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I. INTRODUCTION

a) Statement of Problem

This report will discuss the behavior of structural members

subjected to planar loading. A structural member is defined as a component

in which one dimension (length) is significantly greater than the other

two (width and depth). It will be assumed that the members are bi-

symmetric and are loaded in a principal plane. Consequently the

deformations will be confined to the same plane as the loads. It will

be further assumed that the members under consideration are only loaded

at their ends.

Such a member is shown in Fig.. lao It is subjected to an axial

load P (positive in compression)., end-moments ~ and ~ (of the same

sig~ when they cause curvatures of the same sign) and shears V (positive

when they cause a clockwise couple). The undeformed length of the member·

is t.
If equilibrium is formulated on the undeformed structure, then

V== (1)

....,

The positive direction of the moments is such that the moment assigned

to the left hand position is positive when clockwise.

These forces and moments may be combined into a single force

which is generally not coincident with the centroid of the member. This

compounded force F is shown in Fig. lb .. The position of F is defined by

~, its counterclockwise rotation from LR, and ~L, the distance from

its intersection with LR to L measured in the lR direction. The values

OfW,~ and Fare
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and

b) Analysis

MF( - ML

7AT =- artan. pg

M/...
1 ::. fVJ~ - ML

F ~ Psec tAr

-2-

(2)

(3)

(4)

In the remainder of this report the effects of deformations

due to shear will be neglected and it will be assumed the internal

resisting moment of a cross-section, M. can be expressed as a function
1.

of the curvature at the ;:enterline*, C/J, i. e.

M. = M. (C/J)
1. 1.

( 5)

Fig, la is shown in Fig, 2a.

For a material such as structural steel, eq.(5) will be non-linear and

history-dependent over much of its range.

The deformed shape of the member previously discussed in

The length.f.* is 'the chord length and is

t reduced by the effect of axial deformation and curvature shortening,

The equilibrium of any point on the member is expressed by the equation

(6)

where wand v are co-ordinate axes along, and normal to, the chord of the

member, If (cllf/dW)2 is small with respect to unity then eq.(6) can

be written as

P\J + tv\L -\- (M R - Vl L) OJ~
. .l

(7)

The solution of this differential equation gives the deformed shape of the

member, As Mi is b?th non-linear and history-dependent this solution will

_._---------------------------------------------------------------------­-. ,~ ...

* The centerline curvature is specified in order to eliminate any
ambiguities in the inelastic range.
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not generally be unique.

c) Column Deflection Curves

Solutions of eq.(7) for materials which are not perfectly

-3-

elastic must usually be obtained numerically. Hence the solution of

each structural problem involving a non-elastic member is both involved

and tedious .. A considerable simplication is achieved by using the

system shown in Fig. lb. The deformed shape for this system is shown

in Fig. 2b .

. The equilibrium equation is now

r~ = tJ\~ (-11/)

where y is the deflection of the member from the Faxis and yU is the

(8)

second derivative with respect to the co-crdinate, x, along this axis.
. .

Relative to eq.(7), eq.(8) only represents a simple shift of co-ordinate

axes and in itself is not a significant simplification. However there

is 'no reason why the calculations need be stopped at the ends, L & R,

of the member. If the calculations are allowed to continue a wave-like

function (shown dashed.in Fig. 2b) will be obtained. Clearly, just as

the portion LR of the function represents the deformed shape of a member,

so some other portion represents the deformed shape of another member.

The function generated by solving the particular case of member LR

therefore also represents an accessible source of information with

regard to numerous other loading configurations.

d) Historical Review

Continuous solutions to eq. (8) provide the functions shown in
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,

...

Fig. 2b. In the elastic range these solutions are the characteristic

functions (or eigenvectors) of eq.(8) and are therefore derived directly

from the classical Euler solution.

In the post-elastic range, the moment and curvature are not

linearly related and a closed solution to eq.(8) is not possible in

many cases. In 1910 ~on Karman
l

used numerical double integration

techniques to handle the non-linear moment-curvature relations and

applied the method to predict the behavior of columns with small

eccentricities of axial load. Von Karman's solution l forms the basis

for much subsequent work, however it is noted that his particular

solution is for the beam-column case of Figs. la and 2a and that he

considered only relatively small end-moments.

Von Karman's work was generalized by Chwalla2 in 1934.

Chwalla solved the problem of Fig. lb and 2b and called the continuous 4

functions which he derived "grundkurven" (basic curves). Today the

curves are more widely known as "column deflection curves." Chwalla's

development in Ref.2 must be regarded as the foundation and forerunner

of all present column deflection curve developments.

The curves were derived for rectangular sections, however their

scope was widened when, in 1935, Chwalla published3 similar curves for

a variety of shapes, including the I section.

A third publication4 by Chwalla (1937) is of considerable

importance as it shows how the column deflection curve approach may be

applied to continuous columns and thus to columns which are intergral

parts of a structure.

Surprisingly, little further was done to advance the method

until about 20 years later. In 1958 , Ellis 5 used the column deflection
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curve approach for annular sections and also contrubuted a method for

-5-

•

•

'. "-",

quickly determining the maximum end-moment that a beam-column can carry .

However Ellis was apparently unaware of Chwalla's earlier derivations?,3,4

Ojalvo6 in 1960 adopted Chwalla's work and recomputed the curves for the

moment-curvature relations relevant to U.S. wideflange sections. In

addition, Ojalvo6 contributed techniques which allowed the column deflection

curve data to be presented in a much more accessible form, and elaborated

on their use in the analysis of beam-columns which are parts of continuous

structures.

Finally, Neal and Mansell? have applied the column deflection

curve method to truss analysis. In thus treating a small eccentricity

problem, it is interesting to note that the theory has come a full cycle

since von Karman's original development.

The beam-column problem has also been attacked from a number

of different aspects. The fact that Chwalla's results had to be presented

in graphical or tabular form caused a number of investigators to look

for closed solutions.

8 9A popular' technique was a form of the collocation method
~.

. -.. ",

in which a function was assumed to represent the deformed shape of the

member. The unknowns in the assumed function were found by satisfying eq.(8)

at a sufficient number of discrete points. The advent of high speed

computation has now removed the algebraic attractiveness of the above

method.

Bijlaard's work9b is of additional interest as it also contains

4an extension of the column deflection curve system outlined by Chwalla,
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and thus represent the first major appreciation of this system.

10
A more exact approach is due to Horne, who used eq,(8)

in its integral form (see Section!!). For a number of elementary

situations, such as the rectangle with a trapezoidal stress-strain

diagram, closed solutions can be obtained. However the number of

such situations is very restricted and for the more realistic cases

it is again necessary to use numerical integration. When closed

solutions are possible, a different function will be obtained for

-6-

each yielded configuration of the member, with the subsequent necessity

of matching various boundary conditions.

Horne's methodlOforms the basis for the Cambridge approach

to predicting the behavior of beam-columns in plastically designed structures.

The results are presented in the form of beam-column data, however it may

be noted that the method of presentation is close to the column deflection

curve system, With only minor extensions and changes in parameters the

Cambridge results could be changed to the more general column deflection

curve representations, with a considerable increase in their range of

applicability,

The remainder of this report will discuss the column deflection

curve method of Chwalla2,3,4using both the numerica1 6 and the closedlO

solutions to eq.(8), The collocation method will not be discussed

further,
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II ALBEBRAIC PROPERTIES OF COLUMN DEFLECTION CURVES

a) Form of the Curves

The form of the column deflection curves(CDC's) may be

studied by examining a pa~tial solution to eq.(8), in a manner suggested

11by Mansell. Defining

gives

where
Integrating eq.(lO)

fJd9 ~ jl/dJ : - cJrfj
¢=-rJ"

i e21 = - j¢ ely

(9)

(10)

( 11)

(12)

From eq. (8)

•

Taking the x axes at y=o and the slope there as

9' e 9D
l

- 2 fpc!J
o .

Eb (Fig. 2b) gives

(13)

• o

dj = ; dM (14)

and so eq.(13) becomes ~

8': (7/ - ~ i rj; d/Vl (15)

As Mansell ll pointed out, eq.(15) will represent a symmetrical

periodic function if the M-0 relationship is odd, of positive slope and

single-valued. The first two of these conditions are fulfilled in

structural engineering situations, however the third condition applies

only to elastic members or to members being loaded into the non-elastic
I

region for the first time. For such members the CDC's will therefore be

symmetrical periodic functions and this will be the customary assumption

in the remainder of this report. However the problem of inelastic

unloading (during which the M-0 relationship is not single-valued) will be
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discussed at length in Section IV.

The equation representing the CDC's can be obtained by

integrating eq.(15). As the integral is definite the only constant

appearing in the final equation is eo' the angle between the CDC and

-8-

the F-axis. This constant serves to define the CDC's for a particular

value of F, and can vary from 0 to 7r/2. Its appearance in eq.(15)

..

makes it a natural parameter to use and experience indicates that it is

also a very convenient parameter,

b) Calculation of Curves

The solution of eq.(8) for non-linear M-0 relationships is

readily and rapidly achieved by means of numerical integration performed

by high speed computers. Such curves are now available in published

f 5,7,12orm.

One deficiency of these methods is that, being numerical

rather than algebraic, they do not allow the influence of various

parameters to be studied directly. With the number of variables occurring

in column studies it is advantageous to have a method which will allow

the significance of the various parameters involved to be studied

Horne's closed solutions lO were based on a further integration

13of eq."(15), and a more recent paper by Hade and Lee has elaborated on,

but not simplified, Horne's work. As these methods use a piecewise moment-

curvature function the resulting solutions do not have the algebraic

simplicity necessary to allow an investigation of the influence of the

papameters involved. It might also be noted that the work of Hauk and

L 13 t . f' f . 1 14ee seems to represen an unnecessary sacrl lce 0 numerlca accuracy.

The following section will present an al~ebraic solution to the
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CDC problem based on a simplified continuous representation of the moment-

curvature relationship.

c) Moment - Curvature Representation

It is possible to rearrange eq.(15) to give

: j 9.2 - ~ ("1r(>dM
Using eq.(14) and integrating gives

j M etM. I
X. =- F 0 J9

o
'a.. _ '2. foMq,d fv1 ..

This equation is the solution in integral l;rm of eq.(8), and is

(16)

(17)

the equation of the CDC's.

solution.

10
It is the basis of Horne's original closed

This CDC equation has very few solutions. The difficulty can

be seen if it is realized that the relation between 0 and M must be such

that the interior integral in eq.(17) must give solutions which allow

the major integral to be solved. This restricts the M-0 relation to very

simple functions. On the other hand the relation must, for physical

reaspns, be of the form shown in Fig. 3 with an asymptotic approach to

the maximum section moment, ~c' as 0 approaches infinity. The slope

must always be positive.

Very few equations satisfy both these requirements. The
"

equation used in this report is

M I
::.

(I ~ 1/~¢pc.')"J-
(18)

Mr(..
where M is the plastic moment reduced by axial load, and 0 is thepc pc

elastic curvature corresponding to this moment. Equation (18) is plotted

in Fig. 4. It is seen that the constant N allows the equation to be

brought into some degree of approximation to real moment-curvature relations.

For instance, it might be suggested that the following approximation holds
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where

N = 2. - ~/Fj

f~ ::. AOj

(19)

(20)

where A is the cross-sectional area and ~ the yield stress of the material.

The following non-dimensional parameters will be used in the

subsequent derivations,

(21)

(22)

(23)

where

(24)

(25)

where E1 is the flexural stiffness of the member.Eq.(18) then becomes

\
M.:. \ - (\ J,.Y/NJ1.

It is repeated that eq.(25) is not intended to produce results of a high

degrees of accuracy as this can be better achieved by numerical integration.

The purpose of eq.(25) is to provide a realistic closed solution.

Appendix A develops the actual section which corresponds to the

~-~ relation in eq.(25). It is seen to bear no resemblence to a wide-

flange section. However, the important point is that it does represent

a bi-symmetric section.

d) A CDC Equation

t Two additional non-dimensional parameters will be introduced. A

length parameter M.. where..
'X

/{;l=-
7J?C

(26)
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where rtx.. is the in-plane radius of gyration and 6j the yield strain,

and a rotation parameter, a, where

(27)

(30)

(29)

(28)

where f is the shape factor, MP the plastic moment and d the depth of the

member. With these substitions eq.(17) becomes
t J.

2 u.. : ba~ - f.,J, '1-tcl ""-
Using the moment-curvature relation (eq. 25) gives

j
1 c\'Y

~ (,t -::. (I ~ 'V \3 Jo..l N). _ jt\f "f rAy
c> tv J J... c (If Y;tJ)3

The interior integral is evaluated to give_i ~'.JI/N ~ cit
{{- jOt-O-&)l.

o
where f is a dummy variable. The final integration gives

{,(, = J({o2. -/1--i )2
(' /+Y,.,;

and from eq. (25)

(31)

jet 2 ( r;-- ) 2. \ 1- Ji::t'h.-
o - 1- vJ-Yh - q 0 +OIlSw. °0 (32)

This is the CDC equation for the cross-section represented by eq.(25)

(See Appendix A)

The equation is seen to be periodic with a half-wavelength,

C{L ' given by

(33)

It is convenient to also have an equation for the CDC's with their origin

Calling these new co-ordinates ~ gives (from eq.(32»

7T- -2..
)a: - (1- J1- Yh ')1. (34)
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The two sets of CDC's represented by eqs.(32) and (34) are plotted in

Fig. 5. It is seen that they closely resemble in form the CDC's

d . d '11 6,12er1ve numer1ca y.

The parameters ~, a and ~ have been introduced'as they

produced significant simplifications in both the equations and their.;

interpretation. Since these parameters may be unfamiliar, it is noted

that M, a and '1A.... are proportional to tv1 ,e and x:. and are defined

in eqs.(Zl) ,(27) and (26) respectively.

The periodic portions of the CDC's can be found by taking

non-principal values in eq. '(32):>for example

o <. {{ L.. l1.L./1. t( =jat- (1- fi:"m )1. - et o +aI)~
/- ~ft.-l

(35)ot u
",

(,{L!l. I.. u. '-. UL tt =- ja.}-(I-JI-rn)~ - 0.
0

-I- 7(- ~S~ 1- VI-11-\ (36)
eto

As eq. (25) is not valid for Y<.O (tha t is, it is not an odd function as

is physically required) , \'Y\ should be replaced by \~\ in the above

equations. However the periodicity of the CDC's means that if a quarter

w~velength is known, this is sufficient to determine the entire function.

"

.\
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III THE COLUMN DEFLECTION CURVE EQUATIONS

a) Dependent Variables

-13-

An equation was derived in the preceding section (eq.(32) )

for the CDC of a hypothetical section (Appendix A). This equation is

plotted in Fig. 5 in terms of the three parameters m, au and ~

In this form it is seen that the curves themselves are are independent of

both the yield strain,~, of the material and the axial force ratio, n ,

of the member. Thus the introduction of these three parameters produces a

very significant simplification in the representation of the CDC 's.

It is therefore of interest to see whether the same

simplifications can be applied to the wide-flange CDC's. An examination

of the derivation in Section II shows that this will be possible if the

same m-f diagram will apply regardless of the values of t~ and n

were proportional to the yield strain.

For yield strain, , this would be so if the residual strain patterns

15
This is not normally so and

'I

II

therefore the simplification with respect to yield strain would need to

assume that residual strain levels varied with yield strain. If the

levels for A36 steel were used this assumption would be conservative and

not very severe.

The si tuation wi th respect to axial load is more ,cri tical. The

CDC solution would again be independent of axial load ratio (n) if the

m -~ relationships were similarly independent. This is not so; the

higher the axial load ratio n the earlier the m -t curve will depart

from the linear(ni:r) relation. The constant N was introduced into the

assumed m ,·t relations (eq.25) to attempt to allow for this. The same

constant then appears in the parameters a and u
o
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~:

Thus it might be possible to similarly eliminate the axial load ratio

from the real CDC's by introducing a term such as N which is related to

the axial load ratio (compare with eq. 19)

b) Limit to CDC Equation

The slope of the CDC's is found by differentiating eq.(35),

that is

The maximum moment is therefore (at a=o)

1- J\- 'N\ = 0.. 0

rY1VY\~)( :: 0... 0 (1.- ct. o)

(37)

(38)

(39)

Thus the maximum moment in the CDC increases parabolically with the end-

.. deformation (ao)' But m cannot increase above 'unity, as at this value

..

a limiting plastic hinge forms. Solving eq. (39) for m =1 gives

ao=l as the deformation at which a hinge forms in the column.

It can be seen from Fig. 5 that at ao=l a plastic hinge does

f h ' , ., d d' 16appear to arm. T is is contrary to some prev~ous ~ntu~t~ve un erstan ~ngs

of the beam-column problem in which it was thought that the plastic hinge

would be approached asymptotically. Actually the hinge will form at a

finite deformation (ao=l) and, following this, there will be an angular

discontinuity at the hinge.

C) Post-Hinge Behavior

This behavior is diagramatically illustrated in Fig. 6. The

angular discontinuity (or hinge angle, aH)is

a. H = 2 Ja; - I

found from eq.(37) with m=l to be

(40)
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Similarly, the value of the half wavelength, uL ' is found from eq.(33)

with m=l to be

tAL ~ 2 [Jo.;--I - eta +M~ ~()J
As ao increases uL .wi11 approach

(41)

(42)

In terms of the u co-ordinates (Fig. Sa) further deformations

of the CDC after the hinge has formed will be due to rigid body rotations.

17That is, a mechanism appro~ch may be used.

The rotations of the member at ao =l are given by eq.(37) as a(l) where

•

a.~I) ;. W~ (2 - J\-Ith ')

For a >1 the member rotations are theno

Similarly the deformations at hinge formation are

Lt(\)= Q ll) - \ + M~ (~- Ji-\'V\)
and after hinge formation they are

(A : Ll (IJ - ~ (1- ~)
The hinge behavior explains why computer solutions to the

widef1ange CDC problem are not able to produce a complete quarter

(43)

(44)

(45)

(46)

wavelength of a CDC for large values of ao ' regardless of the closeness

of the steps used in the numerical integration. Clearly, the angular

discontinuity (hinge) situation is reached. Figure 7 shows a plot of

the value of a at which this computer inability was noted in programs
o

run by the author. In evaluating a from the B values and eq.(27),
o 0

.. the value .of N suggested by eq.(19) has been used. The section

properties used correspond to 8WF31.

Considering the nature of the ~-~ hypothesis ,(Fig. 4), the
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agreement shown in Fig. 7is good and indicates the validity of the

preceding arguments.

d) Bending Assumptions

Two assumptions made in Section I were that (1) the curvature

of the CDC could be expressed by the second derivative of the equation

of the CDC and (2) that the curvature shortening of the member was small.

Both these assumptions depend on the square of the slope of the deflection

curve being small relative to unity.

The preceding section indicated that the maximum angle that

could be expected in a CDC due to bending effects was given by ao=l.

(47)

(48)

. f· ~
.2//:x....

properties~reduces eq. (47) to

that, from eq. (27),

e ~Ji~N 'i-
This implies

Assuming that Mpc/Mp is approximated

tv'\p,- =- \_ ~
Mp

and using eq.(19) and the 8WF3l section

e ~ ~ . J;'~~' (I- Yl) •(I.28) (49)

If ()2< 0.05 be considered a suitable requirement then the restriction

on the use of the CDC's is

:2 6~ ~~f\.. {t-fl/ {II 28J 2. <: J.~

or

/' .Q.-I"\. (I-y\ \ L <. O. DISc j h J (50)

This relationship is plotted in Fig. 8. It is seen there that,

for the commonly used steels, care should be taken in employing the CDC's

•
at load ratio values below n=O.15

Note that although values of ao larger than unity will occur

once a hinge has formed these values will not be of consequence in any
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bending action. In the post-hinge region the moments at the ends of the

CDC's between the hinges will remain constant at m = 1 and further

deformation increases will be a consequence of increases in the angular

discontinuity at the hinge rather than of any further bending action.

A graph of the 80 values corresponding to ao = 1 is shown

in Fig. 9. The graph is obtained from eq. (49). The assumption

contained in eq. (9) that the slope of the CDC equals its gradient is

within 5% accurate if the slope (e) is less than 0.37 radian. It is

seen from Fig. 9 that this assumption never becomes critical.
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a) History Dependence

IV UNLOADING

-18-

In Section II(d) the concept of using different co-ordinate

axes (u,u) to represent the CDC's was introduced as a matter of

mathematical con ~nience. In Fig. 5 it can be seen that the u axes

correspond to one zero-moment point remaining fixed, whereas the u
co-ordinates correspond to the column deforming symmetrically about

a maximum moment point.

This choice of axes would remain a matter of algebraic

con::i\~~;.1ience if the column material were not history dependent.

However, the CDC properties are not invariant under the transformation

of axes if the material is history dependent (as is structural steel).

The behavior can be illustrated by considering the history

of the point of maximum moment on the ao = 0.25 curves in both Fig." 5a(u)

and Fig. 5b(~). In the u co-ordinates of Fig. 5b this point remains a

point of maximum moment for all ao and is continually loaded (the

point remains at u = 0). However f01:"; the u co-ordinates of Fig. Sa

-rr; Ithe maximum moment point for a o = 0.25 is at u = 2. - ILj- = 1. 32. As

the deformation ao is increased, m at u = 1.32 continues to rise to a

maximum of around 0.7 and the n drops. It is seen that at ao = 1 the

moment has even changed sign. This type of behavior requires a

knowledge of the history dependence of the material.

For a material such as structural steel the initial unloading

will be elastic. (Fig. 10) The arrows in Fig. 10 represent the direction

of loading. For a virgin material, eq. (25) holds if d is positive, i.e.
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•
YY\= (25)

and for any unloading and reloading

clW\
0\."If ~ ( 51)

The use of eqs. (25) & (51) will result in different CDC's

being obtained for different axes. This point is illustrated in

Fig. 11 which shows the variation in unloaded regions for two indentical

CDC's drawn to the u and ii axes. The regions shown in Fig. 11 will

later be seen to be non-inclusive.

For a given location on the CDC, unloading will occur once'

the moment at this point begins to decrease as ao increases. But this

also defines the envelope of the CDC's .. That is, for all choices of

axes, unloading at a point will occur once the CDC at that point reaches

the CDC envelope for the particular set of axes under consideration.

Obviously, the above discussion of unloading applies to the

CDC's derived for both the real and the hypothetical sections. The

following discussion of envelopes will be .partic:ularized to the

hypo(hetical section.

b) Algebraic Formulation

The envelopes for the CDC's are found by obtaining for

. -
a constant u.or u. For the hypothetical curves, eq. (36) gives (for the

u axes)

similarly, for the u axes

V; '. "0':0 ~ 2. l 0.;- - ~~ ~"'JJ
(52)

(53)
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~ ciY'\
The envelope is at 'oo...b= 0, that is at

Ql.
\ - [\- V'A

u: :. (54)
0 I + J \- VV\

u: O\.~ = \ - ~V\I\ (55)

These parametric equations are converted into envelope equations by

substituting into eqs. (34) and (36),

u:

ii:

V\. == l\ - ~e. - ovs~·,~ 1ML
(56)

V'v)e.::= I (5 7)

\). ~ 1- Jj\~lY\e - (I-Me) -OJ\~jI-JHY)e (58)

•I

The two sets of envelopes are shown by dashed lines in Figs. 5a and 5b .

They are also plotted separately in Fig. 12.

As well as giving the point at which unloading commences, the

envelope also gives the moment at that point. For example, the value of

me shown in Fig. 10 is the value of me on the envelope at the corresponding

(generalized) u location. The value of ~ is obtained from eq. (25).

Thus eq. (51) may be integrated to give the unloading m-r!curve:

2­
f\J

This equation implies that the amount of unloading (1m-mel' )

small to prevent any yielding in the reverse direction.

(59)

is sufficiently

In finding the equations for the CDC's subjected to unloading

it is simpler to use the differential, rather than the intergral, form

of the equilibrium equation (eq. (8) rather than (28) )

are both functions of u.Eq. (8) becomes

as me and t

M- ~t = (60)
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Using eq. (26) and writing gives

-21-

(61)vy\1\ + 'fV\:= lYle - ~ te
,Now eq. (61) leads to an interesting interpretation, for if

the symbol Atf'1 is introduced where

(62)

eq. (61) becomes

(63)

But 6~ is a simple property of the moment-curvature curve and is shown

in Fig. 13 to be the distance between the ideal elastic and the real

m-fcurve. As me is known as a function of u (eqs. 56-58), ~ is also

known as a function .. bf u.

The solution of eq. (63) is 18

fY\ = C~ Vv + t ~ 11\. - J;\fY\(f)~ (~- f) d{
where C & B are constants and r is a dummy variable; It is

(64)

,"

emphasized that eq. (64) applies to any CDC, the section properties

loading his tory and m-t relation only enter via the term A'fY\. inside

the integral on theRHS of the expression and the constants C & B.

c) Numerical Solution

The numerical integration solution to the problem is

relatively simple.- . The integration is commenced at a point known to

have undergone no unloading (for example, the maximum moment point with

the u axes). Integration then proceeds until the envelope is reached.

(Point T in Fig. 14) If it is assumed that a point P (Fig. 14) is

reached it is necessary to find the curvature at P.. The moment at P

is f~p and .from the envelope the envelope moment is rJep .The

drop in moment is then f(~e~-'j'f') and the elastic curvature drop "is
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Hence the actual curvature at P is

-22-

(65)

where~? is the loading curvature corresponding to the moment f~~

Hence the standard numerical integration procedure6 can be followed with

the normal moment-curvature data replaced by equation (65).

Such CDC curves have been computed by the author for the

-
u case (Fig. 5b). In this situation there is little difference between

the loading and unloading curves .. There are two·relatedreasons for

this .. Firstly, the regions that do unload,are the 'less highly loaded

portions of the CDC (see Fig .. lla) and, seconcrfy, most of. the deformation

of the column continues to come from regions under monotpnic loading.

Figure 15 illustrates the .actualresult obtained from one

numerical calculation. It will be· realized from Fig. 10 .that,for the

same moment drop, the curvatures in the "unloading"·CDC will be greater;

.hence it will deform more rapidly .. The effect of this behavior on beam-

column response will be discussed later.

d) Algebraic Solution

The algeb!aicsolution of eq. (64) is complicated by the

difficulty.in evaluating the integral term in the equation. Fromeq. (62)

and (25), 6'M. is given by

2..L'N'\:- -:2..-VV\e .(66)
V1-VV\.e.

The value of me is found fromeq. (58). The combination of eqs. (58)

and (66) in eq.(64) leads to a quite intractable integral .. There is little

point in resorting to a numerical solution to this integral. when the actual

problem can be more simply solved by. the numerical procedures in the
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•

•

preceding sub-section. Th~refore the algebraic solution of the unloading

of the hypothetical CDC's will not be pursued any further.

However the form of the solution given in eq. (64) does

illustrate an important point .. The first two terms on the right hand

side of the equation correspond to the elastic solution. The

integral term is the modification due to the residual curvatures

remaining .from prior loadings .. Thus the unloading curve is not an

elastic curve, although it contains an elastic component .
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V THE DESIGN PROBLEM

a) Review

Section I discussed how a beam-column (Fig. la) could be

represented as part of a column deflection curve (Fig. 2b). This

allows considerable simplifications to beam-column design.

For a beam-column under the loads P, ~, M
R

&V shown in

Fig. la the corresponding CDC is one loaded by a force F where

(67)

The CDC representation should be used with care for values ofF below

the levels given in. Fig. 8 .. The length e. of the beam-column is
I

adjusted to a length i along the F-axis of the CDC (Fig. 2b), where

(68)

appearing in eqs. (67) and (68) will be quite small relative to unity.

Thus thecorrection.ineqs.

+ .!.
- 1-

(67) and (68)

(
fv11<. - r\IlL.) l.

p,e

can be assumed to be

and (68) need only be used whenIf a 5% error is tolerable, eqs. (67)

Mf( - MI- ~ J
p..e. - (fo

=0.32. (69)

The situation is obviously most severe for short beam-columns in double

curvature, under low axial loads .

. The process of locating beam-column segments on a CDC ha~ been

fully dealt with elsewhere4 ,6,12,19 and will not be discussed here.

However it is noted that the u axes (Fig.. Sb) areconw..enient for

representing beam-columns under equal end moments and the u axes (Fig. Sa)
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for representing beam-columns with one end pinned or with equal and

-25-

opposite end-moments .. These representations are illustrated in Fig. 16.

All the above remarks apply equally to both the real and

hypothetical CDC's.

b) Interaction Diagrams

Interaction curves for beam-columns relate the maximum end-

moment that the. member can carry to its other physical parameters. For

the three loading cases shown in Fig. 16 the maximum moment is also the

envelope moment for the relevant set of axes .. That is, the envelopes

given previously in Figs. 5 and 12 are also the interaction diagrams for
c

the relevant loading cases.

In Fig. 12 the entire set of interaction diagrams for the

hypothetical section are represented by a single curve for each loading

condition .. This represents a considerable simplification on present

interaction diagrams. Both axial load and yield stress are introduced

through the parameters m and u. (eq. (21) & (26) ).

As was the case for the single CDC representation (Section IIIa) ,

the above conclusion will also apply to real beam-columns if the

relations do not depend on yield stress or axial load. This will be

approximately so for yield stress, but will not be the case for

variations in the axial load ratio. In this latter instance it may be

possible to introduce a factor similar to N appearing .in the u parameter

(eq. (26) ).

c) Moment-Rotation Curves

The end-moment vs end-rotation curves for a beam-column may also
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. 6 12 19be der1ved from the CDC's' , . As an example, the curve for equal

end moments (u axes) for the hypothetical section will be derived.

In this case (Fig. l6c) the slope of the CDC is also the end-rotation

of the beam-column. From eq. (37) this slope is

o?- = a..~ - (\ - J\- 'tv\. J"'- (70)

Thus theparemeter a can be removedo

( 72)

( 71)

( 74)

( 73)

fromeq. (34) to give

/-~
0..~

rY\. - 0.. cffl (a +iZJ. (2- a&i (Q+~J)

0( .:. 0.. ~ l (). +cz)
'fv\ ... o((2.-o(Jgives

Writing

or

which is plotted in Fig.17a and represents the moment-rotation curve.

Figure l7a is independent of yield stress, axial load ratio

and slenderness ratio and applies only to the hypothetical CDC's. When

However, the slenderness ratio simplification - introduced through the

parameter 0( - is valid for all sections and derivations.

Figure l7b shows the same moment-rotation curve,.but this time

plotted as m vs. a rather than m vs.c(. It is seen that the curves

must now each be plotted for a separate slenderness ratio parameter (u).

The curve for u = 0 provides an envelope to the other curves. The

point of hinge formation is also noted (ao =1) on Fig. l7b. It is

interesting to note the similarity of this curve to previously predicted20

curves for the point of local buckling.

d) Post-Hinge Moment-Rotation Curves

The behavior after the point of hinge formation (ao =1) can
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be predicted using the post-hinge study of Section IIIc. Thepresent

situation is illustrated in Fig. 18. The column under consideration

is of length2u. At the point of hinge formation it has an end-moment

m(l) and an end-rotation a(l)' A rigid body rotation occurs about the

hinge. Using eq. (37) to relate m"u &a the moment mis related to

the rotation a by

(75)

or

An example of the use of eq. (76) is given in Fig. 19. The

(76)

beam-column chosen has a length of 2u = 0.8 (see Fig. 17b). For a

P/Py =n = 0.5 and € = .0012 this- corresponds to a slenderness ratio of
y

32. From eqs. (70) & {72) .it is found that the values of m(l) and a(l)

for this case (IT = 0.4,ao =l)are 0.352 and 0.973 respectively.

Eq. (76) is now

m = 1. 30 - O. 8a

which is plotted in Fig. 19. This behavior has been substantiated by

21recent test results.

( 77)

It is relevant to note that the mechanism curve is stiffer than

the pre-hinge curve. This is a result of the absence of further

flexural deformations.

Further deformation will continue along the mechanism curve

until ~cis reached at the ends of the member. This behavior is

illustrated in Fig. 20. It can be seen that the negative end-moment

reaches a greater value (m = 1) then the initial positive end-moment.

Eventually the CDC acts in a concertina fashion and the moment-rotation
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curve spirals around the m-aoriginin a clockwise direction. Similar
7 .

curves to this have been produced analytically, however, it was not

recorded how the computer was able to handle the angular discontinuities

at the hinges. Thus the actual analysis is open to some question
22

e) Unloading of the Moment - Rotation Curves

The problem of unloading was discussed in Section IV. The

effect on the CDC's was shown in Fig. ,15. This effect of unloading on

beam-column behavior maybe illustrated by considering the example of

the beam-column under equal end-moments (~ = ~)discussed previously.

The situation is shown in Fig. 21a.

The points plotted on a moment-rotation (m-a) curve are the

points corresponding to the points N (no-unloading) and U (unloading)

in Fig. 21a. The m-a curve is shown in Fig. 21b. From Section IV it

is known that unloading begins after the CDC has reached its envelope,

but from Section Vb it is also known that the end-moment also begins

to drop at this same point. Therefore it may, be concluded that the

point of unloading of the entire beam-column begins at the same point

as the end-moments begin to unload (~ =~) (Fig. 2lb).

Within the idealized assumptions used to derive the post-hinge

curve, unloading plays no part. Therefore, the range to be considered

is between the peak of the moment-rotation curve and the point of hinge

formation.

Now if the point N is plotted on the m-a curve (Fig. 21b), it

can be seen from Fig. 21a that the point U must be for a lower moment

and a larger rotation. Consequently U will move from N in a direction

similar to the direction of the m-a curve. This indicates that unloading

will have only minor effects on the behavior of beam-columns with equal

end-moments. Fig. 22 illustrates this for' an actual case.
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•

No attempt has been made in this section to generalize the

results to all loading cases. Rather, an attempt has been made to

illustrate those problems which are of consequence for one loading case.

The methods by which this case has been solved are then applicable to

the other loading cases.

f) Lateral Loads

The ,CDC concept can also be used to predict the behavior of

beam-columns with intermediate lateral loads. The approach used in these

cases is illustrated in Appendix B.
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a) Introduction

VI STABILIlY
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It is meaningless to speak of the stability or otherwise of an

individual member, unless the response of its load system to deformation

'1 ·f' d 231S a so speC1 1e . The point of instability occurs when the combined

instability of a system:

•

•

structure and load system offer no resistance to imposed disturbances.

The common statement5 ,13 that a beam-column becomes unstable when it

reaches the peak of its moment-rotation curve is seen to be true only

when the member is directly loaded by gravity loads.

It will be realized, however, that a knowledge of the load-

deformation response of both the beam-column and the load system

is sufficient to allow the determination of the point of in-plane

. 23 .
The method is illustrated in Fig. 23.

A study of curves such as Figs .. 17b, 19 &22 'leads to the
,.

conclusion that in many practical ca~es the unloading portion of the

moment-rotation curves is too flat to allow'anyin-plane instability to

21,24
occur. This surmise is supported by a number of beam-column tests ,

all of which exhibited an entirely stable load history.

b) Inherent Instability

Instability within a member is p~ecluded as the CDC's are

based on the solution_of an equilbrium equation ( (8) ).Therefore,

any local accelerations will be transmitted to the joints, and the problem

will be again one of overall instability .

It might be noted here that the entire report ignores the

possibilities of either local or lateral buckling20 ,23
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c) Deformation Mode Ins tabi li ty (DoubleCurva ture)
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The double curvature column buckles or

If the behavior of a beam-column is followed from its zero load

position by choosing segments from the.CDq's, an equilibrium moment-

rotation curve will be .obtained which can be checked for instability by

th~ methods of sub-section (a) above. In any real situation the

moments applied will be such as to produce components of the two prime

deformation modes (single and double curvature), The points on the·

moment-rotation curve will therefore be unique for a monotonic loading

from zero deformation.

However, in exceptional cases this will not be true. If the

beam-column is loaded in perfect double curvature (~ + ~ = 0) the

single curvature mode of deformation will not be present. In this case

the load-deformation path will not be unique as a stage will be reached

at which the member will. also be able to adopt a predominantly single

curvature deformation mode. When this change of modes is possible and

occurs, the phenomenon is known as "unwinding". It has recently been

25 27 26
discussed by Ketter ' and Ojalvo

The problem is essentially a buckling problem as has been

, d b B' '1 d9bp01nte out y 1) aar

bifurcates towards a sing)e curvature mode (Fig. 24a) with the change in

shape rather than the final shape being important. For a simple case

Bijlaard
9b

showed that this change was in itself a single curvature

mode•. The bending moment diagram.is shown in Fig, 24b. Bifurcation

28·
will be expected under tangent modulus conditions and so the stiffness

26,27 25
distribution will be as shown in Fig. 24(c) . Ketter illustrated

27
a method of solving this problem and gave the solution to one case.
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. 26
OJalvo has attempted a proof that a beam~column will only be

stable if its length is less than the half wavelength of the CDC. This

proof is not valid for the exceptional case of the beam-column under equal

and opposite end moments, and seems irrelevant for other cases. Figs. 24(d) &

(e) relate the points on the moment-rotation curve to CDC segments. The

only way to check the possibility of such segments bifurcating is to us~

25,27
Ketter's method

.,

Ojalvo's proof (Fig. 20c, Ref. 21) is seen to break

down if the end-moments are equal.

A comparison of Figs. 24(d) and (e) illustrates that unwinding

may conceivably not occur until after the end-moments have begun to decrease.

In conclusion, it should be stated that the problem of unwinding

is an academic one; its relation to real structures is similar to the

relation of simple buckling to real columns. The analytical problem

described above can be circumvented by the simple process of assuming that

the end-moments are not quite equal (the difference is determined by the

accuracy of the available CDC data). This forces the beam-column to have

a single curvature component from the outset of loading. Thus the correct

solution is obtained dir~ctly from the moment-rotation curve without

any need to undertake buckling analyses.

\~t-) Deformation Mode Ins tabili ty (General Problem)

A more ~eal problem than that considered above concerns the

s~leotion of a CDC segment to satisfy a given set of moments, forces and

length. As the CDC wavelength decreases with deformation (Fig. 5), it

is seen that there is an infinite set of segments which will satisfy a

given loading (see Fig. 20, for example).

Under normal conditions only one or two of these configurations
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will ever be attained during a stable loading process and the problem

is to determine whether a chosen configuration falls into this category.

Complex criteria could be advanced to meet this requirement, however a

much simpler method exists .

. The method advocated is to begin all beam-column analyses

from the unloaded condition, tracing the entire moment-rotation curve
. '.> (

up to the point required. This will enspre that a realistic mimumum

energy configuration is obtained if the following provisoes are followed:

1) The initial length of the beam-column must be less than

its Euler buckling length,

2) The moments must contain some component of the single

curvature loading condition

Provisoe (1) restricts the first segment chosen to the lowest energy

configuration of all the initial members of the possible set and

provisoe (2) ensures that the segments chosen during the tracing of the

loading path remain realistic.

This section has avoided calling segments stable or un~table

as a segment which is uns table under one type of loading .can be stable

under a .loading wi tha different load-deformation response. Stability is

23
a function of both the member and its load system
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VII CONCLUSIONS
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This report has examined the properties of the column

deflection curves, both as individual functions and as a source of

beam-column information. This examination has been aided by the

development of an algebraic expression for the column deflection

curves of a hypothetical section.

The necessary requirements for representing.a beam-column

as part of a column deflection curve have been delineated.

With the aid of the algebraic solution various new CDC

parameters have been found •. The use of these non-dimensional

parameters make it possible to very considerably reduce the amount

of data needed to.represent the column deflection curves, the beam­

column moment-,rota.tion curves and the beam-column interac tion diagrams.

The formation of hinges in beam-columns has been discussed

and analytically described. It was shown that a simple assumption suffices

to represent the behavior of a beam-column once a hinge has formed

within its length.

The problem of unloading of yielded sections has been

discussed. Computations. have been presented to indicate the magnitude

of.its effect. It was shown that there is a close relation between

the interaction diagrams, the CDC evelopes, and the points of unloading.

Finally the stability of beam-columns has been investigated.

It was concluded that the stability or otherwise could be investigated

by relatively simple methods .

. The general study of column deflection curve behavior appears

to have led to a simplification and advancement of present knowledge

on this topic.
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internal moment is given by
€>j/P

M~ ~ J t,p j ,?<, ~ d.~ •
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IX APPENDIX A

SECTION GIVING THE HYPOTHETICAL

MOMENT-CURVATURE RELATION

Consider the general section shown in Fig. Al. .The

CD

iO";,-,?c.. ~ d.j
f:J/p .

6j/~ 00

,. to ¢ I, \ + OJ t \ /"
o ~" 1"'

where

and

1,. ~ hxJ'J =T,(::J)

~ =t~ ~,(~) -I, (o)J +a-~ [T,{al) -I,. (1JJ
)

Now, taking d¢ of eq. (AS) and uti li zing eqs. (A3) and (A4)

gives

-36-

(Al)

(A2)

...
(A3)

(A4)

(AS)

(A6)

.,

But from eq.(18)
dtJ\ l

~:
(A7)
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Equating (AS) & (A6) gives

.2. I _'-,­
tJ '(I+ (J) y~

t1tx-J
= I, (~) - I, (0)

-37-

(A8)

(A9)

Rep lacing C'j / ep by the variable y gives

61 (lGj \ I
X -= X(J) .: N' NMpt }' -(j-t--;P-Mrx-J i

which is the cross-sectional shape corresponding to the assumed

relation, eq.(18). Putting

~
'=

"I ()~

N tv'\{'c

and '0
bN).tv\~

': J'l.. (), :!.
0

reduces eq. (A10) to

(A10)

(All)

(A12)

which is plotted in Fig. A2.

(Al3)
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APPENDIX B

BEAM-COLUMNS WITH LATERAL LOADS

Contrary to some previously expressed opinions, there is

no significant difficulty associated with treating the laterally

-38-

loaded beam-column (Fig. Bla) by the CDC approach. The solution will

be illustrated for the one lateral load case shown in Fig. B1a. The

deflection at the lateral load is called ~~ The solution is

obtained by treating the member as two beam-columns, .LC &CR. As

an example, the member LC is shown in Fig. B1b.

Under normal conditions the axial load can be taken as

remaining equal to P. The moment at C is M
C

and is given by

(B1)

where MCKis independent of be. and is given by

Mc\( =qL oZ (I-~) -\- MR~ +fvL (\- o()
·1

It is not usually necessary to determine R .

The solution may proceed as follows. The values of P,

(B2)

~, ~, L & 0<. are known. It is desired to find the conditions

(if any) corresponding to a chosen load Q. A value of ~c.. is assumed·

(this choice will be discussed later) and hence, Me is determined.

The CDC's are then used to find a beam-column under the loading$hown

in Fig. B1b for LC and a similar column forRC .. The angles

are thus determined.

If the choice of Se- was correct, then continuity at C will

require the following equation to be true

(B3)
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If it is not; a new value of J~ is chosen and, by trial

and error, eq.(B3) is satisfied. However, in those cases where the

value chosen for ({ is above the maximum value that can be carried ,

no solutionis possible and it is necessarY,to choose a smaller

-39-

value in order to satisfy eq.(B3).

The selection of Q. and $~ values can be simplified

by first constructing the elastic and the mechanism curves. Such a

plot is shown in Fig. B2. ,The elastic curve is obtained from standard

texts, ,~co being the 'beam-column deflection of C when Q.iS zero.

The value of Q1 (Fig. B2) is the rigid-plastic val~e and,if

~ and ~ are below ~C' is given by eq. (Bl) with ~c = O. 'This

reduces to MCK = MpC ' Similarly, £Cf in Fig . B2 is for ~ 'D 0

at mechanism formation arid is again found from eqs. (Bl) and (B2) ,

this time with ~~O and}1
C

= M· • ,The two curves in Fig. B2 greatly
PC

hcili tate the selection of realistic Q':and Jc., values,.

As an example of the process"Fig. B3 gives the solution of

a specific problem. A value of Q. (say, 5 kip) is chosen and eq. B2"

evaluated to give MeK (602 kip-in). ~~yalue of bt is then selected

(say, 0.6 in) and eq.(Bl) used to find M
C

(681 kip-in or 0.690 My).
,The,CDC's are's'earched to find'~ beam-'column of'ie~gth .20~.;(, p= 0.4P

y

and end-moments MC and M- (0.690 M & 0.434 M). This member is' found
-1. y Y

to have a rotation at C of 6lc: (0.0075) and so ( 9c: + e~ ) is known

(0.0150). But the right hand side of eq. B3 is found from ~ (0.0172).,

, These are generally not equal and so a new ~e. value is selected (Ie" o. SO" ) .
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x NOMENCLATURE

A

B

·C

CDC

E

EI

F

Fy

I

L

M

Me)
\',,.:\,.,

Mqk'
M.

l.

~:,.

~

Mpc

~

N

p

Q

V

a

a
0

cross-sectional area

constant

constant

column deflection curve

modulus of elasticity

flexural stiffness

CDC force

A C5
second moment of area

left end of beam-column

,/."" '"

moment at a lateral load point

component moment,.eq. B2

internal moment

moment at left end of beam-column

.plas tic moment

plastic moment reduced by axial load

moment at right end of beam-column

constant in moment-curvature equation

'beam-column axial .load

lateral load

shear

rotation parameter, eq. 27.

deformation parameter (angle between CDC and Faxis)
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a
(1)

d

f

m

m
e

m
L

CDC rotation parameter at point of hinge formation

hinge angle 'parameter

depth of section

shape factor

undeformed length of a beam-column

chord length of a deformed beam-column

beam-column length along CDC F-axis

moment ratio, M/Mpc

moment ratio on CDC envelope

moment ratio at left end of beam-column

-41-

moment ratio at right end of beam-columnm
R
11

m

n

2 2
d mldu

property of m-1

force ratio, F IF
y

curve, eq. 62

h X

u

u

u
L

u
(1)

w

x

y

in-plane radius of gyration

length parameter, eq. 26

length measured from maximum moment location

CDC half-wavelength in terms of u

CDC deformations when a hinge forms

beam-column deflection

distance along a beam-column
I

distanc; alongF-axis

deflection of CDC fromF-axis

CDC deflection at a point P

location of CDC envelope at a point P
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•

Ilocation of a lateral load

moment-rotation parameter, eq . 73

section property, eq. All

section .property, eq. A12

yield strain

CDC slope

rotations at a lateral load

CDC slope at F-axis

angle between F-axis and beam-column (LR)

curvature

yield stress

dummy variable

ratio, ¢/ ¢PC

E axis location parameter, eq. 3

deflection at a lateral load point

envelope curvature at a point P

elastic curvature corresponding to ~c

curvature ratio on CDC envelope

curvature
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Fig. la

Fig. lb

L

J

Loads On An Undeformed Member

System Equivalent To Fig. la

R
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•

Fig. 2a

.........
.........

........
.........

"F

y

Fig. 2b

Deformed Loaded Member

.1'

F

",
/

-"
R

Deformed System Equivalent To Fig. 2a
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MOMENT
M·I

-46-

o

~_~c_

CURVATURE
ep

•

..

Fig. 3 Required Form Of Moment-Curvature Relation
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"' .

Fig. 4 Assumed Moment-Curvature Relation
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m=­Mpc
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Fig. 5

-
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Column Deflection Curves Plotted To U & U Co-ordinates
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I 0 0 > I I

..

Fig. 6 Diagrammatic Sequence OfColumn Deformation
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•

1.2

1.0

0.8

0.4

I
I I j I Valve predicted

- - -1 - 1 - - -}- _f-bY idealization
1 (00 =I)

o 0.2 0.4 0.6

n=.E..
Py

0.8 1.0

• Fig. 7 Comparison Between Hypothetical And Wide Flange

Computer Solutions
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Fig. 8 Critical Load Values ·For Bending Assumptions
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Fig. 9
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Fig. 10 Moment-Curvature Curve With Unloading
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Fig. 11 Illustration of How Axis Location Affects Location

Of Unloaded Regions
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Fig. 12
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CDC Envelopes For U & U Axes
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m

Fig. 13 Defini tion Of b.'rf\

F

Tangency

I

_..~~__L_X +---l---L ~__

F

.. Fig. 14 CDC Considering Unloading
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M
My

0.6

Without Unloading
(80=0.026)

~ = 0.60
Y

8VF31

u co-ordinates

20

CDC Considering
Unloading

(80=0.0278)

10

Initial Moments
Identical (0.507 My)

Unloading
Below this
Level
(0.496 My)

o

0.1

0.3

0.2

0.4

0.5,....-"",.~

Fig. 15 CDC's With And Without Unloading
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m

----r-------_~---------.------~u

ImL-mR 1=2
(Equal a Opposite)

(0)

m

I •

ImL-mRI=1
(One End Pinned)

mL=O------------fl;.....---------'--------.U

(b)

m

ImL-mR I= 0

(Equal)

----......L------+------L.------~u

..
(c)

Fig. 16 Beam-Column Representation By CDC Axes
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Fig. 17a Parametric Moment-Rotation Curve

_ M
m---Mpc ~ = Point of Maximum

• End-Moment

1.0
'U=o

- -

a
NON-DIMENSIONAL END

ROTATION

Fig. 17b Moment-Rotation Curves



278.12 -60-

•

F

CDC at Hinge
Formation
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Fig. 18 Post-Hinge Behavior Of Equal End-Moment Case
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Mechanism Curve
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I"IT =0.41
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Fig. 19 Post-Hinge Behavior
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Fig. 20 Behavior At Large Deflections
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U
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a
ROTATION
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Fig. 2lb Moment-Rotation Curve With Unloading
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Mpc =0.517 My

0.5 (m =I)
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mL=mR
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Fig. 22 Beam-Column Curve with Unloading
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Point of Instability

Load System

Beam­
Column

ROTATION

Beam-Column Instability
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Fig. 24 Unwinding
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Fig. Al General Cross-Section
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Fig. A2 Section Corresponding To Assumed m-jP Relation
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aL

Fig. Bla

(I - a)L

Laterally Loaded Beam-Column

r

aL

Q

Fig. Blb

Fig. B2

Left Segment Of Beam-Column

[p, ML, MR' a ,L constant]

True Curve

Graph To Aid In Selection of G( & ~c. Values
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