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1. S Y N 0 PSI S

For long span flexural members, deflection limitations often con­

trol in design. A method called Preflex has been developed in Belgium

and applied successfully in Europe to reduce the deflections of long span

shallow depth composite steel and concrete beams.

A beam of 60-foot span and 24-inch depth comprijed of an 18 WF 114

rolled steel beam encased in concrete and designed on the Preflex prin­

ciples was fabricated in the United States and tested. This report de­

scribes the test of this beam and also the test of an identical beam

which was not preflexed.

While the tests demonstrated the potential advantages of pre­

flexing, they also emphasized that care must be taken in selection of

materials and in the fabrication procedures to insure the full advantage

of the preflexing technique.
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2. I N T ROD U C TI 0 N

2. 1. BACKGROUND

Within the past several years high strength structural steel shapes.

conforming to the ASTMA441 designation have become available to the con­

struction field. Possessing,a yield streng~h fifty percent higher than

ordinary structural steel, these materials have particular application

as long span flexural members. However, even though the material is

applicable strengthwise, the stiffness of the material is no greater than

structural steel, and hence deflection limitations may be exceeded in

long span structures.

To gain the full benefit of the strength characteristics and at

same time keep deformations within acceptable limits, a long span beam

of this material must possess greater stiffness. The simplest solution

is to use a beam of greater depth. However this would reduce clearance.

Another controlling factor is now introduced, that being depth limita­

tion. In many instances, the most desirable beam is that which gives the

lowest. depth to span ratio possible .

. A type of composite beam. which employs the Preflex technique was

introduced in Belgium by Mr. M. A. Lipski about ten years ago, and has

been used successfully in Europe since then. ': .'J;'he aim o·f thePr'~flex:;

method is to entirely encase the steel beam with concrete which is ef­

fective in adding to the stiffness of the beam. This implies that even

concrete in the tension area is effective and hence does not crack. To
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accomplish this, it is necessary to impose precompre~sive stress in the

concrete so that when the beam is loaded in service, this compressive stress

is relieved but cracking does not occur.

In order to introduce the compressive stress in the tension area

concrete,the bare steel beam is deflected by means of jacks until

stresses approaching the yield point are reached in the tension flange.

this operation is termed preflexing.

With the beam in this deflected position, a slab of concrete

(called the Stage 1 concrete) is poured around the tension flange.

When this concrete has hardened sufficiently to achieve the desired

strength, the preflexing forces are released and the beam tends to re­

turn to its original profile. However, due to the presence of the Stage

1 concrete, and its composite action with the steel, the beam now has a

higher stiffness and full return is not possible. Thus a higher load is

now required to produce a given deflection than before with the bare steel

only.

The beam is now ready to receive the Stage 2 concrete which en-

cases the steel compression flange and the web. In this manner, a girder

of low depth to span ratio and possessing high stiffness properties is

obtained. In addition, all the steel has concrete cover which is not

cracked under working loads.

As in prestressed concrete, creep and shrinkage effects would all

but eliminate the effect of preflexing unless high strength steel and

concrete materials were used.
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For further information on the principles of preflexing and design

procedures see references 1 through 6.

To introduce this method of construction to the United States, the

consulting firm of Schupack and Zollman of Stamford, Connecticut and

Newtown Square, Pennsylvania was retained to design a preflexed beam

which satisfies all the requirements of American practice, using materials

available in the United States, and which could be applied as a component

of a useful structure.

A standard Bureau of Public Roads 28-foot roadway highway bridge

60 feet in length subjected to the AASHO H20-Sl6 loadi.ng was designed.

Eight preflexed beams were the main flexural members. The design cri­

teria were essentially the same as those used in Europe. Some alternations

were necessary since American materials were used (See Appendix VI for'

design notes),

It was desired to demonstrate the capabilities of the preflexed

beams as designed for this bridge by means of a series of tests. These

tests were conducted at Fritz Engineering Laboratory, Lehigh University.

2.2. PURPOSES AND SCOPE

Two beams with 60-foot span, 2Lf-inch depth, and 48-inch wide top

flange were fabricated and tested. The steel elements were 18 WF 114

rolled sections, Of the two beams, only one was subjected to the pre­

flexing operation. The preflexed beam was designated as Px-l and the

non-preflexed beam was termed Re-l. The test beams were identical in
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all other respects. The purpose of the two tests was to isolate and

evaluate the effect of preflexing.

From these tests it was desired to prove the following points:

a. The deflection of a preflexed beam is substantially less than

the deflection of a non-preflexed beam of the same dimensions

and subjected to the same loads.

b. The elastic range of a preflexed beam is increased over that

of.an identical non-preflexed beam.

c. Cracks will not appear in the preflexed beam until a much

higher load has been applied than would be the case with a

non-preflexed beam.·

It was also desired to obtain the proper n values (modular

ratios) for the calculation of stresses and deflections in a preflexed

beam.

2. 3 ..TEST PROGRAM

The testing programs for the two beams were identical. The beams

were loaded by means of two hydraulic jacks at the quarter points to pro­

duce the design moment for the preflexed beam at midspan. After unloading,

two more cycles of the design load were applied. This sequence was re­

peated for 1.25, 1.5, and 2 times design load. With these cycles com­

pleted, the beams were then loaded to ultimate capacity.

The load at design moment consisted of two portions - a load of

6.5 kips to simulate dead load of the bridge carried by the beam and a
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load of 24.5 kips to simulate live load - applied at each jack. This

loading produced the design moment of 465 ft.-kips at the midspan.

Tests on steel coupons and concrete cylinders accompanied the full

scale beam tests. The purpose of these investigations was to determine

the material properties of the beam components. In addition, preliminary

static and fatigue tests were conducted to determine the suitability of

stud shear connectors for transferring the shear from steel to concrete

in preflexed beams. The material tests and other preliminary investigations

are described in Appendices II through VI.
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3. PR'EPARATION OF TEST BEAMS

3.1. PRELIMINARY

The 18 WF 114 steel beams for Re-1 and Px-1 were brought into the

laboratory by truck. They were unloaded and placed on the floor to

await preparation according to Figure 1.

Welding of end stiffeners, bearing plates, and lifting lugs was

the first item accomplished. Electric arc hand welding using low

hydrogen electrodes was the process employed.

Shear connectors were installed on the outer faces of both the

tension and compression flanges. The layout pattern shown in Figure 1

was identical for both beams. All shear connectors were the bent stud

type, one-half inch in diameter. Due to concrete cover requirements,

those studs welded to the tension flange were only 1-3/4" in height,

while those on the compression flange were 2-3/4" high, which is normal

for this type of stud. Pre~iminary tests to evaluate the behavior of

these studs are reported in Appendix IV:.

The welding process for the shear connectors was also of the

electric arc type. The studs are placed in a hand applicator and set in

position. Each stud is then welded to the plate simply by pulling the

trigger on the applicator. Figure 2 shows a stud being applied. The

current intensity and current duration are predetermined and need not be

adjusted for each weld once a satisfactory setting has been obtained.
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After all welding operations on the bare steel beams were completed,

the beams were placed in position for final preparation before pouring con­

crete. Itis important to note that, in this position, the beams were in­

verted with respect to their final test position.

In Belgian practice, beams are usually preflexed in pairs, one

beam right side up, the other beam inverted. The inverted beam is then

turned over using large special wheels near theguarter points. Beams

Re-l and Px~l were fabricated in the inverted position to help insure

proper placing of the Stage 1 concrete and for general laboratory con­

venience.

Measurements were then taken of the cross section of both beams

at five locations along their lengths. It was found that the deviation

from the handbook values for the section properties was no greater than

two percent in any case. Therefore, in the subsequent calculations, where

these values are required, the handbook values are used.

Even though the section properties varied only slightly, the

cross section of Px-lwas warped somewhat at midspan. In addition, the

web of Px-l was not located at the middle of the flanges, but was 1/4"

off center; that is, the distance from the outer tip of the flange to the

center of the web measured 5-3/4" on one side, 6-1/4" on the other. This

may have had a significant effect on the performance of this beam which

will be discussed later.

Both beams ~~re supported at the ends of a 60-foot span. Beam Re-l

rested on simple bearing blocks as shown in Figure 3. The support
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arrangement for Px-l was somewhat more complex because of the requirement

that it be preflexed. At the quarter points, mechanical jacks weie
~

placed beneath the beams so as to exert an upward force on the beam. By

using wide bearing blocks, it was possible to place three jacks at each

quarter point. The use of three jacks at both points enabled the beam to

be preflexed without twisting of the beam. This method also made the

operation of restroking the jacks more easily accomplished. Throughout

most of the preliminary work, prior to preflexing, Px-l rested on these

jacks.

At the ends of the 60-ft. span, Beam Px-l was fastened to the floor

thrqugh dynamometers. A detail of this arrangement is shown in Figure 4.

The dynamometer~ which had been previously calibrated, were the measuring

elements for the preflexing loads. When it was desired to take zero

readings, the dead load of the steel beam was relieved from the quarter

point jacks and carried at the ends by these dynamometers. Under these

conditions it was necessary to prevent longitudinal movement of the beam

by using a horizontal strut to a fixed column.

Electric strain gages were applied at five stations along each

beam according to Figure 5. The gages were the Baldwin SR-4 Type A-l

which measure the strain over a one inch gage length. A typically gaged

section is shown in Figure 6. To prevent damage from the moisture in the

concrete, the gages were coated with a waterproofing compound.

The steel reinforcement for the tension flange concrete (Stage. 1)

was then installed on both beams, This reinforcement pattern is shown in

Figure 1.
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3.2 PREFLEXING Px-1

At this point, Px-l was ready for the pref1exing operation. Be-

fore pref1exing, the compression and tension flanges were braced against

lateral movement at the ends, quarter points, and centerline, The jacks,

located at the quarter points, applied the upward forces while the

dynamometers at each end held the beam down and measured the' load. The

operation required three cycles of loading to relieve the residual

stresses present in the beam due to straightening and cambering at the

mill, The pref1exing is discussed more fully in Section 5.

3.3 STAGE 1 CONCRETE

,With the pref1exing of Px-1 completed, both beams were ready to

receive the Stage 1 concrete which encased the tension flanges as shown

in Figure 1. The formwork was constructed so that the weight 9f the con-

crete was carried directly to the floor as much as possible, Figure 7

shows the formwork for Re-1 in place and Px-1 partially preflexed.

,
The Stage 1 concrete for both beams was poured the same day. A

,I

mix designed for 5000 psi compressive strength at 28 days was used.

Details of all concrete mix designs are given in Appendix III. Separate

batches of three cubic yargs were used in each beam,
/('

The dry materials

were added to a six cubic yard transit mix truck and transported to the

laboratory, At the laboratory, water was added until a concrete having

a:s1ump of 2-1/2" was obtained.

The pouring operation is shown in Figure 8. A one-half cubic

yard bucket was hung from a crane and transferred the concrete from the
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truck to the beam. Vibrators applied from both sides forced the concrete

to flow fully around the web and under the steel flange. Final finishing

was performed with a steel trowel.

For the first three days of curing, the wooden forms covered all

concrete surfaces except the top on which damp burlap was spread. On

the thrid day of curing the forms were stripped. The wet burlap remained

on the top surface of the concrete and it hung down to cover the sides.

Wet burlap was wrapped around the entire beam section on the fifth day

of curing. This was done to improve the curing conditions.

On the twelfth day Whittemore strain gage points were then in­

stalled on the Stage 1 concrete at each station according to Figure 5.

These points allow strain to be measured over a gage length of 10 inches.

The wrapped around curing arrangement continued until the beams

were rolled over in preparation for the Stage 2 concrete.

3.4 S~GE 2 CONCRETE Re-1

Fourteen days after pouring, the Stage 1 concrete, Re-1 was rolled

over so that the Stage 2 concrete could be poured. The rolling process

utilized wooden wheels at the ends. Figure 9 shows the beam about to be

rolled. The curing of the Stage 1 concrete on Re-1 was stopped the next

day.

Details of the Stage 2 reinforcement are shown in Figure 1. The

forms were constructed so that the entire Stage 2 concrete weight was

carried by the beam. Twenty days after the Stage 1 concrete was poured,
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the Stage 2 concrete was poured on Re-1. A single batch of six cubic

yards was poured similarly to that for Stage 1. The forms were removed

six days after pouring. Curing of the Stage 2 concrete consisted of wet

burlap on the top surface while the forms were on, and wet burlap on the

top surface and sides of the slab after the removal of the forms and

until the end of curing, twenty-three days later. Whittemore plugs were

installed on the Stage 2 concrete according to Figure 5. The test on

Re-1 was started thirty-four days after pouring the Stage 2 concrete,

3.5 STAGE 2 CONCRETE Px~l

. i
Twenty-eight days after the Stage 1 concrete was poured on Px-1

the curing was stopped and the pref1exing load was released. It was not

possible to turn the beam over on the day of detensioning, so approxi-

mate1y one-third of the original pref1exing force was again jacked into

the beam. This was done to minimize creep of the Stage 1 concrete,

Px-1 was turned over three days after the first release of pre-

flex loads. The turning procedure was not the same as that for Re-1.

Instead of using wooden wheels at the ends, the beam was supported at

five points along its length "oJ wooden timbers. Eccentric lifting forces

located near the thitd points were applied so that the beam rolled as it

was lifted., Px-1 was then placed on pedestals at the ends in order to

receive the reinforcement and formwork for the Stage 2 concrete.

Details of the Stage 2 reinforceme~t and formwork were the same

as for"Re-1. The Stage 2 concrete was poured thirty-eight days after

Stage 1 had been poured, Separate batches of three cubic yards each
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were poured similarly to that for Stage 1. For the first twenty-two days

of curing the Stage 2 concrete, the forms remained on and wet burlap was

spread over the top surface. After this time and until the test began,

seven days later, wet burlap remained on the top surface. Whittemore

plugs were installed on the Stage 2 concrete prior to the test. Following

is a table giving the sequence of important events in the pouring and

curing of concrete for both Re-l and Px-l.

TABLE 1 TIME SEQUENCE OF EVENTS IN THE POURING· AND CURING OF CONCRETE

..

...

•

Day Re-l Px-l

1 Stage 1 concrete poured . Stage 1 concrete poured

4 Formwork removed Formwork removed.
6 Wet burlap wrapped around Wet burlap wrapped around

12 Whittemore plugs installed Whittemore plugs installed

15 Beam rolled
16 Curing of Stage 1 concrete stopped

21 Stage 2 concrete poured

27 Formwork removed ..
29 Curing of Stage 1 concrete stopped

First release of preflexing load

32 Preflexing load released
Beam·turned

39 Stage 2 concrete poured

50 Curing of Stage 2 concrete stopped
..

55 Testing began

61 Formwork removed

68 Curing of Stage 3 concrete stopped
, Testing began

I
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3.6 DEFLECTION AND STRAIN READINGS

To obtain information on the behavior of both beams before the

testing program began, readings of the vertical deflections and of the

steel and concrete strains were taken at appropriate times during the

preparation of beams Re-l and Px-l .
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4. B E H·A V lOR 0 F B E A M Re-l P RIO R TOT EST

4.1 DEFLECTIONS

The initial camber of Re-l was measured as it rested on its end

supports in the inverted. position. Subtracting the dead weight deflection,~

the camber as measured at mi~~pan was 3.38 inches, The east and west
./ ~ ,

quarter point offsets from the chord were measured as 2.37 and 2,46 inches

respectlvely.

After. pouring the Stage 1 concrete and rolling the beam into

position for the pouring of the Stage 2 concrete, the beam maintained an

upward camber of 2,31 inches at midspan. The dead weight of the Stage 2

~

'concre~e caused a deflection of 1.96 inches, so that after pouring the

Stage 2 concrete, an upward camber of 0,35 inches was present at midspan.

4.2 STRAINS

Steel strains a~ various steps in the preparation of Re-l are

shown in Figure 10 for Station 1, A strain of 345 micro-inches is in-

dicated in the outer fiber of the tension flange prlor to testing.

Using a modulus of elasticity of 28,5x 106 psi for the steel, this

strain corresponds to a stress of about 10 ksi,' At Stations 2 and 2'

the stress was found to be 9 ksi. The corresponding stress at Station

3' was found to be 6.5 ksi. The scatter of the gage readings at

Station 3 was so great that no reasonable conclusions can be dra~.



•

•

-16

Concrete strains for the Stage 1 concrete were not available

since tensile cracks formed when the beam was rolled. The cracks in all

cases passed directly through the Whittemore gage points making strain

readings ,impossible.

Gages were not installed on the Stage 2 concrete in time to

measure the shrinkage effect prior to the test. However, if it is assumed

that the steel strains in the vicinity of the top flange are the same as;

the concrete, then Figure 10 shows a strain of 100 micro-inches per

inch due to shrinkage of the Stage 2 concrete. This strain is the

difference between the strain readings taken after pouring the Stage 2

concrete and prior to the test.

4.3 ANALYSIS OF MEASURED STRESSES AND DEFLECTIONS

In analyzing the observed behavior of the beam, considerations

must be taken which would be very difficult to predict beforehand.

Specifically, the proportion of the Stage 1 concrete weight carried by

the forms is not easily determined. Even though it was attempted to

support the beam so that the entire concrete weight was transferred

directly to the floor, the weight of the concrete resting directly on

the steel flange was no doubt carried largely by the steel b~am.

Another significant factor was the formation of tensile cracks

in the concrete sometime during the rolling of the beam. Calculations

show that the tensile stress induced in the outer fiber due to rolling

would be over 600 psi. A stress of this magnitude would be sufficient

to and'did.cause cracking.
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The behavior of the beam after cracking is extremely difficult to

predict accurately for two reasons. First of all, it is not known pre­

cisely what stress will cause the cracks to form, Secondly, the redis­

tribution of stress at. cracking, involves quite a detailed analysis.

For the purposes of checkingthe'magnitudes of the readings taken,

a theoretical analysis was performed.based on the following. assumptions:

1. When the Stage 1 concrete was poured, half the

weight was carried by the beam, and half the

.weight was transferred directly to the floor

by the forms.

2, Tensile cracks formed in the Stage 1 concrete

half-way through the rolling operation. The

concrete stress wasl zero at cracking.

3. Strains obey elastic beam theory, Material

properties are taken from cylinder and coupon

tests explained in Appendices II and II!.

4. Shrinkage effects are neglected.

If a comparison of calculated values with observed results is to be

made, consideration must be taken of the fact that the exact location of the

strain gages with respect to the cracks is not known. Therefore only a

range of strain can be defined, i,e. the strain gage reading should lie

between the value ,computed for the cracked section and that value cal­

culated for an uncracked section. The theoretical analysis is given in

Appendix I .

.The following table gives a comparison of .the measured.stee1

stresses as indicated in Figure 10, with the ca~cu1ated values.
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" °1 (ksi) °1 (ksi)
"".,'

,., .......
Loading Condition ··· .. ,.i.' .. : Measured Calculated Measured .Calculated

Cracked Uncracked Cracked Uncracked

Dead Weight of WF - 2.97* - 2.97 + 2.97* + 2,97

After Addition of Stage 1 - 4.56 - 4.98 + 3.98 + 4.98

r(k
..

After Rolling Beam + rh28 + 4.24 + 0.36 - 8.27 - 6.47 - 5.7'2
,i

After Addition of Stage 2 + 11. 7 +12.91 + 4.25 - 16.7 - 15.14 - 13.51

Prior to Test + 9.7 +12.91 + 4.25 - 19.9 - 15.14 - 13.51

*These stress values due to the dead weight of the steel beam were
actually calculated .

.:fhe,iJQ1-lowing table gives a comparison of the measured midspan de-
o • "' ~.__ ••; ... "

flections with the calculated values.

'l'ABLE 3 MIDSPAN DEFLECTIONS OF Re-l PRIOR TO TESTING

Midspan Deflection (inches)
Loading Condition Measured ··Calculated

Cracked Uncracked

Dead Weight of WF 3.94 ~ 3,99 t
After rolling beam 2.31 4 2.22 , 2. 74 ~

After addition of Stage 2 0.35 4 O. 25 ~ 1.42 ~
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4.4 CONDITION OF Re-1 JUST BEFORE TESTING

To summarize the condition of Re-1 just before testing, the fol­

lowing points are restated.

1. The maximum stress in the tension flange was 10 ksi at

midspan.

2. The Stage 2 concrete had a shrinkage strain of approx­

imately 100 microinches per inch.

3. The camber of the beam was 0.35 inches measured at mid­

span.

4. The Stage 1 concrete was cracked throughout the length

of the beam.
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5. B E H. A V lOR 0 F B E A M Px.-1 P RIO R TOT EST

5.1 PREFLEXING

The pref1exing forces were applied upwards at each quarter point

of Px-1 by means of mechanical jacks. The end reactions were provided

by dynamometers which also measured the load applied by the jacks,

On the first application of load excessive yielding began at

diagonally opposite flange tips at Station 1 before a stress of 30,000 psi

was reached, (30,000 psi is only 65% of the coupon yield strength.)

This type of yielding pattern indicated that high residual stresses had

been introduced by cold-bending the beam to remove a lateral sweep which

was present after cooling. The initial lateral sweep ~y have been due

to the eccentricity of the web described earlier,

Having observed this yielding, the pref1exing, was begun again

and more yielding was noted when the full pref1ex load was finally

applied.

Upon release and subsequent re1oadings, the load-strain re1a-

tionship was linear indicating that the effect of the residual stresses

had been eliminated in this region.

5.1.1 Deflections

)0 ;.,.,:

... The initial camber of the inverted beam was measured' to be ~;:62:, inches
I.

as it rested on its end supports. Subtracting the dead weight deflection,

the camber was computed as 6.1 inches.
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Figure 11 shows the load vs. midspan deflection for the entire

preflexing operation. The circled numbers refer to the sequence of

loading. The zero for the deflection values refers to the beam resting

on 'end supports.

A total deflection of 13.7 inches is shown for the full pre­

flexing load of 51.7 kips applied at each jack. With the inverted beam

in its final preflexed condition, the upward deflection from the hori­

zontal was 7.6 inches. Prior to the application of the final preflexing

load, a residual deflection of 4.2 inches was present. This indicated

that of the original 6.1 inches camber only 1.9 inches remained. The

unexpectedly large loss was due to the high residual stresses present

in the beam when it was received•

5.1.2 Strains

The effect of the high residual stresses present in the beam

caused uneven yielding to take place much earlier than anticipated.

However, after successive cycles of preflexing to higher loads a greater

range of elastic behavior was obtained. Finally, the last application

of the preflexing loads produced elastic behavior in the strains for

the full preflexing range.

An average elastic strain of 1400 microinches per inch was re­

corded at the outer tensile fibers at Stations 1, 2, and 2\ with the

final preflex load applied. This value of strain corresponds to a stress

of 40,000 psi,.'
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At Station 3 and 3 1 the average strain was 670 microinches per

inch, corresponding to a stress of 19,100 psi.

Inelastic strains as high as 5100 microinches per inch were re­

corded in the midsection of the beam before achieving the elastic be­

havior for the full range of loads.

With the inverted beam in its final pref1exed condition, the

Stage 1 concrete was poured around the tension flange.

5.2 CURING PERIOD

The curing,period for Px-1 was essentially the same as for Re-1

except for the release of pref1exing loads after the curing of the Stage

1 concrete.

5.2.1, Deflections

After release of the pref1exing loads, and rolling the beam into

position for the pouring of the Stage 2 concrete, the beam had a sag of

1.64 inches measured at the centerline. The dead weight of the Stage 2

concrete caused a deflection of 1.02 inches, so that with the beam ready

for testing, a sag of 2.66 inches was present at midspan.
"

In the design of Px-1, it was intended to have a slight ~pward

camber when completed as was present in Re-1. However, the loss of

4.2 inches of the original bare steel beam camber as explained earlier

caused the sag.
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5.2.2 Strains

Steel and concrete strains at various steps Pf the curing period

of Px-l at Station 1 are shown in Figures 12 and 13. Since behavior at

Station 2' proved significant during the test, Figures 14 and 15 are

included showing the strain at this station.

For intervals of several days between readings, the electric

strain gages on the steel could not be depended on to give an accurate

measure of the strains. It was attempted to use reference gages in

order to detect changes in the measuring system not caused by strains

and some benefit was gained through the use of these reference gages.

However, based on electric strain gage readings alone, an accurate de­

termination of strains during the curing period could not be obtained.

The Whittemore gages on the Stage 1 concrete could be relied on

for determination of long term changes in strain since all readings are·

referred to a standard. The standard is known not to change.

By considering the two measuring methods together, the steel

strains during the curing period could be defined with some degree of

confidence. However, these strains as shown in Figures 12 and 14 should

not be considered to have the same accuracy as the strains measured during

preflexing and the test.

The strains given just prior to testing have been converted to

stresses using the appropriate value of the modulus of elasticity.

Stresses just prior to testing at critical points in the steel and con­

crete are given in the following table.
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STATION 1 2 2'

Steel stress, tension flange (ksi) 25.0 24.6 22.7

Concrete stress, bottom fiber (ksi) - 1.5 - 1.2 - 0.77

5.3 ANALYSIS OF MEASURED STRESSES AND DEFLECTIONS

As in the case of Re-1, the behavior of Px-1 during the curing

period is very difficult to predict beforehand. Again the proportion of

the Stage 1 concrete supported by the beam is not known. In addition to

shrinkage, the effect of creep is present in Px-1.

A.theoretica1 analysis of the pretest behavior has been per­

formed. No considerations of creep and shrinkage were taken into account.

A comparison of the theoretical with the observed behavior should give

an estimate of the losses due to creep and shrinkage.

The following assumptions were made:

1. When the Stage 1 concrete was poured, half the weight was

carried by the beam, and half the weight was transferred

directly to the floor by the forms.

2. Strains obey elastic beam theory. Material properties are

taken from cylinder and coupon tests explained in Appendices

II and III

The theoretical analysis is given in Appendix I.
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Significant stresses, both theoretical and measured are presented

below, Values of stress for Station 2' are indicate# since during the

test this was found to be the most critical section.

TABLE 5 STRESSES IN Px-l AT STATION 1 PRIOR TO TESTING

•

al ksi (Steel) acl ksi (Concre.te)
Loading Condition Measured Calculated Measured Calculated

Dead Weight of WF -; . 3.00 - 3,97 -- --
After Preflexing 39,6 39.0 -- --

After Second Release 18,8 19.7 - 3.56 - 3,71

After Rolling 24,S 25,4 - 2,41 - 2.61

At Start of Test 25.0 28.9 - L50 - 1.94

TABLE 6 STRESSES IN Px-l AT STATION 2' PRIOR TO TESTING

•

•

al ksi (Steel) acl ksi (Concrete)
Loading Condition Measured Calculated Measured Calculated

Dead Weight of WF - 2.82 - 2.78 -- --

After Preflexing 39.8 39.4 -- --
After Second Release 17.2 20.3 - 3.07 - 3.71

After Rolling 2L8 25.9 - 1. 73 - 2,61

At Start of Test 22.7 29.2 - 0.77 - 1.98
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Calculation of Deflections at Station 1

Calculations of the midspan deflections during the curing period

were performed. These were based on the same assumptions and data as given

for the stress computations. The table below compares the theoretical

values with those measured.

TABLE 7 MIDSPAN DEFLECTIONS OF Px-l DURING CURING PERIOD

Midspan Deflection (inches)
Loading Condition Measured Calculated

. Dead Weight of WF 2.30 t 2.30 +
After Preflexing 7.21 ~ 7.22 •
After Release 0.15

,
0.42
,

After Rolling 1.64 t 2.31 +
At Start of Test 2.53 t 3.48 l ,

Discussion of Losses

The losses due to creep and shrinkage may be divided into two

periods (between the first release of preflex and the rolling) and (be-

tween the rolling and the start of the test). If the steel stress at the

outer tensile fiber at Station 1 is taken as the basis for evaluation of

losses, the following values are obtained.

TABLE 8 LOSSES IN Px -1 BASED ON STATION 1

·,1.'.··.·..,.,.

Initial Stress Loss /):,: :.'.

Period (ksi) (ksi) %Loss

First Release - Rolling 20.6 1. 75 8.5

Rolling - Test 27.5 2.61 9.5
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If the calculated stress at the Start of the test is compared

with the measured value a loss of 17% is indicated; that is, theoretical

. calculations based on a 17% loss due to creep and shrinkage would give

nearly the actual stress condition.

Inspection of the data showed results consistent with that above

except at Station 2'. Greater strains were recorded at this location

than in the other sections when the beam was rolled. Although every

effort was made to support the beam uniformly during this time the con­

crete was overstressed enough to cause a significant plastic deformation

at this station. At the time of the test, a compressive stress of only

0.77 ksi remained in the outer fiber of the Stage 1 concrete. A stress

of L 5 to 2.0 ksi was expected.

5.4 CONDITION OF Px-l JUST BEFORE TESTING

To summarize the condition of Px-l just before testing, the fol­

lOWing points are restated.

1. The maximum. stress in the tension flange was 24,970 psi at

midspan.

2. A loss of 17% of the preflexingstresses due to shrinkage

and creep was recorded.

3. A significant loss was noted at Station 2' where the maximum

compressive stress in the outer fiber of the concrete was

only 0.77 ksi.

4. The beam had a sag of 2.7.in~hes·at the centerlirie:

prior to the start of the test.
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6, DES C RIP T ION 0 F T EST S

6,1 TEST PROGRAM

The test program for Re-l is shown in Figure 16, Intermediate

load levels are indicated. Figure 17 shows the same for Px-l .. Testing

of each beam covered four days. Each evening the maximum.load reached

up to that time was held overnight, This led to sustained periods of

application of design live load, 1.5 times design load, and 2 times de­

sign load.

Note that jack loads of 6.5 kips were used to simulate the super­

imposed dead load that the beams would have carried in a bridge. To these

jack loads were added increments to give some factor of the design live

load moment for Beam Px-l. That is, a jack load of 6.5 kips at each

quarter point corresponds to zero live load moment, and an increment of

_24.5 kips (31.0 kips Jack Load) corresponds to design moment, That is,

1:5 times design live load equaled ~.5 + 1.5(24.5)J kips.

In the last phase of loading, i,e. when loads approaching ulti-

mate were applied, increments of deflection rather than load were used.

As the deflection was held constant, the load decreased slightly. The

average of the loads before and after taking readings was used as the

test load. The difference in the two loads amounted to no 'more than two

kips in any case .
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6,2 TEST SETUP

The overall test setup is shown in Figure 18. The arrangements

for Re-l and Px-l~ identical. The west end of the beam was supported

by a pedestal allowing rotation only. At the east end, the support per-

mitted longitudinal movement as well as rotation.

A test frame from which was suspended a single Amsler jack was

placed at each quarter point. The jacks are hydraulically operated, each

k
having a static loading capacity of 200 Pressure was applied to the

hydraulic system by means of an Amsler pendulum dynamometer which also

measured the applied loads. Since the rams of the two jacks have equal

surface area, and the jacks are connected to the same hydraulic system,

the applied load at the quarter points are necessarily equal.

The maximum stroke of the jacks is five inches. Therefore re-

stroking was necessary at several intervals during the test. Restroking

was done at times when the load was completely removed and toward the

end of the test when the load was taken beyond 2 times design load.

During these latter stages of testing the restroking was per-

formed after the beam. was blocked to hold the maximum previous deflection.

The blocking arrangement, shown in Figure 19, consisted of two channels

at each load point ~~lted to the test frame. Between the channels and the

beam were placed steel wedges to take up the clearance,
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6.3 INSTRUMENTATION

Scales graduated to 1/100 of an inch were placed at the center­

line, quarter points, and ends of the two beams. Readings on these scales

were taken at each test load with a Wild level.

The purpose of the end scales was to correct for deflection at

the supports. In the reduction of the data these changes proved to be

small and were subsequently neglected. The quarter point scales served

as an approximate check of the midspan readings.

A,s previously described, electric strain gages of the Baldwin

SR-4 type had been placed on the steel at five stations on each. beam.

Whittemore plugs were placed on both the Stage 1 and Stage 2 concrete at

the same five stations as the steel. The location of both the steel and

concrete gages is shown in Figure 5.

Readings of the strain gages were taken at each test load. The

Whittemore gages on the Stage 1 concrete of Re-l were not recorded since

extensive cracking of the concrete had occurred before any test load was

applied.

Ames dial gages were placed at the ends of each beam to record

any slip between the steel and concrete at these points.

The air temperature in the vicinity of the testing area was re­

corded at each test load.
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The load vs. centerline deflection envelope for the entire test

of Re-l is shown in Figure 20.

To show the deflection under given percentages of live load,

Figures 21,22, 23, and 24 have been presented. These figures correspond

to 1.0, 1.25, 1.5, and 2 times design load respectively. Each cycle of

loading at a given load level is included. The dashed line indicates the

theoretical load-deflection relationship. Residual deflections present

after the first cycle are clearly evident. Residual deflections at the

start of each load sequence were used as the new zero points for de­

flections. For later convenience of comparison, corresponding curves

for Px-l are shown on these figures.

7.2 STRAINS

To demonstrate the linear distribution of strains at a cross

section Figure 25 is presented. This gives the distribution at Station

1 for the first five load increments. Also indicated are the concrete

stresses corresponding to the given compressive test strains, and the

tensile stresse~ in the steel assuming that the recorded strains are

completely elastic. Similar plots could be drawn for the other Stations.

Figure 26 shows the strain distribution at the final test load

for all five stations.



OJ

-32

Figure 27 indicates the strain distribution at Station 1 with

the design load applied. Two experimental lines are shown -- one corre­

sponding to the change in strain from zero load to the first application

of load, the other indicating the strain increment for succeeding applica­

tions. These are instantaneous strain increments only -- strains under

constant loading have been subtracted. The dashed line is the theoretical

line which will be explained in the following chapter.

Figures 28, 29, and 30 give the same information for loads of

1.25 times design, 1.5 times design, and 2.0 times design load.

Figures 31, 32, 33, and 34 apply to Station 3. With one ex­

ception these figures give the same information as explained in the

preceding paragraphs for Station 1. The exception is that only one ex­

perimental line is shown. Subsequent loadings produced the same readings

as obtained in the first loading.

7.3 END SLIPS

The maximum slips between the concrete and steel at each end

are shown in the following table:

TABLE 9 CONCRETE SLIP OF Re-1

-
Gage Location Slip (inches)

Top Slab West 0.0020

Top Slab East 0.0016
• .c..... 4 •••
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7. 4 . TEMPERATURE

The air temperature in the testing area recorded at each load

ranged from 620 F. to 730 F.

7.5 OTHER OBSERVATIONS INCLUDING CRACKING NOTES

After rolling Re-1, tensile cracks in the Stage 1 concrete were

noticed throughout the length of the beam. Since the cracks passed through

Whi,ttemore gage points in all cases, concrete s.train observations were

impossible. The spacing of the cracks was 7-1/2" or the same as the

spacing of the transverse reinforcement.

The width of nine cracks, designated as A through J, which had

formed in the Stage 1 concrete were measured during the course of the

test with a microscope equipped with a graduated lens. Only on cracks

in the pure bending region of the beam were these measurements taken .

The increase in crack widths is indicated in the table below:

TABLE 10 CRACK WIDTHS IN Re-1

•

Load Jack Load Width of Cracks (in. x 103)
No. (kips) A B C D E F G H J

2 6.2 6

3 15.3 12 11 11

11 31.0 10 20 30 13 14

23 37.2 40

28 37.2 25
48 43.5 55 16 15 16

49 50.0 40 65
51 56.0 75

53 6.2 50
56 56.0 45 80
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With the load at 31.0 kips (Design Load) about ten cracks in

the web concrete were observed to extend within one-half inch of the

underside of the top concrete slab. The pattern is shown in Figure 35.

After reaching 37.2 kips, separation between the underside of

the top steel flange and the concrete was observed at the end of the

beam. This separation was not noted however on the top side. At the end

of the test tensile cracks had progressed to 4-1/2 inches from the top of

the concrete.

The final test loading was 70.5 kips applied at each jack

(2.56 ti~sDesign Load), This condition is shown in Figure 36. The

maximum deflection was 31 inches at the centerline. There was no

crushing of the compression concrete.
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8. THE 0 RET I CAL A N A L Y SIS 0 F T EST

• RESULTS Re-1

To analyze the strains during the testing phase of the beam, the

composite cross section with the Stage 1 concrete completely cracked

through was used. It is assumed that the strains obey elastic beam theory.

Material properties are ,taken from cylinder and coupon tests explained in

Appendices II and III.

A sample calculation follows:

I =

=

3934 in~

281 in~ (Section modulus at outer fiber of steel flange
which will be the tension flange in the final
position. )

•

•

3
Sc2 = 523 in. (Section modulus at outer fiber of Stage 2

concrete flange)

ro,

•

•

~

For Station 1 'with design load applied:

M = 5570 in~ -kips
. '

€1
M = 5570

.;.,/ =
Sl E 281 x 28.5 x 103

'E:l
-6

= 695 x 10 in/in

Ec2
-M -5570= =

103Sc2 E 523 x 28.5 x

E, 2 -374 x -6 '= 10 in/in
" c

Using the values calculated for El andEC2, the theoretical line

may be drawn in Figure 27. These strains also apply to Stations 2 and 2'

since the moment is the same.
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Likewise, for deflections, theoretical values may be computed

based on the cracked section properties, neglecting the stiffening in-

f1uence of the Stage 1 concrete,

For design load (superimposed dead plus live load applied by jacks):

5<£
11 ML2

= 9'6x EI

O{
11 X 5570 x 60 2 x 144= 103 x96 28.5 x 3934

s~ = 2.96"

Deflections at other loads may be computed in a similar manner.

The theoretical load vs, deflection line is shown in Figures 21, 22, 23,

and 24.

Based on the yield stress of the steel and ultimate strength of

the concrete, an ultimate moment calculation was performed to check the

final test load and the final location of the neutral axis, The ultimate

load was calculated to be 66.7 kips at each jack and the location of the

neutral axis to be 4.5 inches from ~he top surface of the concret~,
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9. D I So C U S S ION 0 F T EST RE S U L T S: B E A M Re-1

9.1 DEFLECTIONS

Figure 21 shows the amount of residual deflection present after

the first loading to design load. Since the succeeding loadings followed

essentially a linear path, it may be said that the first loading served

to relieve the residual stresses present in the beam.

None of the test results agree very closely with the theoretical

line. This is due to two influences; residual stresses in the steel and

the stiffening effect of the Stage 1 concrete. On the first loading,

residual stresses caused the beam to deflect more than predicted. The

succeeding load cycles, with the residual stresses relieved and with the

benefit of the Stage 1 concrete, showed a greater stiffness than predicted.

The effect of creep under sustained loading is indicated by the

increase in deflection when 31.0 kips (design load) was held for sixteen

hours.

Figure 22 shows essentially the same information as Figure 21

but in this case the maximum load was 37.2 kips (1.25 times design load).

There was no period of constant loading; therefore no creep deflection is

present. Since the increase over the previous load (31.0 kips) is only

about 20 percent, the residual deflection is markedly less in this case.

Figure 23 shows the cycles of load at 43.5 kips (1.5 times de­

sign load). The residual deflection is of the same order as for 37.2 kips
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since the increment of load increase is the same. A creep deflection is

noted at 43.5 kips; the load was held for nineteen hours.

Figure 24 shows the cycles of load at 56.0 kips (2 times design

load). The residual deflection due to this load is relatively high since

the increment of load increase was twice that for 37.2 and 43.5 kips.

Theoretically, a load of 64 kips was required to produce yielding

stresses (about 44 ksi) in the tension flange. The applied load was

56 kips, therefore the bending stresses alone were not responsible for

the residual deflection. The residual deflection must be attributed to

the sum of the bending stresses and residual stresses having exceeded the

yield stress.

9.2 STRAINS

Figure 25 is presented merely to demonstrate that the strains

behaved as expected for the first loading cycle, i.e. there is a linear

distribution of strains at each load increment and the neutral axis stayed

at approximately the same location. The steel stress indicated would be

true if Re-1 behaved perfectly elastic. However, as the later un10adings

showed, a significant amount of these strains are plastic, therefore, the

stresses shown are not valid.

Figure 26 gives the strain distribution at' ultimate load.

Stations 1, 2, and 2' which were in the pure bending region, show that

the beam curvature was much greater in this section than at the end sections

where;'Stations 3 and 3' were located. The position of the neutral axis is
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shown to be about five inches from the top of the slab which checks with

the progress of tensile cracks and the ultimate moment calculation.

A comparison of test strains with the theoretical values at

Station 1 for design load applied is given in Figure 27. As described

previously for the deflections, the first loading strains exceed the

predicted because of the presence of residual stresses. Upon loading

the second time, after relief of the residual stresses, the recorded

increment of strain is less than the theoretical. The presence of the

Stage 1 concrete around the gages stiffens the beam in that area and does

not allow as great a strain as would be at the cracked sections.

Figures 28, 29, and 30 give the same information as described

above for 1.25, 1.5, and 2 times design load respectively.

Figures 31, 32, 33, and 34 apply to Station 3', the location

halfway between the west load point and the reaction. In this case, the

first and second loadings at each level were nearly identical, indicating

. that the stresses were not high enough to cause yielding -wheri 'a¢dedtbthe

residual stresses. Again, the theoretical line gives higher strains

than the test line due to the presence of the Stage 1 concrete,

9.3 END SLIPS

The end slips recorded are very small when compared to the mag­

nitude of slips obtained in other tests of composite beams. Since the

bond did not appear to have broken on the top of the steel flange, it

seems that these slips had little significance .
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9 .4 TEMPERATURE

The variation of temperature was not considered in any of the

test readings.

9.5 CRACKING

The cracking was visible to the naked eye before any load was

applied. If the usefulness of the beam were to be dependent on the

presence of cracks, then in that sense the beam was never satisfactory .
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10.1 DEFLECTIONS

The load vs. centerline deflection envelope for the entire test

of Px-1 is shown in Figure 37. On Figures 21, 22, 23, and 24 the per-

centage of live load vs. centerline deflection is presented. For com-

parison purposes, the corresponding curves for Re-1 are shown.

10.2 STRAINS

To demonstrate that the distribution of strains at the cross

section is linear, Figure 38 is presented. This figure refers to Station

1. Similar results were indicated at the other stations. The concrete

stress corfesponds to the compressive test strains, and the stress in

the steel corresponds to the tensile test strains. These stresses are

based on the assumption of elastic behavior.

Figure 39 shows the strain distribution at the final test load

for all five test stations.

Figure 40 indicates the strain distribution at Station 1 with

the design load applied. Unlike Re-1, only one experimental line is

drawn. This is due to the absence of residual strains after the first

loading of Px-1. Two theoretical lines are presented however. Since

cracking occurred prior to the design load, only a theoretical range of

strain can be defined, as explained before for Re-1. These theoretical

lines will be discussed in the following chapter.
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Figures 41, 42, and 43 indicate the strain distribution for

loads of 1.25, 1.5, and 2.0 times design load.

Figures 44, 45, 46, and 47 apply to Station 3. Only one theo-

reticalline is shown at this station since cracking was not observed at

this location until much later.

10.3 END SLIPS

The maximum slips between the steel and concrete at each end

of Px-l are shown in the following table~

TABLE 11 CONCRETE SLIP IN Px-l

•

•

Gage Location Slip (inches)

Top Slab West 0.0015

Top Slab East 0.0012

Bottom Slab West 0.0042

Bottom Slab East 0,0037

10.4 TEMPERATURE

The air temperature in the testing area recorded at each load

ranged from 620 F. to 730 F.

10.5 OTHER OBSERVATIONS INCLUDING CRACKING NOTES

On the first cycle of loading tensile cracks appeared in the

Stage 1 concrete at a load of 25 kips per jack. The cracks occurred first
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near Station 2' on the south side of the b~ams. As the load was increased

to 32.5 kips, additional cracks appeared throughout the section between

the load points. Upon release of the 32.5 kip load, it was observed that

the cracks closed at 16.8 kips.

Four typical cracks in the pure bending region of the Stage 1

concrete were observed during the course of the test. These are de-

signated as A, B, C, and D. As, Ds , Cs , Ds refer to measurements taken

on these cracks near the south edge of the beam. Likewise,~An, Bn , Cn,

Dn refer to measurements on the north edge of the beam.

Measurements of crack widths for these four cracks are shown in

Table 12 .
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Load Load per jack Width of Cracks (in x 103)
No. (kips) As Au Bs Bn Cs Cn . Ds Dn

4 25 3 0 2 0 0 0 0 0

5 32.5 4 3 3 1 , . 2 2 2 1. :.
j:.:

6
:1

32.5 4 3 3 1 2 2 2 1
\.

7 16.8 0 1 1 0
) .

0 0 1 0
'.

8 7.7 0 0 0 0 l.' 0 0 0 0
!
j ';'
'~J "

9 16.8 0 1 0 0 'j : 0 1 1 0:i. ..'
of·

10 32.5 3 2 3 2 .2 1 ·2 2

11 16.8 0 0 1 0 0 1 1 0

12 7.7 0 0 0 0 0 0 0 0

13 32.5 4 1 4 2 2 2 2 2

14 32.5 4 1 4 2 2 2 2 2

15 7.7 0 0 0 0 0 0 0 0

16 32.5 3 3 5 2 2 1 3 2

17 39.2 5 4 5 3 3 1 4 2

25 37.2 5 4 4 4 3 2 2 3

36 43.5 6 5 7 3 5 4 6 3

48 15.3 6 5 8 4 5 5 6 6

57 56 7 6 11 7 6 7 7 8

-- 0 1 1 3 0 1 1 0 2
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In addition, general remarks on the-appearance of the cracking

in Px-l were recorded. They are as follows:

Load
No.

4

5

Load per Jack
(kips)

25

29

32.5

Remarks

Four cracks, 0.002", appeared between west quarter
point and midspan - spaced about 2" - located on
south face of bottom flange only.

Eight additional cracks, previous cracks widened
to 0.003".

Ten additional. cracks appeared on south face, all
ranging between 0.001" and.0.003" in. width.
Spacing was approximately 15". Six cracks were
completely through Stage 1 concrete and extended
to base of web.

25
t

7 16.8
•

8 7.7

•
9 16.8

• 10 32.5

11 16.8

12 7.7

13 32.5

14 32.5

15 7.7

16 32.5

• 17 39.2.'
• 36 43.5

57 56.0

Most cracks disappeared" Only about six were still
0.001" in width.

All cracks disappeared.

No cracks visible.

Only crack An reopened to 0.001 1
.' •

Same cracks as in Load 5.

Cracks disappeared'almost completely.

No cracks were visible.

Same cracks as in Load 10, plus about t~elve ad­
ditional which were 0.001" to 0.002" wide extending
6" into web concrete.

No change after seventeen hours at load

All cracks disappeared.

Same cracks as Load 14, some slightly larger.

More extensive cracking, web cracks extended 6" up
into concrete.

About ,thirty cracks formed, some were spaced at
7-1/2".

One crack on the north side west of the centerline
.. widened to 00020".
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Figures 48 and 49 show the cracking patterns in the Stage 1 con-

crete and the web at ultimate load.

With the load at 56 kips, separation of about 1/16 of an inch

was observed between the underside of the top steel flange and the con-

crete adjacent to it. This behavior was noted in Re-1 also.

At the end of the test, the cracks in the concrete had extended

to within 4-1/2" of the top of the slab. The final deflection was

30-1/4" at the centerline at a load of 68 kips. The test was stopped

at this load, though there was no crushing of the compression concrete.

Figure 50 shows the beam in this condition.
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RES U L T S Px-1

11.1 CONCRETE AND STEEL STRAINS

A theoretical analysis of the behavior of Px-1 was performed,

This work gives the strains and deflections for each test load based on

the following assumptions:

a. Sections of the beam, originally plane remain

plane. This implies that there is complete

interaction between the steel and concrete

components,

b, The concrete and steel obey Hooke's law, i.e,

stresses are proportional to strains •

Values of the modulus of elasticity for steel and concrete were

taken from the average of test values given in Appendices II and III.

In the analysis it was necessary to consider the effect of

cracking of the Stage 1 concrete. Cracking was observe4 at a jack load

of.25 kips (76% of the design live load). To take this effect into ac-

count when predicting strains, only a range of strain for a particular

gage can be defined, i.e. the strain gage indication should lie between

the value computed for an uncracked section and that value for a section

which cracked at 25 kips. A more accurate pr~diction is not possible,

since the variation of strain between cracks is not known •
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Therefore the lower bound strain value is computed for an un-

cracked section. For the upper bound value, redistribution of strains at

cracking is considered. It was assumed that each fiber in the Stage 1

concrete was stressed to 500 psi when cracking occurred. From the as-

sumed.500 psi stress value, a concentrated force at the centroid of the

cracked portion was applied to the cracked cross section. This gave an

increment of strain which was added to the total strain developed up to

25 kips per jack to give the strains after cracking .. Strains for load

increments beyond cracking are computed considering cracked. section

properties. Total strain beyond cracking is obtained by summing the

three strain increments mentioned above.

Theoretical deflection values were computed by an elastic analysis

by making the same assumptions as were made in the strain analysis.

I•

Uncracked Section Properties:

= 6731 in~

601 in~= (Section modulus at outer fiber of steel flange
which will be the tension flange in the final
position)

Sc2 =. 623 in~ (Section modulus at outer fiber of Stage 2 concrete
flange)

Cracked Section Properties:

I = 3853 in~

Sl = 205 in~

Sc2 = 476 in~
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Strain Calculation for Station 1 at 1,06 times design load:

M = 5840 kiP-in, ,

A, Uncracked Section

=

==

5840
- 601 x 28.5 x 10 3

-6 I341 x 10 in. in,

== - ==
5840

'623 x 28,5 x 103

• E;c2 == - 329 x 10-6 in. lin .

Using these values calculated for E1 and ec2 ' the lower bound

theoretical line may be drawn as shown in Figure 40.

B, Cracked Section

Strain up to 25 kips jack load (cracking occurs at this load);

M ==...lL x 5840 == ,4490. kip-in, '
32.5

E:1
M 4490 == 262 x 10-6 in. lin.== ==

103Sl E 601 x 28.5 x
•
•

C M -4490 - 253 x 10-6 in. lin.== == ==-c2
Sc2 E 623 2805 x 103x
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Additional Strain at Cracking

P ;:: 500 x 26 x 6.5 ;:: 84.5k (Force to be applied to center
of Stage 1 concrete)

~M ;:: Pe ;:: 84.5 (15.9 - 3.25)

6M ;:: 1069 ''1< (Moment acting on cracked section)

;:: AM;:: 1069
Sl E 205 x 28.5 x 103

6E1 ;:: 132 x 10-6 in. lin.

..6.Ec2 --L.M - 1069;:: ;::

103
Sc2 E 476 x 28.5 x

6.Ec2
;:: - 79 x 10-6 in./in.

Strain from time of cracking to 32.5 kips at each jack

M ;: 32.5 - 25 x 5840 ;:: 1350k"
32.5

6.~1 ;:: 1350 ;:: 166 x 10-6 in./in.
205 x 28.5 x 103

6E.c2
- 1350 100 x 10-6 in./in.;:: .;:: -

476 x 28.5 x 103

Total Strains at 1.06 x Design Load

;:: (262 + 132 + 166) x 10-6

€l ;:: 560 x 10-6 in./in.

fcz ;:: (- 253 - 79 - 100) x 10-6

Ec 2 ;:: - 432 x 10-6 in./in.
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Using these values calculated for 61 and E
C
2' the upper bound

theoretical line may be drawn as shown in Figure 40,

These strains also apply to Station 2 and 2' since the moment is

the same. By performing similar calculations, the theoretical lines for

the other loads may be obtained.

11.2 FIRST YIELD IN BOTTOM FLANGE

Since the preflexing cycles insured elastic behavior only up to

40,000 psi at Station 2', it would be expected that any test load causing

a stress beyond this point would cause yielding. Station 2' will be in-

vestigated since the first cracks and thus -the subsequent higher stresses

formed at this station .

Stress at end of preflexing, 40,000 psi (Page 21)

Stress at start of test, 22,700 psi (Page 24)

Difference = 40,000 - 22,700 = 17,300 psi

or in terms of strain

= 17300 = 607 x 10-6 in. lin.
28.5 x 106

..
•

Inspection of the strain readings showed that yielding had com­

menced at the strain gage locations when the value of 607 x 10-6 in. lin.

was reached. This occurred with a load of 43.5 kips on each jack or

1. 5 timesc!e~~gn:io:ad;'

However, since the strain gages were not necessarily located at

the cracks, yielding probably commenced at the cracks at a lower load than

the 43.5 kip load.
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To find this load, the procedure used for the preceding ca1-

cu1ations is used. This computation shows that a load of only 34.0 kips

could have started yielding.

11.3 CRACKING OF S~GE 1 CONCRETE

It was found that at the start of the test a stress of 770 psi

compression remained in the bottom fiber of the concrete at Station 2'.

If a tensile stress of one-tenth f~ is taken as the cracking stress, an

imposed stress of approximately 1300 psi would have been necessary to

cause cracking.

The computed cracking load would then be:

•

••

•

p

p

p

=

=

=

6731 x 1.3 x 7.31
180 x 13.2

26.8 kips

....

This agrees favorably with the observed cracking load of 25 kips.

In previous tests performed in Europe, it was found that cracking

would initiate at the top face of the Stage 1 concrete. This was due to

the shift in the neutral axis after the addition of the Stage 2 concrete,

causing the cracking stress to be exceeded first at the top face.

This behavior did not occur in the initial cracking of Px-1 since

the probable overstressing of the bottom fiber at Station 2' made that

location more critical. However, further cracking at other locations did

show evidence of cracks initiating at the top face.
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12. DIS C U S S ION 0 F T EST RES U L T S -

B E A M Px-l

12.1 DEFLECTIONS

Figure 21 shows that the amount of residual deflection present

after the first application of design load was about 0025 inches. Com-

parison with the theoretical load deflection lines shows good agreement

until cracking occurs. An increase in deflection of 0010 inches over a

period of 17 hours is noted at design load.

Figure 22 shows that comparison of the theoretical load deflection

relationship is still fairly good up to 1025 design loado With the load

increased to 105 times design load, a significantly greater deflection

than the theoretical is noted as indicated in Figure 230 This is due

primarily to the extensive cracking which took place in the Stage 1 con-

crete. An increase of 0.3 inches over a period of 22 hours at 1.5 times

design load is evident. This was due partly to creep of the Stage 2 con-

crete and partly to yielding of the steel which occurred at this load.

Beyond 1.5 times design load, much larger deflections take place

for increased loadings as shown in Figure 24. Again this is due primarily

to the yielding of the steelo Unlike previous load levels, further in-

creases in deflection took place when the beam was reloaded to 2 times

design load. In addition, Figure 24 shows a slight increase in deflection

which occurred due to the beam having been held at design load for sixty-

five hours.
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12.2 STRAINS

Figure 38 shows that a linear distribution of strains was obtained

along the cross section for the first loading sequence. Since elastic be-

bavior for this region had been insured by the preflexing operation, these

strains are elastic and may be converted directly to stresses. The stress

at 31.0 kips is shown to be very close to the design stress of 37.0 ksi.

The strains at each cross section at ultimate load are shown in

Figure 39. Much larger strains took place at the pure moment region than

at the ends. As in Re-l, the neutral axis at ultimate load is located

about five inches from the top of the slab in the center section.

With loads beyond design, Figures 40 through 42 show that the

strains became closer to the upper bound value, that is the strain based

on a section cracked at 25 kips. Since at 2 times design load, the strains

are well beyond yield, no theoretical values are shown in Figure 43.

Fairly good agreement with the theoretical values for strain at

Station 3 is shown on Figures 44 through 47. The theoretical values are

based on the uncracked section which was truly the case at this station.

12.3 END SLIPS

As in Re-l, the end slips recorded were very small when compared

to the magnitude obtained in other tests of composite beams. Again, they

are considered to have little significance.
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12.4 TEMPERATURE

The variation of temperature was not considered in any of the

test readings.

12.5 CRACKING

The occurrence of cracking at 25 kips has already been dis­

cussed. The most significant thing to be noted concerning the width of

the cracks is that the cracks are consistently wider on the south side

of the beam. This is possibly due to overstressing the concrete on the

one side during the turning of the beam•



••

-56

13. SUM M.A ~ Y ~A'Ni~\~CO N C L U S ION

Two 60-foot span composite steel and concrete beams, one pre-

flexed (Px-l) and one not preflexed (Re-l) were fabricated and statically

tested to evaluate the effect of preflexing on structural behavior. Two

basic factors greatly influenced the test results; these were (1) the

high residual stresses in the A44l steel beams as delivered to the lab-

oratory, and (2) the methods used to turn the inverted beams right-side-

up after pouring the Stage 1 concrete. The higher than expected resid-

ual stresses caused excessive loss of camber in preflexed beamPx-l, and

premature inelastic behavior of both beams. The t4~ning operation appar-

ently overstressed the Stage 1 concrete for both Re-l and Px-l, thus

causing premature cracking and inelastic behavior o~ both beams. Never-

theless, valid and important results were obtained from the tests, and

these are discussed below. Furthermore, proper control of materials and

fabrication procedures could easily eliminate these two damaging factors

now that their importance has been clearly emphasized. The test results

may be summarized as follows:

13.1 STIFFENERS

Figure 37 shows that beam Px-l is over 70 percent stiffer than

Re-l in the design live load range. The live load deflection of the

preflexed beam Px-l agreed quite closely with theoretical values based

on the concrete modulus of elasticity as found from the cylinder tests.
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.Thus no verification could be found for the factor of 1.5 applied to the

modular ratio for deflection in the beam design notes (Appendix VI).

Using the beam stiffness as found by the test in the live load

deflection formula

324 3 *f)n =-- PT (L - 555 L - 4780)
"L E I

a value of 1.19 inches is obtained. This exceeds the AASHO allowable

deflection of ~ = 0.90 inches by 32%. Therefore, if the preflexed

beam Px-l were to be used as a bridge member, the allowable load would

have to be reduced considerably to meet the ASSHO Specifications'.

If application to buildings is considered, a deflection of 3g0
or 2 inches is usually allowed. Considering a resisting.mome~t of

55801<", Px-l would deflect 1. 60 inches at full live load. Hence Px-l

would be satisfactory for buildings, whereas the non-preflexed. beam Re-l

would.not as is evident from Figure 21 .

13.2 ELASTIC RANGE

The elastic range of the preflexedbeam is considerably greater

than the non-Rreflexed beam. Figure 37 shows a residual deflection in

Px-l of about 0.2 inches after the beam had been loaded to 1.5 times

design load and then released. This slight residual deflection was due

to the cracking of the Stage 1 concrete~ not to the inelastic behavior

of the steel.

After being loaded to only design load, the residual deflection

of Re-l was already 0.8 inches. Since all the cracks had been formed in

* page 39" Reference 6
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the Stage 1 concrete prior to testing, this deflection must be attributed

to yielding of the steel.

Therefore, the pref1exing operation has the greatly beneficial

effect of modifying the residual stresses in the steel so that the steel

behaves elastically when in service.

13.3. STRESSES

"Allowable design stresses in the concrete and steel were not ex-

ceeded at design load for Px-1. Figure 44 shows that the steel tensile

stress was less than the 0.8 f y (37 ksi) at the design load of 31.0 kips.

The concrete compressive stress was considerably less than 0.4 f~ (1600 psi) .

13 . 4 . CRACKING

Cracking occurred in the Stage 1 concrete of Px-1 at a load con-

siderab1y less than the design load. This was due primarily to inelastic

strains in the concrete at the release of pref1ex loads and in the turning

operation. Stresses in excess of 3600 psi were obtained which is higher

than the allowable of 0.6 x f~ = 3000 psi given in the design notes. Had

the Stage 1 concrete not been cas~ with the beam. in the upside-down

position, the stresses could have been kept within the allowable limits.

Due to its own dead weight, cracking occurred in the Stage 1 concrete of

Re-1 during the turning operation.
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13.5 CREEP AND SHRINKAGE

Loss of pref1exing stress due to creep and shrinkage was ap-

proximately 17% in beam Px-1.

13.6 ULTIMATE LOADS

While yielding of the tension flange of the steel beam occurred

in Px-1 at 1.5 times design load, the ultimate capacity of the beam was

nearly 2.5 times design load, giving a rather safe margin against failure.

Though its yield load was much lower, the ultimate capacity of Re-1 was

about equal to that of Px-1. This is as expected, since Pref1ex is de-

signed to improve stiffness and increase working range, not increase

ultimate strength .

13.7 CAMBER

A noticeable sag was present in Px-1 without any load applied.

This was due to the loss of the original camber when the bare steel

beam was pref1exed. This loss of camber may be attributed to very high

residual stresses caused. by straightening the beam at the mill.
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I.~ STEEL STRESSES IN Re-l

• Section Properties for Bare Steel Beam:

I = 2034 in4 (moment of inertia)

S = 220 in3 (section modulus)

Section Properties for Bare Steel Beam Plus Stage 1 Concrete:

I = 3020 in4

Sl = 493

. S2 = 246

Dead Weights:

(Section modulus at outer fiber of. steel flange
which will be the tension flange in the final
posi tion)

(Section modulus at outer. fiber of steel flange
which will be the compression flange in the
final posi tion)

Stage 1 concrete

Stage 2 concrete

Steel beam + Stage 1 reinforcement

Stage 2 formwork

164 lb./ft.

354 lb./ft.

121 lbo/ft.

36 lb./ft.

According to these weights, the applied moments at various

stages of preparation have been computed .

..
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Calculation of Stresses at Station 1:

From those moments, the stresses may be computed.

Stresses due to dead weight of steel beama~d Stage 1 reinforcement:

M 653 kip-in~ .

0' - 653 = 2.97 ksi
1 - 220

Stresses due to dead weight of Stage 1 concrete (assuming half of

. weight is transferred directly to the floor through the formwork):

M = 443 kip;-in"

= - 6.0'1 =
443
220 = 2.01 ksi

••

0'2 = - 0'1 = 4.98 ksi . Total

Additional stresses due to removal. of forms (total weight of Stage

1 concrete is carried by the beam):

M = 443'kip. -in.

443
LlO'l = - 493 = - 0(90 ksi

LlO'2
443 1.80 ksi Total246

0'1 = - 4.98 - 0.90 = - 5.88 ksi

0'2 = 4.98+ 1.80 = 6.78 ksi

.,
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;

Stresses due to rolling of the beam (assuming Ithat concrete cracked

half-way through rolling operation):

3.12 ksi

= - 6.25 ksi

For uncracked interval: M = 1538 kip"in.

1538
= 493 =

1538
= - 246

For cracked interval: . 493
6a1 = 3.12 x 220 = 7.00 ksi

246
A~2 = 6.25 x 220 = 7.00 ksi

a1 = - 5.88 + 3.12 + 7.00 = 4.24 ksi Total

a
2

= 6.78 - 6.25 - 7.00 = - 6.47 ksi Total

Stresses due to addition of Stage 2 reinforcement and formwork:

M = .051 60 2 x 12-8- x = 276.ki,p..,ih·.

= = 276
220 = - 1. 21 ksi

".

a1 = 4.24 + 1.21 = 5.45 ksi Total

a2 = - 6.47 - 1.21 = - 7.68 ksi Total

Stresses due to addition of Stage 2 concrete and removal of formwork:

M
0.303 60 2 12 1640 kip-in::>.; .= x x =8

6 a2 6a1
1640 7.46 ksi= - = - = -220

a1 = 5.45 + 7.46 = 12.91 ksi Total

a2 = - 7.68 - 7.46 = - 15.14ksi Total
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If a comparison of calculated values with observed results is to be

made, consideration must be taken of the fact that the exact location of

the strain gages with respect to the cracks is not known. Therefore only

a range of strain can be defined, i.e. the strain gage reading should lie

between the value computed for the cracked section and that value calculated

for an uncracked section.

For the latter case, the stresses are the same as that for the cracked

section up to the point halfway through the rolling operation where:

01 = - 5.88 + 3.12 = - 2.76 ksi

02 = 6.78 - 6.25 = 0.53 ksi

The evolution of stresses will now be computed for an uncracked section

through the addition of the Stage 2 concrete .

M = 0.285 x 60 2 x 12 = 1538 kiP:-in 0'

8

6.01 = 1538 = 3.12 ksi
493

b.°2 = 1538 = - 6.25 ksi
246

01 = - 2.76 + 3.12 = 0.36 ksi

02 = 0.53 - 6.25 = - 5.72 ksi
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Stresses due to addition of Stage 2 reinforcement andformwork:

., M = 276 kip'-iri.o'

276 0.56 ksi6.01 = =493

276 = - 1.12 ksi6G2 = 246

Gl = 0.36 + 0.56 = 0.92 ksi

G2 = - 5.72 - 1.12 = - 6.84 ksi

Stresses due to addition of Stage 2 concrete and removal of formwork:

M = 1640 kiP,-in., .

t.::.al = 1640 = 3.33 ksi
..- 493
4

6G2
1640 6.67 ksi= = -246

Gl = 0.92 + 3.33 = 4.25 ksi

G2 = - 6.84 - 6.67 = - 13.51 ksi

, Calculation of Deflections at Station 1

By going through the same sequence of computations as for the stresses

the midspan deflections can be calculated.



I.~ STEEL STRESSES IN Re-1

Section Properties for Bare Steel Beam:

I = 2034 in4 (moment of inertia)

S = 220 in3 (section modulus)

Section Properties for Bare Steel Beam Plus Stage 1 Concrete:

I = 3020 in4

-62

Sl = 493

,S2 = 246

(Section modulus at outer fiber of steel flange
which will be the tension flange in the final
position)

(Section modulus at outer fiber of steel flange
which will be the compression flange in the
final posi tion)

.'• Dead Weights:

Stage 1 concrete

Stage 2 concrete

Steel beam + Stage 1 reinforcement

Stage 2 formwork

164 lbo/ft.

354 lbo/ft.

121 1bo/fto

36 1b./fto

..

According to these weights, the applied moments at various

stages of preparation have been computed .
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Locations o£Stations

Moments (kip"'inches)
= due to:

~ ...x: ...x: ~ ...x:
\0 C"'l C"'l C"'l \0
00 .--l Lr) .--l 00

IN \0 \0 \0 N Weight of steel beam
and reinforcement

....

I

I

Pre£lexing forces applied
5lo7k at each quarter point

Total before pouring State
1 Concrete

Stage 1 Concrete poured
and forms stripped.

Weight acting on beam
on four supports

/

"..
~
00 cy" before release ofC"'l ~ ~ ~ Total.. .j' N \0 N

preflexing forcesLr) Lr) Lr)

'" \0 Lr) \0
00 00 00
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Satisfactory use of the Preflex technique requires a steel with a

yield point of about 50,000 psi, with a long flat portion of the stress-

strain curve between the onset of yielding and the beginning of strain

hardening.

Standard ASTM flat tensile coupons were cut from the 5/8" thick

web of a 30,WF 132 beam of A-44l steel used for preliminary investigation.

The results of these tests follow:

TABLE 13 MATERIAL PROPERTIES OF 30 WF 132

..

•

...

Yield Strength Tensile Elongation
Specimen (0.270 Offset) Strength (8" G. L.)

No. (psi) (psi) (%)

TS-l 53,200 73,400 27,5

TS-2 52,900 74,200 27.5

TS-3 51,100 74,200 27.5

Average 52,400 73,900 27,S

Similar coupons were cut from the 1" thick.flanges of each of the

end stubs of the 18 WF 114 A-441 beams used in the main testing program.

The table on the following page gives the results of these tests. A marked

decrease in the yield strength is shown when compared to the preceding table.

Some decrease is to be expected since these coupons had a greater thickness .



TABLE 14 MATERIAL PROPERTIES OF 18 WF 114

·...··13

...

•

Yield Strength Tensile
Specimen (0.2% Offset) Strength

No. (psi) (psi)

1 46,300 73,300

2 44,500 67,400

3 47,100 .73,800

4 44,600 69,800

Average 45,600 71,100

The minimum steel coupon yield strength of 44,500 psi is slightly

less than the required minimum value of 46,000 psi for this material.

To obtain the modulus of elasticity of the steel, round specimens,

0.505 inches in diameter were removed from each of the four end stubs. A

Huggenberger extensometer was used to measure the strain over a one inch gage

length.. The results were as follows:

..
TABLE 15 MODULUS OF ELASTICITY OF STEEL

•

..

Specimen Modulus of Elasticity
,No. (psi)

TH-l 28.2 x 106

TH-2 28.8 x 106

TH-3 28.5 x 106

TH-4 29.0 x 106

Taking the values given by the Huggenberger readings, a value for

the modulus of elasticity of 28.5 x 106 psi, was used in the theoretical

calculaUons for beams Re-l and Px-l.
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111.1 CONCRETE MIXES

The proporti.ons of cement, sand and gravel used in the Stage 1

(5000 psi. d.esi.gn) and Stage 2 (4000 psi design) concrete is given in the

table below. These two mi.x designs were chosen from test results of five

trial mixes which were designed for 3500, 4000, 5000 and 5500 psi.

TABLE l6 CONCRETE MIXES

,..

Stage 1 Mix (5000 psi) Stage 2 Mix, (4000 psi)
Ingredd.ents (lbs) (lbs)

Cement 644 536

Sand 1162 1210

Coarse Aggregate 1983 1973

Water 317 (approx. ) 320 (approx.)

The dry materials were added. at the plant and mixed enroute. Water

was added at the laboratory until a slump of. 2-1/2 inches was obtained in

each case,

Crushed traprock of 3/4 i.n.ch maximum size was used for the coarse

aggregate. The fineness modulus of the sand was between 2,9 anp 3,0,
I

•
.W

Lehigh Type I cement supplied in bags was used in each case,

111,2 CONCRETE CYLINDER TESTS

. Standard ASTM concrete cylinders were cast from each of the four

pourings i.n the fabrication of Re-1 and Px-1, Results of these tests

follow:



TABLE 17 STAGE 1 CONCRETE CYLINDER TEST OF Re-l
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Age at Time Ultimate Modulus of
Cylinder of Test Strength Elasticity

No. (Days) (psi) (psi)

1 7 3410 -
2 7 3290 -
3 7 3440 -
4 7 3600 -
5 17 4380 -
9 32 5020 3.5 x 106

6 52 5280 3.2 x 106

12 65 5070 -
10 126 5240 3.7 x 106

8 126 5300 3.4 x 106

Average value of modulus of elasticity
for twenty-eight days age or over:

;., }

3.4 x 106 psi

TABLE 18 STAGE 1 CONCRETE CYLINDER TESTS OF Px-l

Age at 'rime Ultimate Modulus of
Cylinder of Test Strength Elasticity

No. (Days) (psi) (psi)

1 7 3920 -
2 7 4370 -
3 7 3960 -
4 7 3860 -
5 17 5570 -

11 32 5420 3.7 x 106

10 65 5950 -
6 66 6360 3.7 x 106

12 66 5670 4.3 x 106

9 l26 5600 4.2 x 106

7 126 6060 3.8 x 106

Average value of modulus of elasticity
for twenty-ei.ght days or over: 3.9 x 106 psi



TABLE 19 S~GE 2 CONCRETE CYLINDER TEST OF Re-l
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Age at Time Ultimate Modulus of
Cylinder of Test Strength E1astici ty

No. (Days) (psi) (psi)
'M '_~'"

26 8 3320 -
15 8 3360 -
27 8 3350 -
24 15 3840 -
22 15 4030 -
23 29 4510 -
8 29 4160 -

14 : 29 4500 3.7 x 106

1 .32 4600 3.7 x 106

2 45 5090 -
11 106 4950 3.4 x 106

21 106 5290 3.9 x 106

Average value of modulus of elasticity
for twenty-eight days age or over: 3.7 x 106 psi

". TABLE 20 STAGE 2 CONCRETE CYLINDER TEST OF Px-1

Age at Time Ultimate Modulus of
Cylinder of Test Strength Elasticity

No. (Days) (psi) (psi)

10 7 3320 -
9 7 3410 -

16 7 3070 -
18 14 3840 -
17 14 3970 -

.5 14 3950 -

11 27 4420 -
11A 28 4260 3.5 x 106

8 28 4490 3.1 x 106

25 88 4280 3.6 x 106

22 88 4720 3.5 x 106

Average value of modulus of elasticity
for twenty-eight days or over: 3.4 x 106 psi

.A Strengthvs. Age curve for all the
concrete tests is given in Fig. 56.
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To determine the static load carrying capacity of the bent stud

shear connectors when welded to the A-441 steel, pushout specimens were

fabricated and tested.

A steel beam section modified from a 30 WF132 to which were welded

four studs on each of the flanges served as the main element of the push-

out, specimen, Figure 51. shows this part of the specimen. To simulate the

condition in a beam, the flanges were encased in concrete with three inches

of cover on the outside flange surfaces.

To test these specimens, load. is applied such that the steel is

pushed through the concrete and the shear connectors are loaded as they

would be in a composite beam,

Two specimens were tested, one with one-half inch diameter "L"

shaped studs of 2-1/4" height, the other with one-half inch diameter

''1" shaped studs of 1-3/4" height, These corresponded to the type of

studs used on the compression and tension flange respectively of the test

beams,

The maximum load per connector for the 2-1/4" studs was 11.3 kips.

For the 1-3/4" studs, the load was 12,4 kips per connector, These re-

su1ts were nearly identical to previous tests conducted at Lehigh

University, and it was concluded that welding to the A-441 steel was just

as satisfactory as ordinary structural steel for static loadings, Hence,

the same allowable connector stress was used as in regular composite con-

struction,



•

•

~

•

•

A P PEN D I X V

FAT I G U E T EST S

-80



..

"•

..

•

-81

FATIGUE COUPONS

Four series of fatigue tests were conducted using coupons machined

from material removed from the web of a 30 WF 132, A-44l steel beam. The

data and results of the four test series are given in Table 21,

The first series consisted of three specimens (designated as F-l~

F-2 and F-3) to each of which four 1/2" diameter I'L" shaped studs had been

welded. The ends of the studs were tapered at approximately a 450 angle

so that just prior to welding, only the center point of the stud was in

contact with the plate material. This was the type of stud used in both

beams Re-l and Px-l and in all other tests unless noted otherwise.

The coupons were subjected to a pulsating load such that the

tensi~e stress varied from 25 to 37 ksi. This type of test was performed

to obtain the fatigue life of A-44l steel as welded.

Figures 52 and. 53 show specimens F-l, F-2 and F-3 after failure.

Failure occurred at a weld location in each case.

The second series of tests was performed in an attempt to improve

on the results of the first series. The second series consisted of two

specimens, one unwelded (F-4) and the other welded (F-5). The stress range

was the same as that for the first series.

The welded specimen had five blunt ended studs welded to it with

three different time settings. Each weld would have been considered

acceptable by eye inspection. The welds differed in that they ranged from

a short time setting which produced a "cold" weld to a longer time setting
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which produced a "hot" weld. It was felt at the time of welding that a

weld wi.th the highest time setting acceptable (i.e. one which was not so

high that undercutting occurred) was the best type. The reason for this

opinion was that the heat affected zone of the base material would be

larger. Subsequent hardness tests on the welded material bore out this

point. It was found that the hardness of the welded zone was considerably

lower in the weld which had the longer time settingo

The results of Test Series 2 indicated that perhaps a blunt end

stud is more satisfactory than a beveled stud, and a "hot" weld is more

satisfactory than a "cold" weld. The third series of tests was conducted

to better establish the results of Test Series 2. Also Test Series 3 was

to simulate the testing program fora proposed beam fatigue test, The

testing program was to be:

r

" 25 - 37 ksi for 1,000,000 cycles

2.5 39.2 ksi for 250~000 cycles

25 - 41.4 ksi for 250,000 cycles

•

..

There were two specimens tested in the third series. Specimen F-6 had

five beveled studs welded to it using the hottest permissab1e setting.

Specimen F-7 was identical to F-6 except that blunt end studs were used.

Both specimens were tested according to the test program given above.

Both specimens survived the proposed test program; the tests were then

continued to failure with the blunt end studs again performing better than

the beveled studs •

Specimen F-8 was not fatigue tested. Since it was felt that a

knowledge of the residual stresses induced by welding would be desirable,
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the areas in the vicinity of both studs were investigated.

Measurements of strain over a two inch gage length at the styd~

were taken prior to welding, after welding, and after a sectioning op~r~tion

which relieved the residual stresses, It W.;ls fOl,lnd that a t~n§Ue §tr:~s;§

of approximately 25 ksi was induced at the stud by the welding,

It was thought that pretensioning a coupon before we~din~ migh~

be relieved .

as that for Serie§ 3,

results than the si~i~ar non~pretens;iqned spe9iIDen <F~?)~ tloWeYeF , Phe

fact that ~,..9 h~dt~obe welded while it). the yerti9a. l pp~iti~nl may ha.yeha.d

some effect on its Qehavior, though vis;ual ins;pectiqn pf the welds; s;hoWed

nothing to verify this.

From these nine fatigue tests;, it may Qe 9pncluded th~t the mOs;t

satisfactory results; ar~ oQtained,with p~1,1nt end ~~ud§ wetdeq w!th the

hottest setting permiss;able. With this a.rra.ngement, We~qed !i/~" thi~lt
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plate material withstood 1,149,700 cycles at loS times design tensile

stress for a typical pref1exed beam,

The results of the nine fatigue tests are given in Table 21.

V.2 FATIGUE PUSHOUT SPECIMEN

A pushout specimen with 2-1/4" high shear connectors was dynamically

tested.to simulate the action on the compression flange of a beam. The

ini.tia1 loads were such that the shearing force on each connector varied

from zero to three kips, which were the values selected from previous

pushout tests to give a fatigue life of 2,000,000 cycles, This condition

was maintained for 2,000,000 cycles, The maximum load was increased in

stages until finally 1,000,000 cycles at a maximum load of nine kips per

connector were recorded with still no failure. The testing was then dis-

continued since it seemed that the bond between the concrete had still not

broken and that actually the shear connectors were not carrying the com-

puted load,

V,3 FATIGUE BEAM TEST

Two short pref1exed beams with concrete cast on the tension flange

were tested dynamically. The beams were 12 feet in length, simply sup-

ported with an alternating concentrated load at the center. Figure 54

shows the test setup, The purpose of these tests was to simulate the

stress condition in the tension flange of a full scale beam, Two beams,
,

B,-1 and B-2, were tested.
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The stud welding for both beams was performed similar to fatigue

coupons F-1, F-2 and F-3, which means that. beveled end studs were used and

also the possibility of "co1d"1 studs was likely. These conditions were

used since the welding was performed prior to the investigation of the per-

formance comparison of "hot" welds to "cold" welds.

The data and results of the tests are given in Table 22. Specimen

B-1 failed after about 1,000,000 cycles at a tensile stress range of 20 to

37 ksi. Specimen B-2 withstood 2,000,000 cycles without failure at a

tensile stress range of 28 to 37 ksi, the proposed working range for pre-

flexed beams. Over 880,000 additional cycles of increased stress amplitude

were then applied to B-2 without failure before testing was discontinued.

It should be noted that the maximum shear connector load occurs where the

beam. stress is a minimum on the tension flange of a pref1exed beam.

Figure 55 shows the failure of B-1 after the concrete slab had been broken

away. B-2 did not fail.

For a more detailed account of these investigations, given in

Appendix V see "notes on Stud Welding· to High Streng~h Steels" by

Marcello Garavaglia, of the Consulting Engineering firm of Shupack and

Zollman.



TensHe Stress
Specimen (ksi)

"
Total

Series Description ' Number Type of, Stud Maximum ,Minimum Cycles Remarks

F-l Beveled ends 37 25 2,660,000 Failed at a weld

1 ,4 studs F-2 Beveled ends ' 37 25 3,231,000 Failed at a weld

F-3 Beveled ends 37 25 2,982,000 Failed at a weld

5 studs F-4 None 37 25 4,457,000 No Failure
2 3 time

settings F-5 ' Blunt ends 37 25 3,995,000 Failed at "colder"
weld

F-6 ' Beveled ends 37 25 1,007,000

39.2 25 287,,400
3 5 studs 41.4 25 281,100 Failed at a weld

"hot" setting

F-7 Blunt ends 37 25 1,007,000

39.2 25 287,000

41.4 25 1,149,700 Failed at a weld

F-9 Blunt ends 37 25 1,007,000

4 ''hot'' setting 39.2 25 287,400
plate pre- 41.4 25 553,000 Failed at a weld
stressed

welded
vertically

-',

· . .,.

TABLE 21 FATIGUE COUPON. TESTS



TABLE 22 FATIGUE BEAM TESTS
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••

Tensile Stress Shear Connector Loads
Beam (ksi) (kips)

Number Maximum . Minimum . Maximum Minimum Total Cycles Remarks

B-1 37 20 3 0.5 1,045,000 Failed at the row
of studs nearest
to the center of
the beam

B-2 37 28 1.5 0.5 2,000,000

37 24 2 0,15 550,000

37 20 3 0.5 333,000 Test was stopped
due to mechanical
difficulties of
the testing ap-
paratus .

No failure had
occurred

..... .,
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-. As explained in Section 2.1 the design criteria for the pref1exed

beams is based on European practice applied to American materials.

VI.1 STEEL

• Type of Steel ASTM A-441

Minimum Yield Strength:

f y

= 50,000 psi for thicknesses of
3/4" and under

= 46,000 psi for thicknesses of
3/4" to 1-1/2"

Modulus of Elasticity: 29,000,000 psi

Allowable Flexural
Stress at Pref1exing: f s = 0.8 f y

Allowable Flexural
Stress under Full
Design Load: f s =0.8 f y

VI.2 CONCRETE

Stage 1 28 day Strength: f' = 5000 psic

t• Allowable Compressive Stress at
Release of Preflexing Forces: 0.6 f~ = 3000 psi

Stage 2 - 28 day Strength:

Allowable Compressive Stress:

VI.3 MODULAR RATIO

A. For stress analysis

B. For deflection analysis

f I = 4000 psi
c

0.4f~ = 1600 psi

n of Stage 1 concrete = 8.4

n of Stage 2 concrete = 9.1

n of Stage 1 concrete = 8.4 = 5.6
1.5

n of Stage 2 concrete = 9.1 = 6.1
1.5
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NOM E N C L A T U R E

Designation for the preflexed test beam 60 feet in length
Designation for the non-preflexed test beam 60 feet in length
The slab of concrete which encases the tension flange of

Re-l and Px-l
The slab of concrete which encases the compressiQn flange

and web of Re-l and Px-l

Moment of inertia

Section modulus at the outer fiber of the steel flange
which will be the tension flange in the final position

Section modulus at the outer fiber of the steel flange
which.will be the compression flange in the final position

Section modulus at outer fiber of Stage 1 concrete flange

Section modulus at outer fiber .ofStage 2 concrete flange

Applied moment at the cross section under consideration

Stress
Unit Strain
Stress at outer fiber of steel flange which will be the

tension flange in the final position

Strain at outer fiber of steel flange which will be the
tension flange in the final position

Stress at outer fiber of steel flange which will be the
compression flange in the final position

Strain at outer fiber of steel flange which will be the
compression flange in the final position

Stress at outer fiber of Stage 1 concrete flange

Strain at outer fiber of Stage 1 concrete flange

Stress at outer fiber of Stage ·2 concrete flange

Strain at outer flange of Stage 2 concrete flange

.Increment of stress due to change of load under consideration

Wide Flange Beam
Pounds per square inch

Thousand pounds per square inch

Thousand pounds
Midspan of beam
7-1/2 feet east of midspan
22-1/2 feet east of midspan
7-1/2 feet west of midspan
22-1/2 feet. west of midspan
Deflection at midspan

Gage length
Yield strength

Allowable steel stress

28 day compressive·strength of concrete

Modular ratio, Steel Modulus of Elasticity
Concrete Modulus of Elasticity

Span Length
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FIG.3 Re-I J END SUPPORT

FIG. 4 PX-I J END SUPPORT
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FIG. 6 STRAIN GAGES AT TYPICAL CROSS SECTION

FIG.7 FORMWORK FOR Re-I
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FIG. 8 POUR ING STAGE I CONCRETE, Re-I
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FIG.9 Re-I ABOUT TO BE ROLLED
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FIG. IS Re-I AT DESIGN LOAD

FIG.19 BLOCKING ARRANGEMENT FOR RE-STROKING JACKS
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FIG.35 TENSILE CRACKS (MARKED) IN Re-I AT DESIGN LOAD

FIG. 36 Re -I AT ULTIMATE LOAD
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FIG. 46 Px-I, MEASURED AND THEORETICAL STRAINS AT STATION 3
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FIG. 47 Px-I,MEASURED AND THEORETICAL STRAINS AT STATION 3



-133

FIG. 48 CRACKING OF CONCRETE, Px-I AT ULTIMATE LOAD

FIG.49 CRACKING OF CONCRETE ,Px-I AT ULTIMATE LOAD



FIG. 50 Px -I AT ULTIMATE LOAD
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FIG. 51 BEAM STUB FOR PUSH -OUT SPECIMEN
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FIG. 52 FATIGUE SPECIMENS AFTER FAILURE

-136

F3 F2 .Ft
FIG. 53 FAILURE SURFACES



FIG. 54 FATIGUE BEAM B-I SET UP

FIG. 55 FAILURE OF FATIGUE BEAM B-1
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FIG. 56 STRENGTH VS. AGE OF CONCRETE CYLINDERS
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