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This paper summarizes some aspects of a major research project
into the strength of welded structural components of A514 .steel, a high
strength constructional alloy steel with a minimum yield stress of
100 ksi ( 70 kp/mm2 ).

The mechanical properties of the steel were determined, and
residual stress measurements were made for a wide variety of sizes of flame
cut welded plates and shapes. Full size tests were made of plate and column
buckliDg, and of beam-column behavior, and the results were correlated with
the'oretical predictions, and, in some cases, with the behavior of their
rolled counterparts. .

Cet article resume quelques aspects d'un important project de
recherche sur la resistance des elements d'ossatures en acier soude A514,
qui est un acier allie de construction a haute resistance avec une limite
d'elasticiteminimum de 70 kp/mm2.

Les proprietes mecaniques de cet acier sont determines, et des
mesures de contraintes residuelles furent faites pour un grand nombre de
different profils reconstitues, et de plaques oxycoupees et soudees. Des
essais'de plaques> de flambement, et de poutres en sollicitation composee,
ont ete experimentes sur des specimens de grandeur nature, et les resultats
on ete corrobores avec les predictions theoriques, et, pour quelques cas,
avec Ie comportement des profils lamines de mgme dimension.



-1

1. INTRODUCTION

With the continued modern developments in steel making, a new low-

carbon, quenched and tempered constructional alloy steel was introduced some

15 years ago. This was "T-l" steel; it meets the requirements of ASTM A5l4/5l7

introduced in 1966. These steels have exceptional strength and toughness,

combined with good weldability.

This report is a very brief summary presenting the highlights of

a major research project undertaken to determine the strength and characteristics

of A5l4 steel structural components, information which could be used in the

preparation of design recommendations. The study included the determination

of mechanical properties, the residual stress distribution in rolled and welded

plates and' shapes, and the determination of the strength of columns and beam-

columns, and the effect of local buckling. Particular attention was paid to

welded structural components. Theoretical predictions were checked with

experimental results. The details of the study are given in Reference 1, and

in the other papers referred to throughout this report.

2. MECHANICAL PROPERTIES

A514/517 steel is a low-carbon, constructional alloy steel which

is water quenched from 1650/1750 of ( 910/970 °c ) and tempered at 1100/1275 of

(610/700 °C).[2] It is furnished with a minimum yield strength of 100 ksi

( 70 kp/mm2), and a tensile strength in the range of 115 to 135 ksi ( 80 to

95 kp/mm2 ) for plate thicknesses between 3/16 " to 2.1/2 " ( 5 to 65 mm.)

. 1. [2JJ.nc uSJ.ve.

A number of preliminary tests were performed on the material prior

to the testing of structural components; these were tension and compressioR

specimen tests, residual stress measurements, and stub column tests.

" .
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The average-of 58 tension specimen tests resulted in a static

yield stress [3J () , of 112 ksi ( 78.5 kp/mm2 ), at the 2% offset. The
ys .

proportional limit, (f /0- , is 0.82; the tensile strength, 0- , is 123 ksi
p ys u

( 86.2 kp/m~2 ); the reduction in area is 48%, and the elongation in an 8"

( 200 mm.) gage length is 11%. The results of tension and compression tests

were essentially the same.

A typical stress-strain relationship curve obtained from a

tension specimen test is shown in Fig. 1, and is compared with the stress-

strain curve of a structural carbon steel, ( a mild steel), ASTM A36. While

the stress-strain relationship of A36 steel may be represented by a pair of

straight lines, that is, by an elastic-plastic relationship, A5l4 steel

has a non-linear stress-strain relqtionship, and there is no yield plateau.

A mathematical expression was developed to represent the stress-strain

relationship of A5l4 steel -- it consists of an initial straight line to

represent the elastic part, a curve at the knee, and a second straight line

beginning at the onset of strain-hardening. This mathematical expression

defines the actual relationship, a necessary prerequisite to the computation

of the strength of structural members. The shape of the stress-strain

relationship has a marked influence on the strength of compression members.

The stub column tests [4J are compression tests on short lengths

of the complete section of a shape. The stub column test furnishes an average

stress-strain curve for the complete cross section taking into account the

effects of residual stress; such a curve may be used to prepare the tangent

modulus column curve. [5J

3. RESIDUAL STRESSES

Residual stresses have been studied extensively for many years.

However, it was only in the past decade and a half that it was realized that
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residual stresses are a major influence in the strength of compression

members.[6,7,8] It has been shown that they are the cause of the transition

curve in the column curve and the plate buckling curve, and that variation in

their magnitude and distribution exerts comparatively great influence on

column strength and on the strength of plates in compression.

,
Residual stresses are formed in a structural member as a result of

plastic deformations; these stresses exist in the cross section even before the

application of an external load. These plastic deformations may be due to

cooling after hot-rolling or welding, or due to fabrication operations such as

cold-bending or cambering.

Residual stresses due to cooling after welding generally are of

[8,9]
much higher magnitudes than those due to cooling after rolling. This

is due to the very high temperature gradient near the source of heat input.

It is these very large magnitudes of residual stress in welded shapes that

cause their compression members to exhibit low strengths when compared to

those of similar rolled shapes, for the small to medium sizes. [8,10]

Since A5l4 is a quenched and tempered 'steel, it may be expected

that the heat treatment will affect the residual stress distribution. Indeed,

the tempering has an effect similar to annealing -- the residual stresses

which may have existed from cooling after rolling, are reduced substantially

[11]
in the heat treatment, as seen in Fig. 2. For the small to medium size

rolled shapes, the magnitude of compressive residual stresses generally vary

between 3 and 5 ksi, which is about one third of that for similar shapes of

'ld t 1 [6,8Jm1- s ee .

stress to the yield point of the material, gives: approximately 5% for A514

steel, and about 40% for A36 steel.

Welded A5l4 structural shapes are built up from component plates

which are normally prepared to size by flame-cutting. Figure 3a shows the
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residual stress distribution in such a typical plate. Flame-cutting involves

the· melting of base metal, and so is a source of heat very similar in nature

to that of welding; this is the reason for the magnitudes of the tensile

residual stress at the cut edge. A weld or a flame-cut edge will always

exhibit a tensile residual stress equal in magnitude to the yield point of

. [l2]
the weld metal, or parent metal, respect1vely.

Figure 3b shows the same flame-cut plate, with a center V-weld.

The magnitude of tensile residual stress at the weld is equal to the yield

point of the weld metal, which, in this case, was made with an electrode of

lower strength than A5l4 steel. [13J The introduction of tensile stresses due

to the additional heat. source requires an equilibrium change to the residual

stress distribution, an increase in the magnitude of the compressive residual

stresses, and a decrease in the magnitude of the tensile stresses at the

flame-cut edge. Therefore, for wide plates, the change in distribution due to

. [13Jthe weld is comparat1vely small.

The residual stress distribution i~ two welded A5l4 shapes are

shown in Fig. 4. Similar observations may be made as for the welded plates

in particular, the wider'the plate, the smaller the magnitude of residual

stress at positions away from the weld. The study showed that welded A5l4

shapes contain residual stresses only slightly larger in magnitude than those

(14J,in welded shapes built up from mild steel plates.

A co~parison of the residual stresses in a welded A5l4 H-shape and

in its component we~ded plates is shown in Fig. 5. The distributions are

similar~ It was concluded that the residual stress distribution in a welded

P'lates . [ 14]shape may be predicted from those in the separate component welded
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4. COLUMN STRENGTH

The strength of columns of a practical length corresponds to the

condition of inelastic buckling, that is, buckling where part of the cross

. h . Id d [8] . h d lId [15,16J h· hsect10n as Y1e e. It 1S t e tangent mo u us oa w 1C

defines the buckling strength of an initially perfectly straight column; this

load is almost never observed in tests, since columns are usually not initially

straight. The ultimate load of a column, on the other hand, is the load which

is usually obtained from experiments. For an initially straight column, it is

a load in 'excess of the tangent modulus load, but less than the reduced modulus

load; it may vary considerably for practical columns, depending on the

magnitude of the initial out-of-straightness of the column. Generally, test

results will tend to approximate the tangent modulus load.

It was mentioned above that residual stresses reduce column

strength. This is brought about by certain portions of the cross section

reaching the yield level early, due to the presence of compressive residual

stresses; the effective moment of inertia of the cross section is reduced,

lowering the load-carrying capacity of the compression member.

For A514 steel, the magnitude of the compressive residual stress

is very small when compared to the yield point thus, it may be expected that

.'

column strength is proportionately high. This is exactly what happens and is

shown in Figs. 6a and 6b for rolled and welded columns, respe~tively; in both

cases, the A514 steel ( ~ = 100 ksi or 70 kp/mm2 , nominal) is compared with
y

mild steel ( A7 steel, ~ = 33 ksi, or 23 kp/mm2 , nominal.) Figure 6 shows
, y

test results only -- the CRC curve is included for reference, it is the basis

of the AISC design curve [17 ] used for all steels and fabrication procedures.

This curve, was based on the tangent modulus load and test:'results obtained' for

small rolled shapes of mild steel (A7 steel.) It was the first design curve to

include the effects of residual stress directly.
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The strength of the A514 columns were predicted by the tangent.

modulus concept, assuming both the idealized elastic plastic ~- £ curve,

[5Jand also the actual inelast ic ~ - t curve. This is illustrated in Fig. 7

for weak axis buckling of an 8WF31 rolled shape, for residual stress

distributlons applicable for both A514 steel and for A7 steel; test results are

also presented for this steel. Figure 7 indicates that column strengths may be

predicted with a reasonable accuracy.

B h h . 1 . d . 1 t d· [5,18,19J h hot t eoretlca an experlmenta s u les ave s own

that, 'for A514 steel, rolled WF columns are stronge~ than welded H-columns,

and that welded box~~Golumns and rolled WF columns exhibit similar strengths.

Also, A514 steel columns are much stronger than their mild steel counterparts.

These findings reflect the influence of the small magnitude of the residual

stresses in A514 steel. Although welding introduces relatively high magnitudes

of tensile stresses, the compressive stresses are increased only slightly,

(Fig. 4), so that, even for welded shapes, the proportion of the compressive

residual stress to the yield stress is comparatively low for A514 steel; in

addition, the tensile values of residual stress at the flange tips due to the

flame-cut edge create a favorable condition, one where the flange tips remain

ela?tic during loading. Welded box shapes similarly exhibit relatively high

coiumn strength due to the high values of tension at the welded corners.

5. BEAM - COLUMNS

Beam-columns, structural members with significant amounts of

both bending and compression, have been investigated for many decades. More

recently, the use of the concept of column deflection curves has been

. [20JJ.ntroduced and has proven useful in consideration of the behavior of the

beam-column in a subassemblage or in a multi-story frame.
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All the previous investigations were limited to materials with an

elastic-perfectly-plastic stress-strain curve, as well as being restricted to

small cross sections of mild steel with residual stresses corresponding to

rolled shap~s. It .had also been assumed that no reversal of the strain of

plastified sections is allowed during the entire loading history, and that the

reversal of curvatures after the ultimate load ( the "unloading effect") is

neglected.

[5 2lJ .This investigation ' consldered the behavior of both rolled

and welded beam-columns of A514 steel. Both the non-linearity of the stress-

strain curve, and the appropriate residual stress distribution were used,

and the effect of strain r~versal and unloading. of moments were included.

Numerical solutions were compared with full-scale test results, and also with

analytical solutions obtained by extrapolation from results of rolled mild

steel shapes.

Test results are compared with theoretical predictions for the

ultimate strength of an A514 beam-column in Fig. 8; both a rolled shape (8WF40),

and a welded shape ( IlH71 ) are considered. Figure 9 presents an interaction

curve for the same shapes, and includes the solution extrapolated from mild

steel analysis.

Thl·S study [5,21J showed th t th tIt· d ·da e ex rapo a 10n proce ure provl es

an approximate , although conservative, estimate of the strength of A514

beam-columns, when compared to the direct integration procedures used .
.,

Comparison between theory and tests showed that, not only the ultimate strength,

but also the complete history of a beam-column behavior can be predicted; this

"

is critical, since

computation of the

the unloading part of the M-G diagram is needed for the

. [15 20J
strength of subassemblages and of multl-story frames.. '

The strain reversal effect is pronounced for the nonlinear stress-strain curve

of A514steel; the unloading effect, however, becomes pronounced only on
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the latter part of the unloading M-8 curve.

6. LOCAL BUCKLING

The efficient design of a column requires a cross section with

comparatively thin plates~ and thus~ local buckling may increase in

significance as steels of higher yield point are used. Consideration must be

given to the stability of plate elements so that the most economical cross

section can be designed. These points are significant for A514 steel.

Residual stresses play an important role in the buckling of plates

as compression members -- and~ unlike columns~ residual stresses affect the

[22]
elastic buckling of plates. This study presented~ for the first time~

solutions to the elastic-plastic and plastic buckling of plates with residual

t
[22~23~24] d '-... .s resses. The stu y was complemented vy experlmental verlflcatlons~

. . [25 26]
using square box shapes. ~

The study of this investigation included the analysis of plate

elements and the analyses of plate assemblies. Several combinations ofedge

conditions were considered: free~ simply-supported~ and fixed~ with the loading

edge in each case simply-supported. These results are useful in estimating the

overall buckling strength of the cross section.

the

Figure 10 presents some typical results of both the analysis and

• [22 25Jexperlments. ~ The analysis presents the bifurcation curves for a

plate~ simply-supported on all edges~ and containing a residual stress

distribution which very closely approximates that in a plate welded at the

unloaded edges. For the analysis~ the simplified assumption of an idealized~

elastic-perfectly-plastic stress-strain curve was made. In this case, the

plate is one side" of a square box~ welded at each corner. The test results are

for both A7 steel and for A514 steel. The compressive residual stress, ~ ~rc.
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defines the plate buckling curve for the elastic -plastic and elastic

buckling conditions, and values of 0- ler = 1/8 corresponds approximately to. ~ Y

A5l4 steel, and values = 3/8 corresponds approximately to A7 steel. On a non-

dimensional basis, A514 steel exhibits a higher plate-buckling strength than

does A7 steel, due entirely to the relative magnitudes of compressive residual

stress. Considerable post-buckling strength is exhibited for elastic buckling.

The buckling load of welded plates correlated well with the total strain theory

for~;elastic-plasticbuckling; the incremental theory predicted high critical

values.

Figure 10 shows also that it is possible for a plate to buckle

with no external load. This phenomenon was explained for the first time in this

d [22,23J . . f' 1 . d d d' 'b 'stu y ; lt lS necessary only or a partlcu ar magnltu e an lstrl utlon

of residual stress to exist for a particular bit ratio. It has been observed

that some relatively thin plates buckle upon welding.

It is also seen from Fig. 10 that a critical value of width-

thickness ratio exists, such that plates with a bit ratio less than this value

can sustain the full yielding load. It was shown that the 1963 AISC Specification

. [17J f '. 1 'd h h' k t' b t d d d' tl trequlrements or crltlca Wl t -t lC ness ra lOS can e ex en e lrec y 0

the A5l4 steel shapes, both rolled and welded,

The initiation of local buckling did not reduce the strength of

the beam-columns tested. [5,21J If further study confirms this, then the use

ofbearn-columns could be extended beyond the local buckling point.

7. SUM MAR Y

Some of the conclusions of this investigation were:

1. The stress-str~in relationship of A5l4 steel is different from that of

mild steel -- there is no yield plateau, The relationship was defIned
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mathematically in order to be used in theoretical predictions. The shape

of this relationship has a marked influence on the strength of compression

members.

2. The distribution of residual, stress in welded A514 steel plates and shapes

is similar to that for mild steel. But, the magnitude of the compressive

residual stresses is small when compared to the yield stress; thus, the

effect of these stresses on structural strength is much smaller than for

mild steel.

3. Residual stresses in rolled, heat-treated A514 shapes are very small in

magnitude, generally less than 5 ksi, and thus exhibit relatively high

column strength.

4. The prediction of the strength of A5l4 steel columns from the tangent

modulus concept correlated well with test results.

5. The buckling load of welded plates correlated well with the total strain

theory for elastic-plastic buckling; the incremental theory predicted

high critical values.

6. The results of the beam-column tests agreed well with the theoretical

analysis which took into account the non-linearity of the steel in

developing the moment-curvature-thrust relationships and the interaction

curves.

7. The strength and behavior of A5l4 steel welded plates and shapes should not

be extrapolated from that of mild steel, since the difference of yield point,

mechanical properties, and residual stresses, are significant.

The findings of this study were used in the preparation of the

new (1969) revision of the design specifications of the American Institute

of Stee'i Construction.
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9. NOMENCLATURE

bIt

CRe

E

H

L/r

-M

Mmax
M

p
Mpc
P

P
Y

WF

E.
Q

0
tr
r:;-
cr

0-
p

()
rc

o;t
Cf
u

cr
y

(J
ys

width/thickness ratio of plate

Column Research Council

Young's Modulus

symbol denoting welded H-shape

slenderness ratio of column

moment acting on end of beam-column

moment corresponding to ultimate load on beam-column

plastic moment

plastic moment modified by axial load

axial load on column

axial load to cause complete plastification of column cross section

symbol denoting wide-flange rolled H-shape

strain

angular rotation at end of beam-column

symbol denoting a non-dimensional slenderness ratio

stress

critical stress, bucklin~ stress, stress at bifurcation

. stress at proportional limit

residual compressive stress

residual tensile stress

. stress at ultimate load

yield' stress

static yield stress, corresponding to a zero strain rate in tbe
plastic range.
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