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ABSTRACT

The dissertation studies the general strength and behavior

of unbraced, multi-story, rectangular, planar, steel frames under

static gravity loading. A particular problem is the .inelastic frame

buckling behavior of such structures.

The inelastic behavior of symmetrical multi-story frames

under symmetrical gravity loading is described. The present state of

knowledge as to the analysis of these frames is outiined. A method

tO,compute inelastic buckling loads for multi-story frames is proposed.

This method is a limit-type procedure which employs small lateral loads

on the frame to represent the eccentricities in the actual frame. The

formulation of a compute~ solution for the proposed method of analysis

is developed.

The results of two multi-story frame buckling tests are pre­

sented. The test specimens are three-story, single-bay, pinned-base

frames. The correlation between the theoretical inelastic frame buck­

ling loads and the experimental ultimate load values is excellent.

Analytical studies are conducted to examine the effects on

the frame buckling loads caused by varying the structural parameters.

The frames in the studies are single-bay and multi-story. They are

designed on a strength basis to fail at an ultimate load equal to the

beam mechanism load. Curves are developed which show the reduction,

if any, in the beam mechanism load caused by frame' buckling.
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The changes in the frame buckling load caused by the pri­

mary bending moments are computed and are shown to be significant.

The effects on the frame buckling load caused by varying the number

of stories in a frame are evaluated. The beneficial effects of par­

tial base fixity are examined. The rotational restraints provided by

the lower stories on the top stories of multi-story frames are approxi­

mated and the corresponding frame buckling loads are obtained. The

implications which the analytical studies have on a proposed design

procedure for unbraced multi-story frames are discussed.
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1. INTRODUCTION

-3

The problems that are encountered in the design of multi-

story buildings are relatively recent as the following paragraph

illustrates. 1. 1

" ...Wh~t can be considered the first true skyscraper,
though steel was not used in it, was W. LeB. Jenny's
10-storey Home Insurance Building erected in Chicago
between 1883 and 1885. The frame consisted of round
cast-iron. columns, wrought-iron bUilt-up box columns
and wrought;"iron I-beams bolted together by means of
angles, webs and gusset plates to form a continuous
frame. All parts of the exterior walls were carried
on.shelf angles fixed' to the spandrel beams so that
the outermost floor beam carried not only its share
of the- floor load but one bay of the exterior wall
up to the beam above. This method of construction
made the very high building of the future possible.
Developments after this were rapid. Baumann and
Huehl's Chamber of Commerce Building, 1888-89 was
fully framed, the l3-storey frame weighing 32,000
tons. Jenn!s Sears and Roebuck Store, built a year
later, was 57,900 sq. ft. in extent and 8 storeys
high; his Manhattan Building of 1891 was of 16 storeys
and in this he introduced cantilever beams fixed to
columns on a line well inside the line of the party
wall so as to avoid' overloading the footings of the
existing flanking building. Almost all the problems
ever to face the designer seem to have been met and
solved in Chicago by 1891 ......

However, as innovations were introduced into the construc-

tion technique, new proble~s arose and the designer had to solve them.

Two of the major changes that occurred were the use of low-carbon steel

as a building material and the adoption of a new framing technique.

Continuous columns were run from the foundation to the roof, and mo-

ment resisting connections were employed to join the beams and the
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columns into a relatively rigid framework. When this type of construc­

tion was introduced in about 1900, the lateral wind loads on the face

of the building were assumed to be transferred through the floor system

to massive masonry end walls and through them to the foundation. Short­

ly thereafter, diagonal bracing was found to be a more effective and a

more economical method of carrying the wind loads, and it was adopted.

The diagonal braces, together with the adjacent in-panel beams and

columns, were considered to behave as a vertical truss system in trans-

mitting the lateral forces to the foundation. The massive end walls

could be eliminated, but r~latively rigid masonry wall construction

was still used throughout the building.

These changes in building technology led to changes in the

techniques of analysis. Approximate methods, such as the cantilever

and portal methods, .were advanced. There seems to be no individual

to whom credit can be given for either of these methods of analysis.

In the early 1920's, Hardy Crossl. 2 introduced an iterative solution

for the slope-deflection equations. This was the moment distribution

method and it is used extensively in elastic analysis. Since the late

1940's, the plastic design approach has come into more extensive use.

It is interesting .to note that the first work of importance in this

area was done in 1913 by Kazinczy,1.3 and that some of the assumptions

of th~ portal method have their counterpart in the multi-story plastic

design approach.

Paralleling the advancements in analytical procedures, there

have been innovations in the architectural treatment of multi-story
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buildings. The present trend is to construct buildings with spacious,

column-free, 'interior areas. These areas are then subdivided by light­

weight, movable partitions. The exteriors of the buildings are en­

closed with glass and membrane panel-walls. These changes have made

the positioning of diagonal wind brac,ing within the bUilding more

difficult. ~ne solution has been to eliminate the diagonal bracing

and to use she~r walls to house th~ elevator and service core areas.

The shear walls are designed to transmit the lateral loads to the

foundations.

If the use of lateral bracing or shear walls is not prac­

tical, the rigid frame together with the cladding (the lateral stiff­

ening effects of concrete fireproofing, permanent walls, etc.) must

supply the necessary stiffness to prevent excessive lateral sway of

the building frame. If the cladding effect is negligible, as can be

the case when the fireproofing is sprayed on the steel members, the

bare frame alone must supply the necessary lateral stiffness.

The changes described above have refocus~d attention on the

lateral stiffness of building frames. This overall area of study is

referred to as a frame stability investigation. If the frame is symme­

trical and is supporting only symmetrical gravity loads, then the study

is c~lled the frame buckling problem. Both the frame buckling problem

and the more general frame stability problem are thre~-dimensional in

scope. Techniques for the elastic analysis of three~dimensional frame

stability problems frequently appear in the structural literature, but

nothing has been advanced concerning the inelastic analysis for three-
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dimensional multi-story frame stability problems. There have been no

experimental studies on full~scale, three-dimensional structures.

Most of the two-dimensional studies of frame stability con­

sider the inelastic behavior of the members in the frame. These

studies assume that the frame will deflect in only one of the two

framing directions, or that there is sufficient lateral bracing in.

one framing direction so that the sway is restricted to the other direc­

tion. Experimental verification on a full-scale structure has been

obtained for the methods employed in the two-dimensional multi-story

frame stability analysis. l .4 The frame buckling problem, although a

special case of the general frame stability problem, is more difficult

to analyze because of the unloading that occurs in the previously

yielded fibers in some of the members of the frame. A satisfactory

method of analysis has not as yet been developed for either the three-

dimensional or the two-dimensional inelastic, multi-story frame buck­

ling problem. Experimental studies have not been conducted on full-

sized structures.

This dissertation will examine the inelastic frame buckling

problem as applied to rectangular planar building frames of Type 1

AISC construction.
l

. S The behavior of a symmetrical framework under

symmetrical gravity loading will be described. A method of analysis

will be proposed that will give approximate load-response curves and

frame buckling loads for multi-story building frames. The results of

two frame buckling tests, which were conducted to verify the proposed

method, will be presented. A comparison between the experimental
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results and the theoretical predictions will be made. The computer

program which 'is used in the analysis will be described and flow

charts will be presented. The computer solution will then be used

to examine the changes in the frame buckling load which are caused

by varying several of the structural parameters.
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2.

2 . 1 FRAME RESPONSE

THEORETICAL SOLUTIONS

-8

The design of the members in the top stories of tall build­

ings and in buildings of a few stories is governed by gravity loading

and hence frame buckling is restricted to these areas. A usual de­

sign procedure is to omit lateral bracing in these stories and to

assume that the frame and the cladding provide the necessary lateral

stiffness to prevent frame buckling. With the cladding effects con­

stantly being reduced, this practice is now open to question. It will

be assumed in this dissertation that the beneficial lateral stiffness

effects of cladding are not present, and that the frame receives no

lateral support from adjacent out-of-plane members that frame into it.

The frame alone must supply the lateral stiffness required to prevent

lateral buckling. The values of the frame buckling loads obtained

under these assumptions will necessarily be conservative.

The determination of the load-response behavior of a multi­

story building frame neglecting the cladding effect is still a very

complex procedure. The major factors which affect the strength and

the rigidity of a frame and that must be considered in the develop­

ment ·of a theoretical solution are:

1) Mechanical properties of the materials and the

strength and deformation behavior of the members.
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2) axial load effect on member stiffness

3) axial load effect on the sway moment (the P-6 effect)

4) frame geometry

5) rigidity of the connections and the supports

6) ~ccentricities in the loads and the members

7) residual stresses from rolling, fabrication and the

erection processes.

The procedure is further complicated since factors 5, 6 and 7 are so

interrelated that theY,cannot be experimentally isolated. Also, they

directly affect factors 1, 2 and 3. Assumptions, that simplify the

analysis procedure, must be made to obtain a workable solution.

In the usual analysis procedure, the joints of the frame

are assumed to be rigid and the eccentricities of the members and the

loads are not considered. The residual stresses from fabrication and

erection also are not considered. They are highly indeterminate and

can only be obtained experimentally. The residual stresses from roll­

ing are approximated in computing the moment-curvature relationship of

a member (Fig. 2.1). Collectively, these assumptions describe an ideal

structure. It is this type Qf structure on which the equations for most

methods of analysis are formulated.

In actuality, there are always some eccentricities in any

structure. Their distributions are random and unpredictable. It

would not be economical or practical to undertake a testing program

to statistically·evaluate a meaningful coefficient for the eccentrici-
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ties. However, in discussing the general behavior of a structure (Fig.

2.2), the concept of a resulting eccentricity (e ) can be assumed. Ino

the early stages of loading, the effect of the initial eccentricity
l

causes a small lateral sway (O'C). As the sway increases with increas-

ing gravity load (CD), the P-6 effect becomes more significant. The

deleterious effect of axial load on the column stiffness also increases

the lateral sway. Each of these effects is non-linear and significant-

1y influences the response curve along length DE and beyond. At a

load approximated by point E on the curve, yielding occurs in a por-

tion of the frame, and the overall stiffness is further reduced. Since

there is a lateral deflection when the inelastic behavior begins, the

yielding will be at 'specific locations which are not symmetrically

positioned throughout the frame. This non-symmetry, together with

the decrease in the stiffness due to the yielding, greatly accelerates

the lateral sway of the frame. As the loads are further increased,

the yielding spreads. Plastic hinge condL~ions are approached at

certain locations. The overall stiffness is drastically reduced and

the frame instability load (F) is reached. Beyond this point, de-

f1ections increase with little or no increase of load (FG). Equi1i-

brium positions are possible if unloading occurs (FG').

If the value of the initial eccentricity (e ) is decreased,
o

the elastic deformations measured from the no load position (O'B) will

be reduced. The new load-response curve will be steeper than the pre~

vious one and will reach a higher load level than FG. Since the eccen-

tricities are small, the increase in the frame instability load above

level FG should be small. The upper limit for the frame instability
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loads will be the frame buckling load (A).

2.2 INELASTIC BEHAVIOR

-11

An exact solution involving inelastic behavior should con-

sider the deptn of penetration of the yielding at a section, the ex-

tent of yielding"along the member, the deleterious effects of residual

stresses, and the beneficial effects of strain-hardening. These in-

elastic effects can be considered in a finite difference solution.

Since the moment gradients in a multi-story frame are large, the in-

terval between the control points for the finite difference solution

should be small. In a multi-story frame analYSiS, an excessive amount

of computer time would be required for this approach under the present

(1967) state of computer technology.

Instead, an idealized elastic-plastic moment curvature re-

lationship (Fig. 2.1) will be assumed to give a reasonable approxima­

tion for the inelastic behavior. 2 . t The cross,...section will be assumed

to have a shape factor of unity. The resulting section will behave

elastically until the

reached. The section

plastic moment capacity (M ) of the
pc

will th~n rotate plastically under a

section is

constant

moment. Under these assumptions, yielding does not extend along the

member.

The idealized moment-curvature relationship gives a good

approximation for the behavior of a beam. For beam-columns the approxi-

mation is satisfactory in most cases, especially in parts of the build-
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ing frame where ~rame buckling must be considered. Parikh showed

for beam-columns under axial load ratios (PIP) less than 0.7, with, y

low slenderness ratios, and deflecting in double-curvature (Fig. 2.3)

or in single curvature with one end pinned, that the idealized moment-

curvature relationship gave moment-end rotation curves ,which were

1 h
2.1c ose approximations to t e exact curves. if the beam-columns

under consideration do not fall within the preceding description (see

Fig. 2.4) then the idealized assumption will be inaccurate. An alge-

braic expression must be developed for the, moment-end rotation func-

tions of these members if they are to be considered in the analysis.

2.3 EQUILIBRIUM

The load-response curve, that will be used to approximate

the actual behavior of a frame, is based on a second-order, elastic-

plastic method of analysis. Small deformation theory is assumed and

only flexural deformations are considered. In first-order theory, the
, ~.

"

equations of equilibrium are written for the structure and the members

when they are in their undeflected positions. There is no decrease in

the stiffness,or increase in carry-over factors of the members because

of the axial loads.

Second-order theory is used in frame stability analysis. The

member and the structure are assumed to be in their deflected positions

when the equations of equilibrium are written. The effect of the

second-order theory is to consider the additional bending caused by
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the axia110ad and the deformation. This reduces the stiffness of

the member and increases the carry-over factor. In the story shear

e~ui1ibrium equation, the product of the vertical loads and the story

sway (the P-6 moment) is introduced by the second-order theory.

The differences between the first-order and the second-

order theoiy are graphically presented in Fig4 2.5 for both the e1as-

tic and the idealized elastic-plastic behavior. The first-order

elastic curve (DC) is a linear relationship. The second-order e1as-

tic curve (QID) is non-linear and reaches an ultimate or frame insta-

bi1ity load. If-the elastic-plastic behavior is combined with first

order theory, the resulting curve (OB') is linear and piecewise con-

tinuous. Discontinuities occur at the formation of each hinge. The

curve approaches the first-order mechanism curve (BB') as an asymptote.

The second-order elastic-plastic curve (OA) is non-linear and is a,lso

piecewise continuous. An ultimate load is reached at one of the dis-

continuities caused by the formation of a plastic hinge. The general

shape of the 'curvels similar to'the exact curve (OG') and compari-

sons with experimental curves show that it is a good approximation

f h 1 b h · 1.4or t e actua e av~or.

2.4 PREVIOUS STUDIES

The literature on methods of analysis to determine frame

buckling loads under elastic loading is quite extensive.
2

.
2

The

classical approach is to assume an.idea1 frame with the loads applied
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at the connections. For low values of load, the structure remains

in the undef1ected mode. At the critical load, a second or deflected

equilibrium position is possible. The elastic frame buckling load is

the lowest load at which bifurcation of the equilibrium position is

possible. This analytical approach is similar to the computation for

the Euler buckling load of a column.

In building frames of the usual dimensions, frame buckling

will occur after some of the members are loaded into the inelastic

range. Methods for the determination of inelastic frame buckling loads

have been quite restricted in their approach. Those that employ re1a-

tive1y exact moment-curvature relationships have been limited in ap-

1," . 1 b "1 f 2.2,2.3,2.4,2.5,2.6,2.7,2.8p ~cat~on to s~ng e- ay, s~ng e-story rames.

An energy approach has been used in the inelastic frame buckling ana1y-

f 1 f
2.9

sis 0 fiu ti-story rames.

In the general inelastic stability analysis for multi-story

frames, theoretical approaches with less rigorous moment-curvature

relationships, although not as sophisticated, have been employed for

f b1
2.1,2.10,2.11

a more extensive group 0 pro ems.

tic-plastic moment-curvature relationship in an analysis to show that

the instability load of a multi-story frame is significantly reduced

when plastic hinges are introduced into the frame. 2 . 12

An empirical reiationship has been developed by Merchant to'

d' t' 1 t' 1t" t f b k1" 1 d 2. 13 b dpre ~c ~ne as ~c mu ~-s ory rame uc ~ng oa s. It is ase

on computations of the elastic buckling load and the ultimate load
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from simple·plastic theory. It shows some agreement with frame buck-

ling loads for tests on model size structures. A similar relationship,

determined from analytical and experimental values, is included in the

AISC S . f . . 1. 5pecL LcatLon.

2.5 INELASTIC FRAME BUCKLING

There are two. general approaches for the determination of

inelastic frame buckling loads of multi-story structures. One is

similar to the tangent modulus theory for the determination of in-

elastic column buckling loads. The second considers the shape of

the load-response curve of the actual structure (Fig. 2.2). The tan-

gent modulus method will be described assuming an elastic-plastic

moment-rotation behavior for the members of an ideal structure under

symmetrical gravity loading. Under these conditions of symmetry,

there can be no lateral deflection and the ultimate load will be the

beam mechanism load.

Analogies exist between the classical behavior for inelastic

frame buckling and the inelastic behavior of an ideal pinned-end

column. In-the column, a lateral disturbance is required at the tan-
I

gent modulus load to initiate lateral defo~mation. An upper limit

for the ultimate load which the column can carry is the reduced modulus

load. In the post-buckling loading range for the column, the value of

the tangent modulus (E
t

) is reduced and hence the reduced modulus load

or upper limit for the ultimate load is lowered. It has been shown

that the tangent modulus load is a good estimate for the ultimate load
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A corresponding theory to determine the tangent modulus buck-

ling loads for multi-story frames has not as yet been de~e1oped. There

is an additional problem of plastic hinges unloading as the frame de-

f1ects laterally from its initial configuration. For a tangent modulus

solution, there should be no hinge unloading as the initial sway takes

place. After the initial sway has occurred, hinge unloading can take

place. The sequence for this hinge unloading has not as yet been de-

fined. The folloWing discussion is intended to describe .the e1astic-

plastic frame buckling behavior and to serve as a basis of comparison

in describing the proposed method to compute inelastic frame buckling

loads.

Yielding can occur in the beams and columns of an ideal

structure before the tangent modulus frame buckling load is reached.

To simplify the presentation, it will be aJsumed that hinges do not

form in the columns. Physically, this can be accomplished through

the design procedure for obtaining the member sizes of the columns.

Because of the symmetry in the ideal frame, hinges will form initially

at the ends of the beams, or a yielded zone will form through the cen-

tra1 region of the beams. A special case exists when concentrated

loads are placed at the centers of the beams (Fig.2.6a). The load-

response behavior for the special case will be described first.

In the elastic -loading region (Fig. 2.6a), the maximum mo-

ments occur under the concentrated loads at the centers of the beams.

The ultimate load for t~e elastic frame is shown at level a. The
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elastic frame buckling load is used to approximate the value of this

ultimate load~ The first plastic hinge forms at a concentrated load

(Fig. 2.6b). This will lower the ultimate load in an actual frame to

the level at b. For the assumed elastic-plastic moment-curvature re­

lationship, there would be no reduction in.the ultimate load since the

plastic hinge ,location c~rresponds to the location of the inflection

point in the sw~y deformation mode of the structure. After a small

increase in load, a second hinge will form (Fig. 2.6c) and the ulti­

mate load is further reduced to a level at c. Failure occurs by one

of two -mOdes. In the first mode, additional loads are applied and

frame buckling occurs at level c. 'Unloading of the plastic hinges

should not occur. In the second mode, additional plastic hinges form

(Fig. 2.6d) before the load at level c is reached. Because of the

symmetry, they will form at the ends of the beams and a beam mechanism

failure will take place. : Since there will be no additional rotational

restraint provided by the beams to the columns, frame instability will

also occur and the frame will deflect laterally with no unloading of

hinges. The relative member sizes will govern which of the two fail~

ure modes occurs first.

In the more general tangent modulus buckling behavior, un­

loading of plastic hinges will probably take place. In the elastic

loading region of the frame in .Fig. 2.7a, ~t is assumed that the maxi­

mum moments occur at the-ends of the beams. At the tangent modulus buck­

ling load, a small increment of vertical load and a lateral disturbance

are applied simultaneously. There is a small lateral deflection with no

unloading of hinges. With the removal of the lateral disturbance,
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the frame stays in a deflected configuration. With further increases

in the vertical load, unloading of the windward hinges takes place.

For clarity, it is again stated that theory has not been developed

to substantiate this description of the tangent modulus frame buck-

ling behavior.

In Fig. 2.7b, a simultaneous unloading of hinges on the left

end of all beams has been assumed to occur with the application of an

additional vertical load. The load-response curve will follow the

indicated curve with an upper limit at b. The upper limit would be

the deteriorated critical load of the frame. 2 . l2 The upper limit at

b probably could not be reached before additional yielding takes

place. If a hinge formed at location 1 in Fig. 2.7c, the upper limit

at b would be lowered to the level at c. With the formation of each

additional plastic hinge, 'there is an accompanying finite reduction

in the critical load. This continues until the upper limit is reduced
n

to a level d which is below the level of the load being carried by

the frame (Fig. 2.7d). On this basis, the ultimate load will usually

coincide with the formation of a plastic hinge. If the difference in

load between the tangent modulus frame buckling load and ultimate load

is not large, then the tangent modulus frame buckling load can be used

as a prediction of the ultimate load. Model tests on portal frames

indicate that the difference is small. 2 .4

The second approach for the determination of inelastic frame

buckling loads is based on the load-response function of the actual

frame. In the discussion for this -behavior, the initial eccentricity
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(e ) in Fig; 2.2 had a direct effect on the value of the frame in-o .

stability load (F). As the va~ue of the eccentricity approached zero,

the frame instability load approached the frame buckling load as an

upper limit. This limit process is the basis for the proposed method

to compute inelastic frame buckling loads. The value of· the tangent

modulus frame puckling load will be approximated by the frame buck-

ling load which .is obtained from the limit of the frame instability

loads as the value of the eccentricities approach zero.

2.6 PROPOSED ANALYSIS

A limit type procedure, which considers the variables listed

in Art. 2.1, is proposed for the computation of inelastic frame buck-

ling loads. The initial eccentricities in the members and the frame

can be considered as a resulting eccentricity (e ) in Fig. 2.8a. It
. 0

is'these eccefitricities which give the load-response curve its charac-

teristic shape.

There are two techniques for approximating these eccentri-

cities in an analysis. The ~irst approach approximates the eccentrici-

11 d d f mb
2.15

ties by assuming an initia y eflecte shape or the me ers or

for the frame 2.. l6 Th d h' t th ff t f the secon .approac represen see· ec s 0 e ec-

. . t . b t f . 1 t t' lId on· the member2 . 15centr1c1 1es y a se 0 equ1va en propor 10na oa s

or on the frame. Neither of these techniques has been previously ap-

plied to the inelastic analysis of.multi-story frames. The second,
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approach is used·in the proposed method of analysis. A computer pro-

gram to compute inelastic frame instability loads is formulated in

Chapter 3.

The frame in Fig. 2.Bb illustrates the technique that will

be used to compute inelastic frame buckling loads. The frame is

loaded with gravity loads (W.) and small lateral loads. (H.) which
1 1

represent the effect of the initial eccentricities. The small lateral

loads are proportional to the gravity loads and are applied at each

floor level. If a value (a.) is chosen for the proportionality factor,
1

the corresponding load-response curve and frame instability load

(WCR ) can be obtained using the formulation in Chapter 3. A second
1

proportionality factor (0'2) is chosen and its corresponding load-

response curve and frame instability load (WCR ) are obtained. The
2

frame buckling load (WCR) in Fig. 2.Bc is the limit of the frame in-

stability loads as the proportionality constants (a) approach zero.

This limit type procedure is the basis for the proposed method of

analysis. In Fig. 2.Bc, only two frame instability loads are used

in the limit procedure to obtain the frame buckling load (WCR). A

third frame instability load could' be computed to determine the

accuracy of the linear approximation. If the accuracy is not suffi-

cient, then a parabolic approximation can be used with the three

frame instability loads.

2.7 SMALL LATERAL LOADS

Small lateral loads are applied at each floor level to
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simulate the effect of the resulting eccentricities in the frame. If

it is assumed 'that the alignment and fabrication errors are the cause

of the eccentricities and the other effects are negligible, then a

relationship can be developed between the proportionality constant at

a floor level (a.) and the average eccentri~ity between floor levels
1.

(e.). This is. the basis for using proportional lateral loads applied
1.

at each floor level.

For a frame in its deflected position (Fig. 2.9a), the

shear equilibrium equation for the columns at any story with an eccen-

tricity (e.) is given by
1.

(2.1)

where IMT and ~ are the sum of the moments at the top and bottom of

the columns, ~p. is the sum of the axial loads in the columns, and ~

is the relative story sway deflection from the zero load position.

For an increment of load (dP) , there will be incremental moments (dM)

and an increment pf deflection (d~). The equilibrium equation for the

new deflected position (Fig. 2.9b) is

~(MT + dMT) + t(MB + dMB) + ~(P + dP) (~+ d~ + ei ) = 0

(2.2)

The iricrementa1 equation can be obtained by subtracting the first

equation from the second. This gives

~(dMT) + ~(dMB) + ~P(d~) + LijP(~) + IQP(d~) + eiLijP = 0 (2.3)
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In the'. proposed analysis, small lateral loads are applied

at each floor level in proportion to the loads on the floor. Ct. is
1.

the proportionality constant at a floor level. In Fig. 2.9c, the

eccentricity effect is represented by an accumulated lateral force

and the shear equilibrium equation is

D1.r + ~ + D'~ + hEll = 0 (2.4)

For an increment of vertical load (dP) , there will be an increment of

lateral load (dH), and an increment of deflection (d~). Theequili-

brium equation for the deflected position (Fig. 2.9d) is

E(M.r + dM.r) + t(~ + d~) + E(P + dP) (~ + d~) + hE(H + dH) = 0 (2.5)

The incremental equilibrium· equation is obtained by subtracting Eq.

2.4 from Eq. ~.5.

E(dM.r) + E(d~) + EP (d~) + DiP (~) + EdP (dA) + hLdH = 0 (2.6)

In comparing the corresponding equilibrium equations of the

two systems (Eqs. 2.3 and 2.6), two equalities are evident

hIlI = e. D'
1.

and

hDiH = e. LdP
1.

(2.7a)

(2.7b)

Equations 2.7a and 2.7b show that the horizontal loads on the frame

should be proportional to the loads on the beams. Since the eccentri-

cities (e.) are very small, then the proportional horizontal loads (LH)
1.

should be small with respect to the beam loads (EP).
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If the initial eccentricities (e.) within a frame were
1

measured, then the proportionality constants could be computed from

Eqs. 2.7a or 2.7b. For the top floor

or

(2.8)

For the second floor in. the frame and with h1 = h2. = h

(2.9)

If P1 = P2 = P, then

(2.10)

(2.11)

Equations 2.8, 2.10 and 2.·11 show that the proportionality constant

(Q'.) should not be the "same for all floors.
1

In the proposed method of analysis, it is not necessary to

obtain the initial eccentricity for each member of the frame. The
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limit procedure requires a calculation to determine the frame buck­

ling load which is the limit of the frame instability loads as the

proportionality constant approaches zero. Equal values of a can be

assumed for each floor. Through a trial and error process, a value

a can be obtained that gives a load-response curve, that is a close

approximation for the expected frame behavior. This technique is

developed in Fig. 2.10 for the frame in Test 1. The first value of

a is chosen as 1 percent of the floor load. The corresponding load­

response curve in Fig. 2.10 is obtained. A second load-response

curve is obtained for a equal to 1/2 percent. The value of the

frame bu~klingload is obtained in Fig. 2.10 for a equal to zero.

The important factor in the proposed method is the determination of

the frame buckling load. The obtaining of an exact load-response

curve is not essential. Previously, it was shown that the values

of a should not be the same for each floor level. Unequal values

could simultaneously be allowed to approacp. zero. The frame buckling

load should be the same value as that computed with equal horizontal

loads. This is shown by the limit curves in Fig. 2.11.

The limit curves in Fig. 2.11 are for the frame in Test 1.

The top limit curve is·the same as that shown in Fig. 2.l0d. The

values of a in this curve are equal for all floors. In the middle

curve, .the value of a
2

is kept constant. a l is half that of the top

curve. a
3

is twice that of the top curve. In the bottom· limit curve

a
2

is kept constant while the multiplication factors are reversed for

a l and a
3

. In the limit as all values of a simultaneously approach



276.18 -25

zero, the values of the frame instability loads approach a common

value for the 'frame buckling load~ The larg~st difference among the

three values is 110 pounds.

,

2.8 DISCUSSION OF THE PROPOSED ANALYSIS

In the procedure for computing frame buckling loads, two

load-response curves were obtained. Both were similar in shape to

the expected load-response of the actual frame. The difference be­

tween the frame instability loads for the two theoretical curves was

sufficiently close that large errors were not introduced by the limit

process as a approached zero. The accuracy of this procedure was

measured by computing a third frame instability load. This was

done in Fig. 2.10d. The value of a was 3/4 percent. An attempt

was made to compute a point on this limit curve for a equal to 1/4

percent. However, hinges formed at both ends of a beam and the

associated hinge unloading problem was introduced. This unloading

behavior sets a lower bound on the value for a on the limit curve in

the proposed analysis. The limit procedure was shown to be insensitive

to' changes, of a from floor 'to floor. The significant point was to

select small values for a so that the frame. instability loads obtained

were numerically· close to the frame buckling load.
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3.1 LOAD-RESPONSE CURVES

The proposed method for computing frame buckling loads re­

quires the development of at least two load-response curves. Each

point on the load-response curve'represents an equilibrium position

for the structure, under a given loading condition. The individual

points on the curve can be obtained by an iteration method or the

entire curve can be generated by an incremental procedure. The ad­

vantage of the iteration method is in the minimum amount of computer

storage capacity required. The advantage of the incremental proce­

dure is that the unloading portion of the load-response curve can be

obtained. The slope-deflection method of analysis will be used with

the incremental procedure in developing a computer solution to gen­

erate the load-response curves.

In the incremental load procedure, the load-deformation

response curve is represented by a series of connected chords. At

each stage in the computations, an increment of load (OP) is chosen

and the'corresponding increment of deformation (66) is computed. The

accuracy that is required in generating the curve will dictate the

size of the load increment to be chosen. Iteration is used to ob­

tain the load increment when a plastic hinge forms.
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The computer solution will be limited to rectangular, planar,

multi-story frames with rigid beam-to-co1umn connections. The base

of the frame can be pinned, fixed, or of a type to simulate the sup­

port given to the top stories of a building frame by the stories be­

low. The loads are applied in the plane of the frame and can be ap­

plied in two stages; an initial loading, and the succeeding incremen­

tal loads. Within either stage the loads are proportional. The hori­

zontal loads are applied at the floor levels. The vertical loads are

applied as distributed beam loads and or as two symmetrically placed,

concentrated beam loads. Loads can be also applied directly to the

columns. Any combination of these loads can be used in either load­

ing stage. With this diversity, it is possible to simulate most

loading conditions used in design practice.

3.3 BASIC ASSUMPTIONS

The basic assumptions made in the formulation of the com­

puter solution are the following:

1. Elastic-plastic moment-curvature relationship.

2. A.p1astic hinge is replaced by a real hinge for the

additional load increments:

3. During an increment of loading, a1110ads are pro­

porifona1.
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4. Strain-reversal does not occur in any yielded fiber.

s. Members are straight and prismatic. Out-of-p1ane be-

havior and local buckling are not considered.

6. Member length is from center-of-connection to center-

of-connection.

7. Equilibrium equations are written for the members in

their deflected positions.

8. Axial shortening of the members is neglected.

9. Axial loads in the beams are negligible.

Assumptions 1 and 8 will restrict the application of the proposed

method to moderately high multi-story frames.

3.4 EQUILIBRIUM OF INCREMENTAL LOADS

The basic equations for a member in the slope-deflection

method of analysis are obtained from the differential equation of a

beam-column under transverse load. 3 . 1

EI
Sk6j (Ck + Sk)P ij ] K.M.. = (1\ [Ck6i + -1.J 1.J

M.. = (EI) [Ck6j + Sk6i - (Ck + Sk)P ij ] + rl.J1. L k J1.

(3.1a)

(3.1b)



276.18 -29

where Ck and Sk are the stability functions. The positive sign for

the quantities in Eqs. 3.1 is shown in Fig. 3.1.

functions, Ck and Sk' are determined from

The stability

aM

C =k

2
u(u + cot u - u cot u)

1 - u cot u (3.2a)

where

2
= u(u - cot u + u cot u)

Sk 1 - u cot u (3.2b)

(3.3)

and PE is the Euler load of the column. For any load increment (5P),

the axial load in a column (P
i
+l ) .during the load increment is esti­

mated from the load (P.) being carried by the "column at the beginning
1

of the increment.

= p.
1

p. + (O.5)5P
1

p.
1

(3.4)

Equations 3.la and 3.lb assume elastic· material properties and satisfy

member equilibrium and compatibility requirements. The slope-deflec-

tion equations for the pertinent members can be grouped .to satisfy

joint equilibrium and story shear equilibrium. Compatibility within

the structure is satisfied by solving fo~ the unknown joint rotations

and story sway deflections. The story shear equilibrium equation is

written for the columns in their deflected position.
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(3.5)

The development of the controlling relationships for the

incremental load procedure is basically the same as that above. For

an increment of load the stability factors (Ck and Sk) are assumed

to be constant and the axial load in a column is.computed from Eq.

3.4. The slope-deflection equations for a member after an increment

of load has been applied are

(M.. + OM.. ) = (ELI)k [Ck (8. + 08.) + Sk(8. + 08.)
1J 1J 1 . 1 J J

- (Ck + Sk) (p .. + op .. )] - (M:. + 0M:.)1J 1J· 1J 1J

(3.6)
EI

(M .. + oM .. ) = (-L)k [Ck (8. + 08.) + Sk(8. + 08.)
J1 J1 J J 1 1

(p. . + Op .. )] + 01. + o~.)
1J 1J J1 J1

The incremental slope-deflection equations, are obtained by subtract-

ing Eqs. 3.1 from Eqs. 3.6.

OM.. (EI) [C
k 08. + Sk 68. - (Ck + Sk) OPij] - o~.1J L k 1 J 1J

(3.7)

OM .. EI
08. (Ck + Sk) OPij] - o~.= (T)k [Ck 08 j + SkJ1 1 J1

For any connection, the sum of the incremental moments for the inter-

secting members is equal to zero. The story shear equilibrium equa-

tion at the end of· the load increment is
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I:(M.. + 6M.. ) + I:(M .. + 6M .. ) + hI:(H + 6H)1J 1J . J1 . J1 .

+ h (P .. '+ 6p .. ) I:(P + 6P) = 0. 1J 1J .
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(3.8)

The incremental equilibrium requirement for the story shear is ob-

tained by subtracting Eq. 3.5 from Eq. 3.8.

,
I:6M.. + I:6M .. '+ h I:6H + h 6p .. I:(P + 6P)

1J .J11J

+ hp .. I:6P = 0
1J

(3.9)

The basic equations of the incremental procedure are Eqs. 3.7 and 3.9,

and the requirement of joint equilibrium.

3 . 5 MATRIX FORMULATION

The deformation method of matrix analysis will be used to

formulate the c~mputer.solution. The incremental relationships ex-

pressed in Eqs. 3.7 and 3.9 serve as a basis in this .development.

The member stiffness matrix (k) relates the member incremental defo~-

mation vector (e*) to. the member incremental stress vector (S*).

or

(3.10)

[6M~j]6M ..
'J1

(¥)k
[

k .. k ....] ~e ...]11 1J 1J

k .. k.. 6e ..
J1 JJ J1

(3. lOa)

where
k .. = k .. = Ck11 JJ.

, .

i·
I

k .. = k .. = Sk1J J1 .

*Indicates the matrix contains incremental quantities.
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The member incremental deformation vector and the incremental dis-

placement vector of the nodal points or joints of the frame ,(6*) are

related by a kinematic matrix (A).

6* = M* (3.11)

or

06 ..
~J

66 ..
J~

66,'
~

=A 06. (3.11a)
J

op ..
~

Equilibrium between the external load vector for the nodal incremental

forces CW*l) and the member incremental stress vector is obtained by a

statics matrix (C).

w* = C S*
1 (3.12)

A relationship between the external incremental load vector and the

nodal incremental displacement vector can be established from Eqs.

3.10, 3.11, and 3.12.

W*l = (C k A) ~*

Since it can be shown2 ,ll that C =

matrix of the structure (Kl ) is

K = AT k A
1

(3.13)

the first-order stiffness

(3.14)

The total stiffness matrix of the structure (K*) contains

second-order terms, hop., ~(P + dP), in the story shear equilibrium
~J
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equation. Therefore,

K*'= K + K* (3.15)1 2

where K*2 is a matrix containing the additional terms. There are

also second-order terms, hp .. LP, that must ,be added to W*l to obtain
1J

the total load matrix (W*).

(3.16)

and

(3.17)

8ince it is assumed that there is no member shortening, storage space

can be economized by eliminating and combining specific .rows and

columns~ The second order terms. in the W~ and K~ matrices need not

be stored separately and can be added to the W! and Kl matrices re-

spectively. The unknown terms of the nodal deformation vector in

Eq.3.l7 can be obtained by the Gauss-Jordan solution technique or

by iteration.

The member total stress vector (8T) at the end of the in-

crement can be obtained from a previously computed total stress vec-

tor (8
T

_
1

) by adding the incremental stress vector (8*) and making

the necessary correction (5Mt) to include the effect of the trans-

verse incremental beam loads.

(3.18)
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Before making this. addition, the total stress vector (ST) is examined

to determine if additional plastic hinges have formed during the in-

crement of loading (5P). If the plastic moment value is exceeded,

iteration can be used to obtain a value (5PMOO ) at which the first

additional hinge forms. The total stress vector, the total displacement

vector, and the load vector can be computed from increments scaled by

the incremental load (5P
MOO

). The flow charts for the computer analy­

sis are contained in Figs. 3.2 to 3.9. A more detailed formulation

is given for two examples in the Appendix.

3.6 PLASTIC HINGES

When a plastic hinge forms in the structure, an additional

degree of freedom of motion, the relative rotation of the cross-

sections on either side of the hinge, is introduced. An additional

line and column could be introduced into the stiffness matrix for

each additional degree of freedom. This would be very uneconomical

of computer storage space. Instead, the member stiffness matrix will

be modified when hinges form without changing the nodal deformation

vector. The relative rotation of the sections on either side of the

hinge will not be computed.

After a hinge has formed in a member, the relative rotation

of the sections on either side of the hinge occurs at a constant mo-

ment (M ). For all additional increments of loads, the plastic hingespc
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are rep1aced·by real hi~ges.
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The reduction in M due to increases
pc

in the axial load in a column is considered in the next article.

When a hinge forms at the end. of a member .. 'the incremental

slope-deflection equations can be adjusted to reflect the change in

member stiffness.

6M.•
1.J

(C
k

+ Sk) 6p .. ] - 6M!... 1.J 1.J
(3.19a)

(3.19b)

where 6a
r

is the incremental rotation on the member side of the plas­

tic hinge·. The. rotat.ion (6a
r

) can be solved for in Eq. 3.19a and

substituted in Eq. 3.l9b to yield

6M ..
J1.

(6a ..
J1.

Sk _-F"
6p .. ) ] + [1 + -C ] 6~.

1.J k J1.
(3.20)

,

where numerical1y- 6MF.. equals 6~ .. This formulation does not require
1.J J1.

the computation of the additional deformation ~erm (6ar ), and the in-

cremental joint deformation (6a:) is still obtained.
1.

Matrices can be set up to record the location and the p1as-

tic moment capacity of the pla'stic hinges as they. form in the members.

rn developing the stiffness matrix (K*) of the structure, Eq. 3.15 is

first computed. The matrix that records the loca~ion of plastic

hinges is searched for the location of the hinges. Terms similar to

those in Eq. 3.19 are subtracted from the corresponding terms in
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Eq. 3.15 and the terms in' Eq. 3.20 are added to like terms in Eq.

3.15. The load matrix (Eq. 3.16) is likewise modified. Similar

modifications of the stiffness matrix are made for other locations

~'of plastic hinges in a member.

3 . 7 REDUCTION IN M
pc

The axial load in a column at a plastic hinge does not re-

main constant but continues to increase. This causes a shifting of

the neutral axis in the cross-section towards the tensile flange of

the column. Since the.' tensile area is decreased,' there is a corres-

ponding reduction in the moment capacity (M ) at the plastic hinge.
pc

This produces an unloading of the moment in the column. The unload-

ing of moment to the supporting members can be considered in the

incremental procedure. Equation 3.4 is uscj in computing M for.pc

the increment. With the formation of a hinge at the end of a member,

the moment can be stated as

M.. =
1.J

M
pc

o
(3.21)

where M is the plastic moment capacity of the member when the
pC

o
plastic. hinge forms. For an additional increment of load,

M.. + oM.. =
1.J 1.J

Mpc
o

+ ~l (3.22)

where ~l is the reduction in the original plastic moment capacity



276.18 -37

CM ) caused by the increase in the axial load. The incremental
pC

o
· .

equation is obtained by subtracting Eq. 3.21 from Eq. 3.22.

and

!lM.. = AM11J

!lM.. = AM
11J

!l~ .
1J

(3.23a)

(3.23b)

The incremental rotation (!leI) can be.so1ved for and substituted into

Eq. 3.19b to yield

(EI)
(c

2 _ S2) S
!l~ .

Sk
6M .. [ k k

(!le .. 6p .. ) J + [1 +-!J= - + C !:IM1J1 L k Ck J1 1J Ck J1 k

(3.24)

This equation differs from Eq. 3;20 by the addition of the last term.

For the next increment of load,. the·tota1 moment at the plastic hinge

is

M. . + !lM.. 1 + !lM.. 2 = M + !:IM1 + !:I~
1J - 1J. 1J pc0

(3.25)

The incremental equation is obtained by subtracting Eq. 3.22 from

Eq. 3.25

(3.26)

The equation for this second increment of loading can be obtained

from Eq .. 3·. 23a by changing the subscript on .the term (!:1M). An equa-

tion similar to Eq. 3.23b is then developed. For·succeeding incre-

ments, the pattern is repetitive. In the matrix formulation, the cor-

rections described at th~ end of the previous article would first be
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*made. Then, ~i would be added to W1 in the load vector (Eq. 3.16)

corresponding to joint i. The terms corresponding to joint j and to

the story shear equation would have (6M.) Sic added to them. The
1

reduced M values would have to be stored at each stage in the com­
pc

putations to compute 6M..
1

3.8 STABILITY CRITERION

The limit of stability of a multi-story frame under gravity

loading is attained when the lateral deformations increase with no

increase of vertical load. Mathematically, this can be expressed as

A similar criterion can be developed for the incremental load proce-

dure. At the instability load, the increm~nta1 sway deflection (56)

in the incremental story shear equilibrium equation would increase

with no change in the incremental load. Equation '3.9 would be modi-

fied to omit terms containing 5P and oR. For a stable structure

EOM > h opU' (3.28)

This equation states that, if the frame is in a deflected, stable

configuration and a small lateral disturbance is applied, the in-

crementa1 restoring moments (EOM) must be greater than the added

overturning moment (hOptp).
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In the computer analysis, a small increment of load is

applied to the' frame and a compatible set of incremental deforma­

tions is computed. If the incremental sway deformations are positive,

a stable deflection position is possible. If the incremental sway

deformations are negative, then the frame instability load has been

exceeded. Points on the ~n1oading portion of the 'curve can then be

obtained by using negative incremental loads. The accuracy in com­

puting the value of the frame instability load is determined by the

magnitude of the incremental load. If too large a value of incre­

mental.1oad is used, an additional problem arises. In a real frame,

the instability load is gradually reduced as yielding takes place.

In the elastic-plastic analysis, the frame instability load is re­

duced in finite increments with the introduction of each new hinge.

The frame instability load is usually reached when a hinge forms. If

the deteriorated critical ;load is within the bounds of P + 6P, then

the computation for the sway deflection will yield negative incre­

mental deformation values for. both positive and negative load in­

crements. The unloading portion of the curve can not be obtained

unless the load increment (6P) is reduced.

3.9 COMPARISONS WITH AN ITERATION SOLUTION·

A comparison is made for the frames shown in Figs. 3.10 and

3.11 between the load-response curves generated by the incremental



276.18 -40

2.1
procedure and tho$~ from an iteration method. The solid curve in

each figure is the result from the iteration method. The points are

from the incremental procedure. The dashed curve in Fig. 3.10 is a

i'12
second-order, elastic-plastic moinent distribution solution. . . The

incremental procedure and the iteration method were formulated from

slo~e-def1ection equations and there is a close correspondence between

them. The table at the top of Fig. 3.10 is a comparison of lateral

sway deflection (6.) for the two slope-deflection formulations at a
1

load factor of 1.90. The correlation is extremely good.

The small discrepancies between the incremental and iteration

procedures are caused by the techniques used to compute the loads at

the formation of a hinge. In the iteration method, small load in-

crements were used to approach the hinge. This tends to understate

both the load and deformation at the formation of the hinge. The in-

crementa1 procedure used only one cycle of iteration to determine the

coordinates specifying a plastic hinge. At the frame instability

load, the incremental solution for the frame in Fig. 3.10 had a de-

flection of 4.2 in. The iteration method could not converge to a

point in this region. If the increment of load in the iteration me-

thod.were smaller, this point could be obtained. The accuracy in the

incremental procedure could be improved by using more than one cycle

of iteration at a plastic hinge.
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4. 1 FRAME DES IGN

4. DESCRIPTION OF TESTS
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"

Frame buckling tests were conducted on the two frames

shown in Fig. 4.1. Proportional loads were app lied as indicated in

Fig. 4.2. The loads on the top floor were reduced to prevent plastic

hinges from prematurely forming in the top beams. Individual members

of the frame were designed by plastic design procedures assuming that

the frame was braced. 4 . l The beams were designed 'to fail by a beam

mechanism. The 'columns were required to carry the axial loads and to '

~ave a moment capacity that was just sufficient to satisfy the equili-

brium requirement at the bottom story beam-to-column connection. Al-

though the ultimate load was defined on the basis of strength as the

beam mechanism load, both the beams and the columns were designed to

act at their maximum capacities.

Additional requirements were placed on the members and on

the frame geometry. The columns were to have a slenderness ratio of

40 and 45 for Tests 1 and 2, respectively. The column axi'al load

ratio (PIP) at failure was to be 0.4, and the ratios of member sizesy .

and lertgths were to approximate those of members in the top'stories

of multi-story frames. A trial and error process was used to obtain

the beam l~ngth, member sizes, and the loads. Difficulty was en-

countered because of the 'limited number of lightweight, structural
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shapes available.. Other considerations were the capacity of the load­

ing system, and the spacing of the anchorages in the test area. In

order to comply with all of the imposed conditions, the columns had

to be of A441 steel. The column section described in Table 4.1 was

a 4WF13 structural shape and it was continuous for the height of the

frame. The beam section was a 6B16 structural shape of A36 steel.

The beam span, center-of-connection to center-of-connection, was

10 ft in both tests. The beam-to-co1umn connections were designed

according to Section 2.7 of the AISC Specification. 1.5

In each of the tests, two identical frames were braced to-

gether to function as a unit and to be free of external restraints

(Figs. 4.3 and 4.4). The lateral bracing connecting the two frames

was a 2 in. channel section (Table 4.1), and it was designed to give

adequate lateral support to the beams and columns. The cross brac­

ing members were 3/8 in. diameter rods and they were designed to

force the two frames to act as a unit. Premature failure by local

buckling was minimized by choosing beam and column sections which

satisfied the bit ratios us~d in plastic design under the AISC

Specification.
1

.
S

Lateral torsional buckling of the column section

under axial and bending loads was not a problem since the columns were

braced. In addition, the section's ~/Ad2 value was such that the

full in~p1ane capacity could be achieved without the aid of lateral

bracing.
4

.
1

Instability of the individual column members was not

anticipated since their slenderness ratios were low.
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4.2 LOADING SYSTEM AND TEST SETUP
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Vertical loads ·were applied to the frames through the te~­

sion jacks of the gravity load simulators. The simulators are shown

in an undeflected position in Fig. 4.4. The simulators were designed

to allow the tension jacks to move freely w{th the frame as lateral

sway took place in the plane of the frame. 4 . 2 Figure 4.5 shows the

frame and the simulators in a deflected position. A common hydraulic

fluid hose line was connected to the four tension jacks which applied

the loads to the middle ·and. bottom floorbeams. The pressure in the

common hydraulic line for the two top floor jacks was regulated to be

approximately three-quarter~ of that for the other loading jacks.

The jack loads were distributed by the tie rods to the ends

of the load beams (Fig. 4.3) and through them to the spreader beams.

Because of the common hyd~aulic hose line and the symmetry of the load­

ing system, a load from a jack was divided equally to the two load

points at the end of the spreader beam. The loading beam and spreader

beams for each story were pre-assemb led on the. laboratory floor. The

alignment was done with a carpenter square and a measuring tape. No

further adjustments were required, since under preliminary loading

the differences among the dyn~mometer readings for a particular story

were within the reading accuracy of the individual dynamometer. Pins

were used in the connections for the tie rods and dynamometers and

the linkages formed gave the loading system additional freedom to move

later~11y with. the test frame. In a linkage under tensile load, the

point of load application will line up with the resisting point at the

opposite end of the li~kage syst~m.
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The test frames were bolted to the pin base fixtures shown

in Fi&. 4.6. The base fixtures were in turn bolted to the column

pedestals. The column pedestals and gravity load simulators were

bolted to the test bed fixtures as shown in Fig. 4.7. These fix­

tures were held to the test bed floor by 2~ in. diameter prestressed

studs. The vertical line of support for the gravity load simulators

did not coincide with that of the prestressed studs of the column

pedestal. This caused a moment to be applied to the test bed fix­

tures. The resulting twisting caused a negligible amount of inward

movement of the column base fixtures. As a precautionary measure,

braces were welded between the column pedestals in Test 2. This mini­

mized the movement.

4.3 INSTRUMENTATION

The instrumentation for the frame tests was designed to ob­

tain information concerning both the external and internal frame be­

havior. Transits were used to measure the horizontal movement of

points along the outside face of each column. Levels were set up to

read the vertical motions of the center of the beams and of the beam­

to-column connections. Dynamometers were used to determine the loads

applied through each of the load points. The pressure gage readings

of the loading console also were used to measu~e the applied loads.
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Electrical resistance wire strain gage "readings were taken

to determine the distribution of strains at two cross-sections of each

beam and each column length. In the bottom story, four gages were

used at each cross-section locatibn. At the middle "and top floor loca-

tions, two gages were used. The aboveread~ngs, along with data of

the material p~operties, cross-sectional geometry, and frame dimensions,

provided input to a computer program. The output consisted of axial

loads, shears, and distributions of moments along each "of "the members.

Equilibrium was based on the second-order theory.

"Rotations of the pin bases were obtained from readings of

mechanical rotation gages (Fig. 4.8). The rotations of the members

at the beam-to-column connections were obtained from electrical rota-

tion gages (Fig. 4.9). Horizontal and vertical deflection scales and
I

a strain gage location also can be observed in this figure. Dial

gages measured the inward motion of the column pedestals. Records

of visual observations of mill scale flaking and other pertinent

data were kept:

4.4 FRAME ALIGNMENT

The column pedestals and pin base~ were accurately set with

a transit and tape. The same procedure was used for the bases to which

the gravity load simulators were bolted. The tops of the column ped-

estals were set level with a steel straight edge and a carpenter level.
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The distance between center lines of the column base plates had
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fabrication errors in both test frames. For example, in Test 2, the

dimension between the two parallel frames was 5/16 in. short and the

10 ft dimension between columns was 1/8 {n. short. The corresponding

dimensions at the first floor level were accurate to 1/16 in. Rather

than bend the column legs to fit the accurately set column pedestals,

the column base plate holes were enlarged slightly.

The first test was conducted during the 1965 Summer Confer-

ence on "Plastic Design of Multi-Story Frames" at Lehigh University.

Time requirement and equipment usage did not permit the accurate align-

ment of the test frame. A plumb bob was used in measuring both the in-

plane and out-of~plane alignment of each of the columns. In the second

test, the frame was plumbed in the out-of-plane direction by inserting

long metal strips between the top of the column pedestals and the

bottom of the pin-base fixtures. The frame was plumbed in the in-

plane direction by inserting similar wed~es between the top of the

pin-base fixtures and the bottom of the column base plates. A transit

was used to measure the initial out of alignment. The American Insti­

tute of Steel Construction in its "Code of Standard Practice" states: l . 5

" .... In the erection of multi-story buildings
individual pieces are considered plumb, level
and aligned if the error does not exceed 1:500 ... "

This criterion was satisfied in both tests. However, the measured fab-·

rication errors could be used to predict the direction in which the

frame would sway. In the second test, for example, two of the column
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tops were out of plumb to the north and the other two to the south.

The net effect ,was self-canceling. From an examination of the eccen-

tricities that existed in the lower stories, it was possible to

correctly predict that the frame would sway to the south.

4.5 MATERIAL AND' SECTION PROPERTIES

Frame members of each shape size were rolled trom the same

heat and ingot. The members were cold straightened by gagging. Ten-

sion tests were conducted on specimens cut from lengths, arbitrarily

selected, from which ihe test ,frames were fabricated. The values

from the tension tests are summarized in Table 4.2.

A beam bending test was conducted on a 6B16 section to ob-

'tain the moment-curvature relationship and to substantiate the plastic

moment value computed ,from the tension test data. Cross-sectional

properties were computed on the basis of measurements taken at loca-

tions a long the members. ·These va lues, shown in Tab le 4.1, agree

with the handbook values. The eccentricities in the cross-sectional

geometry were within the tolerance limits on rolling as o~tlined in

h AISC S 'f' . 1.5t e . pec1 1cat1on.

4.6 FRAME LOADING

The loads applied through the tension jacks were controlled

at the load console of the hydraulic loading system (Fig. 4.10). The
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distribution of toe loads on the frame is indicated in Fig. 4.2.

During the early stages of loading, pressure increments were set
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I
I .

in the top story jacks and then in the lower jacks. This was accom-

p1ished with two complete and separate pumping systems (Fig. 4.11).

The, pressure level in the particular system was maintained through

a needle valve. In the later stages of loading, either a pressure

increment or an increment of horizontal deflection of the bottom floor

level was used as the load increment. The load ratio shown in Fig.

4.2 was maintained throughout both tests.

When the frame buckling load was reached, the frame lost

its ability to react against the constant pressure being maintained

by the hydraulic pumps. The frame moved laterally while the pressure

was being held constant. To obtain an equilibrium position, it was

necessary to qUickly close the entrance valve to each of the loading

jacks. The frame could not immediately resist the "locked-in" pres-

sure and it continued to 'move laterally. The beams continued to de-

flect vertically. Since the piston in the jack was being displaced,

the "locked-in" pressure was reduced. The frame was then capable of

resisting the reduced pressure and an equilibrium position was ob-

tained in the unloading portion of the load-deformation response

curve. A ten to fifteen minute period was observed between the ap-

plication of a load increment and the taking of readings to allow

the frame to adjust to the plastic yielding and the lateral movement.
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THEORETICAL PREDICTIONS
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5.1 EXPERIMENTAL BEHAVIOR

The load-latera"! sway deflection curves for the two frame

buckling tests are shown in Fig. 5.1. The ordinate for the curves

is the quarter point load, P (non-dimensiona1ized as P/P
B

where P
B

is the corresponding load required to form a beam.mechanism). The

abscissa (6
h

) is the lateral sway deflection at the first floor level.

In Test 1, the ultimate load was well defined and two points were ob­

tained on the unloading portion of the load-response curve. In Test

2, only one point was obtained on the unloading portion of the curve.

The sway deflection for this point was 1.98 inches. An exact value

of the ultimate load for the second test was. not obtained. The maxi­

mum stable load obtained during the second test is indicated as

point 1 on curve 2. At this load an increment of pressure, equiva­

lent to an increase of 1 kip in the load P, ~as applied to the ten­

sion jacks. The frame deflected and appeared to stabilize under the

increased pressure. A minute later, a reading of deflection through

the transit showed that the'sway of the first floor was increasing

rapidly .. The frame instability load had bee~ exceeded. The entrance

valves for the loading jacks were immediately closed. The frame

came to the equilibrium position indicated at point 2. The ultimate

load for Test 2, which is listed in Table 5.1, is an approximation
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based on using one~half of the final pressure increment. This ulti~

mate load is at the level indicated by the line at 3 in Fig. 5.1.

The arrow symbol from point 1 to point 2 is used throughout for the

results of Test 2 to designate that the maximum load point is not

well defined.

The.load-response curves for both test frames are very

similar. The frame in Test 2 had more slender columns and therefore

had larger lateral deflections in the earlier stages of loading. At

values of P/P
B

less than 0.4, the curves are almost linear and the

sway deflections are negligible. For a working load ordinate of 0.6,

the sway deflection for Test 2 is 0.10 inches. This is equivalent

to a bottom story column chord rotation of 0.0013 radians. This rota­

tion is less than the usual maximum working value of 0.002. For

values of P/P
B

greater than 0.85, the sway deflections increase ex­

cessively.

Figure 5.2 compares the lateral sway deflection to the ver­

tical beam deflection in Test 1. At a working load ordinate of 0.6,

the ratio of lateral sway deflection to vertical beam deflection is

1 to 9. The sway deflection is relatively small. At the frame in­

stability load, the ratio is about 1 to 1. In the post-buckling

range, ·both the deflections continue to increase even though the

quarter point load (P) is reduced. Generally, the shape and relative

deformation of the two load-response curves correspond closely to the

frame buckling behavior described in Chapter 2.
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It should be noted that the sway deflection at the frame

instability load is equivalent to a column chord rotation of only

0.0075 radians ..This rotation is approximately 4 times the usual

working value of 0.002,and it emphasizes the importance of consideJ;-

·ing lateral stiffness in the design procedure.

The significant effect of yielding on the instability load

of the test frames is shown in Fig. 5.3 and 5.4. The plastic moment

value indicated was computed from an average stress obtained from

tensile coupon tests.and a beam test. The first plastic hinges

formed in each test at the load immediately before the frame insta-

J

bility load. These hinges were located at the load point on the first

floor beam and at the leeward end of the second floor beam. When

the frame instability load of Test 1 was attained, plastic hinges

had formed at locations 1, 2, 3, and 4 indicated in Fig. 5.3. The

moments at the corresponding locations of Frame 2 (Fig. 5.4) indi-

cate a similar yield pattern. Thus, there was general yielding in

the beams when the frames buckled.

While the above plastic deformations were occurring in the

beams, the load-response behavior of the moments at the ends of the
\

columns underWent a significant change. This is indicated in Fig. 5.5

by the· movements of the inflection points of the columns and the

general shifting of the beam moment diagrams in the direction of the

sway. (The formation of a plastic hinge is designated by a heavy line).
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The changes in the column moments and the yielding in the

beams are related through the equilibrium requirements at the beam-

to-column connections as in Figs. 5.6a and 5.6b. Curve 1 of Fig. 6a

indicates that at the frame buckling load a plastic hinge formed in

the end of the beam corresponding to joint A. Prior to this load,

the column locations at 2 and 3 maintained joint equilibrium by

supplying moments opposite in rotational direction to the moment at

location 1. In the post-buckling range, the moment at 1 did not change

appreciably and, as the column moment at 3 increased to maintain bottom

story shear equilibrium, the column moment above the joint decreased in

order to satisfy the joint equilibrium requirement. Figures 5.5c and

5.5d show that a similar readjustment occurred in the columns at the

joint immediately above A.

At joint B, the beam moment at location 4 began to unload

at the load immediately before frame buckling occurred. Prior to

this load, the moment at location 6 was opposite to that required to

resist the P-6 effect in the bottom story. As the moment in the end

of the beam unloaded, the column moment at 6 also unloaded. By so

doing, it tended to maintain the required joint equilibrium while

also contributing to balance the P-6 moment. The moment in the column

at location 5 increased slightly to satisfy joint equilibrium. A

simi1ar'behavior is also shown in Fig. 5.5c and 5.5d for. the joint

above B.

The shear equilibrium requirement in the bottom story is

shown graphically in Figs, 5.7a and 5.7b. The line inclined at 450
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represents the equilibrium condition. Along this line, the. algebraic

Sum of the resisting end moments of the columns balances the over-

turning P-6 moment. In order to obtain· a satisfactory balance, the

average initial alignment

6 in the P-6 effect. The

error for each frame (e ) was added to
. a~

difference between the overt~rning and re-

either location 4 or at location 5 of Fig. ~.6.

sisting moments, is equal to the distance. between the two curves.

These differences. tend to balance between frames of the same test.
. .

The magnitude of the resulting errors is less than the reliability

limit of the strain gage, readings.

The moments in the beam and columns in the bottom story

for the buckling and post-buckling portions of the curves are similar

to those of a portal frame on the verge of a combined beam-sway mech-

anism. The. moments where the hinges would form in such a mechanism

are plotted in Figs. 5.8a,and 5.8b with the sway deflection as the

abscissa. The sway deflection at the frame buckling load is indi-

cated for Test ,I.' The first signal to the approach of the frame

buckling load was the urrloadirig that took place at location 4. In

the post-buckling range the beams had no moment change and the columns,

continued to maintain bottom story shear equilibrium. At the last

load point of Test 1, a hinge formed in the column at location 3. A

mechanism would have .occurred, if an additional hinge formed at

The M value of the
pc

former location is 250 kip-inches, and at the latter it is. 285. Fig-

ure 5.9 portrays the frame from Test 1 in a deflected position. Fig-

ures 5.10 and 5.11 depict the yielding that took place at joint A

and the beam load point.
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I -,

The overall behavior of the two test frames was similar

with regard to both internal (Figs. 5.12a and 5.12b) and external

behavior (Fig. 5.1). The impetus for the initial lateral sway de­

flection was the eccentricities that resulted from the fabrication

and alignment procedures. The sway deflections increased as the

gravity loads were increased. A general deterioration of lateral

stiffness resulted from yielding in the beams. This preceded the

occurrence of the frame instability load.

5.2 COMPARISON OF THEORETICAL AND EXPERIMENTAL CURVES

A theoretical method for predicting frame buckling loads

has been proposed. Two frames have been tested and experimental

load-response curves have been obtained. The proposed method can

be validated by comparing the theoretical ~redictions and the experi­

mental load-response curves for both external and internal behavior.

The theoretical and experimental curves for center-line

beam deflection for Test 1 (Fig. 5.l3a) and Test 2 (Fig., 5.14a) show

an excellent correlation. In Figs. 5.13b and 5.l4b the theoretical

and experimental sway deflections of the first floor beam are com­

pared. 'The theoretical curves are those obtained by arbitrarily

setting a equal to 1/2 and to 1 percent. A direct correspondence

between the theoretical and experimental points should not be expected

because of the method of selecting a. The important requirements in
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the comparison are that

1) the genera 1 shape of the curves must be simi lar,

2) the theoretical curves must approach the experi­

mental curve as a approaches zero, and
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3) the theoretical buckling load should give a good

prediction of the experimental frame buckling load.

The experimental and theoretical frame buckling loads for

the two test frames are listed in Table 5.1. The theoretical pre­

dictions were computed by the limit procedure illustrated in Fig.

2.10. The percent errors between the theoretical frame buckling load

and the experimental ultimate load for Tests 1 and 2 are 2.4 and

2.8 percent,respective1y. Requirement 3 is satisfied. The curves

in Figs. 5.13 and 5.14 show that requirements 1 and 2 are satis­

fied by the external load-response functions. Similarly, Figs. 5.15

and 5.16 show that these requirements are satisfied by the internal

load-response functions. The theoretical and experimental curves

have the same shape and in the limit, as a approaches zero, the

theoretical curve tends to approach the experimental curve .

. The only difficulty. to mar this otherwise close correspon­

dence is in the order of the hinge formation.. The differences in the

magnitudes of the loads at the hinge formations are minor. The

theoretical solution shows that hinges form almost simultaneously at

the ends of the beams, as indicated by the 1 and 2 on the curves of
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Fig. 5.l3b. The ~hird hinge forms at the first floor load point at

the frame instability load. The maximum value at location 5, using

the limit technique, would be 0.85 M. The fourth hinge forms at
p

the last load point. There are two principal causes for the differ-

ence between the theoretical and experimental order of hinge forma-

tion. One is the elastic-plastic, moment-curvature assumption in the

theoretical analysts. Using this assumption, a section is either

elastic or plastic. At the formation of °a plastic hinge, there is an

abrupt change in the load-response function. Between the formation

of pl~stic hinges, the structure reacts elastically. 0 In an actual

structure, the yielding is gradual and there is a corresponding de-

crease in the lateral stiffness. Since the inelastic behavior is

affected by the residual stresses from rolling, fabrication, and

erection, the yielding will first begin at a load lower than theore-

tically predicted and possibly not at the initial hinge location

theoretically predicted. The second cause for the difference in the

pattern of hinge formation is that in the theoretical analysis ~ is

assumed to be equal for all floors whereas the resulting eccentricity

between the various floors are not equal. A change in the assumed

value for ~ from floor to floor can alter the distribution of the

moments throughout the frame, the load at which the first hinge forms,

and the order of hinge formation. To obtain a better prediction for

the order of the hinge formation, a theoretical solution would have

to predict the above inelastic behavior and consider the resulting

eccentricities of the structure. As p~eviously stated, this does not

seem to be practical with the present (1967) computer technology.
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The method, proposed for computing the frame buckling load

recognizes in the limit procedure that eccentricities exist within a

frame. It does not at any stage in the analysis try to evaluate them

but rather .approximates their effect by a small lateral load applied

at each floor level. A Justification for the positioning of these

lateral loads has been made. The frame buckling load is obtained by

having the value of the proportionality constant (0') of the small

lateral loads, or equival~ntly the resulting eccentricity at each

floor level, approach zero. Within this limit approach, the corres­

pondence between the theoretical and experimental load-response curves

is good. The theoretical· prediction for the experimental frame buck­

ling loads is excellent. These two tests, although limited in number,

verify the proposed method.
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6. ANALYTICAL FRAME BUCKLING STUDIES
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6.1 INTRODUCTION

The limit procedure for obtaining inelastic frame buckling

loads will be used to develop frame buckling curves and to study the

changes in frame buckling loads caused by varying ,some of the struc­

tural parameters. The frames to be used in the analytical study are

basically the same as the test frame shown in Fig. 3.1. The two

frames for which there is experimental verification of the frame

buckling loads will be i'ncorporated, when possible, into the analy­

tical studies. The results from the analytical studies, although for

frames reduced in size, are applicable to frames found in practice. A

comparison is made in Table 6.1 between the parameters of Test Frame

1 and those of a frame, similarly designed~ under a light manufactur­

ing type loading. The agreement between the parameters is good, and

therefore the relationships developed by the studies can be imple­

mented in design practice.

6.2 FRAME BUCKLING CURVES

6.2.1 Variable Column Length

The variable in the frame buckling curve of Fig. 6.1 is the

column length. The abscissa for the curve is the column slenderness
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ratio (h/rx ). The ordinate of the curve is the frame buckling load,

which is non-dimensiona1ized by the beam mechanism load. The frames

are loaded at the quarter points of the beams. For low values of

co1umn.s1enderness, the frame buckling load approaches the beam mech-

anism load as an asymptote. For the usual range of column slender-

ness values found in the top stories of multi-story buildings (30' to

50), there is a gradual reduction in the beam mechanism load of 5to

10 percent with increasing slenderness ratio. The corresponding load

factors are 1.61 to 1.53. These compare to a load factor of 1.70 for

the beam mechanism load. Beyond a slenderness value of 50, there is

a rapid reduction in the beam mechanism load caused by frame buckling.

The reason for this .reduction can be seen in the load-response curves

(Fig. 6.2) which were developed in the computation of the frame buck-

ling loads.

The load-response curves of Fig. 6.2 are for an a of 1/2

percent. The numbers along the curves refer to the hinge locations

on the frame and indicate the load at and the sequence of hinge forma-

tion. The column slenderness values (h/r ) are indicated for the in­x

dividual curves. For low values of column slenderness, the initial

slope of the load-resporise curves is relatively steep. There is a

general yielding in the beams and an increase in' load occurs betwee'n

the formation of the first hinge and the frame instability load. For

column slenderness values of 50 and greater, there is 'a large reduc-

tion in the slope of the curves during the early stages of loading.

The values for the frame instability loads are lower and they coincide
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with the formation of the first hinge .. At values of column slender­

ness of 70 and above, the frame fails in the elastic range. The

transition is one from inelastic to elastic frame instability as the

column slenderness ratio increases.

There is a close similarity between the frame buckling

curve (Fig. 6.1) and the buckling curve of a pinned-end column. The

load-response curves for ex equal to 1/2·percent indicate. that, as in

a column, there are three buckling ranges; an inelastic frame buck­

ling range, an elastic buckling range, and a transition range. The

boundaries fot these ranges are not fixed but are dependent on the

frame parameters. For the curve in Fig. 6.1, which was developed for

the specific frame shown, the inelastic frame buckling range applies

to columns with slenderness ratios less than 50. The elastic frame

buckling range is for columns with slenderness ratios greater than

70. The transition range is for columns with slenderness values

from 50 to 70.

The concept of effective column length can also be con-·

sidered in connection with frame buckling. The free-body in Fig. 6.3

shows the columns in the bottom story of a frame. The columns are

restrained by rotational springs, which simulate the effect of the

restraints provided by the members framing into the respective con­

nections. The column tops are forced to sway as a unit and therefore

the individual column cannot beisolated in describing the sway be­

havior.
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For columns with slenderness ratios less than 50, the ini­

tial lateral sway of the frame is small. In the early stages of

loading, the effective length of the columns is relatively constant,

As the loading increases, the lateral sway and the effective column

lengths increase. As yielding takes place in the beams, the rotational

restraint prov~ded by the beams to the columns is reduced. The spring

moduli, el and e2 , are not constants but are decreased by yie lding.

This results ·in a rapid increase in the effective column lengths.

The problem becomes fur~her involved .because the reductions in el

and e2 are .not the same, and thus the effective lengths of the columns

are not equal. One of the columns will reach an effective length and

support loads at which an elastic column having the same effective

length would buckle. The column with the larger effective length

becomes unstable and exerts a lateral pull through the beam on the

other column. The lateral sway increases and both effective lengths

are further increased. Failure of the frame occurs thereafter.

The concept of effective length tends to oversimplify the

behavior but it does indicate that there are two principal factors

involved in determining the shape of the frame buckling curve. They

are the column length and the beam restraint. The effective length

of the columns is increased by reductions in the rotational restraints

of the supporting members and by changes i~ the geometry .caused by

the lateral sway of the frame. These are interrelated through the

column slenderness. For very slender columns the lateral sway in­

creases rapidly, even in the early stages of loading. The effective
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length similarly. increases until failure occurs without any yielding.

For columns with slenderness values found in the transition range,

the initial sway is relatively large and there is a corresponding

change in the effective column length. Yielding occurs and the re-

straints provided by the beams are reduced. Frame instability occurs

immediately upon this reduction in the rotational restraint. The

overall behavior is controlled by the column slenderness ratio. Yield-

ing accelerates the changes in the effective column length.

6.2.2 Effect of Beam Yield Stress

If the yield stress of the beams is increased while the

other parameters are held constant, the frame buckling load will in-

crease. The increase in the beam yield stress allows the rotational

restraints provided by the beams to the columns to remain elastic at

higher values of load. The curve for the frame buckling loads (Fig.

6.4) shows this increase.

However, there is a corresponding increase in the beam

mechanism load .. The non-dimensiona1ized frame buck~ing curve (P /P
B

)
cr

shows a slight decrease for increasing beam yield stress. The increase

in the beam mechanism load, which is linear, is more rapid than the

increase in the frame buckling load. The load-response curves in Fig.

6.5 show that, after the second hinge has formed in' the.frames, the

columns with the higher axial load (F = 42· ksi-) have a smaller remain-·
y

ing load capacity. The stability effect in the columns is responsible
I

for the slight decrease in the non-dimensionalized curve.
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The frame with the load-response curve corresponding to a

yield stress of 42 ksi, has a plastic hinge form in the column at the

frame instability load. The column was designed to carry the axial

load and to balance the moment equilibrium requirement at the bottom

story beam-to-co1umn connection. The plast~c moment capacity of the

beam was. increqsed 20 percent without a corresponding increase in the

column size.

6.3 DISCUSS ION

The results of the studies indicate that there are three

important parameters in a frame buckling analysis. They are the

column slenderness ratio, the rotational restraints provided to a

column by its supporting members, and the strength of the individual

beams and columns. These parameters are interrelated through the

design methods used in obtaining the member sizes. The method of

column design determines whether a column behaves elastically or in­

elastically at the frame buckling load. An ideal situation is for

plastic hinges to be on the verge of forming in the columns when

frame buckling occurs. If a hinge forms prior to this, the effec­

tive length of the particular column is greatly increased and the

remaining columns in the story will be more heavily stressed in re­

sisting the additional overturning moments.

Considering strength alone, the ultimate load for the

frames. in the studies is the beam mechanism load. The numerical
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values of the fr~me buckling loads by themselves are not too signi­

ficant. They should always be compared to the design ultimate load

(beam mechanism load) of the frame. If this is not done, incorrect

conclusions can result.

In the frame buckling studies of this chapter, only pinned­

base frames have been considered. If a base condition other than

pinned is used, the effective length of the column in the bottom

story will be decreased and the frame buckling load will be in­

creased. Also, the frames considered in this chapter were loaded at

the quarter-points of the beam. The frame buckling load will be in­

fluenced by the position of the loads on the beams. The effects of

the changes in base support and the load position will be examined

in subsequent chapters.
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7.1 INTRODUCTION

PRIMARY BENDING EFFECT

. -65

The studies of frame buckling for building columns fall

within the inelastic frame buckling range. Any factor that affects

the restraints provided by the beams to the columns will cause varia­

tions in the frame buckling loads. An important factor is the posi­

tioning of the transverse loads on the beams or the primary bending

effect.

The primary bending effect will be studied for a three-story

and a six-story building fr.ame. These frames are basically the same

as those of,the previous studies. The column section in the bottom

three stories of the six-story frame is a 5WF16 structural shape of

A44l steel. It is designed on the same basis as the columns of the

three-story frame. The axial load and the moment equilibrium require­

ment, at the bottom story beam-to-column connection control the column'

size.

Two concentrated .loads will be symmetrically applied about

the centerline of each beam in the frame at a distance (a) from the

center of the connections. The variable in the study will be the

distance (a), non-dimensionalized by the beam length (L). Values of

aiL smaller than 0.20 will not be considered, since the deformations
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of the frames are computed assuming that the effects of the shearing

forces are negligible.

7.2 PRIMARY BENDING MOMENT

7.2.1 Three-Story, Pinned-Base Frame

The effect of the primary b~nding moment on the inelastic

frame buckling load is shown in Fig. 7.1. As the two concentrated

loads are moved toward the center of the beam, there is a reduction

of over 50 percent in the value of the frame buckling load (Per)'

The primary bending moment then has a significant effect on the in­

elastic frame buckling load. This reduction varies directly with

the increases shown in the curve for fixed-end moments (Mf). The

ordinates of this curve were computed for two concentrated beam loads

of 10 kips each, positioned at a distance (a) from the fixed-ends of

the beam. The relationship between the reductions in the frame buck­

ling loads and the increases in the fixed-end moments is made more

clear by the load-response curves in Fig. 7.2.

The load-response curves show the general yielding that

occurred prior to the frame instabi lity loads. In the early stages

of loading, the lateral sway deformation was the same for all of the

frames.. The fixed-end moments for P equal to 10 kips were shown above

to vary widely with the position (a/L) of the two concentrated loads

on the beams. Hence, the distribution of the moments within the
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frames varied considerably, even though the elastic sway deformations

of the frames 'were equaL At a load (P) of 10.3 kips,. yie lding be-

gan first in the frame with an aiL value of 0.5. The first hinge

formed in the frame with an aiL value of 0.2 at a load of 24.1 kips.

The difference in the initiation of yielding is directly related to

the fixed-end moments or to the primary bending effect. Previously,

it was shown tha.t the effective column length was significantly

affected by a reduction in the rotational restraint provided by the

beams. Here, it is shown that the primary bending effect is directly

related to the yielding and to the redu6tion in the rotation restraints.

The primary bending then has a direct effect on the inelastic frame

buckling load.

The numerical reduction in the frame buckling loads caused

by the primaryhending effect is quite large. However, if the buck­

ling load for each frame is non-dimensionalized by its beam mechan-

ism load, a different result occurs. Both the frame buckling curve

and the non-dimensionalized curve are shown in Fig. 7.3. The frame

(aiL of 0.5) with the largest reduction in the numerical value for

the frame buckling load has no reduction in the design,ultimate load

(beam mechanism load) caused by frame buckling. The frame (aiL of

0.2) with the highest value for the frame buckling load has a 15 per­

cent reduction in the beam mechanism load. The variation in the beam

mechanism load with aiL is also shown in 'Fig. 7.3. As aiL gets smaller,

the beam mechansim load increases more rapidly than the frame buckling

load. This accounts for the reversal in conclusions as to the deleter­

ious effect of primary bending and again points to the importance of
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comparing the value of the frame buckling load with the design ulti-

mate load (beam mechanism load).

7.2.2 Six-Story, Pinned-Base Frame

The load-response curve for the six-story frame (Fig. 7.4)

has a general yielding pattern similar to that for th~ three-story

frame. For most values of aiL, an extra hinge forms in the six-story

frame at location 3. The load on this beam in the three-story frame

was reduced to force the initial yielding to occur further down in

the structure and not at location 3.

The effects caused by the increase in the number of stories

are evident. There is a reduction in the frame instability loads and

a much smaller increase of load between the first yielding and the

frame instability load. These effects are caused by an increase in

the overturning moments, ~. (~. + e.), due to the greater number of
~ ~ ~

stories. The overturning moments directly affect the coiumn moments,

and through the connections of the frame directly affect the beam

moments and the rotational restraints provided by the beams to the

columns.

The variation of the frame buckling load with aiL (Fig. 7.5)

is generally the same for the six-story frame as for the three-story

frame. The largest difference between the frame buckling load values

occurs for the frames with aiL of 0.2. As the aiL ratio increases,
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the difference between the ordinates of the curves decreases. Fig-

ure 7.6 shows ·the non-dimensionalized curves for the three and six-

story frames. As the aiL ratio approaches 0.5, both of the frame

buckling curves approach the beam mechanism load.

7.2.3 Variable ~eam Length

The curve for P in Fig. 7.7 shows the changes in the framecr

buckling load of the three-story frame c~used by varying the beam

length. As the beam length 'increases, the frame buckling load de-

creases .. In the preceding sections, this reduction was related to

the fixed-.end moment (M
F

) or the primary bending effect. In this

study, the fixed-end moment. increases with the beam length and there-

fore the frame buckling load decreases.

The load-response curves (Fig. 7.7) show the general yield-

ing that preceded the frame instability loads. At the higher values

of load, the .differences in the slopes of the -load-response curves

caused by the variable beam lengths become discernable. At a load

(P) of 18 kips, the lateral deformations of the frames are approxi­

mately the same. The fixed-end moments (rl) shown in Fig. 7.7 are

for a .load ~) of 18 kips. They vary linearly with the beam length.

At a load of 19 kips, the first hinge forms in the frame with the

longest beam span. Yielding first occurs in the frame with the short-

est beam span at a load (P) of 24.4 kips. Thus, the reduction in

rotation restraint is again related to the fixed-end moment, and the
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reduction in the· frame buckling load is directly affected by the

primary bending.

When the frame buckling load is compared to the beam mech-

anism load (Fig. 7.9), the resulting non-dimensionalized curve

(P /P
B

) is almost horizontal. The reduction in the beam mechanism
cr

load is 8 percent. The dashed curve (P
B

) in Fig. 7.9 gives values

of the beam mechanism load. Its variation is similar to that of the

frame buckling load (P ). The similarity causes the non-dimension-. cr

alized curve to be almost horizontal. It should not be expected that

the curve will remain horizontal for values of beam length outside of

the range studied.

7.2.4 Constant Relative Stiffness

The frame buckling curve (P ) in Fig. 7.10 is for a con­
cr

stant ratio of beam stiffness (IB/L) to column stiffness (IC/h). The

beam and column lengths are varied but their ratio is maintained at

a value of 0.575. As the beam and column lengths increase, the frame

buckling loads decrease. These reductions can be related to the fixed­

end moments (M
F

) in Fig. 7.7 and, as in the preceding sections, the

reductions can be shown to be a direct result of the primary bending.

The load-response curves in Fig. 7.11 show the primary bend-

ing effect in relation to the yielding in the beams. Yielding occurs

first in the beams of greatest span. The yielding causes a reduction



276.18 -71

in the rotational restraint provided by the beams to the columns

and thus directly affects the frame buckling load. An additional

factor in these curves is the varying column length. It varies

directly with the beam length. The column length affects the over­

turning moment and results in load-response, curves of different

initial slope ..

The frame buckling loads in Fig. 7.10 are non-dimension­

alized by the beam mechanism loads of Fig. 7.9. The point corres­

ponding to a beam length 6f 10 feet is common to the non-dimension­

a1ized curves of Figs. 7.9 and 7.10. For beam lengths less than 10

feet, the column lengths of Fig. 7.10 are shorter than those of Fig.

7.9. This reduces the overturning effect and results in a small

relative increase in the non-dimensionalized value of the frame buck­

1irig loads in Fig. 7.10. For beam lengths greater than 10 feet, the

column lengths increase and there is a relative reduction in the non­

dimensionalized value of the frame buckling loads. The variations in

the non-dimensiona lized va lues caused by the changes in column lengths

numerically are small but if they are compared to the average reduction

in the ultimate load of 8 percent, the variations become more signifi­

cant ..

7.3 DISCUSSION

Primary bending has a significant effect on inelastic frame

buckling loads. A reduction in the frame buckling load of over 50
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percent was obtained in the study of Artic le 7.2.1. The primary

bending or fixed-end moment was shown to be related to the initia­

tion of yielding in the frame. The yielding caused a reduction in

the rotational restraint provided by the beams to the columns and a

corresponding increase in the effective length of the columns. As

the value of the fixed-end moments increased, there was a decrease

in the values of the frame buckling loads.

The study reemphasized the importance of comparing the

value of the frame buckling load to the design ultimate load (beam

mechanism load) of the frame. This caused a reversal of the initial

conclusion as to the deleterious effect of the primary bending. The

effect on the frame buckling load caused by changes in the column

length, which was considered in the study on constant relative stiff­

ness, was found to be small.
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,8. 'PARTIAL BASE FIXITY

8.1 INTRODUCTION

In this studY,··thebeneficial ~ffect, that partial base

fixity has on the buckling ioad of a frame will be examined. In the

pr~vious'analys¢s, the frames were supported on pinned-base fixtures.

It was assumed that a pinned~base provided no rotational restraint to

the frame.. A .support condition of this type can be approached with a

carefully machined, ball-bearing mounted, column-base fixture. How­

ever, in buil'ding pr'actice a 'pinned-base support is usually con­

structed by setting the anchor bolts of the· column b~se plates on a

line coinciding.. with the. bending. axis of the column. Rotational re­

straint is inherent in this type of construction but its beneficial

effects are usually assumed to be negligible.

The. effect of partial base fixity w~ll be evaluated by ob­

taining .load-response curves and non-dimensionalized frame buckling

curves for the basic three-story and six-story frames. They will be

supported' on'bases wi·th· rotational restraint. The variable in the

study.·will be the modulus (~) of the rotational restraint provided

by the building foundation. The partial base fixity can be repre­

sented graphically (Fig'. 8.la) by a rotational spring at the base of

each column. The spring stiffness (~) is assumed to be equal for all

columns.
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The degree of restraint provided by a building foundation

is defined as the ratio of the partial base restraint moment to the

corresponding fixed-base moment under the action of a unit moment,

h " h " 1· d h' " d f h 1 8.1w ~c ~s app ~e to t e oppos~te en 0 t e co umn. In Fig. 8.lb,

the fixed-end moment (~) is ~ of~. In Fig. 8.lc, the partial-base

restraint moment (MA) is equal to -~eA. -The moments at A andB in

Fig. 8.lc can be expressed as

(8.1)

(8.2)

e
B

can be solved for in Eq. 8.2 and substituted in Eq. 8.1 to yield

e EI e S S2 EI
MA = +- ~- --eL A e e L A

Substitution of ~ 1, e 4, S 2, and eA

MA
givel:!= = = = -S-

1

MA
2

=
1 + 3 EI 1-L ~

The degree of restraint (e
B

) is

(8.3)

(8.4)

1
-(8.5)

For a fixed-base condition, the modulus (~) is infinite and the degree

of restraint (eB) is equal to 1. For a pinned-base support, ~ is 0

and eB is O. A graphical relationship between the degree of restraint

(e ) and the modulus of the -rotational restraint -(1:3) can be seen in
B

Fig. 8.4.
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Quarter-point loading will be used in the study since

there is experimental verification for the three-story frame with

pinned-base support (e
B

= 0). Also, the study on the effect of

primary bending showed that frames with low values of aiL had the

largest reductions in the design ultimate OT beam mechanism load.

Using low values of aiL then will provide a better measure for the

beneficial effects of partial base fixity on the frame buckling load.

8.2 THE EFFECT OF PARTIAL BASE RESTRAINT

8.2.1 Three-Story Frame

The effect of the degree of restraint on the load-response

curves is shown in Fig. 8:2. The foundation modulus (~) varies from

a pinned condition (~. = 0) to a fixed condition (~ = c:o). The numbers

at·the end of .each curve refer to the order of hinge formation, and

also correspond to the points on the curve and to the hinge locations

in the frame. For low values of the foundation modulus, the yielding

pattern in the beams is the same for all frames. As the value of the

foundation modulus increasE;s," the lateral stiffness of the structure

or the load per unit of sway deformation increases. At high values

of the foundation modulus, the load-response curve tends to approach

that for the fixed-base frame and the frame instability load approaches

the beam mechanism load. Yielding becomes more general in the beams
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of the frames with these high values of foundation modulus. Beam

mechanisms· occur in the bottom two beams of the frame with the fixed­

base support.

The effect of partial base fixity on the non-dimensionalized

frame buckling .load is shown in Fig. 8.3. There is no reduction in

the design ultimate load of the frames when the degree of base re­

straint is greater than 0.4. For values of degree of restraint less

than 0.. 4, the reduction in the design ultimate or beam mechanism load

is almost linear. For a modulus value of zero (pinned-base condition),

there is an 8 percent reduction in the design ultimate load caused by

frame buckling.. This variation is shown to an expanded scale in Fig.

8.4. A comparison can be made at any ordinate between values of the

foundation modulus (a) and the degree of restraint (SB)' There is a

tendency with the latter abscissa to linearize the variations of the

non-dimensionalized frame buckling load. Both curves show a large

increase in the frame buckling load for small changes in the abscissa

at low values of rotational restraint.

8.2.2 Six-Story Frame

The load-response curves (Fig. ~.5) for the six-story frames

are similar to those of the three-story frames. The numbering system

used for the order of plastic hinge formation is the same as that in

Fig. 8.2 with the e~ception of locations 7 and'8. In the six-story
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frames the yfe1ding progresses further upward in the frames since

there is no physical restriction placed by a limited number of stories.

At higher values of the foundation modulus, the instability

effects are also forced upward in the six~story frames. In the frame

with a modulus value of 50,000 kip-in. per radian, frame instability

occurs after second hinges have formed in the beams of the bottom two

stories. In the fixed-base frame with a modulus value of infinity,

the instability occurs even higher in the frame. A second hinge does

not form in the bottom beam. Second hinges form in the two beams im­

mediately.above the bottom \beam. These hinges are shown in Fig. 8.5

at locations 5 and 6. The rotational restraint provided by these

beams to the adjacent columns is reduced to zero and the frame be­

comes unstable. The effect of the reduction in the rotational -re­

straint provided by these beams is shown by the curve for sway de­

flections. The curve is plotted to the right of the frame. These de­

flections are for the_ load at which a plastic hinge forms at location

6. A sharp increase in the column chord rotation can be observed in

the fourth and fifth floor columns. This is a direct result of the

reduction in the rotational restraint provided by the beam in which

hinge number 5 occurred. When the hinge forms at location 6, frame

instability results.

The non-dimensionalized frame buckling load curves for the

three-story and the six-story frames are shown in Fig. 8.6. There is
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a reduction in ~he beam mechanism load of 8.5 percent for the six-

story fixed-base frame (€B = 1.0). There is no reduction for the

three-story fixed-base frame. As the degree of restraint is reduced,

the reduction in the design ultimate load of the frames is increased.

This reduction increases rapidly for values of €B less than 0.4.

The reduction in the ultimate load for the six-story pirined-base

frame (€B = 0) is 25 percent. The s lope of ·the curve' in this region

again indicates the beneficial effect of even a small amount of base

rotational restraint.

8.3 DISCUSSION

The two types of column base supports usually employed in

design practice are the fixed-base and the pinned-base support.

Neither is attainable in actual practice .. The non-dimensionaliied

curves of Fig. 8.6 indicate that the changes in the frame buckling

load, which are caused by variations in the foundation modulus (~),

for values of ~ approaching the fixed-base condition are not signi-

ficant and that a fixed-base assumption is reasonable. For variations

in the value of the foundation modulus nea'r zero, the changes in the

non-dimensionalized value of the frame buckling load are significant.

A pinned-base assumption then is too conservative. The problem that

arises with the pinned-base support is the computation of a value for·

the effective foundation modulus. This is a function of the column-

b t t f f d t · d th . 1 . d .. 8 . 2 Add·· 1ase suppor, ype 0 oun a 10n, an e S01 con 1t10n. 1t10na
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research is required to evaluate the interaction of these elements

in obtaining an effective modulus for the rotational restraint.

The results of the studies in this chapter show the bene­

ficial effects of partial base fixity. In the study on primary bend­

ing, the largest reductions in the design ultimate load occurred for

small values of aIL (0.2' and 0.25). The latter value was' used

,through:ouLthis chapter. In all of the studies the beneficial effects

of cladding were assumed ,to be negligible. The effect of the cladding

is to increase the frame buckling load. Based on the curves that were

developed in this chapter, it would appear that if a fixed-base sup­

port was designed for a single-bay frame and a small cladding effect

was assumed to be present, then frame buckling would not cause a re­

ductionin'the design ul,timate' load (beam mechanism load) of the frame.
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9. . INTERACTION BETWEEN FLOORS

9.1 INTRODUCTION

-80

In Chapter 8, the beneficial effects of partial base fixity

on the frame buckling load were examined. This study was limited to

buildings of a few stories 'that were supported directly on t~e found-

ation. An additional area in which frame buckling occurs is the top

stories of multi-story frames. The top stories are ~ot supported on

pinned-ba~es nor can their supports be represented graphically by ro-

tational springs. Instead, there is a complex relationship between

the top floors and the structure below. The rotational restraints

provided to the top stories of a building frame vary with the applied

load. They are at their maximum value when loads are first applied.

As the load on the frame increases, the rotational restraint decreases.

This reduction occurs first through the axial load effects in the

columns and then by the inelastic behavior in the supporting members.

The variable support condition will be approximated for the

top three stories (Fig. 9.1) of a multi-story frame. The lateral de-

formation at the base of the columns in the third story will be pre-

vented. The sway of the top three floors will be with respect to this

level. The beam at the fourth-floor level will be under the same load-

ing pattern as the beams in the floors above. The rotational restraint

,'.-.. '
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provided by this beam will not be constant since the beam will under­

go elastic-plastic behavior. A major difficulty arises in adequately

approximating the behavior of the restraining columns. It will be

assumed that the rotational restraint provided by these columns re­

mains elastic, that the bases of the columns are pinned, and that the

stability funct~ons of the columns in the third floor are applicable

to the restraining columns in the fourth floor.

Three studies will be made on frames with the assumed vari­

able support. The three~stQry and six-story frames studied in the

chapter on primary bending will be reexamined. The variable will again

be the aIL ratio but the base support will be provided by the variable

restraint. The frame in the third study will be under uniform load­

ing. The variable in this study will be the number of stories in the

frame.

9.2 VARIABLE BASE RESTRAINT

~.2.l Three-Story Frame

The load-response curves for the three-story frames with a

variable base restraint are shown in Fig. 9.1. The numbers to the

right o·f the curves refer to the formation of plastic hinges and to

the spacing (aIL). of the two concentrated beam loads. Beam mechanisms

form in the bottom three floor beams of the frames with aIL values of

0.4 and 0.5.
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As in .the prev~ous chapter on primary bending, the elastic

deformations are the same for all frames and yielding first occurs

in the frame with the largest fixed-end moment (aiL =0.50). The

frame with an aiL value of 0.20 has the smallest fixed-end moment.

It behaves elastically to an applied load (P) of 24 kips. The rota-

tional restraint provided by the beams to the columns in this latter

frame remains elastic through a broader load range and hence its

frame instability load is higher. It should be noted that the in-

elastic behavior of the variable base restraint is also affected by

the primary bending.

The reductions in the frame buckling load due to the pri-

mary bending effect can be seen in the frame buckling curves of

Fig. 9.2. As the values of aiL increase, the values of the frame

buckling load (P ) decrease. The frame buckling loads for thecr

pinned-base frame are shown for comparison. The increase in the

frame buckling load caused by the variable base restraint is measured

by the differences between the ordinates of the two frame buckling

curves. The non-dimensionalized curve (P IPB) for the variable base
cr

restraint shows no reduction in the beam mechanism load for aiL

values greater than 0.3. These curves further indicate that a pinned-

base assumption for the supports of the top stories in a multi-story

frame is too conservative and that the restraints which are present

give a significant increase in the frame buckling load.
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9.2.2 Six-Story Frame

The load-response curves in Fig. 9.3 are similar to those

of the three-story frame (Fig. 9.1). The effect of the primary bend­

ing can be explained in the. same manner as was done in the previous

chapters. The frame buckling curves in Fig. 9.4 give a comparison

between the frames with a variable base restraint and those with

pinned-base supports. The differences between the curves show the

effect of the base restraint. The curves in Fig. 9.5 compare the

non-dimensionalized frame· buckling curves for the three and six-story

frames with the variable base support~ The difference between these

curves is due primarily to the difference in the number of stories.

These curves indicate that frame buckling is not a serious problem

in the first three or four stories of a multi-story frame. The small

reductions that might be present would be eliminated if even a small

cladding effect is assumed to be acting.

·9.2.3. Distributed Load

The frame buckling studies to this point have been for

frames with two concentrated. loads on each beam. In this study, the

frames will be loaded with a distributed beam load which is equal in

magnitude to the two concentrated loads. The effect on the frame

buckling load caused by an increase in the number of stories will be

examined. The frames in the study will have the same member sizes

as those in the previous studies. All of the frames will be supported
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by the variable base.
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,

The load-response curves for the frames are shown in Fig.

9.6. The number of stories (n) in the frame is indicated to the

right of the curves. The column sections are continuous for three

stories. The 5WF16 column section is designed for loads and moments

at the sixth-floor level. It has excess capacity when used in the

.four and five-story frames. This is discernable in the order of

hinge formation. The hinge in the column at location 3 for the

four-story frame occurs at the frame instability load. In the five-

story frame, it occurs after the hinge forms at location 4. In the

Six-story frame, it forms before the hinge at location 4. The effect

of the number of stories can be seen in the slope of the load-response

curves. The overturning moment is a function of the number of floors.

As the number of floors (n) increases, the slope of the curves de-

creases.

The non-dimensionalized frame buckling curve in Fig. 9.5

has the same shape as the buckling curve ·(P ). The beam mechanism
cr

load is a constant. There is very little reduction in the ultimate

strength of the frame due to frame buckling. The reduction of 6.5

percent for the six-story frame can probably be eliminated by a

small cladding effect.
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9.3 DISCUSSION
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The non-dimensionalized frame buckling curves indicate

that the reduction in the beam mechanism load for the majority of

the frames in the study is minor and could be compensated for by a

small cladding effect. Frame buckling then· is not a serious prob lem

in the top stories of multi-story frames. An exception to this is

the six-story frames (Fig. 9.4) with small values of aiL. These

frames had the higher values for frame buckling loads. but when the

values were non~dimensionalized by the beam mechanism load. the re­

sulting ratios indicated a significant reduction in the design ulti­

mate load of the frames.

A study· is required to determine the story level at which

the combined loading. gravity loading plus wind. governs the design

of the members of the frame. When this has been determined. a more

definitive statement can be made as to the detrimental effect on

the design ultimate load of the frame due to frame buckling in the·

top stories. of multi-story frames.
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10. SUMMARY AND CONCLUSIONS
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A method is presented to compute inelastic frame buckling

loads for multi-story building frames. Small lateral loads are ap-

plied at each floor level to represent the effects of the initial

eccentricities within the frame. The small lateral loads are pro-

portiona1 to the loads on the f1oorbeams. A value is assumed for

the proportionality constant and a frame instability load is computed.

The frame buckling load is defined as the limit of the frame insta-

bi1ity loads as the value of the small lateral loads or initial eccen-

tricities approach zero.

A computer solution is written to compute inelastic frame

instability loads. A second-order, elastic-plastic load-response

curve is also generated in the computations for the frame instability

load. The points on the load-response curve are obtained by an in-

crementa1 procedure. The incremental procedure has an advantage over

the iteration method in that the unloading portion of the load-response

curve can be obtained. The incremental formulation also considers

the reduction in the moment capacity (M ) in a column due to in­pc

creases in the axial load of the column after a plastic hinge has

formed;

Frame buckling tests were conducted on two, three-story,

single-bay frames. The comparisons between the load-respone curves

of the test frames are good. The frames have load-lateral sway
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response curves similar in shape to those of the anticipated frame

buckling curves. The ratios of the lateral sway def1ection.to.ver­

tical beam deflection at working load for both tests are small.

Frame buckling causes a reduction in the design ultimate load (beam

mechanism load) of 9 and 12 percent in Test 1 and 2, respectively.

Comparisons are made between the experimental results

and the theoretical predictions. In the limit as the small lateral

load approaches zero, the theoretical load-response curves tend to

approach the experimental curves. The predicted frame buckling

loads are within 3 percent of the ultimate loads from the frame

tests.

Analytical studies examine the changes in the frame buck­

ling load caused by varying some of the structural parameters. These

studies are for single-bay multi-story frames. The studies show

the important effect of the column slenderness ratio, the rotational

restraint provided to the columns by the supporting members, the

primary bending moment, and the strength of the individual members.

The studies show that the frame buckling problem can be

divided on the basis of column slenderness ratio into three ranges;

the inelastic frame buckling range, the elastic buckling range, and

the transition range. The significant factor in the elastic buckling

range is the column slenderness ratio. In the inelastic buckling

range, it is the inelastic behavior in the members of the frames.

Since building columns have low values of slenderness ratio",. multi-
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story building frames are included in the inelastic buckling range.

In this range the changes in the frame buckling load caused by varia~

tions in the column slenderness ratio are small. The important

parameter is the rotational restraint provided to the columns by the

supporting members. These rotational restraints are significantly

reduced by inelastic behavior.

The effect of the primary bending moment on the inelastic

frame buckling load is examined by varying the position of the loads

on the beams. The primary bending effect is related to the initia­

tion of yielding in the rotational restraints of the columns. This

causes an increase in the effective length of the columns and thus

directly affects the frame buckling load. When the load-spacing

variable (a/L) is changed from 0.2 to 0.5 (Fig. 7.1), the frame buck­

ling load is reduced by 50 percent. This shows the significant

effect of the primary bending. When the frame buckling loads are

compared to the design ultimate load (beam mechanism load) of the

frame, an unexpected result occurs. The frame with the lowest value

for the frame buckling load has no reduction in the design ultimate

load. The frame with the highest value for the frame buckling load

has the biggest reduction in the design ultimate load. The value

of the frame buckling load in itself is not too important. It is

only after the frame buckling load is compared to the design ulti­

mate load that reasonable conclusiorrscan be made.

The rotational restraint provided by the foundation to the

frame is examined. The results indicate that if a fixed-base support
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is designed for the frame studied, frame buckling is not a problem.
~

If a pinned-ba~e support is designed, then frame buckling must be con-

sidered. The frame buckling load is not sensitive to changes in the

foundation modulus for modulus values approaching the fixed-base con-

dition. For values approaching the pinned-base condition, small changes

in the foundation modulus cause relatively large changes in the frame

buckling load. Neither of these extreme support conditions can be

fully attained in construction practice. Based on the results of the

study, a fixed-base design assumption will give a reasonable value for

the frame buckling load, whereas a pinned-base assumption will give a

value that is too conservative.

Frame buck'ting in the top stories of single-bay multi-story

frames is also examined. The rotational restraint provided by the

lower stories to the top stories is approximated. The studies show

that a pinned-base assumption for the support of the top stories is

too conservative., The reduction in the design u~timate load in all

but two of the frames in the study indicates that, for single-bay

frames of less than seven stories, the frame buckling problem is minot

and can be compensated for by the effect of the cladding.

In general, the analytical studies for the building frames
. .

indicate that, if a proper base restraint is used, the reduction in

the beam mechanism load caused by frame buckling is not significant.

Additional studies are required for multi-bay frames and to determine

the number of stories at which the combined loading will govern the

design of the members.
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11. TABLES



Table 4.1 Section Properties,

,I
x4 Sx Zx

b d t w bIt d/w r r 3 3 f
Section in. in. in. in. in~ in~ in. in. in.

Nominal 4.060 4.16 0.345 0.280 11. 77 14;86 0.99 1.72 11.3 5.45' 6.3 1.16

4\f13
Measured 4.090 4.145 0.345 0.284 14.60 1.01 1. 717 11. 316 5.461 6.265 1.1511.85

Nominal 4.030 6.25 0.404 0.260 9.,97 24.04 0.96 2.59 31.7 10.1 11.6 1.15

6B16
Measured 4:.051 6.232 10.69 21.87 0.941 2.56 31.10 11. 525 1.150.379 0.285 9.98

2 2.3 Nominal 1.0 2.0 0.187 0.187 5.4 10.7 0.30 0.75 0.38 0.38

N
......
0"

t-'
00

I
\0
t-'
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Table 4.2 Data from Tension Tests

Specimen ° E °u1t Eiong.
y st

e: e:Section No. ksi" y st ksi ksi %

1 F* 51.0 .00194 .0190 425 73.7 24.4

2 w* 49.2 190 216 396 71.5 21.8

3 F 50.9 195 238 422 73.2 24.5
4 'fI 13

4 F 50.7 192 220 430 72.6 23.4

5 w 49.5 185 190 370 71.4 23.0

6 F 50.6 183 228 453 73.2 25.4

1 F 35.0** .00125 .0209 635

6 B 16 2 F 33.6 122 192 550

3 w 35.5 120 234

*F = flange
*w = web

**0 = 33.2 ksi (beam test)
y

Table 5.1 Buckling Load Summary

Test Frame Number 2

Beam Mechanism Load, PB 27.2 27.2

Ultimate Load, Pu 24.8 (24.6)

Ratio of PU/PB 0.91 0.88

Frame Buckling Load, P 24.2 23.9cr

Percent Error 2.4 2.8

Table 6.1 Comparison of Frame Parameters

L Lid L/rx
Member Section or or or Pip

~/~C IB/IC IC"L/IBh
h hid h/rx

y

T
6 B 16 10.0 20 46

E
Beam

S 0.37 1. 25 2.78 1. 58
,T

Column 4 'fI 13* 5.75 17 40

D
Beam 16 B 31 24.0 18 45

E
S 0.31 1.35 2.54 1. 27
I

Column 8 'fI 40 12.0 18 41
G
N

*A441 Steel
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12.

EXAMPLE 1. SINGLE MEMBER

APPENDIX

-93

There are two geometric reference systems for the de-

fleeted member in Fig. 3.1. One is with respect to vertical and

horizontal coordinate systems and the other is with respect to the

line joining the end points of the member. A kinematics matrix (A)

relates the displacements (6) in the general system to those in the

member system (8).

(A.l)

The minus sign used with p is consistent with the positive moment

convention in Fig. 3.1. The member stiffness matrix (k) is written

with respect to member coordinate system. The individual terms can

be obtained directly from the slope-deflection equations or any

basic method of structural analysis can be used to develop them.

I

5 = k 8

5] .[8iJ~
C 8 ..

J1
(A.2)



276.18 -94

Considering only first order effects, the stress vector

(S) above can, be related to the nodal force vector (W) by the statics

matrix (C).

W C S

[
Mi] [1 0] ~Mij~
M. = 0 1 M..

J J~

HL 1 1

(A.3)

It can be seen that A = CT. The stiffness matrix in the general co-

ordinate system can be developed by the standard transformation
I

K = AT k A

[c:
S C~]

[~ ~] [~ ~] [~
0 JC C+S = 1 (A.4)

C+S 2 (C+S)

where each side is multiplied by a scalar term (EI/L).

EXAMPLE 2. TWO-STORY. SINGLE-BAY FRAME

The stiffness matrix will be developed for a two-story,

single-bay frame in which there is no axial shortening of the members.

The members and nodal points of the frame are systematically numbered

in Fig. A.1. The kinematic matrix can be d~ve1oped by applying a unit,

positive deformation to each of the nodal displacements while fixing

all of the other displacement terms. The kinematic matrix is the

effect on the member displacement terms due to the isolated unit nodal

deformations.
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8 = A ~

812
1 0 0 0 0 0 0 0 81

821
0 1 0 0 0 0 0 0 82

8
14

1 0 1 0 0 0 0 0 -p 3

8
41

0 0 1 1 0 0 0 0 84

8
25

0 1 1 0 0 0 0 0 8
5

(A.5)

8
52

= 0 0 1 0 1 0 0 0 - P6

8
45

0 0 0 1 0 0 0 0 8
7

8
54

0 0 0 0 1 0 0 0 8
8

8
47

0 0 0 1 0 1 0 0

8
74

0 0 0 0 0 1 1 0

8
58 0 0 0 0 1 1 0 0

8
85

0 0 0 0 0 1 0 1

The member stiffness matrix will consist of terms on the

diagonal. The individual term is expressed by Eq. (A.2) . The terms·

must conform to the member order used with e.

k = Th
ka

kc kd
k = k

b (A.6)
ke k

f

The resulting matrix is 12 x 12. Since EI/L will not be the same

for all members, this term cannot be factored from the matrix.
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Equilibrium is used to develop the relationship between the

member stress yector (S) and the nodal force vector (W).

W C S

M1 1 0 1 0 0 0 0 0 0 0 0 0 M12

~ 0, 1 0 0 1 0 0 0 0 0 0 0 M
21

H
1
h 0 '0 1 1 1 1 0 0 0 0 0 0 M

14

M
4 0 0 0 1 0 0 1 0 1· 0 0 0 M

41 (A. 7)

. MS
0 .0 0 0 0 1 0 1 0 0 1 0 M

2S

H2h 0 0 0 0 0 0 0 0 1 1 1 1 M
S2

M
7 0 0 0 0 0 0 0 0 0 1 0 0 M

4S

M
8 0 0 0 0 0 0 0 0 0 0 0 1 M

S4

M47

M74

MS8

M
8S

The stiffness matrix of the structure can now be developed

by the . T
To conserve space, the EI/L termtransformat~on K = AkA.

in each element of the matrix is not shown. Since it is assumed

that there is no member shortening, the chord rotations (p) for all

columns in any story are equal.
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K = AT k A

(C -f-C ) S (C+S) S a a a a
a c a c c

S (Ca+Cd ) (C+S)d a Sd a a a
a

2 (C+S)
(C+S) (C+S)d

c (C+S) (C+S)d a a a
c +2 (C+S)d c

S a (C+S) C -f-Cb-f-C Sb (C+S) S a
c c c e e e

K =
(C+S)d Sb (C+S) f a Sfa Sd Cd-f-Cb-f-C f

2 (C+S)
a a a (C+S) (C+S)f

e (C+S) (C+S) f
e +2 (C+S)f

e

a a a S a (C+S) C a
e, e e

a a a a Sf (C+S) f a Cf

(A.8)

Study of this matrix will show that the largest terms are on

the main diagonal and that there is a great amount of symmetry about the

diagonal. Instead of reading in the member stiffness and kinematic

matrices and then performing the above computation, storage space can

be conserved by directly building the above matrix.
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13. NOMENCLATURE

A Kinematic matrix

AT Transposed kinematic matrix

C Statics matrix

C
k

Carry-over factor

E Modulus of elasticity

E Strain-hardening modulus
st

E
t

Tangent modulj.ls

H Horizontal load

I Moment of inertia

K Stiffness matrix of a system

K* Incremental stiffness matrix

L Beam length

~ Member length

M Bending moment.

Fixed-end beam moment

Moment at the i end of member ij

Moment at the j end of member ij

Plastic moment

Plastic moment reduced for axial load

M..
~J

M•.
J~

M
p

M
pc

~ Moment at the bottom of a column

rl

Moment at the top of a column

P Axial load, concentrated beam load

Beam mechanism load
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p
cr

S*

w

W
cr

w.
1

w*

z
x

a

b

d

dP

e
o

e.
1

f

h

·Buckling load

Euler buckling load

Tangent modulus buckling load

Ultimate load

Yield load

Stiffness factor

Stress matrix

Elastic section modulus, strong bending axis

Member incremental stress vector

Load matrix

Beam mechanism load

Buckling load

.th
Distributed load, 1 beam

Nodal incremental force vector

Plastic section modulus, strong bending axis

Distance to the concentrated load

Flange width

Depth of section

Increment of load

Initial eccentricity

Eccentricity between i and i+l floor

Shape factor

Column height

-99
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k

n

r
x

r
y

t

w

Ot

If:
st

If:
Y

e.
~

e.
J

e*

a

a
rc

a
u1t

a
y

Member stiffness matrix

Number of stories

Radius of gyration, strong bending axis

Radius of gyration, weak bending axis

Flange thickness

Web thickness

Proportionality constant

Foundation modulus

Sway deflection

Nodal incremental displacement vector

Increment of sway· deformation

Strain

Degree of base restraint

Strain-hardening strain

Yield strain

Rotation of i
th

connection

Rotation of jth connection

Member incremental deformation vector

Chord rotation of column ij

Finite summation

Stress

Maximum compressive residual stress

Ultimate stress

Yield stress

-100
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14. FIGURES
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8 YF 17 (no res. stress)
I II

8"x4"x- 0
4

8 'IF 31 (residual stress cr~c= O.3cr, )

crrc!lbh. A

Assumed Residual I"""" f
5 tress Pattern I

O;cllhh. A
T cr,.

0.6
.M
.:Mp

o 2 3 4 5 6 7

Fig. 2.1 Moment-Curvature Relationships

LOAD,
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I
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I P

I
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I P - 1-6 h

C
I

I

~Ir 7.7
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~~eo

SWAY DEFLECTION, 6 h

Fig. 2.2 Frame Behavior
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p

Symmetrical Double Curvature Case

errc
7=0.3,

p

M

~=0.3,

:=0.9,

M
Mpc

o O~-----::,"=:-----::-,,=-::------:~:----~-:-----=-,--:-----
0.01 0.02 0.03 0.04 0.05

8 (Radians)

Fig. 2.3 Beam-Column Behavior, Double Curvature

M

M

IT.;.,C =0.3,
~lt=40

8 'IF 31

0.04 0.05
8 (Radians)

Symmetrical Single Curvature Case

0.030.02

,-------'-----'-'-'-'---'-'-

f--_ .
/ ----/

/
~

0.01
o o

0.6

0.4

0.2

Fig. 2.4 Beam-Column-Behavior, Single Curvature
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C

I----First -Order, Elastic

Second -Order, Elastic

Plastic

First -Order, Elas-tic -Plastic

:::===;=:;;;:S:econd -Order, Elastic - Plastic

A

DEFLECTION,8h

Fig. 2.5 Load-Deflection Relationships
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Fig. 2.6 Tangent Modulus Frame Buckling, No Hinge Unloading
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(b)

W
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I
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2
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