the as-
cut unwelded plates measured. The maximum compressive
residual stress is in the range of 3 to 10 ksi, and
the average is approximately 6 ksi. The average
maximum compressive residual stréss for plates wider
than 12 in. 1is approximately 4 ksij; this average
compressive stress extended across 60 to 95% of the
plate width. The maximum tensile residual stress is at

the edges and ranges from 26 ksi to 86 ksi.

In Figs. 6 and 7, the distribution of residual
stress across the width of center-welded plates of sizes
6" x 1/2" and 12".x 1" are shown. The salient dimensions
ofvthé residual.stress distribution and the average of
top and bottom face measurements are given in Table 6,
Tensilé residual stress were observed at the flame-cut
edges and at the weld in center-welded plates. The

compressive residual stress have a maximum of about 24 ksi
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in plates welded by automafic welding, and a lower value
of 16 ksi for plates welded manually.  The average
compressive residual stress varies from 6 ksi to 18 ksi.
The highest tensile pesidual stress was found to be

about 84 ksi at the weld.

For edge-welded plates the results are shown
in Table 7 and in Figs. 6 and 7 for two typical plates.
The maximum compréssive.residual stress obtained is 20
ksi, with 10 ksi as the average. The tensile residual
stresses at the welded edges are comparatively high,
attaining the yield strength in the weld, approximately

80 ksi for most plates.

Comparing the results obtained, it was found
for welded plates, that neither weld size, electréde
strength, the condition of manual or automatic welding,
nor number of weld passes, have a significant effect on
the shape and magnitude of reéidual stress in plates. The
distribution of the residual stress in T-1 plafes-may be
represented very closely by straight lines as shown in

Tables 5, 6, and 7.

Residual Stresses in Welded Built-up T-1 Shapes

(19)

Five shapes were included in the study. Two
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of the shapes were welded H-shapes from flame-cut plates;
one shape was welded from sheared plates; and two shapes
were box shapes welded from flame-cut plates. Table 8
shows the shapes tested and their dimensions. The welding
was carried out by the automatic submerged-arc-weiding

procedure utilizing Lincoln L70 wire and L840 flux.

The pattern of residual stress distribution
obtained from measurements are presented in Figs. 8 and 9.
The resuits for welded H-shapes are the readings of both
top and bottom faces, whereas the readings shown for box
shapes are the outside face reading only. Two sets of
measurements taken from different sections are presented
for each shape; these show that there is.little variation
in residual stress along the length of the shape. Table

9 gives a summary of results.

Figure 8 shows the residual stresses for the
welded H-shapes. The pattern of residual stress distribution
has tensile residual stresses at the junction of flange
and web and at the.flange tips, and compressive stresses
over the rest of the shapes. Fig. 9 shows the residual
stress distribution for welded box shapes; tensile residual
stresses exist near the junctions and compressive residual

stresses over the remaining area. The magnitude of
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compressive residual stress appears to be inverse to
the width-thickness ratio of the component plates, that
is, the more stocky the plates, the higher the compressive

residual stress.

Figures 10 and 11 show the residual stress
distribution measured in the 6H27 welded shape and the
6 x 6 welded box shape, respectively, and they are
compared with the residual stress distribution in plates
subjected to similar welds at the center op edges. It
is seen that both the magnitude and pattern of residual
stress are similar; this indicates that residual stresses
in component plates give a close representdtion of the
residual stresses in the welded shapes themselves if the

dimension of the plate elements are similar.(lg)

Residual Stresses In Rolled Heat-Treated T-1 Shapes

Nine rolled and heat-treated T-1 steel shapes
varying from light-weight shapes to medium-weight shépes

(20) Representétive shapes

were included in the study.
were chosen so that the results obtained would enable
the prediction of the residual stresses in other wide-

flange shapes in this medium-size range. Table 10 lists

the shapes tested.
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Some of the residual stress measurements are
shown in Fig. 12. A typical residual stress distribution
has compressive stress at the flange tips and tensile
stress at the junctions of flanges and web. The maximum
value of compressive residual stress is about 8 ksi for
all shapes investigated. The average compressive residual
stress at flange is about 3 ksi for shapes with flanges
less than 1/2 in. in thickness and about 4 to 5 ksi for
shapes with flange thickness more than 1/2 in. The
maximum compressive residual stress in the web is
small also, less than 5 ksi. The average for the light
shapes is between 1 and 2 ksi and slightly higher for the
heavier shapes, between 2 and 3 ksi. The tensile stresses
in the flange center and web ends do not exceed 5 ksij
the average for all shapes is between 2 and 3 ksi. The
average values of residual stresses in the shapes

investigated are tabulated in Table 11.

Figure 13 shows the residual stresses in a 8WF§1
shape for foﬁr different steels, including that for T-1
steel. The pattern of the residual stress distribution is
similar, especially in the flange, which has the greatest
effect on column strength. The difference in magnitude
is most pronounced for the T-1 steel shape as compared

to the other three shapes. The magnitude of residual
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stress iﬁ T-1 steel shape is only one third to one-half
that observed in the other steels. fhe heat-treatment
after hot—rolling lowers the magnitude-of residual
stress and, thus, low residual stresses may be regarded

as characteristic of rolled T-1 steel shapes.

2.3 Summarz

The results of the experimental investigation
on the residual stress distribution in T-1 steel plates
and shapes, welded and rolled, .can be summarized as
follows.(ls’lg’QO)

1. Residual stresses.in the component plates
give a close representation of the
residual stresses in the welded shapes
themselves, provided the relafive sizes
of plate elements are ﬁearly the same.

2. Flame cutting and edge welding cause
tensile residual stress.at the flame-cut
or welded edge.

3. Geometry is the major influence on the
magnitude and distribution of residual
stress. Weld size, e;ectrode strength, the

condition of manual or automatic welding,

and the number of weld passes, have little
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significant effect on the shape and

magnitude of residual stress in plates

or welded built-up sections.,

Welded built-up shapes have residual

stresses considerably higher than those

in the rolled shapes. i

For rolléd steel shapes, the magnitude of‘
residual stress is independent of the yield
stress of the material; that is, regardless

of which steel a shape is made, the magnitude
of the compressive residual'stréss at the
flange edges is approximately the same. Heat-
treatment may lower the magnitude appreciably,
as in T-1 steel rolled shapes which have a
compressive residual.stress at the flange edges
of about 5 ksi,

Patterns of residual stress distribution in
roiled heat-treated T-1 steel shapes may be
represented by straight lines as shbwn in Fig.
lua.b

Welding residual stresses in T-1 steel shapes
may be approximated by several straight lines,
with the tensile residual stress approaching.
the yield stress of the weld metal at the weld.

For flame-cut plates, tensile residual stresses
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often exist at the flange tips. The
approximate patterns of residual stress
distribution in welded built-up shapes
are shown in Fig. 14b,.

For plates or sections with a thickness
less than one inch, residual stresses may
be assumed to be the same across the
thickness. For sections with a thickness
greater than one inch, variation of
residual stress through the thickness must
be considered in the prediction of the
column strength,

The variation of residual stress is small
in any fiber along a member which has not
been cold bent or otherwise mechanically

straightened.
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3. CENTRALLY LOADED COLUMNS

3.1 Introduction

Since the publication of Shanley's papers,(2l’22’23)

the tangent modulus load has been recognized as the smallest
value of the axial load at which bifurcation of equilibrium
can occur, It was shown that, immediately after the tangent
modulus load, the column can sustain increasing axial load
with increasing deflection. Thus, the actual ultimate load
of a perfectly straight column will be somewhat higher than
the tangent modulus load. Because of the inevitable initial
out-of-straightness of the columns, it has been found that
if the initial out-of-straightness is smail, the ultimate.
load usually is close to the tangent modulus load. For this
reason, the tangent modulus 1load has been considered as the

design criterion for a centrally loaded column.(23’2u)

Much research has been carried out on the column
buckling strength analysis in the past decade. The most
significant contribution of these previous inveétigations
is the discovery and recognition of the importance of the
influence of residual stresses on column strength.
However, almost all of this research was restricted in
application to méterials having an elastic perfectly-

plastic stress-strain relationship. For other materials
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which exhibit a nonlinear type of stress-strain
relationship, the residual stress effects either were
neglected, or else accounted for by means of an

empirical formula. Nevertheless, residual stresses do
influence the buékliné strength of columns made of
materials with a nonlinear type stress-strain curve. The.
study reported here is devoted to an investigation of the
strength of T-1 steel columns, considering the combined
effects of residual stresses and the nonlinearity of the
stress-strain curve. Theoretical column curves were
developed based on the average residual stress distribution
measured in the medium size shapes, and on mechanical
properties obtained from tension specimens. The results
of theoretical analysis were compared with full scale
column tests, and design suggestions for T-1 steel

columns were made.

3.2 Theoretical Analysis

Several customary assumptions are made in the
theoretical analysis:
1. The column is initially perfectly straight.
2, Plaqe sections remain plane before and
after bending.
3. The stress-strain relationship in any
"fiber" of the column is the same as that

observed in a tensile coupon.
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4., The magnitude and pattern of distribution
of residual stress are the same at aﬁy
cross-section of the column.

5. The effect of shear deformation is
neglected.

6. The external load is applied axially to
the centroid of the cross section causing
uniform strain over the cross section and
through the whole length before bifurcation.

7. The cross section is constant along the
length of the column.

8. The cross section is of such profortion
that the possibility of torsional buckling

can be precluded.

An initially straight axially loaded prismatic
column will maintain its straight configuration up to a
critical load at which it can be in equilibrium in either
a straight or slightly bent position. Based on the

(22) at the instant of bifurcation,

Engesser-Shanley theory,
the requirements of equilibrium of internal and external

forces are (see Fig. 15)

Jdd‘.dﬁ = O

and ' (2)

{AUTJ(M" P
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‘

where Ao is the increment of stress located a distance

y from the neutral axis (or the axis of constant strain).

"P is the external axial force and v is the deflection

in the direction of axis y. For an infinitesimal amount

of bending the increment in stress predicted by small

deflection theory is

bo- = ¢ L.y = — a4 (3)

Here‘Et is the tangent modulus corresponding to the axial
stress at the point. Substitution of Eq. 3.2 into 3.1

yields the expressions

J £ yad

A

and dZV / 2 |
S

in which x 1is the coordinate along the length of the column.

o .

i

(4a)

¥

o (4b)

From Eq. 4a the location of the neutral axis

is determined. For a symmetrical section with a symmetrical

- residual stress distribution, this axis coincides with one

of the principal axes of the section.
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The critical ‘load Pcr is obtained from Equation

4 as | 7,;,/_f¢ﬂzﬂ'

(PP = 7r Ll — (5)-

where L is the effective length of the column.

The buckling strength of a column depends on the
tangent modulus of each elemental area and therefore is
a function of residual stress distribution as well as

mechanical properties.

If the column remains in the elastic range up
to the critical load, then Et = E over the whole cross

section and the critical load is the Euler 1load,

2 | ‘
éi = n 1522 (6)
z

In the presence of residual stresses, the tangent modulus

may vary from point to point on the section for a stress-
strain relationship of either the elastic-perfectly- plastic
or the non-linear type. The calculation of critical loads
becomes much more complicated. If the notation Im, effective

moment of inertia, is introduced,

: £ ]
I = /z__i Y dA (7)
A .
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then,
(8)

The numerical method of computing Im at'a given
P level was developed for columns of H- or box cross
sections, containing either cooling or welding type residual
stresses. The stress-strain curve of the material is
assumed to be of either the non-linear type or the
elastic-perfectly-plastic type. Howe&er, the method is,
by ifs nature, applicable for colﬁmns with any kind of
residual stress distribution and stress-strain curve,

‘and it is suitable for computation by a digital computer.

As shown in the foregoing section, in order to
evaluate the buckling load Pcr’ the effective moment of
inertia Im must first be calcﬁlated. Here Im depends on
the residual stréss distribution, the magnitude of applied
force, and the stress-strain relationship of the material.
Generélly, it will not be practical to calculate Pcr

directly;(Qs)

instead, the equivalent length L is determined.
The numerical computation is accomplished as follows:
1., Divide the section into a sufficient number

of finite area meshes ‘as shown in Fig. 16.

2. Record the residual strain at the center of
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each mesh (assuming the residual stresses
distribﬁted over each mesh are uniform and
the same as that at the center point of
fhe mesh).

3. Assume a uniform strain applied to the column.
The total strain at a point is equal to the
residual strain plus the applied uniform
longitudinal strain.

4. TFrom the tangent modulus strain equation and
the stress-strain equation, determine the
tangent modulus and the stress, respectively,
corresponding to the total strain in each
mesh determined in step 3.

5. Sum up the internal axial force on all the
meshes P ='~/”AO;¢%4 and compute the modified

7
moment of inertia Im from Eq. 7.
6. Compute thg equivalent column length for the

calculated P and Im

(9)

7. Increase the applied uniform longitudinal
and repeat steps 1 through 6 until the entire

column strength curve is obtained.
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For dimensionless analysis, Eq. 9 can be rewritten in

the form

H ]_—‘.—-
N L )T Lo /A
- 77' £ ~ er / (10)
%

The function 7\ defined by Eq. 3.10 will hereafter be
referred to as slenderness function. The dimensionless
analysis in this fashion eliminates the machanical
propérties, such as oy and E, in the computation. Only
.the shape of the stress-strain curve, and the pattern
and the ratio of residual stress distribution remains as

variables.

The numerical computation was carried out by
means of a digital computer and all of the prégraﬁs were
written in Fortran IV language. Programs were prepared
for rectangular, box- and H-columns. For symmetrical
sections with symmetrical residual stresses, the cases
considered here, only one-quarter of the section need be
used in the computation for the buckling strength of

columns.

3.3 Experimental Program and Test Results

Sixteen T-1 steel columns were tested under

(26)

pinned-end conditions and one 5Ni-Cr-Mo-V steel was



=

290.16 -33

(25) (25)

tested under a flat-end condition.
as shown in Table 12, included rolled H-shapes and welded
H- and box-shapes. The slenderness ratios of columns
were selected in such a way that the columns would buckle
in the inelastic range; that is, L/r varies from 30 to 60.
Most columns were tested with restraint in the strong

axis direction, and so were bent with respect to the weak

axis.

The set-up of é typical column test is shown
in Fig. 17. The strain readings at the ends and at sixth
points along the column were recorded by SR-4 electrical
strain gages. The deflection at mid-height was measured
by a mechanical dial gage and the deflection at every
sixth point was measured by a theodolite. End rotations
were determined by two level bars mounted respectively

) 27
on the top and bottom base plates.( )

Alignment was performed before the starting
of testing., The alignment was based on the four corner
strain gages at each end of the specimen and at mid-
height. The alignment was considered satisfactory if
the deviation of any of the four corner gage readings did
not exceed 5 per cent of their average value at the maximum

alignment load. This criterion was applied at each of

The test program,
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(27)

the three control sections.

The test was started with an initial load about
1/15 to 1/10 of the calculated ultimate load capacity
of the column. Besides recording the data, a point-by-
point plot of the load-deflection curve and load-strain
diagram were made as the testing proceeded. The 1load
was applied in appropriate increments as determined by

the load-deflections curve.

The test maximum loads were compared with the
theoretical tangent modulus loads. The theoretical
column curves determined were based on the residual stress
distributions obtained from the average of all the actual
residual stress measurements. The measurements of residual
stresses were conducted on plates or shapes with thickness
less than, or equal to, 1 inch. The theoretical column
curves so obtained are limited in scope to "thin"
welded H- or box- section of T-1 steel, either heat-
treated rolled or welded built-up, with thickness less
than 1 inch, and to "small size" shapes with flange width
or web depth less than 10 inches. It is anly in this
range that sufficient data is available to ensure the
idealization of residual stresses from which the theoretical

tangent modulus strength was determined.
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The patterns and magnitude of the idealized
residual stress distribution for welded and rolled H-
shapes and for welded box-shapes, all of T-1 steel,

are shown in Fig. 18.

Figures 19 to 22 show the comparison between
the results of theoretical analysis and the test

points.(25’26)

For those columns bent about thevweak
axis, that is, the principal axis parallel to the web
plate, and for équare box columns, good correlatioh'
exists between the results of the theoretical analysis
and tests. However, for the one welded H-shape column
tested by bending with respect to the strong axis, a
large discrepancy is observed. It was noticed during
this‘teét that thisting of the column preceded the
unloading, and therefore, caused somewhat of a reduction
of the column strength. However, since only one column

was tested about the strong axis, the results are by no

means conclusive.

3.4 Design Implications

Because all the experiments except one were
carried out for either H-shaped columns bent about the

weak axis or for square box-shape columns, the design
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suggestions stated here are applicable only for weak

axis bending of H-shapes or for square box-shapes.

The residual stresses in T-1 or S5Ni-Cr-Mo-V
steel shapes, either welded or rolled, are smaller than
those in the same shapes of mild steel, especialiy when
compared on a nondimensional basis. This gives a>‘
smaller influence on the reduction of column strength
due to residual stresses for T-1 steel shapes than for
their counterparts of mild steel, This is true even
though the nonlinearity property of the stress-strain
relationship of T;l steel causes somewhat of a reduction
of column strength at certain ranges of slendernéss ratio.
The overall reduction is still less than that for mild
steel columns. -As shown in Figs. 23 and 24, the ultimate
loads of T-1 steel columns are compared with those of A7
steel. T-1 steel columﬁs are considerably stronger than
A7 steel columns, especially for welded shapes.

|

The "CRC column strength curve", which also
serves as a basis for the allowable column stress in the
AISC Specifications, was originally derived based on a
compressive residual stress arbitrarily assumed equal

to 0.5 oy for A7 steel rolled wide flange shapes. It
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exhibited good correlation with test results of hot-
rolled WF shapes of mild .steel. Nevertheless, the CRC
column curve does not give a good prediction of column
strength of welded shapes made of mild steels. The
difference between them could be as much as 30% below

the values predicted by the CRC column curve.

However, for welded shapes of T—i steel, most
-of fhe test points are either close to or above the CRC
column curve. This indicates that the CRC curve may be
regérded as being applicable to welded T-1 H-shapes bent

about the weak axis and to welded T-1 box-shapes.

For rolled shapes, T-1 steel H- columns bent
about the weak axis are generally stronger than columns
of mild steel, as shown in Fig. 24, and therefore their

strengths are higher than those predicted by the CRC

column curve. A curve which fits the test results is
iven b
g Y —Z 2
i ) e
T o= T - =L e
‘v N cplF \ro
or (11)
Cr - / - /, \,\2_
—_— ——
%y o

This equation may be considered as the column design basis for

rolled T-1 steel shapes bent with respect to the weak axis.
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4, LOCAL BUCKLING

4,1 Introduction

Local buckling may be defined as the bifurcation
of equilibrium of adjacent theoretically flat plates into
distorted shapes in their own planes. The efficient design
of a column requires a cross section with comparatively
thin plates, and thus, local buckling may increase in
significance as steels of higher yield point are used.
Hence, consideration must be given to the stability of
plate elements so that the most economical cross section

can be designed.

The buckling load of plates may be suﬁstantially
different from the ultimate load which the plates can
carry, as opposed to a column for which the buckling load
has been found to be of a magnitude similar to the ultimate
load, for practical éonditions. Plates may be able to
sustain loads in the buckled state, with ultimate loads
considerably exceeding the buckling load. However, the
difference between the buckling load and the ultimate
load becomes significant dnly for relatively thin plates;
the plate elements of struétural steel columns are, on

the contrary, relatively thick. Once buckling occurs in
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plate elements of columns, the sstiffness for axial

compression of the plates is reduced, and this in turn

reduces the bending rigidity of the column, possibly

leading to overall failure of the column. Hence, the

buckling load of plate elements or plate assemblies is
~

more important as a guide for the design of column cross

sections than in determining the ultimate load.

A column cross section consists of a number of
plate elements. Since the plate elements are connected to
each other, a complete analysis of local buckling must be
made for the plate assembly as a unit. If an individual
analysis i1s made for each plate element, the restrictions
at the unloaded edges of each plate must be determined.
However, if such individual analyses are made on plate
elements for several combinations of particular edge
conditions, such as free, simply supported, and fixed, the
results may be useful in estimating the overall buckling
strength of the cross section. Hence, the study of this
investigation includes the analysis of plate elements and

the analyses of plate assemblies.

The local failure of plate elements of a column
is a particular case of plate instability in which the

plates can be considered as simply supported at the two
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opposite loading edges on which the distributed thrust

is applied. The other two edges are frée of loading and
the supporting conditions would be, in general, éither
fixed for translation and elastically restrained for
rotation, or else free. Since exact solutions can be

made for most of fhe cross sections of structural columns,
the following analysis considers only special boundary
conditions at the unloaded edges to obtain buékling
solutions for plate elements. These are the combinations

of free, simply supported and fixed at the unloaded edges.

At the two opposite loading edges the boundary
conditions for local buckling are simple supports. The

boundaries at the other two edges of the plate elements

are either free, when the edge does not meet with the other

plate,bor else elastically restrained for rotation when the
edge intersects with the other plates. In this study, only
rigid coﬁnections, such as joints in rolled shapes and
welded intersections, are considered for the intersection.
Parficular attention is given to column cross sections of

box-, and H-shapes.

When residual stresses exist, the stress in the
plate cannot be considered as uniform. The plates may

yield, partially, at a certain loading due to the existence
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of compressive residual stress; thereafter, the plate is
no longer homogeneous. The tangent modulus concept 1is
introduced for the buckling in this state of stress,
namely, that no strain reversal is assumed to occur at the

instant of buckling.

The analytical solutions are not feasible to
solution, in general, without a considerable amount of
effort; consequently, approximate methods must be cOnsidered.
The solutions were oBtained by a finite difference
approximation of the differential equations, A digital

computer was used to obtainthe numerical solutions.

4,2 Theoretical Analysis

The basic differential equation governing plate
buckling, which is applicable both in the elastic and in

the inelastic domain of the plate, is |
E[ (]k z;k’t\)# beaj (]/f,%—zﬁ\ (12)
| +5L(74L%Z——+Ikb“’)]+{ =0
)+ 2 (Ftg.)

(5-4\)13€>—(/—2\))L(i)

k ~ ~ 2,//—\))( )
2 (5-4\)+3€).—-(,_2\)) /:_7:)

[
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4

/
L.oo= _
KS = \Z[ \
(s-avr3e)— (1-20) e
/
A‘( - 24 2V 4 Ze
e = £z —|
‘g

E, Bt and ES are the modulus of elasticity, tangent modulus
and secant modulus, respectively, as shown in Fig. 25; v is
poisson's ratio, The coordinate systems for plate elements
and for plate assemblies are shown in Fig. 26. The
coordinate x is perpendicular to the middle plane of the
plate, y is normal to the thrust and in the middle plane,
and is the coordiﬁate parallel to the thrust and to the
residual stress. When a plate -assembly is considered, a
coordinate system is set to each plate and they are
distinguished by subscript numbers.

Equation 12 was derived by Bijlaard(Ql)(QQ)(23)
for a plate. When a plate assembly is considered, an
equafion can be set up for each plate element forming the

same number of simultaneous equations as the number of

plate elements.

The stress cz is a function of the residual
strain distribution and the strain distribution due to the
thrust. Both of these strain are assumed to be constant

along the z-direction; however, the residual strain may
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vary whereas strain due to thrust is constant, in the y
direction. Since kl througﬁ.k4 are functions of strain
intensities, they are ;lso variables in the y-direction
and thus, function of the coordinate y. Residual strain
distribution in blates, rolled or welded, generally is
compiicated, and therefore an analytical solution for
Eq. 12 is quite a difficult task, if not an impossible

one.

In this study, the governing equation, Eq. 12,

(31)(82) .,

was solved by the finite difference mgthod.
deflected shape of the plate was expressed as a product
function of which one term is a simple known function;

"Eq. 12 was thus reduced to an ordinary differential equation.
The deflected shape of the plate was assumed to be defined
by the following product function which satisfies the
boundary conditions at the loading edges

— WK Cln — Z .
b . L ' ' (13)

Wheré Y is a function of the coordinate y
along and p is the number of half waves in the z-direction.
It is known that the lowest buckling stress can be obtained
by considering a plafe buckling into a half wave in the z
direction; thus, it is necessary to consider only p equal

to 1. Substituting Eq. 13 into Eq. 12, the basic differential
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equation can be shown to lead to the following form, where

the equation is divided by a constant I
d‘/ R W'LIAY)

d
J
7 T 7’2‘_!, dz)/(lu)
4["4.7/ é‘#&fj) LLJ:,Asz

_LT-(_—W;——-&-— ))/_.
L*\ > 1

This differential equatlon, Eq. 14 must be
satisfied at each mesh part in the y direction. This
formulates a number of simultaneous equations equal to the
number of mesh points. The determinant of the simultaneous
equations is set equal to zero to determine the eigenvalues.
For the buckling analysis of a partially yielded plate, the
distribution of stress and stiffness of the material are a
function of the loading and of the residual stress
distribution so that it is easier to solve for a critical
width ratio under a known loading rather than for a critical
load on a plate with known geometry. The detail of the

procedure of numerical computation is described in Ref. 33,

The buckling curves for plates with different
residual stress patterns and boundary conditions which
resemble those of component plates of column cross sections
are shown in Figs, 27 through 30. The figures are plotted

with the ratio of average critical stress to the static
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yield stress as ordinate and with the non-dimensionalized

width-thickness ratio as abscissa.

The assumed residual stress patterns reducg the
buckling strength in all cases‘éonsidered. The reduction
in the elastic buckling strength is rather constant for a
residual stress pattern regardless of the width-thickness
ratio. The sudden jump of the plate buckling curve fér
plates with.welding type residual stress is due to the
penetration of yielding over a large portion of the area

at the same instant.

These figures show also that it is possible for
a plate to buckle with no external load. This phenomenon
was explained for the first time in this study;(au) it
is necessary oniy for a parficular magnitude and

distribution of residual stress to exist, for a particular

b/t ratio.

A critical value of width-thickness ratio exists
in all cases considered; plates with width-thickness ratio
less that this critical value sustain the full yielding
load. The criticai value depends on the magnitude of \

residual stress for the assumed residual stress distribution

~of the cooling type, whereas it is constant for practical
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purposes for the assumed residual stress patterns of the

welding type.

Numerical results of the local buckling analysis
on cross sections can be obtained in a form similar to the
plate buckling curve. However, the fact that there are so
many factors, such as geémetric shape, residual stress
distribution and the stress at which the section buckles,
on which the critical width-thickness ratio depends, makes
it quite difficult to prepare curves which cover a wide
variety of column cross sections with various patterns of
residual stress distributions. Instead, numerical‘results
were obtained for a few cases to illustrate the effect of
residual stresses. Box- and H- sections were selected with
idealized residual stress patterns of the welding type as
shown in Figs. 31, and 32, The assumed patterns are more
severe for local buckling strength than the residual stress
distribution found in medium size welded built-up shapes of
T-1 steel and are somewhat conservative when compared to
thosé found in similar shapes of structural carbon steel.
Thus, the patterns are not intended to predict the strength

of any real column, but are only for comparison purposes.

The analysis is made such that the minimum

critical width-thickness ration of the flange plate is
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obtained as a solution in non-dimensionalized form, with
the given ratio between the widths of the web and the

flange, bw/b and with the given ratio between the

£
thicknesses, tw/tf, where the subscripts w and f denote

the values for web and flange plates, respectively.

The results are obtained in the same form as the
plate buckling curve demonstrated in Fig. 31 for a box-
section. The reduction of buckling strength due to the
presence of residual stress is similar to that found for
the buckling of plates with residual stress. Figure 32

shows the reduction factors for some box- and H- sections.

Since the critical width-thickness ratio can be
obtained without much difficulty for column cross sections
free of residual stress, or found from the literature(ss)(se)
tabulated for most of the practical column cross sections,
the reduction factor makes it possible with a simple

multiplication to determine the critical width-thickness ratio

of column cross sections containing residual stress.

4,3 Test Program and Results

A series of two welded square box-columns of T-1

(37)

steel were tested. The section was selected to simulate
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the plates simply supported at the unloaded edges. The
lengths of the test columns were chosen such that column
buckling could not occur (upper limits), and at the same
time, such that the end disturbances would not affect the
plate buckling behavior of the test section as well as the
distribution of residual stresses (lower limit). The
width-thickness ratios of the specimens were selected such
that the critical loads were reached in both the elastic
range and in the elastic—pléstic'?ange. Two identical
specimens were cut from a long fabricated piece for both
shapes, thus a total number of four specimens were tested.

Table 13 shows the detail of the specimens.

Prior to the buckling tests, tensile coupon tests
apd residual stress measurements were carried out. The
static yield stress had average values of

116 ksi for specimens T-1A and T-1B and

104 ksi for specimens T-2A and T-2B.

Figure 33 shows the distribution of residual
stresses in the specimens, from which . .the following average
values of non-dimensionalized compressive residual stresses

were obtained.
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g
orc = 0.12 in specimens T-1A and T-1B and
C Yy
5 = 0.16 in specimens T-2A and T-2B.
y

Local buckling tests were made under the "as-
placed" condition ih an 800 kip screw-type universal
testing machine. The ends of each specimen were milled
to aid in the alignment of the column. The end fixtures
consisted of a flat plate at the base and a plate with
a set of wedge disks at the at the top. The set of disks
was used for alignment so that all four component plates
were loaded uniformly. Thus, each component plate satisfied
conditions of simple supports at the unloaded edges. The
deflection was measured at the center of the width of each
side plate and at quarter points of the width for two plates

on the opposite sides. The test set-up is shown in Fig. 34.

The critical stresses were determined by the so

called "top of the knee method"(ss)

from the load-deflection
relationship of the test specimens., - Test results are

summarized in Table 14 and compared with theoretical

predictions in Fig. 35.

The specimens T-1A and T-1B, which buckled in
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the elastic region, showed good agreement with the
prediction, (with a slightly lower stresé). Two
theoretical predictions were made for specimens T-2A

and T-2B, which buckled in the elastic-plastic range; one
based on the total strain theory of plasticity and the
other based on the incremental theory. The incremental
theory predicted no buckling until the specimen reached
the yield load, whereas the total strain theory predicted
92% of the yield load. Although both predictions were for
loads higher than the test results, the difference is very
small for the prediction of the total strain theory. It
can be concluded, therefore, that the experiments
correlated with the theoretical prediction of elastic and
elastic-plastic buckling of steel plates with residual
stresses, except for the prediction based on the incremental
theory. The lack of correlation of the incremental theory
was expected from the results of experimental studies on

aluminum-alloy plates.(30)(36)

The test results of both critical stress and
ultimate strength are also plotted on the plate buckling
curve in Eig. 36, together with the results of similar
tests on A7 square tubes given in Ref. 34. The non-
dimensionalized comparison of test results in Fig. 36

shows that the welded T-1 plates are stronger than similar



290.16 ' -51

plates of A7 steel. This is to be expected from the study
on residual stresses, and a similar conclusion was obtained.

for the comparison of T-1 and A7 welded columns.

The specimens T-1A and T-1B buckled in the
elastic range and showed significant post-buckling
strength as seen in Fig. 36. On the other hand, specimens
T-2A and T-2B buckled in the elastic-plastic range aﬁd

had a relatively small reserve of post-buckling strength.

L.y Summarz

This chapter has considered the plate buckling
strength and the local buckling strength of column sections,
both containing residual stresses and locaded into the

(39) Since the coefficients

inelastic range of the material.
of the basic differential equation governing plate buckling
are variables, it is quite difficult to obtain rigorous’
solutions. Instead, solutions are obtained on the basis

of a finite difference approximation to the differential

equation.

Numerical results for plates with various edge
conditions are presented in plate buckling curves of non-
dimensionalized stress against non-dimensionalized width-
thickness ratio. Numerical results of local buckling.

strength were obtained for a few cases.
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A series of four welded built-up rectangular
tubes of "T-1" constructional alloy steel were tested to

substantiate the theoretical results.

The following conclusions may be drawn from this
study for both plate buckling and the local buckling of

columns:(ag)

(1) The finite difference approximation of the
differential equation was found to be powerful in obtaining
the eigenvalue of the basic differential equation governing

plate buckling.

(2) The elastic buckling strength depends largely

on the magnitude and distribution of residual stresses.

(3) The effect of residual stresses on the elastic-
plastic buckling depends greatly on the width-thickness ratio

of the plates.

(4) A critical value of width-thickness ratio
exists; plates with width-thickness ratio less than this
critical value sustain the full yielding load. Based on the
results of numerical analysis, it is found that the AISC
specifications for critical width-thickness ratios can be

extended directly to T-1 steel shapes, rolled or welded.

(5) The incremental theory of plasticity predicts
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a much higher critical width-thickness ratio (and
consequently a much higher critical stress) than the

total strain theory.

(6) The comparison with the tests shows
correlation between the theofetical reéults and the test
results; for»elastic;plastic buckliﬂg, the fheoretical
results based on the total-strain theory give good
correlatidn with the experimentai results, but the results
based on the incremental theofy predict a much higher

critical stress.

(7) Comparison of experiments on welded square
tubes shows that the tubes of T-1 steel are stronger for
local buckling than those of A7 steel when compared on a

non-dimensionalized basis.

(8) The square tubes buckling in the elastic
range showed a significant post-buckling strength, while
the tubes buckling in the elastic-plastic fange had a

relatively small reserve of post buckling strength.
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5. BEAM-COLUMNS

5.1 Introduction

A beam-column may be defined as a member which
is subject to forces producing significant amounts of both

bending and compression. The bending moment in the member

may be caused by externally applied end moments, eccentricity

of longitudinal forces, initial out-of-straightness of

axially loaded columns, or transverse forces in addition to
Y axial forces and end moments. Several typical beam-columns
are shown in Fig. 37, 1In this study, only the types of
beam-columns which are subject to constant concentric axial

forces and end moments are discussed.

The ultimate strength analysis of beam-columns

was first treated as a stability problem by Von Karman.(uO)
He suggested a double integration procedure which was based

~on-the equilibrium and the compatibility conditions of all
the sections along the member, and this‘established the
theoretical background for all the subsequent analyses of
beam-columns. However, Von Karman's exact concept was
difficult to apply to practical problems without the

facilities of fast calculating-devices., Consequently,

approximate solutions, either by assuming a certain function
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for the shape of a deflected member or by simplifying

the mechanical properties of the real material, were
presented by Westergaard and Osgood(ul) and by Jezek.(ug)
Von Karman's work was exﬁended by Chwalla who, in a series
of papers published between 1928 and 1937,(43) presented
the results of analyses of beam-columns of several
different cross-sectional shapes subjected to eccentric
loads. Chwalla's most significant contributions were

the establishment of the foundation for the concept

of columﬁ deflection curves.(uu) Twenty years passed
without significant progress beyond Chwalla's york.

In the past decade, by means of electronic computers,
investigations of the behavior of beam-columns have been
extended to provide more extensive analyses which include
the effect of residual stresses. The analysis of beam-
columns has been accomplished essentially in two ways.
One is to consider straight members subject to
longitudinal loads with a constant eccentricity, or else
td consider initially érooked members subject to axial
forces at the ends. Recent developments in this type of

approach include the contributions of Batterman and Johnston,(qs)

(46) (47) The other

Malvick and Lee, and Birnstiel and Michalos.
approach to beam-column problems is that in which the

axial force is assumed to be held constant and the end
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moments or transverse loads are varied. Dealing with
beam-column problems in this sense permits the use of the
concept of column deflection curves for the determination
of the load-deformation and other needed relationships

. : . . . (uy)
in the design of beam-columns in multi-story frames.
Extensive research on this subject has been carried out at

Lehigh University, the main investigators being Ojalvo,(ug)

. b 3

Lev1,( ) Galambos,(so) Lay,(Sl)(SQ) nd Lu.(5 ) Charts
and tables are available and can be used directly in the
design of beam-columns, with or without sway, in multi-

story frames.(Su)(SS)(SB)

The previous investigations have been limited
to materials with an elastic perfectly-plastic stress-
strain relationship and.restricted to sections with residual
stresses of the cooling—after—folling type. Also, it was
assumed'that during the entire loading history, no reversal
of the strain of the plastified sections is permitted, and
the reversal of curvatures after ultimate loads, that is,
the unloading effect, is neglected. The present iﬁvestigation
studied the behavior of rolled and welded beam-columns made
of T-1 steel. Because of the non-linearity of the stress-
strain curve and the different residual stress distributions,

the behavior of T-1 steel beam-columns could differ

significantly from those that have previously been investigated.
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A computer program was prepared to include not only the

true mechanical properties and residual stresses in the
section, but to include also the effects of strain

reversal and unloading of moments. At present, the

program covers only egqual end moment cases. However, if
desired, it can be modified for the cases of unequal end
moments. - Numerical solutions thus obtained are compared
with the full scale experiments and also with the analytical

. . . L
solutions obtained by extrapolation procedures.(‘1L )

5.2 Theoretical Analysis

A prerequisite for performing ultimate strength
analyses of beam-columns is a knowledge of the relationship
existing between the bending moment and the axidl force
acting on a cross section, and thé résulting curvature.

The basic equations are

/ o dA
]

T/

F}

(i

and / M. (15)

<y dd M,

i

A

_ Here, y is the distance of a finite element area dAVfrom the
bending axis aﬁd g is the stress in‘this element (See Fig. 16).
The stress at each element is a function of strain, and
therefore the stress-strain relationship must be defined first,

Generally, the monotonic stress-strain relationship can be
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described well by the data obtained from a tension specimen

tesf, and recorded or represented by a mathematical equation,
ST = 'fr\(ZE/) (16)

Howevef, if the stress-strain relationships are history-
dependent, Eq. 16 is invalid if the strain reverses. In
this study, the incremental stress-strain relationship is

given by (as shown in Fig. 38)

@“:/fw%) #P £=5%

_ * . e )
S Zf/é};) for—SELE ()
< o= '—-J[I(éi) J;r‘ é:‘( __E;¥

H

o

in which 0% and €% are the largest compressive stress and
strain to which the material of any element has been subjected.

The sign convention used here is plus for compression, and

minus for tension.

The total strain at any point in a loaded beam-
column is composed of a residual strain (er), a constant

strain over the entire cross section due to the presence

of axial load (GC) and the strain due to curvature (€¢),
that is
¢ = .+ é. + E 4
(18)

Here, é‘¢ - ({f ¢ _ (19)
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Aﬁhgre § is the curvature at the.section under consideration.

When the stress-strain relationship is known, it is obvious
that if P is specified, and by assuming a value for the
curvature $, the corresponaing Mi can be determined by
satisfying both Equations 15. If the axial force is applied.
first on the member and held constant through the whole
loading process, a moment-curvature relationship can b¢€

established.

The numerical procedure for the determination of
the M-P-#%* curve is a trial- and -error process. For a
given residual stress distribution, €r is known; and for
the given curvature @, egyis_known. By assuming an €
value for the whole crosg.section, the total strain, and
therefore the.stress, at each element area is determined.
The summation of total'iﬁterﬁal'fdrces must be equal to
the given'P, otherwise €_ must be revised until Eq. 1l5a
is satisfied. Then, the corresponding Mi can be evaluated
by means of Eq. ;Sb.' By increasing the value.of # and
repeating the calculation, a complete moment-curvature

relationship can be determined for a specified axial force,

P.

In this study, the stress-strain relationship

%*M-P-f denotes moment-thrust-curvature.
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of the material and residual stress distribution is
programmed in subroutine subprogram forms. Both the
material properties -and the strain reversal effect are
included. A set of M-P-f curves is presented in Fig. 39.
The section is a welded T-1 steel H-shape built up from
flame-cut plates. The M-P-¢ curves are plotted for P/Py
varying from 0.5 to 0.9. It is clear that for P/Py less
than 0.7 (the proportional limit op/oy is 0.8, and the
maximum compressive residual stress Orc/cy is equal to
0.1), the case in which strain reversal is considered gives
results which are identical to the corresponding one in
which the stress-strain relationship is assumed to follow
the monotonic stress-strain curve only. However, for P/P
larger than 0.7, significant differences are shown for the
two cases. Therefore, the influence ofvstrain reversal
is pronounced if‘the section exhibits a combination of
compressive residual stresses and thrust which cause
yielding immediately after thrust is applied.
°

In addition to the effect of strain reversal; the
pattern of distribution and magnitude of residual stress
also change the shape of the M-P-@ curve. Figure 40
presents three types of residual stress distributions
which represent the idealized residual stresses in (A) a

rolled low carbon steel section, (B) a rolled heat-treated
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T-1 steel section and (C) a welded built-up T-1 steel

shape with flamé—cut plates. If the mechanical properties
are assumed to be elastic-perfectly plastic, the M-P-§
curves for the three types of residual stress distribution
are curves (1), (2), and (4) in Fig. 40. It is noticed

that there are significant differences among them in the
elastic-plastic range. Generally speaking, the M-P-0

curve for the rolled structural carbon-steel section, which
has the largest compressive residual stress ratio (Grc/cy)
among the three, exhibits a smoother knee whereas the rolled
heat-treated T-1 steel shapes, for which the compressive
residuél stress ratio is {he smallest and thus residual stress

effect the least, show a sharper knee.

Furthermore, aside from the effect of residual stresses,
the mechanical properties also play an important role with
the M-P-@§ curve. Again in Fig. 40, curves (2) and (3) are

the M-P-@ curves for sections with identical residual stress

distribution but different mechanical properties; one is of

" the elastic perfectly-plastic type and the other is

representative of T-1 steel. TFTor material with a non-linear
type of stress-strain curve, such as that of T-1 steel, the

M-P-@ curve is lower in the kneé portion than that for which
an elastic perfectly-plastic stress-strain curve is assumed.

However, for curvature greater than that at the end of the
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Knee, curve (3) is above curve (2), due to the strain
hardening property of the T-1 steel. Curves (4) and (5) are
also presented in Fig. 40 for welding type residual stresses

and a similar behavior is observed.

It should be noticed here that all the values shown
in Fig. 40 are in non—dimeﬁsional form. For elastic perfectly-
plastic materials, a yield stress and yield strain indeed
exists. However, for T-1 steel, all the values are based on
a nominal yield stress determined by a 0.2% offset and a yield
strain that is equal to Oy/E. Naturally, the yield strain so

defined 1s not the strain corresponding to the yield stress.

For most practically used beam-columns, the internal
moments for a large portion of the member are within the
kneé range of the M-P-8@ curve during the loading process.
Therefore, the shape of the knee has a pronounced influence
on the load-deformation relationship and the ultimate
strength of the beam columns. This leads to the emphasis
on the Basic aésumptions of.the residual stress distribution
as well as of the shape of the 'stress-strain curve and of
the strain reversal phenomenon in the case when thrust is
applied first and yielding occurs before the application of
moment. The assﬁmption that thrust is applied beforé the

moment corresponds approximately to the actual behavior of
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multi-story frames in which most of the axial forces in
the columns are due to the dead load, and moments are due

~to the live load.

In the general design practice for planar structures
it is often sufficient to know the ultimate strength of
beam-columns. However, in plastic design, especially for
multi-story buildings, it is necessary to determine the

(4u)

maxihum moment of a joint of a subassemblage. Therefore,
not only the ultimate moment capacity but also the complete
load-deformation curve of each individual beam-column must
be known. The most practical and useful way of presenting
the load-deflection relationship of a beam-column is the
end moment vs. end rotation curve. A numerical method was
used to determine the end moment vs. end rotation
relationship of a beam-column. The procedure for numerical
computation is outlined as follows:(57)
1. Subdivide the length of the member which is

‘under a constant thrust into n integration stations

as shown in Fig. 4la. The distance between any

two adjacent stations on the deflected member is

A (=L/(n ) (approximately equal to the arc

-1)
length within the segment).
2., Assume that the segment in each sublength is a

circular arc.
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Assume an end rotation and an end moment
at station 1.

Determine the curvature Ql at station 1
from the M-P-¢ curve. (If present M, is

1

less than the previous maximum Ml, the
unloading M-P-§ curve is to apply).

Deflection at station 2,

= ; -l . .
v, vSin (91 = ¢1 )) |
the slope at station 2, éz = Eﬁ - ¢l c A
The moment at station 2 1is M2 = Ml + Pv2 -
Ml'”n.cOs(e_%g_-x)
N 1 1

Determine ¢2 from the M-P-§ curve, and carry
on the integration in the same manner as from

steps (4) to (6). That is,

- . : _ i S ;
v, = A Sin (Ei'l z 9, A) o+ Viq
e . 6 _ .
SO R I
Ml - Mn i-1 o
- - ' -1
M, = M, + Pv, 7 R S % Cos( 1178951

If the assumed Ml and éi is correct, then at the

nth station, v should be zero, or a given

value, if sidesway is permitted. Otherwise,

decrease M. if Vo is negative, increase M, if v

1 1

is positive, and repeat step (3) to (7) until

v is within a certain allowable error.

<A)
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9. Increase ©. and increase or decrease M

1 1

a certain amount and repeat the whole
process as from step (1) to step (8) until

the complete M-8 curve is -obtained.

The numerical integration procedure suggested
above is essentially the same as that used in the development
‘of CDC*'s., The point of difference is the fact that the
integration is carried out on the deflected shape of the
member for fixed stations. Thus the history of every station
can be recorded, and the unloading effect can be taken into

account.

The interaction curves between P/Py and M/Mp for
equal end moment conditions (symmetrical bending) are shown
in Fig. 42 for slenderness ratios equal to 20, 40, and 60.
Beam-columns of rolled heat-treated shapes show higher
ultimate strength than those of welded built-up shapes.
This can be understood as the consequence of the smaller
effect of residual stresses on the M-P-f curves for rolied
shapes than on those for welded shapes.

'
An approximate solution for the case L/r equal

to 20, which is obtained by extrapolating from the results

%CDC column deflection curve
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obtained from A36 steel beam-columns, is also presented
in Fig. 42, For beam-columns made of steel other than
A36, the slenderness ratio must be adjusted according

to the following formula.(uu)

. 7 o
N :L_> -l_y
Tx 'equivalent er oy‘ 36

The interaction curve determined from this extrapolation
procedure is also presented in Fig. 42, for the case L/r =
20, It is shown that the approximate solution is slightly

lower than the corresponding "exact solution",

5.3 Experimental Investigations

An experimental investigation of the behavior of
beam-columns made of T-1 steel was carried oﬁt.(57) The
program consisted of tests of two full scale beam-columns,
one a rolled 8WF40 shape and the other an 11H71 shape.

The members were tested in an "as-delivered" condition; no
attempt was made to eliminate rolling or welding residual
stresses by annealing. The magnitude and distribution of
the'residual stresses were determined by actual measurements,
and was found to be close to the idealized residual sfress
distribution for H-shapes, as shown in Fig. u40. Therefbre,

this idealized residupl stress distribution was used fof the

determination of beam-column strength. The beam-columns

(58)
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were tested under equal end moment (single curvature)

conditions.

The procedure for testing beam-columns has been
described in detail elsewhere,(sg)(eo) and only a brief

outline is given here for review and completeness.

The general set-up of the beam-column specimen
is shown in Fig. 43a. The horizontal moment arms are
rigidly welded to the end of the column. The sizes of the
beams are comparatively larger than that of the column so
that the beam sections remain in the elastic range during
the whole loading process. Pinned-end fixtures were utilized
to ensure that there are no end moments other than those
imposed by the moment arms, applied at the column ends..  In
Fig, 43a, it can be seen that the axial force in the column
is made up of the direct force applied by the testing
machine, P and the jack force, F. To simulate the situation
existing - in the lowér stories of a multi-story fraﬁe and to
be in accord with the assumptions for the theoretical
analysis, the tests were performed with the axial load held
constant. Thus at each increment of load or deformation,
the direct force, P, was adjusted so that the total force
in the column remained af 0.55 Py’ where Py is the yield

load of the column,
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The direct axial force, P, was first applied on
the column; the beam-to-column joints were rotated by
applying the jack force to the ends of the moment arms. The
column was therefore forced into a symmetrical curvature
mode of deformation. In order to preclude any deformation
out of the plane perpendicular to the strong axis, the
column was braced at the third points by two sets of
lateral braces. The lateral braces used were designed for
the laboratory testing of large structures permitted to sway.(
In the early stages of loading, that is, in the elastic range,
approximately equal increments of moment were applied to the
column. In the inelastic range, comparatively larger
deformations occur for the same moment of moment increment,

therefore, end rotations instead of moment are used as a

basis for loading in order to obtain a complete load-

‘deformation curve with approximately evenly distributed

test points.

At each increment of load or end rotation, the end
rotations were measured by level bars (see Fig. 43b). The

mid-height deflection, in the bending plane as well as out-

lof-plane, of the column was also measured by mechanical dial

gages. SR-4 gages were mounted at the beam and column
junctions as well as at several other locations along the

column, as shown in Fig. 43b, to determine strain distribution

61)
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in the column or to serve as a means for checking moments.
Figure 44 shows the photographs taken at the beginning

and end of the test. The occurrencevof local buckling of
the compressed flange was determined by measuring the
out—of—pléne deformations of the flanges at five locations
in the vicinity of mid-height of the beam-column with an

inside micrometer.

5.4 Comparison Between the Results of Theoretical Analysis

and Tests

The results of the tests can be presénted in the
form of end momént vs., end-rotation curves as shown in
Figs, 45 and 46. In Fig. 45 the M-06 curve for the 8WF4O
T-1 steel beam-column is shown. Figure 46 contains the
M- curve for the 11H71 welded T-1 steel beam-column.

The moments indicated by open points represent the total
applied moment determined from the hydraulic jack load.

The length of the moment arm is the distance‘from the
centerline of the column to the center of the rod to which
the hydraulic jack is connected. The end moments were also
checked by the reading of the dynamometer which is insertéd
in series with the jack and by four sets of SR-4 strain
gages which were affixed to the loading beam, near its
junction with the column. The difference between the moment
readings by these three means are -shown in Fig. #7. It is

apparent that they are rather consistent.
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The length used to compute slenderness ratios
of the columns were the distances between the points of
intersection of the centerlines of the column and loading
beams. For both beam-columns, the slenderness ratio,
L/r, is 40. Because of the stiffness of the joint, the
rigidity of the beam-column near the ends is greater than
that of the remainder of the column., Therefore, the actual
effective L/r is slightly less than that measured.
Comparison of the experimental results with the theoretical
reveals that the testing points are above the theopetically
obtained M-6 curve (Figs. 45 and 46). This discrepancy
is due in part to the fact that the actual slenderness ratio
has been reduced somewhat by the installation of joint
stiffeners and to the fact that the actual stress-strain
relationship determined‘from tension épecimen tests shows
a slightly.higher proportional limit than that of the
average typical stress-strain curve on which the theoretical
analysis was based. The tests are compared also to the
theory in a-plot of Mu/MPC vs. L/rx as shown in Fig. u8.
The difference between theory and test is approximately
5% for both rolled and weided built-up shapes. From Fig. 48
it can also be observed that the difference of ultimate
strength for rolled welded shapes vanishes for low slenderness
ratios. This is appafently because of the fact that the

internal moments in the greater portion of the member dre
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within fhe strain hardening region at ultimate load, and
hence the residual stress effect is insignificant. 1In
Figs. 45 and 46, the local buckling points are shown as

" cross marks. It is observed that there is good correlation
between the local buckling points determined theoretically
and experimentally. Also, it is interesting to note that
for welded built-up shapes the occurrence of local buckling
is at a comparatively larger end rotation than that for
rolled heat-treated shapes., Apparently, this is because

of the higher tensile ;esidual stresses in the welded shape
which increase the value of the critical strain necessary
to cause total yielding of the flange. This indicates

that welding residual stresses can actually increase the
rotation capacity of the beam-column, if the termination of

rotation capacity is taken as the local buckling point.

Furthermore, the initiation of local bucklihg does
not seem to reduce to strength of beam-columns dramatically.
The M-@ curves still follow their original path for somé
distance until pronounced out-of-plane deflections of the
fianges are observed. If further study on the post local
buckling behavior confirms this in the future, the use of

beam-columns may be extended beybnd the local buckling point.
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6. SUMMARY AND CONCLUSIONS

This is a summary report on‘a study of the
structural capabilities of T-1 steel. The mechanical
properties of T-1 steel, and the magnitude and distribution
of residual stresses in rolled heat-treated and welded
plates and shapes were investigated, and applied to
theoretical and experimental studies of local buckling, and

of the buckling of columns and beam-columns.

Even though emphasis has been given to members
of T-1 steel, the analytical methods developed in this study
can be applied to columns or beam-columns of other material
as well, as long as the streés—strain relationship of the

material and the residual stresses in the section are defined.

The reports prepared in the course of this study

are listed in the Appendix,.

The following statements summarize the results
obtained from the investigation:
1. The stress-strain relationship of T-1 steel
can be closely simulated by.three equations;
a fifth order polynominal equation for the

transition range and two linear equations for
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the elastic and strain hardening range,
respectively. The particular characteristic

of this stress-strain relationship is that

no obvious yield plateau is observed. Instead,
strain hardening occurs immediately after the
ending of the transition range, continues until
the tensile strength is reached, and then starts

*
to unload.

The typical pattern and magnitude of residual
stresses in rolled T-1 shapes can be represented
by a triangular distribution with maximum
compressive and tensile residual stress
approximately equal to 5% of the yield stress.
For welded shapes, the tensile residual stress
at the weld is approximately equal to the

yield stress, and the compressive residual
stresses are about 10% of the yield stress;

for flame-cut plates, tensile residual stresses
of about 30% of the yield stress exist at the
flaﬁge tips. The patterns of residual stress

distribution are of a trapezoidal shape.

Geometry has the most pronounced effect on the
magnitude and distribution of residual stress,

as compared to such factors as weld size,

*Recent study conducted by the U.S.Steel Corporation indicates
that two values of strain hardening modulus exist in the stress-
strain curve-one, as shown in this report, immediately after
yielding and another larger one between.%; equal to 5 and 8.
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number of passes, electrode and welding method,

The shape of the stress-strain curve has a
dominant influence on the final éolumn strength
curve. To assume the stress-strain relationship
of T-1 steel to be elastic perfectly-plastic
will overestimate column strength in the

medium slenderness region or underestimate the

strength of short columns.

The reduction in buckling strength due to the
existence of residual stress is less pronounced
in columns of T-1 steel as compared with
columns of structural carbon and low alloy

high-strength steels.

The comparison with test results and theoretical
results shows that the column strengths of
constructional alloy steel members can be

predicted by the tangent modulus loads.

It is shown experimentally that welded H- or
box- columns and rolled wide flange columns are
stronger than their counterparts of lower yield
strength steels, when compared on a non-

dimensional basis.

The results of both experiments and theoretical

analysis'for the column strength of T-1 steel
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shapes show that the CRC basic column strength-

curve is a good approximation for strength.

9. In the investigation of local buckling of plates,
the comparison between the theoretical results
and the test results; for elastic-plastic

- buckling, the theoretical results based on the
total strain theory gives good correlation
with the experimental results, but the results
based on the incremental theory predicts a

much higher critical stress.

10. Comparison of experiments on welded square
tubes shows that the tubes of T-1 steel are
stronger for local buckling than those of A7

steel when compared on a non-dimensional basis.

11, The square tubes buckled in the elastic range,
showed significant post buckling strength,
while the tubes buckled in the elastic-plastic

" range, had a relatively small reserve of post-

buckling strength,.

12. The effect of residual stresses on the elastic-
plastic buckling depends greatly on the width-
thickness ratio of the plates. Theoretical
and experimental results indicate that the
(1963) AISC Specification for critical width-

thickness ratio may be extended to T-1 steel
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shapes, welded or rolled.

13. The mechanical properties of the material,
patfefn and magnitude of residual stresses
and the stpain revérsal effect, all are
important in the final shape of M-P-f curves
which in éufn is the\éole basis for the
determination of the load-deformation

characteristics of beam-columns.

14, For beam-columns, the strain reversal effect
is more pronounced for non-linear materials
than for linear matgrials if other conditions,
that is, residual stresses and thrust, are

identical.

15. Two full scale beam-column tests, 6ne rolled
8WFLO shapevand the other an 11H71 welded
shape were conducted. A comparison between
the theoretical curves and the corresponding
expérimental M-0 curves has shown that the
theory can predict not only the ultimate
strength but also tﬁe complgte history of a

beam-column.

16. Comparing the direct integration solutions to
the extrapolation solutions obtained from

previous investigations in A36 steel shapes,
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it is shown that for T-1 steel shapes,

both rolled and welded built-up shapes,

the direct integration sclutions provide
a higher ultimate strength. Hence, the
extrapolation procedure may provide an
approximate but conservative estimate of

strength of T-1 steel shapes.

-77
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7. NOMENCLATURE

Area of cross section

Width of plate element -~ subscripts t and w refer
to flange and web, respectively

Depth of section |

Modulus of elasticity

Strain-hardening modulus

Tangent modulus

a function

Moment of inertia - subscripts x and y refer to
the x and y axes (strong and weak axes), respectively
Effective moment of inertia (=§3 deA) subscripts
x and y refer to the x and y axes, respectively
Column effective length, length of a beam-célumn
Bending moment - subscripts R and L refer to
moments at the righ£ and left ends, respectively,
of a beam-column, i refers to internal moment
Plastic moment

Reduced plastic moment

Ultimate moment

Axial load

Buckling (critical) load

Axial yield load in a column
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Radius of gyration - subscripts x and y refer to
strong and weak axes radii
‘Thickness of plate element - subscripts t and w

refer to flange and web, respectively
Displacement in the x, y, and z directions,
respectively

Coordinate axes, coordinates of the point with
respect to x, y, and z axes

Strain

Strain due to axial load

Critical strain

Strain at proportional limit

Residual Strain

Maximum compressive gesidual strain
Maximum tensile reéidual strain

Strain at start of strain hardening

Total strain

Yield strain (= Qy/E)

Strain due to curvature

Largest strain'any>element area experienced
End rotation of a member

Slenderness function, distance between twec
adjacent integration stations

Summation

Curvature

Curvature at M
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Curvature at M

Stress

Critical stress

Stress at proportional limit

Residual stress

Maximum compressive residual stress

Maximum tensile residual stress

Yield stress (determined by 0.2% offset metﬁod
for non-linear stress-strain relationship)
Largest stress any element area experienced
Secant yield stress

poisson's ratio



290.16 ' -81

-l

8. ACKNOWLEDGEMENTS

The investigation was conducted at Fritz
Engineering Laboratory, Department of Civil Engineering,
Lehigh University, Bethlehem, Pennsylvania. The U.S.
Steel Corporation sponsored the study, and appreciation
is due to Charles G. Schilling of that company who

provided much information and gave many valuable comments.

Column Research Council Task Group 1, under the
chairmanship of John A. Gilligan, provided valuable
guidance. Appreciation is due to the author's qolleagues,
especially to Y. Ueda, F. Nishino, E. Odar and K. Okuto,
who assisted in various parts of the study. Lynn S. Beedle,
Director of Fritz Laboratory, provided encouragement and

advice throughout the study.




290.16

9. APPENDIX: REPORTS RESULTING FROM THIS STUDY

1. Ueda,

Y.

ELASTIC, ELASTIC-PLASTIC AND PLASTIC BUCKLING
OF PLATES WITH RESIDUAL STRESSES, Ph.D,
Dissertation, Lehigh University, September,
1962. (F.L. Report No. 290.1)

2. Nishino, F.

BUCKLING STRENGTH OF COLUMNS AND THEIR
~COMPONENT PLATES, Ph.D. Dissertation, Lehigh
University, September, 1964, (F.L. Report No.

3. Nishino, F. and Tall, L.

NUMERICAL METHOD FOR COMPUTING COLUMN CURVES,
Fritz Laboratory Report No.. 290.6, December, 1

4, Nishino, F. and Tall, L.

5. Odar,
6. Odar,
7. Odar,

RESIDUAL STRESS AND LOCAL BUCKLING STRENGTH OF
STEEL COLUMNS, Fritz Laboratory Report No.
290.11, January, 1967.

E., Nishino, F., and Tall, L,

RESIDUAL STRESSES IN "T-1" CONSTRUCTIONAL
ALLOY STEEL PLATES, Welding Research Council
Bulletin No. 121, April, 1967. (F.L. Report
No. 290.4)

E., Nishino, F., and Tall, L.

RESIDUAL STRESSES IN WELDED BUILT-UP "T-1"
SHAPES, Welding Research Council Bulletin
No. 121, April 1967. (E.L. Report No. 290.5)

E., Nishino, F., and Tall, L.

RESIDUAL STRESSES IN ROLLED HEAT-TREATED "T-1"
SHAPES, Welding Research Council Bulletin No.
121, April, 1967. (F.L. Report. No, 290.5)

8. Okuto, K. . :

A PILOT EXPERIMENTAL INVESTIGATION OF A51lu4
STEEL BEAM-COLUMNS, M.S., Thesis, July, 1967
(F.L. Report No. 290.13)

82

290.10)

966 .



290.16 . ' ' -83

9.

10,

11.

12.

13.

14.

15.

16.

17.

18.

Nishino, F., Ueda, Y. and Tall, L.
EXPERIMENTAL INVESTIGATION OF THE BUCKLING
OF PLATES WITH RESIDUAL STRESSES, ASTM Special
Technical Publication No. 419, August 1967
(F.L. Report No. 290.3)

Ueda, Y. and Tall, L.
BUCKLING OF PLATES WITH RESIDUAL STRESSES,
Vol. 27, IABSE Publications, December, 1967,
Zurich. (F.L. Report No. 290.2)

Yu, C. K., and Tall, L.
A PILOT STUDY ON THE STRENGTH OF 5Ni-Cr-Mo-V
STEEL COLUMNS, Experimental Mechanics, Vol, 8
No. 1, January, 1968. (F.L. Report No. 290.12)

Yu, C. K.
INELASTIC COLUMNS WITH RESIDUAL STRESSES,
Ph.D. Dissertation, Lehigh University, March,
1968, (F.L. Report No. 290.14)

Yu, C. XK., and Tall, L. _ .
A514 STEEL BEAM COLUMNS, Fritz Laboratory Report
No. 290.15, October, 1968, To be published.

Yu, C. K. and Tall, L.
WELDED AND ROLLED HEAT- TREATED "T-1" STEEL
COLUMNS - A SUMMARY, Fritz Laboratory Report
No. 290.16, June 1969. To be published.

Nishino, F. and Tall, L.
RESIDUAL STRESSES AND STRENGTH OF THIN-WALLED
COLUMNS, Fritz Laboratory Report No. 290.7,
in preparation.

Nishino, F. and Tall, L.
EXPERIMENTAL INVESTIGATION OF THE STRENGTH OF
"T-1" STEEL COLUMNS, Fritz Laboratory Report
No. 290.9, June 1969. ' .

Tall, L. : ‘ .
- THE STRENGTH OF WELDED AS514 STEEL STRUCTURAL
COMPONENTS, Fritz Laboratory Report No. 290.17,

December, 1968. Published in the International
Institute of Welding, Annual Meeting, July 1969,

Nishinoe, F., Tall, L., and Okumura, T.
RESIDUAL STRESS AND TORSIONAL BUCKLING STRENGTH
OF H AND CRUCIFORM COLUMNS, Transactions, Japan .
Soc. Civil Engrs., No. 160, December 1968.



290.16

19.. Yu,

C.

K., and Tall, L.

SIGNIFTICANCE AND APPLICATION OF STUB COLUMN
TEST RESULTS, Fritz Laboratory Report No.
290,18, June 1969 '

-84



290.16

1o0.

TABLES

- -85



ees

290.16

TABLE

1 TENSION SPECIMEN TEST RESULTS

\AS514 STEEL PLATES OR SHAPES)

-86

Static Yield Modulus Strain Elongation
Tension , Proportional Stress, of Hardening Ultimate Reduction in Gage

Shape Specimen Limit (ksi) ¥ Elasticity Modulus Stress of Area Length hi

No. (O /3,) (0.2% offget) E (ksi) E_ (ksi) g (%) (%)
. Py st u
AW 0.8% 107 28,500 172 119 46 11.6
AF-1 0.88 109 29,000 197 123 55 14,6
AF-2 0.78 113 27,700 122 126 58 13.8
AF-3 0.86 111 29,000 193 125 58 15.0
8WFu40 AF-4 0.85 111 30,000 108 - 56 14.6
EW 0.86 125 29,500 172 136 55 10.7
EF-1 0.76 129 27,000 110 139 57 11.5
EF-2 0.79 127 29,100 150 137 57 12.1
EF-3 0.75 130 28,100 120 140 53 11.1
EF-4 0.90 131 28,900 155§ - _~— —m—
JF-32 0.81 113 30,200 197 124 46 10.0
. JF=31 0,85 113 28,400 177 125 40 9.2
11H71 JW-20 0.78 104 29,400 169 117 52 12,8
JF-11 0.90 115 29,200 106 128 42 9.5
JF=12 0,86 115 27,900 116 125 46 11.0
AF-1 0.78 113 27,000 154 125 40 9.0
8WF17 AF-2 0.83 111 27,200 134 122 Sy 9.0
AW-3 0.70 109 28,500 140 119 48 8.3
BW-2 0.84 111 29,600 75 121 - -———
BF-3 0.67 114 31,200 70 123 -- _———
8WF31 BF-4 0.65 113 30,200 81 122 -- ---
BW-5 0.87 110 28,400 95 120 - ——
BF-6 0.83 112 28,900 125 123 -- -——-
DF-11 0.93 106 27,400 72 119 -- .-
12WF36 DF-12 0.88 113 30,200 60" 125 - -
DW-13 0.77 111 28,300 55 123 - -——-
EF-11 0.88 115 28,000 87 125 -— ————
12WF4S  pp.y2 0.77 116 29,800 70 128 -- 1.1
FF-1 0.84 105 29,600 258 116 -— -————
12WF120 pp 3 0.76 88 29.300 260 105 - ——--
T-7-1 0.91 115 29,400 102 125 43 10.0
T-7-2 0.87 113 28,100 86 123 41 10.5
T-7-3 0.87 115 27,300 128 126 39 10.0
T=-7-4 0.71 114 26,800 126 125 -- 10.5
T-11-<1 0.84 112 28,100 131 123 40 11.0
T-11-5 1.00 113 27,300 106 125 39 10.0
T-5-1 1.00 113 28,500 70 124 50 9.7
T-5-2 0.76 112 29,700 114 123 52 10.0
l"Plates T-5-4 0.80 112 29,800 89 122 -- -
2 T-5-7 0.90 113 29,300 83 1284 ya S
T-5-10 0.68 112 30,100 127 123 -- -————
T-2-8 0.87 111 27,400 - 126 -- ————
T-2-8A 0.96 111 30,600 108 122 -- -
T-2-6A 0.90 111 26,900 101 120 -- .=
T-2-6B 0.92 ilo0 . 27,500 129 120 -—- ———
T-2-86C 0.96 110 27,300 127 120 -- -—-
T-4-1A 0.64 108 31,000 -—— 113 -- -
T-4-1B 0.78% 113 30,400 200 11¢ -- cmm-
T-4-1C 0.74 102 30,500 - 110 - ————
T-4-6A - 112 31,800 198 122 - ————
1"Plates T-4-6C 0.78 111 31,900 198 121 - -——--
T-4-3A 0.99 111 32,000 150 121 - ————
T-4=54A 0.64 111 26,000 200 120 -- ———-
T-4-8A 0.76 110 29,200 .- 121 - -
T-4-8B 0.66 110 31,200 241 . 121 - ————-
T-4-8C 0.80 110 30,400 197 121 -- ————
l"Pl T-10-1 1.00 118 28,200 111 129 42 -9.0
7 rlates r_10-3 1,00 117 28,000 100 129 as 8.7
Average T.82 117 . by by} T8 7%
" Second letter, "W" or "F", denotes specimen from web or flange coupon, respectively.
(X3

from the autographically recordad curve,
*A*  Gage length was 8 inches.

The values of E should be regarded as indicative only since they were measured directly
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TABLE 2 SUMMARY OF COMPRESSION SPECIMEN TEST RESULTS
Specimen Area Static Modulus Strain
Source 5 Yield of Hardening
No. (in™) Stress Elasticity Modulus
(ksi) (ksi) (ksi)
c-1 0.3725 108 30,800 300
c-2 1/2" plates 0.3725 110 29,700 280
c-3 (as-delivered) 0.3724 110 31,200 310
C-4 0.3725 110 29,700 300
Cc-5 0.5991 110 29,700 320
C-6 0.5990 122 30,000 350
c-7 3/4" plates _ 0.5991 121 31,100 360
Cc-8 (as-delivered) 0.5990 122 31,600 350




TABLE 3 PROGRAM OF RESIDUAL STRESS MEASUREMENTS ON PLATES®

WELDED PLATES¥# UNWELDED PLATES
Center Welded Plates Edge Welded Plates
Plate Geometxry Type of Weld Weld Plate Geometry Type of Weld Weld Plate Geometry
No. (in.) Aut. Man. Size No. (in.) Aut. Man. Size No.
(in.) (in.)
T-1-2 b x 2 - X 1/8 T-1-4 box L - X 1/8 T-1 b xi
-6 4 x L - X 1/8 =7 4 x < - X 1/8
T-2-2 6 x % - X 1/4 T-1-6 6 x % - X /4 T-2 6 x &
-4 6 x % - 1/4 -8 6 x % X - 1/4
T-3 8 x 3 X 1/4 - - - - - - -
T-4-2 8 x 1 - X 1/4 T-4-6 8 x1 - X 1/4 T-4 8 x 11
-4 8 x1 X - 1/4 -8 8 x1 X - 1/4
T-5-2 12 x3 X - 1/u T-5-6 12 x % X - 1/2 T-5 12 x &
i ) (L100)
-4 12 x & X - 1/2 -8 12 x & X - 2x 1
-5 12 % X 1/2 -10 12 x £ X - 2 x %
(L100)
T-6-2 12 x1 - X 1/2 T-6-14 12 x1 - X 1/2 T-6 12 x1
-4 12 x 1 X - 1/2 -16 12 x 1 X - 1/2
-6 12 x1 - X 1 -18 12 x1 - X 1
-8 12 x1 X - 1 -20 12 x 1 X - 1
-10 12 x1 - 2vX 2V-1 - - - - -
-12 12 x 1 2VX - 2V-1 - - - - -
T-7-2 16 x % X - 1/2 T-7-4 16 x 3 X - 1/2 T-7 16 x &
- - - - - -6 16 x 3 X - 2 x3
- - - - - T-8-2 20 x 3/8 X - 3/8 T-8 20 x 3/8
-4 20 x 3/8 X - 2 x 3/8
T-9-2 24 x 1 X - 1/2 T-9-4 24 x 1 X - 1/2 T-9 24 x 1
-6 24 x 1 X 1 2 x %

*All plates were cut from wide rolled plates by flame-cutting.
*%A11 center welded plates are welded with single Vee groove, unless otherwise specified 2V - Double Vee Groove

X means tests being made.

TABLE 3 PROGRAM OF RESIDUAL STRESS MEASUREMENTS ON PLATES*

9T 06C

88~
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Electrode Electrode Type Place

Plate Travel Melt-Off Electrode of of .

No. Pass Volts Amps (in/min) (in/min) Type Weld Weld Flux Beads
T-1-2 1 18 170 5.8 10.5 E7018(1/8"D) M [4 - { 4 i
T-1-4 1 18 125 24.0 9.55 " M E - ﬁ 1/8"
T-1-6 1 18 170 7.0 10.4 " M c - As T-1-2
T-1-7 1 18 125 24.0 9.55 " M E - As T-1-4
T-2-2 1 20-22 130 8.0 9.9 " M c - “

1/4”
2 20-22 210 8.8 8.5 E7018(3/16"D)| M C - ’
T-2-4 1 32 350 12.0 120.0 | L70(W)S/64" A c Lseo | {T—O17ad
T-2-6 1 22 160 9.2 10.4 E7018(5/32") M E - 1/3'-61_
2 22 160 9.3 10.6 " M E - -
T-2-8 1 28 300 30.0 111.1 L70(W)5/64" A E 1840 1/3"ﬁ
2 28 300 30.0 1.1 " A E " '
T-3 1 20-22 130 6.6 10.2 E7018(1/8"D) M c - fi {
. a : 1 "
2 20-22 210 8.8 8.6 E7018(3/15"D)| M c -
T-4-2 1 20-22 130 6.8 9.8 E7018(1/8"D) M c - z
$ ]/4"
2 20-22 210 9.2 8.6 E7018(E/16"D)| M C - |F_—_:j
T-4-4 i 32 350 15.0 120.0 L70(W)5/64" A c L840 { _3_1/4'3L
T-4-6 1 22 160 9.0 10.4 E7018(1/8"D) M E - 3/16"
2 22 160 8.0 9.8 E7018(1/8"D) M E -
T-4-8 1 28 300 30.0 111.1 L70(W)5/64" A E L840 "
VAN
2 28 300 30.0 111.1 " " " J
T-5-2 1 32 350 12.0 120.0 L70(W)5/64" A C L840 . _—
. 0 SRSV
T-5-4 | Tack 20-22 130 4.9 9.8 E11018(1/8"D)| M c -
Welds
1 32 350 12.0 120.0 L70(W)5/64" A c L84O J:j/s W’ ‘[
2 32 350 12.0 120.0 " A C L840
T-5-5 | Tack 20-22 130 5.8 8.7 E11018(1/8'D)| M C -
Welds i
1 32 400 18.0 120.0 L100(W)1/8"D A ¢ 709-5 | LT _
2 32 500 18.0 120,0 " A c 709-5
14" =L
T-5-6 1,2 30 350 24.0 444 L100(W)1/8" A E 709
3,4 30 350 24.0 YA L100(W)1/8" A E 709 /4"
) "
T-5.8 1,2 28 300 30.0 111.1 L70(W)5/64" A E ST r__,@\,_-l
3,4 28 300 30.0 111.1 L70(W)5/64" A E L840 1/3”%’
-5- 21.0 " A
T-5-10| 1,2 28. 300 111.1 L70(W)5/64 A E L840 Y —F2)
3,4 28 300 21.0 111.1 L70(W)5/ 64" A E 1840 W,n@
T-6-2 1 18 140 6.0 11.0 E7018(1/8"D) ¥ c -
2 18 170 6.0 10.3 " M C -
3 20 210 4.6 9.4 " M c - %1/2"
4 20 210 5.6 9.7 " M C - _
5 20 210 7.5 10.5 " M c -
6 20 210 7.0 10.1 E7018(1/8"D) M c -
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Table 4—Records of Welding (Continued)

R, &Y

Electrode Electrode ?ype Place
Plate Travel Melt-Off | Electrode of of
No. Pass Volts Amps (in/min) (in/min) Type Weld Weld Flux Beads
Jr-6-4 1,2 32 375 15,0 150.9 L70(W)5/64" A c L840 J—%L
3,4 32 375 15.0 1150.9 L70(W)5/64" A c . L840 ]
T-6-6 | Tack 22 140 - - E7018(1/8") M c
Welds
1 22 140 5.3 9.7 E7018(1/8") M c
2 20 170 4.9 10.7 | E7018(5/32") M c
3 20 210 4.6 9.7 | E7018(3/16") M c
4 20 210 7.0 9.3 " M c
5 20 210 7.3 9.1 " M c
6 20 210 6.7 9.3 . " M c
7 20 210 7.3 9.8 . " M C
8 20 210 6.1 9.6 " M c
9 20 210 8.0 9.5 " M c
10 20 210 6.8 9.9 ” M c
11 20 210 6.5 10.1 | E7018(3/16") M c
.T-6-8 1,2,3 32 . 400 16.0 179.8 [ L70(w)5/64" A c L840
4,5,6 | 31 375 12,0 152.6 | L70(W)5/64" A c L840 5
7,8,9 31 375 12.0 152.6 | L70(W)5/64" A c L840 "‘g
- N\—EF_
52(1:55 22 140 - - E7018(1/8") M ¢ - 'V"
T-6-10 | Tack 20 140 - - E7018(1/8") M 2V-C
. Welds
1 20 140 6.4 10.3 E7018(1/8") M 2v-C
2 20 140 6.2 10.7 | E7018(1/8") M 2v-C ﬂ
3 20 170 6.4 10.7 | E7018(5/32") M 2v-C ?
4 18 210 5.9 10.4 | E7018(3/16") M 2v-C .i’;
5 18 210 5.9 10.3 | E7018(3/15") M 2V-¢ - .‘
6 18 170 5.7 10.6 | E7018(5/32") M 2v-¢ -
7 18 210 6.1 9.8 E7018(3/16") M 2V-¢ -
8 18 210 5.5 10.1 | E7018(3/16™) M 2v-¢ » -
T-6-12 | Tack 18 140 - - E7018(1/8") M - -
Welds : : >
1 32 325 18.0 130.6 | L70(W)5/64" A 2v-c L840 ‘V’
2,3,4 32 400 16.0 179.8 L70(W)5/64" A 2v-C L840 A
5,6 32 400 | 16.0 179.8 L70(W)5/64" A 2v-C L840 °
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Table 4—Records of Welding (Continued)
Electrode Electrode ) Type Place
Plate Travel Melt-Off Electrode of of
No. Pass Volts Amps (in/min) (in/min) Type Weld weld Flux Beads
T-6-14 1 22> 160 3.1 9.6 E7018(5/32") M E - 1/4"
2 22 160 8.1 10.3 E7018(5/32") M E - ﬁ
T-6-16 1,2,'3 30 300 20.0 105.8 L70(W)5/64" A E L840 3”6&
1-6-18 | 1 22 160 5.0 10.3 E7018(5/32") M E -
2 22 160 4.8 10.0 - E7018(5/32") M E -
3 22 160 5.8 10.3 M E - 71165 s: e
4 22 160 5.8 10.3 " M E - :
5 22 160 6.2 10.8 " " E -
6 22 160 6.2 10.8 " M E . v
7 22 160 4,6 10.4 E7018(5/32") M E -
T-6-20 | 1 to 11] 30 300 20,0 ‘ 105.8 L70(W)5/64" A E L840
1-7-2 1 32 375 18.0 152.6 L70(W)5/64" A c L840
2,3,4 32, 375 15.0 152.6 L70(W)5/64" A C L840
Tack 22 140 - - E7018(1/8") M c -
Welds
.
T-7-4 1,2,3 32 300 26.0 106.0 L70°5/64" A E 1840 3/16"
T-7-6 1,2,3 32 300 26,0 106.0 L70 5/64" A E L840 7/322‘%
4,5,6 | 32 300 26.0 106.0 L70 5/64" A B 1840 1/4,,@
T-8-2 1,2 30 300 36.0 94,7 L70 5/64" A E L840 1/3"@L
T-8<4 1,2 30 300 36.0 94,7 L70(W)5/64" A E L840  |s/32v @
3,4 0 300 36.0 94.7 L70(W)4/64" A E 1840 /s NP
Ti9-2 1,2 32 375 15.0 150.9 TL70(W)5/64" A E L840
3,4,5 32 375 15.0 150,9 L70(W) £/ 64" A E L840 {
T-9-4 1 30 300 32.0 94.7 L70(W)5/64" A E L840 '
2 30 300 28.0 94,7 L70(W)5/64" A E L840 7732 .
3 30 300 26,0 94.7 L70(W)5/64" A E L840
T-9-6 '1,2,3 30 300 26.0 9.7 L70 (W) 5/64" A " E L840 [%
4,5,6 | 30 300 26.0 94,7 L70(W)5,64" A E E L840 C@j
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Table 5 —Residual Stress Distribution in As-Cut Un-Welded Plates

-92
T VAR
rl 54
|| [
%r2 ] /___L a
¥ z, z, __..Iz3 LD
Test Plate Plate Residual Stress in ksi Distances inin,
No. No. Size
(in.)
r1 r2 %3 A Zy Z 2
T-1 - - - - - - - - -
T-2 1 6 x 1/2 76.0 8.03 5.28 72.6 0.85 4.3 0.85
3 81.4 6.05 6.05 86.9 0.90 4.2 0.90
5 85.8 6.05 6.05 79.2 0.90 4.2 0.90
7 89.1 6.05 6.05 83.6 0.90 4.2 0.90
T-3 - - - - - - - - -
T-4 1 8 x1 25.3 4,99 4,99 29.7 0.90 6.3 0.80
3 3L.9 7.70 7.70 49.5 1.00 . 6.0 1.00
5 34,1 4,40 3.96 37.4 0.90 6.2 0.90
7 28.6 4,40 3.96 30.8 0.85 6.2 0.95
T-5 1 12 x 1/2 41.8 6.60 3.63 36.3 0.90 10.2 0.90
3 37.4 2.64 4,73 46,2 0.90 10.2 0.90
7 40.7 3.96 3.19 40.7 0.90 10.2 0.90
9 42.9 5.39 3.41 36.3 0.90 10.2 0.90
T-6 1 12 x 1 30.8 4,51 4.51 30.8 0.80 10.5 0.70
3 42,9 3.96 3.96 40.7 0.70 10.6 0.70
5 37.4 3.96 3.96 40.7 0.70 10.6 0.70
7 42,9 2,97 2.97 51.7 0.80 10.6 olso
9 38.5 3.52 3.52 34.1 0.70 10.6 0.70
11 45,1 3.52 3.52 44,1 0.70 10.6 0.70
13 36.3 3.52 3.52 36.3 0.70 10.6 - 0.70
15 12 x 1 36.3 2,97 2,97 42,9 0.70 10.6 0.70
17 31.9 2,97 2,97 36.3 0.70 10.6 0.70
19 50.6 3.96 3.96 36.3 0.70 10.6 0.70
T-7 1 16 x 1/2 48,4 1,98 2,97 48.4 0.70 14,60 0.70
3 57.2 4,51 1.98 47.3 0.70 14.6 0.70
T-8 1 20 x 3/8 61,6 3.96 3.96 59,5 0.70 18.6 0.70
3 67.1 3.74 3.63 58.3 0.80 18.5 0.70
T-9 1 24 x 1 46.2 3.96' 1.98 30.8 0.70 22,60 0.70
3 31.9 5.94 5.06 31.9 0.60 22.9 0.50
5 27.5 5.94 11.0 38.5 0.60 22.8 0.60
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Table 6 Residual Stress Distribution in Center-Welded Plates
.___Y___...
o) r0 6
| i 4
Or2 N /%3  Tra \ — 1. 915
r“l?"_ Zz_‘}:':z3 Zz._j Zsl""
Test Platd Size Residual Stresses (ksi) Distances (in)
No, No, (in x in)
70 £l Tea 3 | Sra %es ) g Z % Z Z5
T-1 - - - - - - N - - - - - - -
T-2 2 6 x 1/2 39.9 62.0 16.0 14.0 13.0 12.0 55.9 0.70 1.65 1.40 1.65 0.60
4 6 x 1/2 78.0 44.9 24.0 22.0 18.0 13.9 39.1 0.40 1.80 1.65 2.00 0.15
T-3 A 8 x 1/2 65.7 26.4 14.5 9.02 9.02 12,7 23.5 0.20 2,50 2,30 2.80 0.20
B 8 x L/2 69.7 28.3 12.4 9.60 9.60 10.8 27.8 0.18 2.62 2.60 2.42 0.18
c 8 x 1/2 70.2 31,2 8.03 %‘81 7.04 '7.70 29.2 0.20 2.60 2,50 2.55 0.15
D 8 x 1/2 66.1 31.0 12.0 12.0 12.0 12.0 31,7 0.15 2.65 2.40 2.60 0.20
T-4 2 8 x 1 19.1 22.6 7.04 7.26 7.81 7.04 25.0 0.80 2.50 1.40 2.40 0.90
4 8 x 1 30.3 27.1 7.81 9.02 | 11.0 10.5 31,2 0.80 2,40 1.60 2.40 0.80
T-5 2 12 x 1/2 87.8 31.5 16,1 16.1 15.0 4.1 19.6 0.80 4.20 2,20 4.10 0.70
4 12 x 1/2 76.8 36.5 14.9 16.0 16.5 16.5 49,2 0.80 4.20 2.30 3.80 0.80
5 12 x 1/2 79.5 53.5 14.9 11.9 1.9 14.9 40.8 0.80 4.30 1.90 4,20 0.80
T-6 2.8 [12 x 1 3L.1 27.1 9,82 6.1 10.0 8.03 24,1 0.60 4,40 1.60 4.70 0.70
2-B |12 x 1 49.3 24,3 8.10 7.04 9.35 7.04 13.75 0.60 4,50 1.60 4.70 0.60
4-A |12 x1 26.95 35.1 10.0 10.0 11.9 10.0 27.9 0.70 4,40 1.80 4.40 0.70
4-B |12 x1 65.01 34.3 34.3 10.0 10.0 9.02 9.02 |32.0 0.60 1.80 4.40 0.70
6-A 12 x1 51.6 25.6 1.9 13.9 10.0 11.9 7.15 0.60 | 4.40 2,00 4,40 0.60
6-B |12 x 1 49.2 22.2 14.41 11.9 10.0 10.0 14.3 0.60 4.50 1.80 4.50 0.60
8-A |12 x1 49.7 20.6 14.0 14.0 14.0 17.1 14,1 0.60 5.40 1.00 4.50 0.50
8-B 12 x 1 61.2 24.9 14.1 14.1 1.9 11.9 35.0 0.60 5.00 1.40 4,40 0.60
10-a 12 x1 46,2 20.5 15.8 6.05 8.03 11.9 15.1 0.50 4,60 1.80 4.70 0.40
10-B |12 x 1 34.5 24.8 9.8 8.03 8.03 10.6 20.0 0.60 5.00 1.20 4. 60 0.60
12-4 |12 x 1 4754 23.0 20,0 10.6 10.0 24.6 5.06 0.60 4.50 1.80 4,60 0.50
12-B (12 x1 42,9 25.1 10.0 10.0 10.0 16.0 35.3 0.60 4,50 1.80 4,50 0.60
T-7 2 16 x 1/2 69.5 38,0 10.0 10.0 {10.0 10.0 40.3 0,60 6.40 1.90 6.50 0.60
T-\Q 2-A |24 x 1 60.1 44.0 7.04 6.05 4,95 8,60 18.5 0,70 10,4 1.80 10,5 0.60
2-B 24 x 1 1.5 37.8 6.05 4,95 4,95 6.05 22.4 0,60 10,5 1,80 10,4 0.70




290.16 ' -94

Table 7—Residual Stress Distribution in Edge-Welded Plates

Srl fra
“r3
—~z, !‘ - % =

Residual Stress in ksi Distances (in)

Test Plate Size

No. No. (in x in) Weld
“r1 %2 6;3 Ory z, z, 2,

T-1 - - - - - - - - - -
T-2 6 6 x 1/2 78.1 15.1 2.97 86.0 0.8 4,20 1.0 S
8 92.0%* 2.97 16.0 85.0 0.8 4.20 1.0 S
T-4 6 8 x 1 99.0%* 8.5 8.0 44.0 1.2 5.1 1.70 S
8 78.0% 7.26 11.55 33.0 0.80 6.4 0.80 S
T-5 6-A 12 x 1/2 74.8 8.03 6.05 88. 2% 1.00 10.1 0.90 D
6-B 02 8 10.5 1.0 100, 0% 0.90 10.1 1;00 S
3-A 1€0.0%* 6.05 6.05 98. b%* 1.0 10.0 1.00 D
8-B 9, 5% 6.26 1.10 99.0%* 0.90 10.2 0.90 S
10-A Bs. 4% 8l80 10.0 73.6% 0.90 10.2 0.90 D
10-B 75,9 9.75 1.0 101.0%* 0.90 9.1 1.00 S
T-6 14 12 x 1 - - : - - - - -
16-A 9G.0* 6.05 4.06 42.8 0.60 11.2 0.20 S
16-B 125.0% 7.02 2.96 42.8 0.70 11.0 0.30 S
18 - - - - - - - -
20-A 95.0% 13.6 1.0 48.4 0.70 10.5 0.380 S
20-B 98.0% 14,3 1.0 48.0 0.70 11.0 0.30 S
T-7 4 16 x 1/2 82.5% 10.6 1.0 50.5 0.70 14.6 0.70 S
6 84 ,0% 6,71 6.27 83.6% 0.90 14.2 0.90 D
T-8 2 20 x 3/8 82.5% 6.05 4,40 60.5 0.70 18.3 1.00 S
4 81, 3% 5.61 5.50 81.4% 1.00 18.2 0.8 D
T-9 4-A 24 x 1 35.0 5.08 6.60 81.5% 0.7 22.6 0.7 é
"4-B 39,0 12.3 5.72 115.95% 0.60 22.7 0.70 s
6-A lll.Q* 5.50 5.30 124.0%* 0.70 22.6 0.70 D
6-B }09.0* 3.96 6.05 121.0% 0.80 22.6 0.60 D

S - Welded on one edge only
D - Welded on both edges

* - Residual stress at the welded edge

*% - Residual stress at the edge welded with

L100 electrode
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TABLE 8

SHAPES TESTED

'-95_

EDGE
SHAPE PREPARATION PLATE. SIZE(INCHES)
6 x 1/2 flange
6H27 Sheared 6 x 3/8 web
6 x 1/2 flange
6H27 Flame-Cut 6 x 3/8 web
9 x 3/4 flange
10H61 Flame-Cut 9 x 1/2 web
) 6 x 1/4
6 X 6-Box Flame-Cut 5 1/2 X 1l/4
| 10 x 1/2
10 x10-Box Flame-Cut 9 x 1/2
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TABLE 9 RESIDUAL STRESSES IN WELDED BUILT-UP SHAPES

SHAPE WELDED BUILT-UP SHAPES WELDED BOX SHAPES
Residual Stresses in Flange (ksi) Residual Stresses in Web (ksi) COMPONENT PLATES
Max(+) Av.(+) Max(-) Av.(-) Max(+) Av.(+) Max(-) Av.(-) | Max(+) Av.(+) Max(-) Av.(-)
6H27 +40 18-20 Lo 20-22 80 70-75 20 18-20 - - - -
(sheared)
Junct.
6H27 +45 20-24 20 18-20 80 70-75 20 18-20 - - - -
Junct.
10H61 +20 14-16 12 8-10 Ly 36-40 12 6-10 - - - -
Tips
6"x6" Box - - - - - - - - 80 60-65 40 22-24
10"x10" Box - - - - - - - - 95 70-80 20 10-15

Readings are average of top and bottom faces for H shapes.

TABLE 9 RESIDUAL STRESSES IN WELDED BUILT-UP SHAPES

9T 06C

96-
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TABLE 10 ‘SHAPES INCLUDED IN THE--INVESTIGATION
TEST DELIVERED
NO. SHAPE 'LENGTHS
T-R-A 8WF17 2 x 10"
T-R-B 8WF31 1 x 40
T-R-C 10WF25 1x 10
T-R-D 12WF36 2 x 13!
T-R-E 12WF45 2 x 15"
———
T-R-F 12WF120 3 x 36"
—— e )
—
T-R-H 16WF64 2 x 15"
——
T-R-J CB-102-33 2 x 11"
T-R-K CBL-16-26 2 x 10"
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TABLE 11 RESIDUAL STRESSES MEASURED IN ROLLED SHAPES

[

N4

Residual Stresses in ksi
Flange Edge® Web Center
Test
No. Shape Top Bottom Flange Top Bottom

Face Face Average Center Face Face Aver.
T-R-1-A 8WF17 -1.0 -4.5 -2.75 +1.5 -2.5 -1.5 -=2.0
T-R-1-B " , -1.0 -4.0 -2.5 +2.5 -1.5 -2.0 -1.75
T-R-2-A 8WF31 -3.0 -1.50 -2.25 +2.0 -2.5 -3.0 -2.75
T-R-2-B " | ~3.0 -3.5 -3.25 +2.0 -1.5 ~2.,0  ~=1.75
.T-R—S—A 10WF25 -3.5 -3.0 -3.25 +2.25 0 +1.5 +40.75
T-R-3-B- " -3.0 -2.5 -2.75 -0.5 +1.0 +1.5  +1.25
T-R-4-A 12WF36 -4.0 -3.4 -3.70 +2.0 -3.0 -3.0 -38.0
T-R-4-B " -4.0 -4.0 -4.0 +2.5 -3.5 -3.5 -3.5
T-R-5-A 12WFLS -4,75 -4.5 -4.,65 +2.0 -3.0 -2.5  -2.,75
T-R-5-B " -5.25 -6.5 -5.80 +3.0 -4.5 -4.5 -4.5
T-R-6-A 12WF120 -5.70 -5.0 -5.35 +3.20 -38.0 -1.5 -2.25
T-R-6-B " -8.1 -4.5 -6.3 +2.6 -3.5 -2.5 -3.,0
T-R-7-A 16WFe4 -4,27 -3.11 -3.75 +2.3 - -1.0 +1 -0
T-R-7-B " -4.50 -2.10 -3.30 +2.0 -1.0 ~ -0.5 -0.75
T-R-8 CB-102-33 | -1.72 -2.21 -2.0 +1.0 +0.2 +0.5 +0.35
T;R—g CBL-16-26 | -2.50 -1.72 -2.11 +2.0 -3.0 +1.0 -1.0

*Average of four flange tips
+Tensile residual stress
-Compressive residual stress



re

Table 12 SUMMARY OF COLUMN TESTS
Steel Making Shape Bending Slenderness
Axis Ratio (L/r) Test
8WF31 Weak 4o 0.92
Rolled Weak 60 0.77
12WF120 Weak 30 0.89
Weak 50 0.82
T-1
6H27 Weak T 0.82
Weak 60 0.66
Strong 30 0.83
6H27 Weak 45 0.80
Weak 60 0.69
Welded Strong 30 0.84
10H61 Weak 35 0.90
Weak 55 0.79
6x6 Box 4o 0.91
60 0.69
10x10 Box 30 0.94
50 0.87
' —Ni—Cr’-.-
Mo-V Rolled 10WF112 Weak 50" 0,75

9T°06¢

66—
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Table 13

DETAIL OF SPECIMENS FOR PLATE BUCKLING TESTS

Piece Length s Basic Specimen Length L/ b/ *

No. (in.) Description Tests No. (in.) b t

1 200 11%"xll%"f%" Coupoﬂs T-1A 60 5.31 44.0
Residual

Box Stress T-1B 60 5.34 44.0

2 140 77" x3" Coupons T-2A 35 5.18 26.2
Residual

Box Stress T-2B 35 5.18 26.2

*Average of four plates.

—ﬁ{gﬂ——

9T°G6¢
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Table 14 SUMMARY OF PLATE BUCKLING TESTS
Specimen % -:EX Tre/ Prax Per P P
\ oy (kips) (kips) max/P cr/Py cr/Py
Test Test Predicted
T-1A 2.61 0.12 700 520 0.53 0.39 0.43
T-1B 2.61 0.12 694 510 0.52 0.38 0.43
T-2A 1.64 0.16 651 630 0.90 0.87 0.91
T-2B 1.64 0.16 657 645 0.91 0.89 0.91

9T1°06¢
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Fig. 1k Idealized Residual Stress Distribution
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Fig. 34 Test Set-Up (Specimen at Ultimate Load)
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