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ABSTRACT

Plastic analysis of steel structures depends on the ability
of the members to form plastic hinges.-and to redistribute moments. In
order for redistribution of moment to take place, certain plastic hinges
must sustain their plastic moment through some angle of rotation. The
amount of rotation required may affect the stability of the structure
and, therefore, may affect the geometry of the structural shapes selected
and the spacihg,of lateral bracing. The ability of a structural membe;
to rotate the required amount in order to redistribute the necessary
‘moments and form a mechanism is defined as the 'rotation capacity!.
The angle of rotation during which a yielded segment of beam must sustain

its plastic moment value is termed the '"hinge angle'.

This dissertation deals with a method of calculating the ap-
proximate hinge angle through which a member must be able to rotate to
form a mechaﬁism° 'The method of solution is based on the assumption that
the complete bending moment diagram for a structure can be obtained from
a routine plastic analysis. The method is based on the further assump-
tion that, when a structure has reached ultimate load and formed a
mechanism, the length of the yielded zones at each plastic hinge is
zero. This makes-it possible to calculate rotations; slopes and deflec~
tions by methodsvof the theory of elasticity, accounting for the plast%c

hinges simply by changing the boundary conditions to allow for the
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.hecéésary freedom to rotate. In this dissertation, the method used
to calculate rotations, slopes, and deflections is an adaptation of

the .classical elastic slope-deflection method.

The problem of calculating the required rotation capacity.of

a structure is examined in three .steps:

1) Calculation of the ultimate load and ultimate moment

diagram.

.2) Location of the :first and last plastic hinges to be

formed in the structure.

3) .Calculation of deflection and rotation by using the
slope~deflection .equations and considering boundary
.conditions appropriate for a structure in the plastic

range,

The study is aimed at.the determination of the rotation capa-
city of multivspan,gabled frames. However, the theory is developed in
simple stages and covers a three-span continucus beam and single-
span‘pdrtal frames as the basic steps in the method are illustrated.
The new work of the dissertation is primarily concerned with steps
(2) and (3) of the above method; Multi-span frames are.solved . by
separating the frames into single span elements called subassemblages.

Then the results of the rotation calculations for single-span frames



268.3 ‘ v

are used to advantage. Special treatment is given .to finding the
locétion of ghe last plastic hinge in multi-span frames. In treating
this problem, thé‘concept of a self-supporting subassemblage containing
the last plastic hinge~and~non=self=supporting-subassemblages, which
rely §n adjacent spams for part of theit . support, is introduced. .An
intere;tingvdiscovery in the study of multi-span gabled frames was that
it was possible, under certain cases of loading, to form mechanisms in
which the roof deflects upwards causing negative work to be done by

the roof loads.

Using the results of the theoretical studies, some typical
structures are designed as illustrations and their required rotation
capacity 1s compared with the actual rotation measured in some exper-

imental tests.
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of safety against failure for all structures.

268.3 R L

l. INTRODUCTION

Recent developments in the plastic analysis of Steel frames

and their component parbs have pres&nted.a<more;ratioﬁal basis qﬁ_which

th design welded contimuous structures. Methods based on_thésé devel-

opments give promise of economies to be gained by taking advantage of

‘the reserve of strength of structural steel beyomd the elastic limit,

by using simple methods of analysis, and by assuring a uniform factor
' 1

Plastic analysis supplements the classic elastic theory by
utilizing knowledge of the behavior of structural steel beyond the
elastic limit° It is known that the sarie property of ductility which
allows deformatlon without additional load of a temsion or compression
member, will also allow a flexural member, stressed_tq.atlimiting\moment

(designated as the plastic hinge moment) to bend or .rotate without

‘additional moment. The ability of a plastic hinge to maintain a

.constant moment while rotating through a finite .angle allows a structure.

C s

or.meqper'toftransfer'additional increasing laoad to other less-stressed
B ¥ ’ ',‘ B

e t K .
. portions of the structure until sufficient plastic hinges have .formed

to cause the structure or a portion thereof to become a.mephaniSm.f'TheSE
two properties are known as the plastification of cross section and
redistribution of moment. While plastification of cross section and

redistribution of moment are the two primary factors involved in the

plastic analysis of structures, certain other factorxrs affect plastic

behavior, and at times canm govern the plastic amalysis or design. _Axialf
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compressive forces and shear forces combined with bending moment tend

to reduce the plastic hinge moment of a given structural member. However,
axial loads less than 15% of the compressive yield load of a member, as
‘are most common in rigid portal frames, reduce the plastic hinge moment
only a small amount and may be neglected.lvThe usual shear forces in

.a normal balanced design are also small enough so that the plastic moment
is not seriously reduced. When the shear forces are large, they occur

in a section of steep moment gradient which generally ‘allows strain

hardening to produce a counteracting effect.4

The presence of residual stresses due to cooling, weldihg or
cold bending tends to reduce the yield léad of a structure. In a com-
pression member, the ﬁaximum load is also reduced; but in a member
subjected to bending only, the predicted plastic hinge momept is usually

achieved.20

The factors just mentioned affect the magnitude of the plastic
hinge moment but have little influence on the ability of the member to
absorb plastic rotations, Other factors may affect nmot only the plastic

Y

hinge momentsxput also the ability of the section to rotate thus modi-
fying the redi;tribution_of moment. These other factors are brittle
fracture, local buckling and Iaﬁéral buckling. In structures %hich
have thus far been investigated, brittle fracturé has not proved to be.
of concern because careful welding procedures and inspection, and the use
of satisfactory materials for the temperatures encounterea prevented
brittle behavior,5 The-occurence of premature local buckling can

. 8,9

be prevented by selecting shapes of the proper geometric proportions

Lateral bﬁckling.also may be prevented by
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providing proper bracing to the members. It is ewvident, then, that
proper ‘attention must be paid to the possibility_of.bwittle fractuze,
local buckling, amd Iateralibuckling,tO-aSsume.suffigiént straim_qr

rotation to permit redistribution of moment.

‘There is no single answer as to how mugh,stmain.orfrotation‘
of a plastic hinge is requized to allow a.mechanigﬁqtb form. . The attain-
ment of strain hardéning has arbitrarily been selected as a critexion in
the previously mentioned studies on local and lateral buckling. fTﬁé :
ability‘of-a‘plasﬁic-hinge.t0'rotate at or mnear the maximum moment has

been defined asﬁyﬂtamiqn,qapagityqla

This paper will pfeSentimethods fox,calculating,tme'rotatiOn,
fquécity,requifed.to'ali&%{a.mechanigm,t0uform imﬁa,stﬁﬂc@uﬁe and will
.givefresults for some sPeéific.caSes. . The objgct of the study is
 actua11y‘twoéfo1d-s9ne aim is to discﬁVer‘methbds.offca}qulating‘the
rotations which must.be.Sustaimed_fqrsthe,calculated‘ﬁaXimum load.ﬁo,be
-aﬁtained. _The second aim . is to determine if some maximum amountrof
'requi;ed rotation4éap@city may be .specified for given geometrical and
1oading,coﬁditionﬁkwhichawill not be ‘exceeded. in any structu%e.SQ'that
a design rule may be set.upueliminating‘tHE‘negegéity\of calculating
the required rotations. .The latter goal is desirable because theAcalé
culation of deflections and rotations fOE:évenqthe'simpleStlof structures

is tédious and to be avoided if at all possible,

Essentially the prpblemiof calculating the required rotation
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capacity is one of calculating the deformation 2t ultimate load. This
problem may be examined as if it were broken into three distinct steps:
(1) Calculation of the ultimate load and ultimate moment
-diagram. ' :

(2) Location of the first and last plastic himges to be
formed in the stxucture.

o

(3) Calculation of deflection and rotation by solving

the differential equatlon for the curvature of

bending members comsidering boundary conditions

appropriate for a structure in the plastic range.

This study is primarily aimed at the determination.of‘the
xzaequired rotation of multi-span gabled frames. Howewer, the developmgnt
of the theory is carried out in several stages, using examples of gimpler
structures to illustrate the progress at each stage, Thus, the methods
of defining limits of types of mechanisms and location of first and last
plastic hinges, as well as simple calculations of hinge angles, are first
shown for a three-span continuous beam. Then, a study of single-span
portal frames 1is carried cut to indicate the method of handling prcblemsf
involving structures with sidesway. . The solution of problems of muitih
span frames is accomplished by separating them into,subasseﬁblages,u The
:bdﬁcept of self-supparting and non»self supporting subassemblages is -
dntroduced with the problem of flat-roofed wmlti-span. frames. Am.additional
type. of mechanism, designated as a '"reverse'"' mechanism, is studied im

the final phase concerning multi-span gabled frames.
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2. PHYSICAL SIGNIFICANCE

OF ROTATIONS

Before making actual calculations of the rotations of
‘'structures, it may be helpful to visualize the behavior of a structure
in forming a mechanism under the action of steadily increasing propor-

tional loads.

_The illustrative example, to be used in this chapter is a
three-span beam cdse as shown in Fig.2.l. TFor the bresent,,Supposé that
a mechanism would form in the main .span with the first plastic hinge at

the interior supports. (Fig 2.2)

The actual moment-curvature behavior of a typical wide-flange
shape such .as might be wused for‘this‘beam,ig'shdwnmdiAgrammatically in
Fig 2.3. This curve éhows the.elastic range; the initial inelastic
region (showing the effect of residual stresses), the gradual transition
tfromiyielding in the flanges to:thercomplete,plaSIic hinge, anq/fihally
the.s;xgin—hardéningixange, .This curve and the factors that"éffect it

have been fully discussed in literature on the subject of plastic behayior.l

For the purpose of-simplifying.calculations,,assumptiOnB.of
behavior in an idealized manner will be used in this development. . The
material in the beam.will be assSumed as a ductile material having the
idealized stress-strain curve shown in Fig 2,4, i.e., strain-hardening
‘and the upper yiela'point”will,be neglected. . As. a further assumption,

the Mkw curve will be used in the idealized form .shown in Fig 2.5. In
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addition to assuming an ideglized stress-strain cutve, this curve neglects .
residual stresses and the gradual transition from elastic to fully plastic

behavior.

In the first phase of the formatiow of a mechanism, the complete
,beamiﬁould,be_elastic. .The .deflected shape of the beam would be a fully
contiamoﬁs smooth curve.  The shape of the elastic curve over éupporth
iwould,bé as shown in Fig 2.6a. .Note that the slope at the support is
the éame,in;each"span. _The load-deflection curve for the beam in this
first phase would be as shoWn.diagramatica11y by curve I in Fig 2.7 and
2.8, Increasing the loads until the maximum moment at B reached Mp
would cause a plastic hinge to form at that point. In this condition,
the.éurvatura ® of paint ijduld'not,be uniquely determiﬁed,by the
moment. _The curvature could be tﬁevequivalént»of_point~A.in Fig,2.5? ip
which case the bedm would look_iike Fig 2.6a.at the joint, or the cur-
vature could be the .equivalent of any other point om linme AB in Fig 2,5.
,Then,the:beam_would1hQVE-a.discontinuity at the joint as.inuFig.Zrﬁb?

In a cdse like this, the slope at the joint is not the same in each span.
Siﬁce the amount of discontinuity is'nottuniquély'determinéd,by the
moment at the hinge, it must be governed by the behavior of other parts

of the structure.

Because the three~-span beam is an indeterminate structure;
formation of the first plastic hinge would not create a mechanism.
However, the formation of this plastic hinge would introduce -a "known"

moment into the pictﬁre,_thereby,remyving,thevindetérminacy. (Because
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of symmetry, plastic hinges would form at the two inter supports simul-
taneously.) At this stage, the remainder of the length of the beam would
still be bent in_smooth;CMKVES, and the three spans could be considered
ds separate simple beams loaded. as. shown in Fig 2.9. Except for local
conditions caused by yielding. at the supports, these spans would be
pilecewise continmous and satisfy the conditions which permit the.sloPe
and deflection to be calculated by standard elastic methods. Therefore,
the end slopes at the interior 3upports.could_be,calculéted and the gngle

of discontinuity determined.

On increasing the loads proportionally, the changes in moments
in the three spans would be those of simple beams, because the end
moments M, would remdin constant. This is the phase of loading in which
redistribution of moment takes place. The load-deflection curve due .to
this increment of loading would be as shown diagrammatically by curve Ii
in Fig 2.7 and 2.8. Eventually, the center of the maim span would have
its moment increased to M?. .Then the curvature @ &t tﬁat point~wbu1& be
ﬁndefined as in the case of the first hinge. .However,. at the precise
instant the moment'reached'np, the Mf¢ relationship would be the equiva-
lant<6f point A in Fig 2.5."This stage in. the behavior .of a structure
is very important because it is the last stage at which a solutioﬁlmay be
obtainéd for the slopes and deflections of the structure. It is also
the stage at which the ultimate load of the structure has beenhreéched,

Considering the deflected shape of the beam at this same stage, it is
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appa;gn;.that.Lhé4th¢ee,s?ansgwouid}stili‘bg.bent ingsmoothicﬁrﬁes.betwggn
the supports and that théaspanﬁ'WOuld‘satisfy.th@ ¢mmditimms whiehwallqw'
'slope and deflection to be calculatéd by elastic méthods. This would
permit the calculation of the Mhinge angle“ which is ‘the main objeck ive
of_thi&-Study. . This criticgl hinge angle is the angle through which the
,first'plaﬁtic hinge must rotate up to the instanp‘thaﬁ thevlaat plastic
hinge justﬂbegins;to form., The importance of this angle is.évidéﬂﬁ:whén,
it is realized that if the,computed‘valuabcannpt be,réanhEd, the structulfe
may not be able to carry the predicted ultimate load on which plaStic'

dnalysis 'is based.

-Although a struwcture plastically designed would not be meﬁuifed
to defoxrm further after formation .of the last plastic h:ilmgt-*-_,';:on.‘sic:lezr‘~ _
ation of its behgvior in this range is worthwhile because it sheds some

.light on the virtual disvlacemewt method of determining ultimate 1oad

Up to the instant that the last piastic hinge.férms in.ﬁﬁe
middle of the main éban' thé.Curbe'ofnthé'beamlwnuld be smooth gs in Fig
2.10a. This is the. boundaxv condition which makes possible .the dete*miw—
atioﬁ"of slopé and deflection of the beam, .Once the 1&$t hinge has

" formed, itsnrotation_could increase wiﬁhcut additionnbf'loéd.and.3 hinge
.gngie,would‘be.évidént as shown in Fig 2.10b by the angle Hg. It 'would

- not be péésible towcaiCulate thevhinge angles .since thé.structuxé

..would now be overdeterminate and subject to an infinite pumber of aplwm.

tions for deflection and himge rotatiom.
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At this point it may be well to distinguish_betweem.the,”slope:
angles" and the "hinge angles" which have been discussed gbove and the
Mmechanism angles" which gre used to determine the wltimate load of

structures by the virtual displacement method.

The angles such as Opc .and Opp skown in Fig 2.6 and 2.10 are
slopeB-to*tﬁeﬂ"elastic" curye of the strucgtpre. The hingé angles such as
Hp (Fig 2065) are the diffeérences in adjacent slopés at a point where a
discontinuity has occurréd .due to fdriatioh*of a plastic hinge., Thkese

slopes and angles hsve unique values up to the ultimate lomd.

In contrast, the mechanism angles (also designated a@:functions
of 6, but without subscript) are imaginary rétatians of complete segments.
" of members resulting from imaginary controlled displacements of structures
already at their wltimate Ioad, BecaMSe,the.éxtérnal,loéds and.imternél.
?omeﬁts remaiglcongtant,daring these virtual displacements, ig;ermal and
.éxternal_Work may be expressed simply as a functiom of loads,MP» geometry
of the strﬁiture, and 8.  Equating internal and external work from these
‘expressions gives a.ﬁaluéﬁfar load,in_terms‘of‘M?‘énd.geﬁmgtry of.the

structure with @ cancelling completely.

The physical picture of thege»angles‘will_bevshoanwith,the
.aid of Fig 2.11, Fig 2.lla shows a.t&pical method of describing the
‘machénism.bf the beam for the purpose of writing the virtual work
equation. The beam, .already at maximum load, has been subjected to a

virtual displacement., A, causing virtual ;otatidns’@ at the interior
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SpPPbI;S, and 2 .8 a3t the center plastic hinge. (Loads'have been omitted
to allow the angles to be seen more clearly.) In Fig 2.llb is seen an
enlarged view of the portiom BE of the beam just before the virtual
displacement was .effected.  The bent shape of all members is pi@céwise
:ccntinubu$’betweeg_hinges, Because bending moments will remain comstant
throughout any,subsequamt.diéplacemen;, the shape of ‘each of these pi@ces
will remain constant. This is just as if they were régid curved links
connecting the hinges at .each end. Shown in Fig 2.11b are the vertical
deflection © due to bending and the hinge'angle.HB, In the condition
indicated By the drawing, the beam would just be reaching maximum load
-and. Hg would be the hipge angle in order that the beam reach this value.
.Fig 2.11c shows the beamiafter the virtual displacement, A, has‘takenﬂ
place. The corresponding rotation of rigid link BE ambumﬁé to the

virtual angle O, and the added rotatiom at joint .E is 2 0.

,The mechanism;angIes.qausédnby theivirtmal_displécemﬁmt A are
0 at joint B and 2 © at joint E. These are superimposed on the higge
anglés which .were Hﬁ_at joint B and zerxo at joimt E. .0f pdurse,_for.the
purpose of the.VirtualAWﬁrk.equagions, the virtual displacements are
assumed to approach zeéro in . order that they:Won@t.cqnstitqté a change

in the geometry of the striucture.

The ‘same picture holds true for any other structure .such as a
portal frame. _With the formation of each plastic hinge, a discontimuity

‘appears im the deflected :shape of the membar. However, there are unique
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solutions for deflectionnamdZrotation;up’tg;tb&ggbint at whi@h‘the Last
plasfic hinge reaches its maximum moment, .This is theé condition for

4whic£ hinge angles dre to.beycaléulatédf ,Dgfom@ﬁtiongbeyond.this'poimt
is mechanism action and Fotations and defléctions canm no longer be cale-

culated.
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3. FUNDAMENTAL EQUATIONS FOR

‘CALCULATION OF ROTATIONS AND

DEFLECTIONS AT MAXIMUM LOAD

Calculationg of the deflections and rotations of flexural
members at maximum load is accomplished by integration, with appropriate

boundary conditions, of the differential equation:

2 .
= -0 ) e (3.1)

vhere y = deflection from original straight line of member
x = distance along member
0= curvatufe of member, .a function of moment
Since ¢a;5_a function of moment and since the moment is a,fungtion of x,

¢ may be expressed as a function of x.

Next the question arises of the form .of @ for use in this
,equafion. @ could conceivably be used in a form which would represent
the actual shape of the Mr@ curve and could also include the affect of
residual stresses and strain hardening. (Fig 2.3). However, this would
require the use of tediousrcalcu}aﬁion procedures and probably give answers
which are not particularly more significapn than those which_dan_be derived
.using,simplifying,assumptions.12 _For tha purposévof'obtaining-quickly
a qualitative over-all picture of the rotatioﬁ;capacity problem, the ‘ag-". -
sumption of the ;dealized'M%ﬂ curve as shown in Fig 2.5 will be made. By
using this assumption, the function of @ along a member and between plastie

hinges may be represented as M/EL jus; as in elastic analysis. This
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neglects only thE'areaAbetwégn the solid 1ine and the dotted line and may
be shown to have a small effect. ¢
By assuming @ equal to M/EL it is possible to use all of theé

conventional methods for calculating;deflections‘which_ﬂse'orderly“pr0r
cedures orxévaluated intag:als.cf”the M/EI curve in the form of formulas
and thus simplify mathematical operations. These methods include moment=
area, conjugate beam, virtual work and,slopehdeflectiong=AThe choice of
method is generally governed by indiyidual preference as to an orderly

form for calculations or an easily remembered sign convention. L.17

In the following solutions, slape-defléction equations will be

used in the following form:

= % * Ryt sfr [Me - %Mm] | vee(3.2)

8y = Slope of near end of member
0y = Slope of'near:end.qf,simiiarly 1oadédlmembér

whenzsiﬁply supported .= t %f%f for'uniformly-distributed load
Ryp = Rotation of a chord,Bethen;eﬁds.Qf member

= Deflection of one end of a mémber with respect to the other
divided by the distance between them = 8/, ’

£ = Length of member or portion of member
MNF = Moment at near[End,of member

MFi .= Moment at far end of member

'Any of the sign conventions. convenient for slope deflection may
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be used. The convention used here is that slope angles are defined as
positive when the rotations are clockwise, and end moments are defined

as positive when acting in the clockwise sense.

© with appropriate subscript is used to represent the slope on
both sides of a hinge location. H, the hinge angle, is used %o represent
the difference in slope at a plastic hinge when the maximum load is first

reached. See Fig 2.6.

Once the bending moments for a structure are known, the slope-
deflection equations are used by writing an equation similar to (3.2)
for each end of each member. The unknowns in these equations will be the
© and R terms (@' is known for each segment). Additional equations will
be needed to solve the problem. These will be obtained by considering
the boundary conditions for the particular structure as will be shown

in the following chapters.
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4, REQUIRED ROTATION

OF A THREE - SPAN

CONTINUOUS BEAM

Most of .the principles used in the solution of rotation capacity
problems can be illustrated by the relatively simple example of a three-
span‘coﬁtinuous beam, VIn,the following sections it will be shown that
"domains", in which each of the several possible mechanisms fér a given
structure will occur, can be determined by equating expressions for the
plastic hihge moments. Domaiﬁs in which each poséible plastic hiﬁge is
first to form can be determimed—By equating thg éxpressions for the
elastic moments at possible plastic hinges. The method of using slope-
deflection equations with boundary conditions appropriate for structures

in the plastic range to calculate hinge angles will also be shown.

, .
4,1 POSSIBLE MECHANISMS, ‘DOMAINS, AND REQUIRED PLASTIC MOMENTS

A number of available methods of analysis use the properties
of plastification of cross section and redistribution of moment as a

1,15,16

basis for calculating the ultimate 16ads of structures.
important advantage of these methods of plastic analysis over methods of

elastic analysis is the elimination of the solution of large numbers

of simultaneous equations in the analysis of highly indeterminate struc-

tures. Instead, orderly procedures may be used .to calculate the ultimate
loads consistent with various assumed mechanisms. Each such load con-

stitutes an,uppef_bound for the maximum load of the structure. At

the same time, any assumed set of loads and redundants which satisfy
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equilibrium.without'the plastic hinge moment being exceeded at any point
in the structure constitutes a lower bound for the true maximum load of
the structure:. The exact maximum load is.indicatedlwhen_aﬁ:qpper bound

and a lower bound prove to be equal.

_Consider the three-span continuous beam shown in Fig 4.1. The
main span has a length L and is flanked by two side spans of length BL.
A uniformly distributed load w pounds perifobt is appliéd to the main
span, and a load of o w pounds per foot to the side spans. The cross

section and material are constant throughoﬁt‘

.Since the relative loads and span lengths are undefermined as
stated, the mode of failure cannot be uniquely definmed. It is possible

for a mechanism to formAeithet in the centér span or in the side spans.

If a mechanism is to form in the center span, plastic hinges
will form at interior supports B &.C and at the center of the main span.
.For this case, an elementary calculation will give as the expression

.relating the plastic hinge moment of the beam and the maximum load:

2
= WL, o
¥ = I | D)

If a mechanism is to form.inAthé’side span’, plastic hinges
will form‘at the intérior supports B &;C‘and at an intermediate point
in each side span where the moment is maximum. The distance from the
‘exterior support to each of these hinges will be some fxaction,g of the

'side'span.length.BL, i.e. {BL. The plastic hinge.mpment'in this case
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is given by the .expression:

,ﬂp.= m,BZ'YE? Egl:gl

ke
eos(4.2)
then & M, = "11,”66 a B2 w? '

For a given beam section, side span length and side span loading,
the mechanism which would rgquire the greater value inMP will form. A
special condition is that inywhich_both mecthisms‘occur simultaneously.
'For‘éhis case, bothvexpressi§ns for MﬁumuSt,benéqual, By combining
,equaﬁions (4.1) and (4%2) an;expressiongfdr';he values of o, and B for

which both mechanisms can form 1s obtained.

' 8 (-0 . eeo(4.3)

By substituting for { its value 0.4142, this equation reduces to:
wp2 = 0.728 . : | R WA
This curve is plotted in Fig 4.2.

The unshaded area:of'Fig,4.2“containS'all_values'of a and B
for which the ﬁechanism_will form in’' the main span with a plastic higge
:moﬁeﬁt given‘by,equation‘(4,l). ;The,shadedvaxga.cpntains the values of
o and B for which the mechanism will form simultaneously in the two side

spans, and the plastic hinge moment will be given by Eq. (4.2).
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4,2 .Le'céinou OF LAST PLASTIC HINGE

As was stated earlier; the boundary conditions used in cal-
culatihg,deflection;andlrotation in the plastic range depend. on the
lqcation.of'the lasﬁ,plaStic hinge. One way of determining the location
of the last plastic hinge is to calculate step-by-step the load.vérsus

moment behavior of the structure starting with an elastic solution.

In the case of the threefsﬁan beam,,one step is sufficient
.because only two hinges are necessary to form .a mechanism'(becéuse of
'Sygmetry the two hinges at the interior supports count dS'oﬁe hinge).
fTbﬁs, locating the first hinge by an elastic -solution gives the location

of the last hinge by elimination.

- From an elastic analysis of the béam, the.folloﬁing mqment%

at'various'sections may be obtained:

" Maximum Moment in Main Span

S B ST L ) P 1 |

Me = 7 2 2 + 3 ' e (4.5)
Mbﬁent at Interiorgsnpports .

_ — X —

M, = WLZ |eg3 1 , R

'B‘_ 4 [2B+ 3 e ee(b.6)
Maximum Moment In Side Span

3 2 . q .2 .12

wL & B3 + 6ap2-1 |
“F T 320 p2 B +3 | cee(4.7)

For a given.loading and,span‘length, one of these moments will prove
to. be the largest and, therefore, the first plastic hinge would occur

at that location. For each possible mechanism the magnitude of the
! ,

i
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xwmenﬁs:should be compared at the two sections.at which hinges form.,

.Thus, for the main span mechanism, the question of interest is whethér

‘or not Mg is greater than;ME. For the side span mechanism, Mp and Mg

should be compared.

‘When Mg and Mg are equated, the resulting expressicn in o and B

gives the boundary between the regions where the first plastic hinge forms.

"dt B and where the first hinge forms at E.

+ 1.5 | ,
u?§3;7{—— =2 o ; vos(4.8)

‘This curve is plotted as the lower curve in Fig 4.3, ‘The region beélow
the éurve-designétés the values oiqlaﬁd B for which the maximum elastic
moment is at the center of the main span E. The xegion above the curve

designates cand B for maximum elastic moment at the interior supports B.

,Similaxly,.equating Mp and Mp results infan_equatibn‘separating

the regions for maximum elastic moment at B and at F,

(383 + &% - 1)2 )
« B2(2B + 3)@p3 +1)~ 8 L e (8.9)

Tﬁis.curve is plotted as. the upper curve in Fig 4.3. Within the region
enclosed by this upper curye, the maximum elastic moment occurs at F.

Below the curve the maximum elastic moment occurs at point B,

As an approximation congistent with the assumptions made in

.Chapter 2, the limiting value of the eiastic:moment_may‘be congidered

as the plastic hinge moment., .Thus, the three areas in Fig 4.3 indicate.
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the values of aand B for which each of the three possible plastic hinges

are the first to form.

By superimposing Fig 4.2 on Fig 4.3, a single chart (Fig 4.4)
_is obtained which indiéates.bothA;hé type of mechanism and the location
of the first plastic hinge. This information by elimination,alsb,givéa
Athe location of the last plastic hinge, providing all the»informAtfon

needed to deduce boundary conditionms.,

. The method uséd in this case for th# determination of the order
§f formation of plastic hinges {s ghe Simplést.formnpfbthe.stépfby-Step
 me;hod. However, for a highly indeterminate’structdre, the step=~by~step
4m§th§d.wou1d reqﬁire a complete elastic solution of the structure for
-neach‘plastic hinge that forms.
Fortunately there'exists a method of.calcuIAtipn“which_u§és
' 15,1
This method consists of assuming any given‘plastic ﬁinge to be the last
to form and making a deflection calculation based onfthis assumption,
,Thi§ ca1cu1étion is repeated with as many '"last plastic hinge" assumptions
'as.there are uncertainties as to its true location. The true last
,pIaBtic hinge cbrresponds to the greatest calculated .deflection. This

éecond method is most valuable in the study of multi-span rigid frames.

;4,3 . DERIVATION. OF EQUAIIQNS”FGR,HINGE_ANGLES ' e

Using the findings Qf'sections,4,1, and 4.2, it may be
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dEtefmined that there exist four possible cases of mechanism and order
of férmation of plastic hinges fér the three-span continuous beam.
Diagrams of these cases are shown in Fig 4.5.. The hinge angle at the
first plastic hinge together with sketches singling .out thé‘boundary
conditions and unknowns for emch case are given in Fig 4.6. Using
these conditions, the hinge angle will be calculated for each case.

Case I. Main Span Meghgnism--First Hinge at Midspan

For this case the plastic hinge moment is

2
WL .
M, = %—6- veo(4.10)

The boundary conditions are indicated in Fig 4.6. .Slope-
defléttionueqhations are to be written for lengths AB and BE with con-
tinuity assﬁmed at jointh, the last plastic hinge. In span AB, the .
rotation at B is calculated as the end rotation of a uniformly loaded

simple beam A-B with a moment applied at end B, From Eq (3.2),

" (a1 )3
GBA,= - (Egiﬁéék) + _%%i M, - % (0) oo (4.11)

In semi-span BE, the end.slqpé-at B ig:

L
3 fd
_ WL 1 , :
e = 24(e)Er * RE * E%T “Mp TN doe(6.12)

Since 6gg = 6pA

. wL3 3 1 L 1
Rpg = Y| 3. = + MpL| 5 4 = ,
"BE = 71| “P " 8 3EL P*3 coo(4.13)
The end slope of mémber EB at E is:

GE = :ELE___ + R + _ii.(_ + l.M?
EB = 54, (8)EL ' VBE 3E1‘i_'MP 2 ven(4.14)
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Substituting for Rpg?

3 [
Opp = WL _| 1 _ _.3|, MpL B -
EB = J4ET [ 4 o&ﬁj * 351 es0(4.13)

By symmetry, the hinge amgle, Hp, is twice Ogp

3 MpL. B A
HE = 24EI [ ‘ -2— ’ 2 aﬁ } + 3 ~ EI B o0 e (4016)

By use of equation (4.10) this equation may be ,\expr‘e’sisféd either in térms.
of ",MP: or w, Thus

_ WL3 s 3
Hp = 7y (28 -1 - 4op3)
MpL

2 (28 -1 - 4ap’) < coe (4a17)

Equation (4.17) may also be written in the form

== =P - :
L 3 "3 3%P oo (4.18)
where
2 .
= = wL™ _
P % T6ET vor (4.19)

Equation (4.18) is plotted in non-dimensional form as a family
of curves in Fig 4.fb. Values ofa and B for which Equation (4.18) is
applicable are limited by the appropriate demain in Fig 4.4. As plét.ted

in Fig 4.7b, all values ofq and B satisfy this requirement.

Case II. Main Span Mechanism--First Hinge at Support B

Becauge tbe final mechanism is the same as Case I, the plastic
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hirge moment is

2 o
Mo =B S o ce e (4.19)

The c¢zitical angle is the hinge angle at interior support B.
This is cbtained by calculating the .end slope of the simple beam AB with
end moment Mp as fpr Case I and .also calculating the end slope of simple
bsgm BC with two end moments My (Fig 4.6, Case II). The _hinge angle is.

them the difference in slopes.

ap = ng p-2ap>| = ?—‘;—’; B -2 6 e s (4020)
Opc = %6 ?}—3’1‘-3 = % % | | .'..('4,.2»1)
g =Opg - Opy | | ' el (4.22)
by =gf§;1' b, B - 28 + 1

= Mﬁ[ Jasd -3+ %} | o oo (4.23)

The non-dimensional form .of this .e'qu‘ation is's

R LR TS T : e Ch28)

This equation is plotted as a family of curves in .Fig 4.7a,
The values as plotted are consistent with the limits imposed on aand B

far the main ':spa:n; mechanism with first hinge at the swpport (Fig 4.4).

Case IIT. . Side Span Mechanism--First Hinge at Smpport B

When the mechanism foxrms in the outer span, one hinge fomxms at
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the interior support and one forms at point F'whose<disﬁance from the
outer support A is 0.41428L. The required plastic moment value is given

by

U 2 2
Y = 1165 *P” WL ' | oo (4.25)

The controlling boundary condition in this case is that the

beam remains continuous at point F until the mechanism has formed.

The hinge angle at B may be calculated from the end slopes of

two simple beams having the given momént.diagramso

opy = - SBWLS . MpBL | r
opc = oy - Yk | | |
MpL| 0.9158 - 3 + 2.915 , )

In non-dimensional form, the equation for Hp is:

Hg .1, 0.486 ' :
5;5 = 0.15248 - > +‘ :;BZ— | ‘ ‘ ,,.,(4.29)
where - :
a2 |
g, - Yo . wpfer? 2 (4.30)

EL 11,.66EI

This case is plotted in Fig 4.8a.

.Case IV, Side Sphn'MEChanismeaEirst Hinge iﬂ.§panu§5.3ec;ion;§

In this case, the first hinge forms in the side span. Span BF
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is analyzed as an overhanging cantilever extending from simple span BC.
Span Af‘is a simple span .supported at one end by the original end support
and at the other .end by the .cantilever span BF. .The controlling boundary .

condition is continuity at point B, thé position of the last plastic hinge.

The hinge'angle'for_this.éase is:

Hp y 1.173. - '
551 = 0,368 =~ 1.207 + T;E;r- . eos(4.31)

This is plotted in Fig 4.8b. Since equatiqn,(4.3l) is‘negativé
for all values ofa and B for which it applies, the absolute value is

plotted.

4.4 ILLUSTRATIVE EXAMPLES

Before proceeding with further theoretical development, it may

be worthwhile to solve a numericalfeXampIe to illustrate the use of the

charts,
Glven: ‘Ihgee equal spans, L = 30 ft.

: ‘Main span maximum load, 2k/ft.

- 8ide span maximum load, lk/ft.
Find: Rolled shape for the beam.
' ‘Hinge angle #equired to develop
all necessary plastic hinges.

From the given data, ' a =0,5

B =1.0

Entering Fig 4.4, it is found that this beam will form a main span

mechanism with the first hinge at the_suppdrts.
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| _ u?
Since Mp T
. . ;.6.7'401)
- | 2 o (4.1)
thén 2 = HR = %%*—
ey Oy
-~ 2x30x 12x30 _ . 3
= 16 % 33 = —4098 in.

vee (4232)

A 14 WF 30 has a plastic .section modulus of,47;1;in;§;and is:the most econ-

omical section strong enough for this load. .Fig 4.7a gives the hinge
angle for a main span mechanism with :first hinge at the intérior support.,

For~a= 0.5 and 8 = 1.0

Hp oy - _ ‘ -

¢—;i. = 0.166 '\\: . . o 00(4033)
on = &- = U Z
Them @p = FF- ‘%f

30 x 103 x 289.6 - 0-000179 rad/in. see (4.34)

.Substituting in Eq. (4.33) fo:f¢p‘and.L,

Hp = 01166 x 0.000179 x 360 = 0.0107 zdd,

Hp = 0,61 degrees

'Thefefofe,,a.hinQELangle of 0.61 degrees is required at thé
support to form a mechanism in .a 14 WF 30 béam continuous over three
30 ft, spans and loaded with a side span load equal to half the intem-

sity of the main span. load.’

_b.' Examples of Extreme . Cases
In practical design cases, the side span load inteénsity would

rarely be more than.the main span load, and Bgcagsé‘there.must be some



268,3 | ' =27

dewd load, the side-span load also would rarely be less than 25% of the |
main span load. If dis assumed to be bounded by these limits, 1.0 >a >0,25,
. and Figs 4.7 and 4.8 are searched for the gréatest possibleé hinge angles,

the following ,re.sfn_zlit‘s are obtained:

Greatest Hinge Ang le at. Support:
e =0.25, B = 1.70)

Hp = 0.425 §pL . ' N e (4.35)

éaat85£ HingE,Angleuin_Sidé Span Beam:

(o =1.0, p=1.85)

' ‘ veo(4.36)
Hp = 0.186 f@pL
(o =0,25 B =0,82)
T = 0030 Bl | e 43)

Again taking ‘the .case of a 30-ft, main span and a 14 WF 30’-,;

the maximum possible hinge angles are:

-
W
I

= 0,0274 radians

1.57 degrees

It

= 0.0120 radians

!

0.69 degrees

= 0.00193 radians = 0.11 degrees

ﬁ:ﬂ
|

8

Thus, a much gréater hinge angle 1s required if the first hinge is to
form at a support than is réquired if the first hinge is to form at .some

intermediate location in .a beam.
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4.5 (CGMPARISGNfWITH,EXPERIMENTAL.RESULT

Data is avaiiablé on the hinge rotation of a 14 WF 30 member.
tested in .a corner connectionjteSt? In this test; the moment gradient was
neaily the same as it would be: in the critical portion of a thréesspank:
continucus beam with o= 0.25 and B = 1.70 (Fig 4.9). At the same time,
the member was subjected to .an axidl component of load. The hingé
,rotation;meésured'ove;.a 10 inch length .was 0.9281‘radians, ';his is
gréater than the value of 0.0274 radians which would be requi;Ed for
the most severe case im the above example, . Other sizes and shapes
of test'memberg have exhibited thé»sumE'Qt'better‘rotationzcharactgristics,
It thus appears that structural members should not have difficulty in
developing the needed hinge angles at the supports 4f three-span con-

tinuous beams.

4.6__SUMMARY OF STUDY OF THREE-SPAN BEAM

The following summarizes the results of the caléulatioﬁs‘made

for the three-span. beam.,

(1) Expréssing the plastic hinge moments in general terms
for each type of'pcssible,méchaniSm;tﬁf@lgiyéﬁ.sp:ucture, and equating
the expressions, results in .an ,équa‘t;_'ibri-’ '_}déparating the domains in which

cach type of mechanism will form,-(Eq (4.4)) (Fig 4.2).

(2) Equating expressiors for the elastic moments at each

possible plastic hirige location,; results' im a set of equations separating
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the domains in which 'egch plastic hinge is. fixst to form. (Eq (4.8) & (4,9));

(Fig 4.3).

(3) Combining the graphs for type of mechanism and locationjof
the fixzst plastic.hinge_givesiajgraph,indicating,fouf*posSible combinations

of ‘mechanism and first plastic hinge (Fig 4.4).

{4) Expressions were developed for the hinge angle, H, for the
£ prgpossible failureﬂmonS'by using slope-deflection equations, . These
B presented in Eqs (4.18), (4.24), (4.29), and (4,31), and in curve

form in Figs 4.7 and 4.8,

(5) The extfémg‘galues.of'possible'hingéfanglesfwexe,determingd

dgnd mre givem in Eq (4.35), (4.36) and (4.37).

(6) For ag$pééific extreme examplé of a three-span beam using
2 14 WF 30 with,a,30‘ft.-maintspan,Athe hingekangle,xaquimed'wag‘0.0274,
radians. The result of a cornér connection tést, using a 14 WF 3P and
having & moment -diagram almost the same as théﬁbeamtinithe>exampie_wds
able to absorb a hinge rotation of.0;0281,radiansf “This was experimenta1
;evidénce that the hinge angle requirements for three-span beams are not i
;ogxseﬁezg to be met by rolled shapbs; .Since cornér,cqnqgctions,fabe
rlcated from other rolled shapes exhibited as good or better behavior it
can be concluded that,xoiled,shapes, in general, will exhibit satisfactory

rotation capacity characteristics for three-span. beams.
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5. REQUIRED RO TATION OF

SINGLE-SPAN FRAMES

WITH PI-NNED BASES

The .slope-deflection method of calculating hinge angles will
now be applied to single-span portal frames. The added factor of side-

sway is intvoduced into the problem of rotation capacity.

'Ketter10 has presented equations and charts which permit.the
rapid design of single and multiple span frames. This work will .be re-
fefred‘go in.order to .obtain the required plastic moment for the various
possible mechaﬁisms. The :same system of notation will be followea c1ose1y

in the development of hinge angle .equations.

5,1 MECHANISMS, DOMAINS, AND PLASTIC MOMENT VALUES

Consider the typical gabled portal frame wifh pinned bases ..
shown in,Figp 5.1. The frame has a .span L, a column-height of aL .and a
-réof rise bL. The .special case of a flat roofed frame is obtained when
b equals zero. Rolled structural shapes of constant cross section are

.assumed. A uniformly distributed vertical load of w pounds per foot is

applied to the entire,roof. The effect of all horizontal forces is réP&
resented by a load P equal,té AwL/2a applied at the top of the windwarg

column.
‘]
The possible mechanisms which determine the maximum load of

this frame are a sidesway or panel mechanism (Fig. 5.2a) and a generai

composite mechanism (Fig. 5.2b).
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For the panel mechanism, thg relationship between plastic

S 19
moment and ultimate load is:

s e (5.1)

"The maximumlloéa-momentvgxpressionAfor the composite mech-

14—,
a
where
Y b b b
(x,f‘h-rlma[A(l-l';)m]] -1 fOlf.‘Z>0~
a
or
- Ll-A b -
a = 2 for a 0. .00(5-2}

,As waé shown in the case of a three-span beam, equating these
two équgtiSﬁs Will give an expression:defining values of b, a, and A fqr
.which both of the mechanisms will form Simultaﬁeously. The expression
will alsq indicathFhe.boundary between the regions where ‘the two mech-
anigms pfedomiﬁaté, or

A =._l_. . .
1+2 , ..:(5.3)

a
This equation is plotted as a family of curves in Fig. (563)5 .A separate
curve.relating~side~load.éndjcolumn height is given for each wvalue of the
roof rise faétor, b, from 0 to 1.0. If at a given column height, the side

load factor A falls below the appropriate curve, the composite mechanism

will form. For values of the side load factor above the‘curVe,l
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a panel mechanism will form.

5.2 LOCATION OF FIRST AND LAST-PLASIIC HINGES

: Since the structure under consideration iS‘indet;iﬁinatefto
the first degree, two hinges will be sufficient to form a mechanism.
.Determination of the location of the first-plastic hinge by means of
an elastic solution'will then give the location of the .last plastic

himge by elimination.

.Plastic hinges are shown in Fig..S 2 to exist only at the
two knees, C and E, and in the windward rafter at F. .An‘elastic
'soiution will give the.following,values for the moments at -these :points.

Moment -at Windward Knee

[

2
Mo =¥ | A(FH) -G

8 (5.4)
Momert at Lee‘Knge '
o 8 B b . ‘. . -.o(»S.S)
Max1mum Moment in'Windward Réfter'
—"’—8-[1+2A+A2+bF(A2 =A) —AF+ GA
b 1 b2 - 2
-G =G+ 7 = (G+ AF) . :
a 4 g2 .(5:6)

In the above equations a plus (+) sign designates a moment which causes
tension on the inside of the frame. The functions F, G, J, and N are

given by:
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F=| 102 4944 120
Eran? s
_ N
c= | 8+ 5k >
a
N

2
N.=| 88 412+ 122 44 b
a

~Nt#apZ o2 (5.7

.Equations (5,4.through (5.7).are derived from superposition of two cases

given in Ref. 7. The substitutions F, G, J, and N.have been made -to

reduce the bulk-of the equations, and the load parameter A has been added.

_Because hinge E is common to both mechanisms, the problem of

location of first plastic hinge reduces to finding when Mc -and My equal Mg.

By equating Mg and -Mg and making the substitutions in Eq. (5;7),

the following boundary between first plastic hinge at:E or at C is obtained:
8 + 52
a

= b b2
122 + 82
a a,2

A for b> 0 .. (5.8)

.When b=0, the first hinge cannot occur at C.

Another limit on the first hinge at E is the occurrence of an
equal or greater elastic moment at ‘F. The boundary for this case is ob-
tained. by equating Mp and -Mg.

2 2
0=a2 (14 F+1B°F2) yA(2-2F-2Fr+b2cg+lDrg
a 4 42 o a a 2 52
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2' p y -
+ (1«‘3 G- 26 + 22 g% for b > 0 | .. .(5.9) -

4 42

A=1 -2 ji 1 for b =0 ...(5.10)
2a+3

'Equation (5.8) is plotfed as a family of solid curves passing

through the origin in Fig. 5.4. . The region above the curve for a given
value of the roof rise factor b, represents the values of A and a for which

the first plastic hinge will form at the windward knee .C. Below the curve,

the first hinge will form at the lee knee E.

'Equations (5.9) and.(5.10) are also plotted in Fig. 5.4 . as
a family of dashed curves. These curves divide the values of ‘A and a for
which the first plastic hinge will form at a pointiF in the windward
rafter, from the values for which the first hinge will form at the lee
knee, E, It will be noted that the first hinge can form in the rafter

only for small values of b, the largest being about 0.387, when the column

' height is no greater than the frame span.

.Fig. 5.3 showing type of mechanism and Fig. 5.4 showing the

location of the first plastic hinge are sufficiently complicated in that

‘nwﬁattempt-will be made to combine them in a general way to show both.the

type of mechanism and location of first and last plastic hinges.  However,

.by including the curves for only one roof height-to-frame span ratio, b,

a series of simple charts may be prepared. Figs. 5.5, 5.6 and 5.7 are
charts .showing the limits of mechanisms for b values of 0, 0.2, and 0.5_
respectively. On these charts, a shaded area‘above‘the-line fepresehting
Eq. (5.3) denotes the frame_éizes and léading for whiéh a panel mechanism

will occur, while the clear area, indicates the general composite mechan-
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ism. ~An additional line in the shaded area representing Eq. (5,8);
separates the regions in which.the,fir;t‘ﬁlastLC’hinge will'form at the
windward knee 'C or in the lée knee E. A.final line in the-unshaded
afeaAseparates the region in which the first hinge forms at:E from the
region in whiéh the first plastic hinge forms in the rafter at F. This

curve represents Eq. (5.9) or (5.10) as applicable.

It may be seen from Fig. 5.5 that a panel or sidesway

" mechanism will not occur in a flat-roofed frame with the proportions

and loading considered in this study, From equation (5.3) it will be

seen that the panel mechanism could occur when:A exceeds 1.0.

Fig. (5.7) indicates that for‘:steep-roofed frames-the first

hinge will not occur in the rafter;as was pointed out in:an-earlier paragraph.

5.3 DERIVATION QF EQUATIONS FOR HINGE  ANGLES -

Derivation of .equations for'hihge'angles of single span por=-
tal frames is accomplished_through the usé of Eheﬁsame‘slopeadefléction
equation as was used for the threeispan.beém:

%F=WW+RM+§%4%F=%Ww. , ... (5.11)

For cases with sloping roofs, the 94 term is expreésed in a manner which

takes into account the slant of the roof. For symmetrical gabled roofs

where the dimensions are measured as shown in Fig. 5.1, the expression

is:
: WE% - ' .
Q' = \[1+4b2 _ .
24E1 | ...(5.12)

where 'ZH = the horizontal projection of the length of a segment.
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The nomenclature and sign conventions to be used are those ‘given

in Chapter 3.

The ultimate load moment diagram for the frame is shown in

Fig. 5.8a with the effect of each type of force kept separated.

Case I, Composite Mechanism-=First Hinge at Lee‘gggg-E

The first solution will be that for the general composite type
" of mechanism with the first plastic hinge at the lee column top (E). The
boundary conditions for this solution are the continuity at jointé,cland
D. At joint E, the slope will be diééontinuous, Substituting the mo-
ment values from Fig. 5.8a, in,Eq..(S;ll), wiil_form two slope equations
for each member. Since there is no transverse load on the .columns, the
e terms for those members do not exist. Pertinent lengths fof use in

the slope-deflection equations are given in Fig. 5.8b.

"The end slope equations for each member are as follows:

MemberfAC »
‘ 2
8 =Ryc + &L | 0-1( - AWL-
YA T PAC T 3py 2 2 Yp

2
g:’ = R. + aL - _———AWL + . -0
c =Rac+ = ( 5 — T %

Member CD -

oo = Y3 \[1+4b2 + Rep + LU1+4b2 ) Aut? 1 wL2 L2 Asz
9C = T92E1 | 6EL 2 " M2 Mp(1+a>

o = ~wL3 ‘\i1+4b2 + Rgp + L\I 1+4b2 wLZ wi2 1| awL2

D 192EI 6EL (1+') 4 -2 2 M

Member ‘DE N

3 -,] 2 + L\1+4b2 b R |
= WL 1+4b4 + Rpp + L 14+44b% M (142y + Woo L aWL” _ 1M
®> = 15281 DE. 6E1 M1+ 8 4 2| P
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13 z 2 | 2 2
6o = WL ‘\i 14462 4 Rpp 4 LU L+ab2 ), 1ly . by . wEZ  AwL
ED " T92E1 6EI "o g () + g+,

Member EB

 aL| o 1 |
Opp = Rpp + 2| 0 -L[ . '
EB = “BE T 3gy z( MP) ...(5.13)

-Thesé:eighteéghatiqnsthave,sixzuhknownfe'siandffouf'dﬁknownT”
R's. The two additional equations necessary fdr the solution of the
problem may be obtained by considering the relative vertical .and
horizontal displacements of the pinned bases. These are the equations
generally used to take_sidésway into account in slope-deflecétion solutions
of structures. The relative vertical displacement of'the bases is. zero
and is obtained by multiplying the .chord rotation R of each member -by
the horizontal component of its length and summing these for the

structure.

4Rc'312*-+ARDE‘%.= 0 h ... (5.14)
The relafive horizontal displaéement-of the bases is obtained by summing
the products of the chord rotations R and the vertical.components of the
length‘of-each_memﬁer. _Since positive rotations of members DE and EB
cause negative displacements of the .base B, the .signs of these tefms

.change. ‘ ’ .

‘Solution of the equations (5.13) (5.14) and (5.15) for @y

and GEB gives the following:

2] . '
0. = L \|1+4b 3b 1 42 1, :
ED = 452 "% wL®. - 2 AwL2 ...(5.16)

6ET

| a2 | 2
9. = L \1+4b% -3-2 b - 2b7 )+ wL2(l 4+
EB 6EI "p 2 a '

)
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o
M
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+
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. 2
-2 ﬂpLa 41 AwLZa

EI ' 6 EI | | .(5.17)

[x*}

(V%)

The hinge angle at E is equal to the difference in. GEB and GED

) R
o Db (b 1p2) o L5 8), aa 1, 1b
E=SN0r | M-l f 33 hL 13t 5 o)t AL 478/

2§L o Llam?

3 e * V6 EI® I  4(5.18)

In nonmdimensional form, this equation is: e

_H_r;,_ ‘\11+4b2 wL2 ]2 517, 4 (L. 1b) b 1p2
12%5%at " \a8a)l' - |1Fd*+3 2
2 | | | " |
-2 -i Y_L_. ' 4 S
B Tl Lo ves(5.19)

For a flat roofed frame, the equatien reduces to:

H 2 ) -
w1 L1 2
= +A(4 6 -1-3a_

T ™ ¥ |12 5.2

Values of Mp/sz may»be‘oﬁtained;from:reférenétfloAthus mékingw
it possible to plot curves of hinge éngles as shown in Figsts.ll to 5.13.
. Equatioms (5.19) and (5.20) give théuhinge aﬁgles for all cases.in_yhiéh
the values of a, b, and A falluwithin'thé.dbmain indicating-fo;matLOn of
‘a general.composite:mechanismtwith‘first hinge.-a_t.'Eix'iv,Figs° 5.3;.5;@,:5:5;
5.6, and 5.7, |

Case II. CbmpositéVMechanism=—First‘Hinge in Windward_Rafter'at F

" As Wwas showh in Section 5 2, ~for: certain ‘proportions oﬂ the: frame
and for certain loadings the first plastic hinge will form in the rafter.-
In this case, the»discontinuity,qccurs at point,F»in:the.rafter;;and
; elastic continuity is maintained,qp_to uitimate load at,the-lee*knee,

E. ,Thevultimdte load moment diagram is again as shown in Fig. 5.8a.
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In setting up the slope-deflection equations for this,casé, it

is nccessary to write two equatidns for each of the segments CF and FD

of member CD. Besides the slope-deflection equations; two additional

equations are again derived from considering the horizontal and vértiéal

compgnents Qf,the movement of baseB equal to zero. _For,che'vertical.diqs

placement, this equation is:
i

“R L+Roy [ -a)L+R_ L= o
CF @ ~ T Byp (2 a) DE 2 0 ..(5.21)
Far the horizontal displacement theﬂequatipn is:

By 4L + Ropb ol + Ryp (bL-2bgl) - RpgbL = Rpgal =0 . ....(5.22)

i

,Solution in the same manner as for the previous case results

I

in the following equation for the hinge angle, Hp:

HF‘ S S Y a.HLg At 2,
U5t (1+2bq) |67 Mp T 73
a
. , -
+‘\l-1+4b2 WO | Ly 3D ,fL 1Db)yp )y, b L1b
w, |12 96at 4284 L+a*ts 2

) | cee(3.23)
Note that the second'factor of the product in Eq. (5.23) is equal in

magnitude to Eq. (5.19). “Whgn‘Eq.i(5,19)'and_(5.23) dre boih.zeto,.HE
.équals HF, and both.plastic-hinggs-form simultaneousiy? with zero hinge
angle requireda . |

For flat roofed fgamés,

Hp ,sz 1

IR T s

L. o, .2 -
AGTE -l-3a e (5.26)

i

Iﬁ_Equ (5¢23),“a is the parameter giving the horizental distance
‘dL. from joint C to the plastic hinge F in the rafter. Values of o may be

‘obtainéﬁ from,Referénce 10 or the equation,
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=—-i— ‘\]1 =—[A (1+_) 1] -1
a

.(5.25)

Equations (5.23) and (5.24) give the hinge angles only for those
~cases in which a,,b; and A fall in the domain indicated in the apprapriate
Figs. 5.3 to 5.7.

Case Ia. Panel Mechanism--First Hingé at Lee Knee E

For cases where the loa&ing and dimensions are such as to make.
-the value of o equal to éero, the rafter hinge oécurs at the windward knee
and a panel mechanism results. In the usual panel mechanism, the first
hinge occurs at the lee knee, E, and it 1is there that the hinge angle is

required.

The ultimate load moment.diégram for the panel mecﬁanism is as
given in Fig. 5.9. The usual slope-deflection equations are written with
the only discontinuity at joint E. Equations fér the chord rotations, R,
identical to Eq. (5.14) and (5.15) are used for the additional relationQ
ships needed to obtain a solution. The resulting expression, for the

hinge angle is:

H_E_=W ,.sz_z(_1+_5 p.) '(19+;£)
U\ M, \ 12796 a 2a"32)

-+ (5.26)
For flat roofed frames, Eq. (5.26) reduces to:
SE _ _1m? |
Fpr 12 M, | , | v (5.27)

Substituting Eq. (5.1) for WLZ/M?CinLEq. (5;26) and (5,27) results in the

following expressions for gabled frames:.
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g o\|1ab2 -_1.(;+ _s.z) a(éh;,_l_lﬁ)
0oL A\3 24 28 3,2 ...(5.28)
and for flat roofed frames:

Hg,

T 4
Por. = 34 ...(5.29)
Equations (5.26) to (5.28) give the binge angle at the lee knee,

'E, for a panel mechanism when a, b, and A fall within the proper domain

of Figs. 5.3 to 5.7.

Case I1a. Panel Mechanism--First Hinge at Windward Knee C

Certain gabled frames as shown in the domain Figs. 4, 6, and 7>
may form a panel mechanism with the first plastic hinge at the windward
knee, C. The slopewdeflection.and_chord,rotation_equafions.will prove in
this case to be the same as for the panel mechanism with the first hinge
at E. However, in this case, the discontinui;y will occur at C rather
than at E., Solution of the resulting equations for the hinge angle at

joint C, results in the following equation for gabled frames:
o, _ymep? | Lf1, S5b) _(1bp, 12
~6;£ = a\3%7243) " \2a"32)

For flat roofed frames, it is impossiblé.for the first plastic hinge to

...(5.30)

occur at joint C as shown by Eq. (5.8).

. Though Eq. (5.30) is identical to Eq. (5.28), it must be borne
in mind that they usually apply .to different values of a, b and A; and thus

the values of H, and Hg will coincide only when Eq. (5.8) is satisfied.
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.An alternate procedure or a check on the derivation.bf hingét
Angles for the panel mechanism is to use the equations for. . the general
(composite) mechanism and set o equal to zero. . Substituting the .ex-
pression (5al) for M,p/wL2 results in further simﬁlification of the

equations.

5.4 DESCRIPTION OF GRAPHS OF HINGE ANGLE-EQUATIONS

Hinge angles for structures having three different values of
roof rise factor b are plotted in Figs. 5.10, 5.11, 5.12, and 5.13;
Each of these graphs utilizes results of the appropriate equations from

(5.19) to 5.30).

Fig. 5.10 gives the hinge angles for frames having flat roofs.
Non-dimensional values of the hinge angle, H, are plotted against values
of the column height factor, a, for several.values of the side load .factor,
A. The "curves'" are actually straight lines, and most of .them come from
Eq. (5.20)q The lines for A values from O to 0.5 are drawn solid. Those
for A values from 0.6 to 1.0 are dashed lines to help eliminate confusion
from the fact that they lie in the same region of the graph. Very large
side loads are required to form.a sidesway mechanism, so the only line
representing Eq. (5.29) is that for A equal to 1.0. This is actually the
boundary between the sidesway and the general mechanism and theréfore re-
preséﬁts Eq. (5.20) as well as Eq. (5.29). The lines for A equal to 0 and
A equal to 0.1 show an additional point of interest. .As the value of a
increases, eventually the line crosses the zero hinge angle coordinate.
(At that point both the hinge at the knee E, and the hinge F in the beam

form simultaneously. For greater column heights, the hinge angl,e*H_E would
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tend to be negative from Eq. (5.20). . Actually, in this region, the first
plastic hinge forms in the windward side of the beam at F, and the hinge
angle 1is given by Eq. (5.24). Therefore, all values of the hinge angle
above the origin of coordinates representbvalues of Hy, the angle at the
lee knee. All values below the origin ofvc@@rdinatés represent'vaIUes

of Hg, the angle in the beam,

In Fig. 5.11 and 5.12 are shown values of hinge angles for
gabled portal frames, Fig. 5,1l-has values for a roof rise factor b of
0.2 representing gently sleping roofs and Fig. 5.12 has values qu;b
equal to 0.5 representing steeper roofs; The hinge angle equations .for
sloping roofs result.in,curVed lines. 1In both Fig. 5.11 and 5.12,_value$
above the ¢rigin of coordinates represent HE” the hinge at the Iéé»knee7
The region giving hinge angles, HE"is divided into two zones by-a dashed
curve. . The .zone above the dashed_cqrve represents hinge angles fof.the
general mecﬁanism as given in Eq. (5.19) while the region below the
dashed curve represents hinge angles for the sidesway mechanism as
given by Eq; (5.28). An exception to this is the wvalues of,the'hiﬁge
angle for the portions of the A =0 and A = 0.1 lines which_ex:énd Selqw
the .dashed curve. These slso represent the general mechanism.. The réasén

for this will be discussed later.

The ordinates below the abscissa in Fig. 5.1l and 5;12 repre-
sent values of both hinge:angle Hc‘at.the windward knee (Eq. 5.30) and:
hinge angle Hy in the windwand- rafter “(Eq. -5.23)depending on which occurs

for a given loading and geometry. ?HC oceurs-only-for veryslarge gside’ loads
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and relatively short columns, and Hf occurs only for low.side loads and
long columns, The first hinge can occur at F only for the gently sloping

roof (Fig. 5.11) as indicated in Fig. 5.4.

As an aid to visualization of the total hinge angle function,
the hinge angles for b equal 0.2 from Fig. 5.11 are plotted three-dimenr
sionally in Fig. 5.13. The surface formed by combining_equationg (5.19),
(5.23, (5528), and (5.30) is a warped surface forﬁing,a "rpof” over the
portions of the A-a plane bounded by A =0, A =1.0, a =0.143, and
a = 1,0, The surface is bounded at a = 0.143 because tabulated values
of Mp/wL‘2 were not available for values of b/a greater than 1.4. .This
will, however, ailow most practicai structures to be included in the
limits of the curves. A dotted line divides the surface into areas re-
presenting the general (composite) and sidesway mechanism. All values of
the surface above the A-a plane represent Hg, the hinge angle at .the lee
knee. Near two diagonally opposite corners (A = O,V§,= 1007and_A.= 1.0,

0.143), the surface drops below the A-a plane. Near the corner

a.
A =1.0, a =1,0, the surface représents values of Hg, the hinge angle

in the windward rafter.  In the vicinity of the corner A = 1.0, a = 05143;
the surface represents values of Hp, the hinge ang1e~in:the windward knee.
If the A-a plane is considered as ''sea level', hinge angles Hg are repre-~
sented by the.'hwuntgin", énd.hingé,angles Hp and Hg are represented by the

surfaces below ''sea level."
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5.5 _DERIVATION OF EQUATIONS FOR DEFLECTIONS

From the same solution which results in the equations for hinge

angles, the horizontal deflections of the knees may be derived.

Case 1. General Mechanism - First Hinge at Lee Knee E

The next to last of equations (5,13) gives

o M La
L= R - E .
EB ~ "BE ~ g7 ...(5.31)

Eq. (5.17) gives

o = _Q]1+4b2
EB  6EI ;

~Combining these two equations gives a value for Rpg

! .
o L‘ﬂ 1+4b2 13b 102, .2/ 1.. 5b 2/1 .1b
R e -z 2Bl 24+ WL —_— == =4+ AWL = = =
BE MP( 242732 " a) T8

EI . 24  96-a 6 a
3 EI ' 6 EI
Since the horizontal deflection, &y, of .the lee knee equals Rpp al,

2 2 | 4 p2
_al2\[1#4b2) 2| 1 5b, .1, 1b 1,3b,1b
=l 2| L, Sbhy sl Lb) g il 3D 1be
E5' T mtiea _A<6+8a) BlzTiat3 2
|1 Egﬂgaz 1 AwL3
T + = AWl .2 )
378 | 6 EI cee(5.34)

Non-dimensionally this is

m o -
[—=
-+
oo}
P o
N j—
+
W
m o
+
Wl
IU“
STy

[=)]

g 2

E wLo) 1 5.
— = W' 2/ -+ 2
QPL = a\|1+4b P& 24 96.

e
Ll a2 4 152 wL?
- = a% + =a A '
3 6 M, » «..(5.35)
i <. '
In the same manner, the results of the solution,may be used to -obtain the

o

value of 3, the horizontal deflection of the windward knee.
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& 2
G W! L Ay /1 1b :
Upr2 ;gp 2476 ]7\2 7 4 a ‘ . .(5.36)
L1 a2, 1a? w2 A |
3 6 Mp ... (5.36)

The vertical deflection of the ridge, 9D, equals - RDE L/2.

Combining Eq. (5.16) with the third from last of Eq. (5.13) gives:

“ 2 ’
_n w2 (3, B), af 5 3a
Mp( + >+_WL.(.- 32" 8 )

Rpg = 6 EI 2" 2
The resulting OD is then:
®p — LZ(S 1 ) 1 E1b§‘
= =\[1+ab2 P2 4 ) L[ e 5 2
0z "\ u (384 * 32 (8 2 |

... (5.37)

Similar methods give equations for deflections for all the

cases. These are summarized in the appendix in Eq. (5.38) to (5.53)«

5.6 DESCRIPTION OF GRAPHS OF DEFLECTION EQUATIONS

Results of the equations for deflecticns are plotted in
Figs. 5.14 through 5.18. Figs. 5.14 and 5.15 are the deflections of
flat-roofed frames, while Figs. 5.16, 5.17 and 5.18 are the deflections

of gabled frames having a roof-rise factor b of 0.2.

The horiz0nta1.deflectipns at ultimate load of the knees
in flat-roofed portal frames are plotted in Fig. 5.14 which shows ﬁhe
curves from Eq. (5.38) and (5.40). For several values 6f the side
load factor A, the deflection is plotted against.the column height factor
a. If a three-dimensional plot of these deflections were made as was
done for hinge -angles in Fig. 5.13, the sevéral curves would represent

sloping lines formed on the side of a hill sliced at equally spaced A
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intervals. Viewed from the front, the curVés for A values above 0.7
would be invisible because they. would be -below the crest on the far

side of the hill. These are therefore shown by dashed lineé. -A dotted
line near the lower right hand corner divides the region in which . the
first hinge forms at the knee from that in which .the first hinge forms
in the .beam. Where the first hinge forms in the beam, Eq. (SDAO) gives

the deflection,

The maximum horizontal deflection at ultimate load for any
frame is seen to be 0.69 QPLZ for an A value of 0.7, a very extreme

side load, and for a column height factor a of 1.0.

Fig. 5.15 éhowé the vertical deflection .at_the center of the
beam of flat-roofed frames, as given by Eq. (5.42) and (5344)° The
major portion of the surface represented would be a cylinder with a
.horizomtal generator. For values of A greater than 0.2, the curves
.waﬁld Be ciit of sight on the far side of the cylinder. These are
.shown by dashed lines. Theuregion above .the dotted line represents
the zone where Eq. (5.44) gives the deflection, that is where the

first.hinge forms in .the beam.

_The curves show that the vertical deflection of the beam is
most severe for cases of very long columns with.no side load, a case
when the first plastic hinge forms in the middle of the beam. In
this case, the maximum,deflection may  approach .0.17 ¢pL2, whereas
for shorter columns or higher side loads, a maximum less than 0.09

GPLZ is obtained.
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‘As an example of the horizontal knee deflection of gabled
frames, Figs. 5.16 and 5.17 show the deflections OE and B¢ of the.lee
and windward knees respectively fo; frames having a roof rise factor b
of 0.2, .It is obvious that the S Eunctionvis quite complex, but it
can be pictured more easily if the .curves are visualized as the out-
lines of vertical slices-cut inte.a "hill" at even .intervals represent-
ing the side load factor A. Both BE and OC curves are similar in.appearm'
ance .with the curves well-spaced up to A values of 0.5, and then being
crowded .together behind the crest of tﬁe hill fo;vthe higher values of
‘A, For certain very small side loads,'sc appears as a negative deflec-
tion. This is the .case when.the_séreading of the‘cplumns due to the
vertical deflection of the gables is greater than the horizontal de-
flection .due to side loads. Dotted lines separate the regions where
two mechanisms form simultaneously. The first.dqttgd line, which is
between .the A.= 0 and A = 0.1 curves in .the long column range, separates
the regions for which the first hinge forms in the lee column .and in the
windward rafter. The second dotted line,vwhich_follows almost-the same
slant as the A = 0.7 line and covers the entire range of‘column.heights,
separates the region of'the panel mechanism from that .of the general
composite mechanism. The third dotted line touches the minimum points
of t;he-»A.,l= 0.5 toA.=1.0 curves wheregcolumnvheights are less than
0.306L. This line marks the beginning of the cases where the panel
mechanism forms with .the first hinge in the windward knee, C. Maximum
values of the horizontal deflections of b = 0.2 gabie frames are about

0.76 $p2.
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The vertical deflections of the ridges of gabled frames having
a roof rise factor b of 0.2 are given in Fig. 5.18. The greatest de-
flections occur for low side loads with.A =0 and A =0.1. A large peak
“occurs where the first-hinge forms in the rafter as was the case for the
flat roofed frames. The curves for the '"behind-the-hill" values of ‘A
are not dashed in this figure, because they are spaced well enough to
prevent confusion. Dotted lines again separate the regions for the
cases of different mechanisms and‘first plastic hinges. One dotted line
between the A =0 and A = 0.1 curves indicates when the first plastic
hinge forms in the rafter for the general mechanism, The long dotted.
lime in the vicinity of the A = 0.7 and- A = 0.8 curves separates.the
sidesway and general mechanisms. - A short dotted line justﬁbelow-the
abscissa denotes that the first plastic hinge forms in the windward knee
for a:sidasway‘mechanism, The maximum»vertical.defiection.is between
0.10 QPLZ and O,lé.QPLZ, bFor values of ‘A above 0.5 and_colummé between
0.1 L and 0?3‘L,,tha.vertical deflection is negative.  This means that
-the extremgly,high side loads; combined .with .the relatively stiff
columns, cause the fidge to bulge wupward as thelwindwérd.knee moveé
closer to.the lee knee. It will.be_shqwﬁ in later discussion that
-loading:cases of this type should be rare and consideration of this

effect is primarily of academic interest.

5.7 ILLUSTRATIVE EXAMPLES

The equations derived here make it possible to determine the
hinge angles required to form a mechanism as well as the deflectiomns

of joints of a large variety of portal frames. The equations will
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serve for all symmetrical frames with pinned bases as long as the loads
may be approximated by uniformly distributed vertical loads.  The .effect

of horizontal loads is replaced<by'a.concentrated horizontal load at.the

.eaves of.such,magnitude as to cause the same moment about .the base. Use

of the results of this study will be illustrated by some examples which

will be compared,where possible,with experimental results.

5.7.1 Flat Roofed Frame

Given.: Span length, L .=.120'ft,
.Height , aL.= 30 f¢t,
Bent Spacing = 25 ft,

AVertical,Working

Loads:
Dead plus Live

plus show 60 psf

Horizontal Working
Load:
Wind . 20 psf
Load Factors:
Dead plus live load 1.88
Dead plus live plus
wind load 1.41
oy = 33 ksi
E = 30,000 ksi

Find: Rolled structural shape for this frame.
Hinge angle required to form a mechanism.
Deflections at maximum load.

a. Design

From the given,déta, the parameters for geometry of the
frame are found to be:

a 0.25

b =20
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Considering the 25 ft. bent spacing and a 60 psf working load, the

vertical design load for the dead load plus the live load becomesg
w = 60 psf x 25 ft. x 1.88 = 2820 1b/ft.

When a wind load is added, a load factor of 1.41 applies and the

working load is:
w = 60 psf x 25 ft. x 1.41 = 2115 1b/ft.

The wind load will be represented by a concentrated load P which will
have the same moment -about the base as a uniform pressure of 20 psf

distributed over the whole frame height.

P = 20 psf x 25 ft x 30 ft.x 15 ft x 1.41 = 10,580 1b.
30 ft

The side load parameter A is determined from the expression for P

given in Fig 5.1.

2Pa 2 x 10,580 1b. x 0.25

A= =g = 2015 1b/ft, x 120 ft.

= 0.0208

Fig 5.5 shows that this structure will form a general composite mechanism
under either loading, and MP will be given by Eq (5.2), or the approp-
riate curve from Ref 10.
Without wind load, when A = 0,

Mp = 0.0625 wL?
With wind load, when A = 0.0208,

M, = 0.0650 wL2

Without wind, the section modulus required is:
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Mp _ _0.062§ x 2.82 k/ft. x 120 ft x 12 x 120 in,

Oy
924 in3

With wind, the section modulus required

33 ksi

is:

0.0650 x 2.115 k/ft. x 120 ft x 12 x 120 in.

z = Yp
Oy

721 in>

The case without wind controls, and a 36 WF 230 shape having Z = 942.7 in

33 ksi

is selected from the section economy tables,

b. Hinge Angle .and Deflections

The hinge angle and deflections may be obtained from

5.10, 5.14, 5.15 once a and A are known.

From Fig 5.10,

Hg = 0.167 @pL
From Fig 5.14,

8 = 0.022 gpL?
Ffom Fig 5.15,

. 2
& = 0.0832 PplLi

By substituting,fér ¢P and L, these functions may be evaluated.

MpL 33 ksi x 942.7 in> x 1440 in.

@pL = EI T 30 x 103 ksi x 14,988 in.%

Ppl?= 143.4 in.
gg = 0.167 PpL = 0.0166 rad.

0.022 L% = 3.16 in.

OE

&p = 0.0832 PpL® = 11.94 in.

3
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C. Comparison With Experimental Results

A 36 WF 230 connection of the typevwhich might -
such a frame was tested as part of a research program on
connections.5 A total rotation of 0.0293 radians over a
of 38 inches spanning the corner was measured at a point .
where the moment was still above the theoretical plastic

is greater than the hinge angle of 0.0166 radians required at the corner

of the theoretical frame.

Fig. 5.19 compares the moment diagram of the tested connection

with that of the theoretical frame, thus giving an indication of the

validity of this comparison.

5.7.2 Gabled Frame

Given:. Span length, 40 ft.
Column height 10: ft.
Roof rise 8 ft.

Find:

Vertical working loads:

.Dead plus live,
plus snow 60 psf.

Horizontal working load:
Wind, 20 psf
Load factors:
Dead plus live load, 1.88
Dead plus live plus wind load 1.41
oy, 33 ksi
E5 30,000 ksi
Rolled structural shape for the frame.

Hinge angle required to form a mechanism.

Deflections at maximum load.

be used in
corner
length
in the test

moment.
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a. Design

The frame parameters. are as follows:

.a = 0,25
b = 0.20.
b/a = 0.8

The vertical design load for dead load plus live load for

the 17 ft. bent spacing and 60 psf working load is:

w = 60 psf x 17 ft. x 1.88 = 1918 1b./ft.
Using the load factor for dead plus live plus wind load, the désign
load becomes:

w = 60 psf x 17 ft. x 1.4]1 = 1438.1b./f;.

The horizontal wind load will be:

20 psfx 18 ft. x 17 ft x 9 ft x 1.41
T 10 ft

P = - = 7770 Tb.

Then

. 2Pa _ 2 x 77701b. x 0.25 _
A= L ° 1438 1b.Jft = 40 fr. - 0-0675

Fig 5.6 shows that the frame will form a cdmposite mechaniﬁm under either

loading. Mp as given by Eq (5.2) or the appropriate curve from Ref 10

will be:
| M, = 0.0456 wL2
.when A = 0 and
M, = 0.0532 wL2
when A = 0.0675

The section modulus required without wind is

z= Yp _0.0456 x 1.918 k/ft x 40 ft x 12 x 40 in
= 50.8 in3

8
1)
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The section modulus required with wind is:

0.0532 x 1.438 k/ft x 40 ft x 12 x 40 i
33 ksi '

45.6 in>

The case without wind again controls.

Section economy tables will give a 14 WF 34 with Z = 54.5 in3. However,
in the event delivery on 14 WF 34 could not Be obtained, or for some
reason it was desired to uge a shallower member, a 12 WF 36 with

Z = 51.4 in3 would suffice. The 12 WF 36 member will be selected for

this example.

b. Hinge Angle and Deflections

The hinge angles and deflections for this frame are given in
Fig 5.11, 5.16, 5.17, and 5.18. . Entering the charts with b = 0.2,

a =0,25, and A = 0, the following values are obtained:

From Fig 5.11,
Hg = 0.62v¢PL
From Fig 5.16,
g = 0.117 gpL?
From Fig 5.17,
8¢ = 0.036 gpL?
From Fig 5.18,
/ 5, = 0.1005 gpL”
By substituting the known values for‘¢; and L, these functions may be

evaluated as follows:
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MpL_ 33 ksi x 51.4 in>  x 480 _in.
o EI 30 x 10° ksi x 280.8 in%

=

-
=
It

= 0.0966 rad.
¢PL = 46.4 in.

Hg= 0.62 ¢PL\? 0.060 rad.

Bg= 0.117 PpL = 5.43 in.

8c= 0.036 PpL? = 1.67 in.

5p=- 0.1005 ¢pL2.= 4.66 in. <o (5.55)

c. Comparison with Experimental Results

Test results are available for a 40 ft. span gabled frame
with 12 WF 36 membev_r:s.-‘4 . fThis frame was loaded with four vertical
concentrated loads and had fixed bases and a slightly different roof-
slope, but was similar enough to allow the hinge angles to be coﬁpared.
The moment diagrams for the two frames are plotted in Fig 5.20 showing
this similarity. The lee knee of the test frame rotated through a
measured angle of 0.077 radians at the end ofvéhe test with the fraﬁg
still at maximum load as*comparéd with the 0.060 radian requiyeﬁent
for the theogftical frame. Of course a small éart'of this me;sured
rotation was.éue to bending of the members in the length spanned by the
rotation indicator and should not be included in the comparison of hinge
angles. This amount was calculated as approximately 0.005 radians. This
,result indicates that the theoretical frame would probably bevggtisfactofy

just as the ‘test frame, was.

The vertical deflection of the test frame just as it reached

maximum load was 5.3 incpes as compared with 4.57 inches required for
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the theoretical frame. However, the test frame was able to sustain the

maximum load through a total deflection of 9.9 inches.

Due to the fixity of the bases and the smaller roof slope
of the test frame, it is not surprising that the total horizontal
deflections of the knees were less than those theoretically required
for the pinned<base frame., The experimental deflections were 3.9 in.
for the lee knee and 1.6 in. for the windward knee as compared with
5.43 in. and 1.67 in. respectively, for the theoretical pinnedbbase 

frame.

5.8 PROBABLE EXTREME VALUESuOF LOADING AND GEOMETRY

Since one of the primary objectives of this study is to
determine extreme values of the hinge angles, some attentionm will be
given to the extreme ranges of the factors controlling hinge anglés.

In the proceeding sections it has been shown that .a frame may be designed
and the magnitude of the required angle determined if the following»

factors are known:

(1) Span length, L.
(2) Bent spacing, s
: (3) Column height, aL
(4) Roof rise, bL.
(5) Vertical load intensity, w.

(6) Horizontal concentrated load, P = AwL/2a
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The first fcur'fectqrs are geometric fectéﬁéﬁwhiCH,ere_genetally
controlled by architepthgl_qonsideretionﬁ, The Igét two factors are' the
load factors which are determined by the design allowances made to take
care of dead load, live load, and wind load: . The probable range of each
of these variables in typical rigid frgme,designg willihe established in

the following paragraphs.
-a. .Geometric Desigm

Spans of typical rigid frame comstruction are determined
primarily by the amount of space to be covered .wit_:h,{af; roof, and range

from .about 30 ft. with 16 fti bent spacing to over 200 ft. with bent

. spacing varying from 1/5 to 1/8 of the span length.; 13 I

e ' ‘ Column_heights must be great‘enbugh to give sufficient héead-
room for the purpose of the building. and therefore may be as large as
S~

the span length for.short‘span-frames; For longer span frames; it is

" considered good practice to have the minimum column. height at least s
21/6 of the span. Therefore the column height factor, a, may range N

from 0.167 to 1.,0.

Roof rise is influenced by drainage considerations and by
'speciel problems releted,tpxthe.tyge pfquof.coye;ingiueed, ,Flet roofs
are frequently used, and other roof pitchgs,éﬁe in_the order of 1/6,
1/5, 1.4, 1/3 and 1/2 the‘l;s‘pan.l_ength__‘?l4 jThue; thenrpof risezfgctor, by
may range frp?.o to 0,5. The ratio of'roof,riSe tOxequmn,height,‘b/a
will rarely exceed 1.0 except for special architectural pxoblemellike

churches, in which case b may greatly exceed 0.5,
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b. Loading Factors

Vertical design loads consist of the dead weight of the roof
and structure averaging about 20 psf, and live.and snow loads totalling

11,21
up to about .40 psf. A total of 60 psf will be used here as an
average and combined with allowances for horizontal loads ranging from

zero to a maximum extreme,

Horizontal design loads are generally wind loads which may be
pﬁeSent or absent arbittaxily and_;o must bg‘considered.either'way.
U§ual wind loads are about 20 psf on the vertical projection of the
structure as given -in the AISC sp‘ecifications;zl " However, in areas
subject to severe Windstbfms, greater wind loads are specified. . The
National Building Code récommends increasingly larger wind pressures

as the height of the structure increases. .For buildings from 100 to

499 ft. high, a pressure of 70 psf is recommended.22

The maximum and minimum of the several factors are tabulated

iﬁ_Table I as a preliminary to the calculation of the side load factor, A.

TABLE I

Extreme Values of Geometry and Loading

.Column  Roof Horizontal Vettical
Height Rise b/a Bent ‘Wind Unit
Factor  Factor Spacing Pressure Load
‘a b 8 . P '
‘Minimum 0.167 0. 0 L/8 .20 psf 60 psf
Maximum | 1.0 0.5 1.0 L/2 70 psf 60 psf
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c,.Values of Side Load Factor A

The concentrated load, P, at the eaves is that force which
will give .the same overturning moment .about the base as a uniformly
distributed wind load on the vertical projection of the frame. Expressed
in terms of the previously tabulated variables, the .concentrated load
for a flat roofed frame would be

P = 1/2 pas LF ...(5.56)
.aﬁd for a gabled frame would .be
P =1/2 pas (1 + b/a)2 LF, . (5.57)

where F is the load factor 1.41 applied to increase the working load

to the design full load of the structure .considering wind.

The .side load factor, A, is defined as the quantity 2Pa/wL.
~Substituting in this the expressions for P, and noting that the linear

distributed load wF is equal to the product gsF of the uniformly dis-
tributed roof 1oad-q'in psf, the bent_spacipg s, and .the load factor F,

thé following expressions are obtained for A:

A =1/2 pas LF x 2a/q sLF = a2 p/q {..(5.58)
for flat roofed frames, and

A = g2 % (1 + b/a)? ;..(5.59)

for gabled frames,



2683 | , , | " -61
For both cases, the value of A without wind is zero. This

value will control many designs.

In,most-areas‘thg design wind load specified is 20 psf.
_Therefore the p?and q values to be used in Eq (5558) and ¢5,59) would
be 20 psf and 60 psf respectively. The maximum possible values cf A
would result when a and b/a are a maximum. ~This would occur when a

is 1.0 and b is 0.5 giving

2 20 ‘
A= (1.0) %0 XL0= 0.333 ooo (5.60)

for flat roofed frames and

20

A= (L0)%x 75 % (1.5)2 = 0.750 soo (5.61)

for gabled frgmes,liThese constitute the maximum probablg values of A
for the standard 20 psf wind loading. :Howéver, the values of é and b
used to obtaine these values are not the most typical. For long span
. frames, "a" would ordinarily be closer @o 1/5 and even for short spans
would be nearer to 1/2. 4for;either of these values, b/a could be as
éreat'as 1.0. vValues of'Abcalculgted for the 20 pgf wind loading are

tabulated in Table II for a value of 0.2, 0}5 and 1.0.

In areas subject to severe storms, the 70. psf wind would
govern, and values of 70 psf and 60 psf would be used for p and q

respectively. The results of these églculations are included in Table II.
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TABLE II

Maximum Values of Side Load Facter A

Wind Load

Column Roof Max imum
Height Rise Side Load
Factor Factor Factor
a b A
Flat Roofed Frames
_ 20 psf | 0.2 0 0.01333
0.5 0 0.0833
1.0 0 0.333
70 psf 0.2 0 0.0467
0.5 0 0.292
1.0 0 1.166
Gabled Frames
20 pst 0.2 0.2 000533
0.5 0.5 0.333
1.0 0.2 0.480
1.0 0.5 0.750
70 psf 0.2 0.2 0.1867
| 0.5 ;0.5 1.167
1.0 0.2 1.680
1,0 0.5 2.62
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It has been shown by these calculations that for the typical 20 psf
wind load, the side load factors may range from 0 to 0.333 for flat roofed
frames and from O to 0;750 for gabled frames. Thus the possibilities of
actual loads cover the whole range of A valués’for which hinge angles have
been calculated and charted. For the extreme case of a 70 psf wind load,
‘ﬂé";yalue§.less than 1.0 will .include all structures except those with
theé largest column heights. For the cases with long columms., it is
probabie that the hinge angles will be gma]ler than the values plotted

for A = 1 and at least an upper bound for the hinge_angles isbinclpded

in- the curves. (Fig 5.11 & 5.12)

5.9 PROBABLE EXTREME VALUES OF HINGE ANGLES

The maximmnproﬁable values of hinge angles can eithér depend on
the maximum angle shown on Fig 5.10, 5.11, or 5.12, or on the maximum
angle possible within the limits of the probable side load factors, A,
given in Table II. . For exémple, in flat roofed frames with 20 psf wind
loading, the maximum hinge angle at the lee knee with long columns would
be about 0,32 @pL with A = 0.333. At the same time the maximum for short
columns would be about 0.22 @pL with A limited to 0.01333 even though,
for a = 0.2, greater values of the hinge angle are indicated for values
of A up to 0.5. Another 1imit for flat-roofed frames would be a hinge
angle, Hp, in the be@ﬁ of 0.33 @pL for no side load and a,columm'height

equal to the span.

If a 70 psf wind is specified on a flat-roofed frame; the same

maximum value of Hp = 0.33 ¢pL would apply (with no load and a = 1.0).
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The hinge angle, Hg, at the lee knee could increase to 0.42 GPL,

Applying the same type of feasonimg to gabled frames shows that
the intensity of the wind pressure has little effect on the maximum
values of the hinge angles Hg and Hp. Hg has its maximum value for
very short columns and relatively light side loads; thus, the greater
side loads actually mean a decrease in fequired hinge angle. The hinge
angle Hp in the rafter has its maximum value with no side load and with
the longest columns and flattest roofs. One additional factor is intro-
duced in gabled frames -~ this is the possibility of a hinge angle Hp
at the windward knee. The maximum angle occurs with a high wind load

on a frame with short columns and a steep roof.

The maximum probable hinge angles for these several extremes of
size and loading are shown .in Table II1I along with a list of the factors
causing the extreme values of each. It is seen there that the ﬁaximum
hinge angle at a lee knee would be about 1.03 ¢pL for a steep gabled
frame., (b =0.5, a = 0.5, A =0.1). The maximum hinge angle for a
windward knee would also occur in a steep gabled frame, (b =0.5, a = 0.5,
A =1.17) with a value of about 0.49 (pL. The maximum hinge angle in
the rafter would occur with a flat-roofed frame .and would be 0.33.¢pL.

(b =0.a=1.0, A=0).
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Maximifi Probable Hinge Angles for Single Span Frames

TABLE III

Hinge
Angle
at Lee
Knee
Hp

Hinge
Angle
At
Windward
Knee .
He

Hinge

Angle

In

Windward

Rafter
Hp

Factors
" Causing
Maximum
Hinge
Angle

Small side lLoad
Short Columns
Steep Roofs

High Side Load
Short Columns
Stggp Roofs

No Side Load
Tall Columns
Low Roofs

Wind Load
Flat Roofed
Frames
b=0

Up to 70 psf

0.44 @PpL

Up to 20 psf | 0.32 ¢pL _ 0.33 @yl
‘Up: to 20 psf | 0.42 ¢pL ——— 0.33 ¢§L
Gabléd.Framﬁs

b =0.2 e

Up to 20 psf | 0.80 fpL — 0.15 oL
Up to 70.psf | 0.86 %L ———— 0.15 @,L
b =05 g

Up to 20 psf —

i

-65
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5.10 SUMMARY

The following summarizes the contributions of this chapter

and gives the results of the calculations made for single-span gabled

portal %rames with pinned bases and including the special case of flat-

roofed frames.

(1)

(2)

3

(4)

(5)

(6)

n

-Equations were developed determining the domains

of two types of mechanisms ( Eq. (5.3), Fig. 5.3)

Equations were developed determining the domains
in which any of three possible plastic hinges
could be the first to form (Eq. (5.8), (5.9), and
(5.10), Fig. 5.4).

Combining the graphs for type of mechanism and
location of the first plastic hinge gives graphs
indicating four combinations of mechanism and
first plastic hinge. (Fig. 5.6).

Expressions were developed for the hinge angles, H,
for the four cases of failure mode (Fig. 5.10 through
5.13),

Equations and charts were developed for the horiz-
ontal deflections of the columns and for the vertical
deflections of the roofs (Fig. 5.14 through 5.18).

A flat-roofed frame and a gabled frame were designed
and the hinge angle requirements were calculated.

These were compared with the actual hinge angles

measured on test specimens using the same rolled

structural sections. Though the experimental loadings

differed slightly from the theoretical loadings, they
were .considered similar enough for . a rough comparison
(Fig. 5.19 and 5.20). The comparisons showed the
theoretical and experimental hinge angles to be of
the same order of magnitude.

The maximum possible hinge angles were determined for
a complete range of frame proportions and for wind
loadings ranging from zero to 70 psf, including the
usually specified wind load of 20 psf.
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These calculations showed the maximum hinge angle at a

lee knee to be about 1.03 @pL for gabled frames with small
side loads, short columns and steep roofs. The maximum
hinge angle at a windward knee would be about 0.44 @pL.
for gabled frames with large side loads, short columms,
and steep roofs. The maximum hinge angle in a beam ox
rafter would be about 0.33 @pL for flat-roofed -frames
with tall columns and no side load.
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6. MULTI - SPAN FRAMES

WITH FLAT R 0o FS

A method of plastic design of multi-span.rigid frames by

10 Gitn

separétion into subassemblages has been presented by Ketter.
certain modifications in the concepts of subassemblages, the detex-
mination of rotationg and deflections for multi-span rigid frames may
also be accomplished by the use of graphical charts for subassemblages.
The solution of this prcblem.will be pfesented in the following dis-
cussions. In order to keep the nﬁﬁber of complicating factors to a

minimum, only flat-roofed frames will be considered in this chapter.

Gabled frames will be treated in Chapter 7.

To solve the problem of rotations and deflections of sub-
assemblages for multi-span frames, the necessary alterations to the
concept of subassemblages will first be made. In Ketter's method, the
effects of adjacent spans on the span being comsidered are grouped
together in the momentAterms AwL2/2 and DwL2/2 applied to each side
of the subassemblage {Fig 6.1la). A and D are dimension;ess paranesters
relatigg tﬁe side loads and moéggfs to the verFical loads. Unfortun-
atély,jthese side load terms do ﬁot define the moment diagrams in the

columms sufficiently to allow calculation of deflections and rotations.
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If the moment terms in Fig 6.1(a) are replaced by a pair of thrusts,
AwL/2a and DwL/2a, as shown in Fig 6.1(b), the moment diagram in

the columns may be deterqined. However, replécing the external moments
AWLZ/Z and DwL%/2 does not change the loading staticﬁlly. Therefore,
the design method may still be ugedAwithout alteration. In a multi-
span frame, it would be expected that there would be external moments
at the knees-caused by adjacent spans-as-well as-external.thrusts

at the knees. To take these external -moements into-account, the

" moments Mg, and ng-and negative thrusts MQL/aL and Mgp/aL will be
added as in Fig 6.1(c). The three loading cases given in Fig 6.1

are -all identical with respect to the plastic design of the subassem-
blage by means of charts because the charts actually select only the
member for the roof beam.  For the calculation of rotations and
deflections, the 1oading,of,ﬁig 6.1(c) will be used. For the determin-
ation of the‘first plastic hinge, the loadiﬁg of Fig 6.1(b),ﬁill be

used.

6.1 POSSIBLE MECHANISMS AND DOMAINS

As in the case of the single span frame, each subassemblage
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might form one of two possible mechanisms. Equating the plastic hinge
moments for these two mechanisms gives an equation separating the domains

‘for which each will occur.

N N
. f . 16

; " For a general composite mechanism, the plastic hinge moment is:
oo M. »

2_ =1 (aA-D+1)2 i e..(6.1)

w2 16 Fo

: /

10 ’

.For 'a pénél mechanism, the plastic hinge moment is:

N.}Uz

_% (A-D) .. (6.2)
“wL® - - .

.Equating these, the boundary between the.two mechanisms is:

A-D-=1 . eo(6.3)

6,2'LOCATION-OFAFIRST~AND.LAST PLASTIC HINGES

The locations of the first and last plastic hinges within a
subassemblage .are determined .by the location of .the maximum elastic
momeﬁt. .Expressions for the elastic moments in the subassemblages are

.as folloWs;

2 1

. 1
. = .-wL = (A -D
Mg o saris T 4" )
Mp o= wr2| L, 1 capy2- 1
FEW gt (4-D) Bat+l2
- 2 11 . 1
. = WL = DY m e | .

-It is only possible for the maximum moment .to occur at.the lee knee E ‘
\
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and in the beam at F. .Equating the .expressions for Mg .and Mg gives an

‘expression as follows for the.desired boundary.

1
A-D =1.- ? 12a+3

ves(6.5)

6.3 .SELF-SUPPORTING AND -NON-SELF-SUPPORTING 'SUBASSEMBLAGES

A typical .design of a three span frame might_fesult.in'é
mechanism similar. to that shown in Fig. 6.3. To determine the required
rotation capacity of -this structure, calculations of rotations and deflec-
tions must be made considering .continuity at the .last plastic hinge to

form. This brings out two important points:

(l) The last plastic hinge must be located.

(2):0n1y one of the three subassemblages possesses the
.continuity'at maximum load which makes a gtructure determinate .and stable.
The other two subassemblages are truly mechanisms and must .depend on the

-self-supporting span for support.

‘These .two contitions in multi-span frames may be handled by
derivingxa.Set.of equations for non-self-supporting;subassemblages as
well:as fqr.fhe:self-supéorting~subassemblageso The location of the
last plaétié hinge may be.determined.by assuming each span in turn to be
_ the.éelf—supporting;span‘and calculating deflections. It has been shown
.that .the greatest deflection will occur when the true last plastic hinge

has been assumed.

‘The unusual condition in the non-self-supporting spans is that,
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‘having two plastic‘ﬁinges free .to rotate, they are overdeterminate, and
deflections and rotations may not .be calculated without further inform-
ation. This further inform;tion is supplied by the known deflection

of the self-supporting span at the point to which the adjacent span must
remain attached. For instance, suppose it is determined that the left
_span in Fig. €.3 is to be the self-supporting span. Then the deflection
BE-of.the«Iée knee can be calculated. This deflection is then a known
defléction when considering the behavior of the span to its right. If
the desired functions in the non-self-supporting span_are.solvéd in terms
of the loading, geometry, and this controlled deflection, /g, all results

may be o_btained°

‘6.4 HINGE_ANGLES. AND -DEFLECTIONS FOR. SELF-SUPPORTING SUBASSEMBLAGES

The moment diagram for flat-roofed multi-span frames is given
.in_Fig°"6;4{ The moments shown are applicable to both_the,selfmsppporting
;nd non;selfasupporting‘subassemblages. .Because the interior columns
-iﬁvmultiwspan frames are, ip.geﬁeral, different members than the rafters,
the different moments of inertia .are used .directly rather than deriving
the equations for const;ntjsectibn'throughouto “These moments of inertia

.are~designated as -1, for .the rafters, I for the-left -hand columﬁ, and

--Iz for the right hand column.

" The derivation of the hinge angles for the :self-supporting
’subassemblagé proceeds exactly as in the case of single span frames with
the.simple,add?tion of the‘DwLZ, MQL, and,MQR.terms. The-résulting

,hinge“anglerequation for the general mechanism with the first hinge at
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the lee knee E is now given.

Case 1. -- Composite Mechanism with First Hinge at Lee Knee E

1 -
GL =wm, |T2%a oD L
‘ 2 I 1 I
1wk o 1 o 1 0
+=aT— (A-D) — - T & — - Ta —
6 Mp I 3 I, 3 Ip
\ L L oM 1 MR oLn L
3 IL My 3 vMp ;R ...(6.6)

I1f, temporarily, the I of the columns is made equal to that of the rafters,
and_MQL,and MQR,are,set.equal to zero, the equation reduces thA function

of ‘A, D, and a.

%g L+ @ (%.+%9.) -1 -2, e (6.7)
This equation is seen to be identical to Eq. (5,20) fof single span
frames>ex¢ebt.that.the expression (A-D) replaces A. 1t thus becomes
convenient to set up the equations for multi-span frames as_a graphic
portion consisting of the solution of a single~-span frame .with side loads
ffom both;sidés, and a set of_correctidns for the differences in,momentsl

of inertia of the columns and beam and for the moments at the eaves due

-to.adjoining;subassemblagesf-

Graphic

H 2 :

AR wlL* 1 1,1 2 (6.7)
= WL = _ RS -1 - £ cos

OpL. T M, 12*@D)<4 6% ~3°
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Corrections
B __1
oL L
_L-'(i‘o
3.1

Ig *

-74
M 3L %

; ) L2

Lo _o)+1, (Lo WLT  (A-D;

Ip :9 6 (IL' l) M, (A-D) .(6.8)

‘The sum of eq. (6.7):§nd (6,8),13 eq. (6.6) fulfilling the requirement .that

[

‘the graphic solution plus the corrections equal the total result,

uSimilarly; hinge angles may be derived for two other cases:

Case II. COMPOSITE MECHANISM -- FIRST HINGE IN BEAM AT F
B ow? |1 i el -2
@pL ]Mp’ 12 5 MR 4 6 3
Sr M1 LM
13 L MP 3 IR 'MP
1 o, Lo 1 (X WL '
—la 2y 2-2)+da (R -1 ¥ (A-D) .. (6.9)
3 AL Iy 6\ Iy Mp
Case Ia. Panel Mechanism -- First Hinge at Lee Knee E
Hp 1
@pL ~ 3(A-D)
_1 Lo M1, Lo M
q —— —— —_ =
37 I My 3 I M
+ ia 12 -— 19 :
3 I Ig .(6.10)

The ‘graphic portions of Eq. (6.7), (6 .9) and (6.10) are plotted as a family

L
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of curves in Fig. 6.5. This figure is identical to Fig. 5.10.

- . As-a.result .of the derivations of ‘hinge angles it becomes
possible.to compute the horizontal deflections of the knees, §E’ and
.the-vertidéf deflections of:the midpoint of.thglpeams SD. These are
.sﬁmmarizediin the appendix in Eq. (6.11), to (6017). Curves of the graphic

portions of the By equations are plotted in Fig. 6.6.

6.5 ‘HINGE}ANGLESWAND!DEFLECTIONS FOR_NON-SELF-SUPPORTING SUBASSEMBLAGES

Thélonly differentlsFep.in the procedure for deriving hinge
angles fsr hOnfselffsupporting;subéssemblagés is using the horizontal
.deflecti;n'gc'pfoduced,by thehgdjacent.spanlas a boundary condition.

Also there are two hinge angles inétead.of gin_ef The use of the deflection4
_boundaryicoﬁdition_is‘actually.accomplishediby using the .chord rotation
FAC gs.the_knownﬂquantity in,tpeu31ppefdefi§ction_equations aﬁd_sub-

stituting its value AC/aL into the resulting solution.

' The4f011gwing;équatiggs result from the slope-deflection calculations:

'=‘Gase-1~and II: - Comébéite Méchgnism‘--_Higges‘atiLeevKneé.E,and_in Beam at F.

1 1 (1
-2 a 3aa 3?
+ £C 2(1>+ _a(_&_)ifl‘_%__la_l_a Mo
a @pL4\l- 3" \l-a, I MP 3 I M,
I : 2
a 1 0 a 1 wk
e )1 {Zo .} - & 1 WLt o o _
(l-on) 3a<1L ) '(l-cx,>3a M (A-D) (1 1)
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- 32
1
_1, (o 1 14
3 -]-:L (l"‘d:) .
.. .(6.19)
Case:Ia; Panel‘Mechanism.j— Hinges at Lee Knee E and Windward Kunee C
Mg 1l ly_ 1 _1
UpL 6 (_A-_D) 6 = 3°
s 1 LM%
_13(_9__1) ...(6.20)
37\ I
. H
C 1,1 1 1
L6 G Tt 3
oo 1 LMy
aapLZ 3 IL MP
1 (Lo
+ (=2 -1 :
3% (’IL ) c.o(6.21

Eq. (6.18 is plotted as a family of curves in Fig. 6.7, and Eq. (6.19),is

plottéd in Fig. 6.8. Eq. (6.20) and (6.21) appear in their respective

charts only as the .A-D = 1 curve 'since no greater values of A-D are

plotted.

.Since :the horizontal deflection o of the lee knee equals the

given deflection A% of the Windward Knee for flat .roof frames, no further
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derivation of horizomtal deflections is reguired, (Eq (6.21). .Eq@ations
(6.22) and (6.23) for the vertical deflections of the .center of the beam

N
are given in the appéndix, but are not plotted,

Rather than describing the steps in the procedure fpir using
the equations and graphs derived immediately, and the procedure will be
deﬁonstratediwith an example in the following section. The steps in

the procedure will then be summarized in section 6.7.

6.6 . SAMPLE SOLUTION .OF A FLAT ROOFED MULTI-SPAN FRAME

vThe'u§E of the results of this chapter will be illustrated
by means. of the two-span frame shown in PFig 6.9. _Thé "known" informatj_.cm(

which can be obtained from the figure is as follaws:

Left Span : Right Span
b/a =0 b/a =0

a = 0.333 a2 = 0.200
Ay =0.0555 Dy .= 0

Ly = 3L, L2 = 5Lg

The required information for a.deéigngis as follows:

1éft 8pan | Right Span.
Dy =17 Az =1
Mpp =7 Mpy, = 2

"Thevdesign_full load for the frame is desired as w = 2k/ft and the columm
height Lois 20 ft. Using a yleld stress. oy = 33ksi and following the

necessary procedurés of Ref 10, the following results are
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obtained:
Left Span Right Span ‘Cemter. Column
Dy = 0,030 Az = 0.0108
ﬁ’;_zl - Mpy .
wL14™ 0.0658 g2 = 0.0641
A=-D = 0.0256 : A-p = 0.0108
] Qo = 05;487 & :_-‘. 09495
k: ‘0.085 & =_0°916
¥y Moo
21 WF 73 33 WF 130 27 WF 94
z; = 172.1 . zp = 466.0 Z3 = 277.7
I; = 1600.3 Ip = 6699.0 13 = 3266.7

A’The;moment,diagram at'maximum load is showx im Fig 6.10.

The next step is to decide which span iz the self-supporting
span, This is done by calculating the horizontal defleétiom‘asaumiﬁg
veach $pannin turn to be the self<supporting span. For the left span,
using A-D = 0,0256 and a = 0.333, a BE / Qpﬁzfvalue.of'd°035 is taken
from Fig 6.6. The corrections to this graphic walue aze given by Eg.
(6.11). Since there is no external moment to the left, and since the
left column is the same section as the beam, all corrections equal zero.

Then,

2
5y = 0,035 Mp1L1%
E I
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M 2
5z = 0,035 2BLo)"

EIl
' 2
. Lr . !
8, = 0.316 ?f; (Left Span) | o o(6.22)

For the right hand 'span, the graphic g-value is 0,023 QPL?.
Since there is an‘éxternal,moment to the left of this spaw, and the left
column of the span differs from the beam, all_dOﬁﬁéCtions apply %o this

span. .The additional factors necessary ate:

___MQL__ - =1,00
M, 2,70
I,  6699.0 in%

I, " 3266.7 It - 203

The correction terms.omeq (6.11) become:

-

55' | 12 1o Mo
_ S ¥
: 12 Iy gy L w?, o Io
= _1 ¢(g.2y2 £2.05)

3 (0.2 (-2.70)

_ 12 11 ne 1 2 (0.0108) {1.05)
B, | | - ;
E = < 0.00269 ..o (6.23)
BpL RS | |

-Adding this correction to the graphic value of & gives the total value

) ]
5g = O (graphic) + & 9
© €0.023 - 0.003) Yp2L2
o) ) El;
0.020 Mp22 ' oo (6.24)
' EI2
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To compare this deflection with that of the left span, they

must be put into the same dimensions.

5 = 0.020 (2.70 Mp) (5Lo)2
E E (4.18 17)
M LOZ _ .
B = 0.323 "EEI" (Right Span) ve.(5.25)

,8ince the horizontal deflection of the frame would be greater with the

last plastic hinge in the right span, that span must be.the.self;supporting
-span. The#efore,,hinge.angles for the-left span must be calculated using
vthe.charts and éorrectio§s~feranon-sekf«supporting-subassemblages, and

those for the right span using the functions for self-supporting subassem-

blages.

The first hinge angle to be calculated will be that for the
right span. The graphic value of Hg from Fig. 6.5 is 0.216 @pL. Additional

data needed for the corrections is provided below:

Yo _ -1.00 Mr
M, 2.70 T

1 1

-2 = 2.05 2 a1

‘3

a ,
gpL LM, Y RN
1 I, 1o + 1 I 1) L2
-3 (2 - 2) =a (== - —=—  (A-D)
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Hl .
E 1 (2.05)
GoL =~ 3 0D ey 0

1 1 0.0108

-2 (0.2 1.05) + L (0.2) «(1.05) X£0.0108)

3 0.2« ) 6 (©.2) 0.0641
Hl
oL 0.0134
¢pL | ...(6.26)

Therefore,

g 6 0.203
£ =0,216 - 0.013 = O.
apL ~ C , ... (6.27)

.Substituting quantities for @ _and L,

(2.48 M) (5Lo)

Hy _ :
E = 0.203 g8 1))
MpLo :
Bg = 0.602 EI; (Right ‘Span) ...(6.28)

For the left hand span, two hinge angles, HE and HF are to be

calculated. These calculations will use the following additional data:

M
Q = O MQR - -2048
Mp M T 1.00
p
I I
= = 1,00 — = 0.490
I Iz
a  _ 0.487 _
1-« 0.513 = 0:930

The graphic value of the Hg from Fig. 6.7 is -0.051 @pL. The corrections
from Eq. (6.18) are:
1
B A

- 1y, 1 Do @y
BL " agpil T * 3 T

.o Mg
"
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I 2
(-1 %a G | 1- YL (A-D)

R ...(6.29)
Substituting for Ag the value obtained in Eq. (6.25) and for the -other
quantities their known values,

0.323 MpLy2
HE L EI

) . | |
- +0 - % (0.333) (0.490) (-2.48
oL 0.333 M, (3L,)2(0.513) 3¢ ) ) ‘

+0 - % (0.333)  (-0.510)

I =]

=
[
Il

R 0.402 ...(6.30)

Then,

L L I,
Hy —0.051 Bl + 0.402 -BCL = 0,351 TBLL
EI, EI, ET

' M L .
HE = 0.351‘§§§2292 = 1.053 —Efg (Left Span) ... (6.31)
1 1

The graphic value of Hy from Fig. 6.6 is 00191,¢pL° The

‘ _ corrections from Eq. (6.19) are:

| o
P g 1 1. Lo MQL 1
L = (—=—) —2a =2 —=2 (=)
¢pL a¢ PL l-q '5‘3 IL MP ( l-q,
Tq T3 arg Sy o -+ (6.32)
Substituting’ .
0.323 EgLoz
H_* EI L
Fo__ 1 ~0~0
gL 0.333 M, (31,)2(0.513)
EI;
1
Hp . '
gL =-0-210 ...(6.33)
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Then the hinge angle.at.Section;F is given by

. L ML
H, =0.191 Elf:- 0.210 B o019 2L
'F EI EI, EI,
ML
H o .
F o= - 0.057 57 (Left Span) ... (6.34)
. Summarizing, the hinge angles for»theAstructure.afe as
follows:
-Left Span. Right Span
, L L
Knee Hp = 1.053 Yoo Hy = 0.602 3.42_,_
ET; - E1;
L
Beam Hp = - 0.057 o Hp = 0
» EI;
oeof6.35)

The magnitude of the hinge angles at the knees would indicate
that.they;were.the first .to form.._fhis is expected because elastic
solutions of two-span frames generally show the greatest moment at . the
center. support .and a large moment at .the lee knee. The meaning of -the
‘negative sign of the hinge angle in the left beam is that the hinge has
.tension on the bottom of the beam.as is expected from the physical
picture of the structure. The hinge angle in the right beam is zero by

its definition as the last plastic hinge to form.

6.7'.SUMMARX

In this chapter, a method of determining the required hinge
angles of flat-roofed multi-span frameg by separation of the structure
into subassemblages is described. This method is consistant with the

-method .of designing similar frames presented by Ketter. 10 The following
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summarizes this chapter:

(1) Due to the requirement that only'dne‘pla$tic kinge can havye
continuity just prior to the fo:mationvof,méghanigmg_omly one. of the
subassemblages of a2 multi-span frame may be self-supporting. .ALL .
remaining subassemblages must depend upon this subASSemblage for part
of theit support. .Therefore, it is-necessary to derive a set of equations
for non-self-supporting subassemblages as well aé for the self-supporting

subassemblage. -

(2) vKuatidﬁs“for the domains for mechanisms, hinge amgles, and
deflections were dErivéd for the self-supporting subassemblages in the
gamé.Way'as ﬁas done for single-span flatsroofed frames. In fact, the
resulting equations were the same with three exceptions: (i) The teiﬁ
;AED in the multi-sfan@eﬁuations replaced the term A in the single~span
.eéﬁhtions, Ciij .Correction terms were included for the moments of the
knees due to the effect of adjacent spans; amd (iil).Correction terms
wgré included fo; differences between the moments of inertia of columms
and beéms;blcraphs.of'the graphic poftions of these equations are given
in_Fig,G.S and 6.6. To these values must be added the appropriate .. ..

~ corrections.

3) /Additionalbequations were derived for nbn-self-suppor;ing_sub-
:assemblages. .The derivations assumed discontinuity at_both plastic
hinges-réthér than one. The boundary condition substitutéd to make
tﬂe‘problem.solvabre;ﬁas that the horizontal deflection of the.knees

must be the same as the 'known" deflectionﬁ%f the self-supporting span.
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Thus a term Ag, which is detemined by the self-supporting subassemblage,
appears in each equation for non-self-supporting subassemblages. Graphs
of the graphic portions of these equations are given in Fig 6.7 and 6.8.

Correction terms must be added to these values,

(4) The method of solving rotation capacity problems for multi-
span frames was established as follows: First, assume each span in turn
'to be the self-supporting span and calculate the corresponding horizontal
. deflection; the correct assumption will be indicated by the largest
deflection so computed. . Second, having determined the self supporting
span, calculate the hinge angle for that span causing the '"self-supporting"
equations, and calculate the hinge angles for all other spans using the

angles for all other spans using the '"mnon-~self-supporting" equations.

(5) An example of a non-symmetrical two span frame was solved to

indicate the use of thé charts and equations.
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Jo- MULTZE~SPAN GABLED FRAMES

" The principles to be used in the solution of gabled multi-span
frames ére the séﬁe as fbf flat-roofed frames. However, added complic-
ations aris; in the form of additional possible mechanisms resulting
from the gabled roof. These possible mechanismg could wesult when the
side loads on both sides of a span are quite high, causing the raftexrs
to bulge upward with a plastic hinge forming at the zidge, This wmechanism
will be desigmated a "reverse" mechanism ixn the sense that some of the
loads move in a direction oppoéite to that in which theyvy are applied.
It can oécur either with hinges at the ridge D and ins the windward :
rafter at F of with hinges at D and at the windwaxd knee C. The second

form is actually a special case of the first with ar a value equal to

zZero.,

It is considered doubtful that the value of the side load factor
D could become large éﬁough in most practical cases to cause a reverse
mechanism. However, a case can be shown where it would form, so the

equations will be presented for completeness.

7.1 TYPE OF MECHANISMS

The equations for the plastic hinge moments for the composite
and banel mechanisms are available from Ref 1(.

Composite Mechanism (Fig 7.1a)

2b
d 1 _[(1-50 (At -D) - pb ade ]

wh? T 4 1+ by
a
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1 b by _ _by ) b
& = bl/a -\ll - a3 [A(l +>§) D (1 =, l] 1| for a:>'0

coe(7.1)

Panel Mechanism (Fig 7.1b)

Yo _ AD

wL2 - 4 0.0(702)

The panel mechanism is a special case of the compeiie mechanism with o = 0.

Equations for the two forms of the '"reverse' mechanism may be
derived in the same manner that was used for the others. The resulting
expressions are:

Reverse Composite Mechanism (Fig 7.1lc)

LI { sw[ (”b jm(”%)]}

2+ 24 22¢

1 V b _l_. 22 E[ E - ' - I
@ = -——b/aH1+2;+2 27 -2 a a+23) DJ 1]

oo (7.

~ N~

Reverse Gable Mechanism (Fig 7.1d)
wL2 - [ % Ef ; } ces(7.4)

The limits of the mechanisms are determined by equating the

M@/WLZ expressions for each pair of mechanisms.

Relationship Separating Composite Mechanism firom Negative Composite

Mechanism

2 (2+ D 1+b)
A A+D-= Lot d - [A(1+2—-) 2|

%2-/612; \‘1 iy [A(l+§ ) -D(12) -1]

<
|

- (7.5)
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RelationshiEASepaLatlng Comp081te Mﬁchapaam f?@m P@mel Mschdniqm

1+D (1 - b/al
1 + b/a eoe{7.6)

A=

-Relafionship.Sepaxating Pgnel Mechanism from Reverse Gable Mechsnism

A (L - b/a) +1/2 _—
1 + b/a e0s(7.7)

ZD =

kblationshipgSeparating,Reverse.Composite Mechenism from Reverse

Gable Mechanism

A = (1 +1/4 b/a) + D
= 1+ 2b/a

oo (7.8)

_ Eq. (7.5) to (7.8) when plotted im the A vs D plane as in

Fig 7.2 form the boundaries of four regioms, owme for sach wechanism,
_The general region for ‘each mechanism is a5 follows:

Southwest =- Composite: Machanism

.Southeast -- Panel Mechanism

grtheast --. Reverse Gabkle Mechanisu

Northwest -- Reverse Composite Mechanism

The equations for plastic hinge moment and for 1limits of
mechanisms include the roof wise factor b and the column height factorx
a in each case only in the ratio b/a,. Howsver, it will be shown later,
that for the location of first plastic hinges, the separate values of

a and b must be used.

~Plotting Egs (7 5) to (7.8) for sevexszl bfa values would show
that the intersection moves toward the mortheast 48 b/a decreases. Thus,
for b/a = 1.0 (equal column height and roof rise), there are significant
lareas for each mechanism within the limits of A @nd D no greater than

'“1 0 (Fig 7 3) However, for smaller values, L.e. bfa = 0.2 (columm
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height much greater than roof rise), only the composite mechanism would
occur for most values of A.and D less than.1l.0. This puts more .emphasis

on the composite mechanism for the purposes of analysis and. design problems.

7.2 LOCATION OF FIRST AND LAST PLASTIC HINGES

In locating the first and last .plastic hinges, the maximum
elastic moments are needed. Because of the addition of the reverse
mechanism, the moment .at .the ridge D must be .considered in addition to
. those .sections considered.in_the.earlier_soldtions. The .equations for

the elastic moments are:

.2 B

Mo =.“% L(AmD),F - G-+,AE] cea(7.9)
Mp = E%E 2 (A+D) - (A+D) F + 1 - G- EGY- (A+D) .F 2] ...(7.10)
Mg = y%ﬁ :~ (A-D) F - G-+;D€] | oo (7.12)

o
n

% [.1,+_2 (a+D) + (A-D)2 + 2 F (A2 - D2 - A-D)

2 2
G- 422 {eraD) F}:.I..(v.m

mlo m

-F (A*D) + 2 G (A-D) -

“where the values of A and D are as defined previously and

) 2
N= 88 412412044 D) G.=8+5 bla
144b2 . a a N
16a b
p oo Yot ap2 T24 2 J = 24 b/a + 16b2/a?
. N N

e (7.18)
.These equations were derived with the aid of .equations given in Ref. 7.

The regions in which each plastic hinge is first to form are bounded by
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2

curves derived by equating the elastic moments inm paizs as was done

previously., These equations are:

a)

b)

d)

Boundary Between First Hinge at Lee Knee E and In Windward

Rafter at F

Mg = - My
‘b , 1 b2 b: 1 b2 1 p?
0= A% (143 + 7 22 F2h A(2- DF-25 + 2,6+ 5 22FCHD |2 2y F2-2
o b b 1b 5 1 b2
-~ F - = = =2 +n2 b =22
+D (2 .aF aG+2awFG+J)\ +D ‘(1"‘5F+4a21”2)
b 1 b2 2
+ (1 -2¢g - = )
I-26-%+5 26 ves(7.15)
Boundary Between First Hinge at Lee Knee E snd at Wimdﬁard
Knee C
ME=“MC
B + 5b/a
A+ D= 5%7a + 8 b2/a2 vea(7.16)
, -
Boundarxy Between First Hinge at Lee Knee E and at Ridge D_
ME = Mp
b
_ AQ - Fb/a) +(.- T.G) . ‘
D= "(Fbja + 2F + J - 2) ‘ ceo(7.17)
Boundary Between First Hinge at Ridge D and at Windward gﬁee C
Mp = -Mc
b b
D = A2 -F=a4+J) + (1-2G -~ 7 G
(AF+Fb/a "'2-) ‘000(7018)
ﬁggndary Between First HingeAat Ridge D and ip Windward Rafter

at F:

Mp = -Mp




o , v;. ,
GG R ) (hodf- o2 g 4 Bp 4 LB
0 =A% L+ F+7 2 F) +A (A-2F 20 F+ 36 +5 2 FG
1p2 o s b 1 p?
+D|:"2"52 ‘Fz- 2])+(2-2G - 256+ 7 7262y
+D(4—2F-22F-BG+ !:..‘bZFG>
+02 (1 - Rpa 1B2 g2
' a 4 a? )
oo (7.19)

‘As an example, equations (7.15) to {(7.19) are plotted for
the case of b = 0.2a = 0.2 in Fig 7.4. The segments applicable to
each equation are indicated. Limiting the curyes to opne a and b

" value is necessary because of the radical form a/ \ll + 4b2 in

the expressioﬁs for F, G and J. The first hinge is at the lee knee
E‘for'values ini&gmainunlg It is in the windward réfter at F or
at the windWard kqee“Gmin‘domaiF%DZn In domain D3, the first plagtic

hinge forms at the ridge D.

In Fig 7.5 are shown the domains for three cases of
column height, all with the constant roof rise factor b of 0.2,
[These show that the point of intérse¢tioniof a given set of curves
moves upward and to tﬂe right with increasiﬁg column height. Of

special interest is the curve for b = 0:2, a= 1‘,?0° Here the
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curVel(Eq 7.15) separating the Eirst hinge at E and first hinge at
F dpes not intersect the A ='D.iine? but continues downward until
it touches the abscissa. This is another example of the effect
seen in single span frames where the first hinge may form in the

windward rafter of very tall frames with gently sloping roofs under

little or no side load.

Comparable sets of curves for frames with steeper roofs
areisimilar in shape to those inﬂEig 7:5, but the intersection point
of each comparable set of curves occurs at a lower value of D,

For example, considering two cases with the column height factor

a = 1.0, the point of intersection of the curves for roof rise
- factor b = 0,5 is below B = 0.6, whereas the intersection

point given in Fig 7.5 for b = 0.2 is near D = 1.5,

Charts,of ﬁhe,tYpe given in Fig 7.2 and 7.4 make it
possibie to determine the mechanism in one instance and_the location
of the first plastic hinge in the other. For the solution of a-hinge
angle.problem however, it is necessary to know both at once for a‘

giuen:f:ame and loading. By combining these two figures, Fig 7.6 -
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is obtained for frames with b = 0.2 and a. = 0.2, giving the

domains both for mechanism and first plastic hinge on oue graph.
Thus, the several cases.for which hinge angles must he derived are

defined. . These domains are labelled as follows:

I. Composite Mechanism First Hing? at E
Ia.. Panel Mechanism (c= 0) ;- First Hinge at E
II.. Composite Mechanism -- First Hinge at F
.ITa. .Panel Mechanism (o= 0) -- First Hinge at C
ITII. Reverse . Composite Mechanism -- First Hirge at F
I1Ia. Reverse Gable Mechanism (.= 0) -- First Hinge at C

IV. Reverse Composite Mechanism -- First Hinge at D

IVa. .Reverse Gable Mechanism (0.=0) -~ First Hinge at D

All equations for multi-span gabled frames will be classified by this
system so that selection of the proper equations for a given example

may be made by reference to the domain chart, Fig 7.6.

7.3 HINGE ANGLES AND DEFLECTION .OF SELF-SUPPORTING SUBASSEMBLAGES

Thé derivation of equations -for hinge angles and deflections
is accomplished in exactly the same manner as was dome for single-gpan
frames and flat-roofed multi-span frames. The slope-~deflection equations
© are used with the addition of terms considering the'effect of thrusts
and bending moments applied to the column tops by the adjoiming suh-

assemblages. The necessary additional equations axe obtained as before
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by considering the_relative hmr.szonml ami wnf‘wﬂ.,,pw}ym:@@m@wts df ‘the
-hages a8 given - :Ln Eq (5 21) and (5 22) ‘e houndury conditions relating
to continuity of slope axe ugéd as applicable to the part iculaﬁ: mechanism._
being . considared

.Bending momént diggrams for the Wi geadrul types of me:chaztisms
d::’e given in Fig 7‘.7’ and 7,..8, Fig 7.7 is applicable to the composite énd
‘vpanel mechanisms, Cases I and II, while Fig 7.8 iz applicable to the .,,(‘.'v:.:-""i/ )
xeversa mechanismg, Cases IIT and IV, Using those bending moment diagmns
to set up the ‘slope-deflection equations, hinge avgles aﬁ@. deflections |
wi!re derivedfoteach cane. ForCase I (the composite mechgnism wil:hthe

£irst hinge at the lee knée) the hinge amgle iss

07,20

In this form, the equation ha:s alreagy begen sepuirated into ite graphi,m

and corr.'ection pms .

“The hinge angle équations for the remsining cusgs are as

| .Eollows :

(Gase Ia: Panel Mechanism - First Hinge at Lee Knge E
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coo7.21)
Case. II: Composite Méchanism «- First Hinge in Windwazd Rafter 4t F
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Case IIL. Révérse Mechanism -~ First Hinge in Windward Rafter at F
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- 1+ by L BOR. 2, o WL %b (A+D) - %—a
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1, L M 1L L L Mop 31
-7 13 ELa e Y 1]
301, (F2w) 3 I M, (1927 a)
+ 1 (_+.£)__2)+WL2_1_.3(_I£’.-£9'
(1+b/a) (l+2..a,) Iz w (12 1L 1) (A-D)
- 1a (_2. _2. ) 1b A (52 - 1);+ lb,D-(EQ - 1)
24 "I I I 6 " Ig :
- ' c.(7.24)
Case IIla Reverse Mechanism (@ = 0) -- First Hinge at Windward Knee C
He = 1 W’ 1 1b_ 1b 1b, 1b?
R ‘\‘1+4b L N S - % R (A4D) [= 2 + = 2
¢pL (1+a 24 96 a 96 a2 8 a 24.a2
' 2 2
b 1 b .2 WL
—_ 24k D N o W/ 2b —=a
L4373 30~ 3 TR (A1D) - T3
a
L Lo Mu T 1L Mk
30, My 3 I M
I I 2 -1 Io. - I 1
CEB R G R D e w2 -
(1+)) R S} Mp I Iy 24 \ 1,71
1 o lbp ("o
+ = - 1) + —_ -1
6 P& (3 ) (IR ) |
..(7.25)

Case 1V & IVa. Reverse Mechanism »-:First Hinge at Ridge-D

Hy -~ 1
gL = (1+4b)Z
P a
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1 .1l Io. Io 4 WL 1 L Lo
+ _———b——z —— Sl + —_— - + _-:Q o A"‘D
G2 B @t m At 1P T ) @D

B 1 Ao . Io . 2 1 Lo | 1. o
- s (e - + =2 .1 =2 .
"% (IL: ] ) BPA (G - 1) + b Gy 1)

.. (7.26)

Equations. for the horizontal deflectiomsAoﬁ_the lee .and
windward knees are listed in the Appendix im Eq (?QZ?)-Ehzough {7.40).
Expressions for the vertical deflection of the widge gre listed in

Eq (7.41) through (7.47).

.Cur?es,of the hinge angleg.forvthe gpecific case of b = 0.2,
a'= 0.2 are plotted in Fig 7.9. In this figewe, values of Hy 4re plotted
.above the abscissa with solid lines, and values of Hp aze plotted below
the ahgcigsa with solid lines, Values of Hp @ze plotted as dashed limes
above the abscissa, and Hg are plotted as dashed lines below the abscissa.
To thgéé vé@ues must be added.tha'meGesséfy:cormeatioms,foﬁ yariation in |

-moment of inertia and for external knee moments.

Similarly, curves of the horizontal deflections &u of the lee
knee and 50 of the windward knee are plotted inm Fig 7.10 and 7.11 vesperm
tively.  These figures apply only to the cdse of b = 0.2, a = 0.2,
~Curves of the vertical deflection of the ridge are mot imcluded since

they are unnecessary for the rotation capacity studies.
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7.4 HINGE ANGLES AND DEFLECTIONS OF NON-SELF-SUPPORTING SUBASSEMBLAGES

Ihé-equatéons for hinge angles and def}ections of nop-self-
supporting subaséemblages with g§bled_rpofs are derived in_the{same
,manner.as were'£hosébfor flét~rgofe§_sqbassemblages in section 6.5. That
is, freedom to:rbt%te is gssumed,at‘éach of two plastic hinges. . Since |
this condition implies a méchanism for whichbdeflgction aﬁd_rofation are
- not bounded, an'addktl@ﬁai-Eﬁﬁdlt?ﬁﬁ"m%&§>b@ imposed. This‘is handled
by constralnlng the deflection L of the windward knee to be equal to
.the def@ection_of the~same knee as obtained from the solution of a self-
supportipg case for the.a&jacent span.

4

The .actual equations are deriveé by using the moments of Fig.
7.7 or 7.8 to sei up the sigpe-deflection equations. These equations
are -then solved for therreqqiredihingeAangles and deflections.. The re-
sﬁlring;equationsmfgrwhiﬁgg~angLe§-{oi%owk In each case, all terms pre-~
ceding the Ag term form tﬁe:graph;c part of the function and the remainder

form the,co::eqtion§ for chﬁnge of crogss section and external moments

applied to the knees .

.Cases I & I1: Composite Mechanisml
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+ %a (fg -1) . )
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Cases II1 & IV: Reverse Composite Mechanism

vH - l 2
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-(I_o _1) (L) 2a)1 92| 1 1 apy - Llby

Ip (14+2) (1422) (1-2q) 3 My (84 2a

H 2 2 : 2
“F 1 (l 2 )WL 1 b 1b 1,1 b, 1 b
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L 1+4b M 32 a 96 a’ 12 6 a 6 a2

apL (l+§)(1+2§)(1-2a)



268.3

Cases

-101

1 wL 1 1 1 b
+ia)1+¥ Lyl Ay o Lh
38 w, |8F7E @D a0
1 1 w2l 11 1 b
-%a 1+ To2an-22a
e 8 4 28
ne D) 1, My,
] ACZ e -%a%eﬁlk'__l.l__rgrlal_oMQR 1
D8 .
afpL? (142 D) (1-2a) L U2 3 R M (142 (120
/1’ ' 2
_;a<_o.,,l>__1______1+ vi2| 1 1 upy - 1B,
3\ (1+2) (1-20) Mo |8 4 2 a
2 .
dafe ) gt e L e b
R (142 (1422) (1-2a) Mp a
(7.53)

I1Ta & IVa: Reverse Gable Mechanism
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Comparable,equétionsvfor the horizontal deflection of the lee
knee and the vertical .deflection of the ridge for these cases are given

in Eq. (7.56) to Eq. (7.61) in Appendix E.

_The -graphic portions of these hinge angle equations are plot-
‘ted.in,Figs;:Z;lzﬂthrough.7,15.' The graphic portioms of the equations

for deflection-of the lee knee are plotted in Figs. 7.16 and 7,17.

_Summarizing the results on multi-span gabled frames, equations

_are available fof the following types of functions:

(1) .Equations determining‘the loading‘combinations for which each
type of mechanism may form and for which each plastic hinge of
a self-supporting subassemblage may be first .to form are repre-

sented graphically in Fig. 7.6 (b=0.2, a=0.2)

(2) Hinge angles and deflections.for.self-supporting subassemblages
are given in equations represented by Fig..7.9 to 7.ll. (b=0.2,

a=0.2)

’ v(3) Hinge angles and deflections for nonmself=sqpportingvsubasséﬁr
blages are given in equations represented by Fig. 7.12 to 7.17.

(b=0.2, a=0.2)

Fbr'ﬁPplicatiqn,to an actual problem, the mechanism must first
be dggérﬁigédib§ thé u§ﬁalﬂméth§ds of plastic analysis. Then it .must be
A-determiﬁéd_wﬁich_subasgemblége iS.Self-;upporting, .Knowing this, data from
the,apéropriate curvesl;f éqﬁations may-be~used to calculate the.hinge

..angles .and deflections of the‘self-supporting‘subassemblage and all non-
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. self-supporting subassemblages.

In order to determine which assemblage is gelf-supporting, it
is assumed that each subassemblage, in turn, is selfasupporting_aqd.thev
corresponding,deflection of the total structure is calculated. The great-
est.defleqtipn_w1ll occur when fhe true self-supporting structure is as- |

sumed.

'The.methodiof,using the equations and charts developed here will

be illustrated by an example in the following section.

7.5 SAMPLE<SOLDTION-0F-A MULTIwSPAN.GABLED,FRAME
| ‘(a),Designt
To illustrate.the use of the rgsults of the development
f&r multi-span gabled frames, a.samﬁle frame will.be'designéd
Aand the required hinge rotation caléulaﬁeda The example to
be discussed will be the.symmetrica}_thDSPan_frameushown in
mFig..7,18; The-inforﬁation'to be uéed.in the design part of .

the problem is as follows:

Left.SEan _ Right Span

a1=b1= 0.2 al=bl=.0m2
b/a =1.0 " b/a = 1.0
L; =L : .L2 =L
A =0.1 Ay =1

= 7. =
Dl = 7 - .D2 - 0
w = 2k/ft w = 2k/ft

L =50 ft L 50 ft
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o, = 33 ksi o, = 33 ksi

-Because-of the -symmetry of the frame and -the -fact .that .the.wind
might blow from either direction, the same Mp value will be assumed for

each span.

Without further-disecussion; it will be stated-that the results

of a design following'the.methods of reference 10 are as follows:

Left;SEan Right»SEan Center Column
D, =0.032 A, =0.032

EPZ = 0.0463 §22 = 0.0463

wL ™ - wL

@ = 0.342 o =0.381

16 WF 50 16 WF 50 14 WF 30%

Z =92.7 in3 . Z.=92.7 in3 Z=47.1

I = 655.4 in% | I.=655.4 in% I = 289.6 in*

Because the section modulus of 92mz-in3‘aqtually supplied is
greater than the value of'84.2£whichbwould be requiied to support .a de-
-sign full load 6f 2 kips éer foot, this structure would actually require
,2,20'kips'pér foot to form a méchanism° The hinge angles to be deter-

mined will be based on the assumption that the frame will be loaded to

*Columns were checked for resistance to. buckling at maximum load’ by
methods of Ref. 6.
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~its true ultimate load. Therefore, the moment diagram to be considered

will be that in Fig. 7.19.

(b) Calculation‘of Deflection and Determination of Self-Sup-

~

A pp:tingJSubassemblgge
Next, it must be determined which is the self-supparts=
ing subassemblage. By entering Fig. 7.10 with the appropriate

-values of A and D, the following values of?&F/GPLz are obtained;**.

Leftisgan Right Span

o] ' 5} S

aﬂ .= 0.141 a§~2 = 0,129
pL2 pL

To these 'graphic' values of the deflection must be added the

"correction terms of Eqs (7.27):

.Correction = l. 2 EE 'EQL 1,2 ‘EQ -1
j 3% oM 3 Iy

I 2
+ 2.8 (—2 - 1) YL~ (A-D)
IL My
For the left span, there is no external moment applied to the
left knee, apd,the_column_and,rafter have .equal moments of inertia, so the
correct@ons equal zero, Therefore, the deflection of the lée kneé (E) of

the left span is:
B = 0.141 @32 _ , ... (7.62)
Fk Though the joints df“theAmulti-span'frame are labelled A through K,

‘the subscripts for 3 & H to be used here will be those of the primary o
_subassemblage. in order to indicate which graph or équation is used. _.-—~
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" For the'fight.span, the corrections w%ll apply because there is an exe
ternal moment —Mp at the left knee, ana the left column differs from

the rafter. Substituting into -the correction terms of Eq. (7027) the

following results are obtained:

1 (655.47.1n%) 1 655. 4 )
- £ (0.2)2 2= “ - 1. -z 2 -1
3 0D 89,6 1y (7100 T3 (0.7 (28906
1, 655.4 0.032
+ 1 2(655.4 ) ( )
g (0-2) (289.6 1) 0.0463
= 0.0192

This correction added.toﬂ;he "graphic'" value gives for a final value of

the deflection of the lee knee (J) of the right .spans

SE = 0.148 ¢PL2 | : «..(7.63)

Considering the structure as a whole, equation (7.63) gives Ehe
-deflectipn of the lee knee (J) if tﬁe.zighg_hand span is the éelf-suppbrt-
ing subassemblage. ;Equationvk7w62) gives.the deflegtion‘of the center
“'coiumnAtop (E) if the lgig span is the self»supporting.subassemblage. To
detqrmine.which_is the t?ue=se1f=subporting_span,,it is next necessary to
' defgrminé‘the deflection of the lee knee (J) assuming the.giggg span to
be ﬁoﬁ-selffsupporting and compare this with Eq. (7.63). This is done
by.usiﬁg the.deflection of 0.141 @512 of the center column as the Ag term
~in Eq. (7.56) and.&pplying,this»equationwto~the right span. A ''graphic"
value of ag/prz-= 0.018 is obtained from Fig. 7.16 and to it are added

‘the following correctjion terms from Eq. (7;56):
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2 Io - 1 Io A‘WLZ' o
+3ab(i—L-l T_—O‘Ts‘ab<'§=-l)—.ﬁ;(AwD) T:a

0 0.141(1.391) , 2 2 (655.4) (-1.00) 0.391
+ = (0.2)

0.609 3 (289.6) 0.609

2 'y (655.4 0.391
+ = . — -1
73002 (28906- -)~0@609

L (o2 [655:4 _ ;) (0.032) 0.391
3492 (2896 (0.0463) 0.609

= 0.300

This correction added to .the ''graphic" value of 0.018 gives the

fpllowing result for the deflection of the lee knee (J):...

Y

&g = 0.318 ¢pL2 : : ,n,(7§64)

The -deflection of knee (J) is 0.318 ¢pL2.when_the left span is assumed to
be-self—supporting,as against only 0.148 ¢p_2 when the right span is as-
sumed to be self-supporting. The conclusion is that the left span is'.the

self-supporting: span.

(c) Calculation of Hinge Angle for Self-supporting Subassemblage

It is then possible to complete the calculations of
hinge angles for both spans. The hinge angle at the center

top is obtained from the HE/¢pL'Value of Fig., 7.9 and frdm
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the corrections of Eq. (7.20).

Hg
== (Graphic) = 0.786
GpL

The corrections are:

. Substitution of numerical values into the correctioms gives:

0.1 (655.4) (=0,654)
073 (0.2 3557%)

o1 655.4 _ _
3 (0.2) ( 1.0 + 22522 .2) + 0

= +.0.0145

The final sum of the graphic and correction terms is the hinge angle at

.the centef column top (E).

Hy o ' '
E = 0.800 ¢pL oo (7.65)

i

(d) Calculation of Hinge Angles for Non-self-supporting

. Subassemblage.

The non-self-supporting right-hand subassemblage will

have hinge angles at the lee knee (J) and in the windward rafter
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Then,

~110

(G). The magnitudes of these hinge angles will be obtained

H

from the "E and BF values of the basic non~self-supporting

subassemblage.  Each of these will require the use of:a Ag

value equal to the Oal4lv¢pL value for the deflection of the

center knee given by.Eq. (7962)n

From Fig. 7.12 is obtained a vélue of 0.058 ¢pL_for EE,
and substitution of the appropriate data in the correction

terms of ‘Eq. (7.48) results in a total correction of 1.371

PsL. \
H (l+22m)
= ag (Graphic) + =" !;_;fé_—
pL , a2 (1=
+1 oy To Mo 2 1;% Mm
b

FEES) TS

' 1 I, )
-zal=-1
3 (IL

=0.058 + 1.612 - 0.291 - 0

+ 0.0501L -0

= 1.429 ¢ ... (7.66)
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This is.the hinge angle .at- the lee knee (J)y. It is noted that the pre-
dominant factor in this summation is the- Ac term. This was alse.true in
the éase,qf the horizontal deflection of knee (J),'(qu 7.64) , and for
every other function so far calculated in examples of non-self-support-

ing subassemblages.

Similarly, the hinge angle in the windward rafter (G) of the
right sp#n may be obtained by combin§ng,a "graphic'" value of Hp equal to
0f390 OPL as taken from Fig. 7.13 wiph 0.390 pr as taken from Fig. 7.13
with{the.sum of ;orrection terms totalling -1.001 QPL_as calculated from

Eq. (7.49). ‘The hinge angle in the windward rafter at (G) is:
1'{_1= =-0.611 9 L . | ... (7.67)

The-negétivewsign-for Hp js a remnant of the slopewdeflection‘equatibns
ugéd.iﬁ deriQing,the f&rmulas and may be construed as indicating‘thatlfhe
ﬁlésﬁic‘hinge has tension on the inside of the frame.
| (e)}Disqussion. |
| All hinge angles and deflections have been determingd,'
and putting them in_summa;y form will make it possible to coﬁe

pare -the results.
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268.3
HINGE - -ANGLES
? Left Span uRight-Spén
Center Windward Lee Knee
.Column Top Rafter
(E) (6 ()
Equation 0.8Q0 ¢pL 0.611 ¢pL 1.429 ¢pL
_Radians 099747 0.0571 0.1333
Degrees 4, 28° 3,280 7.640
HORIZONTAL .DEFLECTIONS OF COLUMNS
Left Cémter Hgight
:Column 'Column - Column
(B) (E) (3)
iEquatign 090636 ¢pL2 0.141 ¢pL2 0°318'¢pL2
Inches 3.54 7.90 17.8

The quantities substituted for ¢pL.in order to obtain

dimenSional values of the hinge angles and deflections are.as follows:

_ O9yZL

¢ = MDL

pL ~ "EI

3o

EI

_.33:ksi x 92.7 in3 x 600 in

30 x 103 ksi x 655.4 in%

= 0.0934 radians

- Alsoy ¢pL2;f.56.l inches.
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The relative magnitude of the hinge angles tabulated is consis-
tent,withwéheiorder'of formation of plastic hinges calculated ﬁor‘twq
framesApréviouslyJtestediifThat is:,the greatest hinge angle and the first
plastic hinge -generally éorm at the leeward knee.  Thennext hinge in a
mgltispan'ffame,WOuld probably form at the lee knee of the span next to
,éhe leeward s£an. Following would be a hinge in the ﬁindward,rafter of
a ﬂée.span;f;nd_finally'the last hinge would form in the windward féftef

of the windward span. Ih_this-example, the last hinge would form at joint

C, with a hinge angle required of zero at reaching ultimate load.

By comparing Eq. (7.66) with Eq. (7.55) it is seen .that the
;ggéer of magnitude‘of hinge angles for the multi-span frame is greater
than that for the single .span frame,'_This increased rotation capacity —

requirement may, be regarded .as the 'penalty' paid to gain the benefits
q ; , g

of redistribution of moment realized as a result of continuity.

From a practical standpoint, deflections at.maximqm load of 8
and 18 inches might seem excessive at first sight., However, it must be

remembe:edwthgﬁ thesefare ultimate load deflections and not:working‘lgad

.;ﬁhe4ca1Culation.qf deflections at working load may prove to
be quite.£edious. .Fortunately, the theoretical load-deflection cur%é;is
available for a .two-span gabled frame which has been tested. 3 ‘ Though _

- this frame had fixed bases, the curve will serve to illustrate-qualitér
'tively‘thempoint in .question. Fig..7.20 shows a nonmdimensionaliload~
_qéflect;on curve ﬁfgfhe two span frame tested. The deflection at mékimum_

load, or at formation of the last plastic hinge is shown as about 0¢19P¥3/EI.

,A,poésible,range of plastic design working loads ranging from 50 to 71% of
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the maximuym load is also shown. (This is an extreme rarge allowing for
increase in loads due to wind load in one direction, and a very conser-
vative factor for static loads in the other direction;) The deflections
for the working range are from 0.02 to 0,03PL3/EI, or one-ninth to one-
sixth of the maximum load deflections. It is expected that even with
pinned bases, the deflections at working loads would follow a pattern

similar to this.

7.6 SUMMARY

This chapter extends the work on the rotation capacity re-
quirements for multi-span partal frames to cover the case of gabled
roofs. Introduced here is an additional type of mechanism possible only
when a subassemblage having a gabled roof is loaded heavily from both
sides to such an extent that negative work is done by the vertical loads.

This type of mechanism is designated a ''reverse' mechanism.

The résults of the chapter are summarized as follows:

(1) rBemgéns-for four possible mechanisms were determined By
gquat@gg&;laﬁfié Mnge moments, and domains for four posiible lacations -
" of the first plastic hinge in a subassemblage were determined by equa-
ting exp;essions for elastic moments. Combining these sets of domains
resulted in eight cases of possible mechanisms and locations of first

plastic hinge. (Fig. 7.6).

(2) .Equations for the hinge angles and deflections for all eight
cases were derived for self-supporting subassemblages, and the portions

of these equations which could be shown in graphical form were plotted
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for a_ﬁamily,of.subassemblages. (Eq..7?20_through.7e47) (Fig. 739.to

7.11).

(3) For a nonfself-supporting'subassemblage, a .determination as to
.which is the first . and the last plastic hinge is not pertinent informa-
tion, so only consideration .of the four possib;elmechanisms is necessary.
Equations for the hinge.angles.aﬁd deflections for all four cases were
derived, and ''graphic" portions of these equations were also plotted

for a family of subassemblages. (Eq° 7.48 to 7.61) (Fig° 7.12 to 7.17).

(4) Allveqﬁations for hinge angles and deflections contained . terms
which_cofrected_for differences in moment of-inertiavof_columns and raft-
ers,;and_for the effects of adjacent .spans on moments,at.theAknees. In
using graphs for the :solution of hinge angle problems, these corrections

must be calculated and added to the graphic values when applicable,

(5) .Equations for functions of a non-self-supporting subassemblage
also included_a term /A, the -deflection of the windward knee, This was
theiéontiolling,boundary,conditionxfor.a.nonfselfvsupporting.subassem—
blagg, and is actually determined in a given structure by .the deflection

of the self-supporting span.

k6) The method of solving multi-span gabled frames proved to.be.the
.same -as that .established for multi-span flat-roofed frames. The steps
‘are.as foildws: First, assume each span in turn to be the self-supporting
:spaniand_céiculate.thezcorresponding_horizontalvdeflection; the correct
.assumption will be indicated by the largest deflection so computed.

'.Second, having determined the self-supporting span, calculate the ‘hinge
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angles for that span using the "self-supporting' graphs ahd correction
equations, and calculate .the hinge angles for all .other spans using,the'

‘'non-self-supporting' graphs and appropriate correction equations.

(7) .An example of a symmetrical two span gabled frame was
'solved;to indicate the use of éhé charts and the equations. The ex-~
ample showed that the order of magnitude of hinge angles calculated
was larger than thétvcalculqtedlfor_single.span frames. This is not
.unexpected in view of the fact .that more.extensiVe redistribution of

moment is likely in these more highly redundant structures.

(8) A complete theoretical load-deflection curve for a .two-span
gabled frame calculated in connection with a test progrém was compared
,with_thefagflections of thé frame used in the example. This showed
_that.fhouéh célcuiated deflections at maximum load may be large, the
-gefleétions at ‘working loads will probably remain gé% the elastic range,
:and_thus will probablylbe small fractions of the maximum load.&efleq;
tions. -Tbis~leads to the c;nclusionhthat.there shéqld be no reason why
deflections of structures designed by plastic methods_could not bz
either caléulated or neglected with the same reservations as are now

made in elastic analysis.
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‘8. SUMMARY AND CONCLUSTIONS

."v This dissertation discﬁSses the problam of EEQUited rotation

“as it affects the application“of plastic‘analysig to'structurél design.
,Botation‘caphcity has been defined -as the ability of a ﬁlastic.hinge to
rotate at or near the mé#im@m moment. Iﬁ order thst redistribution of
mpmeﬁt may,éﬁéﬁriand_allowhé‘étxuéfure-to reach its computeé fuil'plastic
load, t&e first plasticAEinges f&fming in an indeterminate sfructuré-ate
;eﬁﬁired.éo‘rotate through some hinge anglé; Methods are preéented for
'c31CM1atingbthe‘améunt'Of hinge rotation required at plastic hinges in a
vgiyen structure. These required hinge angles may then be compared with
"the-adtual rotation capacity of structural elements as determiﬁed,ﬁrom

" .tests or from theoretical analyses.

" The study made here is directed toward the determination of
ithé'ramaﬁiau_caﬁacity requirements fér_mmltiéspan,gabled porﬁa{.fpames
vwith.pinned bases. _In solving the-probiem, advantage is taken of the
'.fécf ﬁhat'pléstic agalysis and design of multi-span frames may be ac-

: ch&plishgd by separation.of.theusgiucture inpo'singlemSPanveleﬁenﬁs
éalled.subaSS&mblages; Hinge angles and deflectipns at mltimaté iﬁéd  -
aresdetermined in general teymé'foi subassemblages, and methogs for'dem‘
'éermining,the interaction of the several,sﬁﬁasséﬁblages thch_make up a
‘'structure are pre&éﬁteén .As a specig}.casesﬂthe bebavior of=a‘siuglé :
~sn5é§semblage=repfé$énts the bebavior of a simgle span gabled portal

frame,



Certain of the principles and results of this required rotation
| stydy apply to all the problems in fequited ragagion covered. These .are

as folloﬁé:

(1) .For any suba§semblage or multi-span beam two or more possible
.mechaniéqs may fofm depending on the loading and geometry of the str&c--
‘ture. By plastic.analysié, equations relating the applied load to the
required plastic hinge moment for each mechanism may be derived, and from
them, expressions for HP/QLZ may be.obtained in gegeral.terms relating the
geometry and loading. Combining in pairs the eqﬁatipns for Mp/sz of dif-
ferent mechanisms results in expfessions‘defining the combinations of
loading and geometry for which both of a pair of meéchanisms will form
simultaneously. Graphs of'these expressions may be plotted to separate
the domains_of structutalvgeOmetr& and loading in which each possible

mechanism will form. (For examplé, see Fig. 4.2 or 7.2).

{(2) For any stfucture'or subassemblage, one of two ér,more plastic
hinges may be the first to form depending on‘fhe loading éﬁd geometry of
the structure. By elastic analysis méthods, e#préssidné“fo? the elastic
moment at eéch.hinge 1ocatioﬁ may bg.derived in general terms. The largest
.elastiC'momept‘will occur at the loéation of the first plastic ﬁinge,.
4Eqﬁating4the.expressions for elastic moments in pairs résults inaequations
.for the-loading,and geometry for which each of a pair of first plastic
hinges will form Simultanééﬁsly; Graphs of these,expreésioﬁs may be plot-
ted to separate the domains of st#pgtu;al geometry and loading-in'ﬁhich
each_possible élastic hinge will be fifst.to form. . (For example, see |

Fig. 4.3 0or 7.4).
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(3) .Combining the -graphs for possible mechanisms and first plastic
hinges results.invan additional graph for the domains defining the rota-
tion Eapacity problem. In each of these domains, the structure or sub-
ﬁssgmblage will form a definite mecﬁanism.with the first plastic hinge
at a given point.  Location of the structure or subassemblage in its
Propervdomain gives the key to the use of the proper boumdary cemditions
in deriviqg~rotationgeQuationsj or indicates the proper hinge angle

gquationS[to use .if they are already derivad. ({(See Fig. 4.4 or 7.6)

(4) Hinge angles ana deflecgions at maximum load are calculated for
any structure or spbassemblagé by using slope deflection equations and
applying?boUndary ;onditions which re;ognize the lack of continuity at
allrpiastic hinges except the las;vto form. By using the slope-deflec-
tion equations; the assumption is implicit that all members are perfectly
elastic except ét-plastic hinges which are implied to be of zero length.
These assumptions neglect a part.of the deflections and rotations result-.
ing from the true yielding process of steel, but the error is usually

small.
. 2

(5) For applications to numerical problems, deflections and hinge
angles may be determined directly from the equations derived, or graphs

covering selected ranges of variables may be prepared and used,

‘Certain additional principles and results of this study apply
only to the more compiicated problems of multi-span portal frames. These

are summariZed in the following paragraphs.
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(6) At maximum load, but just before the entire structure begins
to defleét as a mechanism; continuity exists at the point where the
 last plastic hinge is about to form. All other plaztic hinges will
display a discontinuity of slope across the hinges and will have
reached the stage where-théy could rotate Without'addition of moment.
.Since -the last plastic hinge forms at only ome point for .the general
LmultiFspankrigid,frame, only one subassemblage may commdin this con=~
tinuity. The remaining subassemblages will contain two plastic hinges
and would not be able to stand by themselves if set apart as single sub-
assemblages. The subasgémbiages with two plastic hinges are called non-
self-supporting plastic hingesﬁ The one subassemblage which cond8ins
the continuity at the location of the eventual last plastic hinge is
called a self-supporting subassemblage. (Special cases exist which
violate.the-létter of these statemen@é,_but do nmot alter the method of
solution of the problem. First of these cases is the symmetrical case
in wyich two eqdivalent plastic hinges form simultaneously, either of
which would be sufficient to fulfill the conditions causing a mechan-
ism. A second special case is that case in which by mere ch&ncé two or
more of the last hinges will form simultaneously. This second case
results in a required hinge angle of zero at all plastic hinges forming

 simnltangQus1y withuthe‘last hinge.)

(7) ’Equatiéns for hinge angles and deflections of self-supporting
subéssemﬁlages-are derived by the same methods as used for single :span
frames. However, the resulting equations contain terms'which correct

for differences in moment of inertia of the rolled sectioms in the
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columns and rafter, and for the effects of adjoining spans on the moments

at the knees.

(8) 1In deriving equations for hinge angles émdvdeflections of non-
self-supporting subassemblages, it is found that with two plastic hinges
having freedom to rotate without additional moméntﬂvthere are insufficient
independent boundary conditions to solve the ?roblemo The required ad-
ditional boundary condition is obtained by setting the deflection of the
windward knee of a non-self-supporting subassemblage equal to the deflec-~

tion determined by the adjoining self-supporting subassemblage.

(Q) It is necessary to determine which is the last plastic hinge in
order to calculate the correct hinge angles for a mslti-span frame, If
this were done by making.a»step=byfstep amalysis of the frame up to max-
Amum load, the process would be too complicated. Also, ﬁnly_&he'defleg=
tions and rotations at ultimate load are actually required. A trial-and-
error method of determining the last plastic hinge is therefotefused, .Each
span in turn is assumed .to be the self-supporting span, an@ the correspond-
ing;horizontal deflection is calculated. The_correct;assumption_is-in~
dicated by,the:largest deflection of the total structure so coﬁputed.
‘:Knowing,which are self-supporting and-nonwselfmsupporting_subassemblages
makes it possible to use the proper graphs or equatioms for each span in

a given problem.

. Specific examples using typical structures were designed .and the
hinge ‘angles and deflections were calculated to illustrate the use of the

methods presented. These examples were:
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(a) Three-span ?ontinuous beam (Chap. 4, page 25).
(b) Flatmroofedlsingle span frame (Chap. 5, page 50).
(;) .Single~span gabled frame (Chap. 5, page 33).
(d) Flat-roofed multi-span frame (Chap. 6, page 77).

(e) Multi-span gabled frame (Chap. 7, page 124).

Detailed summaries of the results for each type of structure

are presented at the end of the appropriate chapters.

As a result of the derivations and numerical calculations made in

this dissertation, the following conclusions were reached:

(10) The hinge rotations required in typical structures studies were
i

of the same order of magnitude as rotations which have been measured in

tests of rigid frames and corner connections.

(11) The hinge angles required for multi-span frames are of larger
magnitude than those required for single-span frames. This must be ex~
pected in view of the more extensive redistribution of moment likely ip

these more highly redundant structures.

(12) The question of whether or not to calculate deflections and
rotations arises in structural design. In present elastic methods of
design, engineers find that with a certain amount of experience and use
of judgement, the calculation of deflections may be omitted without danger
.of Jhaving excessive deflections of the erected structure for many average
cases. This saves the .spending of many unnecessary hours makinglcompli-

cated calculations of deflections.
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Admittedly, the calculation of deflections at ultimate load is
just as,cbmpiicated as the calculation of deflections in the elastic range
when both calculations start with the moment diagram. (However the moment
-diagram:is easier to obtain in the plastic range.) Iﬁ is, therefore, de~
sirable to omit the_calculation,of deflections in structures designed by
plastic analysis.  All theor;tical and experimental evidence disclosed
to date suggests thaﬁ for plastic design of many average structures, the
calculation of deflections may safely be omitted without any more danger
of excessive deflections than is experienced for comparable structures
designed elastically. The types of structures for which deflection cal-

culations may be omitted will be approximately the same for both elastic

and plastic analysis.

" If knowledge of the deflection at workimg load is necessary
for a given case, it will be necessary to make an elastic analysis once

the members have been selected by plastic design.
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NOMENCLATURE

non-dimensional parameter relating the horizontal force
acting .on a structure (or the "overturming' moment of one
part of a structure on the adjacent part) to the vertical
loading. 1It.is assumed that "A" results in positive work
being done-as the structure fails.

non-dimensional parameter relating the horizontal resisting
force or '"over turning'' moment acting on a structure to its
vertical loading. It is assumed that 'D" results in nega-
tive work being done .as the structure fails.

Young's modulus of elasticity

load factor of safety

dimensionless parameter in elastic moment equation
dimensionless parameter in elastic momert equation
hinge .angle

moment of inertia of cross section

moment of inertia of frame rafter

moment of inertia of left column

moment of inertia of right column’

dimensionless parameter in elastic moment .equations

.span length

moment

moment .at far end of member
moment at near end of member
plastic hinge moment
external moment at left knee

external moment -at right knee

.dimensionless parameter in elastic moment equations

concentrated horizontal load
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rotation of a chprd between ends of a member
fully plastic section modulus
ratio of.cslumn height to frame span
pitch, ratio of.frame.rise.go_span
length of a member ox portion:bf a member (variable)

horizontal wind pressure per unit area

.uniformly distributed vertical roof load per umnit area

bent spacing
uniformly distributed . load per unit lemgth of span
distance . along member

deflection of neutral axis of a member from the original
straight line :

ratio of side span unit load to main span unit load in

beam calculations

non~-dimensional parameter defining the distance to the
location of the plastic hinge in the rafter of a structure

ratio of side span length to main span length in beam
calculations

deflection
strain

ratio of distance to plastic hinge in side span of a beam

.to side span length

slope or rotation of a member from undeformed shape
radius of curvature of member

stress

yield stress of steel

.curvature-of member

curvature parameter M, / EI
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A ~ virtual displa
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cement

ion Equations:

57‘Suhsczig;s-in Slgpeébeflect
o :

' Single-letter -—-

Double letter -

First letter --

. - Second 1etterl-—

joint
member
near end
far end

Important Functions for Frames or Subassemblages:

SC horizontai defle;tion 6fvwindwar& knee
%p | | vertiq§1 défﬂﬂ:tQi1of ridge or center of flat roof
8g hor;zontal deflection of lee knee
AC. 'hérfzoptal'deflecgion of windward knee of non—sélf-
: supporting subassemblage.
..HC : hingé\angle in windward kneé
Wy hinge angle at ridge |
HE 3 hinge’angle.in iee‘knee

HF hinge angle in windward rafter

hefinitions:

Plastic Hinge

A.yielded section of a beam which acts as if

it were hinged, except tpat it has a constant

Hinge-Angle

restraining moment.

Thé required rotation of a given plastic:
hinge in a structure that is necessary to
assure that the structure reaches the ultimate

- load.

~Rotation -Capacity

_Héchanism

The ability of a structural member to rotate -
at near-maximum moment. '

A system of members (and/or segments df
members) that can deform at comstant load.
It is used in the special sense that all
hinges are plastic hinges (except pin ends).



268.3

Plastification
of cross section

Redistribution
of Moment

Subéssemblage

Non~s§1f supporting
subassemblage

_Self-supperting
subassemblage

-127

The development. of full plastic yield
of the cross section.

A process in which plastic hinges form
successively in a redundant structure
until the ultimate load of the structure
is ‘reached. In the process, a new dis-
tribution of moments is achieved in
which portions of the structure which
are less highly-stressed in the elastic
state subsequently reach the plastic
hinge value. Redistribution is accom-
plished by rotation through the hinge
angle of earlier-formed plastic hinges.

A single-span element into which a
multi-span frame may be separated for
the purpose of simplification of design.

‘A subassemblage in which all plastic

hinges are formed before the total
structure has reached waximum load.

It would not be able to stand without
the support of an adjacent suhassemblage.

The one subassemblage in a multi-span
structure which has continuity at its
last plastic hinge until the maximum
load of the total structure is reached.
If it were set apart as a free body with
its complete system of forces it would
be able to stand.
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-APPENDTIX A

EQUATIONS FOR THREE~SPAN

BEAM
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" PLASTIC HINGE MOMENTS

MainvSpan Mechanism

2
’ ,=Y_L_.
MP""1'6

.”‘,3(;4.‘,1)“

'| - Side:Span Mechanism

- au? -
M = 11.66 NS
LIMITS I

- Between Main Span and Side Span Mechanisms

ap? = 0.728

von (4,4)

Between First Hinge at B and E

415 .

[

voo(4.8)

Betwegn‘First.Hinge at B and F

. (3@33 + QQQ?-- 1)2'2 8

. (4.9)

«p2(2p + 3) (ap>+1)

HINGE - ANGLES

Main Span Mechanism -~ First Hingeiat;sﬁpport B

H -
B2 3. 1..1
7 3%P" -3B+g

voo(4.24)
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Main.Span_Mechanism -- First Hinge in .Span at E

Mg 1 4

2
. = 2 - — o e— 3
] . [0
g 3°P"3°3F

veo(£.18)

Sidé;Span_Mechanism == First Hinge at Support B

H
B =0.1524p - 1 +0.486
.GPL 2 & ﬁ‘

oo (4.29)

.Side.Span.Meéhanism -= First Hingé in Span at F

. |
£ = 0.368p - 1.207 + 22223

qu o 32

’

e (6.30)




1 268.3 -133

APPENDIX B

EQUAIIONSIFOR SINGLE SPAN FRAMES WITH FLAT ROOFS

PLASTIC HINGE MOMENTS

Composite Mechanism
MP 1
e (A*l)z
a2 16 A

=l-A .
2 oo (5.2)

Panel Mechanism

M _A

w2 b o | cea(5.1)

. LIMITS

Between Panel and.Composit%xMechanism

A=1 ' vee(5.3)

‘Bg;ween:Firét,Plastic Hinge at Lee Knee E and in Beam at F

A=1-2\_-1 | .
. ' 2a + 3 : ce0(5.10)

__HINGE - ANGLES
.Case I.Composite Mechanism :~- First Hinge at Lee Knee E

He ‘w12 .
el 1, .(%J,%a) c1-2a
0L M u cee(5.20)

" Case Ila, Panei_Mechanism-au First Hinge at Lee Knee E

B o_1
qu ‘3A O. oo (5n 29)
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Case II. Composite Mechanism ~- First Hinge in Beaw at F

He w21 1 1 2
7o |12 + A 4 +‘g a w 1= 3 8

pL  p .. (5.24)

.DEFLECTIONS -~ LEE KNEE

' Case I.

L ]
GE = g YL [E%+A(%+%a)} =a[§+g~ua
pLz % - .. .{5.38)
Case Ia.
| 5
¢52=31-a (1+_-11;)+%a2 |
pL 0s0(5.39)
,Case?II1

-DEFLECTIONS -~ WINDWARD KNEE

All cases .

¢ = O cee(5.41)

.DEFLECTIONS -- CENTER OF BEAM

vCéSe I.
8 L2 o 1 '
GD 2 =.;4L (324* 3‘5’4) ] , o
pL p \ | v (5.642).
Case Ia.
S _ .5

o2 964 o o e (5.43)
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Ca.seill°
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APP E NDILIX C
EQUATIONS FOR SINGLE~-SPAN GABLED FRAMES
PLASTIC HINGE MOMENTS
Composiﬁe Mechanism
_’fp_ PR REEOICO]
WL 4 1 +.Ea,
. By -1 5 - . 2 v g b Thmn— ]
a 2[\]1-4} (1 +z),- ] 1.] ..for 2>0
abk ‘ ' ,
. 00‘(502)
-Panel ﬁeegen;sm’.
W2 b .oo(5.1)
LIHITS
Between Gemposite Mechanism and Panel Mechanism
pe =L
1+ 2 '
: a noo(_503)
Between First Hinge at Lee Knee E and Windward Knee .C
LBt 5§
TR -
e a' a o.(508)

Between First Hinge at Lee Knee E and in Windward Rafter at F

_ : 2
.o---Az'(,1.+2.r_+'l_.,.b£,1a2v -+.A(2»-E_F‘m 2F+P.G-+_1_LF3)
a - 4 2 : 2 232

a a

+(1-bg- 2g+1b2g2
a’ Y

ve(5.9)
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where:.

N (T NPT TS
' % |-1+4b-5 -7 Tta a2
' b

N

'8+5‘3
. a

.. (5.7)

' HINGE ANGLBS

‘Case I, Composite Hechanism -sFirst .Hinge at Lee Knee E ‘ :
B = w2 175 b 1,1b b 1b2
.v-p‘Lj'd"“* W, (T2 96a" "\4 B8a l+a+32

-2aviauml,
T | e (5,19

:.q.a;ta}e 1a. '.Panel":uéchan;a'm - ﬁFirst’.:_lii_i_f;_zgé at Lee Knee E

.o o(5,28)

1 Caéé AII . L Couposite alléchanism - .vFi.rsft',' Hinge in Windward Rafter at F

. H 2 ‘ 2

) 1 f‘—wa 1, 5b ( lb) |14k 1 B
o & — 1+4b =t =22 A== 143 4+

; ?Plg (1 +2§a) | | Mp [12 96 a 4 8a a’3 2

w2 , | | |
%o - - .ea(5.23)

~ & a =

a

N * ) X
- Y-

-

_-Case IIa. Panel Mecha.nism - First ‘Hinge at Windward Knee .C
H — E 2
_._(_:_ —5 J1[L. _5Db 1b 15b

e, " q““*" . A(S *u a) (z at3 z)

...(5.30)
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. DEFLECTIONS -- LEE KNEE

Case 1I.

g ‘ 2 l o ' 1 2
e = "l 2 )wke | L .5 b, afl,1b -l 4+3b 1B
12,1 2 w2 o
atee TR ve.(5.35)
Case la.
O o eiranldifls Sk}, (L_1p_ 12}, 1.2
UoL2 A\6 " 24 a 6 4a 3.2 3 S
' «.+(5.45)
Case I1. - _ _
.S-E—-a 1 a“l1+4b2' \._]._‘_’__1.__1_:__&»_*.-_1_])_2_& ==EI_-=E _J.,_l+_l'.§a
-..GPLZ (1+2l)“) o 2 4 a -6 a '?Mp 24 1297 32 a
: a’ ’ : : I . ) .
| 2
1. .1b 1 22 1 CwLZ 1 5
: -0.0(5036)
;Case.IIa::.“
| 1
+ 3 a? :
'5.(5.46)

Case . o o ‘ ‘
GPLZ'?,G ‘1+4b DTN PN Il TS

%] -3 a® .+ 6 @ A

vr . (5.47)
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Cage Ia. . | |

‘| gase Iia.

B, ‘ t.1b,1020 Al sp 1
Y, =8 1+4b d LR - ESTXE - -4 Ao pite o + = 2
GpLz N '%. 4a 3 21 A6 2a 37
. ’ N Gela (5. 50)
DEFLECTIONS -- RIDGE
Case I, i : .
8 - - 2 K ’” ’
D 3 ) uL ] 1 1 1 b] _
—-—-='\|1+4b I +355Al 18 Y12
U 12 M, [m 32 ] [8 12 a v (5.37)
C#se‘Ia.
0z " “1*“" P& " T2 a - ' o
P . oo .(5.51)
Case II. “ : '
Bp 1" w1~.2 5 ?1 (’ 1 1 )-
= ‘\'1-&-41:2 L R R
quZ - zfa ) { g M 384 24 32 7 8 |
w

12 M, | (s.52)
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Case Ila.

5 b
a

D )52
7..° \E,%bz 96A
PL” o0 £5.53)
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"APPENDIX D

f

EQUATIONS FOR MULTI-SPAN FRAMES WITH FLAI”ROOFS

_PLASTIC HINGE MOMENTS

Composite Méchdnism
TEL 1 ' 2 )

T = Tg (ATD-+1) i

wL .

. 1-A+D _
—2 o ve.(6.1)

!

 ‘Pane1_Mechanism

’fz_a-}; (A-D) - - {

WLZ L) -(6-2)
- LIMITS
Between Composite and:Panel Mechanisms

A-D=l " L 6.3

BétW¢en,First.P1astic Hinge at Lee Knee:E and in Beam at F.

:A-D=l - '\F . g
2 \zars - ©...(6.5)

HINGE : ANGLES --.SELF-SUPPORTING :SUBASSEMBLACE

| Case I. Composite Mechanism -+ First Hinge at Leé Knee E

v

H 2 : _ \
E wL 1 1,1 2
1 DoMa 1 LM
3 a-_L Mp 3 a I Mp (Corrections)
o1 [t Eﬁ. 1 (1o WL A T
-3 "GL T 2) MG a(IL ) M L .++(6.6)
.| Case la. Panel Methanism,F-mgief Hinge at Lee Knee E
.. : ' + First ,
Hg 1

0. 3D




268".':3; N
o L, ol L ol
¥ % 2 ;‘9 ‘ %‘g) £6.10)
: T, "R o o gt 4

Case 1I. Composite Mechanism =~ First Hinge in Peam at F

HFWLZH 11 2
5;; =-Mp 2t {AwD) + ¢ ~ 1.~ 3a

21, oMo 1 Lo Mg
o , lo ) 1 ( o ) wl,
-2 +=2 2] +2a[=2.1) {A-D) S
3 (IL Ip 6 \IL M, .ea(6.9)
.DEFLECTIONS =- LEE KNEE' -- SELF-SUPPORTING -SUBASSEMBLAGE
_Case I.
OF wlL2 S 1)
= g i)’ - 1T L] g + =
g..2 a Mp 24'*' (A- D) 6 + 6 a a 3 a
pL . : .
I y —
1,25 M
3. %
1 /T 2
=gt 1) +Fat|l— 1) " QA»D) »
3 I 6 Iy, M, woo(6.11)
Case Ia. -
B ,
E 1 ( 1 ) L1 1 .2
e e | 2a ) 32 g 4=
L2 .1.9. Yo
3T L%
+L 2 Lo o
3 Ip . (6.12)

B i1, 2 w11 (11 1
P2 TR 23 A e aal a5 1y @t (AD) {750 g
Lo
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1. 1 1 2 N
2 3 I, I 6 1, M y
f12(% ) | |
38 \r, ™ oo (6.13)
R .
DEFLECTIONS ~- WINDWARD KNEE
T
5¢ = Bg ve (6.14)
‘DEFLECTIONS ~- CENTER OF BEAM »
SELF-SUPPORTING ‘SUBASSEMBLAGE
Case I?
8 12 1 1
¢D 2 = ﬁ '324 + 33 (AD) 8 '
pL: P |~ : ' .+5(6.15)
' No corx
Case 1a;
% 1 5 , W
UpL2 ~ (A-D) 96 | ... (6.16)
Neo corr.
Case 1Il.
5 2 ’ T1 .
D wL 3 1 1 \ 1 1 I
= = == o + (A-D) (:‘ = e “?R:) b= e e
| 012 M, [384 24 C\32 0 8% Tz l g 27 3
+ Lo o Mo +L 1o "R
67 I M, 6 Ip M,
I I I 2
+lyg (240 5. (20 jult
6 ( L IR 2\1p " ! M, (A-T) e (6.17)

'HINGE 'ANGLES -~ NON-SELF-SUPPORTING SUBASSEMBLAGE

Cases 1 & II.

Hg 1 w2l 1 1 L, L1 1
Gop = Ty § M | 227 T2 © ADI7g - G - 3
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L P .
L | . y
, R ' ' T . Ce..(6.18)
Cases 1 & 11
o1
0 = @)
Fw ~
a¢pL
_(Ia |
EE. ee0(6,19)
Case la
Hp 1 11
= Y- §
GpL 6(A-D) = 6 3 2
+._fi£2_ﬂ 1 a EQ&EQ&
- %.a(%?---l> - o ,
R _ ' oo o (6.20)
_Case Ia
, 1 1 1
- -~ 4 = a
8, 8G&D "6 T3

I, ' '
3 I@ : . . 0oe(6.21)
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DEFLECTIONS =-= LEE KNEE --

NON-SELF-SUPPORTING SUBASSEMBLACE
All cases

8g = 4C | o ... (6.21)

DEFLECTIONS:- -~ CENTER OF BEAM
NON-SELF~SUPPORTING SUBASSEMBLAGE

Cases I & I1

(S} ) -\ 2 -
'D 1 A 5 1 11 L 3
- + (km)(““—_@)‘“[wexﬂm
- M ; 96" ; 8 8
G2 " oy ) w7 | 38 32 |
2
+ %am - % ﬁi— (a-D)S |
._..xvr" - ———— ]
I M
. L @ 4 iy 0 QL o
a¢pL2 (1-c) 6 1y M.P l-g,
I , -2
+—é—a(f.°-_.)(1€f) lg,%ﬂ_(AﬁD) . '
L- o Yp ... (6.22)

Cases Ia & Ila

5p 5

prLZ "~ 96(A-D)

No corr. , °“_.(6(,23)
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APPENDTEX E

EQUATIONS -FOR MULTI-SPAN GAELED FRAMES

PLASTIC HINGE MOMENTS = ~ °

"CdﬁﬁoSite Mechanism

_ML . L] (=x)(a+ex-D) - (5> )=
wk? ¢ | ! + b

S

& = 'T[ \]f - -z--[~A-(—/-+~a—~)—-a<-~/~--ﬁm>——--/1- ~1 |
c= L S
- b
~/b0/= T: >O
eosf?.1)
Papel Mechanism - .
M | A-D
W 2 4_ . i
. {7.2)
Reverse Composite Mechanism
Mo _ 1 (=20 A(s# BE) -p - + o (/7 2))
> y A SR WA
_ 2 b . K
X . = Z_—l:\l/+%é * Ziz - ;[A(/f%é) - e% i
a J ]
€7.3)

Reverse Gable Mechanism (a = G)

Mp _ /[A(/+%b)-0—é— }

wL® 4 z2+4%
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LIMITS

Between Composite Mechamism and Reverse Composiﬁelﬂechamism

3 b
2+% A(/+2

/ b
Z’\{/-—-[A(u -0~ £)-/)
2z _
oo {7.5)
Between Composite Mechaplsm -and Panel Mechanism
. b .
A = //f(/
' @ veo(7.6)
Between Panel Méchanism and Reverse G%ble.Mﬁchamism
&y , 4
D = A(l-G)+& _ }
[+ & -
. oo f7.7)

Between Reverse Composite Mechanism and Reverse Gable Mechanism

A = (;ﬁ*igij) vt %)
/+__é

DGO{:?OB)

Parameters for First Hinge Limits

= _GCa ' b 5
N = —_— '+/Z +/ZE" +45"2

N7 +462

__1ba 5
[ Togw 2% 124 ]

N
_ 8+5&
G - -
. 295 +/58
J 1,

o‘nu§7al4).
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Between First Hinge agsLee Knee E and in Windward Rafter at F

My = =M,

O = A1t +d EF)sA(e-tr-zF +£6+4 556
+—a[25;;F~2]) +D(2-2F-£6 + 1L FG +T)

A1 B w1t -26 + L5 5T

4
oo {7,153
Between First Hinge at Lee Knee E and at Windward Rnee C
ME = EMC
S a " Tasz .e.(7.16)
Between First Hinge at Lee Knee E and at Ridge D
Mg = M,
b
p= A2-F2)+(I-£6)
& ;
F+E2F +dJ -
(Fa J ‘2) - 0o £7.17)
Between First Hinge at Ridge D and at Windward RKnee C
A4£3=§’5A4c
b = . )
p. A2FE+JT) +(Ir26-§p5)
= 5 .
e P AR
(2F +F% ~2) .. .(7.18)

Between First Hinge at Ridge D and in Windward Rafter at F

Mg =—M,

0 sAl(/+§F+%§F@)%A(4~=2F-2 FriG+f £re

a!
wy .fg,:z..g] +D(4— -2F-24F-£6 + 1 £F6)
#4215 F)# (22622644 6%

ceo{7.19)
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-- SELF-SUPPORTING SUBASSEMSLAGE

HINGE ANGLES

Case 1.

ot e ——— — —

Composite Meckanism ~-- First Hinge at Lee Knee E
%}

He . - 76T W2 L, m bl
¢% /4—5;65!;’A4p {5/2.1#5M5¢2 ~f/% - Ea/) Y7 8a 6422)

LAV nid s 34 , 14

2 ; P
%H'f”fé s o (A- @)
{Graphic)

~ 77 "{Correctionsy

/ IO MQL / @ G’v
- zQ = —za= ﬁ%LJ
3 -ZL AAP 3 ;Zk o]
_ L @ wi® 7Y
Fe I Iﬂ Z)»Q @ i ) (A )
. _ {7.20)
Case Ia. Panel Mechanism ~~ First Hinge -at Lee Knee E
H, z ) | 6,28 |16, 162
R T I D[ Gb-ot-5E)-|st 48]
- — —— e — o e e e o
—_— ./.QQ:;I_? Mgl- I° M@/R( o A.,Z ,w(/f‘z@.,,, .;‘Z;@
59T me 3%T.me TENITIL
’ oaf7.21)

Case IX.

Composite Mechanism -- First Hinge in Windward Rafter at F

He -= / | %l 2 ) WL [ =l
Bol (/+2§a<)[/+46 gMp /2 9@@ * (%? )
2 bz .. / &% L
Lo Mg, / La Lo Maw [

3“_2‘ Mo (142 2) "534 Ly Mp (1+2E«)

~Lafte Lt o) L
3a(IL+1; Z)(M-z%ss) TEe
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268.3
Case lla.

1' 2 b ,/mé. 4 62U

Panel Mechanism -- First Hinge at Windward Knee C

_Laém‘ _LQ:;Z;;M@Q
3T I M 3 Iy Me
(% 2)
¢ R ’ wza{7.23)
Case II1. Reverse Composite Mechanism -- First Hinge in Wlndward
Rafter at J A
Wi b &

¢%FL ’(x»«})@zg«) |

. 2] ,
~A+0)(4 +2;§ ] [/%ff—é—fzj—ga%% 3

_/QAM L/WQK /
37T, Mp (/+2.A°<) 3 7 35 Mo (2 &

‘(/+‘~ /+2~’L«>5~¢Q Z IR_Z/) WAT ffg IR)(A -2)

/ ZLo _ -
24“ I +IR — )* 6’4(1’ 1)+ ¢ ‘SD( )j
oo (7.24)
Case IIla, Reverse Gable Mechanism (oo = ) -= First Hinge at
v ’L?r ‘Windward Knee C
WL _ L b LB oy L, L
- 6a 96 a* @’ﬂ)ksa*y-az

eel7.25)




Cases IV & IVa. Reverse. Composite Mechanism and Reverse Gable
[ Mechanism - First Hinge ‘at RLdge D

) wa Y S RINITY..
¢pz_ (/+ )2 [ | M 9643*96@2 24 *ATENE .4-a£)]

.28 2 72 ( 7 /

s éaé]}'--w% atreoie]

__ -_z_.g MQI. / LM@ /

-ZZ Mp (/‘f‘ﬁ) A7 Mp (””'"“) ,

/ W3 1 L Lo p
*(z+£~f§ SRR A A { u IJA )
VAN S AEPAS Y S -SR] |

24 (ija -/%66A(IL )7 /)}
N ' .. (7.26)
DEFLECTIONS -- LEE RNEE
SELF-SUPPORTING SUBASSEMBLAGE
Case I.
de W[ | b il BN nfd b, LR
2= 2\ | Mp| 27662 AF4E)-0( 650165
2, 2
_[é+g§+3¢%]57---;széf:a%(ﬂ_@)
__/_az‘_z—i Ma,
3 I, Mp
_ 12 Lo 1,20 Lo Y WLE £
3“(.2 IRETaC RN A

.. (7.27)
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. Case Ia,

QZI MIQR[ /#2&“"0{1
Ze Mp L /#‘*250( J

st N2, To \__
e TR AR L A ACL)

l
U\
PN
Y
X
2)
™~ .
R
+
N
S
43
| -
cup\

.. (7.29)

..(7.30)
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268, 3
Case IIT.
dois 7 (0 ‘*’)(szt Vrep e e
wiE i & 1 54 V5, L nT 1 b, 5 b
— [ e B o e T A o Ll e e b SR
" me Lm 362 29 Pg52 % Fia TA G aga s -a“)

il

Eb_ L b, 42
0(24 482 24a ‘“/f]*@a?‘—“/iij\(-

z{i 2 &,gé@?}; WL 4 4, d
2[3 HK+Fe ™ %Mﬁ 2 /2“’/9

_lazJLﬁM@Ll— * T -5 QZ‘ Zo MQ?[ ’%2 “ OJ
37 I Me L/+2 cail Iy Mp /4zé—c< 1

oL AN Ao BV
‘ZZD( )k/w-/ /+2-/f> )/j /Wf» L?%“/ZM

ra?Le V1 VW [ Y.E/ wld o
e (zﬂ /&/% é/&ww/ﬂ;g% L2 %’z“’ﬂ“\ <
(r/_ 24] ., W&zlm I b, ard LAY AL
TENE TRt W, l2eTiza A g 2) 0%
R 3
Case IiIa°
e _ Nl am T 8, Wil 4 b, it 16
¢,,L2“p+‘%){“‘“\v/‘*% L2 %al" b, Lod 565 M- 75 8)

L SN, sz e WlES 4 D mwfxbj?
o zﬂ%a)&{‘j@ v jzatizP Y g G
Io M‘@
vf,._!azm._»““z’?
J IRMP
2f Lo _, LL-)M wl [_L A a:
"I, %/%% 17 % 257 72 (A0 ¢ £0]
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Case IV & IVa.

de _ |\ ooEfire, 68 L wiF 1 6 4 s
et TR @“\]7“”"“6 Wi“@?"’*/zzz”‘ W, | 55a jEE e

oy (b, 162N Ly

*A(35*52) ’0(24‘*2@% az/\f # g ab
L 2 WS b e by pnrh b B
T iy g%ﬂ%Ak\z%U “lztata )

_ 12Ty Mad 1 42 To Max| 1224#]|
6Q M/D /7"—-}—#‘ & I,QMF [/ ]

+g’-f(,:%)( -/){ = AT

~0( 4+ 5?7‘32)]} |
| “ L (7.33)

. DEFLECTIONS® -~ WINDWARD KNEE --
.SELF-SUPPORTING -:SUBASSEMBLAGE

Case 1.

G TR odr0)- 42 O 4 42]

.o (7.34)
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(A-2)
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- Case Ila-
de =) 1 [/ 14 ] [/fz{l?/ 2
Rl G {A‘0,6 2o Pl tle Fayt5e
/az‘:z:aﬂi@u
3 L. Me
/ 2 Ie \
+tea -t
3 (' / ..(7.35) {4
Case II.
de / 7 L, 88,165 o b __592]
Bl (’/+2-=o<) [T B4 5 K TEa T 2
wiL? 54/ /3 4 Lo lb Lo 16
~ Mp [24 %a /27 F6a ‘*’A(/z%ga 7 2462"‘)
- - L2 S (T7é, 5P
A(/Zﬂia 6 a 2 2«%62m /2@1“/ﬂ}
=/ ZWA/ o)l Loyt g WE s
Z;M%,/+2@u] /2 To Mar| /=
— 2 - L o= =2
c& Z, Me [/7‘2 o&J 3% dr Mp [/v‘zéml
/= Lo o) _La2 To_ N WLP), _
My g (F+% _ZR 2) g (=) s (4 0)[?

...(7.36)




268.3 -156

4 Case I];a°

+ 2L o2 Lo Mog
*3 JER A{p
ZLa -/ | : | _
( ) , | .. (7.37)
~Case III
de TE) L BL LI b _55%]
PoL? S (7-E (/7‘2%)& #7857 2t 5ot 502 X 20",
wl 1 1 2~ 7 ! L b g LR
T M |96 9645 247 322 F V52 27

[ 1 & 25 54 -5
+A(35 755 2422 244 X" F az )
_ b, 182, 1 b | &2

0(24+48a+24-a,z 242~ °j‘ ]j

.___ﬁf%x-Z; Moo Ci¢12;&w) _chzhgg.éigk CZ:fi_J
3 IL Mp (/+2-—o<)+3 Ir Mp (1+2 5 )

_ #2 Wi AR,
@z )(+ /(/fé By {a ARG 5@"‘]f

.)(/.,LQ)—E/;)ng)f e [a?“”‘/z@ 220 ]f

u..(7q38)
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Case IIla,
de B [_4 ED _./_;f}____méz{_z_n__/_ée
BoL® +?zb—ia,\j7+% z7%a73 ﬂfMp\ 8 26 2%
- N L, &b,/ QZ\Z
“Ala- 755 525) 055+ 762 "24 a7 )
/VLZ[ ' AN
*“’25 Ay GRS ¥
) -
4 - ZI@___?_,R'
3 Lg Mg |
RYaviE zM Wil 4, e L b A
-+ A/-/-éf)“ ’L/ri.&‘%%/zﬂ@ gz ;E
-e0(7.39)
Case IV & IVa.
-i‘: = / [%\H z,}fwj}' / éf_ - y ;42
Bl = //+m)’=[ @Ht’ #4 {/Mo L1922 4@ ( /za%/? )
-’D( +'/él- L2 ’éz.‘g-—-/ﬁzé
/2 a/ “aq /ZQZU 3

/ L% ;
tia }ﬁ {“;é*(‘ (4 a)"’"mﬁ}

aa-zc M@g /%_2;_@_) _/_/ anMQﬁ )
I Mp (1+&) 67 IgMpli+g

(Lo N _ L /2 (L% ’
(.z; //m—é)w Jrratle st (5o s4-ntte 2

“(Z /)(/,«-_é) 3 af/ f/{‘é‘[_’

+ 5 (A D) é&é M

.. (7.40)
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DEFLECTIONS -« RIDGE -~ »
SELF-SUPPORTING SUBASSEMBLAGE
_>,Case I.
b =\|/+4-bz WL[ (A ) - 0] [ _/_/b]
@BpL? Mp | 38% 32 24a 8§7/2a
No corr. ,;,(7,41)
Case Ia 2
o z) /[ &5 _ 16, 14
gorz = /T {A—D[Sé ga®| iza| |
No corr. oo, €7.42)
Case Ila. *
5 _ z /[5'__/4]"/5
®p4%'d’+% |A-DI 86 62| /Za
No corr - (7.44)
Case 11
b - 1 GE ) wlf 5/ )
@pl® /+2§ '\\lj’+4~b Mp 384 24-)(#/4‘\32 8“)

.. (7.43)
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Case Illo

7 ez b

L WE[ L s arl b b
Mp [E % 3RFa 48 ‘“’L%@ (A D) 8¢ 2 7 a)]f

M

ol X glo Ma. , Lo MC?,Q
&gk Tohe "Iz Mo |

MEZ S Sao
ras( B g gbag (6 1 de2a (470

/b
“‘/‘éz’ﬂf
[/ /7, Wi A
+'2'O<(IR f/%-é-z)w%,()ga Mp [4@ i 2)
Y- ' |
/12 a oo (7.45)
Case Illa.
do . ) ozl . ol Wl s s
G2 ™ (/+ {\“‘% 57zally, |67 55¢
)
/&
uu\g_g‘&(A#@} |
No corxr. o90(7046)

Cases IV & 1IVa.

L i G n A s

$2(4 +A/]}Mg~ {(%%,[ifz[ -y (A%D)’]ﬂ

(Graphic)

ol
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Cases 1V & IVa. D(Correction)
4, 1 [T Ma .ZQM%(’
2°0+ %)) T Mo Z;QMM
!l wLZ / -ZZ» Lo
+/za‘(/+é) g'z Zq ~2)+ 1, [ 7 -2)
Lra-m Io ARy _LbplLe
+4(A-0)(F - )5 EA(F ) £p(& /]§
C7.47)

HINGE ANGLES -- NONmSELEmSUPPORTING
-SUBASSEMBLAGE

Cases 1 & 11

2 )W L, 56/ o — L34
\r‘% {MP [24- *96a /2% " g6a ™

¢,.-,L —(/ °()
AR/ /4 / 6% 7
+A(/2 52 °‘ 24a Gf) 0(/2 “Za 7L6a2 Z
/7 5 b2 36 , /4% b,  5H*
24/4Q /222" J q[Z T A Ralar- @2"“‘]f

[Z
*’Lga’%(/*zf)é/“,@% (A"‘D)f ~ £

-y 4A¢ (/+2_0()+——*CLO< IO MQ!. /+2.w -é»___@g
®¢PLZ (/=) 3 I Me (/"‘X) 3 “Ii Mo
+faA(F _/J)(“Z“‘)g/ 7 (A 0)5_—0“(10 /)

oo (7.48)




268.3 161

Cases I & 11.

)(Wzi
¢pL = «)N I+ 467 z4= 5& ﬁ)"““‘d

180 L o tg W s
2+4_,a]} 362%64/%(/% 0)}

A be |, LMo
(/=) a@st? 3 I Mp (I-)

/ T_jl;;__ .xﬁ.,{m w—/;:k_yéz _
“‘§Q‘(I; /)(/_o() g’/ Z e (A 0)}

. (7.49)

Cases Ia & Ila.

He 2)_ L L, 56 pflb , 267
@me\N% gA 0{6% by 0,&2&%36&&/‘!
2

JAYS !, Lo Max

Cﬁ@@oi=g 3 ;Zé ﬁﬂp

A

5 g )] ..(7.50)
Cases Ia & 1la. .
He '\1 z)_ 1 [/ _16 ] {J_M_/;_él 1
Dol =\ {A“@ [6 ZQ0+6 4 a —/43@

..(7.51)




268.3 =162

Cases TII & IV,

5 v
Pol. (/-f- & )rz é)(/—z@())

NG /b, J b2
-4 Zo 3«}"‘] Me {24 822772 X TJEa * T /e a2

YNy | /) &2
TAJ2 " 24a J2at /2a°”‘2_ a..Z"‘) Ol/z z«ﬁ-a */za,

. 4.2 b, 25
[ 452 {L/%M%BQ& 2o

b LL£ »’i) m,ff

L24 IMQL ot 2, Jo Mar (/=)
t3% %] /ﬂp(/w?«) 37 T, Mo (/+2£)(/ 2«)

4 2l _2h8e 0*‘2%““}
a@ol? (71“2") IZFLY.

T sty s {“M ()2 ”
(IR )(/+ )(fi?;) rynk { / *%g[é“*é/-‘(’q’b)'éif‘)]}

..(7.52)




1268.3 -163

Cases III & IV
o |
He / 4["—“2 WAZ[ | b, /4%
— 22 . e Qe _C,__._.jL e T
Pl (1+&) /‘/‘2‘2%)(/-'26()[ Al EMP 52a " 96 a
Al L b, L4 2 1b ] [_/m; 4.@1
7”4(/2 6af6a2) ”/2 &a Zats 22

/ W L a1 6
%g@{/%:ﬁ; [5714_:(,4 o) 2@&}7

_— 24e ﬂ"LW) l@éyﬁ -
aPel? (/1“2—)(/’20() BCA A P 7 ~2)
4 L g Lo Mar

T 55T, Me (/+z-é-)(/=2°<)
%z Lo tfam_ b
5a(F- ’/)(/ (/- z«)f [3 "5 (A-0) zaA]}

/ AL L N Lb
5ol % ’)0’+-@)(/+zﬁ)(/uz«)é AL ZQDU

Cases IIla & IVa. | ,
7"4(/2 ""24-@ /é ::) 7% *2%2% %/é :ZJH
wgaﬂ{/ W { A(A-0)~%% J}J

04—{@.}3 {/“’ v {“f‘ 4-(’4 )=z H

. (Graphu‘.c)




26803 ‘1@(4

Cases Illa & IVa. u(C@rrectiomj

2 Lc /2 T, Mer /.

P E (+2£) 3% TaMe (422)

12 4 Lo I
+£ (.1;; /)W_é)g/f [_M(A 0) ﬂ@)&».

filiiooi]

IR 0* b)(/v‘Zw)

Cases IIla & IVa,
AR e E
<25p4= (/+®)(/+za_:)[ I+ 4% {%@ L 52a 96 a?

Lol 1R A 14 /é“‘/‘sz
%A(//Z 6a%6@1/ ’\/g 6@] [25;, & a?

r52 {/ [3 G(AD)- 55, ]}/f

R f/%wé [ L LrA- @)“"” Lf(

6%\

,@_ZAG (+£) Lo Mow |, ¢/ &M@R 7
a¢pLz’(/+ £) 3“.1; Mo *3“1’,{ Mo (52%)

)(\7 b)g/_%m[/ /(A 5}_4_/4]5
)(/v‘é’)(/%z@);r [5 4,(/4 D)4 J}

.o (7.55)




268.3 =165

_DEFLECTIONS -- LEE KNEE --
NON-SELF-SUPPORTING 'SUBASSEMBLAGE

Cases I & I1.

OE - ,”éLmirer: s ) wl O

Dol ? /-.:x‘h'/ ,' # {Mp[\% 36 '3‘(“"&’4(8 24 )
i ot se N[/, 16 3. 6]
0(3 Ga 247 /Zc?“/] [2*6’&. 2%~ 6@”“’])g

2
f%do{mé xi‘% /4 0)]

4 A (t2Ra=) MLM@, of

* Bl (/"‘O() YT Me (75
47 3 _Z; Wi2 K
| 'f ‘2' {;)C’_ éé j) (;4 Zz) 67“c()
: (7.56)
"Cases la & 1la,
de  _ a2l | 5 _26 }m_/;ga;
Gl 67/ #6725 2 -EE 0|54
Ae
4 L |
Eol.? veo(7.57)
Cases III, IV, IITa, & IVa. (
crs W T AT,
(£ )(/+2§) o \/+ % z[z’% c’z]+ % [32 Géa
L2002 .,még[_/; Ny ]
(A ) 5 3@6</ Mo 84@4(,4 D)~5 20
Ac / 15-23 Aﬁ?R /
T Qel? 772E) +525 720 (+Z2%)

aé(__z__“, {*WA[/%/(A -p) 42 ]j

vo.(7.58)




268.3 =166

DEFLECTIONS «~ RIDGE --
NON-SELF~SUPPORTING :SURASSEMBLAGE

Cases I & 11.

&) | / z) Wi 5 /3 Vi
o2 (- «)[\J/"‘% {/wp [384 354"‘*’4(% ,6"‘)

_ [ b_ Mo 5 by [ lb_3,_50b
0(32”‘24-4 ~8e™ Zga ] BE'/za 8- asta"‘u

+6—/;zo<§ /”’4 Al 0)}}

_ Ac % __ 4/ Q_I Mo,
agol? (=) "E "I Me ()

téa(z //)(/—«){/ A D)j

.. (7.59)
Cases Ia &.Ilao
5o = / 5’ /b ] / b
—= ‘==‘q B - 2] I
) . 60

No corr.

Cases I11, IV, IIla, & IVa.

A / 3 NI 2 Y
& st {[ ]t

*i5 L (4-D) ugzz ]} # gaj/-f Zﬁz[

/] Aec / -Z; Mo /
Zigre 7r2g) 1T e UEE)

s / MZL_L,_A,@J-
+6(1}e 0€+§)(/+z%)p+ﬁp 8*4(/‘ 2) 20«0}

.. (7.61)




2,68?3 : ’ . "‘167

b ]
S
==

HIETINHENIN “‘Jl R

BL 1,

FIG. 2.1 THREE SPAN CONTINUOUS BEAM -

B e : D

o

FIG. 2.2 POSSIBLE MECHAKISM FOR- TRREE
-SPAN CONTINUQUS BEAM



268.3

o
o
ey

[ S L L S e SR

g - Curvature
FIG. 2:3—ACTUAL M- CURYE FOR WF SHAFE

€-- Strain _
FIG. 2.4 - IDEALLZED STRESS-STRAIN CURYE

. . ¢ -~ Curvature
FIG. 2.5 IDEALIZED M-G CURVE

~163



283 | o 169

Elastic slope or
slope prior to furmatiom -
of plastic hinge

FILG. ZH.6a T




268.3

s R

L1 1

=170

FIG, 2.7, INCREMENTAL BEHAVIOR OF BEAM FORMING A MECHANISM

Rac ot

B¢

FIG. 2.8 TOTAL .BEHAVIOR OF BEAM FORMING A MECHANISM



268.3 o -171

FiG. 2.9

®gp = OEC

FIG » %5*10&

FIG. 2:10b



| FIG, 2.1lc

- £°892



=173

268,3
- A é - l | :
([T | .“Lﬂl@iil@fﬂi__; L]
| 8L MTQT L
™ P ol
A B G D
(a) Beam Dimensions and Loading |
a2 - w2’ ap?a?
K T B 5?" 8 e . 8
| T 1P“/r—r’:’l’zl il o
<SS ==
-Mp : M.P
(b) Moment Diagram
¢ pL _

(c) Possible Mechanisms

FIG.. 4.1 BEAM DIMENSIONS, LOADING, MOMENT DIAGRAM,
AND POSSIBLE MECHANISMS |



268.3 =174

BL L L BL

1.0

0.8

Side

Span
- 0.6

Load

Factor

a
0.4

0.2

0 I I I i
o 1 2 3 4 5

Side Span Lemgth Factor P

"FIG: 4.2 TYFE OF MECHANISM



268.3

Side
Span
Load
Factor

1.0

0.8

0.6

0.4

0.2

~175
Ly l ‘(ﬂ TW
o | ][]
T A F fB E 1@ D
BL L | an

=M. (Eg. 4.9)

lst
Hinge

My =M (Eq. 4.8)
; T
0 1 2 3 4

Side Span Length Factor §

FIG. 4.3 TLOCATION OF FIRST FLASYIC HINGE




268.3.

=176

El constant
Muvc@mﬁta@t

(TSI

AL

1.0
0.8
« 1 Side
S 096
~ Load
.Factor
- )
0.4
0.2
)
0

Posgible Machanisms

First Hinge
" Side Span

— Main
Side Span
Span Mechanism
Mechanism
. First Hinge--Supports
First .
Hinge 4
Midspan i
\\ >
. - n :
0 1.0 2.0 3.0 4.0 5.0

Side Spam Lemgth Factor B

F1G., 4.4 LIMITS OF MECHANISMS



263.3 ‘ -177

»q,w ) i w i oW
wimsmmannne: (NN B uasnannsnn
- T F B E € € D
| pL | P |
- | | |

Case IV . . S

FIG. 4.5 POSSIBLE 'ORDER OF FORMATION OF PLASTIC HINGES



. "268;3 ; : ' : ' mlie‘.:d

T e T T TS

5= =0 5 =0
.8=1 8.=7=0gy €= 7?7 =0
M=o M“'MP M:Mp '

.
F

E ¢
5 =0 5 =17 8=1 - = 5=0
8 =7 9=12=08Ffx @=17=0ps  ®F = 9BC
M=0 M= Mp M= ¥ TM=Mp

FIG. 4.6 BOUNDARY CONDITIONS FCR CALGULATING HINGE - ANGLES



268.3

Hinge

Angle

0-+4
0.3

g 0.2

=179

suzanillib i sz

AL L . AL

First Hinge-Support

|-Matsn -Span-Mechanism

4.7a

o = 0,15

4.7b

First Hinge--Midspan

@ =0.2
T T TSy
0.5 1.0 1.5

Side- Span Length f8

2.0

' FIG. 4.7 HINGE ANGLES FOR MAINSPAN MECHANISM




268.3

Hinge

L A
Angle C.6

0.5

Orte-

¢ 0.3

0.2

0.6

Hingd. 3

Angle
0.4

Hp

@1
PL 9.2

0.3

0.3

=180

oW ]I

Side :Span Mechanism

LI

First Hinge-Support

Fig. 4.8a T
I | l | |
0 0.5 1.0 1.5 2.0 2.5
Side Span Length B
—
"
Fig- 4.5‘8b l ﬂ
o 0.5 1.0 1.5 2.0 2.5
Side Span Length B
FIG. 4.8  HINGE ANGLES FOR SIDE .SPAN MECHANISM



«181

- Ist Hinge

1,00 M, 1,00 M,

.a 50 Om.SO\- ’JO/:,SO

.86
0,99 | | 1.00 M,
b.2ol =~ ea@o.25 | 4@o.2s |
| { | v {

(a) Moment: Diagram for Three-Span Beam Cl&WFBO)

Corner Connection
205C-T101
Momest:

Oll
‘Diagram

— - o S

\ 0,2341(0,2341
0.253L10. 2531,

. (b) Moment Diagram_for Corner Connmection (14WF30)

FIG. 4.9 COMPARJLSON OF MOMENT DIAGRAM FOR THECRETICAL EXAMPLE OF.
'THREE-SPAN BEAM WITH MOMENT DIAGRAM FOR EXPERIMENTAL
TEST OF CORNER . CONNECTION



268.3 : ’ -182

w k/ft.

EI constant

Mp constant

L

PIG§ 9.1 FRAME DIMENSICNS AND LOADING



268.3 - | ~ +183

oL

' Panel Mechamism Composite Mechenism
T (a) (v)

PIG. 5.2 ."POSSIBLE MECHANISMS. FOR SINGLE-SPAN FRAME



268.3

Side
Load

Factor

<134
| —— g [v‘ll"l_fll.l llll!"l rp— .
2 a

|

I

0.2

1 '
_0.4 _ 0.6 0.8 Lo
---Column. Height Factor a .

Fig. 5.3. TYPE OF MECHANISM
. i



w
268.3 rl‘l'l]‘:‘l‘lllI[ll'llIlllLﬂ ' =185.

_ AL,
P=%a
KEYs  ppgve Solid Lime. -~ First Einge-C
' Below Dashed Line T woop
Between Lines - S
1.0 r
% fy
B "
P/
0.8 = ° /o
0 2
1,0 b
) ,0.
7
Side ’ A
AT \0/’0 %
load 0.6 ,/0 §
e, :(] 0 ’0‘
Factor 0 \D
oo b9
A ’
‘ 0.4 —
0,27
=0 —
. e =3§if*
0 '.!.’/'::::Z | .:;l ’ — r - //.],- — e D3 A
0 0.2 - 0.4 0.6 0.8 1.0

Column Height Factor a

Fig. 5.4 LOCATION OF FIRST PLASTIC HINGE



208.3

1.0

0.8

Side
Load

Factor

0.4

o 2 0 |

0.2

Fig.

0.4 0.6
Golumn Height Factor a

5.5 LIMITS OF MECHANISMS

0.8

0)

1.0



N
o
€
)

(")

=187

b =0,2

Ll;1T11111fF%1LI})11|

.PlainhArga -Staded Area
1.0 \\\ ; _
4_First \\\\\
Hinge ;
.
0.8
Side ) |
y Yirst
Load | > ) Hinge
E
Factor 0-0 . /
A "’
SN
4
0.2 :
First
: Hinge
| | | .
090" 0.2 - 0.4 0.6 0.8 1.0

Column Height Factor s

Fig, 5.6 LIMITS OF MECUANYISMS (b =Q,2)



268.3

Lav]

1]
b
g

[N
o

~13%

b=0.5

Plain Ares

1.0
\\\\ N

First
Hinge C

028‘;
Side
Load

0.6
Factor

| i 1'

First
Hinge
E

0 002 L "0‘5'4 ﬂ"@
Column Height Pactor a

Fig, 5.7 LIMITS OF MECHANISMS (b=0.5)

0.8



283 | ' ~189

' FIG.5.8a. ULTIMATE LOAD MCMENT DIAGRAM

' .L%—wa,) 1+4b | D
oL 1+4b2 . Fe '
i \ ¥
\ bL
. aL
A 9

_ ] Lt - o L/2

 Fig. 5.8b. LENGPTHS OF MEMBERS



268.3 - o ~190

L

FIG. 5.9 GLTIMATE LOAD MOMENT DIAGRAM

(Panel Mechanism)



266.3

Hinge -

Aggle

o

S

l||||‘{1|l?l|]l[llifll

0

0.2

0.4{—

'o’é-o 032 oJa - 0J6 038 - 10

Column Height Factor a

Fig. 5,10 HINGE ANGLES (b = 0)




268.3
1.6

Hinge
Angle ;1.4
1.2

Hy

a"" 1.0
0.8
0..6
0.4
*0.2
0
‘?E 0.2
¢pL o
0.4
0.6
X 0.8
1.0

192

&80 on

.A¢o. d

. W o
lIIJl"llIl{i]lll:ll:_lll‘__ll

A= 8,
. 4=0.7

" A=0.8
A=0.9

4=1.0

0.4 0.6 e,
Column Height Factor a

Fig. 5.11 HINGE ANGLES (b=0,2)

(<3N paad

1.0



268 ua . ‘- ! “!9;

W . B 0.5
I SRUENENANE '

}“QF i l L 'l- ‘
| | 0.6 0.8

¥ 20
e&]}:

[

7
(o]

3

0
Columm Hedlght -

a4

tor &

4

Fig, 5.12 HINGE ANGLIES (b=0.5)



268.3

N P =_A_!V;I;‘;
B 28
?oL
\
1.a} |
.-/ ;‘S\ -4.
C.8} : \ ,\
"\f '
+ E \,1
i 0.6} | \y .
0.4 TR
\ N |
| 0.2
4\ . _
| L\ N .
1 \\ ‘\\ - ~ TN e 2 N

FIG: 5.13 HINGENANGLES~-£b=0;2)WMEHREEmDIMENSIONAL PLOT



268.3 _ -183

b =0
) F = AwlL,
0.7 }e- 22 F D E
Horizontal el 0.7/
. /
Deflection # ' ?@
L I 0.5
of 0.6 — :I /
o R /
Knees / G.4
. : ’ /
| - / |
0.5 f— , :
SE o - -0.,3/;
‘y !
0.4 F—
0.8
. »
0.3+—
0.2f—
0.1
0.1—
. .
| O
_ ————— A0 S S
0 T wa N |40,
0 0.2 0.4 - 0.6 ° . 0.8 ‘1.0

Column Height,Factor a

FIG. 5.14 HORIZONTAL DEFLECTION OF KNEES (b=0)



1

268.3 ' - — ni9e

0.16 — v

| EEEEIEENEENEERENE N

Vertical

Deflection
of ‘Oqll"

Beam

0.12

=1

pLz

U

0.10

0.08

0,04 |—
' 0.02f—
0 0.2 0.4 0.6 0.8 . 1.0

Column Height Factor a

FIG. 5.15 VERTICAL DEFLECTION .OF BEAM (b=0)



268.3 | ~197

b =20
v —
OO
0.5 //
0.7
‘ Horizontal)
" Deflection
of 006 [
Lee
,nge
005 P
o
OPLZ
0.4
0.3
0.2
0.1
0 0.2 0.4 0.6 0.8 10

" Column Height Factor a

FIG. 5.16 HORIZONTAL DEFLECTION OF LEE KNEE -(b=0.2)



268.3

0.6 .

Column Height Factor a-

2198
Toe0.2
\i4
HENSNEINEEENERERE /
/
{4
P = Awl bL // //
0.6 2a — 0. 6/ J
‘Horizontal | ” 7/ /0., 3
Deflection f
0.5— /7
of : - Y/
- Windward 4
Kne . . v/
Knee | , / 0.2
0.4 : : // /
/
B¢ g1/
9512 /, /LO
, /),
0.3 y '
/
/ /
. 4
/4
0.2 L ,// il
& //
/0
/4 :
'
' /. /
\N /
0.1 \/ /
! N\ Ju77
< . y‘ . /04
: ' o 7
e ,
//
0 - /;
/'/
0.1 N 1 | L
0 0.2 0.4 0.6 0.8 1.0

FIG. 5.17 HORIZONTAL DEFLECTION OF WINDWARD KNEE (b=0°2)



268.3

0.12

0.10
Vertical

 Deflectiom
of 0.08

Ridge

0.04

0,02

=0.02 L

] !

0 . o 0.4 0.6 0.8
v Column Height Factor a

FIG. 5.18 .VERTICAL DEFLECTION OF

RIDGE (b = 0.2)

1.0 -



268.3

~200
0.15%!
_ lst Hinge
0.2221
¥
0.5L
1
L

(a) ..Moment Diagram for Theoretical Single-Span Flat-
Roofed Frame (36 WF 230)

I | Mp
\—-——-——In/ M

| ‘ 15" K

Corner Coaa@ctidﬁ_ | 0.101
205C-T103.

0.09L

0.10L

(b) Moment Diagram for Experimental Corner Connection (36WF230)

FIG 5.19 COMPARISON OF MOMENT DIAGRAM FOR THEORETICAL

EXAMPLE OF SINGLE~SPAN FRAME WITH MOMENT DIAGRAM
FOR EXPERIMENTAL TEST OF CORNER CONNECTION




268.3

THEORETICAL GABLED FRAME

e

0.31L__|0.123

s

First Hinge .
—r
0.20L

Mp

—F

0.251

—Y

12WF36

EXPERIMENTAL GABLED FRAME

205.5 T-9

Y

Y;;g

T

L =-40'

Rotation
Measured at
First Hinge

T~

12WF36

L

FIG 5.20

¢

COMPARISON OF MOMENT DIAGRAM FOR
THEORETICAL EXAMPLE QF GABLED FRAME
WITH MOMENT DIAGRAM FOR EXPERIMENTAL
TEST OF A GABLED FRAME ‘




268.3 ¢ =202

w
IERERRENRANANNRIRNANERRRNNENNEE —
alL
M2 | &t
2 ' L 2
(a)

AL i ‘HHIHH.HIIHH'}I’;IHIIIII.IIIIH Dyl
2a : L 2a
{b)

/ HIRERRRNENRRARRANERAN NN ERRRNANi \

/ ‘ 4 /
e ol MR
2a aL 22 T TaL
“4%& |

(C) A

FIG 6.1 THREE EQUIVALENT LOADINGS FOR
SUBASSEMBLAGES OF MULTI-SPAN FRAMES




268.3
HNREEE INAEERNENRR lJ_
AWL - ] Bk
2a ) ' 2a
2L
L
- - -5
1-00
0.81_
0.6 |
.Side
Ldad
Factors
A-D
0.2
0 N I
1.0

0 0.2 0.4 0.6 0.8

Column Height Factor a

FIG 6.2 DOMAINS FOR MECHANISMS
MULTL-SPAN FRAMES

OF



268.3 “ ' 204

ENRNERNANNENENNRNNN I NN RN ANISNANIORNE]
’ & _ ] fw——;—"”ﬁﬁ ';ﬁ———””q'h

"(d) Typical Mechanism for Multi-Span Frame

Continuity
Discontinuity

(b) Selthupparting,Suba$semblagé (Stable)

Discontinuities

" (c) Non-Self-Supporting Subassemblages (Unstable)

Discontinuities

r———

Continuity _
—

(d) Akﬁééhment to Sélf-Supporting Subassemblages Creates
Stable: Structure

5

FIG 6.3 SELF-SUPPORTING AND. NON-~SELF-SUPPORTING SUBASSEMBLABES




268.3

~205

/MQL Y “QR\ o
llIHHIHHHHIlall'lllllllllli“”l ‘
/ \ o F D I E /
sl g ’ (|t g
2a 3L T 1 |l DwL R
y L R "zz*"fa"x:/
alL.
| A B | X
-5 p-
o
L.
Dsz(%-%cx.)

FIC $.% M¥OMENT DIAGRAM FOR FLAT-ROOFED FRAMES




268.3

Hinge

Angle

HF
¢pL

0.6

A

w

ENEERIENEREENANEREEEN

FIG

Colum Height Factor a

6.5 HINGE ANGLES FOR MULTT-SPAN FRAMES (b=0)

1.0



268.3

0.7

0.6

0.5
Horizontal
Deflection
of Knees

0.4
SE
Bor?
YPL

6.3

0,2

0.1

207
b= 0
w
MIIIOITIIO
AL, Dwl.
2a 1 laL Za
(o]
| L - /i
= 0
1.0
/9.5
/
/ /]
/) 0.4
/
/
L/
0.3
/ A
0.2
O
0.1
O
———%-D= -
| Tt~ ] [ A®-0
0.2 0.4 0.6 0.8 1.0

Column Height Factor a

FIG 6.6 DEFLECTION OF LEE KNEE OF MULTI-SPAN FRAMES (b=0)



263.3

Mgy . "

.
( EIRIENRENRINEENERED v e
/' i€ D E ; N T

AwL MQL Puls
2a " 4L | 26

A,.. B/;%b

o

B

0.8 |-

CORRECTIONS MEST BE ADDED
1 1 N L

1.0

0 0.2 0.4 . 0.6 0.8

Colymm Height Paclor a

. FIG 6.7 HINGE ANGLE AT LEE RNEE FOR NON-SELF~-
SUPPORTING SUBASSEMBIAGE (b = 0)

1.0



268.3 - =269

MQL W ‘ M’Qg lb;@

__{?;, IR ‘_'?L _ﬁg:w%mmw.

el [0 0 Mlad e,
1.0 .22 &L = N il
A B Y

Q.2

\\\\\\\\
“
A-D=0
0
0.2

CORRECTIONS MUST BE ADDED
0,4l ! I i ) i .
0 0.2 0.4 0.6 0.8 1.0

Column Height Factor a

FIG 6.8 HINCE ANGLE IN BEAM AT POINT F FOR
NON-SELF-SUPPORTING SUBASSEMBLAGE ébi == 0)



268.3 s -210

w

IRREERNNENERERENINENRREREDRRRERERREREEND

J .

| s

=

¥

FIg 6.9 TWO-SPAN FRAME DESIGNED IN EXAMPLE

FIG 6.10 MAXTMUM LOAD MOMENT DIAGRAM FOR TWO-SPAN FRAME

!




268.3 211
w - \
ITITTT1
P
PL }.
Ly

IT1111]

T Y | g
G, 9 * X ) o
[ | . 2 .

alk I 4
- |

|

{a) General Composite Mechanism {by Panel Machanism

bL }.

al. }

Y
(c) Reverée Composite Mechanism {d) Reyerse Gable Mechanism

- FIG6 7.1 POSSIBLE MECHANISMS FOR SUBASSEMBLAGE
OF MULTI~SPAN GABLED FRAME




- -268.3.

*Side

Load

'Factox
; .‘20.94 —.

D

0.8 —

- AvL
- 28

=212

B Do
RERINEARERANIN i B

1.0

Q -,;2 -

Side Load Factor A

FIG 7.2 LIMITS. OF MECHANISMS. FOR. b/a = 1.0

1.0



268.3 o «3

™
F.—!L

ARRERNNEANENRRN

- /\ >
AL ——> <~ Dvl.

2a . . 2a alL

99

2.5
KEY TO MECHANISMS
‘Re,ve,,ré’e: Reverse
Conposite Gable
2.0} —- _ | b1
Composite Panel a 5
Side
1.t 1.5
Load
Factor
: b 1
D 2 ==
1.0 a 3
0. 5 P—
b_,
a
0 //l | |
0 0.5 1.0 - 1.5 2.0

. Side Load Factor A )
FIG 7.3 'LIMITS OF MECHANISMS FOR THREE b/a VALUES



268.3

Side
' Load
Factor

D

1.0

0.8

0.6

0.2

|

L@y L
MQ'“L.’J*

0.2
0.2

bL.

Dl«First Hinge T
Lee Rnee E Eq (7.16)

»3
First
Einge
Ridge
G Eq (7.18)

D2
Pizst Hinge in Wipd-
ward Rafter at F or in
Windwiazd Keee at .C.

Eq (7.19)
Eq (7.15)

| | |

09'4 006 : 008 150

Side Load Factor A

FIG 7.4 LIMITS OF FORMATIGN OF FIRST PLASTIC HINGE

(b =0.2 a=0.2)



268.3

NEIENRGRNENARENENNNEY

2.5

KEY TO LOCATION OF
FIRST PLASTIC HINZE

2.0

Side ar

l__
s}

Load 1.5

Factor

| “

1.0

5 i.0 1.5

Side Load Factor A

LIMITS OF FIRST PLASTIC
THERE: COLUMN i m28 (.

BEGES FOR

= 0.2

Ut



268.3 -216
b= 0.2
a= 0.2
w
REENERERERREN
bL
AvL o DL Y
2a 2a T
al,
Y
L L -
| I
1.0
0.8 |-
Side Case
Load . K 1va
Factor
D
0.4 Case
v
111 Case IIla
1L
0.2 Case Ila
Case I
Ia
0 I s "l 'S
0.2 0.4 0.6 0.8 1.

Side Load Factor A

FIG 7.6 DOMAINS FOR FORMATION OF MECHANTSMS

IN MULTI-SPAN GABLED FRAMES (b=0.2 a=0.2)




268.3

1 b,
M, I+ 2 2 a) —0ui? 2 4 3 2
2,1 _1 -, b
Dl (g - 5% + ) —M, (1 +2)
= a

FIG 7.7 MOMENT DIAGRAM FOR CASES I & II
(MULTI-SPAN FRAMES)




268.3 «218

Mo

wl? 1
8 (1 + b/a)

DwL2

Dul, 1
& (1 + b/a)
" (T T573)

FIG 7.4 MOM=NT DIACRAM FROM CASE I1I & IV
(MULTI-SPAN FRAMES)




268.3

Hinge 0..

Angles

Lee
Knee

Ridge
Bp_
PpL

Windward
Knee

HC O.A

PpL

Windward
Rafter 0.
HF

oL

0..

=219
Mg b = 0.?
- g = 0.2
als

-
(LTI v PITT 0]

ﬁ/ii\\\\\\\\

sl
o

ol . Mor
Z2a als

| } L

1 | )
0.2 0.4 0.6 0.8 1.
Side Load Factoﬁ A

FIG 7.9 HINGE ANGLES FOR SELF-SUPPORTING SUBASSEMBLAGE



208.5

-220
b =0.2
- a= 0,2
TITTITTTIITT 17T
MQR4
al
0.20+
D
0.16—
Horizontal
Deflection
of '
Lee 0.12
Rose
0.08| S
SE 4 =7 — — = —
@—i‘Z ‘ = o
XSS -
0.04 / v - -
0/25 Y, s y e
L ] 0.3 / Y s
0.4 / 7
3 / y ) 0.5 0.6 7/ d
J / 7 7 , 0.7 Pz
)>Z / // / ss 0 ]
ML / / : / 0.
-0,02— ~N o . -
leAV\Z"!“FT-"TA’ T T4T'T“'" T 1_‘_ rﬂ
| | L J 1 ! | | !
0 0.2 C.4 0.6 0.8 ' 1.0

Side Load Factor A

FIG 7.10 HORIZONTAL DEFLECTION OF LEE RNEE--

SELF-SUPPORTING Si/BASSEMBLAGE



268.3 221

0.16
b =002
a=0.2
40::14.&— / //‘
-
7
‘ e
i . s
A / )
2a alL 2a al, / s
0.12L . ' / s
Hozizontal
,De%lection
of"
Windwarg‘lo
Knee
0.08
B¢
¢PL
0.06
0.04
0.02
0]. 1 | ! | ] ! vvl 1

i ]
o - - 0.2 ' 0.4 . 0.6 0.8 1.0
Side Load Factor A

FIG 7.11 HORIZONTAL,DEFLECTIQN QF‘WENDWARD KNEE--
.SELFfSUPEOKTINGASUBASSEMBLAGE



268

Hinge
Angle
at
Lee
Knee

.3 =322
b = 0,2
3-,"' 002
- W N
i HEEEEEEERENREREE :
‘MQR.
- al.
0.4 |
N\
- p)
A
—0.4 | 3
B
A
L A D= '
>
> 0;05\\\\\
0er o 0.10 f\\\\
0 15\\\\\\
- - \
0.20
—0.8| T
0.25 .
m———
1 ! ] i ! ! ) 1
0. 0.2 0.4 0.6 0.8 1.0

Side Load Factor A

FIG 7.12 HINGE ANGLES AT LEE KNEE--
NON-SELF ~SUPPORTING . SUBASSEMBLAGE <~
‘CASES. I, Tz, LI, lla



268.3 _293

046

0.5

Hinge
Angle 0.4
In
Windward
Rafter

, 0.3
gp
PpL

0.2
or
Windwazrd
Knee

Ho
QPL

1
0 0.2 0,4 C.6 0.8 1.0
Side Load Factor A

FIG 7.13 HINGE ANGLES IN WINDWARD RAFTER AND WINDWARD KNEE--
NON~SELF~-SUPPORTING SUBASSEMBLAGE-~ CASES I,Ia,II,Ila



i oA
268.3 \ 224

o

20 h

L
LTI TITTITTIT 0}

00-5 o=

Hinge -
Angle
Windward0.4 |-
Rafter

Hp

7
Bpr 0.3 |

- 0.5
or ¢ ! ' ,_/""'/ Ooé ]
r » o e e
Windwardg 5 ' ) N " o7
Kage i -
, \
s / 0.8 |

He B
[
P

001 po-

. i i ! | :
0 0.2 0.4 0.6 0.8 1.0
§ide Load Factoz A :

4+~

FIG 7,14 HINGE ANGLES 73 WINDWARD RAFIER AND WINDWARD KNEE--~
NON~SELF~SUPPORTING SUBASSEMELAGE =~
CASES iYL, XIla, IV, I¥a




b = 0.2
a=0,2
N
W
AwlL MQL IREHEEEEENEEENN
1.5
1.0
Hinge
Angle
& o5 |
Ridge
Hp,
gL o
0.5 e
l 4 . I } 1 ! | ! |
0 0.2 0.4 0.6 0.8 1.0

Side Load Factor A

FIG 7.15 HINGE ANGLES AT RIDGE~- NON-SELF-SUPPORTING SURBASSEMBLAGE,
CASES 1II, IIls, IV, IVa :



268.3

008 5

0.06

0.04

Horizontal
Deflection.
of

Lee 0.02
Knee )

=z H

W
CLIFTririryirets

-0-02

-0.06

1 1 1 A 1 i 3

#

0 ° 2. 0 p*l& 0 o 6 0 ° 8
Side Load Factor A

FIG 7.16 HORIZONTAL DEFLEGIION OF LEE KNEE

NON-SELF~SUPPORTING SUBASSEMBLAGE
CASES I, la, IT, 1Is

1.0



- Leg

' I Lo
268.3 gy

0:04

0.031
Borizontal
Deflection
ok

Enee 0402

"'ﬂagl

"3002 -

=0, 03— Iy, Iva

NON<SELF -SUPPORTING .
i i ! 3 i ] | I

0 0.3 0% 0.6 0.8 .0
Side Load Féctar A

PUS 7.17 BORIZENTAL DEFLECTION OF LEE KNEE



[ ]
N
o
.
Lo
F
~
[>4]

w_ =2 k/fr
O N R A U O A 0 O RO |

L = 50"

FIG 7.18 TWO-~SPAN GABLED FRAME DESTGNED IN EYAMPLE

FIG 7.19 MOMENT DIAGRAM FOR ‘TWO-SPAN GAELED FRAME
DESICNED IN EXAMPLE




< ——

4

N
[o})
[¢'d)
o

W

1.0

0.8

Vertical
Load 0.6
P/Py,
0.4
0.2
0

et

N
S
i3]

» Range of Possible Plastic Design
/////iWorking Loads

L : | 1

0.05 0.10 0.15
Horizontal Deflectiocn of\Lee Knee
PL3
5 EL

FIG 7.20 THEORETICAL LOAD-DEFLECTION CORVE
FOR TWO-SPAN GABLED FRAME

0.20



-230

268,.3

YITA

The author was born in Mineola, New York, on January 26, 1927,
the first child of George and Viola Driscoll. He graduated from Port

Washington Senior High School in Port Washington, New York, in 1944.

He attended Rutgers University from 1944 to 1945 as a traimee in
the Army specialized Training Reserve P&ogram, Following this, he
served in the U; S. Army Air Forces in 1945 and 1946. On completion
of military service he reenrolled at Rutgers University in 1947. He
was avarded the B.S. in Civil Engineering with highest honors in 1950,
receiving also the Theodore Frelinghuysen.Vail Prize for scholarship
and the Edward Fuller Brooks Memorial Prize in Civil Engineering. He

was also elected to the Rutgers Chapter of Tau Beta Pi.

‘He joined the staff of Lehigh University in September 1950 as a
Graduate Assistant in:inii Engi.neei;ing° In February 1952, he was

appointed -Assistant Engineer of Tests in the Fritz Engineering Laboratory

and continued to serve in that capacity until June 1957. He received

the M.S. in Civil Engineering from Lehigh University in 1952. 1In

November 1952, he joined the staff of the research project on Welded

Continuous Frames and Their Components., He was appointed Research

Instructor in Civil Engineering in July 1957.



	Lehigh University
	Lehigh Preserve
	1958

	Rotation capacity requirements for beams and frames of structural steel, Ph.D. Dissertation, Lehigh University, (1958)
	G. C. Driscoll Jr.
	Recommended Citation


	tmp.1349753097.pdf.ltQei

