Lehigh University
Lehigh Preserve

Fritz Laboratory Reports Civil and Environmental Engineering

1967

The general behavior and strength of unbraced
multi-story frames under gravity 10adin§, June

1967, a chapter of this Ph.D. was published 72-22

B. M. McNamee

Follow this and additional works at: http://preserve.lehigh.edu/engr-civil-environmental-fritz-lab-
reports

Recommended Citation
McNamee, B. M., "The general behavior and strength of unbraced multi-story frames under gravity loading, June 1967, a chapter of

this Ph.D. was published 72-22" (1967). Fritz Laboratory Reports. Paper 1761.
http://preserve.lehigh.edu/engr-civil-environmental-fritz-lab-reports/1761

This Technical Report is brought to you for free and open access by the Civil and Environmental Engineering at Lehigh Preserve. It has been accepted
for inclusion in Fritz Laboratory Reports by an authorized administrator of Lehigh Preserve. For more information, please contact

preserve@lehigh.edu.


http://preserve.lehigh.edu?utm_source=preserve.lehigh.edu%2Fengr-civil-environmental-fritz-lab-reports%2F1761&utm_medium=PDF&utm_campaign=PDFCoverPages
http://preserve.lehigh.edu/engr-civil-environmental-fritz-lab-reports?utm_source=preserve.lehigh.edu%2Fengr-civil-environmental-fritz-lab-reports%2F1761&utm_medium=PDF&utm_campaign=PDFCoverPages
http://preserve.lehigh.edu/engr-civil-environmental?utm_source=preserve.lehigh.edu%2Fengr-civil-environmental-fritz-lab-reports%2F1761&utm_medium=PDF&utm_campaign=PDFCoverPages
http://preserve.lehigh.edu/engr-civil-environmental-fritz-lab-reports?utm_source=preserve.lehigh.edu%2Fengr-civil-environmental-fritz-lab-reports%2F1761&utm_medium=PDF&utm_campaign=PDFCoverPages
http://preserve.lehigh.edu/engr-civil-environmental-fritz-lab-reports?utm_source=preserve.lehigh.edu%2Fengr-civil-environmental-fritz-lab-reports%2F1761&utm_medium=PDF&utm_campaign=PDFCoverPages
http://preserve.lehigh.edu/engr-civil-environmental-fritz-lab-reports/1761?utm_source=preserve.lehigh.edu%2Fengr-civil-environmental-fritz-lab-reports%2F1761&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:preserve@lehigh.edu

BT A v o e e, ——

§z7 gr/a .

THE GENERAL BEHAVIOR AND STRENGTH OF UNBRACED
MULTI-STORY FRAMES UNDER GRAVITY LOADING

By

Bernard Michael McNamee

FRITZ ENGINEERING |
LABORATORY LIBRARY

A Dissertatiqn
Presented to the Graduate Faculty
of Lehigh University
in Candidacy for the Degree of
Doctor of Philosophy
in

Civil Engineering

Lehigh University
1967,



o

ii.

Approved and recommended for acceptance as a dissertation
in partial fulfillment of the requirements for the degree of Doctor

of Philosophy.

fMeveh S0, /967

(date)

Le-wu Lﬁ, Professor in Charge

Accepted.é/f/‘,/ /7, ‘/fo/r

(date) 4

Specidl committee directing the
doctoral work of Mr. Bernard McNamee

Préféééor David A. VanHorﬁ, Chairman

Professor Le-Wu Lu

ProfessorCé;orge C. Driscoll, Jr.

Professor/ Alan W. Pense

Préfebsor L. S ./Beedle, Ex-Officio



|2

iii

ACKNOWLEDGMENTS

This study is a paft of the project‘on "Frame-Stability'",
which is sponsored jointly by the Welding Research Council and the
Department of the Navy. The funds are furnished by the American Iron
and Steel Institute, the Office of Naval Research, the Naval Ship
Systems Command, and the Naval Facilities Engineering Command under
an agreement'with the Institute of Research'of Lehigh University.

The Column Research Council acts in an advisory capacity. The work
was carried out at the Fritz Eﬂgineering Labofatory, Department of
Civil Engineering, Lehigh Univer;ity. Professor Lynn S. Beedle is

Director of the Laboratory and Acting Chairman of the Department.

The author wishes to acknowledge the guidance of the mem-
bers of the committee, who directed his doctoral work, and in parti-
cular Professor Le-Wu Lu, who supervised the work leading to this

dissertation.

Appreciation is extended to the author's associates at Fritz
Laboratory for their help in the experimeqfal phases of the study and
to Dr. William C. Hansel and Mr. Lauren D. Carpenter for their;assist;
ance-in dirécting the tests. The basic configuration of the test setup
was suggested by Dr. Erol Yarimci. The work of Mi. Kenneth Harpel and

the technicians in settiﬁg up the tests is gratefully acknowledged.




iv

The author also wishes to acknowledge the help rendered by
the staff members of the- Lehigh University Computer Laboratory and

the Computer Center of the Bethlehem Steel Corporation.

The drawings were done by Miss Sh§r6n Gubich and the manu-
script was typed by Misses Grace Mann and Linda Nuss. Their coopera-

tion is appreciated. -



W W WwWwwwwww
O O ~N O W N e

" TABLE OF CONTENTS

ABSTRACT

INTRODUCTION

THEORETICAL SOLUTIONS

Frame ReSponse'
Inelastic Behavior .
Equilibrium-

Previous Studies
Inelastic Frame Buckling
Proposed Analysis

Small Lateral Loads

PR NN NDNN
IR Y I N

Discussion of Proposed Analysis

FORMULATION OF THE COMPUTER SOLUTION
Load-Response Curves

Loading and Frame Geometry

Basic Assumptions _
Equilibriuh of Incremental Léads
Matrix Formulation

Plastic Hinges

Reduction in Mpc

Stability Criterion

Comparisons with an Iteration Solution

DESCRIPTION OF TESTS

4.1 Frame Design

4.2 Loading System and Test Setup
4.3 Instrumentation

4.4 Frame Alignment

4.5 Material and Section Properties

4.6 Frame Loading

11
12
13
15
19
20
25

26
26
27
27
28
31
34
36
38
39

41
41
43
44
45
47
47



TABLE OF CONTENTS (Continued)

EXPERIMENTAL RESULTS AND COMPARISONS WITH
THEORETICAL PREDICTIONS

5.1 Experimental Behavior

5.2 Comparison of Theoretical and Experimental
Curves

5.3 Discussion

ANALYTICAL FRAME BUCKLING STUDIES

6.1 Introduction '

6.2 Frame Buckling Curves
6.2.1 Variable Column Length
6.2.2 Effect of Beam Yield Stress

6.3 Discussion

PRIMARY BENDING EFFECT

7.1 Introduction

7.2 Primary Bending Moment
7.2.1 Three-Story, Pinned-Base Frame
7.2.2 Six-Story, Pinned-Base Frame
7.2.3 Variable Beam Length
7.2.4 Constant Relative Stiffness

7.3 Discussion

PARTIAL BASE FIXITY

8.1 Introduction

8.2 The Effect of Partial Base Restraint
8.2.1 Three-Story Frame ,
8.2.2 Six-Story Frame

8.3 Discussion

INTERACTION BETWEEN FLOORS
9.1 Introduction
9.2 Variable Base Restraint

9.2.1 Three-Story Frame

vi

49
49

54
57

58
58
58
58
62
63

65
65
66
66
68
69
70.
71

73
73
75
75
76
78

80
80
81
81



10.

11.

12,

13.

14,

15.

16.

TABLE OF CONTENTS (Continued)

9.2.2 8Six-Story Frame
9.2.3 Distributed Load

9.3 Discussion

SUMMARY AND CONCLUSIONS

TABIES
Table 4.1 Section Properties
Table 4.2 Data From Tension Tests
Table 5.1 Buckling Load Summary

Table 6.1 Comparison of Frame Parameters

APPENDIX

Example 1 - Single Member

Example 2 - Two-Story, Single-Bay Frame
NOMENCLATURE
FIGURES

REFERENCES

VITA

vii

83
83
85

86

90
91
92
92
92

93
93
9%
98"

101

165

168



2.2
2.3
2.4
2.5
2.6
2.7
2.8
2.9
2.10

2.11

3.1

3.2

3.2

3.3

3.4

3.5

3.6

3.7

3.8

3.9

3.10

3.11

LIST OF FIGURES

Moment-Curvature Relationships

Frame Behavior

Beam;Column Behavior, Double quvature‘
Beam-quumn Behavior, Single Curvatﬁre
Load-Def}ection kelationships

a

Tangent Modulus Frame Buckling, No Hinge Unloading

Tangent Modulus Frame. Buckling, Hinge Unloading

Small Lateral Load Method

Story Shear Equilibrium

Theofetical Frame Buckling Load, Test 1
Variable Proportionality Constants

Positive Sign Convention

Main Program )

Main Program, Confinued

Subroutine, Begin

Subroufine, Initial Coefficient Matrix -
Subroutine, Load Matrix'and Beam Corrections
Subroutine, Column Corrections

Subroutine, Solution for Incremeﬁ;al Deformations

Subroutine, Incremental Beam Moments

Subroutine, Incremental Column Moments

‘Incremental-Iteration Comparison, Wood's Frame

Incremental-Iteration Comparison, Heyman's Frame

Frame Geometry

viii

102
102
103
103
104
105
106
107
108
109
110
110
111
112
113
114
114
115
116
117
117

118
119

120



.10

.11

.3a
.3b
ba

.4b

.6a
.6b
.7a
.7b
.8a

.8b

. LIST OF FIGURES (Continued)

Frame Loading

Test Setup, Diagram

Test Setup

Deflected Frame

Pinned-Base

Bases for Test Bed

Dial Rotation Gage

Eleqtrical Rotation Gages

Load Console

Léad Pumps

Load-Latgral Sway Relationships
Déflection Comparison, Test 1

Beam Moments, West Frame, Test 1
Beam Momehts, East Frame, Test 1
Beam Moments, West Frame, Test 2
Beam Moments, East Frame, Test 2
Moment Distribution, West Frame, Test 1
Bottom Story Joint Moments, Test 1

Bottom Story Joint Moments, Test 2

Bottom Story Shear Equilibrium, Teét 1

Bottom Story Shear Equilibrium, Test 2
Moment-Sway Deflection, Test 1

Moment-Sway Deflection, Test 2

ix

120
121 -
122
122
123
123
124
124
125
125
126
126
127
127
128
128
129
130
130
131
131
132

132



5.9
5.10
5.11
5.12a
5.12b
5.13a
5.13b
5.14a
5.14b
5.15

5.16

6.2
6.3
6.4
6.5
7.1
7.2
7.3
7.4
7.5
7.6
7.7

7.8

Load-Response Curves, Primary Bending,

LIST OF FIGURES (Continued)

Deflected Frame, Arrested Position

Yield Pattern, Location 3, Joint A, Test 2
Yield Pattern, Loéd.Point, East Frame, Test 1
Moment' Comparisons, Tesﬁs 1 and 2, East Frame
Momgﬁt Comparisons, Tests 1 and 2, West Frame

Beam Deflections, Experimental and Predicted, Test 1

-Sway Deflections, Experimental and Predicted, Test 1

Bgam Deflections, Experimental and Predicted, Test 2
Sway Deflections, Experimental and Predicted, Test 2
Bending Moﬁehts, Experimental and Predicted, Test_l
Bending Moments, Experimental and Predicted, Test 2
Frame Buckling Loads, Column Slenderness Ratio
Load-Response»Curves, Column Slenderness Ratio
Res;rained Columns

Frame Buckling Loads, Beam Yield Stress
Load-Response Curves, Beam Yield Stress

Frame Buckling Loads, Primary Bending, n = 3

Load-Response Curves, Primary Bending, n = 3

Effect of Primary Sending, n=3"

=
]
o

[
[«))

Effect of Primary Bending, n = 3 and n
Non-Dimensionalized Comparison, n = 6
Frame Buckling Loads, Beam Length

Load-Response Curves, Beam Length

134
135
136
137
137
138
138
139
140
141
142
143
143
144
145

146

147

148
149
149
150

151



7.9

'LIST OF FIGURES (Continued)

Non-Dimensioﬁali;ed Curve, Beam Length

Frame Buckling Loads, Constant Relative Stiffness
Load-Response quvés, Consfant.Relagive Stiffness
Partial Base Fixity

Load-Response: Curves, Partial Base Fixity, n =3

]
w

F;ame Buckling Loads, Partial Base Fixity, n
Frame Buckiing Loads, Foundation Modulus, n = 3
Load-Response Curves, Partial Base Fixity, n = 6
Ffame Buckling Loads, Partial Base Fixity, n = 6

Load-Response Curves, Variable Base Restraint, n =

Frame Buckling Curves, Variable Base Restraint,n

Load-Response Curves, Variable Base Restraint, n

Frame Buckling Curves, Variable Base Restraint,n
Buckling Load Comparison, Variable Base Restraint
Load-Rgsponse Curves, Distributed Load, Variable n
Frame Buckling Loads, Distributed Load, Variable n

Joint and Member Designation, Example 2

xi

152
152
153
154
155
156
156
157
158
159
160
161
162
162
163
164

164



ABSTRACT

The dissertation studies the general strength and behavior
of unbraced, multi-story, rectangular, planar, steel frames under
static gravity loading. A particular problem is the inelastic frame

buckling behavior of such structures.

The ineléstic behavior of symmetrical mu}ti-story frames
under symmetrical gravity loading is described. The present state of
knowledge as to the analysis of théée frames is outlined. A method
to compute inelastic buckling loads for multi-story frames is proposed.
. This method is a limit-type procedure which employs small lateral loads
on the frame to represent the eccentricities in the actual frame. The
formulation of a computer solution for the proposed method of analysis .

is developed.

The results of two multi-story frame buckling tests are pre-
sented. The test specimens are three-story, single-bay, pinned-base
frames. The correlation between the theoretical inelastic frame buck-

ling loads and the experimental ultimate load values is excellent.

Analytical studies are conducted to examine the effects on
the frame buckling loads caused by varying the structural parameters.
-The frames in the studiés are single-bay and multi-sfory. They are
designed on a strength basis to fail at an ultimate load equal to the
beam mechanism load. Curves are developed which show the reduction,

if any, in the beam mechanism load caused by fraﬁe'buckling.
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~ The chgnges in the frame buckling load caused by the pri-
mary bending moménts.are computed and are shown to be significant.
The effects on the frame buckliné load caused by varying the number
of stories in a'frame are evaluated. The beneficial effects of pér-
tial base fixity are examined. The rotational restraints provided by
the lower stories on the top stories of multi-story frames are appfoxi—
mated and thé corresponding frame buckling loads are obtaiﬁed. The
implications which the analytical studies have on a proposed design

procedure for unbraced multi-story frames are discussed.
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1. INTRODUCTION

The problems that are encountered in the design of multi-

story buildings are relatively recent as the following paragraph

illustrates.l'1

"...What can be considered the first true skyscraper,
though steel was not used in it, was W. LeB. Jenny's
10-storey Home Insurance Building erected in Chicago
between 1883 and 1885. The frame consisted of round
cast-iron columns, wrought-iron built-up box columns
and wrought-iron I-beams bolted together by means of
angles, webs and gusset plates to form a continuous
frame. All parts of the exterior walls were carried
on shelf. angles fixed to the spandrel beams so that
the outermost floor beam carried not only its share
of the floor load but one bay of the exterior wall
up to the beam above. This method of construction
made the very high building of the future possible.
Developments after this were rapid. Baumann and
Huehl's Chamber of Commerce Building, 1888-89 was
fully framed, the 13-storey frame weighing 32,000
tons. Jenn'!s Sears and Roebuck Store, built a year
later, was 57,900 sq. ft. in extent and 8 storeys
high; his Manhattan Building of 1891 was of 16 storeys
and in this he introduced cantilever beams fixed to
columns on a line well inside the line of the party
wall so as to avoid overloading the footings of the
existing flanking building. Almost all the problems
ever to face the designer seem to have been met and
solved in Chicago by 1891...."

However, as innovations were introduced into the construc-
tion fe;hnique, new problems arose and the designer had to solve them.
Two of the major changes that occurred were the use of low-carbon steel
as a building material énd.the adoption of ; new framing technique.
Continuous columns were run from the foundation to the roéf, and mo-

ment resisting connections were employed to join the beams and the
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columns intova relatively rigid framework. When this type of construc-
tion was introduced in about 1900, the lateral wind loads on the face

of the building were assumed to be transferred through the floor system
to massive masonry end walls and through them to the foundation. Short-
ly thereafter, diagonal bracing was found to be a more_efféctive and a
more economical method of carrying the windiloads, and it was adopted.
The diagonal braces, together with the adjacent in-panél beams and
columns, were considered to behave as a ver;ical truss system in trané-
mitting phe lateral forces to the foundation. The massive end walls
could be eliminated, but rélatively rigid masonry wall construction

was still used throughout the building.

These changes in building technology led to changes iﬁ the
techniques of analysis. Approximate methods, such as the cantilever
and portal methods, were advanced. There seems to be no individual
to whom credit can be given for either of these methods of anaiysis.
In the early 1920's, Hardy Crossl'2 introduced an iterative soluﬁion
for the slope-deflection equations. This was the moment distribution
method and it is used extensiveiy in elastic analysis. Since the late
1940's, the plastic design approach has come iﬁto more extensive use.
It is interesting to note that the first work of importance in this
area was done in 1913 by Kazinczy,l'3 and that some of the assumptions
of the portal method have their counterpart in the multi-story plastic

design approach.

Paralleling the advancements in analytical procedures, there

have been innovations in the architectural treatment of multi-story
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buildings. The present trend is to construct buildings with spacious,
célumn-free,-interior areas.l These areas are then subdivided by light-
weight, movable_paftitions. The exteriors of the buildings are en-
closed with glass and membrane panél-walls. These changes have made
the positioning of diagonal wind-braqing ﬁithin the building more
difficult. One solutiop has been to eliminate the diagonal bracing
and to use shear walls to house the elevator and service core areas.
The shear walls are designed to transmit the lateral loads to the

foundations.

If the use of lateral brééing or shear walls is not prac-
tical, the rigid frame together with the claddiﬁg (the lateral stiff-
ening effects of céncrete fireproofing, permanent walls, etc.) must
Supﬁly the necessary stiffness to»prevept excessiveilateral sway of
the building frame. If the cladding effect is negligible, as can be .
the case when the fireprbofing is sprayed on the steel members, the

bare frame alone must supply the necessary lateral stiffness.

The changes described above have refocused attention on the
lateral étiffness of bdilding frames. This overall area of study is
referred té as a frame stability investigation. If the frame ié symme -
trical and is supporting only symmeérical éravity loads, then the study
is calied the frame buckling problem. Both thé frahe bucklipg problem
and the more general frame stability problem are three-dimensional in
scope. Technidues for the elastic énalysis of'threeédimensional frame
stability problems frequeﬁtly appear in the structural literature, but

nothing has been advanced concerning the inelastic analysis for three-
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dimensional multi-story frame stability problems. There have been no

experimental studies on full-scale, three-dimensional structures.

Most of the two-dimensional studies of frame stability con-
sider the inelastic behavior of the members in the frame. These
studies assume that the frame will deflect in only one of the two
framing directions, or that there is sufficient 1atera1 bracing in.
one framing direction so that the sway is restricted to the other direc-
tion. Experimental verification on a full-scale structure has been
obtained for the methods employed in the two-dimensional multi-story
frame stability analysis.l'a. The frame buckling problem, although a
special case of the general frame stability problem, is more difficult
to analyze because of the unloading that occurs in the previously
yielded fibers in some of the members of the frame. A satisfactory
method of analysis has not as yet been developed for either the three-
dimensional or the two-dimensional inelastic, multi-story frame buckf
ling problem. Experimental studies have ﬂ;t been conducted on full- |

sized structures.

This dissertation will examine the inelastic frame buckling
problem as applied to rectangular planar building frames of Type 1
AISC construction.l'5 The behavior of a symmetrical framework under
symmetrical gravity loading will be described. A method of analysis
will be proposed that will give approximate load-response curves and
frame buckling loads for multi-story building frames. The results of
two frame buckling tests, which were conducted to verify the proposed

method, will be presented. A comparison between the experimental
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results and the theoretical predictions will be made. The computer
program which 'is used in the analysis will be described and flow

charts will be preseﬁted; The computer solution will then be uéed
to examine the changes in the frame buckling load which are caused

by varying several of the structural parameters,
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2, THEORETICAL SOLUTIONS

2.1 FRAME RESPONSE

The design of the members in the top stories of tall build-
ings and in buildings of a few stories is governed by gravity loading
and hence frame buckling is restricted to these areas; A usual de-
sign procedure is to omit lateral bracing in these stories and to
assume that the frame and the cladding provide the necessary lateral
stiffness to prevent frame buckling. With the cladding effects con-
stantly being reduced, this practice is now open to qﬁestion. It wiil :
be assumed in this dissertation that the beneficial lateral stiffness
effects of cladding are not present, and that the frame receives no
lateral support from adjacent out-of-plane members that frame into it.
The frame alone must supply the lateral stiffness required to prevent
lateral buckling. The values of the frame buckling loads obtained

under these assumptions will necessarily be conservative.

The determination of the 1oad-reéponse behavior of a multi-
story building frame neglecting the cladding effect is still a very
complex procedure. The major factors which affect the strength and
the rigidity of a frame and that must be considered in the develop-

ment of a theoretical solution are:

1) Mechanical properties of the materials and the

strength and deformation behavior of the members,



\w

276.18 ’ - | -9
2) »axial'load effect on member stiffness
3) ‘axial_load_effect on the sway moment (the P-A effect)
4) frame geometry
5) rigidity of:the connections and the supports
6) gccentricities in the loads and the members

7 residual stresses from rolling, fabrication and the

erection processes,

The procedure is further c0mp1icatédlsince factors 5, 6 and 7 are so
interrelated that they cannot be experimentally isolated. Also, they
directly affect factors 1, 2 and 3. Assumptions, that simplify the

analysis procedure, must be made to obtain a workable solution.

In the usual analysis procedure, the joints of the frame

are assumed to be rigid and the eccentricities of the members andrthe
.loads are not considered. The residual stresses from fabrication and
erection also‘are not considered. They are highly indeterminate and
gan‘only be obtained experimentally. The residual stresses from roll-
ing ére abproximated in computing the moment-curvature relationship of

a member (Fig. 2.1). Collectively, these assumptions describe éﬁ ideal
structure. It is this type of structure on which the equations for most

methods of analysis are formulated.

In actuality, there are always some eccentricities in any
structure. Their distributions are random and unpredictable. It
would not be economical or practical to undertake a»testing program

to statistically'evaluate a meaningful coefficient for the eccentrici- -
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ties. However, in d13cu§sing the general behavior of a structure (Fig.
2.2), the concept of a resulting eccentricity (eo) can be assumedf In
the early stages of 1oading; the effect of the initial eccentriéity
causes a small lateral sway (0'C). As the sway increa;es with increas-
ing gravity load (CD), the P-A effect becomes more significant. The
deleterious effect of axial load on the column stiffness also increases
the lateral sway. Each of these effects is non-linear and significant-
ly influences the response curve along length DE and beyond. At a

load apbroximated by point E on the curve, yielding occurs in a por-
tion of the frame, and the overall stiffness is further reduced. Since
there is a lateral deflection Qhen the inelastic behavior begins, the
yielding will be at 'specific locations which are not symmetrically
positioned throughout the frame. This non-symmetry, together with

the decrease_ip the stiffness due to the yielding, greatly accelerates
the lateral sway of the frame., As the 1§ads are further increased,

the yielding spreads. Plastic hinge condicions are approached at
certain locations. The overall stiffness is drastically reduced and
the frame instability load (F) is reached. Beyond this point, de-
flections increase with little or no increase of load (FG). Equili-

brium positions are possible if unloading occurs (FG').

If the value of thé initial eccentricity (eo) is decreased,
the elastic deformations measured from the no load position (0'B) will
be reduced. The new load-response curve will be steeper than the pre-
vious one and will reach a higher load level than FG. Since the eccen-

tricities are small, the increase in the frame instability load above

~level FG should be small. The upper limit for the frame instability
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loads will be the frame buckling load (A).

2.2 INELASTIC BEHAVIOR

An exact solutioh involving inelastic behaviqr.should con-

. sider the depth of penetration of the yielding at a section, the ex-
tent of yielding'along the member, the deleterious effects of residual
stresses, and the beneficial effects. of strain-hardening. These in-
elastic effects can be considered in a finite difference solution.
Since the moment gradients in a mulfi;story frame are large, the in-
terval between the control points for the finite difference solution
should be small. In a multi-story frame analysis, an excessive amount
of computer time would be.requiréd for this approachlunder the present

(1967) state of computer technology.

Instead? an ideélized elastic-plastic moment curvature re-
lationship (Fig. 2.1) will be assumed’to give a reasonable approxima-
tion for the iﬁelastic behavior.z'l The cross-section will be assumgd
té have a shape factor of unity. The resulting section will behave
elastically until the plastic moment caﬁacity (Mpc) of the section is
reached. The section will then rotate plastically under a constant
moment . Under these assumpfions, yielding does not extend along the

member .

The idealized moment-curvature relationship gives a good
approximation for the behavior of a beam. For beam-columns the approxi-

mation is satisfactory in most cases, especially in parts of the build-
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ing frame where frame buckling must be considered. Parikh showed

for beam-columns under axial load ratios (P/Py) less than 0.7, with
low slenderness ratios, and deflecting in double-curvature (Fig. 2.3)
or in single curvature with one end pinned, that the idealized moment-
curvature relationship gave moment-end rotation curves which were
close approximations to the exact cufves.z'1 If the beam-columns
under consideration do not fall within the preceding description (see
Fig. 2.4) then the idealizéd assumption will be inaccurate. An alge-'
braic expression must be developed for the moment-end rotation func-

tions of these members if they are to be considered in the analysis.

2.3 EQUILIBRIUM

The load-response curve, that will be used to approximaté
the actual behaQior of a frame, is based on a second-order, elastic-
plastic method of analysis. Small deformation fheory is assumed and
only flexural deformations are considered. In first-order theory? the
equations of equilibrium are written for tﬁe structure and the members
when they are in their undeflected positions. There is no decrease in

the stiffness or increase in carry-over factors of the members because

of the axial loads.

Second~order theory is used in frame stability analysis. The
member and the structure are assumed to be in their deflected positions
when the equations of equilibrium are written. The effect of the

second-order theory is to consider the additional bending caused by



276.18 o .13

the axial load and the deformation. This reduces the stiffness of
the member and increases the carry-over factor. In the story shear
equilibrium equation, the product of the vertical loads and the story

sway (the P-A moment) is introduced by the second-order theory.

The differences between thé first-order and the second-
order theory Qre graphically presented in Fig. 2.5 for both the elas-
tic and the ideélized elastic-ﬁlastic behavior. The first-order
elastic curve (oc) is a linear relationship. The second-order elas-
tic curye(om» is noq-linear and reaéhes an ultimate or frame insta-
bilify load. 1If the elastic-plastic behavior is combined Vith first
order theory, the resulting curve (OB') is linear and piecewise con-
tipgous. Discontinuities occur at the formation of each hinge. The
curve approaches the first-order mechanism curve (BB') as an asymptote.
The second-order elastic-plastic curve (0A) is non-linear and is also
piecewise continuous. -A; ultimate load is reached at one of the dis-
continuities caused by the formation of a plastic hinge. The general
shape of the curve is similar to the exact curve (0G') and compari-
sons with experimental curves show that it is a good approximation

for the actual behavior.1

2.4 PREVIOUS STUDIES

The literature on methods of analysis to determine frame
buckling loads under elastic loading is quite extensive.z'2 The

classical approach is to assume an ideal frame with the loads applied
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at the connections. For low values of load, the structure remains

in the undeflected mode; At the critical load, a second or deflected

equilibrium position is possible. The elastic frame buckling load is

the lowest load at which bifurcation of the equilibrium position is
possible. This analytical approach is similar to the computation for

the Euler buckling load of a column.

In building frames of the usual dimensions, frame buckling
will occur after some of the members are loaded into the imelastic
range. Methods for the determination of inelastic frame buckling loads
have been quite restricted in their approach. Those that employ rela-
tively exact moment;curvature relationships have been limited in ap-
plication to single-bay, single-story fram.es%'2’2'3’2'4’2'5’2'6’2'7’2'8

An energy approach has been used in the inelastic frame buckling analy-

sis of multi-story frames.

In the general inelastic stability analysis for multi-story
frames, theoretical approaches with less rigorous moment-curvature

relationships, although not as sophisticated, have been employed for

2.1,2.10,2.11

a more extensive group of problems. Wood used an elas-

tic-plastic moment-curvature relationship in an analysis to show that
the instability load of a multi-story frame is significantly reduced

when plastic hinges are introduced into the frame.z'12

An empirical relationship has been developed by Merchant to"

predict inelastic multi-story frame buckling loads.z'13 It is based

on computations of the elastic buckling load and the ultimate load
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from simple plastic theory. It shows some agreement with frame buck-
ling loads for tests on model size structures. A similar relationship,
determined from analytical and experimental values, is included in the

AISC Specificati.on.l'5

2.5 INELASTIC FRAME BUCKLING

There are tw0_ggnera1 approaches for the determination of
inelastic frame buckling loads of multi-story structures. One is
similar t§ the tangent modulus theory for the determination of in-
elastic column buckling loads. The second considers the shape of
the load-response curve of the actual structure (Fig. 2.2). The tan-
gent modulus method will be described assuming an elastic-plastic
moment-rotation behavior for the members of an ideal structure under
symmetrical gravity loading. Under these conditions of symmetry,
there can be no lateral deflectiop and the ultimate load will be the

beam mechanism load.

Analogies exist between the classical behavior for inelastic
frame buckling and the inelastic behavior of an ideal pinned-end
colqmn. In- the coluﬁn; a 1a£eral disturbance is required at the tan-
gent modulus load to initiate lateral éefonmation. An upper limit
for the ultimate load which the column can carry is the reduced modulus
load. In the post-buckling loading range for the column, the vaiue of

the tangent modulus (Et) is reduced and hence the reduced modulus load

or upper limit for the ultimate load is lowered. It has been shown

that the tangent modulus load is a good estimate for the ultimate load
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of the column.z'.l4

A corresponding theory to determine the tangent modulus buck-
ling loads for multi-story framgs has not as &et been developed. There
is an additional problem of plastic hinges unloading as the frame de-
flects laterally from its initial configuratioq. For a taﬁgent modulus
solution, there should be no hinge unloading as the initial sway takes
place. After the initial sway has occurred, hinge unloading can take
place. The sequence for this hinge unloading has not as yet been de;
fined. The following discussion is intended to describe the elastic-
plastic frame buckling behavior and to serve as a basis éf comparison
in describing the proposed method to compute inelastic fr#me buckling

loads.

Yielding can occur in the beams and columns of an ideal
structure before the tangent modulus frame buckliﬁg load is reached.
To simplify the presentation, it wiil be assumed that hinges do not
form in the columns. Physically, this can be accomplished through
the design procedure for obtaining the member sizes of the columns.
Because of the symmetry in the ideal fréme, hinges will form initially
at the ends of the beams, or a yielded zone will form through the cen-
tral region of the beams. A special case exists when concentrated
loads are placed at the centers of thé beams (Fig..2.6a). The load-

response behavior for the special case will be described first.

In the elastic loading region (Fig. 2.6a), the maximum mo-
ments occur under the concentrated loads at the centers of the beams.

The ultimate load for the elastic frame is shown at level a. The
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elaétic frame'buckling load is used to approximate the value of this
ultimate load. The first plastic hinge forms at a concentrated load
(Fig. 2.6b). This ﬁill.lower the ultimate léad in an actual frame to
the level at b. For the assuﬁed elastic-pléstic moment-curvature re-
lationship, there would be no reduction in the ultimate load since the
plastic hinge (location cprrespohds to the location of the inflection
point in the sway deformation mode of the structure. Afterla small .
increase in load, a second hinge wi}l form (Fig. 2.6¢) and the ulti-
mate load is further reduped'to a level at c. Failure occurs by one

of two modes. In the first mode,-additional loads are applied a;d
frame buckling occurs at level c. 'Unloadiﬁg of the plastic hinges
should not occuf. In the second mode, additional plastic hinges form
(Fig. 2.6d) before the load at level c is feached. Because of the
symmetry, they will form at the ends of the beams and a beam mechanism
failure will take place. . Since there will be no additional rotational
restraint provided by the éeamé to the qolumns, frame instability will
also occur and the frame wili'deflectllaterally with no unloading of

hinges. The relative member sizes will govern which of the two fail-

ure modes occurs first,

In the more general tangent médulus buckling behavior, un-
16ading of plasticvhinges wiil probably take place. In the elastic
loadiﬁg region of the frame in Fig. 2.7a, it is assumed that the maxi-
mum moments occur at the-ends‘of the beams. At the tangent modulus buck-
ling load, a small increment of vertical load and a lateral disturbance
are applied simultaneously. There is a small lateral deflection with no

unloading of hinges. With the removal of the lateral disturbance,
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the frame stays in a deflected configuration. With further increases
in the vertical load, unloading of the windward hinges takes place.
For clarity, it is again stated that theory has-not been developed
to substantiate this description of the tangent modulus frame buck-

ling behavior,

In Fig; 2.7b, a simultaneous unloading of hinges on the left
end of all beams has been assumed to occur with the application of an-
additional vertical load. The load-response curve will foliow the
indicafed curve with an upper limit at b. The upper limit would be
the deteriorated critical load of the frame.z'12 The upper limit at
b probably could not be reached before additional yielding takes
pléce. If a hinge formed at location 1 in Fig. 2.7c, the upper limit
at b would be lowered to the level at é. With the formation of each
additional plastic hinge,‘there is an accompanying finite reduction
in the critical load. This continues unti} the upper limit is reduced

to a level d which is below the level of the load being carried by

. the frame (Fig. 2.7d). On this basis, the ultimate load will usually

coincide with the formation of a plastic hinge. If the difference in
load between the tangent modulus frame buckling load and ultimate load
is not large, then the tangent modulus frame buckling load can be used
as a prediction of the ultimate load. Model tests on portal frames

indicate that the difference is sm.a11.2’4

The second approach for the determination of inelastic frame
buckling loads is based on the load-response function of the actual

frame. 1In the discussion for this behavior, the initial eccentricity
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(eo) in Fig. 2.2 had a direct effect on the value of'the frame ip-
stability load (F). As the value of the eccentricity approached zero,
thg frame instabilify ldad approached tﬁe frame buckling load as an
upper limit. This limit process is the basis for the proposed method
to compute inelastic frame buckliﬁg lqads.' The value of the tangent
modulus frame buckling load will be app;oximated by the frame buck-
ling load which_is obtained from the limit of the frame instability

loads as the value of the eccentricities approach zero.

2.6 PROPOSED ANALYSIS

A limit fype proceduré, which considers thé variables listed
in Art. 2.1, is proposed for the computation of inelastic frame buck-
ling loads. The initiél_éccentricities in the members and the frame
can be considergd as a resulting eccentricity (eo) in Fig. 2.8a. It
is"these eccentricities which give the load-response curve its charac-

teristic shape.

There are two techniques for approximating these eccentri-
cities in an analysié. The first approach approximates the eccentrici-
ties by assuming an initiaily deflected shape fér the membersz'15 or
for the frame%'16 The second .approach represents the effects of the ec-
centricities by.a set of equivalent propqrtionél loads on the memberz'ls

or on the frame. Neither of these techniques has been previously ap-

plied to the inelastic analysis of multi-story frames. The second -
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approach is used.in the proposed method of analysis. A computer pro-
gram to compute inelastic frame instability loads is formulated in

Chapter 3,

The frame in Fig. 2.8b illustrates the technique that will -
be used to compute inelastic frame buckling loads. The frame is
loaded with gravity loads (Wi) and small lateral loads,(Hi) which
represont the effect of the initial eccentricities. The small lateral
loads ore proportional to the gravity loads and are applied at each
floor level. 1If a value (ai) is chosen for the proportionality factor,
the corresponding load-response curve and frame instability load

(WCR ) can be obtained using the formulation in Chapter 3. A second

proportionality factor (az) is chosen and its corresponding load-
response curve and frame instability load (WCRZ) are obtained. The
frame buckling load (WCR) in Fig. 2.8c is the limit of the frame in-
stability loads as the proportionality constants (@) approach zero.
This limit‘type procedure is the basis for the proposed method of
analysis. In Fig. 2.8c, only two frame instability loads are used
in the limit procedure to obtain the frame buckling load (WCR). A
third frame instability load could be computed to determine the
accuracy of the linear approximation. If the accuracy is not suffi-

cient, then a parabolic approximation can be used with the three

frame instability loads.

2.7 SMALL LATERAL LOADS

Small lateral loads are applied at each floor level to
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simulate the effect 6f the resulting eccentricities in the frame. If
it is assumed that the alignment énd fabrication erfors are the cause
of the eccentricitieé and the other effects are negligible, then a
relationship can be developed between the proportionality consfant at
a floor level (ai) and the average-eccentripity between floor levels
(ei). This is. the basislfof using proportional lateral loads applied

at each floor level. '

For a frame in its deflected position (Fig. 2.9a), the
shear equilibrium equation for the columns at any story with an eccen-

tricity (ei) is given by
IM, + DM + EP (A +e)=0 (2.1)

where ZMi and ZMB are the sum of the moments at the top and bottom of
the columns, ZP - is the sum of‘the axial loads in the columns, and A
is the relative story swa§ deflectién from the zéro load position,

For an increment of load (dP), there will be incremental moments (dM)
and aﬁ increment of deflection (dA). The equilibrium equation for the

new deflected position (Fig. 2.9b) is

Qg +dM;) + 20 + dM) + E(P + dP) (A +dA+e;) =0
(2.2)
The incremental equation can be obtained by subtracting the first

equation from the second. This gives

T(dMy) + T(dMy) + IR(dD) + TR(A) + mpm) + e P = 0 (2.3)
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In the proposed analysis, small lateral loads are applied
at each floor leyel in proportion to the loads on the floor. o, is
ﬁhe proportionality constant at a floor level. 1In Fig. 2.9c, the
eccentricity effect is represenﬁed by an accumulated lateral force

and the shear equilibrium equation is

ZMT+2MB+>:PA+h>:H=0 ) E (2.4)
For an increment of vertical load (dP), there will be an increment of

lateral load (dH), and an increment of deflection (dA). The equili-

brium equation for the deflected position (Fig. 2.9d) is
Oy + di) + B0 + d) + T(P + dP)(A + dA) + hE(H + dH) = 0 (2.5)

The incremental equilibrium equation is obtained'by subtracting Eq.

2.4 from Eq. 2.5.

T(dMy) + T(dMy) + IP(dA) + TP (A) + TP (dA) + h3H = 0 (2.6)

In comparing the corresponding equilibrium equations of the

two systems (Eqs. 2.3 and 2.6), two equalities ére evident

hZH = eiZP (2.7a)
and

hZdH = eiEdP g (2.7b)
Equations 2.7a and 2.7b show that the horizontal loads on the frame
should be proportional to the loads on the beams. Since the eccentri-
cities (ei) are very small, then the proportional horizontal loads (TH)

should be small ﬁith respect to the beam loads (ZP).
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If the initial eccentricities (ei) within a frame were

measured, then the proportionality constants could be computed from

Eqs. 2.7a or 2.7b. For the top floor

or

For the second floor in_the frame and with h

If P. =

1

Equations 2.8, 2.

H; dHlA
ey =hygr=h =M
1 1
v =L
17 h)

e2[P1 + P2] = h[H1 + HZ]

ez[P1'+ Pz]“ h[alPl + a2P21

P, = P, then

2 .
o:1+012=f:—2-
¥ = % [2e, - ;]

e, then
@, =

(ai) should not be the "same for all floors.

1

=h

2.

h

(2.8)

(2.9)

(2.10)

(2.11)

10 and 2.11 show that the proportionality constant

In the proposed method of analysis, it is not necessary to

obtain the initial eccentricity for each member of the frame. The
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limit procedure requires a calculation to determine the frame buck-
ling load which is the limit of the frame instability loads as the
proportionality constant approaches zero. Equal values of o can be
assumed for each floor. Through a trial and error brocess, a value
o can be obtained that gives a load-response curve, that is a close
approximation for the expected frame behaviof. This technique is
developed in Fig. 2.10 for the.frame in Test 1. The first value of
o is chosen as 1 percent of the floor load. The corresponding load-
response curve in Fig. 2.10 is obtained. A second load-response

. curve is obtained for o equal to 1/2 percent. The value of the
frame buckling load is obtained in Fig..2.10 for o equal to zero.
The important factor in the proposed method is the determination of
the frame buckling load. .The obtaining of an exact load-respohse
curve is not essential. Previoﬁsly, it was shown that the values

of o should not be the same for eéch floor level. Unequal values
could simultaneously be allowed to approack zero. The frame buckling

load should be the same value as that computed with equal horizontal

loads. This is shown by the limit curves in Fig. 2.11,

The limit curves in Fig. 2.11 are for the frame in Test 1.
The top limit curve is the same as that shown in Fig. 2.10d. The
values of o in this curve are equalifor all floors. In the middle

curve, the value of oy is kept constant. o, is half that of the top

1

curve. a3 is twice that of the top curve. 1In the bottom-limit curve

@, is kept constant while the multiplication factors are reversed for

oy and oy In the limit as all values of o simultaneously approach
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zero, the values of the frame instability loads apprdach a common
value for the frame buckling load. The largest difference among the

three values is 110'pounds.

Ld

2.8 DISCUSSION OF THE PROPOSED ANALYSIS

In the procedure for computing frame buckling loads, two
load-resppnse curves vefe'obtained. -Both were similar in shape to
the expected load-response qf the actual frame. The difference be-
twegﬁ the frame instability loads for the two theoretical curves was
sufficiently close tﬁat 1argé errﬁrs were not infrodgced by thehlimit
process as o approached zero. The accura;y of this procedure was
measured by computing a third frame instability load. This was .
done in Fig. 2.10d. The ;alue of o was 3/4 percent. An attempt
was made to compute a point on this limit curve for @ equal to 1/4
percent. However, hinges formed at both ends of a beam and the
éssociqted hinge unloading problem was iﬁtroduced. This unloading
behavior sets a lower bound on the value for « on the limit Eurve in
the proposed analysis. The limit procedure was shown to be insensitive
to changes. of « from floor'to.floor. The significant point was to
selecf small values for'a so that the frame. instability loads obt;ined

were numerically close to the frame buckling load.
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3. FORMULATION OF THE COMPUTER SOLUTION

3.1 LOAD-RESPONSE CURVES

The proposed method for computing frame buckling loads re-
quires the development of at least two load-response curves. Each
point on the load-response curve represents an equilibrium pgsition
for the structure under a given loading condition. The individual
points on the curve can be obtained by an iteration method or the
entire curve can be generated by an incremental procedure. ‘The ad-
vantage of the iteration method is in the minimum amount of computer
storage capacity required. The advantage of the incremental proce-
dure is that the unloading portion of the load-response curve can be
obtained. The slope-deflection method of analysis will be used with
the incremental procedure in developing a‘éomputer solution to gén-

erate the load-response curves.

In the incremental load procedure, the load-deformation
response curve is represented by a series of connected chords. At
each stage in the computations, an increment of load (8P) is chosen
and the corresponding increment of deformation (8A) is computed. The
accuracy that is required in-generating the curve will dictate the
size of the load increment to be chosen. Iteration is used to 6b-

tain the load increment when a plastic hinge forms.
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3.2 LOADING AND FRAME GEOMETRY

The.compu;er solution will be limited to rectangular} planar,
multi-story frames with rigid beam;to-ﬁolumn connections. The base
of the frame can be pinhed, fixed, or of a type to simulate the sup-
port given to the top stories of a building frame by the‘séories be;
low. The loads aré applied‘in;the plane of the frame and can be ap-
plied in tw0_stéges;-an initial loading, and the succeeding incremen-
tal loads. Within eithér staée the-ioads are proportional. The hori-
zontal loads are applied at the‘floof 1e§els. The vertical loads are
applied as distributed beam loads aﬁd or as two symmetrically plabed,
concentrated béam loads. Loads can be also applied directly to the
columns. Any combiﬁation of'these loads can be used in either load-
ing stage. With tﬁis diversity; it is possible to simulate most

loading conditions used in design practice.

3.3 BASIC ASSUMPTIONS

The basic assumptions made in the formulation of the com-

puter solution are the following:
1. Elastic-plastic moment-curvature relationship.

2. A plastic hinge is replaced by a real hinge for the

additional load. increments.

3. During an increment of loading, all loads are pro-

portional.
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- 4. Strain-reversal does not occur in any yielded fiber.

5. Members are straight and prismatic. Out-of-plane be-

havior and local buckling are not considered.

6. Member length is from center-of-connection to center-

of-connection.

7. Equilibrium equations are written for the members in

their deflected positions.
8. Axial shortening of the members is neglected.
9. Axial loads in the beams are negligible.

Assumptions 1 and 8 will restrict the application of the proposed

method to moderately high multi-story frames.

3.4 EQUILIBRIUM OF INCREMENTAL LOADS

The basic equations for a member in the slope-deflection

method of analysis are obtained from the differential equation of a

beam-column under transverse load.3'1
_ (EI _ :
M= G, [08, + 5,0, - (€ + 50, ] - ij (3.1a)
_ &
My = Gy [08 + 88, - € + 50,0 ¢ M‘?i (3.1b)
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where Ck and Sk are the stability functions. The positive sign for

the quantities in Eqs. 3.1 is shown in Fig. 3.1. » The stability

functions, C

K and Sk’ are determined from

_ u(u+cotu-u cot2 u)
k l -ucotu

(3.2a)

and
: .2 .
_ ufu - cot u + u cot” u)
Sk 1l -ucotu . (3.2b)
where
- Pi' .
‘u=3 F—‘ - (3.3)
. E . :

and PE is the Euler load of ;he column.  For any load increment (6P),
the axial load in a column (Pi+1).during the load increment is esti-
mated from the load (Pi) being carried by the column at the beginning

of the increment,
Pi + (0.5)6P

Pin = Py P ' (3.4)

Equations'3.1a and 3.1b assume elastic-material properfies apd satisfy
member equilibrium and compatibility requirements. The slope-deflec-
tion equations for the peftinént members can be grouped to satisfy
joint equiiibrium and s;ory shear equilibriuﬁ. Compatibility within
‘the structure is satisfied by solving for théHUHRHOWh joint rotations
and story sway deflections. The story shear eqﬁilibrium equation is

written for the columns in their deflected position.
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M, +3M_, + hSH + hp,, TP =0 (3.5)
1] Jj1 1)

The development of the controlling relationships for the
incremental load procedure is basically the same as that above. For
an increment of load the stability factors (Ck and Sk) are assumed
to be constant and the axial load in a column is computed from Eq.
3.4, lThe slope-deflection equations for a member after an increment

of load has been applied are
o, + M ) = GL) [c (8, +80.) +5S, (8, + 60,)
1] 1] L’k ““k'oi TN k3 i

S C + 8 gy * ey 0T - Qe+ 8 )
(3.6)

EL

(MJ.i + 6Mji) = L)k [Ck(ej + 6ej) + sk(ei + eei)

The incremental slope-deflection equations: are obtained by subtract-

ing Eqs. 3.1 from Eqs. 3.6,

_ (EI -
oy = (3, [C, 88, + 5, 80, - (€ +5) bp, ] - tmfj
(3.7)
_ EI »
5Mji = T [ck 6ej + 8, 5.0i - (€ *+5)) 5pij] - 6M§i

For any connection, the sum of the incremental moments for the inter-
secting members is equal to zero. The story shear equilibrium equa-

tion at the end of the load increment is
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M+ OM ) + B0, + 8M) + hEGH + 8H)
+ h(pij-+ épij) z(® +.6P) =0 (3.8)

The incremental equilibrium requiremehf for the story shear is ob-
tained by subtracting Eq. 3.5 from Eq. 3.8.
T6M. . + I6M.. + h TSH + h 8p, . (P + 6P)
1] S J1 _ 1]

+ hbij T6P = 0 R : ' (3.9)

The basic equations of thlie incremental procedure. are Eqs. 3.7 and 3.9,

and the requirement of joint equilibfium.

3.5 MATRIX. FORMULATION

' The deformation method of matrix analysis will be used to
formulate the_cqmputer.solutioﬁ. The incremental relationships ex-
pressed in Eqs. 3.7 and 3.9 serve as a basis in this development.
The member stiffness matrix (k) relates the member incremental defor-

mation vector (0*) to.the member incremental stress vector (S%),

or ’
M : k.. k. .| [6®
ij EI ii ij 1j
= (1;)k : : (3.10a)
oM k., k_, 66
J1 Ji 1] J1
where
k = =C

11~ %55 G

kij = kji = S

*Indicates the matrix contains incremental quantities.
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The member incremental deformation vector and the incremental dis-
placement vector of the nodal points or joints of the frame (A%*) are

related by a kinematic matrix (A).

0% = AA* - (3.11)

or
66, , 89
ij i .
=A aej (3.11a)
5eji 6p1

Equilibrium between the external load vector for the nodal incremental
forces;(w*l) and the member incremental stress vector is obtained by a

statics matrix (C).
W*1 =C S§* ' (3.12)

A relationship between the external incremental load vector and the
nodal incremental displacement vector can be established from Egs.

3.10, 3.11, and 3.12.

Wk, = (C k A) A* : (3.13)

T

Since it can be shOan'11 that C = A", the first-order stiffness

matrix of the structure (Kl) is
_ AT
K1 = A" k A (3.14)

The total stiffness matrix of the structure (K*) contains

second-order terms, h6pij Z(P + dP), in the story shear equilibrium
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equation. -Therefore,

- K* = K, +K*, ' (3.15)

where K*2 is a matrix containing the additional terms. There are

also second-order terms, hpijZP, that must ‘be added to W*1 to obtain

the total load matrix (W¥%).

: % = W* % .

WS up U (3.16)
and

Wk = K% A* _ ‘ (3.17)

Since it is assumed that there is no member shortening, storage space
can be economized by eliminating and combining specific rows and

columns. The second order terms in the W% and K? matrices need not

be stored separately and can be added to the Wf and K, matrices re-

spectively. The unknown terms of the nodal deformation vector in

| Eq. 3.17 can be obtained by the Gauss-Jordan solution techniqﬁe or

by iteration. .

'The member total stress vector (Sp) at the end of the in-

crement can be obtained from a previously computed total stress vec-

tor (ST l) by adding the incremental stress vector (S*) and making
the necessary correction (SMF) to include the effect of the trans-

verse incremental beam loads.

. |
Sy =Sy, +5 + 0f . (3.18)
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Before making this addition, the total stress vector (ST) is examined
to determine if additional plastic hinges have formed during the in-

crement of loading (6P). If the plastic moment value is exceedéd{

MOD) at which the first

iteration can be used to obtain a value (&P
additional hinge forms. The total stress vector, the total displacement
vector, and the load vector can be computed from increments scaled by

the incremental load (8P The flow charts for the computer analy-

MOD)'
sis are contained in Figs. 3.2 to 3.9. A more detailed formulation

is given for two examples in the Appendix.

3.6 PLASTIC HINGES

When a plastic hinge forms in the structure, an additionéll
degree of freedom of motion, the relative rotation of the cross-
sections on either side of the hinge, is introduced. An additional
line and column couldrbe introduced into the stiffness matrix_forr
each additional degree of freedom. This would be very uneconomical
of computer storage space. Instead, the ﬁember stiffness matrix will
be modified when hinges form without changing the nodal deformation
vector. The relative rotation of the sections on either side of the

hinge will not be computed.

After a hinge has formed in a member, the relative rotation
of the sections on either side of the hinge occurs at a constant mo-

ment (Mbc)' For all additional increments of loads, the plastic hinges



276.18 ' - S -35

are replaced by real-hiqges. The reduction in Mpc due to increases

in the axial load in a column is considered in the next article.

When a hinge forms at the end. of a member, 'the incremental
slope-deflection equations can be adjusted to reflect the change in

member stiffness.

_ o~ _ EI. . : . -~ _

o = 0= G0, Te, 0, 45, 00, - (© +5) b, ] - mli'"j (3.19a)
- ELyr  + WF

amji = ) _Eck 5ej + 8, s_eI - (€ +8) 6pij] + 5 " (3.19b)

where_69I is the incremental rotation on the member side of the plas-
tic hinge. -The rotation (691) can be solved for in Eq. 3.19a and

substituted in Eq. 3.19b to yield

¢z . §2 ) s
EI k = "k k
= (=), [ ——= - = .2
M, = () Y (60, - bp, )]+ [1+4 S ] m‘;i (3.20)
where numerically 6M£j equals 6M§i' 'This formulation does not require

the computation of the additional deforma;ion term (661), and the in-

cremental joint deformation (66{) is still obtained.

Matrices can be set up to record fhe location and the plas-
tic moment capacity of the plastic hinges as they form in the members.
In deveéloping the sﬁiffﬁess matrix (K*) of the structure,.Eq. 3.15 is
first computed. The matrix that records the location of plastic
hinges is searched for the location of the hinges. Terms éimilar to

those in Eq. 3.19 are subtracted from the corresponding terms in
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Eq. 3.15 and the terms in Eq. 3.20 are added to like terms in Eq.
3.15. The load matrix (Eq. 3.16) is likewise modified. Similar
modifications of the stiffness matrix are made for other locations

—of plastic hinges in a member.

3.7 REDUCTION IN Mpc

The axial load in a column at a plastic hinge does not re-
main constént but continues to increase. This causes a shifting of
the neutra; axis in the cross-section towards the tensile flange of
the column. Since the tensile area is decreased, there is a corres-
ponding reduction in.the momépt capacity (Mpc) at the plastic hinge.
This produces an ﬁnloading of the moment in the column. The unload-
ing of moment to the supporting members can be considered in the
incremental procedure. Equation 3.4 is used in computing Mpc for.
the increment. With the formation of a hinge at the end of a member,

‘the moment can be stated as

M,. =M (3.21)

where MpC is the plastic moment capacity of the member when the
o
plastic. hinge forms. For an additional increment of load,

+ M., =M + AM

M, | gy = Mo M _(3.22)

where AM1 is the reduction in the original plastic moment capacity
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(Mpc ) caused by the increase in the axial load. The incremental
o ' _
equation is obtained by subtracting Eq. 3.21 from Eq. 3.22.

oM. . = AM o ' (3.232)

and

= = EL ' 7 -
oMy, = am = (), [0, 60, + 58055 - (€ * 5 8] 5M1;j (3.23b)

The incremental rotation (561) can be solved for and substituted into

Eq. 3.19b to yield

2 2. .
«? - s? | s s
_ EI k" S L5 k
My, = (5, L — (60, - b9, )] + [1+ Ck] apr‘;i +g, o

(3.24)

This equation differs from Eq. 3.20 by the addition of the last term.
For the next increment of load, the total moment at the plastic hinge
is

R LT Mpco + AM, + AM, (3.25)

The incremental equation is obtained by subtracting Eq. 3.22 from

Eq. 3.25
oM, 1, = M, . (3.26)

Thé equation for this second increment of loading can be obtained
from Eé.,3;23a by changing the subscript_on,the term (AM). An equa-
tion similar to Eg. 3.23b is then developed. .For succeedipg incre-
ments, the pattern is repetitive. In the matrix formulation, the cor-

rections described at the end of the previous article would first be
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*

made. Then, AMi would be added to Wl

in the load vector (Eq. 3.16)
correspondihg to joint i. The terms corresponding to joint j and to
the story shear equation would have (AMi) S/C added to them. The

reduced MPc values would have to be stored at each stage in the com-

putations to compute AMi.

3.8 STABILITY CRITERION

The limit of stability of a multi-story frame under gravity
loading is attained when the lateral deformations increase with no

increase of vertical load. Mathematically, this can be expressed as

P _ ' _
37 = 0 » (3.27)

A similar criterion can be developed for the incremental load proce-
dure. At the instability load, the incremental sway»defleqfion (84)
in the incremental story shear equilibrium equatioﬁ would increase

with no change in the incremental load. Equation 3.9 would be modi-

fied to omit terms containing 6P and 6H. For a stable. structure
8M > h 6pZTP (3.28)

This equation states that, if the frame is in a deflected, stable
configuration and a small lateral disturbance is applied, the in-
cremental restoring moments (TOM) must be greater than the added

overturning moment (hSpiP).
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In the computer analysis, a small increment of load is
applied.to the frame and a compatible set of incremental deforma-
tions is computed. if the incremental sway deformations are positive,
a stable deflection position is possiblé. If the incremental sway
deformations are negative, then thé frame instability load has been
exceeded. Points on the pnlgading portion of thé'curve c;n then be
obtained by uéing negative incremental loads. The accuracy in com-
puting the value of the frame instability load is determined by the
magnitude-of Fhe incremen;él load. If too large a value of incre-
mental load is used, an additional problem arises; In a real frame,
the instability load is gradually reduced as yiglding takes place.
In the eiastic-plastic anglysis, the frame instability load is re-
duced in finite increments with the introduction of each new hinge.
The frame instability load is usually reached when a hinge forms. If
the deteriorated critical :load is within the bounds of P + &P, then
the computation for the sway deflection will yield negative incre-
mental deformation values.for.both positive and negative load in-
crements. _The unloading portion of the curve can not be obtained

unless the load increment (8P) is reduced.

3.9 COMPARISONS WITH AN ITERATION SOLUTION .

A comparison is made for the frames shown in Figs. 3.10 and

3.11 between the load-response curves generated by the incremental
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. : 2.1
procedure and those from an iteration method. The solid curve in

. each figure is the result from the iteration method. The points are
from the incremental procedure. The dashed curve in Fig. 3:10 is a
second-order, elastic-plastic moment distriSution Solution..: 2 The
incremental procedure and the iteration method were formulated from»
slope-deflectién equations and there is a cldse correspondence between
them. The table at the top of Fig. 3.10 is a comparison of lateral

sway deflection (Ai) for the two slope-deflection formulations at a

load factor of 1.90. The correlation is extremely good.

The small discrepancies between the incremen;ai and iteration
procedures are caused by the techniques used to compute the loads at
the formation of a hinge. In the iteration method, small load in-
crements were used to approach the hinge. This tends to understate
both the load and deformation at the fdrmation of the hinge. The in-
cremental procedure used only one cycle of iteration to determine the
coordinates specifying a plastic hinge. Atlthe frame instability‘
load, the incremental solution for the frame in Fig. 3.10 had a de-
flection of 4.2 in. The iteration metﬁod-could not converge to a
point in this region. If the increment of load in the iteration me-
thod were smaller, this point could be obtained. The accuracy in the
incremental procedure could be improved by using more than one cycle

of iteration at a plastic hinge.
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4. DESCRIPTION OF TESTS

4.1 FRAME DESIGN

Frame buckling tests wére conductéd on the two frames

shown in Fig. 4.1, P:opoftionai loads were applied as indicated iﬁ
Fig. 4.2. The loads on the tpb floor_ﬁeré reduced to prevent plastic
hinges f;om prematurely forming in the top beams. Individual members
of the frame were_design;d-by plastic design procedures assuming that
the frame was braced.4'1 The beams were designed to fail by a beam
mechanism. The ‘columns were required to carry the axial loads andlto-
have a moment capacity that was just sufficient to satisfy the equili-
brium requifement at the bbttom sto;y beam-to-column connection. Al-
though the ultimate load was defined on the basis of strength as the
beam mechanism load, both Lhe beams and the columns were designed to

act at their maximum capacities.

Additional requirements were placed on the members and on
the frame geometry. The columns were to have a slenderness ratio‘of
. 40 and 45 for Tests 1 and 2, respectively. The column axiai load
ratio (P/Py) at failure was to be 0.4, and the ratios of member sizes
and iengths were to.appfoximate those of members in the top-stories
of multi-story f;ames, A trial.and e?ror pr;cess was used to obtain
the beam 1qngth; member sizes, and the loads. Difficulty was en-

countered because of the limited number of lightweight, structural
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shapes available. Other considerations were the cépacity of the load-
ing system, and the spacing of the anchorages in the test area! In
order to comply with all of the imposed conditions, the columns had

to be of A441 steel. The column section described in Table 4.1 was

a 4WF13 structural shape and it was continuous for the height of the
frame. The beam section was a 6Bl6 structurél shape of A36 steel.

The beam span, center-of-connection to center-of—connedtion, was

10 ft in both tests., The beam-to-column connections were designed

according to Section 2.7 of the AISC Specification. 1'5

In each of the tests, two identical frames were braced to-
gether to function as a unit and to be free of external restraints
(Figs. 4.3 énd 4.4). The lateral bracing connecting the two frames
was a 2 in. channel section (Table 4.1), and it wés designed to give
adequate lateral support to the beams and columns. The cross brac-
ing members were 3/8 in. diameter rods and.they were designed to
force the two frames to act as a unit. Préﬁature failure by 1ocai
buckling was minimized by choosing beam and column sections which
satisfied the b/t ratios used in plastic design undér the AISC
Specificat:i.on.l'5 Lateral torsional buckling of the column section
under axial and bending loads was not a problem sinée the columns were
braced. In addition, the section's KT/Ad2 value was such that the
full in-plane capacity could be achieved without the aid of lateral
bracing.a'1 Instability of the individual column members was not

anticipated since their slenderness ratios were low.
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4.2 LOADING SYSTEM AND TEST SETUP

Vertical loads were applied to the frames through the ten-
~sion jacks of the gravity load simulators. The simulators are shown
in an undeflected positibn in Fig. 4.4. The simulators were desighed
to allow the tension jacks to move freely with the frameras lateral
sway took plagé in the plane of the frame.a'2 Figure 4.5 shows the
frame and the siﬁula;érs in a defiected position. A common hydraulic
fluid hose line was connected to the'four tension jacks which applied
thg loads to the_middle'and.bottém floorbeams. The pressure in the
common hydraulic line for the two tdp floor jacks was regulated to be

approximately three-quarters of that for the other loading jacks.

The jack loads Qere distribute& by the tie rods to the ends
of the load beams (Fig. 4.3) and through them to the spreader beams,
Because of the common hydraulic hose line and the symmetry of the load-
ing system, a 1o§d from a-jack was divided equally to the two load
poinfs at the gnd of ghe spreader beam. The loading beam and spreader
beams for each story were pre-assémbled on the laboratory floor. Thg
alignment‘was done with a carpehter square and a measuring tape. No
further adjustments were required, since under preliminary loading
the diffgrences among the dynamometer readings for a particular story
were within the reading.acéuracy of the individﬁal dynamometer. Pins
were used in the connections for the tie rods and dynamometers and
the liakages forhed gave the 1oading'sys§eh additional freedom to move
laterally with.the Fest»frame. In a linkage under tensile load, the

point of load application will line up with the resisting point at the

opposite end of the linkage system.
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The test frames were bolted to the pin base fixtureé shown
in Fig. 4.6. The base fixtures were in turn bolted to the column
pedestals. The column pedestalé and gravity load simulators were
bolted to the test bed fixtures as shown in Fig. 4.7. These fix-
tures were held to the test bed floor by 2% in. diameter prestressed
studs. The vertical line of support for the'gravity load simulators
did not coincide with that of the prestressed studs of the column
pedestal. This caused a moment to be applied to the test bed.fix-
tures. The reéulting twisting caused a negligible amount of inward
movement of the column base fixtures. As a precautionary measure,
braces were welded between the column pedestals in Test 2. This mini-

mized the movement.

4.3 INSTRUMENTATION

Ihe instrumentation for the frameltests was designed to ob-
tain information concerning both the external and internal frame be-
havior. Transits were used to measure the horizohtallmoéement of
points along the outside face of each column. Levels were set up to
read the vertical motions of £he center of the beéms and of the beam-
to-coluQn connections. Dynamometers were u;ed to determine the loads
applied through each of the load points. The pressure gage readings

of the loading console also were used to measure the applied loads.
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Electrical resistance wire st;ain gage readings were ;aken
to determine the distribution of étrains at two croSs-sections.of each
beam and each column.lenéth. In the bottom story, four gages were
used at each cross-section lécatbn. At the middle ‘and top floor loca-
tions, two gages were used. .The anve_readings, along with 'data of
~ the material‘properties,_crdssjsectional geometry, and frame dimensions,
provided input to a computer program. The output consisted of axial
loads, shears, and distributions of moments along each of the members.

Equilibrium was based on the second-order theory.

Rotations of the pin bases.were obtained from readings of
mechanical ro;ation gages (Fig. 4.8). The rotations of the members
at the beam-to-colum; connections were obtained from electrical rota-
tion gages (gig. 4.9). Horizontal and vertical deflection scales and
a:strain gage location aiso can'be ébserved in this figure. Dial
gages measured the ipward hotion of the column pedestals. Records
of visual observations of mill scale flaking and other pertinent

data were kept.

4.4 FRAME ALIGNMENT

The column pedestals and pin bases were accurately set with
a transit and tape. The same procedure was used for the bases to which
the gravity load simulators were bolted. ‘The tops of the column ped-

estals were set level with a steel straight edge and a carpenter level.
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The distance between center lines of the column base plates had
lfabricatioh errors in both.test frames. For example, in Test 2, the
dimension between the two parallel frames wés 5/16 in. short and the
10 ft dimension between columns was 1/8 in. short. The corresponding
dimensions at the first floor level were accurate to 1/16 in. Rather
than bend the column legs to fit the accurately set column pedestals,

the column base plate holes were enlarged slightly.

The first test was conducted during the 1965 Summer Confer-
ence on "Plastic Design of Multi-Story Frames' at Lehigh University.
Time requirement and equipment usage did not permitrthe accurate align-
ment of the test frame. A plumb bob was used in measuring both the in-
plane and out-of-plane alignmenF of each of the columns. In the second
test, the frame was plumbed in the out-of-plane direction by inserting
long metal strips bet&een the top of the column pedestals and the
bottom of the pin-base fi#tures. The frame was plumbed in the in-
plane direction by inserting similar wedgesﬂbetween the top of thé
" pin-base fixtures and the bottom of the column base plates. A transit
was used to measure the initial out of alignment; The American Insti-

. .. . 1.
tute of Steel Construction in its '""Code of Standard Practice! states: 3

", ...In the erection of multi-story buildings
individual pieces are considered plumb, level
and aligned if the error does not exceed 1:500..."
This criterion was satisfied in both tests. However, the measured fab-

rication errors could be used to predict the direction in which the

frame would sway. In the second test, for example, two of the column
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tops were out of plumb to the north and the other two to the south.
_ The net effect was self-canceling. From an examination of the eccen-
tricities that existed in the lower stories, it was possible to

correctly predict that the frame would sway to the south.

4.5 MATERIAL AND SECTION PROPERTIES .

Frame members gf each shape size were rolled f:om the same
heat and ingot. The membefé were cold straightenéd by gagging. Ten-
sion tests‘were conducted on épecimens cut from lengths, arbitrarily
selected, from which the_teét;frames were fabricated. The values

from the tension tests are summarized in Table 4.2.

A beam bending test was conducted on a 6Bl6 section to ob-
‘tain the moment-curvature ielationship and to substantiate the plastic-
moment value computed -from the tension test data. Cross-sectional
prpperties were computed on the basis of measurements taken at loca-
tions along the members. These values, sﬁown in Table 4.1, agree
with the handbook values. The eccentricities in the cross-séctional
geometry were within the tolerance limits on rolling as outlined in

the AISC_Specification.l'5

4.6 FRAME LOADING

The loads applied through the tension jacks were controlled

at the load console of the hydraulic loading system (Fig. 4.10). The
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distribution of the loads on the frame is indicated in Fig. 4.2.
During the early stages of loading, pressure increments were set

in the top story jacks and then in the lower jacks. This was accom-
plished with two complete and separate pumping systems (Fig. 4.11).
The pressure level in the particular system Qas maintained through

a needle valve. In the later stages of loading, either a pressure
increment or an increment of horizontal deflection of the bottom floor
level was used as the load increment. The load ratio shown in Fig.

4.2 was maintained throughout both tests.

When the frame buckling load was reached, the frame lost
its ability to react against the constant pressure being maintained
by the hydraulic pumps; The frame moved laterally while the pressure
was being held constant. To obtain an equilibrium position, it was
necessary to quickly close the entrancg valve to each of the loading
jacks. The frame could not immediately resist the "locked-in'" pres-
sure and it continued to move laterally. Tﬁe beams continued to de-
flect vertically. Since the piston in the jack was being displaced,
the "locked-in" pressure was reduced. The-frame was then capable of
resisting the reduced pressure and an equilibrium position was ob-
tained in the unloading portion of the load-deformation response
curve. A ten to fifteen minute period was observed between the ap-
plication of a load increment and the taking of readings to allow

the frame to adjust to the plastic yielding and the lateral movement.
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5. EXPERIMENTAL RESULTS AND COMPARISONS WITH
THEORETICAL PREDICTIONS

5.1 EXPERIMENTAL BEHAVIOR

The load-lateral sway deflection curves for the two frame

buckling tests are shown in Fig. 5.1. The ordinate for the curves

B

is the corresponding load required to form a beam mechanism). The

is the quarter point load, P (non-dimensionalized as P/PB where P

abscissa (Ah) is the lateral sway deflection at the fifst floor level.
In Test 1, the ultimate load was well defined and two points were ob-
taingd'on the unloading portién of the load-response curve. In Test
2, only one point wa; obtained on the unloading portion of the curve.
The sway deflection for this point wés 1.98 inches. An exact value
of the ultimatevload for tﬁe second test was. not obtained. The maxi-
mum stable load obtained during the second test is indicated as

point 1 on curve 2; At this Iéad an increment of pressure, equiva-
lent to an increase of 1 kip in the load f, was applied to the ten-
sion jacks. The frame deflected and appeared to stabilize qﬁder the
~ increased pressure. A minute later, a reading of deflectiﬁn through
the trahsit showed that the~s§ay of the first floor was increasing
rapidlf., The frame instébility load ha& béen exceeded. The entrance
vaives for the loading jacks were immediately closed. The frame
came to the equilibrium position indicated at point 2. The ultimate

load for Test 2, which is listed in Table 5.1, is an approximation
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based on ﬁsing one-half of the final pressure increment. This ulti-
mate load is at the level indicated by the line at 3 in Fig. 5.1.
The arrow symbol from point 1 to point 2 is used throughout for the
results of Test 2 to designate that the maximum load point is not

well defined.

The load-response curves for both test frames are very
similar. The frame in Test 2 had more slender columns and therefore
had larger lateral deflections in the earlier stages of loading. At
values of P/PB less than 0.4, the curves are almost linear and the
sway deflections are negligible. For a working load ordinate of 0.6,
the sway deflec;ion for Test 2 is 0.10 inches. This is equivalent
to a bottom story column chord rotation of 0.0013 radians. This rota-
tion is less than the usual maximum working value of 0.002. For

values of P/P_ greater than 0.85, the sway deflections increase ex-

B

cessively.

Figure 5.2 compares the lateral sway deflection to thg ver-
tical beam deflection in Test 1. At a working load ordinate of 0.6,
the ratio of lateral sway deflection-to vertical beam deflection is
1l to 9. The sway deflection is relatively small. At the frame in-
stability load, the ratio is about 1 to 1. 1In the post-buckling
range,'both the deflections continue to increase even though the
quarter point load (P) is feduced. Generally, the shape and relative
"~ deformation of the two load-response curves correspond closely to the

frame buckling behavior described in Chapter 2.
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It should be noted that the sway deflection at the frame
instability load is equivalent to a column chord rotation of only
0.0075 radians. .This rotation is apprbximately 4 times the usual

working value of 0.002, and it emphasizes the importance of consider-

‘ing lateral stiffness in the design procedure.

The.significanf effect of yielding on the instability load
of the test framés is showﬂ in Fig. 5.3 and 5.4. The plastic moment
value indicated was computed from an-average stress obtained from
tensile coupon tests.an& a beam test. The first plastic.hinges
formed in each test at the load immediately before the frame insta-

bility_load. These hinges were located at the load point on the first

.floor beam and at the leeward end of the second floor beam. When

the frame instability load of Test 1 was attained, plastic hinges

had férmed at locations 1, 2, 3; and 4 indicated in Fig. 5.3. The
moments at fhe corresponding locations of Frame 2 (Fig. 5.4) indi-
cate a similar yield pattern. Thus, there was general yielding in

the beams when.the frames buckledf

While the above plastic deformations were occurring in the
beams, the load-response behavior of the méments at the ends of the
columns underw;nt a signifipant change. This is'indicated in Fig. 5.5
by the movements of the inflection points of the columns and the
general shifting of the beam moment diagramé in the direcfion of the

sway. (The formation of a plastic hinge is designated by a heavy line).
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‘The changes in fhelcolump mbmeﬁts and the yielding in the
beams are related through the equilibrium requirements at the beam-
to-column connections as in Figs. 5.6a and 5.6b. Curve i of Fig. 6a
indicates that at the frame buckling load a plastic hinge formed in
the end of the beam corresponding to joint A.. Prior.to this load,
the column loqations at 2 and 3 maintained jéint equilibrium by
supplying moments opposite in rotafional difection to the moment at
location 1. In the post-buckling range, the moment'at 1 did not change
appreciably and, as the column moment at 3 increased to maintain bottom
story shearlequilibrium, the column moment above the joint decreased in
order to satisfy the joint equilibrium requirement. Figures 5.5c and
5.5d show that a similar readjustment occurred in the columns at the

joint immediately above A,

At joint B, the beam moment at location 4 began to unload
at the load immediately before frame'buckling occurred. Prior to
this load, the moment at location 6 was opé;site to that required-to
resist the P-A effect in the bottom story. As the moment in the end
of the beam unloaded, the column moment aﬁ 6 also unloaded. By so
doing, it tended to maiﬁtain the required joint equilibrium while
also contributiné to Salance the P-A moment. The moment in the column
at location 5 increased slightly to satisfy joint equilibrium. A
similar behavior is also shown in Fig. 5.5c and 5.5d for the joint

above B.

The shear equilibrium requirement in the bottom story is

shown graphically in Figs. 5.7a and '5.7b. The line inclined at 45°
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represents thelequilibrium condition. Aléng this line, the algebraic
sum of the resisting end moments of the columns balances the over-
turning P-A moment. 'Inlarder to obtain a satisfactory balance, the
average initial alignment erfér for each frame (eavg) was added to

A in the P-A effect. The differenée between the overturning and re-
~ sisting moments, is equal to fhe distance between the two curves.
These differences tend to balance between frames of the same test,
The magnitude of the resulting errors ‘is less than the reliability

limit of the strain gage readings.

The moments in_the beam_ana'columﬁs in the bottom story
for the buckiing and posf-buckling portions of the curves are similar
to Fhose of a portaltframe-on.the verge of a combined beam-sway mech-
anism. The moments Qhere the hiﬁges would form in such a mechanism
are plotted in Figs. 5.8a and 5.8b with the sway deflectiqn as the
abscissa. The sway defleciioﬁ at the frame buckling load is indi-
cated for Test 1. The first signal to the approach of the frame
bucklipg load Wa§ thé unioading that took placé at location 4, 1In
the post-buckling range the beams had no ﬁomené change and the columné_
continued to maintain bottom story shear equilibrium. At thé last
load point of Test 1, a hinge formed in the éolumn at locafion 3. A'
mechanism would have_occurred; if an additional hinge formed at
eitherllocation 4 or at locﬁtion 5 of Fig..5,6.. The Mpc'value of the -
former location is 250 kip-inches, and at the latter it is. 285. Fig-
ure 5.9 portrays the frame from Test 1 in a deflected position.. Fig-
ures 5.10 and 5.11 depict the yielding that took place at joint A

and the beam load point.
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-The‘ove:all behavior of the two test frames was similar
with regard to both internal (Figs. 5.12a and 5.12b) an& external
behavior (Fig. 5.1). The impetus for the initial lateral sway de-
flection was the eccentricities that resulted from the fabrication
and alignment_procedurés. The sway.deflections increased as the
gravity loads were increased. -A general detérioration of 1ate;a1
stiffness resulted from yielding in the beams. " This preceded the

occurrence of the frame instability load.

-

5.2 COMPARISON OF THEORETICAL AND EXPERIMENTAL CURVES

A theoretical method for predicting frame buckling loads
has been proposed. Two frames have been tested and experimental
load-response curves have been obtained. The proposed method can
be validated by comparing the theoretical prediétions and the experi-

mental load-response curves for both external and internal behavior.

The theoretical and experiﬁentai curves for center-line»
beam defiection for Test 1 (Fig. 5.13a) and Test 2 (Fig. 5.14a) show
an excellent correlation. 1In Figs. 5.13b and 5.14b the theoretical
and experimental sway deflections of the first floor beam are com-
pared. ' The theoretical curves are those obtained by arbitrarily
setting o equal to 1/2 and to 1 percent. A direct correspondence
between the theoretical and experimental points should not be expected

because of the method of selecting o. The important requirements in
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the comparison are that

1) the general shape of the curves must be similar,

2) the theoretical curves must approach the experi-

mental curve as « approaches zero, and

3) the theore;idal buckling load should give a good

prediction of the experimental frame buckling load.

The experimental and'pheoreticél frame buckling loads for
the two test frames a;e.listed in Tabie 5.1. The theoretical pre-
dictions were computed by the limitiprocedure illustrated in Fig.
2,10. Thé percent errors between the theoretical fraﬁe buckling load
and the experimentaliultimate-1oad for Tests 1 aﬁd 2 are 2.4 and
2.8 pércent,respectively. Requirement 3 is satisfied. The curves
in Figs. 5.13 and 5.14 show thaf requirements 1 and 2'are satis-
fied by the exte;nal load;fesponse functions. Simi}arly, Figs. 5.15
and 5.16 show that these requirements are satisfied by the internal
load-response functions. The theoretical and experimental curves
have the same shdpe and in the limit, aé & approaches zero, the

theoretical curve tends to approach the experimental curve,

~The only difficulty-to mar’this otherwise close correspon-
dence islin the order of the hinge formation. The differences in the
magnitudes of the loads at the hinge formations are minor; The
theoretical solufion shows that hingeé form almdst Simu1t5neously at

the ends of the beams, as indicated by the 1 and 2 on the curves of
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Fig. 5.13b. The third hinge forms at the first floor ioad point at
the frame instability load. The maximum value at location 5,'using
the limit technique, would be 0.85 Mp. The fourth hinge fofms at

the last load point. There are two principal causes for the differ-
ence between the theoretical and experimental ordér of hinge forma-
tion. One is the elastic-plastic, moment-curvature assumption in the
theoretical analysis. Using this assumption, a section is either
elastic or plastic. At the formation of a plastic hinge, there is an
abrupt change in the load-response function. Between the formation
of plastic hinges, the structure reacts elastically. - In an actuél
structure, the yielding is gradual and there is'é corresponding de-
crease in the lateral stiffness. Since the inelastic behavior is
affected by the residual stresses from rolling, fabrication,rand
erection, the yielding will first begin at a load lower than theore-
tically predicted and possibly not at the initial hinge location
theoretically predicted. The second cause for the difference in the
pattern of hinge formation is that in the theoretical analysis o is
assumed to be equal for all floors whereas the resulting>eccentricity
between the various floors are not equal. A change in the assumed
value for o from floor to floor can alter the distribution of the
moments throughout the frame, the load at which the first hinge forms,
and the order of hinge formation. To obtain a better prediction for
the order of the hinge formation, a theoretical solution would have
to predict the above inelastic behavior and consider the resulting
eccentricities of the structure. As previously stated, this does not

seem to be practical with the present (1967) computer technology.



276.18 ' ‘ ' _ -57

5.3 DISCUSSION

The method proposed for computing the frame buckling ioad
recogniies in the limit'procedure that eccentricities exist within a
framé. It does not at any stage.in the analysis try to evaluate them
but rather approximates their effect by a small lgteral load applied
at each floor_ievel. A justification for the positioning of these
lateral loads haé been made. -Thgbframe buckling load is obtained by
having the value of the propqrtionaliiy constant (@) of the small
lateral loads, or equivélently the reéuiting eccentriciﬁy at each
floor level, approach zero. Within.this limit approach, the corres-
pondence . between thé théoretical and experimental load-response curves
is good. Thé theqregical-prediction for the expérimental frame buck-
ling loads is excel}ent. Thesé two tests, élthough limited‘in number,

verify the proposed method.
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6. ANALYTICAL FRAME BUCKLING STUDIES

6.1 INTRODUCTION

The limit procedure for obtaining inélastic frame buckling
loads will be used to develop frame buckling curves and to study the
changes in frame buckling loads caused by varying some oﬁ the struc-
tural parameters. The frames to be used in the analytical study are
basically the same as the test frame shown in Fig. 3.1. The two
frames for which there is experimental verification of the frame
buck}ing loads will be incorporated, when possible, into the analy-
tical studies. . The results from the analytical studies, although.for
frames reduped in size, are applicéble to frames found in practice. A
comparison is made in Table 6.1 between the parameters of Test Framé
1 and thoée of a frame, similarly designed; under a light manufactur-
ing type loading. The agreement between the parameters is good, and
therefore the relationships developed by the studies can be imple-

mented in design practice.

6.2 FRAME BUCKLING CURVES

6.2.1 Variable Column Length

The variable in the frame buckling curve of Fig. 6.1 is the

column length. The abscissa for the curve is the column slenderness



276.18 : -59

ratio (h/rx). The ordinate of the curve is the frame buckling load,
which is non-dimensionalized by the beam mechanism load. The frames
are loaded at the quartér points of the beams. For low valueé of
\column,slendernéss, the frame buckling load approaches the beam mech-
anism load as an asymptote. For the usual range of column slende?-
ness values found in the top storieslaf multi-story buildings (30 to
50), there is a gradual reduction in the beam mechanism load of 5 to
10 percent with increasing‘slendérness ratio. The correspon&ing load
factors are 1.61 to 1.53. These compare to a ioad factor of 1.70 for
the beam mechanism load. Beyond a slenderness value of 50, there is
a rapid reduction in the beam mechanism load caused by frame buckling.
The reason for this reduction can be seen in the load-response curves
(Fig. 6.2) which were developed in the computation of the frame buck-

ling loads.

The load-response curves of Fig. 6.2 are for an « of 1/2
percent. The numbers along’the curves refer to the hinge locations
on the frame and indicate the load at and the sequence of hiﬁge forma—
tion. Thé column slenderness values (h/rx) are indicated for the in-
dividual curves. For low values of column slenderness, Ehe initial
slope of the load-response curves is relatively steep. There is a
general yiélding in the beams and an increase in load occurs between
the formation of the first hinge and the frame instability load. For
column slenderness values of 50 and greater, there is ‘a large reduc-
tion in the slope of the curves during the early stages of loading.

The values for the frame instability loads are lower and they coincide
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with the formation of the first hinge.. At values of column slender-
ness of 70 and above, the frame fails in the elastic range. The
transition is one from inelastic to elastic frame instability as the

column slenderness ratio increases,

' There is a close similarity between the frame buckling
curve (Fig. 6.1) and the buckling curve of a pinned-end column. The
~ load-response curveé for o equal to 1/2 percent indicate that, as ip
a column, there are three buckling ranges; an inelaétic frame buck-
ling range, an elastic buckling range, and a transition range. The
boundaries for these ranges are not fixed but are dependent on the
frame parameters. For the curve in Fig. 6.1, which was developed for
the specific frame shown, the inelastic frame buckling'rénge applies
to columns with slenderness ratios less than 50. The elastic frame
buckling range is for columns with slenderness ratios greater than
~70. The transition'range is fo; columns with slenderness values

from 50 to 70.

The concept of effective column length can also be con--
sidered in connection with frame buckling. The free-body in Fig.-6.3
shows the columns in the bottom story of a frame. The columns are
restrained by rotational springs, which simulate the effect of the
restrajnts provided by the members framing into the respective con-
nections. The column tops are forced to sway as a unit and therefore
the individual column cannot beisdlated in describing the'sway be-

havior.
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. Fdf co1umﬁs with slenderness‘ratios less than 50, the ini-
tial lateral sway of the frame is small. In the eariy stages of
loading, the effective léngth of the columns is rélatively constant,
As the loading increases, the lateral éway and the effective column
1engthsbincrease. As yielding takes place in the beams, the rotational
restraint provided by the béams to the columns is reduced. The spring
moduli, Bl and BZ’ are not conétants but are decreased by yielding.
This results in a rapid increase in the effective column lengths.
The problem. becomes furthgr in&Olved.because tﬁe reductions in Bl
and 52 are not the same, aﬁd thus the effective lengths'pf-the columns
are not eéualh One of the columns will reach an effective length and
support ioads at which an elastic column having the same effective
length would buckle. The.column with the larger effective length
becomes unstable and exerts a lateral pull through the beam on the
other qolumn,  The lateral sway increases and both éffective lengths

are further increased. Failure of the frame occurs thereafter.

The'doncept of effective length tends to errsimplify the
behavior but it does indicate that there-are two principal factors
involved in determining fhe shape of the frame buckling curQe. They
are the column length and the beam restraint. The effective length
of the columns is increased Sy reductions in the rotational restraints
of thé supporting members and by changes in_the geometry caused by
the lateral sway of the frame. These are interrelated through the
column slenderness. For very slender columns the lateral sway in-

creases rapidly, even in the early stages of loading. The effective
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length similarly increases until failure occurs without any yielding.
For columns with slenderness values found in the transition range,

;hé initial sway is relatively large and there is a corresponding
change in the-effective column length. Yielding occurs and the re-
straints provided by the beams are reduced. Frame ;nStability occurs
immediately upon this reduction in the rotafional restraint;..The
overall behavior is controlled by the column slenderness ratio. Yield-

ing accelerates the changes in the effective column length.

6.2.2 Effect of Beam Yield Stress

If the yield stress of the beams is increased while the
other parameters are held constant, the frame buckling load will in-
crease. The increase in the beam yield stress allo&s'the rotational
restraints provided by the beams to the colﬁmns to éemain elastic at

higher values of load. The curve for the frame buckling loads (Fig.

6.4) shows this increase,

Howevgr, there is a corresponding increase in the beam
mechanisg load. - The non-dimensionalized frame buckiing curve (Pcr/PB)
shows a slight decrease for increasing beam yield stress. The increase
in the beam mechanism load, which is linear, is more rapid than the
increase in the frame buckling load. The load-response curves in Fig.
6.5 show that, after the second hinge has formed in:the,frames, the
columns with the higher axial load (Fy = 42. ksi) haye a smaller remain--

ing load capacity. The stability effect in the colpmns is responsiblé

for the slight decrease in the non-dimensionalized curve,
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The frame with the load-response curve corresponding to a
yield stress of 42 ksi, has a plastic hinge form in the column at the
frame instability load. ‘The column was designed to carry the axial
load and to balance the moment equilibrium requirement at the bottom
story beam-to-column cdnnection. The plast@c moment capacity of the
beam was. incregsed 20 pe;cedt without a corresponding increase in the

column size.

6.3 DISCUSSION

| The:results of the studies indicate that there are three
important parameters in a‘frame buckling analysis. They are the
column slenderness ratio, the rotational restraints provided to a
column by its suéporting members, and the strength of the individual
beams and columns. These paraméters are interrelated through the
design methods»used in obtaining the member sizes. The method of
column design determines whether a column-behaves elastically or in-
e}astically at the frame buckling load. An ideal situation is for
plastic hinges to be on the verge of forming in the colﬁmns when
frame buck1ing.occurs. If a hinge forms ptior to this, the effec-
tive length of the particuléf column is greatly increased and the
remaining columns invthe story wili be more.heavily streséed in re-

sisting the additional overturning moments.

Considering strength alone, the ultimate load for the

frames. in the studies is the beam mechanism load. The numerical
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values of the frame buckling loads by themselves are not too signi-
ficant. They should always be compared to the design ultimate load
(beam mechanism load) of the frame. If this is not done, incorrect

conclusions can result,

In the frame bucklieg studies of this chapter,_only pinned-
base frames have been considered. If a base condition other than
pinned is used, the effective length of the»column in the bottom
story will be decreased and the frame buckling load will be in-
creased. Also, the frames considered in this chapter were loaded at
the quarter-points of the beam. The frame buckling ioad will be in-
fluenced by the position of the loads on the beams. The effects of
the changes in base support and the load position will be examined

in subsequent chapters.
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7. - PRIMARY BENDING EFFECT

7.1 INTRODUCTION

The studies of frame buckling for building columns fall
within the inelaStic.frame bucklihg‘range. Any factor that affects
the restraints provided by the beams.to the columns will cause varia-
tions in the frame buckling 1oads. An important factor is the posi-
tioning of the transverse lqads on ﬁhe beams or the primary bending

effect.

The primary bending effect will be studied for a three-story
and a six-story building frame( These frames are basically the same
as those of  the previous gtudies. The column section in the bottom
three stories of the six-étory frame is a 5WF16 structural shape of
A441l steel. It is deéigned on the same basis as the columns of the
th;ge-story fréme. " The axial.load and the moment equilibrium require-
ﬁent,at the bottom story beam-to-column connection control the column

size.

-~ Two concentrated loads will be symmetrically applied about
the centerlineof eaéh beam in the frame at a distance (a) from the
cenﬁer of the connections. The variable in the study will be the
distance (a), non-dimensionali;ed by the beam length (L).‘ Values of

a/L smaller than 0.20 will not be considered, since the deformations
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of the frames are computed assuming that the effects of the shearing

forces are negligible.

7.2 PRIMARY BENDING MOMENT

7.2,1 Three-Story, Pinned-Base Frame

The effecf of the primary bending moment on the inelastic
frame buckling load is shown in Fig. 7.1. As the two concentrated
loads are moved toward the center of the beam, therevis a reduction
of over 50 percent in the value of the frame buckling load (Pcr)'

The primary bending moment then has a significant effect on the in-
elastic frame buckling load. This reduction varies directly with

the increases shown in the curve for fixed-end moments (MF). " The
ordinates of this curve were computed for two concentrated beam loads
of 10 kips each, positioned at a distance.ka) from the fixed-ends of
the beam. The relationship between the reductionsin the frame buck-

ling loads and the increases in the fixed-end moments is made more

clear by the load-response curves in Fig. 7.2.

The load-response curves show the general yielding that
occurred prior to the frame instability loads. 1In the early stages
of 1oading, the lateral sway deformation was the same for all of the
frames. The fixed-end moments for P equal to 10 kiﬁs were shown above
to vary widely with the position (a/L) of the two concentrated loads

on the beams. Hence, the distribution of the moments within the
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framés‘varied_considerably, even though the elastic sWay deformations
of the frames were equal. At arload.(P) of 10.3 kips, yielding be-
gan- first in the frame with an a/L value of 0.5. The first hinge
formed in the frame with an a/L value of 0.2 at a load of é&.l kips.
The difference in the initiation §f yielding is directly related to
the fixed-end moments or‘tobthe primary bending effect. Previously,
it was shown that the effectivé column length was significantly
affected by a reducfion in the rotational restraint provided by the
beams. Here, it is shownlthat the primary bending effect is directly
related ‘to the yielding ana go the reduction in the rotation restraints.
The primafy bending then has a direct effect on the inelastic frame

buckling load.

The numerical reduction in the frame buckling loads caused
by the primar&:bending éffect is quite large. However, if the buck-
ling load for each frame is non-dimensionalized by its beam mechan-
ism load, a different result occurs. Both the frame buckling curve
and the non-dimensionalized curve are shown in Fig. 7.3. The frame
(a/L of 0.5) with the largest reduction in the numerical value for
the frame buckling load has no reduction in the design,ultiﬁate load
(beam mechanism load) caused by frame buckling. The frame (a/L of
0.2) with.the,highest value for the frame buckling load has a 15 per-
cent fedUction in the beam mechanism load. The variation in the beam
mechanism load with a/L is also shown in‘Fig. 7.3. As a/L gets smaller,
the beam mechansim load increases more rapidly than the frame buckling
load. Thié accounts for the reversal in conclusions as to the deleter-

ious effect of primary bending and again points to the importance of
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comparing the value of the frame buckling load with the design ulti-

mate load (beam mechanism load).

7.2.2 Six-Story, Pinned-Base Frame

The load-response curve for the six-story frame (Fig. 7.4)
has a general yieiding pattern similar to that for the three-story
frame. For most values of a/L, an extra hinge forms in the six-story
frame at location 3. The load on this beam in the three-story frame
was reduced to force the initial yielding to occur further down in

the structure and not at location 3.

The effects caused by the increase in the number of stories
are evident. There is a reduction in the frame instability loads and
a much smaller increase of load between the first yielding and the
frame instability load. These effects are caused by an increase in
the overturning moments, ZPi (Ai + ei), dﬁé to the greater number of
stories. The overturning moments directly affect the column moments,
and through the connections of the frame directly affect the beam
moments and the rotational restraints provided by the beams to the

columns.

The variation of the frame buckling load with é/L (Fig. 7.5)

is generally the same for the six-story frame as for the three-story
frame. The largest difference between the frame buckling load values

occurs for the frames with a/L of 0.2. As the a/L ratio increases,
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the difference between the ordinates of the curves decreases. Fig-
ure 7.6 shows the non-dimensionalized curves for the three and six-
story frames. As the a/L ratio approaches 0.5, both of the frame

buckling curves approach the beam mechanism load.

1

7.2.3 Variable Beam Length

The curve for Pcr in Eig; 7!7 shbws the changes in the‘frame
buckling load of the three-story frame caused by varying the beam
length. As the beam 1ength‘increasés, the frame buckling load de-
cfeases._ In the preceding sections, this reduction was related to
the fixed-end moment'(MF)»or fhe primary bending effect., In this
study, the fixéd-ené moment,incfeases with the beam iength and there-

fore the frame buckling load decreases.

The load-response curves (Fig. 7.7) show the general yield-
ing that preceded the.frame-ipstabiiity loads. At the higher values
of loéd, the differences in the slopes of the ‘load-response curves
caused by.the variable beam lengths become discernable. At a load
(P) of 18 kips, the lateral deformations of the frames are approxi-
mately the same. The fixed-end moments (MF) shown in Fig. 7.7 are
for a load (P) of 18 kips.. They vary 1iﬁear1y ﬁith the beam length.
At a 1oadvof 19 kips, the first hinge forms in the frame with tbe
longest beam spaﬁ_ Yielding_first oécurs in thé.frame with the short-
est beam span at a load (P) of 24.4 kips. Thus, the reduction in

rotation restraint is again related to the fixed-end moment, and the
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reduction in the- frame buckling load is directly affected by the

primary bending.

When the frame buckling load is compared to the beam mech-
anism load (Fig. 7.9), the resulting non-dimensionalized curve
(chTB) is almost horizontal. The reduction in the beam mechanism
ioad is 8 percent. The dashed curve (PB) in Fig. 7.9 gives vélues
of the beam mechanism load. 1Its variation is similar to that of the
frame buckling load (Pcr)' The sim?larity causes tﬁe non-dimension-
alized curve to be almost horizontal. It should not be expected that
the curve will remain horizontal for values of beam lengtﬁ outside of

the range studied.

7.2.4 Constant Relative Stiffness

The frame buckling curve (Pcr) in Fig. 7.10 is for a con-
stant ratio of beam stiffness (IB/L) to column stiffness (IC/h). The
beam and column lengths are varied but their ratio is maintained at
a value of 0.575. As the beam and column lengths increase, the frame
buckling loads decrease. These reductions can be related to the fixed-
‘end moments (MF) in Fig. 7.7 and, as in the preceding sections, the

reductions can be shown to be a direct result of the primary bending.

The load-résponse curves in Fig. 7.11 show the primary bend-
ing effect in relation to the yielding in the beams. Yielding occurs

first in the beams of greatest span. The yielding causes a reduction
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in the rotafional restraint provided by the beams to the columns
~and thus directly affects the frame buckling load. An additional
factor in these gurVes ig the varying column length. It varies
directly with the beam length. The column length affects the over-
turning’moment and results in load-response!curves of different

initial slope.,

The frame buckling loads in Fig. 7.10 are non-dimension-
alized by the beam mechanism loads of‘Fig. 7.9. The point corres-
ponding to a beam length of 10 feet ié common to the noﬂ-dimension-
alized curves of Figs. 7.9 and 7.10; For beam lengths less than 10
feet, the column lepgths of Fig. 7.10 are shorter than those of Fig.
7.9. This-réduces the overtufning effect and results in a small
relative increase iﬁ the non-dimensionalized value of the frame buck-
ling loads in Fig! 7.10. For beam lengths greater than 10 feet, the
column lengths increase and there is a relative reduction in tﬁe non-
dimensionalized value of the frame buckling 1oads; The variations in

.the non-dimensionalized values caused by the changes in column lengths
numerically are small but if.they‘arg compared to the average reduction
in the ultimate load of 8 percent, the variations-become moré signifi-

cant. .

7.3 DISCUSSION

Primary bending has a significant effect on inelastic frame

buckling loads. A reduction in the frame buckling load of over 50
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percent was obtained in the study of Article 7.2.1. The primary
bending or fixed-end moment was shown to be related to the initia-
tion bf yielding in the frame. The yielding caused a reduction in
the rotational resfraint provided by the beams to the columns and a
corresponding increase in the efféctive length of the columns. As
the valué df the fixed-end moments increased, there was a decreasé

in the values of the frame buckling loads.

The study reemphasized the importance of comparing the
value.of the frame buckling load to the design ultimate load (beam
mechanism load) of the frame. This caused a reversal of the initial
conclusion as to the.deleterious effect of the primary bending. The
effect on the frame buckling load caused by chénges in the column

length, which was considered in the study on constant relative stiff-

ness, was found to be small.



276.18 ' o =73

8. PARTIAL BASE FIXITY

8.1 INTRODUCTION

In this study,hthe'bgneficial effect. that partial base
fixity has on_tﬁe buckling load of a frame will be examined. In the
previqus=analyses, fhé frames were édpported on pinned-base fixtures.
It was -assumed that a pinngdrbaée provided no rotational restraint to
the frame¢ .A.sﬁpporf éondition of tﬁis type can be approached with a
carefully machined;.baliﬁbearing mounted,vcolumn-base fixture.. How-
ever, in_bﬁilding practice a'pinned;Base support is usually con-
structed by.settingvthe anchpr'Bolts of the column base plates on a
line coinciding“with the.bending.éxié qf the EOlumn. Rotational re-
straint is inherent in this type of construétion'but its bengficial

effects are hsually assumed to be negligible.

The effect of partial base fixity will be evaluated by ob-
tainingulbadrresponse curves and non-dimensionalized frame buckling
curves for the basic three-story and six;story frames. They will be
*suépérted-on*bases with'rotagional restraint. The variable in the
study:wiil be the modulus (B) of the rotational restraint provided
by the building foundation. The partial base fikity can ‘be repre-
sented gréphically (Fig; 8.la) by a rotational spring at the base of
each column. The 5pr£ng stiffne;s (B) is assumed to be equal for all

columns.
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- The degree of restraint provided by a building foundation
is defined as the ratio of the partial base restraint moment to the
corresponding fixed-base moment uﬁder the actiop of a unit momeﬁt,
which is applied to the opposite end of the column.8'1 In Fig. 8.1b,
the fixed-end moment (Mi) is % of MB. In Fig. 8.1lc, the partial-base
restraint moment (MA) is equal to -BGA. 'The moments at A and B in

Fig. 8.1lc can be expressed as

_ ~ EI EI

MA—C—L eA+s——L eB (8.1
_ ~ EI EI

L eB+s—L 0, , (8.2)

GB can be solved for in Eq. 8.2 and substituted in Eq. 8.1 to yield

2

EX S S” EI
WECT e T % ®.3)
. MA
Substitution of MB =1, C=4,8 =2, and 9A = - 5 gives
1
M, = 2 (8.4
s TS EL I )
L B
The degree of restraint (eB) is
M
= A— 1 .- . .. PRI
BT 1esE 1 ®-3)
. A L B '

For a fixed-base condition, the modulus (B) is infinite and the degree
of restraint (eB) is equal to 1. For a pinned-base support, B ile |
and €y is 0. A graphical relationship between the degree of restrainﬁ
(eB) and the modulus of the rotational resfraint‘(B) can be seen in

Fig. 8.4.
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Qﬁarter-point loading will be used in the étudy since
there is'expefimental verification for the three-story frame with
pinned-base support~(eB = 0). Also, tbe study on the effect of
primary_bending showed that frames with low values of a/L had the
largest reductions- in the design ultimate or beam mechanism load.
Using low values of a/L then will provide a bettef measure for the

beneficial effects of partial base fixity on the frame buckling load.

8.2 THE EFFECT OF PARTIAL BASE RESTRAINT

8.2.1 Three-Story Frame

The,effecf of the degree of restraint on the load-response
curves is -shown in Fig. 852.- The foundation modulus (B) varies from
-a pinned condition (B = 0) to a fixed condition (B = ®). The numbers
at -the end of:each curve refer to the order of hinge formation, and
also correspond to the points on the curve and to the hinge locations
in the-frame. For low values of the.foundation modulus, the'yielding
patterﬁ iﬁ the beaﬁs is the same for all frames. As the value of the
foundation mﬁdulus increases, the lateral stiffness of the structure
or the load pef unit of sway deformation increases. At high values
of the fpundatiop modulgs, the 1oad-;esponse curve éends to approach
that for the fixed-base frame and the frame instability 16ad approaches

the beam mechanism load. Yielding becomes more general in the beams
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of the frames with these high values of foundation modulus. Beam
mechapismSwOCCur in the bottom two beams of the frame with the fixed-

base support.

The effect of partial base fixity on the non-dimensionalized
frame buckling .load is shown in Fig. 8.3. There is no reduction in
the design ultimate load of the frames when the degree of base re-
straint is greater than 0.4. For values of degree of restraint ‘less
than 0.4, the reduction in the design ultimate or beam mechanism load
is almost linear. For a modulus value of zero (pinned-base condition),
there is an 8 percent reduction in the design ultimate load caused by
frame buckling. This variation is shown to an expanded scale in Fig.
8.4. A comparison can be made at any ordinate between values of the
foundation modulus (B) and the degree of restraint (eB). There is a
tendéncy with the latter abscissa to linearize the variations of the
.non-dimensionalized frame buckling load. Both éurves show a large
increase in the frame buckling load for small changes in the abséissa

at low values of rotational restraint.

8.2.2 Six-Story Frame

The load-response curves (Fig. 8.5) for the six-story frames
are similar to those of the three-story frames. The numbering system
used for the order of plastic hinge formation is the same as that in

Fig. 8.2 with the exception of locations 7 and'8. 1In the six-story
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frames the yielding progresses further upward in the frames since

there is no physical restriction placed by a limited number of stories.

At higher values of the foundation modulus, the instability
effects are also forced upward in the six-story frames. 1In the frame
with a modulus value of 50,000 kip-in. per radian, frame.instability
occurs after second hinges have formed in the beaﬁs of the bottém two
stories. 1In the'fixed-base frame w;th a modulus value of infinity,
the insfability occurs even higher in‘the frame. A second hinge does
not form in the bottom beam. Sécond hiﬁges form. in the two beams im-
mediately above the bottpmibeam. Tﬁese hinges are shown in Fig. 8.5
at loéations 5 and 6. The rotational restraint provided by these
_ beams to the adjacené columnsiis reduced to zero and the frame be-
comes unstable. Thé effect of the reduction in the fotational-re-
straint provided by these beams is shown by the curve for sway de-
flections. The curve is ﬁlotted to the right of the frame. These de-
flections are for the. load at which a plastic hinge forms at location
6. A sﬁarp increase in the column chord rotation can be observed in
the fourth and fifth floor columns. This is a.direct result of the
reduction in the rotational restrainﬁ provided by the beam in which
hinge number 5 occurred. When the hinge forﬁs at location 6, f?ame

instability results.

The non-dimensionalized frame buckling load curves for the

three-story and the six-story frames‘are shown in Fig. 8.6. There is
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a reduction in the beam mechanism load of 8.5 percent for the six-
story fixed-base frame (eB = 1.0). There is no reduction for the
three-story fixed-base frame. As the degree of restraint is reduced,
the reduction in the design ultimate load of the frames is increased.
This reduction increases rapidly for values of €q less than 0.4.

The reduction in the ultimate load for the six-story pinned-base
frame (eB = (0) is 25 percent. The slope of ‘the curve in this region

again indicates the beneficial effect of even a small amount of base

rotational restraint.

8.3 DISCUSSION

The two types of column base supports usually employed in
design practice are the fixed-base and the pinned-base support.
Neither is attainable in actual practice.n-The non-dimensionalized
curves of Fig. 8.6 indicate ghat the changes in the frame buckling
load, which are caused by variations in the foundation modulus (B),
for values of B appfoaching the fixed-base condition are not signi-
ficant and that a fixed-base assumption is reasonable. For va;iafions
in the value of the foundation modulus near zero, the changes in the
non-dimensionalized value of the frame buckling load are significant. -
A-pinned-base assumption then is too conservative. The problem that
ariges-with the pinned-base support is the computation of a value for:

the effective foundation modulus. This is a function of the column-

base  support, type of foundation, and the soil cbndition.s'2 Additional
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research is required to evaluate the interaction of these elements

in obtaining an effective modulus for the rotational restraint.

The results of the studies in this chapter show the bene-
ficial effects of partiél base fixity. In the study on primary bend-
ing, the largest reductions. in the deéign dltima;e load oécurred for
smail-valuesldf a/L (0.2 and 0.25). The latter value was used
“throughoutdthisrchapfer. In all of the studies the beneficial effects
of cladding were assumed. to be negliéible. The effect of the cladding
is to increase the frame buckling loéd.. Based on the curves that were
developed in this chapter, it w0u1d-appear tha£ if a fixed-base sup-
port was designed.for a single-bay frame and a small cladding effect
was assumed to.be p?esent, tﬁen frame buckling would not causé a re-

duction in' the désign ultimate load (beam mechanism load) of the frame.
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9. - INTERACTION BETWEEN FLOORS

9.1 INTRODUCTION

In Chapter 8, the beneficial effects of partial base fixity
on the frame buckling load were examined. This study was limited to
buildings of a few stories that were supported directly on the found-
ation. An additional area in which frame bﬁckling occurs is the top
stories of multi-story frames. The top stories are not supportéd.on

- pinned-bases nor can their supports be represented graphically by fo-
tational springs. Instead, there is a complex relationship between
the top floors and the structure below., The rotational restraints
provided to the top stories of a buildiné frame vary with the applied
load. They are at their maximum value when loads are first applied.

As the load on the frame increasés, the rotational restraint decreases.
This reduction occurs first through the agial load effects in the

columns and then by the inelastic behavior in the supporting members.

The variable support condition will be approximated for the
top three stories (Fig. 9.1) of a multi-story frame. The lateral de-
formation at the base of the coiumns in the third story will be pre-
vented. The sway of the top three floors will be with respect to this
level. The beam at the fourth-floor level will be under the same 1oa{d_

ing pattern as the beams in the floors above. The rotational restraint
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provided by this beam will not be constant since the-beam will under-
go elastic-plaétic behavior. A'major difficulty arises in adequately
approximating the'behaviof-of the restraining columns. It will be
assumed that the rotational restraint provided by these columns re-
mains eléstic, that the bases of the columns.are pinned, and that the
stability functions of the columns in the third floor are applicable

to the restraining columns in the fourth floor.

Three studies will be made on frames with the assumed vari-

able support. The three-story and sixksfory frames studied in the
chaptef on primary bending will be réexa;ined.. The variable will again
be the a/L ;atio but' the base support will be provided by the variable
resfraint. ‘The frame'in the third study wiil be under uniform load-

ing. The variable in this study will be the number of stories in the

frame.

9.2 VARIABLE BASE RESTRAINT

9.2.1 Three-Story Frame

The load-response curves for the three-story frames with a
variable base restraint are shown in Fig. 9.1. The numbers to the
right of the curveslrefer to the formation of plastic hinges and to
the spacing (a/Ll) of the two concentrated beam loads. Beam mechanisms
form in the bottom three floor beams of the frames with a/L values of

0.4 and 0.5.
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As in_;he;previous chapter on primary bending, the elastic
~ deformations are the same for all frames and yielding first occurs
in the frame with ghe largest fixed-end moment (a/L = 0.50). The
framé with én a/L value of 0.20 has the smallest fixed-end moment.
It behaves elastically to an applied load (P) of 24 kips. The rota-
tional restraint provided by the beams to the columns in this latter
frame remains elastic through é.broader load range and hence its
frame instability load is higher. It should be noted thaf the in-
elastic behavior of the variable base restraint is also affected by

the primary bending.

The reductions in the frame buckling load due to the pri-
mary bending effect can be seen in the frame buckling curves of
Fig. 9.2. As the values of a/L increase, the values of the frame
buckling load (Pcr) decrease. The fréme buckling loads for the
pinned-base frame are shown for comparison. The increase in the
frame buckling load caused by the variablelbase restraint is meaéured
by the differences between the ordinates of the two frame buckling
curves. The non-dimensionalized curve (fcr/PB) for the variable base
restraint shows no reduction in the peam mechanism load for a/L
values greater than 0.3. These curves further indicate that a pinned-
base assumption for the supports of the top stories in a multi-story
frame is too consefvative and that the reStraints which are present

give a significant increase in the frame buckling load.



276.18 . : -83

9,2.2 Six-Story Frame

The load-;esponse curves in Fig. 9.3 are similar to those
of the three-story frame (Fig. 9.1). The effect of the primary bend-
ing can be explained in'the,samé manner as was done in Fhe previous
chapteré. ‘The frame buckling curves in Fig. 9.4 give a comparison
between the ffamés_ with a variable base restraint and those with
pinned-base supéortsL The differences between the curves show the.'
effect of the base ?estraint. The cﬁrves in Fig. 9.5 compare the
non-dimensionalized fféme'buckling curves for the threg_and six-story
frames with the variable base suppért, The difference between these
curves is due primarily to the difference in the number of stories.
Thesé curves indicaée that ffame buckling is not a serious problem
in the first threelor four stories of a multi-story frame. fhe small
reductions that might be present would bg eliminated if even a small

cladding effect is assumed to be acting.

'9.2.3. Distributed Load

The frame buckling studies to this point have been for
framesvwith two concentrated.loads on each beam. In this study, the
frames will be loaded with.a distributed beam 1§ad which is equal in
magnitude to the two concentrated loads. The effect on the frame
buckling load céused by an increase.in the numBer of stories will be
examined. The frames in the study will have the same member sizes

as those in the previous studies. All of the frames will be supported
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by the variable base.

The load-response curves for the frames are shown in Fig.
9.6. The number of stories (n) in the frame is indicated to the
right of the curves. The column sections are continuous for three
stories. The SWF16 column section is designed for loadg and moments
at the sixth-floor level. It has excess capacity when used in the
-four and five-story frames. This is di$cernab1e in the order of
hinge formation. The hinge in the column at location 3 for>the
four-story frame occurs at the frame instability load. 1In the five-
story frame, it occurs after the hinge forms at locafion 4. 1In the
six-story frame, it forms before the hinge at location 4. The effect
of the numbe; of stories can be seen in the slope of the load-response
curves. The overturning moment is a function of the number of floors.
As the number of floors (n) increases, the slope of the curves de-

creases.

The non-dimensionalized frame buckling curve in Fig. 9.5
has the same shape as the buckling curve-(Pcr). The beam mechanism
load is a constant. There is very little reduction in the ultimate
strength of the frame due to frame buckling. The reduction of 6.5
percent for the six-story frame can probably be eliminated by a

small cladding effect,
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9.3 DISCUSSION

The non-dimensionalized frame buckling curves indicate
that the reduction in the beam mechanism load for the majority of
the frames in the study'is minor and could be compensated for by a
small claddipg effect. Frame buckling then is not a serious problem
in the top stdries_of multi-story frames. An exception to this is
the‘six-story ffamest(Fig. 9.4) with small values of a/L. These
frames had the higher values for fraﬁe buckling loads, but when the
values were non-dimensionalized by the beam mechanism load, the re-
sultihg ratios indicated a significént reduction in the design ulti-

mate loéd>of the frames.

A study is required to determine the story level at which
the combined loading, gravity loading plus wind, governs the design
of the members of fhe frame. When this has been determined, 2 more
definitive statement can be made as to the detrimental effect on
the design ul;imate ioad of the frame due to frame buckling in the

top stories. of multi-story frames.
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10. SUMMARY AND CONCLUSIONS

A method is presented to compute inelastic frame buckling
loads for multi-sto?y building frames. Small lateral loads are ap-
plied at each floor level to represent the effects of the initial
eccentricities within the frame. The small lateral loads are pro-
portional to the loads on the floorbeams. A value is assumed for
the proportionality constant and a frame instability load is computed.
The frame buckling load is defined as the limit of the frame insta--
bility loads as the value of the small lateral loads bf initial eccen-

tricities approach zero.

A computer solution is written to compute inelastic frame
instability loads. A second-order, elastic-plastic léad-response
curve is also generated in thé computations for éhe frame instability
load. The points én the load-response curve are obtained by an in-
cremental procedure. The incremental procedure has an_advantage over
the iteration method in that the unloadiﬁg portion of the load-response
curve can be obtained. The incremental formulation also considers_
the.reduction in the moment capacity (Mpc) in a column due to in-
creases in the axial load of the column after a plastic hinge has

formed.

Frame buckling tests were conducted on two, three-story,
single-bay frames. The comparisons between the load-respone curves

of the test frames are good. The frames have load-lateral sway
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response curves similar in shape to those of the anticipated frame
buckling curves. The ratios of ghe lateral sway deflectionufo.ver-
tical beam deflection af working load for both tests are small.
Frame bﬁékling>causes a reduction in the design ultimate load (beam

mechanism load) of 9 and 12 percent in Test 1 and 2, respectively.

Comﬁarisons are made between the experimental re;ults
and the théoretical éredictions. In the limit as the small lateral
load approaches zero, the theoreticai load-response curves tend to
approach the ekperimental curves. The predicted frame buckling
loads aré within 3 percent of the uitimate loads from the frame

tests.

Apalytical studies examine the changes in the frame buck-
ling load caused by varying>some of the structural parameters. These
studies afe for single-bay multi-story frames. The studiés show
the important effect of the column slenderness ratio, the rotational
restraint proyided té the columns by the supporting mémbers, the

primary bending moment, and the strength of the individual members.

The studies show that the frame buckling problem can be
divided on the basis of column slendefness ratio into three ranges;
the inglastic frame buckling range, the elastic buckling range, and
the transition range. The significant factor in the elastic buckling
range is the colﬁmn sienderness ratio. 1In the inelastic buckling
range, it is the inelastic behavior in the members of the frames.

Since building columns have low values of slenderness ratio, multi-
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story building frames are included in the inelastic buckling range.
In this range the changes in the frame buckling load caused by varia:<
tions in the column slenderness ratio are small. The important
paramete% is\the rotational restraint providéd to the columns by the
supporting members. These rotational restraints are significaﬁtly

reduced by inelastic behavior.

The effect of the primary bending moment on the inelastic
frame buckling load is examined by varying the position of the loads
on the beams. The primary bending effect is related to the initia-
tion of yielding in the rotational restraints of the columns. This
causes an increase in the effective length of the columns and thus
directly affects the frame buckling load. When the load-spacing
variable (a/L) is changed from 0.2 to 0.5 (Fig. 7.1), the frame buck-
ling load is reduced by 50 percent. This shows the significant
effect of the primary bending. When the frame buckling loads are
compared‘to the design Jltimate load (beam mechanism load) of the
frame, an unexpected result occurs. The frame with the lowest value
for the frame buckling load has no reduction in the design ultimate
load. The frame with the highest value for the frame buckling load
has the biggest reduction in the design ultimate load. The value
of the frame buckling load in itself is not too important. It is
only after the frame buckling load is compared to the design ulti-

mate load that reasonable conclusionscan be made.

The rotational restraint provided by the foundation to the

frame is examined. The results indicate that if a fixed-base support
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is désigned for the frame studied, frame buckling is not a problem.

" If a pinned-base support is designed, then frame buckling must be con-

sidered. The frame buckiing load is not sensitive to changes in-the
foundation modulu; for quulus values approaching the fixed-base con-
dition._ For values approaching the pinned-base condition, small changes
in the foundation modulus cause relatively iarge changes in the frame
buckling load. Neither of these extreme support conditions can Be
fully attained in construction practice. Based on the results of the
study, a fixed-base design assumption yill give a reasonable value for
the fréme buckling load, whereas a pinned-base assumption will give a

value that is too conservative.

Frame buckling in the top stories of single-bay multi-story
frames is also examined. The rotational restraint prévided by the
lower stories to the top stories is approximated. The studies show
that a pinned-base assumption for the support of the top stories is
too conservative.. The reduction in the design ultimate load in all
but two of the frames in the study indicates that, for single-bay
frames of less than seven stories, the frame bdckling problem is minorr

and can be compensated for by the effect of the cladding.

In general, the analytical studies for the buil&ing frames
indicate ﬁhat, if a proper base restraint is used, the reduction in
the beam mechanism load caused by frame buckling is not significant.
Additional studies are required for multi-bay frames and to determine
the number of stories at which the combined loading will govern the

design of the members.
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Table 4.1 Section Properties.
: I S Z
: : X X

b d t W b/t d/w r r 4 3 3 f

Section in, in. in. in. - - int  in. in. in. , im. -
Nominal 4.060 4.16 0.345 0.280 11.77 14 .86 0.99 1.72 11.3 5.45 6.3 1.16

4W13 3

Measured 4.090 4,145 0.345 0.284 11.85 14.60 1.01 1.717 11.316 5.461 6.265 1.15
Nominal 4.030 * 6.25  0.404 0.260  9.97 24.04 0.96 2.59  31.7 10.1 11.6  1.15
6B1 | ’ .
6 Measured 4.051 6.232‘ 0.379 0.285 10.69 21.87 0.941 2.56 31.10 9.98 11.525 1.15

_2 2.3 Nominal 1.0 2.0 0.187 0.187 5.4 10.7 0.30 0.75 0.38 0.38 -- -

16-
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Table 4.2 Data from Tension Tests
Specimen a . . Est oult Elong.
Section No. ksi: y st © ksi ksi %
1 F* 51.0 .00194 .0190 425 73.7 24 .4
2 Wk 49.2 190 216 396 71.5 21.8
3F 50.9 195 238 422 73.2 24.5
4 W 13
4 F 50.7 192 220 430 72.6 23.4
5W 49.5 185 190 370 71.4 23.0
6 F 50.6 183 228 453 73.2 25.4
1 F 35.0%% 00125 .0209 635 - -
6 B l6 2 33.6 122 192 550 - -
3 35.5 120 234 - - -
*F = flange
*W = web
**oy = 33.2 ksi (beam test)
Table 5.1 Buckling Load Summary
Test Frame Number '1 2
Beam Mechanism Load, PB 27.2 27.2
Ultimate Load, PU 24.8 (24.6)
Ratio of P /P, 0.91 0.88
Frame Buckling Load, P, 24.2 23.9
Percent Error 2.4 2.8
Table 6.1 Comparison of Frame Parameters
L L/d L/xy
Member Section or or or P/P / I_/I IL/I.h
h h/d o/, y MPB MPc e e
T
E Beam 6 B 16 10.0 20 46
S 0.37 1.25 2.78 1.58
T Column 4 W 13% 5.75 17 40
D
E Beam 16 B 31 24.0 18 45
S 0.31 1.35 2.54 1.27
o Colum 8W40 12,0 18 41
Ny .

*A441 Steel

-92
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12. APPENDIX

EXAMPLE 1. SINGLE MEMBER

There are two geometric reference systems for the de-
flected member in Fig. 3.1. One is with respect to vertical and
horizontal coordinate systems and the other is with reséect to the
line joining the end points of the member. A kinematics matrix (A)
relates the displacements (A) in the general system to those in the

member system (8).

e = A A

8. . 1 1 9,

ij i
= 0. (A.1)

0 : j

ji 0 1 1 -p

The minus sign used with p is consistent with the positive moment
convention in Fig. 3.1. The member stiffness matrix (k) is written
with respect to member coordinate system. The individual terms can
be obtained directly from the slope-deflection equations or any

basic method of structural analysis can be used to develop them.
S = k e

Mij [C s] eij
_EIL
M.l TFs cl e (4.2)

3 ii



276.18 ) _ -94

Considering only first order effects, the stress vector

(8) above can. be related to the nodal force vector (W) by the statics

matrix‘(C).
W = c S
M 1 0 M.,
i i
M = 0 1 M., A3
! i (A.3)
HLJ . 1 1
It can be seen that A = CT. The stiffness matrix in the general co-

ordinate system can be developed by the standard transformation

K - AT K A
C S C+S fi o [c s] [1 0 ‘1] ,
s c c+s | = o 1| ls ¢l lo 1 (A.4)
lc+s  C+s  2(c+S) 11

where each side is multiplied by a scalar term (EI/L).

EXAMPLE 2. TWO-STORY, SINGLE-BAY FRAME

The stiffness matrix will be developed for a two-story,
single-bay frame in whiéh there is no a#ial shortening of the members.
The members and nédal points of the frame are systematically numbered
in Fig. A.1l. The kinematic matrix can be developed by applying a unit,
positive deformation to each of the nodal displacements while fixing
all of the other displécement terms. The kinematic matrix is the
effect on the member displacement terms due to the isolated unit nodal

deformations.
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o . = . A &
[6,,] 1 0 0o 0o o o o0 07 [e]
8, 0 1 0 0 0 0 0 O 0,
0., 1 0 1 0 0 0 0 0f [P,
8,1 o 0 1 1 0 o0 0 o] 0,
8,5 0 1 1 0 0O 0 o0 O 0, (A.5)
0,1 = o o L 0o 1 0o 0 of [P
0, 0o 0 0 1 0 0 0 O 0,
o, 0o 0 o o 1 0o o off 684
0, 0o 0 o 1 0 1 0 O
0., 0 0 0 0O 0 1 1 0
®5g 0 0 0 0 1 1 0 O
_GBSJ L o o 1 ]

The member stiffness matrix will consist of terms on the
diagonal. The individual term is expressed by Eq. (A.2). The terms-

must conform to the member order used with ©.

k = k (A.6)

The resulting matrix is 12 x 12. Since EI/L will not be the same

for all members, this term cannot be factored from the matrix.
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Equilibrium is used to develop the relationship between the

member stress vector (S) and the nodal force vector w).

W c

‘Ml T o 1 0 0 o 0 o
M, 00 1 0 0 1 0 o o
Hhf 00 1 1 1 1 o o
M o o o 1 0o 0o 1 o
M, 0o 0 0.0 0 1 0 1
Hbhl 0 0 0 0o 0o 0 o o
M, 0O 0 0 0 0 0 0 o
M o 0 0 0 0 0 0 0
|8 1 L

0 0 o0 O (Ml;‘

0O 0 0 © ﬁZl

0 0 0 0 M14

1.0 0o o0 M.41

0 0 1 of|M

1 1 1 | 1 M52

0 1 0 o M45

0 0 o 1M

54

M7

M4

Msg

LMS 5

The stiffness matrix of the structure can now be developed

by the transformation K = AT k A. To conserve space, the EI/L term

in each element of the matrix is not shown.

that there is no member shortening, the chord rotations (p) for all

columns in any story are equal.

Since it is assumed

25

A.7)
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K = A kA
I ]
€, s, (CHS), S, 0 0 0 0
S, (C,¥C,) (C+8), 0 S4 0 0 0
2(C+8)
C48)_  (CH8), +2(049), (C+8) (c+8), 0 0 0
S, 0 (C+S),  C_CHC, S, ©+s), s, 0
K =
: 0 s, (C¥8), s, CytC ¥,  (©+S); 0 S¢
2 (C+S)
0 0 0 (C+S) (c+8) (C+8)  (C+8) .
e +2(C+8) ¢
0 0 0 S 0 (Cc+8), c, ©
| o 0 0 0 S (C+S) 0 Ce
(A.8)

Study of this matrix will show that the largest terms are on
the main diagonal and that there is a great amount of symmetry abous the
diagonal. Instead of reading in the member stiffness and kinematic
matrices and then performing the above computation, storage space can

be conserved by directly building the above matrix.
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13. NOMENCLATURE

A Kinemafic matrix
AT Transposed kinematic matrix
c Statics matrix
Ck Carr§-over factor
E Modulus of elasticity
St Strain-hardening modulus.
Et _ Tangent moduluS-
H Horizontal load
I Moment .of %neftia
K Stiffness matrix of a system
K* ‘Incremental stiffnesé matrix
L Beam length

Member length

-

M Bending moment.

MB Moment at the bottom of a column

MF Fixed-end beam moment

M,ij ' Moment at the i end of member ij

Mji Moment at the j end of member ij

Mp Plastic moment

Mpc - Plastic moment reduced for axial 1oéd
MT Moment at the tép of a column

P Axial load, concentrated beam load

P Beam mechanism load

-98
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Buckling load

Euler buckling load

Tangent modulus buckling load

Ultimate lqad

Yield load

Stiffness factor

Stress matrix

Elastic section modulus, strong bending axis
Member incremeﬁtai stress vector

Load matrix

Beam mechanism load
Buckling load

. , .th
Distributed load, i . beam
Nodal incremental force vector

Plastic section modulus, strong bending axis

Distance to the concentrated load
Flange width

Depth of section

Increment of load

Initial eccentricity

Eccentricity between i and i+l floor
Shape factor

Column height
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Member stiffness_matrix

Number of stories

Radius of gyrafion, strong bending axis
Radius of gyration, weak bending axis
Flange'thickness

Web thickness

Proportionality constant

Foundation modulus

Sway deflection

Nodal incremental displacement vector
Increment of sway deformation

Strain

Degree of base restraint
Strain-hardeniné strain

Yield strain

Rotation of ith connection

Rotation of jth connection

Member incremental deformation vector
Chord rogétion of column 1ij

Finite summation

Stress

Maximﬁm compressive residual stress
Ultimate stress

Yield stress
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14. FIGURES



276.18

08

-102

8 W I7 (no res. siress)
"
8"x 4"x }‘ )
8 W 31 (residual stress o= 0.30,)

06
~ M %¢ [lnnw,.aﬂ]]]
:‘Mp %t %
04
Assumed Residual
Stress Pattern
0.2 o
el
Ort
0 1 1 | [ 1

Fig. 2.1 Moment-Curvature Relationships
LOPAD, | A
IB F T \G G‘
| [e
[ -
| P
| P - Ay
e /
2 A
ol

SWAY DEFLECTION, Ay,

Fig. 2.2 Frame Behavior



-103

276.18
P
5=0.3
Py
P
==09
Py
8 W 31
M h
My 40
%re
?;=O 3
Symmetrical Double Curvature Case
1 - 1 (] (|
o] 0.0l 0.02 0.03 0.04 0.05
68 (Radians)
Fig. 2.3 Beam-Column Behavior, Double Curvature
| o - ’,— ________ —_— /_. ......................... p—
.i /~~-
| =~
i / —= £-03 P
08 i ‘
: i ‘ M
! I
] |
0.6 | ]
M| |
Mpc l
04 :
|
|
: M
0.2
: , P
Symmetrical Single Curvature Case
0 . 1 1 ] 1 1
0 0.0l 0.02 003 0.04 0.05
8 (Radians)

Fig. 2.4 Beam-Column -Behavior, Single Curvature



276.18

LOAD

-104

First -Order, Elastic

Second-Order, Elastic

Simple Plastic

Bl

First -Order, Elastic -Plastic

Second-Order , Elastic - Plastic

DEFLECTION, Ap,

Fig. 2.5 Load-Deflection Relationships



276.18

Fig. 2.6

~105

P -— a
4
p
i (a)
A A An
) P .,
‘ — b
P
4 (b)
. A By
{ p .
i — 2
P
i (c)
A A By
}
A =
P
r———i———q (d)
.y y.. A

Tangent Modulus Frame Buckling, No Hinge Unloading



276.18

Wi

w2

W3

[

Fig. 2.7

Tangent Modulus Frame

-106
W
Ay
- =\b
w -
7
|
Ay
W —_ b .
— " -
2
|
Ap
w b
—_— C
Tl N
-d
Ap

Buckling, Hinge Unloading



276.18

ACTUAL FRAME
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