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,A B S T RAe T

Plastic analysis of steel structures depends on the ability

iii

of the members to ,form plastic hinges, and to redistribute moments. In

order for redistribution of moment to take place, certain plastic hinges

must sustain thei-rplastic ,moment through some angle of rotation. The'

amount of rotation required may affect the stability of the structure

and, therefore, may affect the geometry of the structural shapes selected

and the spacing ,of lateral bracing. The ability of a structural member

to rotate the required amount in order to redistribute the necessary

moments and form a mechanism is defined as the "rotation capacity".

The angle of rotation during which a yielded segment of beam-must sustain

its plastic moment value is termed the ,"hinge angle".

This dissertation deals with a method of calculating the ap=

proximate hinge angle through which a member must be able to rotate to

forma mechanism. The method of solution is based on the assumption that

the complete bending moment diagram for a structure can be obtained from

a routine plastic analysis. The method is based on the further assump=

tion that, when a structure has reached ultimate load and formed a

mechanism, the length of the yielded zones at each plastic hinge is

zero. This makes it possible to calculate rotations; slopes and deflec-

tions by methods of the theory of elasticity, accounting for the plastic
"

hinges simply by changing the boundary conditions to allow for the



,
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n~cessary freedom to rotate. In this dissertation, the method used

to calculate rotations, slopes, and ·deflections is an adaptation of

the classical elastic slope-deflection method •

. The problem of calculating the required rotation capa,city.of

a structure is examined in three steps:

1) Calculation of the ultimate load and ultimate moment

diagram•

. 2) Location of the first and last plastic hinges to be

formed in the structure.

3) Calculation of deflection and .rotation,by using the

slope-deflection equations and consiclering boundary

conditions appropriate for a structure in the plastic

range.

The .study is aimed at the determination of the rotation capa­

city of multi-span gabled frames. However, the theory is developed in

simple stages and covers a three-span continuous beam and single-

span portal frames as the basic steps in the method are illustrated.

The new work ·of the dissertation is primarily concerned with steps

(2) and (3) of the.above method. Multi-span frames are solved by

separating the frames into ,single span elements called subassemblages.

Then the results of the rotation calculations for single-span frames
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are used to advantage. Specia.l treatment is given to finding the

locat~,on of the last plasti,c hinge in multi-span frames. In treating

this problem~ the concept of a self-supporting subassemblage containing

the last plasti.c hinge and non-self-supporting subassemblages, which

rely qn adjacent spans for part of theitsupport, is introduced. Arr,

interesting discovery In the study of multi-span gabled frames was that

it was possible, under certain eases of loading, to form mechanisms in

which ,the roof deflects upwards causing negative work to be done by

the roo f lo~ds.

Using the results of the theoretical studies, some typical

structures are designed as illustrations and their required rotation

capacity is compared with the actua,lrotation measured in some exper­

imental tes ts.
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10 IE. TRO Due· T 10 N

/
Recent developments in the plastic analysis of 'Steel frames

and their component parts have presElntedamo:rcera.tional basis on..which

to design weldedcorntinuous structures 0 Methods based on. these devel-

opments give promise of economies to be gain,ed by takin.g advar.tage of.

the reserve of strength of structural-steel beyond the .elastic limi.t,

Plastic analysis supplemen,ts t1l.eclassic .elastic theory by

utilizing k.nowledge of the behavior of structural steel beyond the

elastic limit 0 It is known that the sartle property of ductility which

allows defOl....mat ion without additional load of a tension or' compression

member, wHI also allow a flex.ural .member, stressed to a limiting "moment

(designated as the plas.tic hinge moment) to bend or ;rotate without

additional mO'lllen,t. . The ability of ap1llstic hiJ\lg'eto .maintain a

con~tant mOm¢nt while rotating through a finit~.a.ngleallows a structure
. . 0 .

o~me~bertot trans'fe:t:' additional increasing ldiadto other less-stre'ssed
" I

I "
portions of the structure until sufficient plastic hinges have formed

to cause the struct.ure or a portion thereof to b~come amephaniSm.'· The's'e

two properties are known as the plastification of 'cross section and

redistribution of moment 0 While plastification ·ofcross sectic)nand

redistribution of moment ,are the two primary factors invo~"ed in the

plastic analysiS of structures , cellotainother factolrs affect plastic

behavior ~ and at times cangoveru. the plas.tic analysis or design 0 )\xial

,,
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compressive forces and shear forces combined with bending ,moment tend

-2

to reduce the plasti.c hinge moment of a given structural membe.r ~ However,

axia.l loads less than. 15% of the compressive yield load of a member, as

are most common in rigid portal frames", reduce the plastic hinge moment

1only a small amount and may be neglected •. Tlle usual shear forces in

a normal balanc.ed design are also small enough so that the plastic moment

is not seriously reduced. When the shear forces are large, they occur

in a section of steep moment gradient which generally "allows strain

4hardening to produce a c.ounteracting effect.

T1:!.e presence of .residual stresses due to cooling, welding or
l'

cold bendin.g ten.ds to reduce the yield load of a structure. Ina com-

pressji.on member, the maximum load is also reduced; but in .a member

subjected to bending only, the predicted plastic hinge moment is usually

achieved. 20

The factors just mentioned affect the magnitude of the plastic

hinge moment but have little influence on the ability of the member to

ab;sorb plast~c rotations. Other factors may affect not only the plastic
\

hinge moments \but also the ability of the secti.on to rotate thus modi-
\ .
\

\

fying the redistribution of moment. These other factors are brittle

fracture, local buckling and l,'ateral buckling. In structures which

have thus far been investigat~d, brittle fracture has not proved to be

of concern because careful welding procedures and inspection, and the use

of satisfactory materials for the temperatures encountered prevented'

, 5
brittle behavior. Th~ occurence of prema.ture local buckling can

be prevented by selecting shapes of the proper geometric proportions~,9

Lateral buckling also may be prevented by
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19
provi.dlng p.:!'opell'b;raC'.ing .tothe membex:s. It l8 e'",ident ~ .t'..hen~ .thi9.t

proper'attenti9IllII!'llst be paid .to the pos'slbili,t.yof bl1:ittl~ f7fac.tu,l:e ~

local buckling ~ . and latei!'<al ,buc.kling to asslU~es:uffi.eient stTrain q:r

rotCl..tion to pe:nnit'!'edist;r:Lbrution of moment: •

.Thelre is no ,siu,gle ariswe" as .to how muchstreainoll' .rotation

of a plagUe h:i:nge isrequiizedto allow amecna.p;i!:l'm'to f01!:'m..The 8.ttain-

ment ,of ~tra.:i.n hill'den.ing ha.s alrbltrarily be'en.selected a.s ac!!:'lte~.ion in

the pr:e.v:i.ou:Slymen.tionedstudieson,localand lat.E!ll:albu~kling.Th'e

~bilityo,f.a, plastieh,i.ngeto "otate at 07r 'near .thfa .maximummoment has

b · ' d' fi d ' . ... · 1 ' .' . 'it 18een, e ne as;f.,1}~a one,apae, . y.

This pape.1;will p,:r:esentmethods' f01r.ca,lc·uLat.ing .the rotation

q,ap,acity .:r:equi.E:'ed to al1o~..amechanism .tofo!.'1ll i.D. astlfu'C~'lI'e and will

, gi.v.e ,results foif.' some.spe,cific cases. . The o,bj.e:ct of the study :i.s

act~,ally two-fold-~ne aim 4; to discQYelt'methods ofcal..(:.ula.ting ,thE!

:r;ota.tioI1'.s whic.hmtlstb'e 'sus,tain,edfqr the calculated 'maximum 10M to .be

attained. The second aim is to detennine if some m~imum amount of

requ.irced '!'o,tation .capacit.y ma'y .be ,spec.ifiedfoll:givfangeomet7fical and

loading .condit.iortswhich.will not be .exceeded in .anystructu~e'S9 that

a..de'sign ,lrl!.1lemay hese,typ .'eliminating the rie:ce:s$ity .of calcula:ti.ng

.the l!'equi1fedlro.ta.ti:on$.~ .Tlw latte'rgoal is de;sirablebecause thecal;"

'culation of deflec.t:i9ns: andlrptatio~:s f01reven .the simplest of s.t'!'Uct·ulres

i,stedious and to .be avoided l£ at· allpos·s:i.bl,:e.

Essel1tiallythe plr()blemof calcula.tingthell:'equtlt'ed rotation
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capacity is one ·of calculating the deformation at ultLm~te load. This

problem .ma.y be examined as if :I.t.were broken. iT.!1.to t.hree di.l3tirict steps:

(1) Calcula.t:1.on .of the ult:l:mate lO8l.d and. 'Ult.imate momen.t
diagram.

(2) Location of th,e first and last plastic hinges to be
formed in the structure.

(3) Calculation. of deflection androtatio?'il by solving
the differential e'quation for the CUl!."'\TatuJre of
bendirAg members considering bound~y condit.ions
appropJriate fOJr a.st~uctuJre in the plastic range.

This study is primarily aimed at the determ:tnationof the

\~equired. X'ota.tion of multi-span gabled frames. However ~ the development

of the theory is cazoried 01\lt in several stag'ss, usl:rrg examples of simpler

structures to iUus.trate the progress at ·ea.ch .stag~. Tb.llS~ the methods

of defining limits of types of mechanisms and location of first and last

plastic hinges, as well ass.imple calculations of hinge angles ~ are first

shown for a three-spa.'1lcontinu·ous beam. Then, a study of single-'span

portal frames is carried o~t to indicate the met.hodof handling problems

involving ,structurces with s!desway. . Thesolution.of problems of mulU-

a.pan frames is· a.ccomplished by s·eparating. them into .subassemblages.... . The

'co'tu~ept of self-su.pporting andn:on;-self'sUPll'o.rting .l3ubasae:mblages is

':introduced with the probleinof flat:'roofed. multi-span fr.ames. An. additional

:type.ofmecha.nism, designated as a.mrevers.e"l mechanism) is studied in

tne final phase concerning .multi-span gabled frames.
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2. P flY S I C,A LSIG,N IF I,.CANe E

o F R.O TATrO NS

Before making actual calculations oftherotat:ionsof

st1:U'ctureS, it may bl; helpful to visualize thebehav:io,r 'of astrdcture

in forming amechanismund~~theaction of stea.dily in~'!'easing pltopmc;."

,tional loads.

,The illustrative ,example, to be u'sed in this cha.pter is a

three-span beam case ,as'showni'l1 Fig.2.1. For the pre'sent ,suppose that

a ,mechanism,wouldfQrm in the main span with the fix-st plastic hinge at

the interior ·suppo,rts. (Fig 2.2)

Th'e actualmotnegt-curv&.turebehavtorof ,a typical wide-flange

shape such ,as mightbeu?ed for this beam is shown' diagrammatically in

Fig 2.3. This Cl.i:ii:'Ve shows the elastic range"t1:le in.itial inelastic

region (showing ,the'effect of residual stresses) ,the gradual t,ransition

,fromyieldi.ng int~e: ,flanges to the completeplas,tic hinge, and/fInally

t1l:es.tr.!lin.,.hardeningr~ge. ,Thi's curve and the factqrs that ,affect it

have been fully di13cu'ss'ed in literature on the subJect ,of plastic beht:tvior. 1

Forthepurpos.e ofsimpl,:ijfyingcal.culations, assump,tions of

behavior in an idealizedI11anner will be uS,ed iuthis development. ,The

,mat¢rial in ,the b'eaIll' ,will ,be assum.ed as aduc·tile mate,rial having the

ldealizedstress-straincurve shown in Fig2A, Le." strain-ha.rdening

:and the upper yield point will be n;eglected. ,As a furthe'li:' assumption,

the *0 curve will be used in ,the idealized form .shown in ,Fig 2.5. In
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..

l

In the first pb:a:s:~.·ofthefot:matio.n...of amechanism~.the'complet¢

beam would .beela.s.tic.l'hedeflected shap'eofthe beam ,would be a£'iUlly

conti.:n,uous smooth.curiie. .'The .shape of .the l::'.la;stic. CY.11i.-Ve over support B

would be as shoWn, in Fig .2.6a. Note that the slope at th.e 'support 1,3

th~ sa:mein.e'ach span. .The 10ad-de£1ectioncurve f9:!' the beam in this

first phase would .be asshowndiagramatical1y by curve I in Fig 2.7 and

2.8. Increasing the loads un.til the maximummome'n:ta,tB reached'Mp:

would .cause apla:stic hinge to fonnatthat point. ruthis condition,

theculr:Vature{j1 ofpq:tnt Bwouldnotbe uniquely dete.nn1ned by the

moment•. Th.e CUi!'Viature could be the equivalent: ·ofpoi-ntA .inFig ,2.5, in

,which case the beam ,would look like Fig 2.6.a.,at the joint~,or the cur ...

yaturca could be 'theequiyale.'n.tof anyoth'eJl" 'point on lineA,B in Fig .2.5.

'.I'11.'en the'beam .wo.uldh~v:e a discontinuity at the joint as in Fig .2.6b.

In .acase likethi&~th'¢.slope at the j'oint is not the same in. each span.

Since the amount q£di~.continuity is not \lniquelydetermi,n'ed by the

moment at the hinge~ it must ,be govern.ed by t.he.behavio1l."o£otherparts

bfthe st1l."Ucture.

Becausethethltee"'span beam is an ind'eterminate 'structure ~

format.ion .of the fizost plastic hinge would not create' am.echan.ism.

However~ the folt'mation o£this plastic hingeWdu1dintroduce a: "know.n"

momen'tintothe pictulCe, the1t"ebyremt>vin,g .the indeterminacy. (BeC$.ls'e

..
~ :
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of symmetry, plastic hinges would fo:rm at the two inte!'supports simul-

taneously.) At this stage~ the remainde.rof the length of the beam would

still .be bent: i.nsmoothcu~e·s, and .the three spans could be considered

as sepa.:tate simple beams loaded. as shown in. Fig 2.9. Except fox local

conditions caused by yielding. at the supports, these sPa4s wO'uld be

piecewise continuous and satisfy the condi.tions which penuit the slope

anddef;lection to becalcula,ted by standard elastic methods • The.refore,
. ;

the end slopes .at the interior supports could h.ecalculated and the angle

of discontinuity detemin.ed.

On inc:rreasing the loads proportionally, the changes in moments

in the three spans would be those of simple beams, because the end

moments .Mp wouldrema.:in constant. .This is the phase of loading in ..which

redist!:ibutionof moment t.akesplace. The load..deflecti,on curve due to

this increment of loading would be as showndia,granimatically by curve II

in Fig 2.7 and 2.8. Eventually~ the center of themai~spanwollidhave

its moment increased to Mp •. Then thecurva.ture 0 at that pointwo:uld be

undefined as in th'ecase of the first hinge. Howeverc,_ at the precise

instant the momentreach.edMp, the M-:-0 relationship would .be theequiva.­

lento£ poi.nt A in Fig 2.5. This stage in. the behavior of a structure

is very impOr.tant beca.use. H is the la;ststage at which a solutiorim~y be

obtained for the slopes and deflections of the st:ruc.ture.It isa18.0

.the stage at which the ulti.mate load of the·structu-re has been. reache'd.

Considering .the deflect~d shape of the beam at this same stage, it is
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a.ppal:'¢n.tth~tthe truceespa.:.is< would still.1>ebent i.n sInoothCi;~:!'"<t~s.b.e~n

the. ·supportsandt.nat .thespall'swo~ld,satisfy t'Thr¢ .cfxn.d.lt.ic,j;1LS wh:tch~~l1;OW

,~lop'e. anddefle,ct:1.onto .bec,alcula.t~dbyela.s::tiC:m6r'thods.'!h.is wou:ld.

i~rmit theca:l~lationofthe"hinge angleU whtch :!.·$'.. the m,~in.obje~\/::i·,i7~'

of thiS' 'study. Th;i.:Jc~:1::t.ical hinge angle i~ .the .a.i:lglethrQughwhichthe.
I , ""-.' ' - .

first plastic: ~ing'eniu·s.t 'rot~te up t!) the insta~.,t that the last plastic:

hinge just ..begirtsto fODIl. TPe imp'o1t".tance ofthb a,ngle is. eviderhl::w.h:en.

it isre'alizad that if the. computed value: cannot ,b¢reac.hed, the str:u:ct~re.

mayxwt.be. able to carry the predictedultim.ate load. on ,which pla$tic

ana1.ysis 'isba,sed"

Althol,.lgh~'stnrctT:.iJCe.plas.tically desigm:~d ,ii'Ijj:"",ld n(l)tbelCe:qui'll:~d

t,o defonn,:fuzef:he.rafterforma;tionof ,the lastplastlc hinge, ,con'side.jt"'­

ation of its behayioZ' in ,:this range iswoli:'thwhil~ becalrS:e it 'sheds some

.light on the virtu;a-ldisp:la:C'6me:':1'.t~tho'dofdeterm:L:n.itig.ultimate load.
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At this po:lut it may ,be well to di$tLngt.itsh betw~en .t.h.e "I'llope .

an.glesi' and the u.h.i:uge angle'S" wh.ich have be:endis:C"a.l,:s;sedi£J,bove and the

" mechanismangles" which8.J!'.e. 'used to deteICml.ne the ultimate load of

s'l:]l'Uctures by th'ey:i:Irtu:a-ldlsplacementmethod..

The. angles S'IJ'chas: gBC .andgEBshown in .Fig .2.6 and .2.10 i1:te

slope's to th~"e.l~~ic"cllrVeofthestruc.t~re.Th.ehinge an.gles s~ch as

HB (Fig 2. 6b) 8:jfe:th:li1: ,di.ffexoenc,es in adj a;cent 'sloPe,13 at a po in:!;: w~e.TCea

.discon.tinuity ha'soccu'i'zoed ccru.'e to fannatlanof a pla~,tic hinge. THese

'slop'€:s .an.d angles .ha.ve utRiqu:e'~aluesup to the ultimate lopd.

In cont:ra;s't ~the. mechanism angles (aLso deB ignated ,g.ls furrc.tion:/?

of g" .but wi.t.houtsubsct'ipt)arei.magi!U3XY rotations 'Qf 'completesi:agments

of members result :tng from imagina.ry :contli:'olll;·ddispl.:tcementsof st.:!f'tl'ctuTes

Thephysic,al picture of the~e angles Will be shown".with the,

aid of Fig .2.ILF.lg2.lla·shows atypical method of des'cribing the

nt¢chanismof the beam foll:' the purpose QfWll:'itingtheviX'tu'alwork

equation. 'th,e beam.~.already at ma.'Il:imUm IO'ad, .hasbeen,·s"dibjected to a.

virtual displac~me.nt~; b.,cal.l'sing .vb:tual rotatiOn~sQ I;lt the ir~te:'t"i01r
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SVPPO!.",~S, and 2 ·~a.ttheeen.telr pla.s.tic hi.nge. (LOads have be,=n,omitted

toa1low the angles to .bese'enmor.eclea.rly.) In Fig .2.11h iss~en.~

enlitltged vi.ew of theportio.n. BE of the .beam JUiS.t:be.f01re the vircbtal

dil3placemel1twas .e££¢c.ted•. The .bentl31:1t'ap'e Q,f ,allmemheJrsis pi~cewis:~

c:ontinuo\ls berv.~~nhi.~gel3. Because bending .momeutswill remainconst:a..,l1t

thrQughQut anys~bsequeEt.di/f;lplacement,theshapi~of:eachofthese pi~ces

Will .remf.dnconstan.t •. 'This is just as if they~re regidculCVed links

connecting the hin.ge·s at each end • Shown .inFig .2.11b are the Vel!',ttcal

deflection oelue to ,bending .and the hinge. angle HB• In the condition

indicated by :the .dra.wing,. t~ebeamwouldJU'stbere'aching maxi.'l!Wll load

and HB would he the hing'ear"gle in order tha.t the beamrea.ch this value'.

Fig 2.l1c shows the be,am .after the virtual displacement: ~ 6, has ta.k~n·

place. The .coJrlCesponding .rco.t.ationofrigid link .BE am0:!t:mts to the

vir,t1i:al a·.'lgleQ, tL'ldth:e.added rotation at jointE is 29 •

.Them:e.chaQ:i~'1It an:glesc:s:!:!,sed.by thevircti)J1;a.l displ~celll'€nt 6aJte

Gat joint B and 2 ~ at jo:lntE. Thes'eare sup'erimposedon the hinge

av..gles which.were Riat joint B and zero at joint E•. Of courcse,forthe

pu:rpose of thevirtu'alw-prkequationB, the yir,tual displacemen..ts are

as'sUIIted to approach Z'¢lto' tn. order that theywonJ tcons.tit1.ft'e achang¢

in .the geometry o.fthest]:iictlire..

The same. pictlUre holds Une .foranyothe1rst1CU'cturestich.as:a:

pg;-t;al frame •. With theformati,on qf each p'lastic hinge~ adiscontiDiu,lty

.apPla<u:s in the deflected .sb.ap~()fthem'emb~r. H()wev~)C~ the·:re alt'~1+rii~
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sol~ti()n'g tOl!' deflecti()n'a;r~dlCotGltion;up:t9,tb.$ pi'(jint: at whi~h the l~r;;t

plasfic hinge1!:e'ach~:s it~ m8.1r.imum .1UOm$p,t. . This', i:,s: the. .conditiqn £O'l!

,which hinge angle-a ·uet(jbe.c.aleulated 0 J}efgma:tionhe.yond.thispQi.l;1t

is nie.'C1:la.nism'actio.n:, a:Q.dx-qtation:s anddefJ;f;!'(#:ionac.an:no long'~)!',b'ecal...

culated.
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3. FUN ,D A.M:EN TAL EQ U A T ,1,0 NS F,oa,

. c A ,L,CU L A TIO N ,0 F &0 T, AT 10 N.S AND

D EF L E"C TIO N ,S A T M A X :r M ,U M .L,O A D

,I·'

f'.f. '

,~12

Calculation; of 'thede£1ections andro'tation~ of flexural

1IIt:!1I1bers at maximum load is accomplished by integration, with appropriate

.baundarycondit10ns, of the differentialequ'ation:

••• (3.1)

where y =deflection fromorig1nal straight line of member

x =dietance along:member

~ ::I curvature "fmember, a function ,of moment

Since ~ I,~~ a function of moment and since 'the moment is a ,function of x.,

~may ,be expressed .as a function of x.

Next thequest10n~ises of the. form of ~ for~se in this

.'eq~ation. ~ couldconce1v~blybe \ls,ed in a .£ormwh1ch ,.wouldr~present

the actual shape of the *~curve and.could, alSo include the effect of

residualstr,esses and 'strain .hardening. (F1g2.3). HOwever, this would

require the use of tediouscalcutation procedures and probably give answers

wh1charenotparticularly more sign1£1catlt than those which can be d~r.iv:ed

12
usings1mplifyinga:s~umptions. For the pur,pos'e o£ obtaining quickly

aqualitativeover·all picture of the rotation capt:l(~1ty problem, the :$.!!~

sumptiono£ the idealized ··Mt~ curvetltli shot4'ninFig 2. 5 will ,be made. By

us1ngth1a assumption, the fun¢tiono£ ~along .aro.ember and:betwe$ti plastic

hinges maybe. ,repres~nted.a.sH/EI ju'stas inelastic analysis. thi~
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ne;glects only the area be't¥re'~n the solid line and. the dotted line and may
, 12

be shoWn to have' a sm.a:l1effec,t.

By assuming o equal to H/EI it i'spossible to use all of ,th$

con.v'e.ntional methods forcaleulating ,defle'ctions whic.huse:orderlypro;-

cedures or evaluated in.~;als of the M./Elcurye inthefonn of fonnul,lp3,

and thus simplify matheIJ¥it.ic'al ~pe.rati,ons~The'S'emethods include moment ..

a~e.'a,conjugatebeam, vi+tua.l wo~k andslope-deflec:tiouo The choice of

method is g~ne.r,ailygove~dby indiyidu:al prefe:renc.eas to, an orderly

ls17formforcalculati,ons or '~..'easily remelllb~!'e'd signcpnventi.on.

In th~ following soluU.ons, slope-deflection equations will be

used in, the followingf9rm~

00.(3.2)

~ = Slope of n:eaJr end of membeX'

9N = Slope of near end of similarly loa.de:dmember

when simply support~d= t ~~I for uniformly-distributed load

RNF = Rotation, ofa chordbetwe:en'ends, b,f llle.mb¢r

= Defle.ctionof orte endofarnelllbe.r with re./iliect to the other
divi'tied byth~dist$cebet:W¢'enth~m='OJ.e

.£ = Lengthofmembe.T9rp9Ttionofme~~

MNF = Mome,nt at near ,'end of member

MEN = Mome.nt at fa.r:e,nd (Jfmember

An,yo£. the sign con1?'entions corl'VI:mieii.t fmcs lope defl¢ct ion may
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be used. The convention used here is that slope angles are defined as

positi.ve when the rotations are clockwise, and end moments are defined

as positi.ve when acting in the clockwise sense.

e with a.ppropriate subscript is used t.o represent the slope on

both sides of a hinge locati.on. H, the· hinge angle, is used to represent

t.he di.fference i.n slope at a plastic hinge when the maxi.mum load is first

reached. See Fig 2.6.

Once the bending moments for a structure are known, the slope­

deflection equations are used by writing an equat.ion similar to (3.2)

for each end of each member. The unknowns in t.hese equati.ons will be the

e and R terms (13' is known for each segment.). Additional equations will

be needed t.o solve the problem. These will be obtained by considering

the boundary conditions for the particular struct.ure as wi.ll be shown

in the followi.ng chapt.ers.
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4. R E QUI R ED . ROT A T ION

o F A TH R E E s PAN

CON T l·-N YO U--8 B EA M

Most of t.he principles used in the solut:ion ofrotat~on capacity

problems can be illustrated by the relatively stmpleexample of a three-

span continuous beam. In the following sections it will be shown that

"domains", in which each of the se.veral possibll;!. mecha.'l.isms for a gi.ve,n

structure will occur, can be determined by equating expresslons for the

plastic hinge moments. Domains in which each possible plastic hinge is

first to form can be determined ,by equating the expressi.ons for the

elastic moments at possible plastic hinges. The method of using slope-

deflection equations with boundary conditions appropriate for structures

in the plastic range to calculate hinge angles will also be shown.

I
4. 1 POSSIBLE MECHANISMS:,: :'OOMAINS I 1}ND REQUIRED PLASTIC MJMENTS

A number of available methods of analysis use the properties

of plastification of cross section and redistribution of moment as a

1 1.5 16basis for calculating the ultimate loads of structures. " An

important advantage of these methods of plastic analysis over methods of

elastic analysis is the elimination of the solution of large numbers

of simultaneous equations in the analysis of highly indeterminate struc-

tures. Instead, orderly procedures may be used ,to calculate the ultima.te

loads consistent with various assumed mechanisms. Each such load con~

stitutes an upper bound for the maximum load of the structure. At

the same time, any assumed set of loads and redundants which satisfy
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equilibriumwi'thou.t 'the plastic hinge mOment being exceeded at any point

in. the struct\1~e constitu.tes a 10we:w: bound f~:w:.th.!?: tiflle maximum load O:{

the structure ~. .The~xa·ct maximum 10,ad is ittdicateclwhenan. uppen:, bqund

and a lower bound pI.'0v:eto be equal •

.Conside:w:the three-span continuous' beam shown in. Fig 4.1. The

main. span has a lengthL and is flanked by two side SPanS of length I3L.

A,tiniform1y distribu:t~d 10'adwpounds per foot 113 applied to the. main.

s~:an, and a load of o:,w poundsp'e:w: fo,ot tothe,s'ide span:s. Thecros's

,section .and material are constant throughput ..

Since the r~la.tive 19ads and span lengths are undetelt"Il1inedas. .~. _. .

s,ta.ted, the mode .of failu1t',?cannot be unique:1y de.fin,ed. It is pos'Sible

for. a mechanism to formeitlrelr in the cente:ll: span Olr in the side SpaIlS.

If a mechaniSm is to fo1t'm in the center span~ pl,a.stic hinges

will form at interior suppp~,ts B.&C and at the cen.ten: of'themainsp'an.

For this case, anelement;arycalcu1ationwill give a.s the expression

relating the plastic, hinge moment of the beainand the maxiIlRlm load:

2
=wL.

16 . ... (4~ 1)

If a mechanism is to form inthes:ide span, p1as.tic hingel!-i

willf():t'In at the inte.rior .supports B &. C an.datan intertnediate point

in'each s'ide span where the moment is. llBximum.The di'stance it.om the

exter.ior support toe!:l'chof thes'e hinges will be some flt'action S of the

side span. length .I3L, i.-e. s13L~ The plastic hingemoJIient in this' ca:se



is given by theexpre's'l;ion:

..,17

2 L2,M-. = a., 13~
:~ 2

,where ~ = [2 - 1 = ,'0.4142

then .Mp, = l~ .66 ,'er, 132w~~
••• (4.2)

For 8'.givenbeamS'~ction,side'sp~ leIlgthaildside span loading,

the mechanism .whichwould ~~;quire the gre'ater valu'e of ',Mp will form. A.

sp'eciS:1 condition is that in which both mechanisms OCCUlt' simultaneously.

For this cas~, both expre's'sic:ms' for Mp "must ,beequ:al. Bycombining

.equat ions (4. 1) and (4 ~2 )an:expr~ssion, for the values of er, and 13 for

which, bothmechanis~s can form bobtai,ned.

'Q.2 ,10...,= '8

By~ubs,tituting for ~ Us valu'e Q. 4142, thisequ'ationredu·c.es to ~

2 .
cx.13 ,:;= 0.728

This cury'e is plottedin'Fig 4.2.

~ •• (4.4) ,

'tQ.~ unsh~ded areao.fFig A.2contain's· allv:alues' of ex. and 13

for 'which the mech'anismwill fClnn :i..n'themainspan with a plastic hinge'

.moment given by equation (4.1) •. The shade'dar~accmta.i,nsthevalues of

ex. and 13 for which the: mechanism .will fO;nn .simultaneously in the two side

s,Pans, .and the pla~tic hinge: moment will ,be given by Eiq. (4.2).
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,4.2 .LO~TION .OF LAsT PLAsTIC HINGE

As was. stated earliell:'~ the boundary .conditions used in. cal-

,culatingdeflecti,onandro.tati,on in the plastic ra.nge dep'endonthe

718

lQcationof th.e last pleis,tic hinge. E)ne way of de:tenniningthe location

of the last plastic hing'e is to ca1,culate s:tep-by-step the load versus

moment behavior oft;~e s.tructure s,tarting.withane1as·,tic solution.

In the case of the three-span beam, ,on~step is sufficient

becatJse only two 1:ling~s are necessary to form a mechanism .(becau's'e of

s·~trythe two hinge's at .the interior supports: count S:sone hinge).

,Th~'s, locating the firs.t hinge by an elastic solution gives' the 1Qc'ation

of the last hinge by elimination,.

Froman ,'el'a:stican'a~ysts of the beam, the following momenfs

at various sections, may be obtained~

I
MaXimum Moment in .Main,Span,

liE =:i} [~ - ;e:\lJ
Motrtent at InteriorH SUPPQrts'

M = wL
2 [exe3

+ 1J"
, B, 4 213 + 3

MaXimum Moment ...E. Side Span

MF =;~: ~Z [*A~\~@Z-lr
For a giv,en loading and span 1ength,on'e o,f. . .. , .

.•• (4.5)

, ••• (4.6)

o •• (4,.7)

thes'e momEints' will proye'

to ,be the largest ~d, .therefore, the £i;rs,tplas;tic hinge would occur

at fhat location. For each possiblemech~ism the magnitude of the
!
,
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,moments: should becompa,red at tQ.~ two sections .atwhichhinges fo:qn •

.Thus,for the main sPan mech~ism, the qqestion of interest is whether

or not MB is greater than ME • For the side s·pan mechanism, Ma and MF

sQ.ould be compar.ed •

-19

. WhenMBandMEa.re equated ,the re's,ul t ing ,expression inctand t'

gives the boundary between ,the regions wh~re the first plastic hinge fOntlf3

at B and where the firs.t hinge form~ at E.

= 2 • •• (4.8)

'Thia curve is plotted'a:s the lower c~e in Fig 4.3 • The region below

the curve designate'~the values oia. and t' for which the maximum ,elas,tic

moment is at the center of the main span E. The region above thecu)'CVe

designates a.and t' for.ma.xinrum elas,tic moment at the intell:.' io:r supports. B.

, Sindla.tly,e'quating MB 'and !1Fre'sult~ in an equ'ation separating

the regions fO,rm~iIJiumelas,ticmoment atB and at F.

,(~t'3 + fa. 132 .. 1)2
a. t'2(213 + 3Ha.t'3 +1) = 8 o.~(4.9)

•

This curVe is plotted as' the uppercurye in,Fig ,4.3 •. Within ,the region

enclosed by this, upp~r curye, the maximum.elastic moment occurs at ,F.

Below the cutve the maximum ,elastic moment pccurs'at point Bo

As an app';roxima.tiol1 corisistentwith the assumptions made in.

,Chap,ter 2, the limiting value of th:eelastic :moment may be cOllsidered

as the plas,tic 'hinge moment. Thu's, the th1t'ee areas in Fig 4.3 in~icate,
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the values of a.aIld t3 .fb:r::which e~chof tb,e thre'e pos's'ible. plastic hinges:

aTe the firs t .to form'.

By superimposing Fig ,4.2 on. Fig 4~3, a single ch.art (Fig A~4)

is obtained .which indicates both the type of mechanism. and the location

of the firstplas,tic hinge. .ThiS information by elimin.g,tion.alsogives:

t1)e ~oc~tionofthe last plastic hinge, provid~ngall the info,rmation

needed to dedu'ce boundarycS>nditions.

The method used in. this case for th~ determination of the orde'r

()f formation o.f plastic hinges is' the simples.t fo:t:n1 of thes.tep-by-s:,tep

method. However, for a highly indeterminatestructul:e, the step-by-step.

ni¢th()dwould requireacompJete elasticsolutipn of .the str,ucture for

ea:ch plas.tic hinge th~t forms.

Fo~tunately tlle-re exists a .method qfcalculation ..whichus·es:
15 ~l'

only .th~ maximum load mome.ntd;i.a$ram to determine the ll:lSt plastic hinge.

1his methodtonsists ofas~ing any gi,ven plas'tic,h.inge to be the' laf:;t

to form and making a deflectioncalculatinn .bas'ed on. this assumption.

,ThiS' calculation is repl!ated with .as many "last plastic hinge"as'sumptions

as there areuncertaintie:s as to its true location. .The true h:s:t

plastic hinge correspoIldsto tl1e greatest calculated deflection. This:

second method is most vatu'able in the s,tudy ()f' multi,..spanrigid frames.•

4.3 . DERIVATION.()F EQ~ATIONS .FOR. HINGE ANGLES

Using the findings of sections .4.1, and A. 2, it may be
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de'termined that there exist four possible cas:efS ofmecb..a.nism and o:r~er

of formation of plastic hinges for the th.ree:--spancon,tinuous beam.

,DiagraIll$ of these cases are sh.own in Fig 4.5., The hinge.mrgle' at the

first plastic hinge together with sketches singling ,out the' boundary

con~iitions' and unknowns for e(9.,chcase a:re gb~en in Fig .4.6. Using

these conditions, th.e hinge angle will be calcuL"i,tE:d £oreach case.

ca:s'~ I. MainSpanM.ei£i¥alsm,....,First Hinge at Midspan

,..21

For this: cas'e the plastic hinge moment is'

wL2
= 16 • •• (4.10)

The boundary conditions' B.re in.dicated in Fig 4.6. ,Slope~

defle'ctionequationsare to be written for l~ngth,s ,AB and BE with con..

tinuity assumed at joint B,tb,e last pla:s,t.ic hinge. InspanAB 9 tb:e

rotation at B is calculated as the end rotation of a uniformly loaded

simple beamA-Bwithamoment Mp applied at end B. From Eq (3.2),

g" = _ (aw) (@L)3
BA, 24EI + ~ [M- 1 ].3EI -~ - ~ (0) · .• (4.11)

~semi-spanBE, the endslqpe at B is:

L [ J- . 1.rlr -Mp+zMp ~ •• (4.i2)

• •• (4.13)

· •. (4.14)
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Substituting fOl!'RBE X

wL3[1 3~H,E = '-4" -- - 20.132 EI 2 . .
+ 2 MpL. 13

3 . Et ! •• (4.16)

By,us~of equation (4.10) this ~quation may .b'e'expref>f!ed eith~r inte.~nxu;r

ofMp: or w~ 'thus

Equation (4.17) maya:lso be written in the form

fA =.~ _WL2
''lip -~.EI LOJU

••• (4 .. 17)

Equation (4.18) is. plotted in nQn-di:Inensional fopnas a fa:J.t1i1y

of c:u;;r:ves in. Fig A.Vb,..Val~es cfa.and 13 f():r..whichEqwition (4.18) is

applicable ax-e i:i.mit~dby .the appr,opriate d$main" inFig4A. ..AIi. pl~1=,te4

inFlg ,4. 7b saIl vdues of a. and 13 satisfy this xequi~ement.

Ca:se II.. Main. Span Mechanism: -.First, Hingec;tt Support 11



268.3

••• {4.l9)

The c'ifitic.al angle is' the hblge angle at interior suppor.t B.

T.!:ds is obtaJ.!1:edby calculating the end slope of the simple beam AB with

End :lnoli!!E~:l1t Mp as' ff,;i.r Case I and also ca1cul~ting the en.dslope of simple

beam Ee .vdth t:wo endmomentsMp (Fig .4~6~ Cas'eII) ~ The hinge angle is,

• •• (4.20)

••• (4.21)

• .• (4.22)

.~.(4.2~)

The non... dimen:siona1 form of this .equation isg

• ~. (4.24)

l'h:ts equ'ation: is: plotted as .S: family of cUFes inFtg A.7'a..

the v09.1u:es as, p10.tted are con:si'stentwiththli!. limits imposed on a.and f3

fOJr thema.ln span,mechani'sm .with first hing'e a:t:the support (Fig 4A).

When th.e me'ch'anis'm' forms in the outer qan~.one hinge fo1pDSa.t
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the inte',dor Suppo1:tand one. forms at point F whosedis.tance from the

oute!' support A is O.4142f3L. The J:equired plastic moment; value is' given

,by

••• (4.25)

\

The controlling boundary condition iIi ,this ca,se is that the

beam remains continuou's at point F until the mechanism has formed.

The hinge angle at B may be calcula,ted f~om the end slopes of

two simple beams ha,vingthe giyenmomelltdia.gr~o

QBC = wL3 ..... M!Zi1IT

HB ~[ O.915f3 -3+ 2.915]
= 6EI a,f3Z

••• (4.26)

••• (4.27)

••• (4.28)

In non-di,mensional form, thee'quation for HB is':

where

••• (4.29):

= .~ (32wLZ
11.66EI

••• (4.30)

This' case is plotted in Fig 4.8a.

Case IV • Side Span Me'ch:anism:--First Hinge' in Span at Section!,

In this case, the first hinge forms in the side span. Span BF
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i:sana.1.yzed as anoy$1!."hangingcantilever extending from simplesp'anBC.

SpanA;f·'i.s a :s imp l,e span supported at onefmd bey .the originalendsuppor.t

and .at the oth,er:endby thracantilever sp'an.Bf.,Thecon~rolling boundCi.rY

condition is continuity atpointB, t:he pos'it:(.on of the lastpla.s'tichinge.

The hinge angle forthfscase is.~

- 1.207 + 1.173
a. (32 ..... (4.31)

This is plotted inFlg4.8b. Sin'ce equati()u (4.3t) isn¢'gatlve

fOI: a1t,value's 0.£ a. and ~ for which it applies:, ~he ~bSbl':lte vahle is'

plotted.

4.4 ILLUSTRATIVEEX!MPLES

Befo-re proceeding .with fUrther .theo,re'tical development, it may

be wOR'thwhile to 'solve a ~rica1example tp illustrate the use of the

cha)fts.

,F.ind:

From, the given data,

.~ e~l"spans, L = 39 ft.
Main spah:maxitmnn load, 2k/ft •

. Side s~an~imum load, lk/ ft.

Rolledsha;pe for the beam.
.Hinge angle ~equired t<:>' develop

all ned~~$ary .plas,tic hing¢'so

a. = 0.5

~ = 10.0 ,

EntEflfing Fig 4.4, it is fo:und that this beam.will f()X1D amain ,span

mechan.ism ,with the'fi;,s't hinge at thesuppo:r.ts.
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• ~" (4.32)

A 14 WF 30 hasapl8,stics'ection .modulus of 47.!'. In.3., and bLo the;mostecon-

omic'al section strong ,enollgh.£or,this lo~d. . Fig .4. 7'~ giv~s the hinge

angle for amainspa.n mechanism with , :first hinge ,at the intE!rio~support~

For~(X;: O. 5 and I!J = 1.0

'<
••• (4.33)

=

= ,~= ayZ
EI EI

33 x ,47.1 '0 00017'9 d/i
~9 x 103 x 289'.6 = .,., . ra.., n •

.Subs,tituting in:F;q. (4.33) £01';".' 0p. and L,

HB = 0~166 xQ.900179 x 36Q = 9.0107 ,rad.

HB-O •61 degrees

••• (4;.34)

TherE!fore:, .ahill~e .angle of O~ 61 degrees is required at the

13uJ?pi:>rtto f()rmame'chani~m ina ~4 ',Wl? '3()beliI,ll c;.ontinuous' oyer three

3:0 ft. spans and 10'ade,dwith .aside .spa.n loadequ'al to half the inte.rf-

.sityo£the main~p;an, load.'

,b. Examples. of Extreme .Cases

In practicaldesign.c'4l'Je'S, the side~pan iqad inten~itywo'IJld

rarely be more than the main: span load, and b~'ca\lse theremu'st be s'ollie



dead load~the.side'~span'lo'a'da:hmwouldrar~~y be les's than 25% of the

.D$i.n span. l~ad. If l£t~assuined to be bqunCled by these limits, 1.0 >a. >0,25,

. and F'igs4.7 and 4.8 :.9.z:e- s'earche'dfoX' .the g~ea.t¢s.tpo~s.iblehingea,ng1:~s,

the fol1ewing,results are e.btained~

G:rreates:t Hinge ,lUJg1e at·· Support:

(a. = O. 25, .~= 1.70)

HB =0.425 0p:r..

Glre:ates.t Hin.ge'Apgle .inSideSpanBeam:

( a = LO, .~ = 1.85)

Hf = 0.186 0pL.

G1t''eate's t Hinge AJJ,g1e' in: Ma.ip.·.Span, .Beam.
- '. • > "'; ., • ; •••

( a. = O~25 ~ = O~82)

••• (4.3q)

Again taking thecas'e ·of a .30-ft. ~inspa.nanda14 "WE' 30,

t.h~ .maximum IP'ssible hinge angles ~e:

HB= 0.0274 ra.dians = 1.57 degree~

HF = O. 012:Qrad1.al1:s· = Q. 69 deg:re~'s

HE = 0.00193 ,:pidi~'s =iO.lldegrees·

!JThu's~ amu-ch greater hingee an:gle is' re'qui-re.~ iithe first hinge, is. to

inte"~edia.te 10cation ina.:be~.



4.5 OOMPA,RIS.ONWITH .EXPERlMENTALRESULT

Data is available on the hinge .rotation .ofa l4WF 30 member
r:
,I

t~s:ted ina .comer connection test. Inthist:est" t~einoment gra:dientwas

ne:ai:ly the same as it would be,'::ln the critical portion of a three-span

c.ontinuous beam with 0.=0.25 and t3 = 1.70 (Fig A.9). .At the same tiIlie,

the .Iliember was subJected to ,an axial cODiponentof load. Th,e hinge
j

ro·tation measuredo'V¢r a 10 in'ch length,wa~ O.028lradians. iThis is

greater. than the value' of 0.0274 radians which .would .be requi~d for

the .most severe c'ase ill· the above ,examp~'. Other sizes and shapes

of test members have-exhibited thes'ame ~r:betterrot'ationcharact~ris.tics.

It thus appears thatstrocturu IOODlbers should noi:haye difficulty itt

.developing the needed hinge angle's at thesl1Pports~fthree-spancon-

tinuous be8.llls •

.4.• 6. SID1MARYOF,STUDY O:F1'HREE-.SPANBEAM

The following s'WlliDarizes the results 6f the c.alculations made

for the three-span,beam.

(1) Expres'sitigthe plastic hinge: Dionie'nts ingerteTal terms'

for .each type' of possible.mechan1.slll.1n ....~. gi.....,~ns,:ritcture, a,n!i .equating

the expressions, . re$.ults in. aile-etuaiions¢paratirtg .thedgmains inwhi~h

.each typ'e o£IIle;chartismwill £om.(Eq (4 ..4» (Fig A.2) ..

(.2) Equating ,'expressions for the:eias:ticm()1Uertts at each

p'O'ssible plastiC. hinge lo'c~ati()n:, r'e~ults ina.s'e.t ofe:quations sepa±ati~g
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t.h:e domain~ inwhich'e~chJ?la8'tic hinge is, first to fom. ~Eq (4.8) & (4.9».

(4) Expri:'ssionsweredeveloped for the' hinge angle, H, fo~ the

fcrur"r. J~ol3$ible fai.hl1C'e' ,mode's by u'sing .slope'~def1ection,equati(ms~ These:

~*~ ~esented in Eqs (4 .. 18), (4. 24), (4.29), and (4.31), and ine:urve'

fiOm in Flgs .4.7 and 4.8.

~5)Tlre extr~m$ ",a:lues of possible hing~ angles we.xe determin~d

cbld .iit:re gi'lren in ,Eq (4.35)., (4.36) and (4.37').

(6) Fo;r asp':e"cific extl:'eme example ofa thre:e ...sp'a,nb~'amusirtg

.a 14WF. 30 with ,a3'Qft.,mainsp'a'n:,. the: hinge 8.Ilglel:'e:quired W~ 0.0274.

radians. Tlle .iesult of acornercorme.ctionte's't, u:singa JAWF 3D and

h;;ay:ing ,a .momentdiagramalmo'st the same, as the' ,heam in-the example was,

able t98,bsorb a hing'er,o,t.ati6n of 0.028Lradian,s:. 'this was experimental

.evidence that the hiIl,ge..angle:' requir~ments for thr~e...spanbeams, are not ;

.too :seyere: to he xnet by ;r()11edshap·e~'.•. Since cornerco~f;ct{om;,fab.... ' '

!t'ic;ated f:lC0m othe:rrolledshap'es E!.xhibiteda,s good orbette:1t' hE!.haviorit

em be concl~d~ .thcit 'J:'olled ,sha,pe's, ingen,f:1ral, will .exhibit satisfa,ctqry

.~otationc·ap:acity char,acteris:t,ics. forthree-spah,be.ams.
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5. RE·Q U IRE D RO TA TID N OF

S IN GL E - S PANF RA MES
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The slope-deflection method of calculating hinge .ang1es will

now be applied to sing1e-spanP9rta1 frames. The added factor of side~

sway is int~dduced into the prop1em of rotation capacity.

Ketter10 has presented equations and charts whichper~tthe

rapid df'sign of single and multiple span frames. This work will be re.,.

ferred~o in order to obtain the required plastic moment for the various

possib1~ mechanisms. The ,same system of notation wi11.be followed closely

in the development of hinge angle equations.

5.1 MECHANISMS, DOMAINS, AND PLASTIC MOMENT VALUES

Consider the typical gabled portal frame with pinned .bases

shown in Fig. 5.1. The frame has a. span L, a co1umn=height .of aLanda

·roof risebL. The special case of a f1at.roofed.frame is obtained when

b equ~ls zero. Rolled structural shapes of constant cross section are

assumed. A uniformly distributed vertical load of w pounds per foot is

applied to the entire roof. The effect of all horizontal forces is rep~

res~ntedby a load P equal to AwL/2aapp1ied at the top of the windward

column.

~

The possible mechanisms which determine the .maximum load of

this frame are a sidesway or panel mechanism (Fig. So2a) and a general

composite mechanism (Fig. S.2b).



For the panel mechanism? tQr relationship between plastic
1n

mom~nt and ultimate loa~ is: .
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M
~=~
" 2 4

wL, , .. (5.1)
. ,

-The maxi~u~ loaa-moment ~xpression for the composite mech-

is '. 10anism

~e 1
~L2 ="4

where

. I

or

I-A
CL :;: -2-

lJ for l?- >0a

b
for - = aa . ... (5.2)-

. As was shown in the case of a t~ree-span beam, equating these
, ,

.two equ~tion8 will give an expressiondeftning values of b, a, and A fqr
. ,

which both of the Il1echanisms will form simultaneously. The expression

will also indicate'theboundary between the regions where the two mech-

anisms predominate, or

A =_1_
1+£ ... (5.3). a

This equation is plotted.as a family of curves in Fig. (5.3). A separate

curve relating side·· load and column height is given for each value of the

roof rise factor, b, from a to 1.0. If ata given colu~height, the side

load ~actor A falls below the appropriate curve, the composite ~echanism

will form. For values of. the side load £~ctor above th~ curve,
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a panel mechanism will form.

5.2 LOCAtION OF ,FIRST AND LAST PLASTIC HINGES

Since the structure under consideration is inde.terminateto

,the first .degree, two hinges will be sufficien~,to .form a mechanism.

"Det:t:~:nnination:of, the location of the first plastic hinge by means of

an elastic solution will then give the location of the .la,stplastic

hi.l:lg~ by ,elimination•

. Plastic hinges are shown in Fig., 5.2 to exist only at,the

t,TiTO kneEls 3 C and E, and in the windward rafter atF. An elastic

-32.
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sot~lltion, will give. the followingvalue~ for the moments at ·these points.

MomentatWi.ndwardKn~e

wL
2

[M0 =--,--, A(F+J),-, 8 "

Moment at Lee Knee

•.. (5.4)

2~' 1ME= =7 ¥' +G.:I
'"

Maximum Moment in Windward_Rafter'

MF= wLZll + 2A+A2 + !? F(A2 <>A) .;.AF +!? GA
8 L" a' •

!?'G ' G + 1 bZ
(G+AF) 2.',J,a ' 4 Z. ' a ,

•.. (5.5)

... (5.6)

In the above equatio~s a plus (+) sign designates a moment which causes

te~sionon the inside of the frame. The functionsF,G, J, andN are

given by:

..... ,
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F = [ 16a +24+1~ ]
11+4b2

N

G ,-
[ 8:5~J

J [b b
2J= 24 -+ 16 -

a a2

N.~ 8a + 12 + 12£ + 4 b
2
]

11+4b"'Z a a 2 ••• (5. 7)

,Equations (5.4 through (5.7),are derived fromsuperpositio'nof two cases

given in Ref. 7. The su~stitutions F, G, J, andN have been made to

reduce the bulk of the equations, and the load parameter A has been added.

,Because hingeE is common to both mechanisms, th,e problem of

location of first plastic hinge reduces to finding when McandMF equal ME'

,By equatingMc and -ME ,and making, the substitutions in Eq. (5.7),

the following boundary between first plastic hinge at E or at C is obtained:

... (5.8)for b > 0A = b 'b2
12- + 8-,'

a a2

When b=O, the first hinge .cannot occur at C.

8 +sE.
a

Another limit pn the first hinge at E is th,e occurrence of an

equal or greater elastic moment atF. The boundary for this case is ob-

tainedby equating ,MF and-ME.
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2

G2) for b :> 0 ... (5.9)a '. 4 a2

A = 1 .~.
2 ~ 2;+3

for b ,= 0 ... (5.10)

Equation (5.8) is plotted as a family of solid curves passing

through the origin in Fig. 5.4.. The region above thecurvefQr a given

value of the roof rise factor b,represents the v~lues of A and a for which

the first plastic hinge will form at the windw~rd knee .:C. Below the curve,

the first hinge will form at the lee knee E.

.Equations (5.9) and (5~10) are also plotted in Fig. 5.4. as

a family of dashed curves. These curves divi4ethe values of A and a for

which the first plastic hinge will form at a pointF in the windward

rafter, from the values for .which the first hinge will form at .the lee

knee, E. It will be noted that the first hinge can form in the ·rafter

only for small values of b,the largest being about 0.387"whentqe column

height is no greater than th.e frame span .

. Fig. 5.3 sho,wingtype of .mechanism and Fig. 5.4 showing the

location of the first plastic hinge ~re sufficiently complicated in that

-no· -attempt will 1:lemade to .combineth.em ina general way to .show both the

type of mechanism.and location of first and last plastichin~es. o Howeve: '

,by including the curves fQronly one roof height-to"framespan ra~io, b,

a series of .simple charts may be prepared. Figs. 5.5,5.6 and 5.7 are

"~'\. charts .showing the limi·ts of mechani.sms for b values 0·£ 0, 0.2) and 0.5

respectively. On these charts, a shaded area above the line representing

Eq. (5.3) denotes the frame .sizes and loading for which a panel mechanism

will occur ~ while the clear area, i.ndicates the gel1eral composite mechan-
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ism.-An additional line in the shaded area representing :Eq. (5.8) ~

-35

separates the regions in which the .first 'p1a,stichinge will form at the

windward knee ,C or in the lee knee E. A final line in the· unshaded

area separates the region in which the first hinge forms aLE from the

region in which the first plastic hinge forms iathe rafter atF. Th~s

curve represents Eq. (5.9) or (5.10) as applicable.

It maybe seen from Fig. 5.5 that a panel or sidesway

mechanism will not occur ina f1a,t=ropfed frame with the proportions

and loading considered in this study. From .e'quation (5.3) it will be

seen that the panel mechanism could occur when A exceeds 1.0 .

.Fig. (5.7) indicates that for'steep..,roofed frames: the first

:hinge will not occur in therafter t as was pointed out inan.earlier paragraph.

5. 3DERIVATION OF 'EQUATIONS FOR HINGE.· ANGLES .

Derivation of equations for hinge angles of single spanpor"

tal frames is accomplished through the use of the. same .slope~def1ection

equation as was used for the three span beam:

... (5.11)

'.
For cases with sloping .roofs, the 9" term is expressed in .amannerwhich

takes into account the slant of the roof. For symmetrical gabled roofs

where the dimen~ions are me~sured as shown in Fig. 5.1, the expression

is:

... (5.12)

where. t
H

= .the horizontal projectiono~ the length of a se'gment.
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The nomenclature and sign conventions to be used lire those 'given

in Chapter 3.

The ult:l@nate load moment diagram for the frame is shown ,in

Fig, 5.8awith,the effect ,of each type of for.eekept,separated.

Case 1. Composi~e Mechanism-~First Hinge at Lee meeE

The first solution ,will be that :for the general composite type

of mechanism with the first plastic hinge at ,the lee col!Jmn top (E). ,'i'h~

boundary conditions for this solution are the continuity at j,ointsC and

D. At jointE, the slope will be discont~nuous, ,Substituting themo-

mentvalues from Fig. 5.8a, inEq. (5;11), will ,form two slope equations

for each member. Since there is no transverse load on the ,~olumns, the

9' terms for those members do not exist. Pertinent lengths for use in

the slope-deflection equations are given. in Fig. 5.8b.

,The end slope equations for each member are as follows:

MemberAC

~'c = RAC + aL
3EI

Member ,CD

wL3 -,ll+4b2 + ReD + iJll+4b2 [AWL2 ! [ , ~ W,L2 AWL~'(
~C = 192EI ~ '6EI 2 ~ ~~2 Mp(l+a) - 8 ~ 4 J5
9 = -wL3 ~1+4b2 + ReD +L~ 1+4b2(. b wL2 W,L2 ![AWL211

D 192EI ,6EI (>.p(l+a> .~ 8 ~ 4 -2 2 = ~J5

Member DE [ "

l'\ = wL3 '\-1+4b2 + RDE' + g1l+4b2 =M-(l+~) + wL2 +_AwL2.= ! [MPJ. ~
I::1D 192EI ~ 6EI -1' a842 '0
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eEl> = wL3 ll+4b2 + RDE + J 1+4b2t_
192EI6EI (~

Member EB

BEB = RBE + 3~[0-t(-Mp)J

·b
(IT)a,

W.L2'AwL2j~-3
7

+--+ --18 .4

•.• (5.13)

Rls. The two additional equations necessary for the solution .of the

problem may be obtained by considering the relative vertical and

horizontal displacements of .the pinned bases. ,These are the equations

generally used. to take sidesway into account in slope-deflection solutions

of structures •. The relative vertical displacement of the bases is zero

and is obtained by multiplying .the.chordrotationRof eachmem1:>erby

the horizontal component of its length and summing these for the

structure.

The relative horizontal displa.cementof the bases is obtained by summing

the products of the chord. rotationsR and theverticalcomponen.ts of the

length of each member. ,Since positive rotations of members DE .andEB

cause negative displacements of the base B, the:signs of these terms

change.

RALaL+ RCDbL - RDE bL - ~BE aL =0 ...(5.15)

,Solution of the equations (5.13) (5.14). and (5.15) for BED

and eEB gives the following:

alln =J ~~b2 &<'i+i~) -fwt
2

- t AWL~ ••• (5.16)

e' == bJ!1+4b
2 tM- (-3-~E. - 2b

2)+WL2(1 t ..2 J?\ + AwL2 (1 +-43 J?a)~EB6EI --p 2 a 2 \'4 . 16 a)
a ', .
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... (5'.17)

;'.~(5.l8)

The hinge angle at Eisle-qual to the <Itffer.e~in9~, a-p,j 9ltD;

H£ .liJ~~b2 [Mp (-l~ l t ~~)+,"L2 (12+~6~+AwI;~ (~:+~) .]
-',? :i?1 a +1 AwL

2

1 El 6 EI a

, In non=dime\fns:t.o.nal[form., th[iS eq.\lation h: ',.': '~'" " ' J]
" 1.'1+4b2 wL2 ....!. ' .2 ~.. " (1 lb)~, r", ,]a 1 b2

<JpL ,'" ~,' ,t12 +96 a + A \4i'~a- ["+ ,;1 +3 a 2

2 1 ~2 ,
- - a +''- a-· A '. ,

3 6 Mp ...,(5.l9)

,For a flat roofed frame, the equation reduces .to:

~L .~ [i~ + A (* + *4)J - 1 - ~ • ~ .. (5.20)

Values of ~/wL2 maybe 'ob~ained from reference lOthus~in$'

,it possible to plot curves of hinge 'angles as shown in Fi$s . 5.11 t'~ 5.13.

Equations (5.19) and. (5.20) give the ,.hinge angles fb.r all cases in :which
, . . ," .

t.he values of a, b, and A fall ..within th,edomain i~dicating formati,()n pf

a generalcompositemechani,smwith first hingeatE,inFigs. 5.3'~5~~J 5.5,

5.6, and 5.7.

Case II. Composite' Mechanism=-First'Hinge in Windward Raf.ter'at F

. 'CAs .TNas sliown:':inSection i S .. 2;:£or c.erta1n.·pr9pottiO:ns,ofthe,irame

and for certain loadings thefit:st pla,s.tichinge will form in the rafte,r.

In ,this ,case, thediscontinu'i tyoccurs at point.F in the rafter , ,a1'l.d

i elastic continui ty is maintained up to ul timate load a,t .the lee knee ,

E. Theultima'te load moment ,diagram is again 4$shQWninFig. 5.8a ..



268 •. 3 -39

Insetting up the slope~deflectionequ:ationsfor this ~c:ase, it

is n.ecessary t{) write two equations for e.llCh of the segments CF a.n,dFD

of member CD. Besides the slope=deflection equations, two additional

equations ate-again ,derived from considering .the horizontal and vertical

components of the movementofbaseiB equal .to zero.

placement,this equation is:
. 1 .

-: keF a. L + RF]j (t -a.) L + R
DE

.~ = 0

FQrthe horizontal displ~emen~ the equaUpn is:

For the vertical dis"-

.•. (5.21)

.• ~. (5.22)

Sol1,ttion inthesanie ~~~neras fqrthe previous case results

in.the following e tion for the hinge angle,: HF :

... (5.23)
Note tha.t the second' factor 9ftheproduct in Eq. (5~23)is,equalin

magnitude to Eq. (5. 19).~n Eq. (5.19)' and (5. 23) are 'bo~hzeto, ~

equals HF ~ ,and both pla.s tic hinges form s imul taneously, wi thzero hinge

angle required.,

For flat roofed fraInes,

HF wL
2

[ 1 1:1 ~-- ,::: ---- - + A (~+ -a)
I1pL Mp 1.2 .4 6,

- 1
2

= - a:3 . .•.. (5.24)

InEq. (5~23) .'. a. i~ the parameter giving thehori~o~tal distance

'dL. fr.om joiI,1tC .to the plastic hiIlge F in the rafter. Values of a. may be

obta~rtJd fromRefe~en:ce lQ or the equation,
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ex. = _1_
b

.El

-40

•.. (5.25)

Eq-uations (5.23) and (5. 24) giv~the hinge angles only for tho.se

cases in ~hich a,b~ and.A fall in the domain indicated in.the appro.priate

figs. 5.3 to 5.7.

Case la.Fanel Mechanism==FirstHinge at Lee Knee E

For cases where the loading and dimensions are such as to make

the value of ex. equal to zerb, the rafter hinge occurs at the windward knee

and a panel mechanism results. In the usual panel mechanism, the first

hinge occurs at the. lee knee, E, andi t is there that the hinge angle is

required.

The ultimate load moment .diagram for the panel mechanism is as

given in Fig. 5.9. The usual slope-deflection equations are written with

.the only discontinuity at joint E. Equations for the chord rotatibns, R,

identical to Eq. (5.14) and (5.15) are used for the additional relation=

ships needed to obtain a solution. The resultingexpression.for the

hinge angle is:

HE ~ 2ir""" = 1+4b
IJIpL [w~ (1 5E.

a
.)·

_-p 12 + 96
... (5. 26)

For flat roofed frames, Eq. (5.26) reduces to:·

2- _...l:.wJ.2
CJpL - 12 ~ ••. (5.27)

SUhstitutingEq. (5.1) for WL2/Mp in ,Eq. (5.26) and (5.27) results in the

following expressions for gabled .frames:
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2~) = (.1 ~. + Ib2)~
24a' 2 a 3 ~2 J
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... (5~ 28)

and for flat roofed frames:

HE 1
;;- .= 3A
VlpL .' ... (5.29)

Equations (5.26) to (5.28) give the hin~eangle at the lee knee,

,E, for a panel mechanism when a, b, and A fall within the proper domain

of Figs. 5.3 to 5.7.

Case na. Panel Mechanism-=First Hinge at Windward KneeC

Certain gabled frames as shc>wn in the domain Figs •. 4, 6" and 7

may form a. panel mechanism with the first plastic hinge at the windward

knee, C. The slope·~,deflectionandchord .rotationequationswUl proye in

this case to be the same as for the panel mechanism with the first hinge

at E. However, ,in this .case, the discontinuity willoccuratC rather

than at E. Solutlon of the resulting equations .for the hinge angle at

joint.C? results in.the following equation for gabled frames:

;~~ ;. ~l+4b2 [H t +2~ ~)- (! ~ + t :~)J
... (5.30)

For flat roofed frames,. it is impossible for the first plastic hillge to

qccur at jointC as shqwn by Eq. (5.8).

Though Eq~ (5.30) is identical toEq. (5.28), it must be borne

in mind tl$-t they, usually apply.to different values of a, II andA j . and thus

the values of He and HE will coincide only when Eq. (5.8) is satisfied.
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An altern.ate procedure or a check on the derivation of hinge

angles for the panel mechanism is to use the equations for the general

(composite) mechanism and set ~ equal to zero. Substituting the ex­

pression (5.1) for Mp/wL2 results in further simplification of the

equations.

5.4. DESCRIPTION OF .GRAPHS OF HINGE. ANGLE .. EQUATIONS

Hinge angles for structures having three different values of

roof rise factor b are plotted in Figs. 5010, 5011, 5012, and 5 013.

Each of these graphs utilizes results of the appropriate equations from

(5. 19) to 50 30) 0

Fig. 5.10 gives the hinge angles for frames having flat.roofs.

Nonc,dimensionalvalues of the hinge angle, H, are plotted against values

of the column height factor, a, for several. values of the side load factor,

A. The IIcurvesll are actually straight lines, and most of them come from

Eqo (5 020)0 rhe lines for A values from a to 005 are drawn solid. Those

for A values from 0.6 to 1.0 are dashed lines to help eliminate confusion

from the fact that they lie in the same region of the graph. Very large

.side loads are required to formasidesway mechanism, so the only line

representing Eqo (5029) is that for A equal to 1000 This is actually the

boundary between the sidesway and the general mechanism and therefore re­

presents Eqo (5.20) as well as Eq. (5029). The lines for A equal to a and

A equal to 0.1 show an additional point of interest. As the value of a

increases, eventually the line crosses the zero hinge angle coordinateo

At that point both.the hinge at the knee E, and the hinge F in the beam

form simultaneously. For greater column heights, the hinge angle·~ would
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tend to be n,egative from ~q. (5.20). ' Actually, in.this regio~, .the .first

plast:i.C', hinge forms ,in the ,win(l,ward side of the bel:\.m a,tF, and the hinge

angle is given byEq. (5.24). Therefore 9 all values of the hinge angle

above the origi,n .ofc.oQ:rqina:tes represent values of HE' the' an.gle at the

lee knee~ All values below the origin of cOi!{Jrdinates represent values

o{HF , the angle in. the beam.

111 Fig. 5.11 and 5.12. are shown vah.1es ~fhinge angles for

gabled po:rta1 frames. Fig;. 5 .11ha,s values for a .roC)frisefactoJ,"b of

0.2 representing gently sl~ping roofs and Fig. 5.12 has values for b. . . ...
.equal t<;> 0.5 representin,g steeper roofs. the hinge angle equation~ for

.8 loping ,roofs resu1tincMrved lines. In both Fig. 5.11. and 5.12,. values

above the (liXigin,of coordinates represent l\;lltpe 'hinge'at the lee knee.

The .region giving ,hinge angles, ~, ,is divided into two zones by ada,shed

c.\lrve.. The zone above the dashed curve represents hinge angles for .the

general mechanism as given .in Eq. (5.19) while the region below the

d.ashed c,urvere.present:s hinge angles for thesidesway. mechanism as

given by Eq. (5.28). An exception to this is the values of the hinge

angle for the portions of .the A = 0 and A := 0 .1 lines whichex~end be1qw

.the.dashed c:;urve. thesealao represent .the general mechanism •. The reason

for this. will be discussed la.ter.

Tq.e: ordinates below the abs·cissainl<'igo 5.11 and 5~ l~repre-

s.ent values of bothhinge·,a.ngle ~ .. a.t the windward knee (Eq~ 5.30) and.

hi.nge angle HF in the..windwal1d· raft:~r'(Eq.. 5.23) depending.on whichoccuis

foT. a given loading;a.nd geometryo 'He occ~rS".only~for.very;:;largeside~'.loa<;is
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and relatively short columns, and HF occurs only for lQw side loads and

long columns. The first hinge can occur at F only for the gently sroping

roof (Fig. 5.11) as indicated in Fig. 5.4.

As an aid to visualization of the total hinge angle function,

the hinge angles for b equal 0.2 from Fig. 5.11 are plotted three~dimen;

sionally in Fig. 5.13. The surface formed by combining equations (5.19),

(5.23, (5028), and (5.30) is a warped surface forming a "r bof" over the

portions' of the A-a plane bounqed by A = 0, A = LO, a =0.143, and

a = 1.0. The surface is bounded at a = Oo143becaus~ tabulated values

of Mp/wL2 were not available for values of b/a greater than 1.4•.This

will, however, allow most practicai structures to be included in the

limits of the curves. A dotted line divides the surface into .areas re­

presenting the general (composite) andsidesway mechanism. All values of

the surface above the A-a plane represent HE' the hinge angle at the. lee

knee. Near two diagonally opposite corners (A = 0, a = LO andA= LO,

a = 0.143), the surface drops below the A-a plane. Near the corner

A = 1.0, a = 1.0, the surface represents values of HF , the hinge angle

in the windward rafter. In the·vicinity of the corner A = 1.0, a = 0.143,

the surface represents values of He, the hinge angle in ,the windward knee.

If the A-a plane is considered as ~Isea level II , hinge angles HE. are repre,..

sented .by the ''moundiin II, andhing~angles HF and He are represented by the

surfaces below 'Isea level. 11

\
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5.5 DERIVATION OFEQUATLONSFORDEFLECTIONS
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From the same solution which results in the equations for hinge

angles, the ·horizontal deflections of the kne~s may be derived.

Case I. General Mechanism -Fi~stHingeatLeeKneeE

;':rhe next to last of equations (5.13) giv~s

M La
6EB = RBE -~

3EI .•. (5.31)

Eq. (5.17) gives

6EB =LIJ1+4b
2 ~~P (-3- i E. ·.. 2 b

2
)+WL2(1. + 2. E.)+ AwL2 ( 1-.2 E.)~

.6EI ..a a a2 4 16 a 4 a
. .

... (5.32)

Combining .these two .equations gives a value for RBE

RaE = .1:~ i+4b
2

[Mp(_l, 1 E.._1, b
2
)+ WL2 (..1:. +2E.\+AWL2(1+-1 E.)~

EI . .2 4, a .~ a2 I 24 96 a) 6 8a~

_ 1~ 1 AwL 2

3 EI + 6 EI

Since the horizontal deflection~ 0E' of the lee knee equals RBE aL,

OE = aL2~1+4b2fWL2[,..l:. .2 ,E. +A(l+ 1:._,b)~ _ M_l1 +.1 E.+';Lb2J~
EI. ~4 + 96 a \6 8 a~ -~~ 4a 3 a2

I 2 2 •
1 1),L..a 1 AwL3__ - + - -- a 2

'3EI ·6 EI' ••• (5.34)

Non-dimensionally this is

°E ~ fWL
2t1 5b (1, 1b)~'(i'-:;:-z = a 1+4b2 -,- - + - - +A -+ - "-(apL ' . ' 1), 24 96 a . 6 ' 8 a - ~ + 1 E. + 1:. b

2J}
~4 a 3 a2

.•• (5.35)
i

In.the same .manner, the results of the solution.may be usedtbobtain the

value of 0C' the horizontal deflection of the windward knee.
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~ ,I ~ (1 lA) (.1 1 by
~pL2= a\l1+4b2 ~M; 24 +"6 r>\2 + 4;~

L..

,.. _1 a2 la2 wL2 A+- -
3 6-. ~
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000(5036)

The vertical deflection of the ridge ~ t1D" equals <c_ RDE L/20

Combining E~o (5016) with_the third from lastofEqo

RnE = ~ jI1+4b2~fz +~)+ WL
2( - 3~ .. i A)J

The resulting OD is then~

=~1+4b2r~ ~~4 + 3~A)

(5013) gives:

o' 0(5037)

Similar methods give equations for deflections for all the

cases 0 These are summarized in the appendix in Eqo (5038) to (5053).

50 6 DESCRIPTION OF GRAPHS OF DEFLECTION _EQUATIONS

Results o.f the equations for deflections a.re plotted in

Figso 50l4t~rough 5018. Figs. 5.14 and 5.15 are the deflections of

flat~roofed frames, while Figs. 5.16, 5.17 and 5.18 are the def~ections

of gabled frames having a roof=rise factor b of 0.2:

The horizontaldeflectipns at ul,tirnate load of the knees

in flat~-roofed portal frames are plotted in Fig. 5.14 which shows the

curves from Eq. (5.38) and (5040). For several values of the side

load factor A,the deflection is plotted against the columnheig;ht factor

a. If a_three~dimensionalplot of these deflections were made as was

done for. hinge angles in Figo 5.13, the several curves would represent

sloping lines formed on the side of a hill sliced at equally spaced A
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intervals. Viewed from the front, the curves for A values above 0.7

would be invisible because they.wouldbe·below the creston the far

side of the hilL These are the.reforeshownby dashed lines. A dotted

line near the lower rightha.nd corner divides the. region in ,whichd the

first hinge forms at the knee from that in which the .first.hinge forms

in the beam. Where the first hinge forms in the beam, Eq. (5.40) gives

the deflection.

The rnaximumhorizonta1 deflection at ultimate load for any

frame is s.een to beO. 69 I}pL2 for a~Avalue of .0.7, avery extreme

side load,.and for a column height factor aof 1.0.

Fig. 5.15 shows the vertical deflection at. the center of the

beam of f1~t=roofed frames, as givenbyEq. (5.42) and (5.44). The

majo:r portion of the surface represented.wou1d be a cylinder wi tha

horizontal gene:roator. .For values of A greater than 0 . 2, .. the curves

would be, C'IJ.t of sight on the far side of the cylinder . These, are

.shown by dashed lines. The .region above. the dotted line represents

the zone where Eq. (5.44) gives the deflection, .that is.where·the

first hinge forms in the beam.

. The .curves show tha.t the vertical deflection of the. beam is

most.severe for cases of very long columnswith.no side load, a ca,se

when the first plastic hinge forms in the middle of the beam. In

this case" the ma,ximumdeflec tion may approach 0 ~ 17 I}pL2, wherecl.8

for shorter columns or higher side loads, ama,ximum less than 0.09

~pL2 is obtained.
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·As an example of the horizontaL knee deflection of gabled
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frames, ,Figs. 5.16 and 5.17 show the deflections BE and·Be of the lee

and.windwardknees respectively for frames having a roof rise factor b

.'of 0.2 .. It is obvious that the B function is quite complex, but it

can be pictured more easily if the.curves are visualized as theout=

lines of vertical .slices cut into a ."hill" at ev-eninterva1s represent=

ing the side load factor A. Both BE and Be curves are similar in.appear=

ancewiththe .curves we1Lc>spacedup to A values of 0.5, and then .being

crowded together behind the crest of the hill for the higher values of

A. For.certain very small side lo?ds, Be appears ,as a negative deflec-

tion. This is the case when the spreading of the columns due to the

vertical deflection of the gables is greater tha~ the horizontal de=

flection due to side loads. Dotted lines separate the regions where

two mechanisms form simultaneously. The first dotted line, which~s

between. the A= 0 and A = 0.1 curves in the long :co1umnrange, separates

the regions for which the first.hinge forms in the lee column and in .the

wingwardrafter.The.second dotted line, which follows almost-the same

slant as the A = 0.7 line and covers the entire range of column heights,

separates the region of the panel mechanism from that of the general

composite mechanism. The third dotted line touches t~e minimum points

of theA= 0.5 to A.=LO curves where column heights are less than

0.306L. This line marks the beginning of thecases.where the panel

.mechanism forms with.the first hinge in thewingwardknee, e. Maximum

values of the horizontal deflections of b = 0.. 2 gable frames are about

0.76 eJ pL2.
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The ve.rti.cal deflections of the ridges of gabled frames having

aroo£ rise fac tOT b of 002 are given in Fig 0 5018. The greatest de'~

flect:ions 6JlCC1lllr for low side loads wi thA = a and A = 001. A large peak

occurs where the first.hinge forms in the rafter as was the case for the

flat roofed fra.mes. The curves for the' "behind=the=hill II values of A

are not dashed in this. figure, because they are spaced well e.noughto

prevent confusiono Dotted lines again separate the regions for the

cases of different mechanisms and first plastic hinges. One dotted line

between the A= a and A = 0.1 curves indicates when the.first plastic

hinge forms in the rafter for the general mechan~smo The long .dotted

li1D~12 in the vicinity of the A = O. 7 and A = 0.8 .curves separa.tes the

sidesway and gemeral mechanismso ·A short dotted line just below the

abse-issa denotes that the first plastic hinge forms in the·windward knee

for a sidesway mechanismo The maximum vertical deflection is between

0010 lii pL2. and 0.14 0pL20 For values of A above 005 and columns between

001 L ,and 003 L~ . the vertical deflection is negative 0 .1'hismeans that

·the e.xtremelyhigh side loads~ combine-dwi-th the relatively stiff

columns~ cause the ridge to bulge upward as the windward knee moves

.closer to.the lee knee 0 It will be shQwn in later discussion that

.loading cases of this type shquldbe rare arid consideration of this

effe.,c t .is primarily of academic. interes t.

50 1 ILLUSTRATIVE' EXAMPLES

The equations derived here make it possible to determine the

hinge angles required to forma mechanism as well as the defle;ctions

of joints of a large variet:Y of portal frames 0 The equations will
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serve for all symmetrical frames .with pinned bases as long as the loads
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may be approximated by uniformly distributed vertical loads. The ,effect

of horizonta110ads is replaced by a .concentrated horizontal load at the

.eaves of such magnitude as to .cause the same moment about .thebase. Use

of the results of this study will be illustrated by. some examples which

will be compared,where possib1~withexperimenta1resu1ts.

507.1 Flat Roofed Frame

Given: Span length, ,L =.120 'ft •

. Height , aL.= 30 ft.

Bent Sp~cing = 25 ft.

. Vertical Working
Loads:

. Dead. plus Live
plus show 60 psf

20 psf

Horizontal Working
Load:

Wind.
Load Facto,rs:

Dead plus' live load
Dead plus live plus
wind load
cry = 33 ksi
E ;= 30,000 ksi

1.88

1.41

Find: Rolled structural shape for this frame.

Hinge angle required to form a mechanism•

...-----··Def1ections at maximum load.

a. Design

From the given data, the parameters for geometry of the
frame are found to be:

a = 0.25

b = 0

\ \
I'

l
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Considering the 25 ft.. bent spacing and a 60 psf working load, the

vertical design load for t.he dead load plus the live load becomes;

w = 60 psf x 25 ft. x 1.88 = 2820 lb/ft.

When a wind load is added, a load factor 'of 1.41 applies and the

workin.g load is:

w = 60 psf x 25 ft. x 1.41 = 2115 lb/ft.

The wind load will be represented by a concentrated loadi'"which will

have the same moment .aboutthe base as a uniform pressure of 20 psf

distributed over the whole frame height.

P = 20 psfx 25 ftx 30 ft x 15 ft x 1.41 = 10,580 lb.
30 ft

The side load parameter A is determined from ~he expression forP

given in Fig 5.1.
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A =
2Pa
wl =

2 x 10,580 lb. x 0.25 =2115 lb/ft, x 120 ft. 0.0208

Fig 5.5 shows that this structure will form a general composite mechanism

un,dereither loading, andMp will be given by Eq (502), or theapprop-

riate curve from Ref 10,

Without wind load, when A = 0,

Mp = 0.0625 wL2

With wind load, when A = 0.0208,

Mp = 0.0650 wL2

Without wind , the sec'tion modulus required is:

I

I
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M
Z = -2.

cry
=

=

0.062{ii. x 2.82 k/ft. x 120 ft x 12 .x 120 in.
33 ksi

924 in3
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With wi.n.d, the sectlpnmodu1us required is:

z = ~
cry

=

=

0.0650 x 2.115 k/ft. x 120 ft x 12 x 120 in.
33 ksi

The case. without wind controls, and a 36 WF 230 shape having Z = 942.7 in3

is selected from the section economy tables.

b. Hinge Angle and Deflections

The hinge angle and deflections may be obtained from Figs.

5.10, 5.14,,5.15 once a and A are known.

FromF:i.g 5.10,

HE = 0.167 0pL

From Fig 5.14,

o E = 0.022 0pL2

from Fig 5.15,

o D = 0.0832 0pL2

By substitutingfpr 0p and L, these functions may be evaluated.

143.4

0pL ,=

0pL2=

~
EI

33 ksi x 942.7 in~ x 1440 in.
= 30 x 103 ksix 14,988 in. 4

in.

HE = 0.167 0pL = 0.0166 rad.

2oE- 0.0220pL = 3.16 in.

2oD = 0.08320pL = 11.94 in.
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c. Comparison With Experimental Results

A 36 WF 230 connection of the type which might be used in
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such a frame was tested as part of a research program on corner

connections. 5 A total rotation of 0,0293 radians over a length

of 38 inches spanning the corner was measured at a point in the test

where the moment was still above the theoretical plastic moment. This

is greater than the hinge angle of 0.0166 radians required at the corner

of the theoretical frame.

Fig. 5.19 compares the moment diagram of the tested connection

with that of the theoretical frame, thus giving ~n indication of the

validity of this comparison.

5.7.2 Gabled Frame

Given: Span length,

Column height

Roof rise

40 ft.

10. ft,

8 ft.

Vertica,lworking loads:

. Dead plus live,
plus snow 60 psf.

Horizontal working load:

Wind,

Load factors:

20 psf

Dead plus live load, 1.88
Dead plus live plus wind load 1.41
0y' 33 ksi
E, 30,000 ksi

Find: Rolled structural shape for the frame.

Hinge angle required to form a mechanism.

Deflections at maximum load.
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ao Design

The frame parame.ters. are as follows:

a = 0.25

b = 0.20

bl's :.::: 0.8

Tb.evertical de~ign load foT. de.ad load plus 1,ive load fo.r

the 17 ft. bent sp.acingand 60 psfworki'ng load is:

w = 60 psf x 17 ft. x 1.88 = 1918 lb./ft.

Using the load factor for dead plus live plus wind load, the design

load becomes:

w = 60 psf x 17 ft. x 1..41 = 1438 lb. /ft..

The hor.izontal wind load will be:

p = 2()-psfx 18 ft. x.l7 ft x 9 ft x 1.41 = 7770 'lb.
10 ft

Then

A = 2P.a
wL.

:2 .x 7710 lb. xO. 25 =
1438 lb./ftx AO ft. 0.0675

Fig 5.6 shows that the frame will forma composite mechani~m under either

loa.ding. Mp as gi.venby Eq (5.2) or the appropriate curve from Ref 10

will be:

Mp = 0.0456 wL2

.when A = 0 and
~ = 0.0532 wL2

when A = .0.0675

The section modulus required without wind is

Z = ~,_ .0.0456 x 1.918 k/ftx 40 ft x l2x 1+0 in
cry - -13 ksi

= 50.8 in3
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The section modulus required with .wind is:

0.0532 x 1.438 klft .x 40 ft x 12 x Ao in
Z = 33 ksi

-55

= 45.6 in3

/

The case without wind again controls.

Section economy tables will give a 14 WF 34 with Z = 54.5 in3 . However,

in the event delivery on l4WF 34 could not be obtained, or for some

r:e.ason it was desir.ed to u~e a shallower member, a l2WF 36 with

Z= 51.4 in3 would suffice •. The l2W'F 36 member will be selected for

this example.

b. Hinge Angle and Deflections

The hinge angles and deflections for this frame are given in

Fig 5.11, 5.16, 5.17, and 5.18. Entering the charts with b= 0.2,

a = 0.25, and A = 0, the following values are obtained:

From Fi.g 5.11,

HE = O.62~pL

From Fi.g 5.16,

DE = O. 117 0pL2

From Fig 5.17,

DC = 0.036 0 L2
P

Fr9m Fig 5.18,

/ DD = 0.1005 0pL2

By substituting the known values fo.r0p and L, these functions may be

evaluated as follows.:
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0pL =Mp~;= 33 ksi.~ 51.4 in~ x 480tj:ino
. - EI 30 x 10 ksix 280.8 in~

20pL = 46.4 in.

HE= 0.62 13pL = 0.060 rado

9~= 0.117 13 2 5.43 in.pI.: =

cc= 0.036 2 1.67 in •(bpL .-

cD= 0.1005 0pL2 = 4.66 in. (5.55)...

c. Comparison with Experimental Results

Test results are avai1~ble fora 40 ft. span gabled frame

with 12 WF 36 members. 4 This frame was loaded with four vertical

concentrated loads and had fixed bases and a slightly different roof

slope:, but was sim:llar enough to allo.w the hinge a,ngles to be compared.

The moment diagrams for the two frames are plotted in Fig :5.20 showing

tb.i.s similarity. .The lee knee of the test fr.ame rotated through a

measured angle of 0.077 radiansa,t the end of the test with the frame

still at maximum load as'compared with the 0.060 radian requi,ement

for thetheo\etical frame. .Of course a small part of this measured

'rotation was due to bending of the members in the length spanned by the

rotation indicator and should 'not be included in the compa,rison of hinge

angles. This amount was calculated as approximately 0.005 radians. This

result indic.ates that the theoretical frlUIiewo;uld probably be s~tisfactory

just as the :test frame\ was.

The vertical deflection. ,of the test frame just as it reached

maximum load was 5.3 inches as compared with 4.57 inches reqUired for
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t.he theoretical frame. However, the test franie was able to sustain. the

maxim~m load through a total deflection of 9.9 inches.

Due to the fixity of the bases and the smaller roof slope

of the test frame, it is not surprising that the total horizontal

deflections of the knees were less than those theoretically required

for the pinned-base frame. The experimenta.ldef1ections were 3.9 in.

for the. lee knee and 1.6 in. for the windward knee as compared with

5A3 in. and 1.67 in. respectively, for the theoretical pinned-base.

frC!IUeo

508 PROBABLE EXTREME VALUES OF LOADING AND GEOMETRY

Since one of the primary objectives of this study is to

determine extreme values of the hinge angles, some attention will b~

given to the extreme ranges of the factors controlling hinge angles.

In the proceeding sections it has been shown th,ata frame may be deslgned

and the magnitude of therequi,red angle dete;ctnined if the following

factors are known:

(1) Span length, L.

(2) Bent spacing, s

(~) Column height, aL

(4) Roof rise, bL.

(5) Vertica.1 load intensity, w.

(6) Horizontal concentrated load, ~. = AwL/2"

",.



-58

spacing 'Varying from 1/5 to 1/8 of

1/6 of the.sp~.

The first four' facto.rs ar.e geome,tric fa,ct9rswhich~regenE!'rillly

cO,nt.ro11ed by arch1teC,t1Q:s,lcon~i.de~ation~. .Tb,e l~,t t~o filcto.rsa~e' th~

load factors which aredetermilled by the de~ignal1():W~es~e to tlUt~'

care ofdE!a4 load, liye load, and win~. 10.a:d. The prbb~le,~Jlnge oJ ea,eh

of these variables in'typica1 rigi4 fr$lie ,de~ig~ will. be est8.b1~~he.d in,

the followi,ngps,ragtaphs~

. a. .Geometric DesignL .. ..

Sp~ of tY{)i.ca1 ri.g1.d frame constt'll'ction. ~e4et¢:tm:tne:.c1

,p,':1:'i.mari1y by the' amolintof sp~ce to he cayE!'r~d,w~th, a~oof, aIl4:range

fromabo~t 30 ft. with 16 fe-; bent .SPacing to aye; 2()O ft•. with bent
'7 1~

the spa,n ~ength. . .' ~

Column: heights.s,t .be gre'ilt en()Ugh tpgive suffietent he.@­

room; fo.r the purpose' ofthe'b1.l.i1ding.~d tb;E!:refor~~y be' .8$ lirge'll:S:.... :::=...,--- . '. ' '.

c.onSidered good J?~acticet:,o ha:y¢th~mi,n~cb~~~ight,a.tle~t

\..\

from 0 •167 ,tc) 1.0 •

RbOf rise is influenced by dr~ll~e con,sJ.der,a:tionsandby

special p.r()b1ems related t9the. type()£ ):()ofeCJVlirptg .1.lsed.F1a.t:roofs

are frequent1YU:l3ed, and oth¢r.'rbof p;Ltcne.s .iJFe in.. the order of 1/6,
'".f

1/5, 1.4, 1/3 lilIld 1/2 the :~p~ length~14. Thus, the ,rpof rlsefllctor, b~

may range frpm 0 to ().S .T1l.e·r.atio of roofrlse' to co lumn .height , bJa

.will· rarely exceed. l.Oexceyt fO.r speci~l*chltectural p.rob1ems' like

chl.1;t'ches, in. which case b may great:.ly e~ceed. O.5.~ .
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b. Loading Factors

Vertical design loads consist of the dead weight of the roof

-59

and structtir.e averaging about 20 psf, and live, and snow loads totalling

1.1 ,21
up to about 40 psf. A total of 60 psf will ,be 'used here as an

average and combin,ed with allowances for horizontal loads ranging from

zero to a maximum extreme.

Horizontal design loads are generally wind loads which may be

pr,esent or a.bsent arbltrarily and ~o must br considered either way •

U~ual wind loads are about 20 psf on the vertical projection of the

st'!'ucture as given rin the AISC sp'ecifications ~ 2.L However, in .areas

/

subJe:ct to severe wLndstbms, greater wind loads are specified•. The

NatlonalBuilding.Code recommends increasingly larger wind pressures

as the height of the structure increases. For buildings from 100· to

,499 ft. high, a p.ressure of 70 psf is recommended. 22

The max~m and minimum of the several factors a~e t.abulated

in. Table I as a preliminary to the calculation of .the side loa,d factor, A.

TABLE I

Extreme Va,lties of Geometry and Loa,ding

,Colunm Roof Horizontal Vertical
.Height Rise b/a Bent .Wind Unit
Factor Factor Spacing Pre'8sure Load

a b s p

Minimum 0.167 0 0 LiS .20 psf 60 psf
I·

Maximum. 1.0 0.5 1.0 L/Z 7Q psf 60 psf

1
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c .. Values of Side Load Factor A

The .concentrated load, P, at the eaves is that force which

will give the same overturning moment about the base as a uniformly
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distributed wind load on the vertical projection of the frame. Expressed

in terms of the previously tabulated variables, the .concentrated load

for a flat roofed frame would be

P= 1/2 pas LF

and for a gabled framewould.be

P = 1/2 pas (1 +b/a)2 LF.

.•. (5.56)

• .• (5.57)

where F is the load factor 1.41 applied to increase the working load

to the design full load ·of the structure considering wind.

The side. load factor, A, is defined as the quantity 2P.a/wL.

Substituting in this the expressions for P, and noting that the linear

distributed 10adwF is equal to the product qsF of the uniformly dis-

tributedroof loadq 'in psf, the bent .spacirg s, and the load factor F,

the following expressions are obtained for·A:

A 1/2 pas LF x 2a/q sLF = a 2 p/q ... (5. 58)

for flat roofed frames, and

. A = a 2 E. (1 +b/a)2
q

for gabled frames.

... (5.59)
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For both cases, the value of Awi,thou:t wi:p,d is ze~o. Th.is

value will control many desigAs.

Inmostue:~ th~design .wind 10adspec.:tfied is 20 ps£.

Therefore the p:ap;dq values to be'used inEq (S.58) and !S.59)woul.r

be 20 psf and 69 psf re:spectively. .The ma:ximmn possible values, cfA

woulc1result when .a and bla axe a maxim.w:n.. ',This wQ"uld occurwh,ena

is 1.0 and b isO. 5 giving

2
A = (1.0)

20
x 1.0 =60 0.333 ••• (5.60)

fo+ flat roofed fr4mes and

2 20 2,A = (1. 0) :it 60' x (L 5)_ 0.750
:, "

• •• (5.61)

for gabled frames,!, :These constitut.e the max:i.nIUm probabl~ values of A

forthe'standard 20 psf wind. loading. Howeve;r:l the values of aan:d b

used to obta.ine these valuesa.re not the most typical. Fot:' longsp!!!n

, frames, "a" would ordinarily be closer ~o 1/5 an.devenfot: sho'X't s~
I

would be nearer to 1/2. ,For either of the'se '[alues, bJacoul,d be as

great a.s 1.0. Values of A calcul~ted for the 20 psf wind loaqing a~e

tabulated in, Table II tor a va11,1'e of 0.2, 0~5 and 1.0.

lnareas subject to BeV,ere stonns, the 70 psf wind would

govern, and values of 70 psf ang 60 psfwould be used forp. all,d q

respectively. The results of these calcula.tl()tts a:l:'e included in Table II.
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~~imum Values of Side Load Factor A
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Wittd I,..oad

Flat Roofed FramE!s

20'pf'

70 ps.f

Gabled Fr~s

20 psf

70 psf

Column
Height
Facto.x-

a

0.5

1.0

0.2

0.5

1.0

0.2

0.5

1.0

1.0

0.2

0.5
r

1.0

1~0

Roof
Rise
Facto!'

b

o

o

o

o

o

o

0.2

0.5

0.2

0.5

0.2

0.5

Maximum
Side Lo~d

Factor
A

0.01333

0.0833

0.333

0.0467

0.292

1.166

0.0533

0.333

0.480

0.750

0.1867

1.167

10680

2.62
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It has been shoWn by these ci3.lculations that for the typical 20 psf

wind load, the side load factors may range from 0 to 0.333 for. flat roofed

frues and from 0 to O.} 50 for gabled fr8Ille's. Thus .the possibilities of

actual loads COVer the whole range of A Valulas for which hinge angles have

b~e.rtcalculated and charted. For theextrem~ case of a 70 psfwind load,

"A":-yalues less than: 1.0 will include all structures except those with

the' largest column heights. For the cases with long columns" it is

~robab~e that the hinge an:gles will be ~matlerc than the valUeS plotted

for A = 1 and at least anupp~r bound for the hirtge angles is included

in' the curves'. (Fig 5.11 & 5.12)

5.9 PROBABLE EXTREME VALUES OF HINGE ANGLES

The maximum probable va-lues of hirtge angles can.edth¢r depend o;n

the' maximum ai1gIe shown on: Fig 5.10, 5.11, or 5.12, or on the maximum.. . . , . .

angle possible within the limits of the probable side load fa'ctors, Aj

given in Table II. FOr example , in flat roobd fl!'ames with 20 ps.f wind

loadin.g, the maximum hinge angle at the lela kn:~e with 10ngcolUllll1S would

be aPout 0.32 0pL with A = 0.333. At the' same time: the maximum for sho1",t

columns would be about 0.22 0pL with A limit~d to 0.01333 ev.en though,

for a= 0.2, greater value.s of the hinge angle are indicated for values

of Aup to 0.5. Another limit for flat '":'1"00 fed frames would be a hinge

atlgle, HF' in the be\aJn of 0.33 0pL fo,1" no side load and a column height

equal to the span.

If a 70 p.$~ wind is spe'cified on a flat-roofed frMie; the same

maximum valu.1i of HF = 0.33 0pL would apply (with no load and a= 1. 0) •
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The hinge angle, HE' a.t the lee kne.e could increase to 0.42 QJpL.

Applying t.he same type of reasoning to gabled frames ~9hows that

the intensity of the wi.nd pressure. has Little effect on the maximum

values of the hinge angles H£ andHF. HE has its maxi.mum value for
/

very short colunm.s and relatively li.ght side loa.ds; thus, the greater

side loa.ds actually mean a decrease in required hinge angle. The hinge

angle HF in the rafter has its maximum value with no side load and with

the longest columns and flattest roofs. One additional factor is intro~

duced in gabled frames <"'0 this is t.he possibility of a hinge angle He

at the windward knee. The, maximum angle occurs with a high wind load

on a frame with short columns and a steep roof.

Themaxim:um probable hinge angles for these several extremes of

size and loading ,are shown in Table III along with a list of the factors

causing the extreme values of each. It is seen there that the maximum

hinge angle at: a lee knee would be about 1.03 QJpL for a steep gabled

frame. (b = 0 • .5" a = 0.5" A = 0.1) • The maxi.mum hinge angle for a

windward knee would also occur in a steep gabled frame, (~= 0.5, a = 0.5,

A = l..l7)witha value of about 0.49 QJpL. The maximum hinge angle in

the ,rafter would occur with.a flat',·roofed frame and would be 0.33 QJpL.

(b =0. a = l.0, A =0).



268.3

TABLE III

Max~ P':robabl!!' H~g~ AIigles for Sing1.t Span Frames

-65

Hinge
Attil~
a:f I.e.,a
~e:

HE

Hirtae
Anal.
~t '
Win~ws:r.d

K;niaa
HC

'HiU8e
Angle
in
Wi~dwa:~d

Ra:fti!:i
H,F

Fac.~ors

C~sillg

Maximwii
Hin,ge
Angle

Wind -Load

Small side Load Higq Side Load No Side Load
Short ColuDlns' Short Col~s TallColumliS
Steep Roofs St~ep Roofs Low Ro'ofs '.

Flat Roof.ed
Frames
~' = 0
Up to 20 psf
Up' ,to 20 ,sf

GablCa'd Fr~.s

Q = 0.2

Up to 20 psf
UP to 70p~~

b = 0.5

Up to 20 psf
Up to' 70 jsf

0.32 ~pL

0~4,2lapL

0 •.80 "pL
0~8.6 ~L

0.44. ~L

..

0.33 ~... L
0.33 {lpL

0.15 ~L
0.15,V1pL
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5.10 SUMMARY

The following summarizes the contributions of this chapter

and gives the results of the calculations made for single-span gabled
,

portal frames with pinned bases and including the special case of flat=

roofed frames.

(1) -Equations were developed determining the domains
of two types of mechanisms ( Eq. (5.3), Fig. 5.3)

(2) Equations were developed determining the domains
in which any of three possible plastic hinges
could be the first to form (Eq. (5.8), (5.9), and
(5.10), Fig. 5.4).

(3) Combining the graphs for type of mechanism and
location of the first plastic hinge gives graphs
indicating four combinations of mechanism and
first plastic hinge. (Fig. 5.6).

(4) Expressions were developed for the hinge angles, H,
for the four cases of failure mode (Fig. 5.10 through
5.13) .

(5) Equations and charts were developed for the horiz=
ontal deflections of the columns and for the vertical
deflections of the roofs (Fig. 5.14 through 5.18).

(6) A flat=roofed frame and a gabled frame were designed
and the hinge angle requirements were calculated.
These were compared with the actual hinge angles
measured on test specimens using the same rolled
structural sections. Though the experimental loadings
differed slightly from the theoretical loadings, they
were ,considered similar enough for a rough comparison
(Fig. 5.19 and 5.20). The comparisons showed the
theoretical and experimental hinge angles to be of
the same order of magnitude.

(7) The maximum possible hinge angles were determined for
a complete range of frame proportions and for wind
loadings ranging from zero to 70 psf, including the
usually specified wind load of 20 psf.
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These calculations showed themaxi:mum hinge angle. at: a
lee knee to be about 1. 03 0pL for gabled frames with small
sIde loads, short columns and steep roofs. The maximum
hinge angle at a windward knee would be about 0.44 0pL
for gabled frames with large side loads, short columns,
and steep roofs. The maximum hinge angle in a beam or
rafter would be about 0.33 0pL for flat-roofed ::frames
wi..th tall columns and no side load.
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60 M U L T I SPA NF R AM E S

-68

WIT HF LA T

A method of plast:i.c design of multi-span rigid frmnes by

separation i.nto subassemblages has been p:r.esented by Ketter 0.

10
With

certain modi,ii.cations in the concepts of subasse.mblages. the deter-

min'~tion of rotations and deflections for mult.i.-span rigid frames ma.y

also be accomplished by the use of gr~hical cha::r.-ts fox' subassemblages.

The, solut.ion of this problem will be present.ed in the following dis-

c.ussions. In ordet.' to keep the number of complicating factors to a

minimum, only flat-roofed fit-arne.s will be considered in this chapter.

Gabled frames will be treated in Chapter 7.

To solve the problem of rotations and deflections of sub-

assemblages for multi-span frames, the necess4:t·y alteration,s to the

concept of subassemblages will first be made. In Ketter's method, the

effects of adjacent spans on the span being considered are grouped

together in the moment te:rms AwL2 j2 and DwL2 j2 applied to each si.de. - - /

of the subassemblage (Fig 6 0 La) 0 A and Dare dimension.less pa:rameters

relating the side loads andmo~~ts to the ver~ical loads. Unfortun­

ately~.these side load terms do not define the moment diagrams in the

COlUIILTlS sufficien.tly to allow calcuLatio.n of deflection.s and rotati.on.s.
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If t.he moment terms in Fig 6.1(a) are replaced by a pair of thrusts,

AwL/2a and DwL/2a, as shown in Fig 6.l(b), the moment diagram in

the columns may be determined. How~ver, replacing the external moments

AwL2/2 and DwL2/2 does npt change the loading static~lly. Therefore,

the design method may still be used without alteration. Ina multi,.

span frame, it would be expected that there would be external.moments

at the knees·· ca\:isedby aEitacent spaa~··as-·we·ll as···ex-te·rnalth.I'Usts

at the knees. To take these ·externa1.·moments into ..accou~t, the

mOments M<a. and MQaand negaUve thrusts ~L/aLand MQR/ aL will be

added as inFig6.1(c). The three loading cases given in Fig 6.1

are all i.dentica1 with respect to the plastic design of the subassem­

b1age by meanS of charts because the charts actually select only the

member for the roof beam. For the calculation of rotations and

deflection.s, the loading .ofFlg 6.1(c) will be used. For the determin­

ation of the first plastic hinge, the loading of Fig 6.1(b) will be

used.

6 .1POS.SIBLE MECHANISMS AND DOMAINS

As in the case of the single span frame, each subassemblage
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might form one of two possible mechanisms. Equating .the plastic hinge

moments for these ~wo mechanisms gives an equation separating the domains

-for wl).icheachwill occur 0

10
For a general composite mechanism, the plastic hinge moment is:

M
n l'

...L- =._ (A-D+1) 2
wL 2 . 16 .

,For'a panel mechanism, the plastic hinge moment is: 10

M
...L _1

. 2 - 4 (A~D)
wL .'

. Equating these, the boundary between the· two mechanisms is:

I .00 (6.1)

/
/

•• 0(6.2)

A - D 1 o •• (603)

602 LOCATION OF FIRST· AND LAST PLASTIC HINGES

The locations of the first and last plastic hinges within a

subassemb1ageare determined by the location of the maximum elastic

moment. ,&xpressions for. the elastic moments in the subassemblagesare

.as follows:

.00 (6.4)

,It is only possible for the maximum moment .to occur at.the lee knee E
\.
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and in the beam at ,F. ,Equating the .expression.s for ME -andMF giVt~s an

expression ~s follows for the desired boundary.

A-Dl - 2 .. ,(6.5)

6.3, SELF-SUPPORTING AND NON-SELF-SUPPORTING :SUBASSEMBLAGES

A typical design of a three span frame might result in a

mechanism similar to that shown in Fig. 6.3. To determine the required

rotation capacity of this structure, calculations of rotations and qeflec­

tions must be made.consideringcontinuity at the last plastic hinge to

form. This brings out two important points:

(1) The last plastic hinge must be located,

(2), Only one of the three subassemblages possesses the

,continuityat mCiximum load which makes a structure determinate.and stable,

The other two subassemblages are truly mechanisms and must ,depend on the

self-supporting span for. support.

These two ,contitions in multi-span frames may be handled by

deriving a set of equations for non-self-supporting,subassemblages as

well as for the :self-supportingsubassemblages. The location ,of the

last plastic hinge may be determined ,by assuming each span .in turn to be

the self-supporting span .and calculating deflections, It has been shown

that. the greatest deflection will occur when the true last plastic hinge,

has been assumed.

The unusual condition in the non-self-supportingspans is that~
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having two plastic hinges free to rotate, they are ove.rdet.erminat€;. and

deflections and rotations may not be calculated without further inform­

ation. This further inforIIlation is supplied ,by the known deflection:

of the self-supporting span ,at ,the point to which the adjacent span must

remain attached. For instance, suppose itis determined that the left

span in Fig. 6.3 is to be the self-supporting span. Then the de.flection

0E ,of the lee knee can be calculated. This deflection is then a known

deflection when considering the behavior of the span to its right. If

the desired functions in the non-self-supporting span are solved in terms

of th~ ~9a<iing, geometry, and'this controlled deflection, Dc, all resul ts

maY,be obtained.

6.4 ,HINGE ANGLES AND;DEFLECTIONS FOR· SELF-SUPPORTING SUBASSEMBLAGES

The moment diagram for flat-roofed multi-span frames is given

in Fig. 6;4. The moments shown are applicable to both the ,sE:lf-supporting

and non-self-supporting subassemblages. Because the interior columns

inmul ti-span frames are , in general , different members than the rafters,

the different moments of inertia ,are used directly rather than deriving

the equatTon's for constant' section throughout. These moments of inertia

are designated as 10 for .the rafters, IL for the ,left hand column, and

I R for thr right hand column.

"TIle derivation of the hinge angles for the ,self-supporting

subassemblage proceeds exactly as in the case of single span frames with

the simple addition of the DwL2 , ~L' and ~ terms. The resulting

,hinge angle equation for the general mechanism with the first hinge at
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the lee knee Eis now given.
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Composite .Mechanism with First Hinge at Lee Knee E

-1

1 .wL2
+"6 a .~ (A-D)

1-a
3

1
- 7B.3

... (6.6)

If, temporarily, the I of the columns is made equal to that of the rafters,

and~L .and ~ .are .setequa1 to zero, the equation reduces to a functi.on

of A, D, anda.

2
- - a

3
... (6.7)

This equation is seen to be identical to Eq. (5,20) for si.ngle span

frames except that the expression (A-D) replaces A. It thus becomes

convenient to set up the equations for multi-span frames as a graphic

portion consisting .ofthesolutionof a single-span frame with side loads
,

from both sides, and a set ofcqrrections for the differences in moments

of inertia of the colu~s and beam and for the moments at.the eaves due

to adjoiningsubassemblages.

Graphic

1
12 + (A-D) (i +* a)] - 1 -; a ... (6.7)
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Corrections r.
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. •. (6.8)

The sum ofeq. (6. 7): ~nd (6.8) ,is eq. (606) fulfilling the requirement that

the graphic solution plus the corrections equal the total r.esult.

,,$imilar1y; hinge,angles may be derived for two other cases:

Case II. COMPOSITE MECHANISM-- FIRST HINGE INBEAMATF

.~' .wL2[1 • (1 1 ~~-. =:'-. -.;- (A-D) - +- a -1rjpL M 12·;' ' , 4 6
, p'

1 10 l1Qr. 1 1
0 ~R

3 lL ~ '3a I R Mp

2- -a
3

•. 0(609)

Case la. Panel Mechanism

HE 1= --=,.....,...
~pL 3(A~D)

First Hinge at LeeKneeE

.•• (6.10)

The graphic portiotls of Eqo (6.7), (6 .9) an,d (6.10) are plotted ,as a family
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of c~rves in Fig. 6.5. This figure is identical to Fig. 5.10.

:As a result of the~erivations o:fhinge angles it becomes

possible to computethehorizpntal def~ections of the knees, 0E' and

theverticai deflections of the midpoint of the beams 0D. Theseare

sunnnarized in the appendix in Eq. (6.11)" to (6.17). Curves of the graphic

portions of theoEequations afeplotted in Fig. 6.6.

6.5 'HINGE ~ANGLES,_ AND ,DEFLECTIONS FOR NON~SELF-SUPPORTINGSUBASSEMBLAGES

The only different 's~ep in the pr()cedurefor deriving hinge

angles for non-self~supporting;~ubassemblages is using the horizontal

deflectii:m ~pr'oduced ,by the'~djacent .span,as a boundary condition.

,Also' there are t:wo hinge angle~ in,steadof Rne. The: use of the deflection,

boundary condition is actually accomplisq.ed,by tlsing,thechord rotation

FAC al:lthekt1.owntluantityfntJ::le,stope-defl~ction equations and sub­

stitutingits value ~/aL into tge ,resulting solution.

The follqwingequati8~' result frqmthejslope-deflection calculations:
.' " , I' ••

, Case I and II: - C0wP0site M~chanism-- Hinges at Lee KneeE and in BeamatF.
" I ";' , ,

, ,

~R

,~

(A,~D) (~~ - 1)

'Mea 1 10-'---a-,MP' 3 I R

wL2
'--M
'p

1
- -a,3 (

I' ")i; - + ... (6.18)
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1
(1-0.)

-la
3 (

10 .\) 1 1--1 +-a1L . . (1-0.) 6
wL 2

(A-D)
.~

(
10

)-- 11
L

1
(1-0.)

•.. (6.19)

Case .la: Panel .Mechanism-- Hinges at Lee Knee E and Wind,\'1axd .Knee,C

.•. (6.20)

.Dc 1 1 0 ~
~(}pL2

-a
3 1L ~

+ la (-10 - 1)3 'IL . '. (6. 21

Eq. (6.18) is plotted as a family of curves in Fig. 6.7, andEq. (6. 19) ,is

plotted in Fig. 6.8. Eq. (6.20) and (6.21) appear in their respective

charts only as ttleA-D = 1 curve ·since no greater values of A~'D are

plotted.

,Since the horizontal deflection DE of the lee knee equals the

given deflection Dc of the.Windward.Knee for flat.roof frames, no further
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delt'iv.!ltiono£ hOll::f..~,de'.flec.tions i.s requ.:i.r=~d. CEq (6.Z1) ~ . Eq-us:tion:s

(6.22) and (6.Z:3) fq~:th:e. Ve:t'tica~ de.f1e.ction~ ofthecenteJrOf t1i~.beam

'\
are given in the. a.pp~nrjt"il:;l but al!e not plotted.

Ra.therthan describi.ng thesiteps in the procedure fq~ usin,g

the equations and graphs derived innnecliat.ely, and thep~ocedul!e will be

detnonstrated 'with an example in the following sec.don. The steps in

.the p,rocedure will then. be $,~a.:r.:i.zed in section 6.1.

6.6 .,SAW'LESOLUTWNOF A ,FLA.TROOFEDMIJLTl'rS1A'N .'FBAME
. . ~ 1. ..:;, '., ,..[' . • ~. r ,', 1 ," •

The. use ofthe~~$lts o:ft.his' c:1);.aptl?1Cwill be i11us,tlt'at$c:1
..

by ,means, of the two"'~pan fr.ame shQwn inFlg .6.9. ,The. "knoWn" info~ti~/

.which can be obta:i~d ,from the. fi.gute i~ as. fo llows:

Left. Sp:an:
b/.a =0'
a1= 0.333
Al ,=0.0555
L1 ,= 3Lo ,.

Left"Span
.Dl l'

Mel = 1

RlghtSpan
b/a. =0'

8;2 = O.ZOO
DZ= 0
LZ = 5~

,Ri~ht ',Span'
,A2 = ?'

Mpz = 1

The design full load .for tltre fram,e. i~ desilreda:~ w = Zk/.£t anc:ith~ column

hei.ght Lois ZO ft. Using a y~eldstre.ss cry = 33k131a.nd followingth'$'

tle.c'essa1:Y proceduZ'E!s 0.£ Ref 10, t1te .follqwlngte.su1 ts are
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Qbtained~

Dl= '0.030

·MpL11 = 0.0658
~

A...D = 0.0256

0:. = 0~481

Mh =~ -.0.085
Hp1

,RightSpa.I1l

42 = 0.0108

Mp2
0.0641WL22 =

A..;:o = 0.0108

a:. :r 0.4·9.5

~ =-0.916
Mp2

-;78

.' 21WF 73 33 130 27.WF.' 94WF

Zl 172.1 Z2 = 466.0 Z3 = 2.1"! .7=

11 = 1600.3 12 = 6699.0 ]) = 3466.. 7

Mpl= Mp ,Mp2 2.10 .Mp Mp3 = L61Hp-

The ·moment diagram a.tmaximwn load is shoW![. in'ig .6>.10.

The next step is, todeci.dewhic.h sPIit,J]. 1$ the se.lf-su:rport.ing

spsil. .This is done by c.a.lc;:ulat:!.u.g the. ho~rlzont.a.l defle.ctlo101?tS131'm11rtg

eac:h.p.iJtnintu"!:l1to be the self"'suppo:v:t:ingspan. Fait' the left sp'i:t.m~

:u~ing,."'D = 0.0256 .Qd, a=0.333)) • BE I "PJ:t.2 'y~lw of 0.035 is talta1ll.

f:r;om ]'1g6~6. 'i'Q.ec()~~¢tionS to this graph.i,~ ·.~lue .&.7t'f;j gl"\,"eI1J.by Eq.

(6.11). .Since the-re i~ noextenuJ,l moment to the left.\) al1d.sinc:e th."e

left .column is the smnesection as thebeamJ) 'all c;Qt'zection.s equalzeJ:"o 0

Then,

= 0.035 Mpl Ll 2
E 11



~... ,__' 0.316
..II?
~

Mp(3Lg) 2

Ell

MpL~
~I1 (Left Span)

,..79

",,{6.22)

, 2
For th~right hand span, the graphicOE":V}.l.W:~,is 0,.023 f6pL •

Since ther~ is anext~wnal ,moment to,the lafto! tJ:u;s,~a.'l.'!'::J ~i!t.lf.e left:

span. ,The additional fa,cto?s n:ecessaT.yat'e~

...1.00
2~70

!2. =6699.0 in~ '~
IL 3266.7 in 2.05

The correc::ti,on te~s of .E~ (6011) becom~:

= "_! (Q.2)2 (2.05)
. 3 (-2.10)

-t (0;'2)2 ~1~Q5) + ~'(Q~2)2 ,(g:'~~2~> (1.05)

0',E
-,--2 =
~p~

... O.-OC,lZ6l) ..• (6.23)

'Addi,ng this cO:rrection to the graphic V8,lu'e of EF;giye'sthe total valu¢

of 0E~

DE =
=

°E =

I

,0E (.graphic) + ,oa2
(0.023 - 0.OO~)~2L2
, EI2

0.020 Mp2L22 "
,El:2

••• (6.24)
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To compare this deflection with that of the. left span, they

must be put into the same dimensions.

5 .=0.020 (2.70 Mp) (5Lo)2
EE (4.1811)

M L 2
P 0

Ell
(Right Span) .•. (6.25)

,Since the horizontal deflection of the frame would be &reater with the

last plastic hinge in the right span, that span must be the self-supporting

span. Thez:efore, hinge angles for the left span must be calculated usin.g

the char ts and correc t~.oftsfernon-s-e·l:·f-supporting·g.ubas-semblages, and

those for the right span using the functions for se1f~supporting.subassem-

blages.

The first hinge. angle to be calculated will be that for the

rigl}t span. The graphic value of HE .fromFig. 6.5 is 0.216 (api,. Additional

data needed for the corrections is provided below:

~ -1.00 MQR

°Mp 2.70
.-

~

,T 1
0''''0

2.05;: = 1I I RL

The corrections to be made are included in Eq. (6.6) .

H·· l

E.
~pL

= - ..~.
'~.

- 2)+ 1-a
6 (A-D)
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H I

E 1 (2.05)
0pL = - 3 (0.2) (-2.70) - 0

1
3 (0.2) (LOS) +1:.(0.2)

6
(L05) (0.0108)

0.0641

H. I

E
0pL - 0.0134

... (6.26)

Therefore,

HE
--n-- = 0,216 - 0.013
VJpL

0.203
... (6.27)

,Substituting quantities for 0p and L,

... (6.28)(Right Span)

(2.48 'Mp)(5Lo )

E '(4.18 1 1)

MpLo
= 0,602 Ell

HE = 0.203

For the left hand span, two hinge angles, ~ and ~ are to be

calculated, These calculations will use the following additional data:

MQ 0 MqR -2.48=
~ M LOOp

I I
0 1,00 0

0.490=1
1 I R

--fL = O. 48 7 = 0 950
l-a, 0.513 .

The graphic value of the HE from Fig, 6.7 is -0.051 0pL. The corrections

from Eq, (6,18) are:

~' Dc.- --
0pL a0pL2

(_1_)
l-a,

1+ -a
3
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10+ (- - 1)
I L

1 10- -a (- - 1)
3 IR

-82

... (6.29)

Substituting for Dc the value obtained inEq. (6.25) and for the -other

quanti ties their known values,
0.323 ~L02

H ' EIE 1
0pL = 0.333 Mp (3Lo)2(0.513)

+ a - ~ (0.333) (0.490) (-2.48)

+0 - 1 (0.333)
3

H 1
E

rio L = 0.402
IJI p

Then,

(=0.510)

... (6.30)

=0·.351~
EI

1

HE =-0. 051 :it.!. +
Ell

~ = o. 351!1p(3Lo)
Ell

0.402·:Jtl
Ell

ML
= 1.053 ....E£

Ell
(Left Span) ... (6.31)

The graphic value of HF from Fig. 6.6 is 0.1910pL. The

corrections from Eq. (6.19) are:

Substituting,

1 10
- -'-a ­

3 IL

1
(1 - ­. 2

~ (_1)
Mp 1-a.

wL 2

.~ [A-D]) ... (6.32)

-
0.333 Mp (310) 2(0.513)

Ell

- 0·- a

... (6.33)
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Then the hinge angle atSectionF is given by

HF = 00191

MpLo
0.057 Ell (Left Span) 0.0(6034)

Summarizing, the hinge angles for the structure are as

foIlows:

Left Span

Knee HE = L05.3

BeamHF = - 0.057

~
Ell

~
Ell

Right· Span

~= 00602

H' = 0F

000(6035)

Themagni tude of the hinge angles at the .kne.es would indicate

that they were th,e first to form. '. This is expec ted because. elastic

solutions of two-sJ?an frames generally show the greate.st moment at: t.he.

center. support and a large moment at. the lee kne,eo l'hemean,ing of the

negative sign of the hinge angle in the left beam is that the hinge has

tension on the bottom of the beam as is expected from the physical

picture of the structure. The hinge angle in the right beam is zero by

its definition as the last plastic hinge to form o

6.7 . SUMMARY

In this chapter, a method of determining. there.quired.hinge

angles of flat-roofed multi..,span framet3 by separati.on of the. struc.ture

into subassemblages is describedo This method is consistan.t with the

method of designing ,similar frames pres'entedby Ket:te.ro 10 The following
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sunnnarize's this chapter:

(1) ;Due to therequiremE¥nt that oJJ.1yori~e ple:f:\tic hinge can have

continuity Ju'st prior to the formationofme:eh~l!.ttBro.,~only one, of the

subassemb1ages of a multi-span frame may he selfc,si£:ppoll'ti;ffig. A,1l_'

remaining subass'embla:gesm~l'stdepend upon ,this suba,ssemblage forr:palrt

'0£ their support. Ther'efore, it is:necessa.ry toder.i'ire a. S'et ofequ'ations

subassemb1age.

(2) Equation~sfor the 'domains' for mechanisms, bJ.nge. angles, and

deflections were deriVed for the self-suppoirting su,bass'emblages i.n the

S,amew8.y as was done for single,..'spahflat;,oroofed f1:ames. In fact~ the

resulting ,equations were the same with threee:Kce.ptions: (i) The term

A-D :l.n the mu1ti-spane'quations replaced the tercm A in the single-span

equations, (ii) ,Correction terms were included fo~ the moments of the

.knees due to the effect 'ofa:djacentspans.; a.,1'~d (iE) COll';cection tems

were included for diffe'renees between the moments of inertia: of col1,linnS

and beams. Graphs of.the graphi,c portions of t.hese equations are given

in Fig ,6.5an,d 6.6. ,To the'se va1u'es niUst be added the appropri'ate,.

corrections.

(3) Additional equations weJ;'e derived fQ!C n'on-self-supporting sub-

assemblages. ,The deriv,ations assumed discontinuity at both plas'tic

hinges rather thanone.~e boundary eondit:l.on substituted to make'

tH~problemsolvabrewa:s that the horizontal deflection of the knees
,

.mu·st be the same as the "known" deflectiono£ the self-supporting ~pan.
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Thus a term LX;, which f.8 detenn ined by the self-suppoLrHng subassemblage ~

appears i.neach equation for non-self-supporting. subassemblages. G7:aphs

of the graphic portions of these equations are given i.nFig 6.7 and 6.8.

Correction terms must be added to these vatu'es.

(4) The method of s~lving .rotationcapacity problems for multi-

span. frames was established as follows: First, assume each span in turn

to be the self-suPPorting span and calculate the corresponding hOTizonta1

deflection; the correct assumption will be indi.cated by the largest

«e.~lectionso computed. Second, having determined the self supporting

span, calculate the hinge angle for that span causing the "self-supporting"

equations, and calc~late the hinge angles for all other spans using the

angles for all other spans u'sing the "non-self-supporting" equations.

(5) An example ofa non-symmetrical two span frame was solved to

indicate the use of the charts and equations.
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7 D - M U·L·· TI ~-- s..-P-- A N GAB LED FRAMES
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The principles to be used in the solut.ion. of: gabled mu.lti.-span.
•

frames are the same as for flat-roofed frames. H.owe'\Te!'~ added complic-

at ions arise in the form of additional possi.ble. mecrr.ard.sms z'esult:ing

:trom the gabled roof. These possible mechanisms could !'e.sult when. the

side loads on both sides of a span are quite higb.;) c.a:u.si.ng the. r:afte:!.'s

to bulge upward with a plastic hinge fo:nnLog at: the :'ri.dgeD TId.s mechanism

will be desig~ted a "reverse" mechanism in the 'senSE! that some of tIle

loads move in a direction opposite to that in wI7.icb. th.ey are appLi.ed.

It can occur either with hinges at the ridge D and 1.D. the win.dward

rafter at F or wi.th hinges at D and at the wi.ndwaxd knee c. The second

form is actually a special case of the fi.rst with an CL value equal to

zero.

. It is considered doubtful that the value of th.e sid.e load factor

D could become large enough in mOpt practical Ca.SE:S to caUSE! a :ceverse

mechanisJll. However, a case can be shown where :i.t wmlld form, so the

equations will be presented for completeness.

7. 1 TYPE OF MECHANISMS

The equations for the plastic hinge moments foi.C the composite

and panel mechanisms are available from Ref W.

Composite Mechanism (Fig 7.1a)

'\

1
4

2b
(A+a. -~) - D(8:)"" _]

1 + --0:.
a
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a. = ~/a [~ 1 • b [A(l + E.) - D (1 - ~.) - I]
a a d

-81

• •• (7 .1)

Panel Mechanism (Fig 7.lb)

~2' =
wL

A-D
4"" ••• (7.2)

The pane1 mechanism is a speci.al case of thecomp~;i::e !D.tEc.hani.sm with ex. = o.

Equations for the two forms of the 11 l:'8ve:C:;3e" mechanism may be

derived in the same manner that was usep fo!r th.e. ot:f-i.8:::S. The result ing

expressions are~

1
'2

Reverse. Composite Mechanism (Fig 7.lc)

Mp _ = -41 { (l-~.) (A~~~W - D - ~ + c1(1+~)]1
;Ll l 2 + a + 2 ~£t j

1 f,l b 1 b 2 b [ b ]
a. = b/a L~ 1 + 2 a: + 2 a:2 - 8: A (1.+2.a:) - D

Reverse Gable Mechanism (Fig 7.ld)

.1J
• •• (7 .3)

!:!E. = 1 [
wL2 4 · •• (7.4)

The limits of the mechanisms are determined by equating the

MP/WL2 expressions for each pair of mechanisms.

Relationship Separating Composite Mech8.n.iosm from Negative Composite.

Mechanism

.", - A + D =
(l+~)

2/ 2b .. a.

1 b2
1 + 2b/a. + L 8:2
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Relationship Sepalrati~ ,Composite M.ec.h~w-:t$m ..f2r0ffi ·PelLlJl.el Mec.h:a"1ism

A = 1 + D (1 - bfa)
1 + bfa ••• (1.6)

Relationship Separating Panel MechaniSlm h'om Re.VE:tse Gable Mechanism

D =A (1 ~ bla) + 1/2
• 1 + bja. .

R!lationshiPSeparating .Reverse .Compas:H:e. 'M.ecb'.,W;',\:!Lsm f2!:omRe.'\1e.:rse

Gable Mechanism

A = (1 + lf4 bi!) +D
1 + Z bla ••• (7.8)

Eq. (7.5) to (7.8) when plotted 1:(1. the A vs D pVvle as in

Fig 7.2 form the boundazoies of fo~r regioIl':s:~o~e :f.O:'f \?achmecha.nisII1•

.The g~neral .regionforeach .mechani.sm is 8$ ffQl1o:WEi ~

Sputhwest -- ,C0tllJill)stte',:*~\.~.
Southeas,t --.Pane.l'Mechanism .
.-theast--. :R.everseGable Mechan:i.:llo.
Nor.thwe.st -- Reverse Com.pos:lteMech,anism

The equations for plastichiIl',ge momen.t 8!i'ciJ, fa&' Hmlts of

mechanisms i.nclude the roof rise factoll' b 8Jld th.e c.-olumn he:i.ght fa.C'..tolr

aineachcaseonly in .the ratio bfa" Howerv'elr~ 1t will he shown late~~

that f(jr the location of first plastic hinges~t,hes:epalt'atevalues of

a and b must be used.

~lotting Eqs (7.5) to (7.8) for ser,vf.::'!:',:'l'.lb/<B. vaJ.lll6S would show

, . .. .
that the intersectionnioves toward the nOll't1:re.a:s;t. as hia de Cll'eases • TlUl'S,

for. bfa. = 1.0 (equal coluinnheight an,d '!toof 'rr:lse) IJ t:h:Glrre <lll'esigni.flcau.t

areas for 'each .mechanism within the 1imi..lS of A '8.'1Jl,dJ)I no grreatert:' than

1.0 (Fig 7.3). HoW'ever, for smaller valure.s 9 Le..• bjif.J. = 0.2 (COhlntn
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height much greater than roof rise), only the composite mechanism would

occur for most values of A and .D less than 1.0 .. This puts more .emphasis

on the composite mechanism .for the purposes of analysis and design problems.

7.2 LOCATION. OF FIRST AND LAST PLASTIC HINGES

In locating the first and last.plastic hinges, the maximum

elastic moments arenee4.ed. Because of the addition of the reverse

mechanism, the moment .atthe ridge D must be.considered in addition to

. those .sections considered in the earlier solutions. The.equations for

the elastic moments are:

Me = wL
2

[<A-D),F - G+A~ 00.(7.9)
8

MD = wL 2
[2 (A+D) - (A+D) F + 1 - G- 1?G - (A+D) F ~] ... (7.10)

8 a

.~ = wL2 [- (A-D) F - G+ D~ .oo(7.~2)

8
MF = wL2 [1 + 2 (A+D) + (A-D)2 b (A2 _ D2 - A-D)+-F

S- a

-F <J\+D) +~G (A-D) - !l G - G ~ lQ2{G+(A-D) F]~a a 4 a 2 . ... (7.13)

where the values of·AandD are as defined previously and

8 b b2
N = a + 12+ 12 -+ 4 -2

1l+4b2" a a
G .= 8+ 5 b/a

N

J = 24 b/a + l6b2/a2

N

00.(7.14)

. These equations were derived with .the aid of equations given in Ref. 7.

The regions in which each plastic hinge is first to form are bounded by
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curves derived by equating the elast.i.c moment.s I.D. pai:::s a.s wa.s done

previously~ These equations are~

a) Boundary Between First Hi.nge a.t Lee KFe8 E a.n.d 1:.0 Windw8x:d

Rafter at F

- 90

ME = - MF

2 . b 1 b2 2 b b'] b 2 r1 b 2 2 ]>o = A(l~ + Zj:" 8:"2 F >+ A(2-· ;rF"-2F + a\G+ i ii2FG+D 1.2 ;2 F -2
. b b 1 b 2 1. b2

+ D m,' - - F - - G + -2 -a2 F.G + I'll }-T\.? b . 2~ a a ..,) , - JlJI'~ (1. ~. a F + '4 8:"2. F )
?

+ (1 - £ G _ 2G + 1: b- G2.)
a 4 az .00(7.1.5)

Knee C

A+D
r

a + 5b/a .
.00(7.16)

c) Boundary Between First Hinge a.t Le.e KD.ee E and at Ridge D

ME = MD
b

D = A(2 - Fb/a) +(1- ~G)
(Fb/a + 2F + J - 2) ••• (7.17)

d) Boundary Between First rUnge at Ridge D and 8.t Win.dward ~ee C

MD = -Me
b b

D = A(2 - F ~ + J) + (l-2G ~ a G)
(AF + Fb/a -2.) 000(7.18)

e) Bundary Between First Hinge at Ri.dge D a:r!.d inWin.dwa.:i'.'d Rafter

atF'
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2
+ ,D (",4-2F - 2 E.F - E. G + 1.,.~ Fe;', a a 2::a4 '. II

+. n2 .('1 - E.F + 1. E.22 F2 ,)
a' . 4 a

,As an example, equations (7.15) to {7e 19) are plotted for

the case of b = O.2,a=().2 in Fig 7.4. !he: segments .applicable to

each. equatiol'l .are ind.ieated. Limiting thecuryes to one aan.d b

value ~s necessary .because of the radical form a/ " 1 + 4h2 :in

the expressions forF, G alld ;;r. The first hi:nge fs at th.e lee knee

E.for values in:~\main .D1.. :J:t is in the, w~.n;dward l'after atF or. ,

at the windward kll~eQ.,;'indoma~r')J2. In. dQroain:D3 ,\~.:thef:irst p laf- tic

hinge forms at the riq,ge D~

In Fig 7.5 are shown the domains for three cases of

eolumn height, all wi.th the eonsta.n.t roof I;'ise f;a.etoJ:' b of 0 •. 2 ..

These shoW that the Ppilltof intersection
l
of a given set of curves

m:oves upward and to the right with increasing column: he:i..ght. (tf
,

sp'ecial interest is the curve for b =, 0.2, a = i~o. Here the
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,
curve (Eq 7.15) sep.arating the ',first hinge at. E and f:i.rst hinge at

F does no t itltersect. the A= D line, b\lt conti.nues downward unt;i.1
1

it touches the abscissa. This is another example of the effect

seen i~single span frames where the first ~inge may form in the

windwar? rafter of veFY tall franies with gently slopi.ng roofs under

litt1-e 01;" no side ~oad.

Comparable sets of c~rves for fr~s wi.t.h. steeper roofs

are simU~r in shape to those in :fig 7.5, but t.he int.ersecti.on point

of each comparable set of curves occu.rs at a lOyter value of Do

For example, considering two cases with the column. height factor

a = l!O, the point of intersection of tlte cu,rves for roof rise

factor b = O.~ is below D... 0.6, whereas the int.ersection

point given in Fig 7.5 for b = 002 is IlearD = 1..5.

Charts of the tyPe given in, Fig 7.2 and 704 make it

Jilossible to determine ,the mechanism in one. instance and the location.

of the first plastic hinge in the other. For the ,solution. of a-hinge

angle pt;'oblemhowe:v:er, i.t is necessary to know both at on.ce for a

given£~aIl'e and loading. By combining thes.e two f:tgures, Fig 7.6
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is obtained for frames with b 0.2 and a· 0.2, glv:Lng the

-93

domains ,both for mechanism and first plastic hinge. on one graph ..

Thus, the several cases·,' for wh~.chhinge iilngles must be derived are

defined.;: These domains are labelled as follows:

I. . Composite Mechanism First Hingf at E

Ia •. Panel Mechanism (c= 0) -- First Hinge. at E

IL. Composite Mechanism First Hinge a.t F

.IIa. .Panel .Mechanism (0,= 0) -- First Hinge at C

III. Reverse Composite Mechanism First Hinge at F

lIla. Reverse Gable Mechanism (o,cO) -- First Hinge at C

IV. Reverse Composite Mechanism First Hinge a.t D

IVa. .Reverse Gable. Mechanism (0",=0) -- F1.::r:st Hinge a.t D

All equations for multi.-span ga.bled frames will be classified by this

system so that selection. of the proper e.qua.tions for a g:i.ven.example

may be made by reference to the dorqain cha:rt~,Fig 7.6.

7.3 HINGE ANGLES .AND DEFLECTION :OF SELF-SUPPORTING SUBASSEMBLAGES

The derivation of equations ·for hinge. a.ngles and deflections

is accomplished inexactly the same manner as was done for single-span

frames and flat-roofed mul,ti-span frames. The slope-·deflection. equations

are used with the addition of terms considering the effect of th~usts

and bending moments applied to the column tops by the adj oining suJ:~­

assemblages. The nece:ssa:r.y additional e.quati.ons are obtai.ned as before
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i'~ "1".Doo~tO"""'/J

c~¢. ·II~ Cqntpo's.:f.t~ MeclUinis!Il "",.,¥:i,:·.t's:(t E:Klige.\ :b:,: .Wt)')'l,dwa:~"iR,a:f:te.'.:t'l::it .,

IF= (l+i.!!:) ~1 f 4P
Z
{ i'll[h +. id +A (l + H) -J) (!+~~l~)J

.PL _ ~ + ~ 4wJ} ~; +~. ';(A'~) ] . .

-h.~ '~'.. 1 _l.le:.' 1. .
. 3' IL~:..(l+~) ~'In.·~ :~l+~~~

., .

~.]:.a (~ + .!A ..2) ~.•.+1.:i(!2; '-1.' ;£_» .~•• (A-D).. h·
. ",8.~IL. J:lr(l+, ~ .611. :~:':~) <1+2i~)

,

1 '~);q.
+ -3a (. ~ ·-.I.·.R··)··.'IL

~ p. '.1 b.2'J~- -+ - ':2.2 a 3 a:
. .

'. , ~o;, (1.23)

HF .:. 1
.0pL. = (l#>la)

b .1. b2

~ - --:-. i'Z ~.';1. 96.-. . ,
-j . 2'

.. ,fA -l-D) Lb + 1 . ,b.. \. '. - j"~~' -:- ':2!
\8a . 24 a '/
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10 10 . 1 (I I ~(- - -) (A-D) - ~ 1
0 + 1°- 2

I L I R "L R

Case IlIa Reverse Mechanism (a, = 0) --First Hinge at Windward Knee :C

He = 1 (~ 1+4b2 ( wL
2

[-1_ -1 £ _ -1 b
2

_ (A+D) (1. £ + -1 b2)~
~pL (1+~) t ~ 24 96 a 96 a 2 8 a 24 a 2 ~

_ ~ + £ +-1. b
211_ ~ + wL

2
) 1.b -la]

[ a 3ai~ 3 ~ (6 (A+D) - 12

1 1 0 M<a. 1 1 0 ~_.=.a - -- -..::.a _ _
3 I L ~ 3 I R .~

+ 1 f.!a (10 + 10
- 2) +wL2 [..J:a

(1-tE.) 3 I L 1 R Mp 12
a

+ 1. bA 10 - 1) + 1.QD
6 (IL 6 (~: -1~}

••. (7.25)

CaseIV& IVa. Reverse .Mechanism -- First Hinge at RidgeD

H~ 1 i~,l+4b2fL211(~1 £ + -1 b
2_-1)+ (A+D) (_,1 £ + -1 b2)~

~ L .0 (1+.'!) l· Mp ~ 96 a 96 2 24 8 a 24 2 ~

p _ ~ +ah! ~1 b> +wL2~ :A+Dl _~,1] a

L a 3 a~3 ~~ 12~

.!a 10 ~ ,1 la 10 ~R 1

- 3 I L Mp (1+~) 3 I R Mp (1+£)
a
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••. (7.26)

Eltuations fo-rthe ho'rizontal deflect:lo!l'E of the. lee, and

windw:ard knees are listed in the ,!,ppen.db: :l.:(,i>. ,Eq {1.2n t:hi!ough (7..40).

Expres:siOIi$ for the vetrtic.aldeflectiono:f t:'!:t:e ll'idge. :a:'if/$ llst,ed in

,Eq ({ .4l) through (7 •.47) ~

, Curves, of the hinge ~le~ folt' th:e s~ec:lfic case ofb= O.2~

a,'=(hZ:are plotted in Fig 7.9. In this f:lg~ef:l ve.l:<\lEaso.f HE 8:1te plotted

above the abscissawith,solid lines ,an.d vall'S.es o£ HF 83.'ffi plotted below

theati$cissa with solid lines. Valu'e\S of J:'i:D f1:itffi piotte.a as da.shed lines

above, the abscis'sa, an.d He are plotted as d'a:s'hed li:lles bf.'.loW'the abscissa.

,To .th~$e v4u:~s must be added the n:ec,essalryco:r)l'~Je::t:lLo·£l1.$fO~·"$·a:da.tiort i.n.

,mom~nt of ine'rtiaand fo!C'external kne,'e moments.

Similarly, cUJ!'Ve's: of the holti~oD.tal deflecti.onsoE oft:1!'e lee,

kne'e and 5cofthe windW'ud knee a:1I'.'e plotte.d in-Fig 7.10 an:d 7 .11respe\C~-
'}

tively. ,These figu~.e's apply only ,to t,he 'c~ o.r b = 0.2, a = 0.2.

, Curve's of the vertical deflection. ,of the ~i.t1lge~renot Jb.1l.clitlded ~dn,ce

th~y are unneces~~y for the rotationc:a.pa:ci.tYIi,t.udie$.
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.7 •4 HINGE ANGLES AND DEFJ,ECTION'S OF NON-SELF-SUPOORTING SUBASSEMBLAG!S,
, I . \

Theequatio~s for hinge angles and def~~ctions of n~r-self-

supporting subasseIl1-blages with ~~ble4.r,Oofs are d~rived in thf; same

,manner as were tpose for flat-rqo£edsubassemblag~sin section 6.5. That

is, freedom to rotqte is ~ssumed at each of two plastic hinges. ,Since
. '; .

this conditionimp+ies a mechani~~ for which 4ef+~ction anqrotation are

by constraining ,the deflection, ~C ,of t~~ windw~rd knee t9 be equal to

,the defQection of the same knee ~s obtain~d from the solution of a self~, ..

supporting case for th,e adjacent span.;

Theact~l eq~aH()lls ar.E\ ,dedveq Py u81.ng th.e mom~£nts of Fig.

7,7 or 7.8 to set up the slope-deflection equations. These equations

are then solved for thereq~iredhin~e.angles and deflections.i' The re-

suLting.equations-,ftl1:'.,ft1~~n~.l:es ·-foltowi"
.. .. "

I

In e~ch case, all terms pre-

ce<iingthe ~C term form the 'graphtc parf of tl),e function and the remainder
'il

. \

form tqecot.:reC;tions for change of c,ross ·s.ec;ti011 and e~ternal moments
. - \:.

applied to t4e knees.

Cases I &.11: Composite Mechanism

~ =,0pL
.~ (~l+4bJ,£"'L2[~ +"_,5 '~- -la". 11 ~ a-

(l-a-) l " (Mp 24 96 a 1296 fl

+A t.l', + 1 ~ - 1a. II Ea.),..' 12 ' .8 a. 4 24 a
, '.

. (1 1 biJ, b2 1. -"17 b 5b2 )~
-D 12 + 4a+ .~ aZ- L?'24 au-12 8:2a-1
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Cases .la & I1a:Pane1 Mechanism•
• I <,.,

··1'-''- a- 1

. ~ ." 1 ~o :&R+ ',., . - """a -. .
a0pL2 3 .,rR'tip·

... (7.48)

... (7.49)
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~
M'

P

.,.(7,51)

Cases III & IV: Reverse Composite Mechanism

-D (-1. + -2 £ + -1. £; _-1.' ~J:. £~ex,)~(
12 24 a 12 a 12 a 6 a ~5

-£ a(l-ex,») 1 + WL
2 [1 + 1 (A-D) .. 1:, £ D-!'(

~ t ~ 8 4 2 a J5
la) 1~[1 1 (A-D) ~ ,l',e. Al'(
3 t ~ 8 4 2 a J5

2bc (1+2~)

+ a~pL2 (1~2£) '(l-2ex,)
a .

'2 I MQL+-a....£. ex,
3 1L Mp ( 1- 2ex,) . (1+2£) (1-2ex,)

,a

.•. (7.52)

=
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-D (_1. + 1E.y~. [1.!? + 1£~'1
12 6 a~ 2 a 6 aj5

+ 1a) 1 + wL
2 [1 + 1(A.• D) _.ll? nl'1]

3 t .~ 8 4 2 a J5

- 1. a 1 f+ wL
2 [.1 -1(A-D) - .1. "~, J}

3 (l+E.)(1'-2a,) ~ 8 4' 2 a J
a
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- ~ ~~}
+ l(A-D)'- 1 E. Dl }

4 2 a 'j
000(7.53)

D(-l + -2 E. + -l E.2)
12 24 a 12 a 2

Cases IlIa & IVa: Reve.rse Gable Mechanism

(
1 ,1 b 1 b 2)

+ A 12 - 24 ;.- - 12;.-2 -

""'(- 1 af + wL
2 [1 + 1(A-D) - 1£ DJJ3 ~ 8 4 2 a

1 2' ~ wL
2
[1 1 1 ~ J}+ - .. - - a 1 + -- , --: '~-(A-D) = - - A

b 3 ' ··M .' 8 4 2 a
(l+-) p

a .
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-1 aG; -~ (1~~(l+2~) [1 +~2~ + i (A""D) " i ~~J
"""C?" 54)

+ .!. a f1 + wL
2 [1 + 1. (A~·D)

3 l ~ 84 .

_ .!. a (10
. ­

3 I L
1) 1 t+ wL

2 [1 -1(A-D) <0 -2
1 E.a AlJ .

(l~) Mp 8 4 J
a .

. .. (7.55)
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Comparable.equatio~s for the horizontal deflection of the lee
~

~- .

knee and the vertical deflection of the ridge for these.cases are give~

.inEq. (7.56) toEq. (7.61) in Appendix E:o

The~raphic portions of these hinge angle equations are plot-

tedin,Fi~s.· 7.12·through.7.l5. T4e graphic portions of the equations

for deflectio~of the lee knee are plotted in Figso 7016 and 7.170

Summarizing the :results on multi-span gabled frames, equatio~s

are available for the following types of functions:

<'1) ,Equations determining ,the loading combinatioas for which each

type of mechanism .may form and for which ea.ch plastic hinge ·of

a .self-supporting subassemblagemay be first to form are repre-

sented graphically in ,Fig 0 7.6 (b:::() 02, a:::(). 2)

(2) Hinge .angles and deflections---forself~supPQrtings.ubassemblages

are given in equations represented by Fi~.709 to 7011. (b=O.2,

a=(l.2)

(3) Hinge angles and deflections for non Q ·self=su:pportiq.g subasset'ii~

blagesare given in equations repre.sentedby Fig •. 7.12 .to 7.17.

(b=O.2, a=O~.2)

FQr~ppHcationto an .actualproblem, the ·mechanism.must first

be d~~_~rIiri.~ed-by the-u~tial.methods of plastic analysh. Then itl11Ust be

determiqedwhich .subassemblage is .self-supporting. )<nowing. this, data .from
" ,- "

the appropriate curves ()r equations may be used to calcul.ate the hinge

angles and deflections of the self-supporting subassemblage and all non-

.. ,.:
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self-supportin~subassemb1ages.
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In .order to determine which assemblage is ~e1f=supporting, it

is as~umedthat each subassemblage, in turn, is self~'slUpport.ing aJtdthe..

correspondi.ng.deflection of the total structure is calculated. Th,e &reat­

estdef1e~tionwill occur when the true self~supporting,structure is as­

sUl;11ed.

The method of .using the .equations and charts developed here will

be illustrated by an example in the following section.

7.5 SAMPLE.SOLUTIONOF A MULTI-SPAN GABLED. FRAME

(a) ,Design.

To illustrate the use of the results of the development

for multi-span gabled frame,s, a sample frame will be designed

and the required hinge rotation calculated.. The exa,mpleto

be cliscussed will -be the synnnetrica1tw~=spanframe· shown in

,Fig •. 7.18. The information to be USE(d in t!:re design part of

the problem is as .fo110ws:

Left Span R,-ightSpan

a1=bi = 0.2 al=b1=0,.2,

b/a .= 1.0 b/a .- 1.0

:J..l .- L .LZ = L

.A1 = 0.1 A2 = ?

D1 = ?, DZ
;: 0

w .- Zk/ft w = Zk/ft

~. = 50 ft L. 50 ft
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ay
= 33 ksi = 33 ksi
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·Bee-a-use·-ef· -t.ae.··-s-ymme4:·ry .()fthe .·frame ·-and ···-t-b.e···...fa<.:·t -t.hatthe···wind

might blow from either direction, the same M value will be assumed fqrp

Without fur'ther-d:i:s-eus-S'ion;itwil-l- be stated-that theresul ts

of ade.sign following .themethods of reference 10 are as follows:

Left Span Right Span Center.Column

D
l = 0.032 A

2
= 0.032

:!E = 0.0463 ~ = 0.0463,2
wL2

wL

a. = 0.342 a. = 0.381

16 WF 50 l6WF 50 l4WF 30*

Z = 92.7 in3 Z ·=.92.7 in3 z·= 47.1

I .- fl55.4 in4 I = 655.4 in4 .1.= 289.6 j.n4

Because the .section modulus of 92 ..7~n3 actually supplied is
,

great~r than'the value of 84.2 which would be required to support a de-

sign full load of 2 kips per foot, this structure would actually require

2.20 kips 'p'er foot to fqrm a mechanism. Theh;i.nge angles to be deter-

mined .willbe based on the assumption that the fra.me will be loade.d to

*Columns were checked for resistanc~ to. buckling at maximum load' '9)r"
methods of Ref. 6.
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its tru~ ultimate load. Therefpre, 'the momentdiagr.arn to be considered

wi1~ be that in Fig. 7.19.

(b) Calculation of Deflection and Determination of Self-Sup"

portingSubassemb1age
. I . .

Next, it must be deterrnined.whichis the self-sU:ppurt:"'

ing subassemb1age. By entering Fig. 7.10 with the appropriate

values of A andD, the following values orl:'E/f/J L2 are obtaiJ;led; **
.1 P

Left,Saan

DE = 0.141
02pJ:,

Right. Span

= 0.129

To these "g~aphicII values of th.e def1e'ction mus t be added the

. correction terms ofEq. (7 ~ 27):

. Corroction ~ t a 2 ~~L - t a 2 (~~ - 1)

For the left span, there is no external moment .applied to th~

left knee, and _.the column and rafter h~veequal moments of inertia ,so the

corre.cttons equal zero. Therefore, the deflection of the lee knee (E) of

the left span is:

... (7.62)

** Though. the joints of 'themu1ti-span 'frame are labelled A through K, /
the subscripts for D & Hto be used here will .be those of theprimaFY

. subassem}).lage, in order to indicate which graph or' .E!'quationis used~,_.--'
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For the right ,span, the corrections w~ll apply because therE~ is an ex~
I

ternalmoment -Mp at the left knee, and the left column differs from

the rafter .. Substituting iato-,-:t:he.-eorrectionLerms of Eq. 0.27) the

following results are obtained:

_-31 (0.2) 2 (655.4(- in4 ) 1" (655.4 1). . (- 1.00) - -3 (0.2)L 2.89.6-
(289~6 in4 ) ,

:to l' 2 (655.4 ) (0.032)
, 6' (0.2) 289.6 - 1 0.0463

= 0 .Ol~2

This correction added to '. ~he "graphic" value gives for a final value of
the deflection of the lee knee (J) of ~he right span:

... (7.63)

Considering the structure as a whole, equation (7.63) gives the

deflection of the lee knee (J) if the right han.d. span is the self-support-

ing suba-s,~mblage..·Equation(7.• 62) gi;ves the deflection .of the center

column top (E) if the left span is the self-supportingsubassemblage. To

det~rmine .whichis the true self-supporting span. it is next necessary to

determine the deflection of the lee knee (J') assuming theri.ght span to

be non-self-suppotting and compare this wi thEq. (7.6.3). !hisis done

by using the deflection of b. i4l 0pL2 ·of ~he center column. as the 6C t~rm

tnEq. (7.56) anda-pplying .this-equation..-·to-the right span. .~ "graphic II

value of 8E/0pL2'= 0.018 is obtained from.Fig. 7.16 and to it are addep.

.the £0llowingcorrect~on te:p'!1s fromEq. (7 . .56):
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I

+ ~ a b (~ - l)(l~~)~ tab (~~ ~l)W~ (A-D) ( l~~)

. 0, 141 ( 1. 39 1) + £ (0 '.0 2) 2 ..30.(6.=.,;5:.,::5:..::,•..,:,4,,-)--.ll(~-.=..l.::..:,O:..::O~)_0;;..;.:...::3:,::.9.=.1
~ 0.60~ 3(28906) 0,609

_± (0 2)2 (655,4
3' 289,6

=0.3qO

(0,032) 00391
(000463) 00609

This corre,ction added to the "graphic II value of 0.018 gives the

following result for the:- deflection of the lee kne,e (J-) ~

The deflection of knee (J) is

be self-supporting ,as against

• 0 • (7064)

00318 ~pL2 when the left .span .is assumed to

only 00148 ~ 12 when the right span is as-p I . .

s~med to be. self-supporting. The .concluston is that. the left span is,. the

s elf- s upport:lng:: span.

(c) Calculation of Hinge Angle for Se,lf-supporti.ngSubasseniblage

It is then possible to complete the calculations of

hinge angles for both spans, The hinge angle at the center

top is obtained from the HE/~pLvalue of Fig. 709 'and froin
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the corrections ofEq. (7.20).

HE
- (Graphic) = 0.786
cJpL

The corrections are:

-109

1 I ..., 0
= - a-

3 I R

" S\1bsti tutionof numerical values irr.to thec:o:r.:te.>,c.tio;:;,S) gi.ves ~

o ~! (0.2)(655.4) (=0.654)
3 " (289.6)

- ~ (0.2) ( 1.0 +~~~:: =2) + 0

= + 0.0145

The final S\1m of the graphic and ,carre.ctian terms is the hinge angle at:

the center column top (E).

HE =0.800 rfo'PpL • , , (7.65)

(d) Calculation of Hinge Angles for Non-self-supporting

, Subassemblage.

The non-self-supportingright-hand subassemblage win

have hinge angles at the lee knee (J) and. in the windward rafte.r
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(G). Tllemagnitu'des of these hinge angles will be obtained

from the HE' and HF- vaclues of- tq.e basic non-self=supporting

subassemblage.Each of these will re.quire the use qf a .6.C

valq~ equal .to the 0.1410pL value for the deflectiqn of the

center knee given byEq. (7.62).

From Fig. 7.12 is obtained a v~lue of 0.058 0pL forRE.

and substitution of the appropriate data i.n the correction

terms ofEq. (7.48) results in a t.otal correction of 1.371

~pL.

b
(1+2~)

( 1~a,)

1 J;:o
- - a-.

3 l'R;( 1-a,)

+ .be
a0p~2

(1+2£)
a

1 ( I ) (1+2~) [
+ -,,~ ....2. 1 1

3 -.... I L - (1-a,)

=0.058 + 1.612 - 0.291 0

+ 0.0501 - 0

Then,

~= 1.429 ~pL 00.(7.66)
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This is the hinge angle at the lee knee (J). It is noted that the pre-

dominant factor in this summation is the- Dc term, Th-i:& W8& also true in

the case qf the horizontal deflection of knee (J), (Eq, 7,64), a~d for

every other function so far calculated in examples of non=self-support=

ing subassemblages.

Similarly, the hinge angle in the windward rafter (G) of the

rj,ght span may 1;>e obtained by combining ,a "graphic II value of HF equal to

0.390 ~pL as taken from Fig. 7,13 with 0.390 ~pL as taken from,Fig, 7.13

with, the sum of correction terms totalling -1.001 ~pL as calculated from

Eq. (7.49). Tqe hinge angle in the win4wardrafter at (G) is:

00 • (7.67)

The negil-Uvesign for HF is a .remnant of the slope~deflectionequations

used in deriving the formulas and may be construed as i~dicating that the

pl~stic hinge nas tension on the inside of the frame,

(e) Discussion.

i
All hinge angles and deflections have been determined,

and putting them in summary form will make it possible to com~

pare the results,
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Left Span Right Span

C~nter Windward .LeeKnee

.Column Top Rafter

(E) (G) (J)

~quation 0.800 0pL 0.611 Gi pL 1.429 {apL

Radians 0.0747 0.057:\. 0.1333

Degrees 4.280 3.280 7.64°

HORIZONTAL.D~FL~CTIONSQF COLUMNS

Left CenteJX' Ri.ght

Column Column Column

(B) (E) (J)

Equation 0.0636 0pL
2 0.141 {6pL2 0.3180pL2

Inches 3.54 7.90 17.8

. The quanti~ies substituted for ~pLin order to obtain

dimensional values of the hinge angles and deflections areas follows:

0
pL

'= MpL =' ,OyZL
, EI EI

:=, 33:kd. x 92.7 in3 x 60b in'* ~1()j ksi x 655.4 in4

= 0.0934 radians

Also, ~PI.2;= 56. 1 inches.
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The relative magnitude of the hinge angles tabulated is consis~

is" the greatest hinge angle and the first

tent with .theorder·of formation
3,4

frames previously.tested~;.'That

of plastic hinges calculated for .two

plastic )l.ingegenera11y form at the leeward knee. '!~he next hinge ina

ml,llti-span frame.would probably form at the lee knee of the .spannext to

.the leeward span. Fo11owingwpuld be a hinge in the windward rafter of
, ,

a (ieespan,:'and fin,a11y the last hinge would fqrm in the win.dward rafter

of the windward span. In this example, the last hi.nge would format joint

G, with.a hinge angle required of zero atreachingultimat.e. load.

By comparing.Eq. (7.66) with~q. (7.55) itls seen that the

~Q.~.~er of magnitude: of hinge angles for t4emulti=span frame is greater

than that .for the single span frame •. This increased rotation capacity

requirementmaybe.regarded.as the·"penalty " paid to gain the benefits

of redistribution of moment realized as a result ·of continuity.

,From a pr.c;ctical. standpoint, deflecti.ons at maximum load of 8

an~ 18 inches .mightseemexcessiveat first sight.. However, it must be

remembe:r,ed .. th~t th.eseare ultimate loaddeflec tions and not working .load

deflectioil's.::'.;~Q.e.calculationof deflections at working load may prove to

be quite tedious. Fortunately, the theoretical load-deflection curve .is

\,

aV{lilabl¢.for a .two-~pan gabled frame which has been tested.
3

. 'T\1ough

this frame had fixed bases, the .curvewill serve to illustrate qualLta-

tively . tlte·..poin, t in .qu'¢S-tion-. Fig·•. 7.20 shows a non=dimensional load-
}"

diaflection curve of ;·the two span frame tested.. The deflection at miximum
.i' '.1.'

load, or at formation of the last plastic hinge is shown as about 0.19P~3/E;r.,

.A possible .range of plastic design working loads ranging from 50 to 71% of
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the maxiIllLlm load is also shown. (This is an extre:me rar.ge allowing for

increase in loads due to wind load in one direction, and a very conser-

vative factor for static loads in the other direction.) The deflections

for the working range are from 0.02 to 0.03PL3/EI, or one-ninth to one-

sixth of the maximum load deflections. It is expected that even with

pinned bases, the deflections at working loads would follow a pattern

similar to this.

7.6 SUMMARY

This ·chapter extends the work on the rotation capacity re-

quirements for multi-span portal frames to cover the case of gabled

roofs. Introduced here is an additional type of mechanism possible only

when a 8ubassemblage having a gabled roof is loaded heavily from both

sides to such an. ex·~ent that negative work is done by the vertical loads.

This type of mec:hanislll is designated a "reverse II mecha.nism.

Ther~sults of the chapter are summarized as follows:

(1) ,-J)omacii'1s- for four possible mechiUli·sms were determined by
... ':'.~

.quat.~~iastj,c biuge moments.. and doma1nsfar fOTJr possible lQcations

of the first ~lastic hinge in a subassemblage were determined by equa-

ting expressions for elastic moments. Combining these sets of domains

resulted in eight case$ of possible mechanisms and locations of first

plastic hinge. (Fig. 7.6).

(2) Equations for the hinge angles and deflections for all eight

cases were derived for self-supporting subassemblages, and the portions

of these equations which could be shown in graphical form were plotted
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for a_farnpy_of.subassembla,ges. (Eq.,7~20 through).47) (Fig. 7.9 to

7.11) •

(3) For a non-self-supporting subassemb1age, a determination, as to

.which is the first and.th,e last plastic hinge is not pertinentinforma­

tion, so onlyconsider,ation of the four possible mechanisms is necessa.:ry.

Equations for the hinge angles. and deflections for a.ll four cases were

derived;' and "graphic" portions of these equatioll,s were also plotted

for a family of.subassemb1ages. (Eq. 7.48 to 7.61) (Fig. 7.1,2 to 7.17).

(4) ,All equations for hinge angles and deflections contained. t.erms

which corrected for differences in moment of inertia of columns and raft­

ers, and for the effects of adjacent .span,s on moments at theknE~es. In

using graphs for the solution of hinge angle prob1e,ms, these corrections

must be calculated and .added to the graphic values ,when applicable.

(5) ,Equations for fun,ctions ofa non-self-supportingsubassemb1age

also included_a term..6c' the deflection.of tllewinq,ward knee. This was

the ,controlling boundary ,condi tion for· a, non-self-supportin:g subassem­

b1age, and is a,ctually determined in a given structtlre by .' the deflection

(\If the~e..~f-supporting.span.

(6) The method of solving ,multi'~spangabled frames proved to be the

same as that .established for multi-span flat-roofed frames. Thesteps

areas follows: First, assume each. span in turn to be the self:-supporting

,span and .calculate .thecorrespondinghorizontal deflection; the correct

assumption will be indicated by the largest deflection so computed .

. Second, having determined theself-suppqrting . span , calculate the hinge
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angles for that span 4sing the "se lf-supporting" graphs and correction

equations, andc~lculate the hinge angles for all .other spans using the

"non-self-supporting" graph.s and appropriate correction equations,

. (7) ,An example of a synunetrical two span: ga.bled frame~o6Jaf

solved to indicate the use ·of .the charts and-the equations, the ex=

ample showed that the order of magnitude of hinge angles calculated

was iarger than that calculqted for single span frames, This is not

u~expectedin view of the fact.that more extensive redistribution .of

moment is likely in th7se more highly redundant structures,

(8) A complete theoretical load-deflection curve for a .two-span

gabled frame calculatedi~ connection with a test program was compared

.with the d~flections of the. frame used in the example, This showed

_116

that though calculated deflections at .maximum load may be large, the

. in
!ieflections at working loads will probably remain the the.elastic range,

. and thus will probably be small fractions of thE'.m~x.imum loaddefleq··

tions ,This- leads to the conclusion ,thatth.ere shOl.~ld be no reason why

deflections of structures designed'by plastic methods could not be

either calculated qr neglected with the same reservations a~ are now

made in elastic analysis,
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8. S U ]{M. AR YA N D C 0 NC L US ][0 NS

This dissertation discu.sses the prob1.E,m of r;e,~.ui.te·d ro.tatiop

as it affects the application of plastic analysis to structural design.

Ilotation capacit.y has been defined·as the ability of a plastic hinge to

rotate at or neart;he maximum moment. In order t:ha.t: redistribution of

moment may occur and~llow a structure to reach its computed full plastic

load, the. first plastic hinges forming in an indeterminate structure are

required to rotate through some hinge angle. Me.thods are. presente.d fot

calcul.ating the. amount of hinge rotation requLl:'ed at plastic hinge.s in a

given structure. These; required hinge angles may thence. compared with

. the actual rotation capacity of structural elE'me.nts as determined from

,tests or from theoretical analyses.

The study made here is directed toward the determination of

'. the rQtat!.<m capacity requirements for multi~spall gabled portal frames.' .

with pinned bases. In solving the problem, advantage is taken .of the

fact that plastic analysis and design of multi=span frames may beoac=

cQs,ptished .by separation.ofthesaucture into' single=spanele~nts

.calledsubassemblageso Hinge angles and deflections atlUltimate l~~4

are· determined in .general terms for subassemblages ~ and methods for de=

termining the interaction..9-f tbe severalsubassemblages which .make up a

'structure are prflsented.,As a special case, .the behAvior of a single

.$ubasseuiblage >represents thebe.havior of a single span gabled PQrtal

.frame 0
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Certain of the' ,principles and results of this requite:d ~otatibn

stqdyapply to all the problems in requited «:etad.oJ;!. covered. Theseare

~s foUows~

(l)For any subassembLage or multi-span beam two or more possible

.mechanis~ may form depending on the loading and geometry of the struc-

ture. By plastic analysis, equations relating the applied load to the

required plastic hinge moment for .each mechanism may be derived, and from

them, expressions for Mp/WL2 may be obtained in general terms relating the

geometry and loading. Combining in pairs the equations for M IwL2 of dif­
p

ferentmechanisms results in expressions defining the combinations of

loading and geometry for which both of a pair of mechanisms will form

simultaneously. Graphs of these expressions may be plotted to separate

the domains of structural geometry and loading in which each possible

mechanism will form. (For example, see Fig. 4.2 or '7.2).

(2) For any structure or subassemblage, one of two c;>rmore plastic

hinges may be the first to form depending on the loading and geometry of

the structure. ay elastic analysis methods, expressions for the elastic

moment at each .hinge location may be derived in general terms. The largest

elast:icmome.p.twiUocctir attne location of the first plastic hinge •

.Equating the expressions for elastic moments in pa~rs results in equations

for tbeloading ,and geometry for which each of a pair of first plastic

hinges will form si~ltaneously. Graphs of these expressions maybe plot-

ted to separate the domains of st~ctural geometry and loading in which

each possible plastic hinge will be first to form. (For example, see

Fig. 4.3 or 7.4),
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(3) ,Combining the graphs for possible mechanisms and first plastic,

hinges result~ in an additional graph for the doma.ins defining the rota=

tion cCl-pacity prob~erri. In each of these domaJ.ns ~ the strK!.c.tureor sub-

assemblage will form.a definite mechanism with the first plastic hinge

at a given poi~t. Location of the s'truc.t\\Jlre ox subassemblagein ,i ts

proper domain gi.ves the key to the use of thep:rop.er oousdac;p' COF"ditio:ns
,

in der-i-v,iI1K rotation-e-quations, or indicate,s the prope,:rhinge angle

~quatiorts to use .if they are alrE~ady derivE\d. (Sf!.€: Fig" 4.4 or '1.6)

(4) . Hinge a~gles a.nd deflections at max.imum load are calculated for

any structure or s~bassemblage by using :slope deflection. equations and

applyingi".botindary conditions which recognize the lac.k of c,ontinuity at

all plastic hinges except the last to form. By using the slopE:,~deflec-

tion equations, the assumption is implici.t. the.t all .members are perfectly

elastic except at plast:f.,c hinges which are impUedto be of zero length.

These assumptions neglect a part of thedeflecUons and rotations result~

ingfrom the true yielding proce.ss ofs tee:1, but t.h.E:: err.or is usuall.y

small.
2

(5) For applications to numerical problems, de:fle.ct.ions and hinge

angles may be determined directly from the e~quat.ions cierived ~ or graph,s

covering selected ranges of variabl~s may be prepaI>ed and used.

Certain additional principles and results of this study apply

only to the more complicated problems of multi=span portal frames" T~.ese

are summarize4 in the following paragraphs"
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(6) At .maximum load, but just before the:enti.n:,. iStnLct1Ure begins

to deflect as a mechanism, continuity exists at the pointw!tlere the

last plastic hinge is about to form. Allothe.r plastic hinges will

display a <iiscontinuity of slope across the hinges and will have

reached the stage where they could rotate without addition of momento

. Since .the last plastic hinge forms at only one point for the general

mul ti-SpclU rigid frame, only one subassembLage may contain. this con-

tinuity, The remaining subassemblages will contain two plastic hinges

and would not be able to stand by themselves if set apart as single suh-

assemblages, The subasS'.blages wi th two plas tic hin.ges are called non-

self-supporting plastic hinges, The one subassemblage which con~ains

the continuity at the location of the eventual last plastic hinge is

called a self-supporting subassemblage, (Special cases e.xist wiplich

violate the letter of these statements,but do not alter the method of

solution of the problem. Fi.rst of these cases is the symmetrical c~se

in which two eqt!ivalent plastic hinges form simultaneously, either of
I

which would .be sufficient to fulfill the conditions causing a mechan=

ism. A second special case is that case in which by mere cha.nce' two or

more of the last hinges will form simllJltane.ously. This s.econd case

results in .a reqUired hinge angle of zero at all plastic hinges forming

simultaneously with the last hingeo)

" (7) . Equatidns for hinge angles and deflections of self-supporting

subassemblages ate derived by the'same methods as use.d for single span

fr~es. However, the resulting equations contain. terms which correct

for differences in moment of inertia of the rolled sections in the
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columns and rafter. and for the effects of adjoining spans onth~ moments

at·theknees.

(8) In deriving equations for hinge angle3 i:1."H~. de.flections of 0.00­

self-supporting subassemblages, it is found that "lith two plastic hinges

having freedom to rotate without additional moment" the:ore a.re .insufficient

independent boundary condiUons to solve the problem. l'here.quired ad=

ditional boundary condition is obtained by setting the de.flection of the

windward knee of a non-self-supporting subassembLage equal to thedeflec­

tiondetermined by the adjoining self=supporting s\Ulbassemblage.

(9) It is necessary to determine which is thE:: las l: plastic hinge in

order to calculate the correct hinge .angle.s .for a l111!J.lti-span frame. If

this were done by making a step-by~-step alDlalysis of the frame up to max~

imum load, the process would be too complicated. Also, only the deflec­

tions and rotaUons at ultimate load are actuaJ.ly requi:J!7€:d·. A trial-and~

error method of determining.the last plasti~ hinge i.s therefore used. Each

span .in turn is assumed to be the self=:supporting3pan, alldthe correspond=

inghorizontal deflect.ion is calculated, The correct assumption is in­

dicated by the largest deflection of the total structure so computed,

Knowing which are self-supporting andnon=selfo-supporting subassemblages

makes it possible to use the proper graphs or equations for each span in

a given problem.

Specifi'c examples using typical structures were designed and the

hinge angles and deflections were calculated to illustrate the use of the

methods presented. These examples were:
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(a)

(b)

(c)

(d)

Three-span continuous beam (Chap •. 4, page 25).
!
I

Flat-roofed single. span frame. (Chap, 5, page .50).

Sin.gle-span gabled frame (Chap, .5 3 page 53).

Flat-roofed multi'"span frame (Chap. 6, page. 77).

-122

(e) Multi=span. gabled frame (Chap. '7, page 10/:.).

Detailed sununaries of t.heresults for E:ach type of structure

are presented at'theend of the appropriate chapters.

As a result of the derivations 8.n.d rJI.l:.lm.;:,,,":i,.cal calcvl..,.tions made in

this dissertation, the following .conclusions were reached.:

(10) The hinge rotations requi.red in typical s tru.ctures studies we.re
I

of the same order of magnitude as rot.a:tion.s which have been measured ih

tests o:!=rigi.d frames and corner connections.

(11) The hinge angles required for multi=span frames are of larger

magni tuqe than those requi.red for single-span frames. Thi.s must beex,-

pected ~n vi.ew of the more. exte.nsiye redistributi.on of moment likely ill

these more:highly redundant structures.

(12) The question of whether or not to calculate deflections and

rotations aris.es in strlJ·ctural design. In present. elastic methods of

design, engineers find that with .a certain amount of experience and use

of judgement, the ~alculation of deflections may be omitted without danger

of Jl~wing ;excessive deflections of the erected structure for many average

cases. This saves the spending of many unnece.ssary hours makingcompli-

cated calculations of deflections.
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Admittedly, the calculation .of defle.ctions at Hltimate load is

just as cbmplicated as the calculation .of d.efle.ctions ill the elastic range

when both calculations start .withthe momentdiag:r.am. (However the moment

diagram is easier to obtain +n the plasti.c r.a!1\g€;~.) It i.s, therefore, de-

l
sirable to omit tbecalculatfonof deflections in structures designed by

plas tic analysis. > All theoretical and experimen.tal .evi.dence disclosed

to date suggests that for plastic design. of many :ave~rl3,g€) structures, the

calculation of deflections may safely be omitt.e;d without: any more danger

of excessive deflections than is experienced for compa.:rable structures

designed elastically, The types of stnuctn:n,8 for which deflection. cal-

culations may be omitted will be approximat.ecly the, same for both elastic

and plastic analysis,

If knowledge of the deflection at working load is necessary

for a given case, it will be necessary to.make an elastic analysis once

the members have been selected by plastic design.
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Symbols:

A

,D
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N 0 MEN C LA T U R E

non-dimensional parameter re,lating the horizol2tal force
acting ,on a structure (or the "overt.urnin,g" moment of one
part of a structure on the adjacent part) to the vertical
loading. It,i,.s assumed that: "A" results'in positive work
being done as the structure fails.

non-dimensional parameter relating ,the horizo~ta1 resisting
force or' "over turning'i moment ac ting on as t.ruc ture to its
ve,rtica1 loading. It is assumed that liD" results innega­
tivework being done as the structure fails.

Young's modulus of elasticity

load factor of safety

dimensionless parameter in elastic moment equation

dimensionless parameter in elastic moment E\quation,

hinge angle

moment of inertia of ,cross section

moment of inertia of frame rafter

,moment of inertia of left column

moment of inertia of right column,'

dimensionless parameter in elastic moment equations

.span length

moment

moment at far end of member

moment at near end of member

plastic hinge moment

external moment at left knee

external moment at right knee

dimensionless parameter in elastic m9me,ntequat.ions

concentrated horizontal load
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.Z

a

b

p

q

s

w

x

y

€

f
o

..~

rotation of a chord between ends of a member

fully plastic section modulus

ratio of .column height to frame span

pitch, ratio of frame rise to span

length .of a member or portion of a member (variable)

horizontal wind pressure per unitareB.

uniformly distributed vertical roof load per 1.10.i t area

bent .spacing

uniformly distributed load per unit length of span

distance along member

deflection of neutral axis of a member fromt:he original
straigh.t line

ratio of .side span unit load to main span uni.t load in.
beam calculations

non-dimensional parameter definin.g the distance to the
location of the plastic hinge in th.e rafter of a structure

ratio of side span length to main span length in beam
calculations

deflection

strain

ratio of distance to plastic hinge in side .span of abeam
to side span length

slope or rotation of a member fromundeformedsnape

radius of curvature of member

stres~

.yield stress·of steel

..curv.at.ut:e~.o.f. member

curvature parameter ~p / EI
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virtual displacement

Subscr,iptsin Slope-Deflection Equations:
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\

Single 'letter
Double letter

First letter
- Second letter

joint
member
near end
far end

A!Portant-Functions for Frames or Subassemblages:

HF

D~fiDitions:

horizontal deflection of windward knee

vertical drHiic Lion of ridge or center of flat roof. .' •. I

horizontal deflection of lee knee

h~riJzo~tal deflection of windward knee of non-s~1f­
supporti,ng subass~mblage.

hi-nge angle in windward knee

hinge an~le ~t ridge

hinge angle in lee knee

hinge ~ngle in windward rafter

J'lastic Hinge-

Hinge, Angle

Rotation-Capacity

,Mechanism

A yielded section of a ,beam which acts as if
it were hinged, except trat it has,a constant
restraining moment.

The r~quired rota~ion of a given plastic
hinge ina strUcture that i,s necessary to
assure that the 9tructure reaches the ultimate
load.

The ability of a structural member to rotate
at near-max.imum moment.

A system of members (and/or segments ~f
members) that can deform at constant load.
It is used in the special sense that all
hinges are plastic hinges (except pin ends).
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Plastification
of cross section

Redistribution
of Moment

-
Subassemblage

Non..,.sQlf supporting
subassemblage

Self-~uPP9rting

subassemb'J.age

-127

The deve.lopment'. of full plast.ic yield
of the cross section.

A process in. whic.b. plastIc hi.nges form
successively i.n a redundant structure
until the ultimate. load of t.he structure
is·reached. In the process, a new dis­
tribution.of moment.s 1s ac.hieved in
which portions of the struc.ture which
are less highly-stresse.d i.n the elastic
state subsequently reac.h. the plastic
hinge value. Redistr:i.but:i.on i.s accom­
plished by rotation. through the hinge
angle of e.arl.i.er,-for.med plastic hi,nges.

A single-span. element lnto wh.icha
multi-span frame may be separated for
the purpose of sim.pllficatJ.on. of design.

A subassemblag~ :i.nw1:"!d.ch all plas~ic

hinges are for.med before the total
structure h.as I'eache.d maximum load.
It would not be able to stand wi.thout
the SUppoI't of an .adjacent subassemblage.

The one subassemblage i.n a multi-span
structure which h.a.scontinuit.y at it~

last plastic hinge until the maximum
load of the tota.l struc.ture 1.S re,ached.
If it were set apart as a free body with
its complete system of forces it would
be able to stand.
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. A P. P. E. N:D I:X A

EQ.UATIONS FOR THREE,~SJ?AN BEAM
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" .

.•. _..=....-<:.

PLASTIC HINGE MOMENTS l

Main Span ,Mechanism

2
M ,;= WL

."P 16
00 0 (401)

-
; Sid,¢" Span.~chanism

,~ ,=
@2WL2

~.....
~""'"11.66

,"'0 0 (4 .. 2)., -
~-

.. , .. ,.,
LIMITS , , .,~ ,!

I;
. , ;:,:,;:>~_.~~=~;

Between Ma.itlSpan .and .Side' Span~c,hanisms
",

ar.13
2 =

'" ~ ..
00728

00 0 (404)
; .~

~"""':.

n

Between First Hi~e at B and E

B +1;5
2tta3 .=

+1
llo.(4 Q 8)

..
-;==-

Between .First .Hinge at B and .. F

(he3 + 2 26@.- 1) .... 8
cx.~2(2~ 3)(ct~~+1)

. -
+ 00 0('409)

. . "..
HINGE·ANGLES

,Main.Span .Mechanism--. First Hinge at :Suppo:rt B

HB 2 3 1 1
,~ L ='3 ex, 13 .. '3 13 +"6

~, .., 0•• (4024)
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-
Main~pan .Mechanism First Hinge in Span atE

, '<

\ .2
13

1 4
13 3

(I~L
=- - ~3ex. 000(4.18)3 3

Side:Span.Mechanism ~- First lUnge at :S\LI.PP01!'t B

HB . 1. + O•.4§6r .~ 00152413 ~

. pL .2 ex. 13 2 000(4.29)

.Side SpanMechanism-= First Hinge in Span at. .F

H 1.173r/= 0.36813 - 1.207 +
13 2pL . ex. , ..0.(,4 • .31)

~'-'

-"
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A P p. END IX2

--------·1!
EQUATION~ FOR SINGLE SPAN ,FRAMES WJ.~HFLAT ROOfS

PLASTIC HINGEM(;)KENTS

Composite Mechanism

M
P. 1 ( ) 2-' ,= - A+l

WL2. 16 :

Panel Mechanism

~ =!
wL2 ,4

o· 0 0 (502)

0.0(50l)

- LIMITS

Between :panel and Gompos1tbMechanism

A'= 1 00.(5.3)

aetweenFirstPlastic Hinge at·LeeKnee ,E and in. Beam a.t.F
~;

A= 1 = 2 ~2a;,
3 000(5.10)

HINGE·ANGLES

.Casel.. Cqm.ppsite Me.chanism .~~~ First Hlnge at J"e.eK,'1ee. E

HE '2
[l~ +A (i + i a) ] 2wI.

1
~pL
=~ = = -at;> 3 . !'

000 (5020)
I

Case Ia~ Pa11-el Mechanism=- First Hinge at J"ee. Knee.E

HE 1
f1 pL

=-
,3A

000 (5029)
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Case II. Composite Mechiuusm <>= Firatm.!llge in lk\olmat F

H_ 2 [ , )]-""F WI.. 1 ( 1. 1" 1 2r =M 12 + A 4 + 6" a. \= ~ '3 a-
pL 'p
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00 0 (5024)

DEFLECTIONS ==LEE KNEE,
,-=__co::=.~'-~=- =a=a::o ....

"
Case L

B' WL2 [J+A(l+!a)] [ltlJ.~ = a -,- = a.GpL2 ~ 24 .6,' 6 2 :3 J 000(5038)

- - ~ -

,Case lao,

BE 1.
(1+,~)+ t 41

2-,-'=- a
~pL26 ,

000(.5039)"

-- --=
Case II.

BE [ 0 1=a[lt1a 2 ] aowL
2 1~1 "t A (1 ~ .Ju.,. l.a)J

f1 L2
'= Ct = '3 a Ct =2 3' M 24 12 124 6'p ., P' ,

, , ,
, ,

000(5040)
..-,-,-=~:-

.DEFLECTION$' =- WINDWJmD KN;EE

All cases ,':,'

" ,, .

B =BC E

Case I~

2 ( .;' ).BD T/7L 5", '. 1.
i2 =M 384 + U'A

pL p'

.casela.

.1
=8"

"". 0 (5042) .

000 (5043)
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.L 1. .\], fl 1 l.il
8c"'~ '1.2 8. m}· = ''8 = "2 ct .~ '3 a a. I

<' .,..1 ~. ..--5

•. "(.5.44)

~: ~." -...•

;

..
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A P P g ND IX C,

.. lQUATtO~S FOR. SINGLE-SP~ GABLED FRAMF,;S
. .,' ..'

-1.36

-PLASTIC HINGE KlMENTS

Composite Mechanism

~l [(l-a.HAt<L) ]=-
wt2 4 1 + b a.1r .'

· i [~l ~ l [A (1+ ~ )'-1] 1Ja. 0

= ... for E.)O
a

••• (5.2)
. ~ , ,

. Panel Mechan~sm

!L .'!
w1.2 .4 ••• (5.1)

LtMITS '.

Be~ween ,Composite Mechanism and Panel Mechan.ism

Alii 1

1 + ~a .•• (5.3)

Between First Hinge at J.eelCneeE and .WindwardKne.Ei1.C

..• (5.8)

BetweenFirst~ingeat Lee Kn,ee·g and .in..Windward Rafter at.F

o .. A,2 '(1+ .2F ... ·lb2 .F2) +.A (2- E. F.~ 2F + E.. G + 1 bZ
F 'G)

a' 4 a 2 . a;a 2 a2

+ (1 = ~ .Gr~ 2G + 1 b2
G2)a ' . 4 2. a ••• (5.9)



268.3
, ,

where:

[
Sa '

N- l' iii, ,l+4b

F =

fS+ 's!!]
~ .. [ ,N "a.

HiN~"ANGLBS

+u +~~+4:~ ]
,b ]: 24 + 12 a

'.;,

-137

".(5.7)

•.. (5.1~

Case I. ,~ompOsiteCMeChani,.m-"Fi~.t.:Hinge·at·LeeKnee.E }

~L·~~~2 [~2~i+ ~6 ~+A(±+ H)] -[l+~+1 :~J
, '2

- .1 a + 1 awL 'A '
3 6~

,c;~S,$I•• , ' ...~el.'~ehan~ ..IIl~ .. Fir8t ·.~n8e at Lee KneeE

'e'.' fi+4bi" '[l(lSb) (rb db2)} ,,... 1+4b2 ",,,:;, - + ~ ~ ~ -,... + r- - .
,pL ' , ,A 324 a , 2 a 3 tj.2

c.seIla. ~e~,MeC[hani$m' .~~ Fl:r8~, .Hinge at'Win~dwa.rdICnee:c

He "",' l' . " 5 b 1 b 1 b2 ,~.~ _(1.+_, ~),_ (-._, +'__)
<'PL' ',r·....... ,A 3 , 24a24 ,3 a2

••• (5.23)

••• (S.jO)

,....
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DEFLECTIONS -- LEE .l<,N~E1---.----.......,..------+----------------.-----.-----....,---4

c•••.~~ p"2 ~WL2 [,1 ,5 b' (1 1b)~ ~... 3b 1b2~}
--.--. ." a l+4b .~. ~ +-'. - + A. ,- + -- = -+ - - + - -
~pL2 " ' Mp .24·'~ 96 a 6 8,8 .. 2 4a 3 a2

c... ~:. ~[l (1 5b)
f,Jp~2·"a ,1+4b 'X 6' + 24:i +

, ••• (5.35)

(1 _1 Eo _ 1" b
2
)] + 1.•2

64 a 3 a2 3
. . •• (5.45)

,Case II. ~

BE 1 p[~l 1 b + 1 b
2 J wL

2 ~ 1 1. 1. b~ .. b a 1+4b '2 + "4 - -CL '6 2' ex. -~M 24 - 120.+ 32 ~
'PpL (l+~) a. a p a

a,"~ ...

(
1 1 b 1)] . 2 1 wL2 . 1+ A - + - ':t1. - ~ - -. ala. + - a2a; - A + - a2

12 24. 4~ 3 6 ~ 3

· .. (5. 36)..

1.+ - a 2
3

• .• (5.46)

~ J)~FLECnONS _0:>, ,WINDW,M,D KNEE

. '-:',

1. 2'+1. 2WL2l- 3" a 6";l Md.
, P

• ~ • (5.47)



11"'.b'a fL,:,1 '" 1,', ~ l~~!, aZ
T."t" t6,.,. 64 a 5 3 "•. (S.4e)

c~~~~2 _ (l+~ [a il~ [[j +H+t~ :. ~' ~ .. %5~J
wL

2 t1 5 b 1 - 13 b (~' 1 b ~ 11 b )~}"" -, - + - - • ';"':;tI, .. - - a. ... A ....;:;Il + .- - ~ "':"C!!.= - -ex... ' 24 96 I#. 12 96 a 12 8 a 4 24 a
p ~

+ (l-~) [1a2 _ 1 8.2 'wL
2

A} _ ! til + 1:. 03.2 wL~ A
3 6 Mp 3 6 Mp

00. [5'".49)
/ .

t----.-_D_E_FLE_,_'C_T_IO..,...N-S-----'R_I_D-G-E_---_-----,.,-"----~-------J
I

Case ,1. i. }

0'" - 2 ,,' " '
D wL "1 1 1. bWpt2· = 11+4b

2
[ lip [184 + 32 4J. ~ + J2 .:]

case~:. p" [s 1bJ
~,'. l+4b ~''''' -,'-,rI. 2 ',' .96A 12 aY'pI.. ' " .

.0. (5037)

••• (5.51)
•'.

"

:",
.:1,

"<i·.f:
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268.3

A P PE N'D I.X D

EQUATIONS.FOR.MULTI-SPANFRAMES WITH FLAt. ROOFS

PL.f\ST,IG HINGE K>MENTS

,Compos fte:H.ichanism

lol
...£.....1 (~ 22 III 16 ,A';"u,+l)
wL,

p. ... l-~+D

,Pane1M~chanhm

~1
, III .-4 (A-D)

wL2

-141

••. (6.1)

•.• ( 6.2)

••• __ '0-

·LIM;tTS

Between Cbmposfte ,and, Panel'Mechanisms

A-D-1 ••• (6.3)'

Between First Pla;;tit: Hinge
,

and inat Lee Knee:E Bea.m atF.

::A...D-l -2~ ... (6. 5)" ' 2a+3

,.-

HINGS'ANGLES -- SELF-SUPPORTING:SUBASSEMBLAGE

:CaseI. Composi te -Mechanism -':,Fitst'Hj;nge'at Lee K.l1eeE
j .

a)]~wL2 [ I (i + i 2-=- - + (A-D) - 1.- - a
(,JpL Mp 12 . 3 (Graphic)-- - - - - - - - - - - - - - --

1 I~ 1 :to~- 0

3 a1
,~

- 3 a Ii~ (Cqrrections)L

_, 1 Go 10 2)
1 ( 10 1) wL

2
(

a I
L

+ IR- +- a ',-"- M~\DJ3 6 ~L ,. •.• (6.6)
, p

case lao Panel Mechanism -- ,Pret; Hinge at Lee Knee'E
. First

H 1,E
(,JPL"

..
3(A-D)

..



·.~;~6.1O)

""'._-----...._~.,...,.._. __._._--------!

Case II. Composite Mechanism =- First Hinge ~J}. ¥l~am at.F

~L - ~2 [i; + (:"cll) (* + ia)J -1- ~"
~-- .- '-- - - - - --- _. =y>

1- -a
3

._. - --_._--

••• (6.9)

,PEFLECTlONS -= I"EEKNE&: .;,.~ SELF-:-SUPPORTING BUBASSEMB~E1---._. -~ .~ -- -~~ ...----.------1

.Ca.sela.

I---

BE 1 _( 1) - 1 1 2
~pL2= -A::D '6a ..+ '6 a + :3 a
----------

-'1 10 ·~
= 3 a-2 1'"'""' M

·L --p

1 (I .. )
+ 3aZ1;- l'

------ -----

••. (6.12)

.Case II

::~2= a[! + ; a. CL L t ...J-at [2~ 0 1~ CL + (A-D) 6;·*CL' ~)J
- -- -- -- -- -- ---- -- ---- -- -- -- -=-

= 1 2 10 ~ - 1 2 10 ~ li<> ,
.3 a a. I M + 3 a IMp'" (('JI

~ ~__L_....,;p ._R_· ~__• 1
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0'0(6.13)

268,3
r------:------------------~--"-=-~--'---.---___rI (I 1) (1) 2 n= 0" ) 1. a 2 "0.,, + "0 <0.2 " L '32 '0 = 1. ,~I,~, .«(A".j[]I) r,

'~ 3 1L I;' (; 'l~ ~. ~

I) -+ 1 a 2 (....2. ,.,1 '
3 I '

R

DEFLECTIONS ~.- WI.NDWARD KNEE
I-~------------------'-_. __.-.._----_·_-,-----I"", ··1,····.. ·, .. ·· .... ,........ .,.

All cases.

DEFLECTIONS ~,~ CENTER, OF B~
SELF~SUPPOR1~NG 'SUBASSEMBLAGE

Case I.

5D . wL 2 [ 5 l' ] 1.
f/J 2 =M384 + 32 (A-D) ,.. 8

pL; P .

No .corr.

Case la~

5D 1 5
0pL2 = (A=D) 96

No cor:r.

Case' n.

• •. (6,1.4)

'0.(6.1.5)

0 0 ,(6.1.6)

'. 0 • (6.17)

E-HIN':F:~GLE:_ ~:. _NON~S!,~.~UP.roRTIN() SU~S~LM;:E--:-... _

Ci:,ses I <Y. 1.I.

=:L= (l~) [ =:2 [ 2~ - l~" + (AD) (l~' icc .. ~)

-~-"'1aan ··1'
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.0.(6.18)

.,.•• (6. 20)

.f-..----------.-- -.----- ---

_ 6c .1 -.!.a 10 .~ _1_._
a~pL2 (1-6.).3 ;IL ~ (1=a,)

-(~-1) V;Jt> [1-~ ~:2 (A-D) ]000(60 m

Case la

HE 1 1 1
~PL = 6(A~D) ~ 6 - 3a

-'--'-tt-l -rt,J¥--" -. --'-'----
+ . . ,

a~p:L2 .'~ 3 aIR 11>

- ~ a( ~ -1)

Case la,.-
i

~ ..... 1 +1. +1. a
~PL 6(A~D) 6 3

~----------,-_._--_._---

. - ,Lx; 1.~..~
~~pL2 - 1a.~ Mp.

1 (10 )+- a 'ir~' 1
.3 1[1.' ' • 0 • (6 .2-1)

•••<
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DEFLECTIONS ~= LEE KNEE ~.~

NON-SELF·~SUPPORTING SUBASSEMBLAGE

All case.s

DEFLECTIONS _c, CENTER OF BEAM
NONr~SELFc'SUPPORTING SUBASSEMBLAGE

-145

..

Cases Ia & IIa

0D 5
()PL2 = 96(A·-D)

Na carr.

... (6.22)

• 00(6.23)
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A P PEN D IX E

EQUATIONS FOR. MU,LTI-SPAN GABLED FRAMES
PLASTIC HINGE MOMEllTS _. . .. ,

Composite Mechanism

M'p = _, [ (/.~O( leA +0( -o} - D(~IJ.. )1'>{ 1
WL2 +; "+-&--o< J

~91- =. -. ~ . [" -\1, - -: -[ Af-i+ ~ }- /)(l---~J-Ir-!1
, q: ' ,. J J

... (7.1)

Pane1 Mechanism

!!r. -[ A~D l ,'
t-- ----'_~--~~_-----------..,-----..:..:..:...(-7._2"':;')_--4

Reverse Composite Mechanism

c(: ;[i/+~h+Z~ -:[A(/~~~Dr-IJ-~

.•. (7.3) !
t----------------------.--- "'

Reverse Gable Mechanism «(1, = 0)

Mp = _' [ A(/ + ft) -D - i ]
WL2 4 2 +t

... (7.4)
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LIMITS

Between Composite M,echardsm artd Reverse ComposH:e M.ecl?anism

1------- ••• (7.5)------.-------~-,--------~-...:..-___l

!
Between Composite ~cha.:nisma.nd Panel Mechanism.

b'
A := I 7- D(1'- -a: )

I +A. Gl ••• (7.6)1---------'-.----,----- ------~-,---_.-------.:-~--.:~__e
Between ,Panel Mechanism. and Reverse G~ble Mechard.sm

, !

D :: All - eLi-z_
I+~

Between Reverse Composit.e. ~echa'!].;i.sm and Reverse Gable Mechanism

(J~k) -1-0
I+Y.!

I-- ~_e:t_...._..-,;. , ~~_~ ~~_~~~_..:.:.:~.:._._8)--1

:rarame~ers for Fi~st Hinge Limits

N - 80.
"J 1+462.

[

/600
F = 1/+4b2

G= B +st
N

.D.p.14)
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Between ,First Hinge ~Lee Kn.ee E an,d in Windwar.d Rafter at F

-148

Between First Hinge at Lee Knee E and at Windward Kn.ee C

,---,-_._------_.------
Between. ,First Hinge at Lee K;o;.ee E and at RIdge D

ME ~MD

= A(2 - F ll..i.IL:JGl
D (F;+2F+iT=2)

Between. First Hin.ge at R:tdge D and at WIndward KU,ee C

..::..:..:.(7018)

Bet.ween ,First lUnge at Ridge .n and in Wi.ndwar.'d Rafter at F

MF : -M{)

o =: A~(I+:'F+; ~:F)+A(4--2F-2:F +-; G +1 1:FG
+L>[i :~F2_2] +D(4--2F-Z:'F- £G + ;~FG)

+ D2.(I_: F +4:~FZ; +(2 -ZG- -ZiG + i 1-=G~

000(7019)

L...----------~~~-~~-----------------_i

,'.
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HINGE ANGLES -- SELF-SUPPORTING SUEASSKMi&LAGE
~---_.~~-----~

Case 1. Composite Mec't\an.i.sm -,., First Hin.ge at: L.ee I{.n.ee. E I

HE = ~ll+ Ah2 f WL
2

[.'L +.ff:. h +A(-.L + _L b )~l:llr ~k. ~_L~~:
r/;pL. ~ T l Mp /2. .9\i ~ . 4- 8 1'2£.1 ~i 4 0 @. 6 a~1

- [/ + IJ. + 1.. b~J (- 2.« <#= J.. q J!.rJ:~ (A - D)
Q 3 ~ ) .3 S M~ ,..

I-- _.. _. -.-:: _.~ __~ ..!§r.aphi~ __
(Corre.ctions)

00.(7020)
~-----------.;..;...~===~~--_.=_.~----~.--::.-....{

Case la. Panel Mechanism -- First Hinge at: Lee KneE: E

~ = ",1/+ 4h 2. }_' [.1--1- S !! ~ r{-~+ ~g.~)~_rl6+~ 62Jl (
~L ~ lA-D B 21t~ ~\~ Sa<L ~ I~~ 3 a~ )

~ --.. -- -- ~--- -_. --~ -_.'-- -~- .~~~ .~- ~- -- _.-

+ 1. t'!..(. :::I..~ _ ];,;)
3'''''' ir l',j~'!b ... ;~.

o.oOo2.l)
i'----------------~~~==~.-=..-==~=-r.=~-_l

Case II. Composite Mechanism -- First lUnge :l.nWi.7'1diWard RafteI' at F

%;L =(/~ §«) ~/~ 4# f~;l~ +~£ +Aa + l~)

. -'"Of.L + .3 " +.1 h2.j ....[1+ "+.t 6'2.]( _ 201, +!..Q W~7A~D.~]( 4- 8 ~ 6 a.~ ~. ~.;) a(2 J 3 , Mlp \\ 'J

~--------------~~- ---..:;.;..
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Case IIa. Panel MechaJ.lism-- Pi.rst lUnge at Windward Knee C

'-150

tL ·11+4-6'fA !D[~ +~: -o(~+ .;::=l[{-: +§ ::]j
I--------~ -- -~-- --~--~~.---

",:,,,,,'.17 23)
4·.o...A..'t 0 ,

Case III. Reverse CompoSite Mechanism -- First R:!.lJI,ge in Windward

Rafter at~"

H,: '" I.. I -'I I ) ,i/+4b2C WL2 [-l. J __~__ .-L. b~
¢pL (/+-fJ(/rZ.~ .~. (Nilp 24 96tlc ~@ d!.o~

lll"

-(A+D)(~ k+!... b:)~ _[1+ h+~h:]t _2.0.+ 1Ii_¥l2r!h(A+D)-J~i
u a. 24fa. .] t1I, \oJ ~ J 3 lAp (, /2. . 4!

1---

1--- --_.. ----- --'- -- -~- -~- ~~~ ---
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Cas~s, IV, &IV:~. ReverseComposi.te :M:echanism aP4 Reverse Gable
M~chanism:'i.,::: Jfj.r~tH.j,,:Qg~'at Ridge D"

-151

• (1+ V·~/+4<li[ {~;2[~;f 9~$'=-Z4 +(.4+D)(U"~~)]

-[/+ ~ +: ~!.k.:]} -- ,~a -f .WL~ (lit (A rD) -- _L al]
G! 3 'I! 3 /rip (' /2-

--- --- -- ;;,...._-

DEFLECTIONS - - LEE KNEE
SELF-SUPPORTING SUBASSEMB:r1GE

Case 1.

... (7.27)
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. Case la.

dE: = o'\!/.,L- 4'<6/~ f__I _.[ L -t S!? _:. D(-L~.+ :z 6e)~1
C/Jp L2 ~ ~ A -D 6 240. I 2. a .3 a'l·. ~

+[~ ~J: -;1.1 + :t a "
. ,

··=152;

--

o • 0(7028)

•• 00029)

---

+ 1.. a2.(. I(!) _ / )
3 II? J .•. (7030)

/
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Case II~L

-153

ri'" r;;

de, . J ,_~I~~", ~ 0('irf;:4i?~)[L iE'.. -,},J J;iXl
¢pL2. :-' (1+ ft) (I +2 '~o{)L r j" ~ l2 ·4 (J{ b 01~, j

1- t~'[f~-9~~:~Z~ 0(+9~ Ii 0<- 9~f.~ +Ii (Z~·fa ~+Z~ ~~)

-D(~+-L~._..L..~ ~+ .16~if'£ ~l(
,24 +-8 a& 21/a. 'f6 a~ ""'/JJ

f-a"{[~-jo<+ ~ :"']" ~;'[lri~ OUj~: '"

f-A(,I-.<j$) -D(i~fi*+j~: ~)m
t---

_;aZt ~;L[i+ig~- ~a2t £1;R[ !j!-h~9

-cro<. (79 --I)(-l«r )f-.~!,__,,_-,,_) f-!'r w~2r L~ _1. (,4 ~D\I--!..h 'A"iJ7~1
~ ~ l~f:-){ 1+2 ~_"iA # 1,3 Mp lZ~ IZ~' , ',J 6 a '~JII

+a 2(_Ie -~ /V-_J- )l_,_1-~{i{ ~ i'Yf 2r .~ + .1. fA -lJ) - ~ 6~]l

-0<fr;fl Z~J'\~ ::k~\[~1 ~~~::;:(..1,~,iP~ :")~_;(•.~.!.: _O').~laJ'.
; tl3 3 Q Mp Z~ 124 '\ 12 6 a' '12. 3 a 2 ~\ .

. . - . . ~

.•. (1.31) " ,
Il-------'-------,--~"~.::_-, -..~.~~ ...~-._~----,.--.-~.- ..-'....-~---'

Case IlIa.

dE' __', _1_[/>i\d/-f~i}rLl.1.~l'f !~er I /6 I AI(! / h)
¢pL'2. - (I + :) <A.'~ {l2 f.a.J /Vilp l48 --9'6d -r-cr1\Z4, ~48 a.

-D(L .-£. b)~? + .L a2 -1= o;"lo wL
z f .L ,J.l.llri -"t,1i .__ .1 hDi?l

24-+ 4·B a )J~ 3" M, lZ"; T /2 ~""'I, ~f 6 a JJ
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Case IV & IVa.

ere _ I ['''Ir;~-i)~ I /; I 621, !l1;L~r! b I ht"
¢~Lz - (1+ :)2a~/7# lt1F~+iza2j+ flr~p l64:"a-'~j~2-a~

+ A ( -1.._ + .L h) ~O(__L -f- ~L b+ _.L ,t/f))~ I J-! ah
.\ 24 /2 a. ' ,24- /P Q 12 aZ: J:J J

I Z WL Z
['/ h "/' I h) (! b h'Z. )/1

+ 6 a IrA; 4a-+A~ z +~ - DQ 2+ a 'f- a.~ <JJ
r---- ._- -~~ ----~.--'-~

, DEFLECTIONS'':= WINDWARD KNEE =~

SELF-SUPPORTINGSUBASSEMBLAGE

Case 10

t1 2 = a11 + '1-6>.rt'f[~+l(A-D)-t: DJ-UfJ :Jf
<-..L a2. +.L a2 _WL

2 (A -D)
3 6 Mp

:.-- -- -- -- -- --
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. Case Ia'O

-155

--

.00(035)

---

00 0 (7.36)
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Case ITao

-156

000(7037)
._--_--=...-...

. Case III.

ck = _/_ / ra,~ ~2.{_L .:3 tJ +!.A.~ _ IJ _ 56~ -J
¢pL2. (/+~(/+Z1i y~ T' z I- +« 3a2 0( Za 0( 6a";Oi,

+ wL2.[ .J.... _ .1.. 1;2-_ --!-o< _ -.L 6 0< +_ ..L ,62. 0(

MF 18 96 a} Z4-32 a. .32 ?L~

-I- A ( / . I b /.6z SILl 6'4 ) u
,., 2.4- 1-8fZ -Z~a~+c~~ 0( -I- 4 'a,Z, 0< _, _.

- D(-'- I- S- h+-Li~Z...!..-/- b o( __ -L_.6~o( ,1 ( I
24 '9-8 a, 2~2 Z+ a: 12 (.L2 .JJJ

2..._.( "~ \J I wL~[I / I " I h A<~f-a-ot 1+&:.~)(3+MP 21--li\A-b.l-?a 1
+at/-o<)f..L of ~L2,[.L +-'- (A -/)'_:.1 b D1/J]

l~ IYlp 24 /2 / 6 a., ~

1--- \ - -~ -- ------

_la2.o( La Mgt. .v..tZ. ~) +..!... a2.:Io MQR (;-0<--'
3 I L Mp (1+2 ~o() 3 IA, Mp (/+2~ C'()

-Cl-D«(I~-I) /-1-2£ [!-f WL2[J...._-!.-(A-IJ)-.l.#A]1
- Ii.. f-l-~)(It-Z*O() 3 M~ 2.4 12 ".~

""a!(f-)(!+~~~9:o<)[;.... ~~"[z~-f}i(A-D)-~ ~b¥
o •• (7038)
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r------------------

Case lIla.

-lSi

--- --- ---_._- ----

1----------------.------ -----.'''-'-.--

Case IV & IVa.
-------•.-._._--

--- ---

I
... (7: 40lJ
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, " (7,42)__

r------,----------------------------y
,DEFLECTIONS -- RIDGE -­

SELF-SUPFORTINGSUBASSEMBLAGE

Case L

dD _"I 2{WL
2[S I ( d 161[1 'hJl¢fJL 2 - ~ / + 4-1> MI' 381 f-32. l A -1)/ -24a 1)j - B +/2 a

No corr. '00 (7,41)

No corr,
r-------':..:..::.-..:...::...::.~-._-------_._--

Clils~ IIa,

[L> =,,1/+~2 f__1_[ 2. _1 b DJ1-_1 h}
01i4.~ ~ j A-D 96 6 a.. /2 a.

\.
I-

N:.::o~co::..:r'-=-r.:.., ._.___.__-...::...'..::..,:',~(..::...:7,~4:::::.4)!.__1.__. -- -
Case II,

~ I [ r::----'-Z-[ wL2.[ 5- I (I /
¢pLt2- 1+2:'0< ~/+4b . 14; 384- -Z4 ArA\3Z--acx.)

-tJ(-!-. --I- ._J~..b. _.L O(~! .~Q()L [ .1..J- J_~ P. _.f- 0(.- j- " o<J]
\32. 24Q 8 a :2)J 8' 12 a 12 4 a.

.- I I /lv'L2 . 1 .
+.3 CL c< - iz a. 0{ I;;; (A -D)J

---. ----
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Case III. --------------.. '---'1
;'Z2 =-(7~1-)(lj£lo<)r+4b2[[t-ji~J-fo( -#>] I

+M~~~~;~£-~o( -19~:'of -(A-L)xi6£--7~ :)]J
- a 0( [1 -I"' &f::.2, [ _.L__ (:~. +l)'j' -11?.ln

3 Mp _24~! '/2 aJI! '
) )i

-._---, ---- --"-,- --

1--------'-'---
Case Lna.

c£, _ / I, r7.·-~-~2 f![ I I bl wL2 r I I b
¢I"L"- - --(1-1- ,f)0H ~ II Zf I }2 a.l-1Mp [384-.38-{:ti

--9~£(A ,<LJ)]}J
No corr.

~-------------

Cases IV & IVa.

fL"- =f+~AiH4b"l8+z~~]+%~2tt4--6'~£ .
. ~S £(A+f))J} -ttt{t+ t~2[ i-~ £(Mo)JJ]

\ ---- .__. ~'..J.Gr~c.l.._~



268.3 =160

• (Correc tion)

/
"

,

Cases IV & IVa.

. -f- -L a, I [Io MoI;L 1:oMq~?
12 (!+,:) I;..Mp ~Mp '}

+ ...l... OJ _1_- ~(~o -I- ..To "-z) + 114.2[ J.(~+ ~-2)
12. (1+1)2 C' It. IF{ , Ii/lp 8 ~ ~ ,

+~(A-D)(t-t)-f ~A(§:-I) -j:D(t--i)] ~
... (t41)

I --1
HINGE ANGLES -~ NON-SELF~SUPPORTING I

•SUBASSEMBLAGE ~------'---'-1'
Ca.ses I & II



268,3

Cases I & II,

w161

l
I ~/-AlZ 5WL:2.[ I II' \~, I b ~== _._. +,0)- -+~!A-!J.J---DII

(1-0(.) lMp Z4 6 \ 8 Q J

[ I I hJ}! I wLz( ,~]- -+-- -~a +~a <~ • A-D.I
2 4- a. :3 6 1V!p'

---._- --

__I __ Ll~ _ .la .Io(!1Q,-_/_
(1-0<) a,.¢pLz 3 ILMp Q-oc)

- ja(ff-,) (i!.o<) [1-- ~ ;,~"(A-DJj .

Cases Ia &IIa,

+. ~c _.la L M~R
()., q)pL '2. 3 '~/iI1p

~;a(i~-I)

Cases Ia & IIa,

00,(7,50)

.& = '\1/+ 4b'2.{-1-[l-_1 6D]+[1_..L bl]+1. a
¢pL ~ . A-D 6 Z (Z .6 ~ a 3·

---I



268.3

Cases In & IV. -l
r,

+A(_L _...Lk_.L 6~£t?0(+1. b~c:() =/J/~"IS".!?-1--'- fi2.
/2 21-a. /2 (2

2 /2 a. Z C!-Z l/2 Z"}-a. /2. a,2.

. I h I b'Z \1 ? z / .f wL:2r f I
~ /2 a.. O{._= G" ;;;2 O<)lJ~ ~~3 a., I~~C<) {1+Mf' ltf +4 (A -D)

~ t

~~ :. DJJJ+r;;t5~-=z~) ~ a rI +J1~2 [8 -'4 (A -1))-,{11t]}

.j- g a. £~ .!:J!J~~ ~"-~ ~.~. w .~ A1C7;~ .__~f!-o( ),~..~-­
3 .rtf. Mp (/~2~) 3 II? 11p (1+2.-9; )(/~2rx)

_+ 2J1c .. _.1i+_2fc~~
q¢pL2 (1+20 :")(I-ZO{)

+(t- I) (l+fJfl::z.T; '"[;f ~~2[~_~(A -LJ) - i ~A]]
~_(.L_ '\ (1-0<) 2. [ WL

Z
[ I I ( \) I h ~(

k I)~+~)(1+2~)(1-2o<):3 a., 1f-lv1p B+~\A-.Dj·-2 a. ~J



26803
r---~._-~----

.Cases HI & IV

.__ Z Llg__ _ __II... f.£.) _~ -La~ 11~4 __!..__ .
a¢,cL ~ (/+-2 :")(1-20<) 3 .It. Mp (l-Zo<)

+ La. 4:Cf l!!19R __~L~_.~
,3 Itf Mp (f+2.~)(/~2.G()

--j cL(f-I) (/-if:)(1-20<) [1f-~2[i ~.~ (A-D)-i:A]}

I-~. a{t -I){'-£)(I:ZJij[i-201J'fl+~~2[{l~(A-b)-J tD]]
000 (1053)

Cases IlIa & IVa o

!jD = __ 1 ~ /+-4 "2.-{-[1 ~h 2.62.] WL~[ i I /;2­
¢I'L (1+£)(/+2:') h +2a. +3a.'2. -Mp 24-41a.2

+AU-2.'4:-/~~=) -b(if+t;.:'-fj~::)]}

--j~{HA1:[i+4 (A-D)-J ~DJ}J .
+(I'::j;la.{I-f Z;2[l~ l(A-L»-~~~]

o (Graphic)



268.3

Cases IlIa & IVa o

1---------- ,--------~--.~

Cases IlIa & IVa o

:164

o tCor:rec t:i.O!'!l)

I
I
~ .
I

-_. -- ----- -_. ---- ---- -~.j

If'" '-5)ooo\~,ju.)



26803 -165
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