
Lehigh University
Lehigh Preserve

Fritz Laboratory Reports Civil and Environmental Engineering

1957

Rotation capacity of a three span continuous beam,
Lehigh University, 1957
G. C. Driscoll Jr.

Follow this and additional works at: http://preserve.lehigh.edu/engr-civil-environmental-fritz-lab-
reports

This Technical Report is brought to you for free and open access by the Civil and Environmental Engineering at Lehigh Preserve. It has been accepted
for inclusion in Fritz Laboratory Reports by an authorized administrator of Lehigh Preserve. For more information, please contact
preserve@lehigh.edu.

Recommended Citation
Driscoll, G. C. Jr., "Rotation capacity of a three span continuous beam, Lehigh University, 1957" (1957). Fritz Laboratory Reports.
Paper 1721.
http://preserve.lehigh.edu/engr-civil-environmental-fritz-lab-reports/1721

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Lehigh University: Lehigh Preserve

https://core.ac.uk/display/228627338?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://preserve.lehigh.edu?utm_source=preserve.lehigh.edu%2Fengr-civil-environmental-fritz-lab-reports%2F1721&utm_medium=PDF&utm_campaign=PDFCoverPages
http://preserve.lehigh.edu/engr-civil-environmental-fritz-lab-reports?utm_source=preserve.lehigh.edu%2Fengr-civil-environmental-fritz-lab-reports%2F1721&utm_medium=PDF&utm_campaign=PDFCoverPages
http://preserve.lehigh.edu/engr-civil-environmental?utm_source=preserve.lehigh.edu%2Fengr-civil-environmental-fritz-lab-reports%2F1721&utm_medium=PDF&utm_campaign=PDFCoverPages
http://preserve.lehigh.edu/engr-civil-environmental-fritz-lab-reports?utm_source=preserve.lehigh.edu%2Fengr-civil-environmental-fritz-lab-reports%2F1721&utm_medium=PDF&utm_campaign=PDFCoverPages
http://preserve.lehigh.edu/engr-civil-environmental-fritz-lab-reports?utm_source=preserve.lehigh.edu%2Fengr-civil-environmental-fritz-lab-reports%2F1721&utm_medium=PDF&utm_campaign=PDFCoverPages
http://preserve.lehigh.edu/engr-civil-environmental-fritz-lab-reports/1721?utm_source=preserve.lehigh.edu%2Fengr-civil-environmental-fritz-lab-reports%2F1721&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:preserve@lehigh.edu


•

..

..

'.

Welded Continuous Frames ~ Their Components

Interim Report No. 34

ROTATION CAPACITY
of a

TlffiEE-SPAN CONTINUOUS BEAM

by

George C. Driscoll, Jr •

This work has been carried out as a part of an
investigation sponsored jointly by the Welding
Research Council and the Department of the Navy
with funds furnished by the following:

American Institute of Steel Construction
American Iron and Steel Institute
Institute of Research, Lehigh University .
Office of Naval Research (Contract Nonr 610(03))
Bureau of Ship~
Bureau of Yards and Docks

Reproduction of this report in whole or in part
is permitted for any purpose of the United States
Government.

Fritz Engineering Laboratory
Department of Civil Engineering

Lehigh University
Bethlehem, Pennsylvania

June, 1957

Fritz La:boratory Report No. 268.2

(Not for Publication)



-.
..

268.2

TABLE o F CONTENTS

i

ABSTRACT ii

1 0 mTRODUCTION. 0 0 0 .. 0 00 0 • 0 0 0 0 .. • 0 0 • 1

2.. DETERMmATION OF MOMENTS AT MAXlMUM IDAD • • • .. • 5

3.. LOCATION OF LAST PLASTIC HmGE .. .. 0 .. .. .. .. .. .. .. 8

40 BEHAVIOR OF STRUCTURE m FORMmG MECHANISM. .. .. • 11

5. METHOD OF CAWULATmG ROTATIONS AT MAXJJ1UM IDAD. .. 17

·6.. DERIVATION OF EQUATIONS FOR HmGE ANGLES.. ... .. .. .. 20

7.. DISCUSSION •••••• 0 0 0 0 .. .. .. ~ .. • • • • • •• 25

8 ... SU1'4l{ARYo. • • • • • 0 " " 0 0 0 0 0 • 0 • • • • • 0" 29

9. ACKNOWLEDGMENTS·. • 0 • • • • .. 0 • 0 • • .. • • •• 32

100 NOMENCLATURE. • 0 0 0 • 0 •• 0 • • • • •• 33

110 REFERENCES. • • • • • • 0 • 0 0 .. 0 .. .. • • • .. • • • • 35

APPmDJX 0 0 0 • • • • • • • • " e • " • • • • • • • • • • • 37

FIGtJRFS 0 0 0 0 0 • • • • • • 6 • • • 0 0 • • • • • 0 • •• 39



268.2

A B S T R A.a T

ii

" Plastic analysis o:f steel structures depends on the ability

o:f the members to :form plastic hinges and to redistribute moments"

In order :for redistribution' o:f moment to take place, certain

plastic hinges must sustain their plastic moment through some angle

o:f rotation. The amount o:f rotation required may a:f:fect the

stability o:f the structure and, there:fore, may a:f:fect the geometry

o:f the structural shapes selected and the spacing o:f lateral

bracing. The ability o:f a structural member to rotate the required

amount in order to redistribute the necessary moments and :form a

mechanism is de:fined as the "rotation capacityll. The angle o:f

rotation during which a yielded segment o:f beam must sustain its

plastic moment value is termed the IIhinge angle ll •

This paper deals with a method o:f calculating the approximate

hinge angle through which a member must be able to rotate to :form

a mechanism.

The presentation is made only to indicate the.method o:f

solving such a problem and there:fore is restricted to the case

o:f a symmetrical three-span beam o:f constant cross section."
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10 INTRODUCTION

-1-

..

•

Recent developments in the plastic an~lysiB of steel structures

have presented a more rational basis on which to design welded

ContinuOllS structuz-es. Methods based on these developments give

promise' of economies to be gained by taking advantage of the reserve
, '

, of strength of structural steel beyond the elastic limit, by using

simple methods of analysis, and by assur:ing a uniform factor' of

safety against failure for all structures.1

Plastic analysis supplements the classic elastic theory by ,

utilizing lmowledge of the behavior of structural steel beyond the

elastic limit. It is lmown :that the same property of ductility which

allows the defOrmation withOllt additional load of a ten,sion or

comprcs::don member, will also allow a flexural member, stressed to

a limiting moment (designated as the plastic hinge moment) to bend

or rotate withOllt additional moment. The ability of a plastic h:inge

to ma:intain a constant moment while rotating thr:-ough a finite angle

allows a structure or member to transfer additional increasing load

to other less-stressed portions of the structure until sufficient

plastic h:inges have formed to cause the structure or a portion

thereof to become a mechanism. These two prciperties are lmown as

the plast:ification of cross section, and redistribution of moment.

While plastification of cross section and redistribution of moment

are the two primary faotors involved in the plastic analysis of

structures, certain other factors affect plastic behavior, and at

times can govern the plastic analysis or design. Axial compressive

forces and shear forces combined with bending moment tend to reduce

the plastic hinge moment of a given structural member. However,

axial loads less than 15% of the compressive, yield load of 8.
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memb~r, as are most common in rigid portal frame~ reduce the plastic

hinge moment only a small amount and may be neglected.1 The usual

shear forces in a normal balanced design are also small enough so

that the plastic moment is not seriously reduced. When the shear

forces are large, they occur in a section of steep moment gradient

which generally allows strain hardening to produce a caunteractirg

effect)

The presence of residual stresses due: to cooling, welding or

cold bending tends to reduce the yield load of a structure. In

a compression member, the maximum load is tlnls reduced, but in a

member subjected to bending only, the predicted plastic hinge

moment is generally achieved. 12

The .former factors affect the magnitude of the plastic hinge

moment but have little influence on the ability of the member to

absorb plastic rotations. other factors may affect not <!Jnly the

plastic hinge moments but also the ability of the section'·to rotate

thus modifying the redistribution of moment. These other factors

are brittle fracture, local buckling and lateral buckling. In

structures which have thus far been investigated, brittle fracture

has not proved to be of concern because careful welding procedures

and inspection, and the use of satisfactory materials for the

temperatures encountered prevented brittle behavioro2 The occurrence

of premature local buckling can be prevented by selecting shapes

of the proper geometric proportions. 4,5 Lateral buckling may also

be delayed by providing proper bracing to the members .11 It is

evident, then, that proper attention must be paid to the possibility

of brittle fracture, local buckling, and lateral buckling to assure
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sufficient strain or rotation to permit redistribution of

moment"

There is no single answer as to how much strain or rotation

-3-

,

..

of a plastic hinge is required to allow a mechanism to form. The

attainment of strain hardening has arbitrarily been selected as

a criterion in the previously mentioned studies on local and lateral

buckling" The ability of a plastic hinge to rotate at or near the

maximum moment has been defined as rotation capacity.l0

This paper will present methods of calculating the rotation

capacity required to allow a mechanism to form in a structure and

will give results for some specific cases.. The object of the study

is actua1J.y two-fold--one aim is to discover methods of calculating

the rotations which must be sustained for the calculated max:ilnim

load to be attained.. The second aim is to determine if some

maximum amount of required rotation capacity may be specified for

given geometrical and loading conditions which will not

be exceeded in any structure so that a design rule may be set up

eliminating the necessity of calculating the required rotations.

The latter goal is desirable because the calculation of deflections

and rotations for even the simplest of structures is tedious and

to be avoided if at all possible. Essentially the problem of

calculating the required rotation capacity is one of calculating

the deformation at ultimate load. This problem may be examined as

if it were broken into three distinc;t steps:

(1) Calculation of the ultimate load and ultimate moment
diagram.

(2) Location of the first and last plastic hinges to be
farmed in the structure.
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(3) Calculation of deflection and rotation by solving
the differential equation for the curvature of
bending members considering boqndary conditions
appropriate for a structure in the plastic range.

-4-
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2. DETERMINATION OF

-5-
MOMENTS AT r1AXIMUM- LOAD

A number of available methods of analysis use the properties

of plastification of cross section and redistribution of moment as

a basis for calculating the ultimate loads of structures. :t,7, 8

An important advantage of these methods of plastic analysis over

methods of elastic analysis is the elimination of the solution of

large numbers of simultaneous equations in the analysis of highly

indeterminate structures. Instead, orderly procedures may be used

to calculate the ultimate loads consistent with various assumed

mechanisms. Each such load constitutes an upper bound for the

true rnaxi.mum load of the structure. At the same time, any assumed

set of loads and redundants which satisfy equilibrium without

the plastic hinge moment being exceeded at any point in the structure

constitutes a lower bound for the true maximum load of the

structure. The exact maximum load is indicated when an upper bound

and a lower bound prove to be equal.

Consider the three-span continuous beam shown in Fig. 1.

The main span has a length L and is flanked by two s ide spans of

length ~L. A uniformly distributed load W pounds per foot

is applied to the main span, and a load ofG( W. pounds per foot to

the side spans. The cross section and material are constant

throughout.

Since the relative loads and span lengths are undetermined as

stated, the mode of ftdlure cannot be uniquely defined. It is

possible for a mechanism to form either in the main span or in the

side spans.
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If a mechanism is t.o form in the main span, plastic hinges will

form at the interior supports and at the center of the main spano

For this case, an elementary calculatio.n will give as the expression

relating the plastic hinge moment of the beam and the maximum

load: l-2
M - wP-16 (1)

•

If a mechanism is to form in the side span, plastic hinges

will form at the interior supports and at an intermediate point

having the largest moment in each side span. The distanc'e from the

exterior support to each of'these hinges will be some fraction J
of the side span length (3L ,i.e. .5 (3 L. 'J;'he plastic hinge

moment in this case is given by the expression:

M = <X 13 2 wL2. S( I -S)
P 2. (I +J)

where J {Z" - I 0.4142. .

then ~p= 11.66 (2)

For a given beam section, side span length and side span

loading, the mechanism which would require the greater value of

~ will occur. A special condition is that in which both mechanisms

occur simultaneously. For this case, both expressions for Mpmust

be equal. By combinmg equations (1) and (2) an expression for the

values of ex and 8 for which both mechanisms can form is obtained.

0(~2.= 1..
8

(I + J)
S(I -J)
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By substituting for S its value 0.4142, this equation reduces to:

0(.(32. = O.7c.a
(4)

This curve is plotted in Fig. 2.

The unshaded area of Fig.2 contains all values of C( and 13

for which the mechanism will form in the main span with a

plastic hinge moment given by equation (1).. The shaded area contains

the values of O! and 13 for which the mechanism will form.

si.nn.lltaneously in the two side spans and the plastic hinge moment

1dll be given by Eq~ (2).
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•
3. L OC .A T ION OF LAS T P LAS TIC H I N G E

As was stated earlier, the boundary conditions used in

calculating deflection and.rotation in the plastic range depend

on the location of the last plastic hinge. One way of determining

the location of the last plastic h:inge is to calculate step-by-

step the load versus moment behavior of the structure starting with

an elastic solution.

In the case of the three-span beam, one step ,is sufficient

because only two h:inges are necessary to form a mechaniSm

(beca~e of synnnetry the two h:inges at the :interior suppms count

as one h:inge). Thus, locating the first h:inge by an elastic

solution gives the location of the last.h:1nge by eli.m:lnation.

From an elastic analysis of the beam, the following moments

may be obtained:

Maximum Moment ~ Mam Span .

ME:' wL2. [.1 
4 l

•

(5)

Noment,!;1 Interior Supports

2. [ 3 ' ]Me. =. W L: o<.{3+ I.
'-01 4. z.ra + 3 .'

(6)

.: ~..
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For a given loading and span length, one of these moments will

prove to be the largest and, therefore, the first plastic hinge

-9-

would occur at that location. The sizes of the moments sheu.ld be

considered in pairs .. consistent with the two types of possible

mechanism. Thus, for the main span mechanism, the question of interest

is whether or not M.B is greater than ME. For the side span

..

mechanism, MB and 1'F should be compared.

When MB and ME are equated, the resulting expression in ex
and 13 gives the beu.ndary between the regions where the first

plastic hmge .forms at B and at E•

2

( 8)

This curve is plotted as the lower curve in Fig. :). The region

below the curve designates the values of 'eX and (3 for which the

maximum elastic moment is at the center of the main span E. The

region above the curve designates '0( and,(3 for maximum elastic

moment at the interior supports B.

Similarly, equating MB and l'F results in an equation

separating the regions for maximum elastic moment at'B and F •

.J3 cx:83 +60(82
- 1)2. 8

0<.82. (e t3 +3)(ot8 3 + I)

This curve is plotted as· the upper curve in Fig. 3. Within the

region enclosed by the curve, the maximum elastic moment occurs

at F. Below the curve the max:i.nrum elastic moment occurs at point B.
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• As an approximation, t:qs limiting value of' the elastic m0Il1en.t may be

considered as the plastic hinge moment. Thus, the three areas

in Fig. 3 indicate the 'Values of 0( and a for whi'ch each of the

three possible plastic hinges are first to form.

By superimposing Fig. 2 on Fig. 3, a single chart (Fig. 4)

is obtained which indicates both the type of mechanism and the

location of the first plastic hinge. This information by elimination

also gives the location of the last plastic hinge, providing all
"- .-. - . .'

the infm-mation needed to deduce boundary conditions.

The method used in this case for the determination of the order

of formation of plastic hinges is the simplest form of the step-by

step method. However, for·a highly indeterminate structure', the step

by-step method would require a complete elastic solution of the

structure for each plastic hinge that forms.

Fortunately there exists ~ method of calculation which uses

only the maximum load moment diagram to determine the last plastic

hinge'? ,1, This method consists of assuming any given plastic hinge

to be the last to form and making a deflection calculation based

on this assumption. This calculation is repeated with as many

"last plastic hinge" assUIllptions as there are uncertainties as to

its true location. The true last plastic hinge corresponds to

the greatest calculated deflection •
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40 B E H A V lOR 0 F S T R U C T U R E .L!! FOR MIN G

.MECHANISM

Before making an actual calculation of the rotations' of

this beam)) it may be helpful to visualize the behavior of the

beam in the farming of a mechanism under the action of steadily

increasing proportional loadso

For example, consider a case when Q( equals 0.5 and 13

equals 1000 From Fig 0 4 it is seen that in this case a main

span mechanism would form with the first plastic hinge at the

i!}.terior supports 0

The actual moment- curvature behavior of a typical wide-

flange shape such as might be used for this beam is shown dia-

grammatically in Figo 5a. This curve exhibits the effects of"

the elastic range, the gradual transition from yielding in the

flanges to the complete plastic hinge, residual stresses, and

the effect of strain hardening as has been fully discussed in

literature on the su.bject of plastic behavior.

For the purpose of simplification of calculations, assumptions

of behavior in an idealized manner will be used in the develop-

ment hereo The material in the beam will be assumed as So

ductile material having the idealized stress-strain curve shown.

in Fig 0 5b, i.e 0)) strain-hB.rdening and the· upper

yield point will be neglected. As a further assumption, the M-¢

curve will be used in the idealized form shown in Figo 5co

As well as the assumptions of the idealized stress-strain curve,

this curve neglects residual stresses and the gradual transiti0I1

from elastic to fully plastic behavioro
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In the first phase of the formation of the mechanism, the

complete beam would be elastic 0 The deflected shape of the

beam would be a fully continuous smooth curveo The shape of the

elastic curve over support B would be as shown in Fig 0 6a ..

Note that the slope at the joirit· is the same iri each spano

The load-deflection curve for the beam. in the phase would be as

shown digramatically by curve I in Figo 7a and 7b. Increasirig

the loads until the maximum moment at Breached Mp would cause

a plastic hinge to form at that poirit. In this condition,

the curvat'lire ¢ of point B would not be uniquely determined by

the moment. The curvature could be the equivalent of po:lnt A

in Fig. 5c 9 :In which case the beam would look like Fig. 6a.

at the joint, or the curvature could be the equivalent of any

other po:lnt· on l:lne AB in Fig 0 5c. n Then the beam w0Uld have a

discontinuity at the joint as in Fig. 6b. In a case like this,

the slope at the joint is not the same in each span. Since

the amount of discontinuity is not uniquely determined by the

moment at the h:inge, it must be governed by the behavior of

other parts of the structure.

Because the three-span beam is an :indeterminate structure,

formation of the first plastic h:inge would not create a

mechanism. However, the formation of this plastic hinge would

introduce a uknown ll moment into the picture, thereby removing

the indeterminacyo (J,3ecause of symmetry, plastic hinges would

form at the two :interior supports s:ilrrultaneously.) At this stage,

the remainder of the length of the beam would still be bent in

smooth curves, and the tm-ee spans c0Uld be considered as separate



•
268.2 -13-

•
simple beams loa.ded a.s shown in Fig. 8. Except for local

conditions caused by yielding at the supperts, these spans

would be piecewise continuous and satisfy the conditions which

permit the slope and deflection to be calculated by standard

elastic metheds. Therefore, the end slopes at the· interior

supports could be calculated and the angle of discontinuity

determined.

On increasing the loads proportionally, the changes in

moments in the three spans would be those of simple beams, because

the end moments Mp would remain constant. This is the phase of

loading in which redistribution of moment takes place. The

load-deflection curve due to this increment of loading would be as

shown diagrannnatically by curve II in Fig. 7. Eventually, the

center of the ma:in span would have its moment increased to Mp •

Then the curvature ¢ at that point would be undefined as in

the case of the first hinge. Hew-ever, at the precise instant the

moment reached Mp , the M-¢ relationship would be the equivalent

of point A in Fig. 'c. This stage in the behavior of a

structure is very important because it is the last stage at which

a solution may be obtained for' the slope and deflection of the

structure. It is also the stage at which the ultimate load of the

structure has been reached. Considering the deflected shape of

the beam at this same stage, it is apparent that the three spans

would still be bent in smooth curves between the supports and

that the spans would satisfy the cond1.tions which allow slope and

deflection to be calculated by elastic methods. This would permit

the calculation of the hinge angle which is the main objective of



.. -JJ+-

•

..

..

this studyo This critical hinge angle is the angle through which

the first plastic h:l.nge must rotate up to the instant that the last

plastic h:inge just begins to formo The impcr tance of this angle

is evident when it is realized that if the angle cannot be reached!!

the structure may not be able to carry the predicted ultimate load

on which plastic design ~is based o

Although a structure plastically designed would not be

required to deform further after formation of the last plastic

h:inge, consideration of its behavior in this range is worthwhile

because it sheds s orne light en the virtual displacement method

of determining ultimate loado

Up to the instant that the last plastic hinge formed in the

middle of the main sPan, the curve of the beam wouild be smooth

as in Fig. 9a. ,This is the boundary' condition which makes possible

the determination of slope and deflection of the beamo Once the last

hinge formed, its rotation could increase without addition of load

and a hinge angle would be evident as shown in Fig. 9b. . It would '

not be possible to calculate the hinge angles since the structure

would now be overdeterminate and subject to an infinite number

of solutions for deflection and hinge rotations.

At this point it may be well to distinguish between the slope

mlgles and hinge angles which have been discussed here and the

mechanism angles which are used to determine the ultimate load of

structures by the virtual displacement,method.

The angles such as ~ Be and ~ 'EB shown in Fig. 6 and 9

are slopes to the lielastic fi curve of the structure. The hinge

angles such as' HB (Fig 0 6b) are the differences in adjacent slopes
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at a po:int where a discont:inuityhas occurred due to formation

of a plastic h:inge. These slopes and angles have unique values

up to the ultimate load.

In contrast, the mechanism angles (also designated as Q) are

imag:inary rotations of complete lengths of members result:ing from

:imaginary controlled· displacements of structures already at their

ultimate load. Because the external loads and internal moments

rema:in constant dur:ing these virtual displacements, :internal and

external work may be expressed s:i.mply as a function of load, ~,

geometry 0f the structure, and Q. Equating :internal and external

work from these expressions gives a. value for load :in terms 0f

Mp and geometry of the structure with Q cancelling completely•.

The physical picture of these angles will be shown with the

aid 0f Fig. 10. Fig. lOa shows a typical method of describing

the mechanism of the beam for the purpose of writ:ing the virtual

w0rk equation. The beam, already at maximum load, has been

subjected to a virtual displacement, ~ , caus:ing virtual ratations

Q at the :interior supports, and 2 b\ at the center plastic lrlnge.

(Loads have been omitted to allow the angles ta be seen more

clearly.) In Fig. lab is seen an enlarged view of the portion BE

of the beam just":'1f:fore the virtual displacement was effected.

The bent shape of all members is piecewise cantinnons between hinges •

Because bendinK moments wil+ remain constant throughout aiJ.y dis-:i.·.

placement, the .shape ,of' each bf these' pieces will. remain conStant.

This is just as if they were rigid curved links connecting the

hinges at each end. Shown :in Fig. lab are the vertical deflection

6 due to bending and the h:tnge angle H8. In the condition
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indicated by the drawing, the beam wC1llld just be reaching max:inn.un

load and HB wC1ll1d be the hinge angle required f <'-r' max:inn.un load.

Fig. 10c shows the beam after the virtual displacement, ~',

has taken place.. The rigid link BE has re>tated on an amount ~

and the added rotation at joint E is 2 9.

The angles caused by the virtual displacement ..,,6,. are Q

at joint B and 2 Q at joint E. These are super:J.mpased on the

hinge angles which were HB at joint B and zero at joint E.

Fer the purpose of the virtual work equations, the virtual

displacements are assumed to approach zero in order that they

won't constitute a change in the geometry of the structure •
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5. MET HOD 0 F CAL C U L A TIN G ROT A T ION SAT

MAXIMUM LOAD

Calculation of the deflections and rotations of flexural

members at maximum load is accomplished by integration, with

appropriate boundar;w:.conditions, of the differential equationt

(10)

where y = deflection fr om original straight line of member

x = distance along member

...

¢::: curvature of rnember, a function of moment

Since ¢ is a function of moment and since the moment is a function

of x, ¢ may be expressed as a function of x.

Next the question arises of the form of ¢ for use in this

equation. ¢ could conceivably be used in a form which would represent

the actual shape of the M-¢ curve and could also include the effect

of residual stresses and strain hardening~' (Fig.5a). However this

would require the use of tedious calculation procedures and

probably give answers which are not particularly more significant

than those which can be derived using simplifying assumptions.6

For the purpose of obtaining quickly a qualitative overall picture

of the rotation capacity problem, the assumption of the idealized

M-¢ curve as shown in Fig. 5c will be made. By using this

assumption, the function of ¢ along a member and between plastic

hinges may be represented as M/EI just as in elastic analysis •

This neglects only the area between the solid line and the dotted

line and may be shown to have a small effect. 6
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By assuming ¢ equal to M/EI, it is possible to use all the

methods of calculation of deflections of elastic analysis which

use orderly procedures or evaluated integrals of the M/EI curve

-18-

•

•

in the form of formulas and thus simplify mathematical operations.

These methods include moment-area, conjugate beam, virtual work and

slope deflection. The choice of method is generally governed by

an individual's preference of an orderly form for calculations

or an easily remembered sign convention. In the following

solutions, slope-deflection equations will be used in the following

form: l ,9

(11)

~ N = Slope of near end of member

~, NO: Slope of near end of similarly loaded member

+ W l3
when s:i.Inply supported =

24E1

RNF = Rotation of a chord between ends of member

'" Deflection of one end of a member with respect to the other
divided by the distance between them - 6/Z

l '" Length of member or: portion of member

MNF =Moment at near end of member

M.FN c Moment at far end of member

Any of the sign conventions convenient for slope deflection

may be used. The convention used here is that slope angles are

defined as positive, when the retations are clockwise, and end

!Yl';)ments are defined as positive when acting in the clockwise sense.



•
268.2 -19-

•

'.

@ is used to represent the slope on both sides of a point.

H is used to represent the difference in slope at a plastic hinge

at maximum load. See Fig. 6.

g as used here is not the same as the virtual rotations used

for calculating internal work due to virtual displacement of a

mechanism. Once the bending moments for a structure are known,

the slope deflection equations· are used by writing an equation

similar to (ll) for each end of each member. The unknowns in

these equations wili be the G and R terms .(Gt are known) •
.

Additional equations will be needed to solve the problem. These

may be derived by considering the compatibility of the R terms;

Le.• , the R rotations must be such that the members remain

connected together at the joints. Solution of the unknown G

and R terms gives sufficient information for determining all

deflections and the hinge angles at each plastic hinge.
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6. D E R I V A T ION o F E QUA T ION S FOR

-20-
';.

HINGE ANGLES--

•

Using the findings of sections 2;> 3, and 4, it may be

determined that there exist four possible cases of mechanism and

order of formation of plastic hinges for the three-span continuous
,

beam. Diagrams of these cases are shown i..-1 Fig. 11. Sketches

singling out the boundary conditions and unknowns for each case

are given in Fig. 12. Using these conditions, a hinge angle will

be calculated for each case.

Case I. Main Span Mechanism--First Hinge ~ Midspan

Mp=

For this case the plastic

wI!
16

hinge moment is

(12 )

'.

The boundary conditions are indicated in Fig. 12. Slope-

deflection equations are to be written for lengths AB and BE

with continuity assumed at joint B, the last plastic hinge. In

span AB, the rotation at B is calculated as the end rotation of

a uniformly loaded simple beam with a moment Mpapplied at end B.

(13)

In semi-span BE, the end rotation at B is:



•
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Since @ BE '" G BA'

L3 f 3 11 + MpLr8 + 1.]RBE = 2.4EIl-O<,8 - 8] 3EI L 4

(15)

The end rotation at E is:

e =-wl! +R + ~ r-Mp + ~Mpl
EB Z4(8)EI BE 3EIL J

(16)

By symmetr;y, the hinge angle, HE, is twice ~B

H - wL3 r__1 _2..0(,831 + b MpL~
. E - Z4EIl 2. j.3. EI

(18)

..21-

/

..

By use of equation (12) this equation may be expressed either in

terms of Mp or WO Thus

He = 48~ (L,8 -I - 40((33)

-. MpL(2 IQ -I - 4oc:,e~
- 3 EI f-.J.
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Equation 19 may be written in the form

HE .£.~ _ -l. 40(,83
{ppL3 33

where

cA = Mp =
P El

wL2.
16E1

(20)

(21)

•

Equation 20 is plotted in non-dimensional form as a family of

curvesoin Fig. 13b. Values of 0<:: and ,<3 for which Equation 20·

is applicable are limited by the appropriate domain in Fig. 4.

As plotted in Fig. 13b, all values of 0( and,(3 satisfy this

requirement.

Case II. ~ Span Mechanism--First Hinge !i Support ..L

Because the final mechanism is the same as Case I" the

plastic hinge moment is

wL2..

16 •

(22 )

The critical angle is the hinge angle at interior support B.

This is obtained by calculating the end slope of the simple beam

AB with end moment Mp as for Case I and also calculating the end

slope of simple beam BC with two end moments Mp (Fig. 12). The

'.

hinge angle is then the difference in slope.

- .MpLff9 - 2. 0((33J
3EI ~

-L, MpL
6 E1

(23)

(24)
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esc - 8SA

w L
3 [4 <X,G3 - 2,8 + iJ

96fT

MpLL20if33_ J.,(j + ~l
EI l) 3 6-1

(25)

(26)

-23-

The non-dimensional form of this equation js g

(27)

This equation is plotted as a family of curves in Fig. 13a.

The values as plotted are consistent with the limits imposed on

0( and 13 for the main span mechanism with first hinge at the

support (Fig. 4).

Case III. ~ §?..§:!l Mechanism--First Hing~ ~ Support ~

When the mechanism forms in the outer span, one hinge forms at

the interior support and one forms at a point F at a distance

0.4142{3 L from the outer support A. Replacing S by its numerical

value of 0.4142 in equat.ion (2) gives ~

(28)

The controlling boundary condition in this case is that the

beam remains continuous at point F until the mechanism has formed.

The hinge angle at B may be calculated from the end slopes of

two simple beams having the given moment diagrams.
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MpL
2. EI

(29)

H
B
= MpL[O.915,8 - 3 +

GEl
2.915J
0( (3' j

(30)

In non-dmensionalform, the equation for HB is:

Jia = O.15Z4,e - _I +
~pL 2

0.486
0( (32.

(32)

where
Mp
E.1

2. ;;0<13 wL-
11 .. 66E1

This case is plotted in Figure 14a.

Case IV. ~ Span Mechanism--First Hinge ~~ !1 Section E-

In this case, the first hinge forms in the side span. Span BF

is analyzed as an overhanging cantilever extending from simple

span BC. Span AF is a simple span supp'Orted at one end by the

orig:inal end support and at the other end by the cantilever

span BF. The controll:ing boundary condition is continuity at

point B, the position of the last plastic hinge.

The hinge angle for this case is:

HF = 0.368 t3 - 1.207 + 1.1 ~~ (34)
epL ~

This is plotted in Fig. J..4b. Since equation (16) is negative

for all values of ex and~ for which it applies, the absolute value
~:1i\'

is plotted.
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70 DISCUSSION

701 Illustrative Examples

ao General Exampte '

The use of the charts can be illustrated by a simple example.

Given: Three equal spans, L= 30 ft 0
Main span maximum load, 2k/ft.
Side span maximum load, lk/ft.

Find: Rolled shape for the beam.
Hinge angle required to develop all

necessary plastic hinges.

Fr om the given data,

ex = 00'

,<9 = 1.0

Entering Fig. 4, it is found that this beam will form a main

(Eqo 1)

z

span mechanism with the first hinge at the supports.

W L2.

16

Me
(Ji 16 o-~

2.X30X12X30 =-40.8in.3
16 X 33

Since

(3,)

A 14 WF 30 has a plastic section modulus of 4701 in. 3
. and is the

most economical section strong enough for this load.

Fig. 13a gives the. hinge angle for a main span mechanism with first

hinge at the interior support. For 0( = 0., and fj = 1.0

0.166 (36)
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Then Mp
EI

~.z
£1

33 x 4-7.1

-26-

0.000179 rad.lin.

Substituting in (36) for f/;pand L,

HB ~ 00166 x 00000179 x 360 = 000107 rad.

HB c 0.61 degrees

Therefore, a hinge angle of 0.61 degrees is required.at the

support to form a mechanism in a 14 WF 30 beam continuous over three

30 ft. spans and loaded with a side span load equal to half

the intensity of the main span load.

b. Examples of Extreme Cases

In practical design cases, the sd-de span load intensity 'Would

rarely be more than the main span load, and because there must

be some dead load, would rarely be less than. 25% of the main. span

loado If 0( is assumed to be bounded by these limits, 1.0)0< )0.25,

and Figs. 13 and 14 are searched for the greatest possible hinge

angles, the following results are obtained:

Greatest Hinge Angle at Support .

( 0( = 0025, f3 = 1.70)

HB '" 0.425 ¢pL.
Greatest Hinge Angle in Side Span Beam

( 0< c 1 0 0, 13 = 1.85)

HF D 00186 qJpL
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Greatest Hinge Angle
( 0< e 0.25

HE e 0.030 ~pL

:in Main Span Beam

f3 e 0082)

(40)

-27-

Aga:in taking the case of a 30 ft. roa:in span and a 14 WE' 30,

the maximum possible h:inge angles are I

HB a 000274 radians c 1057 degrees

HF c 000120 radians = 0069 degrees

HE c 0.00193 radians c 0.11 degrees

Thus, a much greater h:inge angle is required if the first hinge is

to form at a support than is required if the first h:inge is to

form at some intermediate location in a beam.

7.2 Comparison~ Experimental Result

Data is available on the h:inge rotation of a 14 WF 30 membe~

tested in a c~er connection test. (205C--T-IOl)J In this test,

the· moment gradient was nearly the same as it would be" in the

critical portion of a three-span continuous beam with 0< = 0.25

and tG.,. 1.70 (Fig. 15). At the same time, the member was

subjected to an axial component of load. The h:inge rotation measured

over a 10 :inch length was 0.0281 radians. This is greater than

the 0.0274 radians which would be required for the beam in the

example. other sizes and shapes of test members have exhibited the

same or better rotation characteristics. It thus appears that

structural members should not have difficulty in developing the

needed h:inge angles at the supports of three-span continuous beams.
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7.3 Cemparison~ Lateral Buckling Theory

A recent development in the theory on lateral buckling of

members in the plastic range requ:l.res the knowledge of the hinge
,

angles to determ:ine the critical length of a member. ll The

method and the approximate methods derived from it are involved,

-28-

}

so na numerical example will be given here. The indications are,

however, that in cases where the moment gradient is very steep

as is the case over the supports, there are favorable effects which

reduce the tendency toward lateral buckling even though the requ:l.red

hinge angle may be quite large. In case,s where the moment gradient

is small as in the middle af the beams, there is a tendency toward

lateral buckling under smaller hinge rotation angles. It is fortunate

therefare that the hinge angles required in the middle af the

spans will normally be quite small.



268.2 -29-

8tl SU'M:1-XAEY:
. CL.£ j L_tS.l t..f Ll _ £ .• _ ;.

The following summarizes the results and conclusions of this

study of the rotation capacity of a three span continuous beam:

(1) Rotation capacity is the ability of a structural IlBmber

to rotate at near-maxinmm moment.

(2) The hinge angle, H, (as distinguished from the virtual

displacement angle, Q) is the required rotation of a given plastic

hinge in a structure that is necessary to assure that the structure

reaches ultimate load.

(3) The determination of the rotation capacity required in

a structure is essentially the problem of calculating the hinge

angle at the first plastic hinge at the instant that the structure

has reached ultimate load.

(4) This report has discussed the calculation (by means of a

modification of the slope-deflection method) of the rotation cap~city

required to form a mechanism in a structure loaded to its ultimate

load--(Section ,).

(,) As an illustrat~veexample, the method presented was used

to obtain the magnitudes of hinge angles for a symmetrical three-

span continueus beam. The structure considered had a center span

length L, and two sidE." spans ef length I{)L. Uniformly distributed

load of w Ibs. per ft. was applied to the center span and ~w Ibs.

per ft., to the side span. Expressing the side span loads and lengths

in terms of 0<.. and {9 permitted general equations to be developed

which covered a wide range of side span lengths and loads. The"

principal equations are surnm.a.:rized in the Appendix.



•

268.2 -30

(6) The two possible types of mechanism which could. form for

this beam were determined, and an equation was developed to

separate the values of 0( and f3 for which each would form (Eq. 4).

The domains enclosing these values of ex and 15 we:I-e depicted

in graphical form (Fig. 2).

(7) Equations defining the location af the first _plastic

hinge were developed (Eq. 8,9) and the domains including the

applicable values of cI. and 13 were given graphically (Fig. 3).

(8) Combining of the graphs for type of mecha,nism and

location of the first plastic hinge gives a graph indicating four

combinations of mechanism and first plastic hinge (Fig. 4).

(9) A detailed description of the behavior of a beam during

the formation of a mechanism was given to aid in the visualization

of hinge angles and virtual displacement angleso (Fig. 6-10).

(10) Expressions were developed for the hinge angles ,H, -

for the four cases of failure mode 0 These are presen-c.ed in Eq. 20,

27, 32, and 34, and in curve form in Figs. 13 and 140

(11) The extreme values of possible hinge angles were

determined from Figo 13 and 14 and are as foll0WS:

Maximum Hinge Angle at Interior Support

( 0( :: 0.2.5

HB = 0.42.5 ¢p L

13 ~ 1..70)

(38)

13 .. 108.5)
,.

Maximum Hinge Angle in Side Span Beam

( ex :: 100,

HF = 00186 ¢p L

Maximum Hinge Angle in Main Span Beam

( 0< '" 0.2.5

HE .., 0.030 ¢fJL (40)
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(12) For a specific extreme example of a three-span beam

using a 14 WF 30 with a 30 ft. main span, the hinge angle required

was 0.0274 radians. The result of a corner connection 'test, using

a 14 WF 30 and having a moment diagram almost the same as the beam

;in the example gave a hinge rotation ef 0.0281 radians. This was

experimental evidence that the hinge angle requirements for

three-span beams are not too severe. to be met by rolled shapes.

Since Corner connections fabricated fr0m other rolled shapes

exhibited as good or better behavior it can be concluded that

rolled shapes, in genera], will exhibit satisfactory rotation capacity

characteristics for three-span beams.

(13) The results of this study may be used to obtain hinge

angles for use in lateral buckling and lateral bracing calculations

(Ref. 11). The results indicate that the largest angles occur at

interior supports where steep moment gradient and strain-

hardening reduce the tendency toward lateral buckling. Usually,

only small hinge a1gles are required in the spans where the flat moment

gradient increases the tendency toward lateral buckling •
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100 NOM E N C L A T U R E
Symbols:

E

H

I

L

M

z

'l

w

8

&
e
¢

0-

0;
S

Young's modulus of elasticity

hinge angle

moment of inertia of cross section

length of main span

bending moment

moment at near end of member

moment at far end of member

plastic hinge moment

rotation of a chord between ends of a member

fully plastic section modulus

length of a member or portion of a member
(Variable)

uniformly distributed load per unit length of span

ratio of side span unit load to main span imit load

ratio of side span length to main span length

deflection

strain

curvature of member

slope of deflection curve

stress

yield strength of steel

ratio of distance to plastic hinge in side span to side
span length

Capital Letter Subscripts in Slope Deflection Equations

Single letter
Double letter ------

1st letter
2nd letter

joint
span
----- near end

o 0 0 0 o· 0 far end \



..
Definitions:

Plastic H:inge

Hinge Angle

Rotatien Capacity

Mechanism

Plastificatien
of cross sectien

Redistribution
of Moment

-34-

A yielded section of a beam which acts
as if it were h:inged, except that it
has a constant restraining momeE.t.

The required rotation ef a given
plastic hinge in a structure that is
necessary to assure that the structure
reaches the ultimate loado -

The ability of a structural member
to retate at near-maximum memento

A system of members (and/or segments
or members) that can deform at
constant load. It is used in the
special sense that all hinges are
plastic hinges (except pin ends).

The develepment of full plastic yield
of the cross section.

A process in which plastic hinges form
successively in a redundant structure
until the ultinJate load of the structure
is reached. In the procesS, a new
distribution of moments is achieved
in which portions of the structure
which are less highly-stressed in the
elastic state subsequently reach'the
plastic hinge value. Redistribution
is accomplished by rotation through
the hinge angle of earlier-formed
plastic hingeso
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APPENDIX

Summary of Equations
(See Figo 1 flJr homencla.ture)

..

A•. Plastic Hinge Moments

10 Main Span Mechanism

wL!
M p= 16

2. Side Span Mechanism

M
p

.:.-. cx,<S2. wL2.

ll. 66

B. Limits

10 Between Main Span and Side Span Mechanisms

0( f3 2. = o. 728

20 Between First Hinge at B and E

(1)

(2)

(4)

2.
( 8)

3. Between First Hinge at B and F

. (30(,(33 + 60(,G 2. _ I) 2.

0(f;2..(2..~ +3)(0{t3~+ I)

C. Hinge Angles

8

·0

10 Main Span Mechanism--F:irst Hinge at Support B

He .= .b.r:x{j3 - _1,6 + L
fP pL 3 3 6

(27)

20 Main Span Mechanism--First Hinge in Span at E

H . I 4 3
t - £. A - - - -o<.{3--3f'J .3 3

¢pL (20)
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30 Side Span Mechanism-First Hinge at Support B

HB = OJ52.4~ _ J- -+ [).A-86
II\pL '2. 0( {32.'Y (32)

40 Side Span Mechanism--First Hinge in Span at F

I
I

\ ',.

\
! '

r

0.3688 - 1.2.07 + 1.173
, .

0( t32.

/
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FIGURES

10 Beam. Dimensions, Loading, Moment diagram, and Possible Mechanisms ..

2 • Type of Mechanism.

30 Location of First Plastic Hinge.

4. Limits of Mechanisms.

50 ao Ac·tual M-¢ Curve for Wide-Flange Slope.

b.. Idealized Stress"'strain curve.

c. Idealized M-¢ Curve.

6. Formation of Plastic Hinge over ir:lterior supports.

7. Dia.gra:mm.atic load-deflection curves of beam during formations of a
mechanism•

8. Loading condition after formation of plastic hinges at supports.

9. Formation af plastic hinge in center of beam.

10. Virtual displacements compared with actual displacements.

110 Pessible order af farmatien of plastic hinge.

12. Boundary conditions for .calculating hinge angles.

130 Hinge angles for main span mechanism.

14. Hinge angles for side span mechanism.

15. Comparison af moment. diagrams for theoretical example of three
span'beam. and experimental test of corner connection ...
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(a) Beam Dimensions and Loading .

B. c D

..

(b) MO,ment Diagram

A· ..
.

(c)Pos'sible Mechanisms

Fig. 1 Beam Dimensions, Loading, Momen'tDiagram, and .
Possible Mechanisms
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~
l~ ~L _1_L .1. ~L .1

~
'~

1 2 3 4 5

Side Span Length,F.actor ~

FIG 2 "TYPE ,OF MEC!fANISM
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Side

Span

Load

Factor

1.0 .---------..,,.....---------+-.....--......-------,

1st
Hinge

F

0.8 -

(Eq. 9)

1St
Hinge

B

0.4

0.2

1st
Hinge

.8)E

0
0 1 2 3 4 5

SideSpan.LengthFactor ~

FIG. 3 LOCATION OF FIRST ·PLASTIC H+NGE
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w El canst.

I3L L .j3L Mp canst.

Ult. M•
..Diagram

Possibl'e
Mech.- - -=-==~:::::--

Hinge~

Midspan
ol---.L~~-~-=-----+~==::::r:::====~__--1o 1.0 2.0 3.0 4.0 5.0

0.2

0~8

Side

Span 0.6

Load Main

Factor Span

a. 0~4 .Mechanism

.I

..

Side Span Length Factor. t3

FIG. 4 LIMITSOFMECHANISMS
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FIG. Sb. IDEALIZEDSTRESS-STRAIN .. CURVE
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M

/

FIG. Se. IDEAliIZED~0 CURVE
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Elastics19p'eor·
slope prior to formatio~

of plastic hinge

FIG. 6a

9BA .1= :9BC

HB = 9BC - 9BA

FIG. 6b
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FIG. 7a INCREMENTAL BEHAVIOR OF BEAM FORMING A .MECHANISM

FIG.7b TOTAL .BEHAVIOR .OF BEAMF()RMING .AMECHANISM
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Mp .Mp

f"'I"""""'P(~;("pmmmilill~
FIG. 8

FIG. 9a

FIG. 9b
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a,w ...loll a,W"

l""ll"'~"""'}l.
A F B E CGn

I< ~L .ll-E--oE_L->I~. ~L _I

® ~

,Case I

Case II

<D CD

Ca's'e III.

Case IV

FIG. 11 PQSSIBLEORDER OF FORMAT:t:0NOFPLASTICHINGES
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.Case I First Hinge in Main Span

o = 0 .
El = ?
M= 0

0·::: 0
ElBA ·= ElBE

M= Mp

o =?
El = ? 0:: ElEB
M =~.

Case II & Case III First Hinge at Interior Support

A B B -C

0 = 0 0 =0 0 0
El = ? 9 = ? ElBA 9 ? = ElEC
M = 0 M == Mp M = Mp

Case IV First Hinge inSide Span

)~

0=0
El = ?
M= 0

o = ?
9 = ? = gtA
M= Mp

o = ?
El = ? = ElFB
M= Mp

o = 0
GBF "" ElBC

M= Mp

FIG. 12 BOUNDARY CONDITIONS FOR CALCULATING HINGE ANGLES
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FIG. 14 HINGE ANGLES, FOR SIDESPAN.MEQHANISM
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