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SYNOPSIS

Modern developﬁents of reinforced concrete structures
have bresented many problems in the field of theory of elastl-
city. Especially'in the case of plate and shell structures,
theofetical investigations based on the theory of elasticity
have become ihdispensable for a safe and economical design,
“The application of piate theory, that is, influence surfaces
of plates has been taking more‘and more importanf reles in the
design of bridge floor slsbs.

In this dissertation, the extension of the theory of‘
influence surfaces to orthotropic plates are made, the approach
being based on the mathematical concept of "Green's Function"
for the deflecfion of a plate. |

Solutions for the moments of semi-infinite strips as
well as infinite strips with various boundary conditions are
.derived mostly in closed form,

Such a solution'ih closed form will rehder numerical
. computations much easier than series solutions as presented by
Pucher and other investigators. A general discussion of the
. singularities of the surfaces are presented with several

numerical examples.
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CHAPTER I

Introduction

;The'importance of Influence Surfaces in the Design of Bridge Floors

The use of influence lines for the design of bridges sub-

.jected-to live.loads has become a standard practice, even to the

extent that no further méthod is accepted. The influence lines
allow to determine the maximum moment, shearing force, axial load,
etc. for a given section in a bridge member under live loads.

A logical extension of this method to the design of bridge
slabs is the development of influence surfaces (two-dimensional
influence lines). AThey allow the determination of the maximum
moment (and shearing force, twisting moment, etc. if desired) at
a given'point of the slab subjected to concentrated wheel loads.
The proper"detailing of ﬁhe slab can readily be handled, once the
extreme moment values are known,

.In this chapter, the fundamental equation of an ortho-
tropic plate will be introduced first. Theh the engineering con-
cept of influence surfaces will be described. Finally, some im-
portant theorems asgs well as properties of influence surfaces will
be listed without proof, |

Bending of Orthotropic Plates (for example, (1) p.188)

It is assumed that the material of the plate has three
planes of symmetry with respect to its elastic properties.

Taking these planes as the coordinate planes, the relations
between the stress and strain components for a case of plane stress:
in the xy-plane can be represented by the following equations:

(Fig. (1-1))
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It is seen that in the case of plane stress, four constant E;; E§,
E" and G are needed to characterize the elastic properties of a
material.

Considering the bending of a plate made of such a material,
it is assumed that linear elements perpendicular to the middle
plane (xy-plane) of the plate before bending remain straight and
normal to~the deflection surface of the plate after bending.

Hence, the usual expressions for the components of strain can be
used((l)p°34),

2

o'w oW

oxt , G=Zgy

W |
fv_—zzmy (1.2)

The corresponding stress components, ‘are

2 v 2W
o =2 ElERe + Egye )

) (1.3)

0 = r W " W
y Z_(E, Soot E'—5s

2
T = ~-2(+%2 oW
) | X G X3y
"With these expressions for the stress components the bending and

twisting moments are

h

2

My = __( oW oW
X LO;Z dz == Dy o + 0, 95") (1.4)
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in which | J
Dx=*%£, DJ=%ﬁJ ., D,=-%—A—J Dx‘,=_§%§ o (1.5)

Substituting expressibns (L.l) into the equations of equilibrium

for a differential element in x, y and z directions. (Fig. 1-2)

gl\;lx’— 9‘9/;:’ + @y =o '
gf". + —g%— + g =0

the equation for an orthotropi'é" plate is obtained
D gxa g% + 2H 9?%‘/» B g‘;w =5 (1.7)

where

H= b, +2D,/

in the particular case of isotropy,

L= E e B Gty
3 :
Hence D, ='DV _ _TE%%#;?T - D
‘ . 3
H= 1D + 2'Dx3 = ;2? ( li£i>*- ldF;' = /25ifb9=
Therefore equation (1.7) reduces to the ordinary plate equation:
DaAW =35 | (1.8)
where A= _AQ_. a

FCNEYE
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In addition to equation (1.5) and equation (1l.7), the expressions

for the shearing force Q, Q,y and the boundary shear Vi, Vy are

are collected here:

Qe =
gL

oMy _

Sy ax (0

3ﬁ4x 1==_? .(}4 aﬁﬂl +D

2w
H ey
W

fl

-+

G&

-l

of ox axz YR (1.9)
_ oMy
7;—'@)(——_87’ [DX9X1+(HDl) ) /Pb
aM,x

Ig = GQ "7;;7([2!4—0,

+DJ)J N

- surface,

‘Engineering Concept of Influence Function for the Deflection of a

Plate

Consider a plate of any shape with prescribed boundary
coﬁditiéné subjected to a concentrated 1oaleé1 acting at the
point SX,y). (Fig. 1=3)
is called the Green's funétion (influence function) for the de-

flection of the given plate.

The deflection W(u,v;x,y) of a point (u,v)

The influence function W(u,v;x,y) depends on the four vari-

ables u,v and XY
a two- dlmens1on?l contour line system will be employed. For in-
stance, if (u, V) is fixed ((u,v) belng the 1nf1uence p01nt) the
function depends upon ' x and y, therefore W(u,vix,y) will form a
Wix,y),

This surface, will be called influence surface

for the deflection of point (u,v). On the other hand, if x,y is
fixed{(x,y} being the loading point) the function, W(u,v) repre-
senté‘énother gsurface, which is the deflection surface of the
plate under a concentrated load P=1 at (X,y). The theory of in-
fluence surfaces is bésed'on the ordinary theory of plate.

fore, following assumptions made in section (l.2)vapply:

For the graphical presentation of the function

There=-



1. The pléte thickness h is assumed to be constant

and small compared to other dimensions,
2. The material is orthotropic'and follows Hooke's l&aw,
3. The.deflection of plates 1is small against the

thickness h.

1.4 Some Important Theorems and Properties of Influence Functions

It is not the purpose of this section to introduce the
general theory of influence surfaces developed by A. Pucher,

However, several fundamental theorems and properties of influence

surfaces will be pointed out. ﬂ4ﬂ“}
(a) The influence function for thé/geflection of a plate
W(uw,v;x y) consists of two func yé;s, that is,
.’[ OJ‘LWW
W(u,v, 1,;); W, (u,V; xq)+ Wiw v,z 4) Lyt

where W,(u,v;x,y) is the partlculg; solution of the differental

2

/

*W W aw _ / e
DGy t2H g XDy *D0y g7 = FO4) ‘ “'g‘;ff“m

and Wy (u,v;x,y) is the homogeneous solutlon of the above equation

equations

whose constants are determined such that W(u,v;x,y) will fulfill
. the prescribed boundary conditions,W,(w,v;x,y) contains the sing- =

ular solution corresponding to r®log ?ﬁ in case of isotropic

. o .
((2)p. 26l}. The corresponding solution for orthotropic

(11)°

#

plates

plates has been derived by'Mossakowski
It is this part which plays the impqrtant role for the

singular behavior of influence surfaces asvwill'be shown iéter.

(b) The influence function F(u,vix,y) for any effect in a plate

(such as bending moment, vtwisting'moment, shearing force, etc.)

at a given point (u,v) is obtained by differentiating the influence

function for the deflection, W(u,v;x,y), with respect to u and v.



Following are the formulae for the derivation of such influence
functions:

Bending Moments

| _ Yy )
Ml v x3) = (058 +D/59v‘ $
Mg(“/‘/ Xid) -"(01 9“1
Twisting Moments '7 QV) J
M ‘ o'W o
Xy (W V;%,4)= 2 Dxy o SV == Myx(U,Vix,3)
Shea?ing quges
Qx(u,V,' ij)=‘— 9?,{, (Dx auz'}'HaVa)
. W
@ ving) = - B His0,28)

Boundary Shear

- | W
Ve (v, %, 9) =——3—9&-[Dx gZﬁwL(H -0, %,TJ

Blwsng) - -l ool B2

The-fﬁnction F(u,v;x,y), can be used in two different ways.

If the point (u,v) is fixed (this point (u,v) will be called from
now on influence pbint), the function will represent the influenée
surface for the particular effect (for example, bending moment,
etc,) with respecf to the influence point (u,v) and will be written
Ilx,y). |

On the otherﬂhand if the point (x,y}, the loading point,
is fixed thevfuﬁction detefmines the distribution of the effect

over the plate due to the load P acting at (x,y). For example,



in cage of Mx(u,vgx,y) it represents the My-moment surface due to
a concentrated load P=1. It will be written as F(u,v).
(c) From section (b) it can be concluded that the influence

function F(u,v;x,y) for any effect in a plate is a solution of
*F o' o'F _

with a singularity at the influence point (u,v). The function

F(u,v;x,y) fulfills the same prescribed boundary condition as
W(u,V;x,y). In references(s)(é) some cases were solved directly
for mbments using this principle instead of deriving W(u,vix,y).
However, in this dissertation, W(u,v;x,y)ﬂ@s always thought first

. T~
and Mx, My are obtained through diffqug&}ons. This is done for

the following two reasons,

(i) Once, W(u,vix,y) is determined, any othervinflu—-
ence function is ébtained quickly by simple
differentiation. |

(i1) W(u,v;x,y) can be successfully applied to solve
other important problems such as eigen value
problems of plates (Vibration, buckling),
“dynamical behavior of plates due to impulsive
loading, etc,
(4) Magnitude of particular effect in a‘plate under arbitrary
1oading:

- The magnitude is given by the following expression

P= Z Pi f(u/ V/' 1'/3'0) + ff(&') j[{u,V,’ Z[J'), ;’(I))ALS

+ f[ f(z,;) fuavs ) Az

”
2



‘where

P;: concentrated loads acting at (x,y)

p(s):line load distributed along some line ﬂM?ﬁéwfyﬁ
p(x,y): distributed load over some area. |

With the use of influence surface diagrams(u) this computation
can be done graphically and numerically.
(e) Influence surfaces are generally controlled by following
four conditions:

(1) location of the influence point (u,v)

(11) sha?e of plate boundaries

(ii1) boundary conditions

‘ (iv).mgtepia1 properties of plates: that is, the

two parameters : X = —%% , fL=V“8: | N

(£) . A1l influence functions f(u,v;x,y) have singularities at
the influence point (u,v) with the exception of the one for
deflection. Values of Mg,My for interior points of plates, edge

moments along free edge become infinitely large at the influence

 point (u,v)._ Though other influence functions show singular

behaviors at the influence point (u,v), the corresponding values

stay finite. In the vicinity of the influence point (u,v), the

.
signulér part of the solution Fo(u,v;x;y) becomes predominant.
(g) In order to clarify the adopted definitions and notation
they}aré surmarized. in the following table:
(1) For the influence function W(u,vix;y) of the
déflection(u,v)and(x§§)are completely inter-
changeable (Maxwell's Law). Howevér, fof the

influence function of.any effect F(u,v;x,y)
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obtained through differentiation from W(u,v;x,y),

such a reciprocity does not apply in general,

(i11)

T ot ' ' e sas o Coordinates Loading
Notation - Definition of Influ- Point

ence point (x,y)
(u,v)

F(u,v;x,y) | Influence function for any Variable Variable
effect in a plate at a
given point (u,v) to a unit
concentrated load P=1 at
(x,¥)

d -
g .

F(u,v) The distribution of any Variable Fixed
effect over the plate
due to the unit load P=1
acting at (x,y)

ex ample-~My (u,v), Moment
surface for Bending

Moment My

f(x,v) Influence surface for any Fixed Variable
: effect with respect to the .
influence point Q(u,v)
example--mx (x,y), influ-
ence surface for bending
.moment My at point u,v.

F The magnitude of any Fixed Fixed
effect at (u,v) due t
specific loads. ’

Application of the Theory of Orthotropic Plates to'Actual Bridge

quor Systems

There are quite a few specific cases to which the theory of
orthotropic plate is applicables: two-way reinforced concrete slabs,
stiffened‘plates,‘éorrugated plates, gridwork systems, plywood

plates, etc. are typical examples of orthotropic plates. 1In

" order to study the behévior of such plates, applying the theory of
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orthotropic plates) elastic constantd, Dx,Dy, H must be determined'
either by experiment or on the bagis of theoretical considerafion°

As stated in (1.4,e) the/shape of an influence surface of
an orthotropic plate is contrelled by the two ratios of the elastic
constantss ,A==f{%7 , M= -%%— It is very important to study
- the methods to determine tﬁégé constants. Since Huber's work on
reinforced concrete slabs a great numbef of investigation havé
been carried out on this particular problem. However it may be
premature to say that accurate methods for the determination 6f

‘A end J have been established. It is a problem beyond the

scope of this dissertation. However, in order to get a picture on

the variation of )\ and fLas encountered in practicé, numerical data
on actual bridge floor systems have been collected and represented

in Fig(lr4) (See also Chapter XI, Réferénceéﬁ}g)_-(zén)

These data were obtained either by theoretical analysis or
by direct tests. The domain of A\ —/4 diagram'is bisected by the
>\={L line, and most of the points (A, p+) are located in the
domain )\<fk, with several points ((2j,(3),(u),(14)) are very
~close to MW -exis, :

Along the' M- axis, A =0, or, in other words, H=0, This
isAthe case for.gridwork system for which the torsional rigidity
of the floor may bé negligible. On the other hand, along X -axis
P.:O, that ie, D;=0 this is the case of articulated plates(aé).

In general, for actual orthotropic plaﬁes,‘A aﬁd fL valués can be

limited.

[T
S

0 £ X\
Ogﬁé fio

L)
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where g, Mo present some maximum upper limits®, The other limit
A=q&=0 is practically less important, because the structure is
effectively reduced to a system of beams side by side without conn-
ection (Dg=H=0),

It is also interesting that the case X< F-is quite common
as far as bridge floor systems are concerned, However, it is the
more complicéted case for practical computation of influence sur-

faces as will be seen later.

Historical Review of Investigation on Influence Surfaces

Since theory of influence surfaces is essentially the theory
of Green's functions associated with the linear foﬁ?th order partial
differential.plate equation the problem is closely related to the
bending of plates in the theory of elasticity. The fifst solution
of the problem of bending of a simply supported rectangular plate
with the use of double trigonometric serles is due to Navier in
1820, This famous solution in case of a single concentrated load P
is actually the Green function for this particular plate in double
series form of eigen functions.((l) > P.117) |

In discussing problems of bending of rectangular plates
with two opposite edges simply supported M. Levy suggested the
single series Solution in 1899. Thus, the Green's function of this
problem has become possible to be expressed in a single series form
(Levy's solution)((l)’p°125)'

.~ Almost, at the same time, J.H. Michell has derived the

Green's function for a circular plate whose boundary 1s clamped,

using the method of4inveréion in 1901.(7)

--_.—.—_—---—————-;--,.--:-,-—m.——:==an-usmnn-n:uqmmm—mn-wu—unmu_a—um—unmcumumm—mnmm-a

- ¥For. the numerical discussion of the singularities of influence sur--

faces in Chapter VI ‘AO /40~1O is assumed and twelve values of
"X and- . are considered. ‘ '
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Hdwever, the first attempt to cohpute influence surfaces
for the stresses in slabs was probably made by Westergaard(B)c
Realizing the reciprocity between the bending moment at point
(u,v) due to a load at (x,y) and vice-versa in the case of a
simply supported plate strip he obtained a moment influence surface.
Subsequent investigators(g)’(lo) followed the same line of
reasoning by basing the influence surfaces on Maxwell's reciprocity
theorem. However, thils theorem on the\reciprocity ofvdeflections,
if applied to moments holds for a limited number of cases only
(that is, simply supported plate strip, simply supported rectangular
plates, etc.).
Puéher has developed the general theory of influence sur-
faces in 1938(5) and he furnished a great number of important re-

(1) But his work and that

sults in form of contour line diagrams.
of work made by other investigators is confined to the case of
isotropic plates.
' The extension of the theory of influence surfaces to the
case of orthotropic plates is presented in this dissertation,
Incidentally, a recent literature review disclosed that
such work has been started independently in Poland by Nowacki,

Mossakowski and others since 1950(11)’(12)’(13)

o It should be
pointed out that some minor results developed in this disserta-
tion have been already derived by these investigators, employing

methods éimilar to the ones in this dissertation,
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CHAPTER II S

Practical Application of Influence Surfaces

The practical application of influence surfaces will be
discusse@ shortly in this chapter. - Since the influence
surfaces are generally presented in the form of contour -
line diagrams, it is important to know how to use these
surfaces in ordef to get accurate results. Furthermore
the consistency between theory and experiments will be~v

discussed,

Application of Influence Surfaces to Actusl Problems

" As pointed out in (i.u,d) already, the determination of any
effect.(bending moment, shearing force, etc) at a given peint due
to an arbitrary load, requires only the computation of simple area
or volume integrals by making use of influence surfaces. (similar
to influence lines).

(i) for a distributed load p(x,y)

F‘= /[ Flx4) f(u,vj'z,;) J%e@/

(i1) for a line load p(s)

F = f /(:) f(u, V, 2(5),505)) ds

(iii) for several concentrated loads P;(x,y)

F = E Ptz g) frav, xo,4:)
. ¢ _
In actual computation, (for case (i)) surfaces are sectioned by

horizontal or vertical planes and fqr each section, the area is

computed using a planemeter or applying Simpson's“Rule; The

" volume can be computed by repeating Simpson's Rule on the areas.,
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At the influence point the value of the influence function
very often grows to infinity. In numerical computations the volume
in the immediate neighborhood of this singular point is usually
neglected., In order to justify this practice the following example
ig given:
Consider the singular part of my(u,v) in the vicinity of the in-
fluence point (u,v). (Fig.2-1) Since the singular part of my is
predominant around this point the volume of neglected portion of
the surface AV 1s essentially governed by fhis singular part and
can hence be computed as follows.

In the case of an isotropic plate the singular part is:

- /. Y 2
assuming (mglo = X

17 AR 2' (8Tx+ 2c’P+1)

.
o B ey
o vixp)= v € % e

This is the equation of a section‘(mx)o = X of the surface., The

area of the section follows to:

/ 2T 27 2
Alx) = ?f ride =%n'2€"[2"+')/ e g

/ 2
= -—2*—>< 2,?—25 Yo e

Therefore the volume V(X) of the surface above plane X is obtained:

- (FTH*I)

~ze T gr

0a o0
2 ' - -
'V(x).—./ FOOAdx = 2? ;-2.?26/8 I = Lo, 2926 ;=7
X x

- — P
o Viix) = 0,02/46)’026?”-

e o s e i A G O ) X3 G O o G ) G g (ke O N3 G s T B D G S R e O O D 6 G Y R B ) o o () O 0 8

- o :
“by numerical integration

o
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Using V(K), AV is eagily estimated
7 . -7 -5
AV = T(35) = 002146 1 € = 1.9577% x 10

such that it can be usually neglected in the-computation of Mg.
Iﬁ case pf.orthofropic plates, magnitude of AV will change de-
pending upon A and F" however it 1s still of order 10'5.

Since influence surfaces have?singularities at the in-
fluence point, careful consideration must be pald to the computa-
tion in the vicinity of that point.

, Furfher details concerning practical computation will be
found in Pucher's book.(u) Careful computation yields always very
accUrate.resulté (max. error = 5%).

Consistency Between Theory and Experiments

Since the theory of influence surfaces 1s based on the
ordiﬁaryltheofy of plates, results obtained are certainly correct
within the limitation of the theory of-elasticity. Therefore it
cah be expected that corresponding results are much superior than
present semi-empirical formulae given in specifications such as
AASHO. Theory of plates subjected to.concentrated loads and
hence the theory of influence surfaces has been checked experi-
mentally. &Especially Dﬁtch investigators have recently carried
out a very successful experimental study of slabs subjécfed to
concentrated loads.(lu)

The experiments were conducted on a steel modei.to obtain

information about the stress-strain distribu;ion in slabs, sub-

jected to concentrated loads.
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(1) Investigation of influence of the size of the loading surface
(the concentration of the load) on the bending moments in the
slab,

The load was in succession transmitted by a ball (which gave

a contract area with a diameter of about 0.45 cm) and by circular

disfribution pads with diameters D of 1.6 cm, 3.6 cm, 5.4 cm and

7.6 em. The fatios e/a (radius of distributorlpad/span)‘were

respectively 0.002l, 0.0087, 0.0195, 0.0293 and 0,0411. For these

measureménts investigatipns on the influence of various inter-
mediate layers such as, 3 mm cardbosard and rubber with various
thicknesses were also made,

.(ii) Investigation of the stress~distribution in the slab aé a

function of the boundary conditions and the locations of

the load. (Fig. 2-3)

| Summarizing the test results, the following conclusions
were‘drawn:

(a) Outside the immediate neighborhood of the ioad there

was a good agreement between the experiments and the
elementary theory of plates.

(for concentration e/a=0.002) to e/a=0.,041l no notice-
able influence was found outside an area with a radius
of 5 cm (about f%of the span) around the center of
gravity of the load)

(b) For the bending moments under the load, the correction

(8)

presented by Westergaard was in good agreement with
the éxperiments,.(Fié. 2=l and 2-5),
As will Dbe seen later, influence functions for any effect

except the deflection exhibit singular behavior in the neighborhdod
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of the influence point. This is due to the assuﬁption of an
idealized concentrated load. Actually, this ideal concentration
of load cannot be realized.»

Instead, a small portion of the plate just under the load
must be subjected to rather high compressive pressure because of
highly localized loads.

Therefore it is impossible to apply the ordinary plate

3
theory in the vicinity of the applied loads. ,Nadaig)WOinowsky-

Kriege;? Westergaard?)and other, have investigated the stress
distribtuion directly under the loads (theory of thick plates).
Nevertheless, éuch a disturbance has such localized effects that
the accuracy of the theory is practically not affected (by St.
Venant'!s Principle), because, the volume of influence surfaces

above the certain limiting values is usually negligible as stated

before.
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CHAPTER III

Deflections, Moment d Influerice Fun
The Infinite Plate Strip With Simply Supported

.Pgrallel_Edges

3.1 Method of Solution
In order to obtain the solution, the usual approach solving
directly differéntial equation will be employed. Although the de-
flection surface is obﬁained in a series form, bending moments
twisting moment, shearing forces can be expreésed in closed form as
will be seen later. The expressions consist of a singular part due
to the particular solution of the generalized Biharmonic equation

and a regular part due to homogeneous solution of |

a'w atw o'W
< ox* t 2H gt Dy gy =0

3.2 nation of oblem and Derivation of the Solution
Consider an infinite plate strip with simply supported
parallel edgeé (Fig. 3-1).A
The problem consists of deriving the deflectlon surface and
hence the influence function for deflections (Gpeen's function)'of
this infinite plaﬁe étrip, The deflection surface must satisfy
the folloWing differential equation

p. oW ow i
(9 x4 axlaa'/ «7 % (71

=0 | o (3.1)

except at the p01nt where the concentrated load P=1 is applied
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The corresponding boundary conditions are as follows:

X=0 W =o (Dx DX +D,T)—O
. 2
X=a W =o Mx=0 .o —95%” (i1)
g—r too W — o (3.2)
} And =0 : ;%M-/_:a QJ-({’QJ=--:2E;/F=!' (111) /}})‘9
o , e -
- _, , Do [ @ i 2 P

b=>Q= -e k4

Condition (iii) assures that the deflection surface is symmetrical
)
‘with respect to the x-axls and the shearing force Qy disappears

except at the loading point (4,0).

Assuming the deflection surface

0o

Wia,z) =Z, Xty)M-’";’ZZ‘- - | (3.3)

ne |
~and substituting equation (3.3) into equation (3.1), gives the

following expréssion for the N th-term
m _ 2y 4 » '
D Y —2H(%I-)X, +Dx(% )::0 (n=1,23--) (3.4)

Taking _T;(y)= 6?\3 and substituting it into equation

Beld: pAF - 2HEE A o = 0

W The roote of the corresponding characteristic equation are:

(3.5)

= ¢ /(am) | H [ H,~ Dx
t(a)[D, fV(‘%) Dy
The following three cases must be considered
(1) H®-DyDy »0 (2) H®-DxDy =0 (3) H®-DgDy <O (3.6)
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In the first case all the roots of equation (3.5) are réal. How-
ever, in the second case, the characteristic equation has two
double roots, and the function ¥, has the same form as in the case

of an isotropic plate. In the third case, the roots of the

characteristic equation are imaginary, and ¥Yn are expresséd by
_trigonometric functions.

For the time belng, the first case is considefed. All the
roots'of the characteristic equation (3.6) are real. Considering
‘the part 6f'the plate with positive § and obsérving that the1de-
flection.w and its derivatives must vanish at large distances from
the load (Boundary condition (3.2,ii)), only the negative roots
can bé retained. | | |

Using the notation
e A Y
o Bl =N

]

(3.7)

where
/\=-——Dﬂy— /L2= g; and /\1—/—.kz>0
The integral of equ;tion (3.4) becomes
_ umK LG R
Yy)= Ave = +Be ©

and.expresélon (3. 3) can be represented as follows:

o0

ﬂw Ty ,
W(x,/.)_-.-Z(A@ 64)/""""‘@?

Since 1t is easily seen that the boundary condition (i),(ii) of

Clj;?f%g.B)

(3.2) are satisfied already, the coefficients Ap and B must be

determined by (3.2,iii).



. : ) | | . : . 5
From (‘g\gl—;\asjo | - \ 7

AuK/ + Bn K;_ =0

The other condition (QJ)J= ~ can pe Written as fb]_.l_ows
) oW L owy |
a;(o«?aga*Hax*)*’ 2

Expanding the term of - external load P=1 into a Fourler Sine series,

that ie, " o

he | .
where bu= ;:r’;o.m ”Z_Td
and substltutlng for w its expression (3. 8) Coroh ‘WUM’%L@ '7>

L Kz ’ h,
N ' melm)

o f 20 VDX%I
or An K1'+ 8” KJ | >

/

= LT
Thus A,, B, are determined, : 3 - _ .
' : ? ' _',,‘—""W”\'\,/
Ay = 5 Kia® Y4 .
2 ntre py;/')(l—— . . (3.9)

B.. =D'(j Kia
| ST T QWP - o
P ey, | equation (3 8) and equation (3. 9) the solution W( »Y)

. ‘becomes finally |

zfrr’,up‘/,\z n’ (Kfe

W[:r;}___ X WRPLL. o

(X>p)

Differentiating the solution for w(x ,¥) in equation (3.10) the

1

S

~

v,
M% fm‘

_ umgy ' .
K e )aitTH el (3,10)

‘bend'ing moments My (x,7), My(x,y), the twisting moment Mxy(x,y) Ard

shearing i‘orces Qx(x,yn Qy{zs¥¥ are samily derived.
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Mx"‘*(ngM/L”'"D/M

il
| p TR
- 2T pDy[ At~ Z [D"(K' - K€ )=
"= _ . umky
D, K/Kz( K, € “ -K, e < j] m,f/kWTd /,M'“'mrx

zvﬁ‘_‘“z [(Kkipe Kz(-*))é —(Kzr* K/(*"))é "j

. amrd NITL
R Aarn m——— a M Py
This series solution can be expressed in closed form by making use

of the summation formulae listed in the Appendix.

M/.W_f_z_ —cooLir+d)

M - ! 2 f '
Mx Sn'ﬁz_—[(KH K (55 )) ;mAl%‘Lz!—cnffz—d)
5 coo WK —conX(x+d )
- (Klf(' K’( /) /é C@A.F_?_QZ _c@j’:(z—d) ]
Similarly N )

’W o'W
My =~ (0, 5xv *+ Dy=g57 ¥R

= L - nTKY
B

2WFDVV)‘-L_F'2 Y]

_' g ,
T-DgKJK;(Kze —KIC 'Q)JW%FJWMQM

cooh 16’{135 — cooZHA+d ) |
¢ovh Lt —coo F(2-d)

I KD, _
T L (He ) g

Y coolh T —coffyxed )
?/ cooh T _ o Z¢ -
a” —erg(z-d)

(5 K)

9)@/
- Dy -m | 7 -l of N R
oA/, 7w L E - € ") e B T
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= D)(Z [t / /QAM—I{I+d) ,ta,vtl Mm.q_(x—d) )

2Tl X = eE: — coolixtd) C’,“ ~ eov Fea~d)
acTxrd) et x—d) )]
- tan +
{ - aﬂi(xfd)) Lo m—caalf(z-d)
@x= - (D"ax2+H90w)
_ [ - N .
”_32— ,/-r—Z( (=3 k) € uenmd) €7 ] et
| '— el c+d) _ T x—d ) '
- 80.[/)‘2' ‘ [(/MK’ /\Kz)< am/\ﬂc%i-(,m%[l-)-d) C@A%#—cb{(x-J)}
(X v lr—d)
(WK AK, __aund(xrd) _ v Zlr } ]
(/'( )4 G@A—WM_C@QI(I‘/'OI) C«O’DA%GGZ—C@%}-J)
Q, — . 2 (oW
Gl ri ek o 93)

=W‘—2[k(€ = e )‘(K:C— "K' )]

4 T a
- - ' _ [‘{ ” M‘”’q o MA LLL <14 }
ga .' Cnl\llgi-cgo;}z(wd) C@(Wz -cralf-(:z—d)
_{ N L AT } ]
CRhTKL _ oo Frid) ook TEhmcon Fr-d)
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Turning to case (32} Ii‘?‘«-Dxljy<O, or A<p the following ab-

breviations are introduced:

Ky = JRBEH 1 gan)

2007

=1/@2@5;_H_ '=J{(,«—)<)

Observing the following relations.

> (3,11)

‘KI=K3+¢'-’K4') Kz':KJ"‘L'/(q.

- the solution W(x,y) can be easily derived.
.!Mé‘

W §) = s, V___—_Z ni (K mﬂ&u@ ~T) % (5a
R

For case (2) Hz-Dny;O, or )\ =p , A approaches the poin

(3.12). Taking the limit, the solution W(x,y) becomes:

oQ

o 6{2 L".’L’Zﬂ ' |
Wiz, = - — AT
;} 27T‘?DJV)\3 2 n? (H )6 X (3.13)

. {
. wrd ) m[z

Likewise, closed form expression for Mx,My,Mxy,Qx and Qy can be
derived for both cases A< e and /\:Iu. |

So far the point where the load P=1 is applied has been
located on the x-axis. However, it is’~quite simple to derive the
expressions for the general'v c"a_i:ée. Assuming that the load P=1 is
applied at (x,y) and the infiﬁxence point is (u v) then y is re-
placed by t(v-y) {upper sign for VS¥, lower sign for V= )(z-ﬁd)

is replaced by utx . (Fig.3-2)

—_———-—m-—-—u—u-.—-—um-mu—muaamamuuomma..a-a..:;nu.m——-—a-:—:,—:—unu——-u-:__u-w-—‘-.-:—__

*Hereafter this rule should be app‘lied to a.ny double sign, unless
othcrwise noted.
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Furthermore, for simplicity, non-dimensional coordinates are in-

troduceds:

X _ Ts. _ Y _
ey, By, -

TV
a , Ta X,z =F
Using the above notation, several important functions are defined

in Table I.

Referring to these functions general expressions for the influence
functions of an infinite strip are obtained,

(I) Deflection W(¢,@,f,7)

(1) A D> H
| a’” . N | ENK(B-1) *ni (1) . .
”’M;W—TZ (K€ Tl iy
(11) A< p
1 o eztmg(e "
— — ' _ N o \ ”
Tr"IMD W ( Kg coonks (B 7)*’(3%%‘(‘(67))“; ::; ¥
(111} X =M . . .

>

a Ealx(f) . -
'mo,VTZ (1 (e 7))6 S ]

(II) Bending Momgnts Mx(a,ﬁgf,q) My(u,ﬁgggv)

(1) A> R
' |
M = e (kb)) R =Car-wlB)) R
My = . l s KD — (Kl _
Y = ST [(';Tﬁ;' k) R, (75; Ki) R, J
(11} A< p o
Mx =

| , . '
9_71"-—_— W[ﬁ&t({i‘f‘—%) RJ +2K3.(,'L"“g;') R4 J

(3.15)
|
" = g Ll gt ) K - 20 (55 ’)&J
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L
X
H

= (5 + 7=(2) Rs +M--—)[ﬁ »;)s, ]
My =-}?((V___ () Re 7 ()1 8, )

(III) Twisting Moment My (o, @, ¥,7)

(1) A>p

- + Dxy -
= 27D L/)\l—,“ (Rq Ré )

(11) A < H (3.16)
‘4”DJV/41‘AI RZ
(1i1) X =p
| - 2By g
47Dy X *
(IV) Shearing Forces Qx(‘xyﬁif{v')sz(o‘nﬁ’gfﬁ)
(1) )\ > K
@ = 2aa/—5\_‘(t—/7 r(K'f*‘KLA) Se = (kap-k2) S5 ]
Q = = ( 85+ Sc)
(1) X< pm
Qx = ;(K3/S7+K4Sy)
' | ‘ (3.17)
Qy = ‘—32"‘ S
(1i1) A= p
Qx = ‘E‘" Sz
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- In the case of isotropic plate (Dx=Dy=H=D)

= Db _ f Dxy 1=V
/\ I‘& , D# =V Dy - 2

and the above expressions reduce as follows:

' 2 '-oo 'ﬂ(." o ~
W = ‘2‘7%302 v{‘o(’ :F“(F"’?))er PV homor pomy

=

M)t '
| l | CnA(,e—v,)- coo (o +F)
= ——] (1+V) Lo +(1-v)( B~
My 8W[('+) ? ceraA(ﬁ 7)-&(0[0( ) (1 18 7)"
( ,o,JwA(‘p—n,) L euhlpy) )J
ch(f-n) —ertw+r)  cah(f-1)=crF)
wpper ac M x
chffw a;f: ?: My | - (3.18)
M= 2 (1=v)(g=)[ (X +E ) = @it ~F) ]
T gm L Coh(f-1) —eo +E)  cak (f-p) ol =E)
Ay = — [- g (0tF) - R (0 =F ) ]
4-4 eok(B-q)-co(@+F)  emh(f-1)=cor(~F)
Qy = —E! ( e ki) L pehlfy)
4a C@A[ﬁ—?) —cro(X+F) m((ﬁ_w.-cn(q/—f)
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CHAPTER IV

Influence Surfaces For ThevSemi-Infinite'Plate'Strips With

Simply-Supported_Parallel'Edges

.1 General Method to Obtain the Solutions

In Chapter III, the solution for the infinite plate strip

was obtained. It will constitute the particular solution

'wo(a,p;;,7) for solutions of semi-infinite plate strips or rec-
tangular plates.

Teking the soilution W(ot,‘e;f_,»?)= Wo(lx,rg‘; f,'lz)+ wl('ot,ﬁ; &7 with

W, as the particular solution and W1 as a general integral of the

homogeneous plate equation, the sum must satisfy all the boundary

conditions. The homogeneous solution for a plate strip 1s gen-

erally expfessed as follows:

(ﬁ‘za)

(

2

a__ l —nk.f -y |
}2,@%»#2 g (Ave T BT ) abe e (A1)

a 2 f » -nf (L.1)
{ Wa’“DJW ma (Au m"nK;ﬁ-l,— BuWnK,,B)C A,g.,«-?'tf\/(‘ /{ )

2 W=t ' . » o ‘ |
2773;’::\/3\—5" ? (At 8.,(%1/}_/9))@_ PP immer (A =p)

Since the particular solution and homogeneous solutions satisfy the

WI =

boundary conditions imposed on thé perallel edges:

o= o0 W=o go(wz=0
- ' 2
o =T w=o0 36%:0

the boundary condition of the third edge, that is, f?;O will deter-
mine the unknown constants A,,Bn of the homogensous solution (4.1)

In this dissertation 3 different cases are considered, that

is, (a) simply supported (b) clamped (c) free edge. (Fig. U4-1)
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.2 Influence Functions for the Simply-Supported Strip

(1)  The particular solution 'Wo(u,p;?;7_) is rewritten here
2 2 _ . .
- a ___ l (K, C:_tnK.(Mj K, e ) e alom E
2 fLDJV—A —f'( ink (F—ﬂ) ( A >,»L)
2 3
Wo = % = a C (K4 c(a')u(d(‘@—q)-r K3 /U"“— ”K;(‘B 7))AA-WMA’4M'M§
'”/*D:zf&—% - n’ i (A< py
2 ' -—'-- e - =X (@A) N prnMN
| 2o, § w (17 (2 o (A_f,u)

Assuming the solution W( B3 E)= Wo Ofﬁ ?7)"' Wy (o/, f; f’[) and

applying the boundary condition along the « a.x15

/3:0'_ D W=0 ;Mf =0 (Fig. L-1)
Thus An, Bn are determined, ‘ ‘ _ _ ,
. _x @_"K;”'MME : v()<>/4)
Aot _C’"K‘m-‘(KaM‘AK‘WH'ﬁe”“&q)wnf (_X(ﬁ-)
- u+o¢r:7)€'”'r”wl.»m§ o (A=p) (b 2)
ot K. e M alan , "cA>_/«)
Bu= { — 7"V Ky commken + Ky e m Ken)) @t § (X<p)
—'C-nﬁn/”‘;"’%? | (A=p)

Substituting equation (4.2) into equation (4.1), the general
solution for the deflection are derived.

(I) Influence Functions for the deflection W(o(,lg;f,”fz)

) X >/-<. - _
= :f:nl(;(ﬂ"’!) ?nK(P"’]) : _sz((é*ﬂ)
+ Ky c'“"‘m)l ACANOS pin E
) X< 3

(4.3)
tnka(ﬂ-ﬂ)

-t S L f
-”JHD;lfluz__Xz”=l |3

(Kg Comelf=) FKy asinmke(p-1))



-R Ay ) \ -
—C K(pﬂ(&m%‘(‘(ﬁ.'.y})'f"(g AM«%I(‘(F#"?)) J IQ‘WM-O(MM%E
i) X = p

= 211‘3%;3?’-2 oie ({ ' ;'”ﬁ(‘g"])leﬂmp-q—) { l+mf“(‘?+7)76 mNﬁ*v]

(4. 3)

n=]
X fon MO gior M §

(II) Influence Functions for the Bending Moments M (o,@;F,n),M (o, B £,1)
Bending moments, twisting moments, etc. can be derived by
differentiating equation (4.3) and summing up the series solution

into closed form expression as. explained in Chapter III.

Here only the final results are Summarized without showing‘

the intermediate mathematical operations .

(1) )\>,u~ -

Mg W——( CnpaleR = T
—((.f(—m(—-})(/e, - R ]

My =L ~ R
7 = e [ (5 - %) (Ra= Ri)
‘(lgl—m)[RI-EM)J
(11) A< P By
I —
e = g ) R

+ 2 KJ(/*-%)(R4 - E4)J
My'=—“L—“[K4( +/)('QJ R )

MY p=x*
'flKJ('/Té;"'/}(R'&"" Rg ) J




(1i1) A=

+—%—)(RJ- Ed’) "()("7%—_) {
£Vx(8-1) S, + 5(p+1) S, | ]

(Lol

My = WX;[( L+ ) ( Re = Re ) + (A - -L){

2/X(g1) S + VX(p+7) S } ]

(III) Influence Function for the Twisting Moment s 'Mxy(d,ﬁ;f;7)

(1) A>K
S s [ (k= R0 +(Ry- R

Y .)\ < F | - (L. 5)
.; evpﬁﬂ A’(£R?'+ Ra,)

(‘iii) A =.,.( -

e[ 7o 8, + A S ]

L) Py
)
IV. Influence Surface for. .Corner Reaction r(&, 72)
In order to prevent the upllftlng of the plate ‘at the corners:
(for example, originot ,6’ =0) concentrated corner r-eactlon must exist
actlng downward. Accordlng to geometrlcal cons:.deratlon an_d ob-

serving that the angle of the corner is equal to -} so that Mxyi-Myx,
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it 1s concluded that
Y(&’Z ) = MXJ(O,O; 5,72) - M;X(O/o) §,7) = ZM"J(G/@.E/?)

Therefore the corresponding influence surfaces are easily derived,

(1) A>,U-

- i [ 6 i) ()

(11) A<p * - (L. 6)
= __3_2__4__, 0, ., CohKy —en(E-ky)
= %4%7 —-m(§+&7)
(111) A =p

2 Dxﬂy

TX Dy (Caaéf_vz Caof)

For the case of an isotropic plate,,k=/4=[, the expressions

simplify considerably:

W= 385 S ok [ 1enie-p] e

n=|

{ [ -+ m(@M? )-; e‘”’ﬁ*"?’} RLMNEK pisom F

Mx
My

)'.: ___l__[( 1+1) Los {cﬂ/‘(ﬁ-{]) —Coolot+§) H cw&(p’-q) —Cﬁ(&ffzz
J §m J (Cavl\(ﬁ—y}—c;o(o(—f) Nm/l((g.;.;;).c.,o(o(—f)[

) (A h(f-7) | _ M/p-;;) } (L. 7)
T 1/)(/’, 7){0”/"({9—7)—60(0('—5:) CﬁA(ﬁ—?}—Cw@#{)

| ol (f+) eh(frn)
-(1=») VI
(/g+?){ CM(«‘?*W —con(o-§) wé(ﬂy) cn(o«+;)}]
upper sign for ,Mk

lower sign for My
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Myy = U=Y) _ i (=F ) 3 plort¥).
M Jm [i(ﬁ 7){ cﬁnﬂﬂ”])—cn(o/—?)  cmh(g-) —'cra(cwf)}

-] N, actrrr) 17

cwl (ﬂ4-7l/—c@(a’—f) - an((ﬁ-,«-?)-—m(c/-r}")lf (Le7)

Y = (/—-—V’)‘ ”ME :
2T aro/\‘7 —cm§

L.3 Influence Functions for the Clamped Edge

The corresponding'boundary conditions aré (Fig. L-1)

_ C o oW
ﬁ_o_ : W=o ) 9(930

The general solutiohs can be derived by determining the two con-

stants Apn, Bn. N
(I) Influence Function for the Deflection W(Ofsf’;f’?)

(1) A>p at < mw “;,“,.,,) ) e
= 271",493\/»_‘_{&12 ma [Ku ¢ - K, e | +_K|'g<f‘<:) e W(F+7)

o 2Kk o RNHSE) akika oHRTHRE) skt k) -““JFW]
Ka =K e | K —K; f K- K, e »

(i1) A< R (L.8)

2 oo
nK; ) C .' \
= sy, wrl € oty 7o aimeon)
n=|

2K3
t "

6,_”16((9»*7) (K; e A Ke(@rn) - ke Mm&[ﬂr?)) +
Ef_‘S?K%Kf_I) e_mg(ﬁw)anmq(ﬂ—q)] R WO RN §
(111) A =p | |
2 = | *miX(g-1) .
- mgv_x{Z LCsnmien) e Sl )€

ne=t

—MURp+))

—nIx(g+)

-'m’&"e(l-ﬂ-znﬁv)e J,a,‘,ihmozwmf



Only the influence surfaces for bending moments Mx(o(,F;f,o?) ‘

My(m,p;??'vl) will be derived in this case. The cofner’ reactions

disappear as one of the edges is clamped,

(II) Influence Function for the Bending Moments MX(O‘:F’?S;"?) and

My(o‘ﬂ'fs"])
(1)  A>pm
Ki
M = g [ (pm R = (o~ o) 5, + o= B

Cki+k,) Rz — 2K, Rlo} Q(—‘L#}{ﬂ(/ R ‘(K’*K’) kl; ]

— KID Ka.D/ '('&'—"'K’-)
M)’-g”l/'/\,'__ﬂf( Kz‘)Rz ( /Q/RI""——#P*———"{

Ky —K,

(Ki+K2 ) R;,‘sz R:of—ﬁﬁ‘——b){ 2;(, Ry =( ki +Ki) R, f J

K

(11) X< M

| D Y ? o145 '
Mx = gy pe-x? (ke lpr ) R 2K tpm 3 ) Re + R ) Ry (4 9)
+2/(3'C/4+—"[5:—) E4. + = (/‘-(-L &L)R/z 4'0(%74)R/3 J }
' | p, X
My = WTT—-&TU#?%*“ Ro =% (6 ~1 ) R + G5 -1) B

_b, g [ ,p
+ 2Kj; (7:5;*#/) R4 +z("l)—yL—/\)Rlz_ —4-KI Rn ]

(1i1) A =M

My = —,%) Rgé?[/\‘.—pp;k)ﬁ((?-?])&—(’\*a?‘)g‘
+,)(>(+3(—%’))7+(/\-7>D;,L),9;'§' —-”‘/"7”"%)77 §
My = 5= D (B2 Re=Re ) 7 (L0031 5,

+{ %’-—)Jﬁ#—,‘,j’—uk)'y_} S =287 (5= T, ]
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(iv) A = H= |  (isotropic)

44 =ﬂ-27?502 ml [Creneep) ="V —(1rnn) e 00

Nn=|

- 'nfy(/-fz mz) C_n(ﬁﬂpj i MO g §

~ N 0”/‘(/”'7)’6@("'*-5).‘ ) _
| 'MX_'— 3T [(l‘"l/) l’,a’;/ Q@A(ﬁ—?j) T eot-7) (1! V}{{@ 7) {

MA(/J)" /v, - ok -7/ } — (Jaw) Lo cal (B+1) -caa(or-ré')‘
c.aaé(ﬁ—yl-c'aac&+§') C®A(/9—7)—aao[o(—;) C@A(/.{.?)'_c@_‘(o/_f)

M/ﬂ-f-)?) _. ,axlu/L(ﬂ-r‘-j) g
Coh(fty) - color4E)  Coh (FH7))—con(et-F)

- ((1+3v) 7 +( /—u)/g) {

.,..,2(/—1))%77 { C@A[}gﬂ])m(o/-f/—/ _ cro/\{é’ﬂ)) Coot+¥)— | L} ]
(Cw([(g+;7) —m[a—g))l (Co’()/t(ﬁ*-?]) —coo(+§))

col (o))~ et tE) +(1=v)(f=7) f

qu(ﬂ—»;) - e (o/—F)

My=-—-§—l_h_-—((l+l)) L?

W/zfﬂ“’)) _ vl (/"7) (—(/+v) /. CWl(ﬂH/}—cdoco/-aa;{
cw‘(ﬁ-’]} —co(o+¥)  coh(f-N)-coln-§) ook o) __C‘OCN_K..E/.

(- eobify) eih(p=n) ;
((I+3V)7 (/ V/ﬁ){ cool. 0?—7} — Cé'a(o’f'f/ CJDA(/QH?/ ;C@’(N—f/

_ cmA/ﬂf—);)c:ra(o(—f)— / caa[(ﬁﬁ]}dw(”f‘f)—-/ g
t201-v) 87 { (cooh(B+)) — conlor—g ))* ~ (coali(pt)) — caw (ar4F ) ]

(L.10)



_36

.4 Influence Functions for the Free Edge

The boundary conditiongfor this case are'(Fig. L-1)
=0 : My == (D357 a,,x, +Py 9/; )-o
&w
-V ((H'I'ZD;(,)&/? )—0
The general solution for W(o ﬁ § 7) is obtained as follows
(I) Influence Functions for the deflectlon‘w u,ﬁ,f,?)
(1) A>p
‘ o

— 6{2 . I _ nK;(ﬂ-ﬂ) tnk,(p—r;) K.(K;+K,)M —ux,(/9+7)
a ‘273/“%!/-)7’:7;2 n? [kie Kae (ko-mIL C

n= . .
' )

__2KK N N kN THERY _KalKi 4K M o ~nki(f+]) J
T i )L © “Oa-k,)C € T y) |

" ﬂx&~ouvAyL¢4if

(11) A <pm |
PR ‘ (4.11)
= - |1 o2, ko) = K 2
) € iy o)
! - n&; (B49) Yy a o
f € ( ’Z““'”"*(ﬂ*?) ’QW“’GKFW) "—"‘N(//;;&-)c o

anma(ﬂ—y) J eime g ng

(1i1) X =M o
_ o EM O (2K 200 )+ DY) )
- 21r3DyWZ [(H%V—(ﬁ-ﬂ)) - Dxy(2H=Dcy)

n ng(l+2w‘r))(mmp)c—%r(pm)] Mo o ME
2 H Dxy =

where . . N _
L. = 4DXJVD,‘DY ‘—Dll"'.DxDX

N = 40 0cy+ 0, "~ Dx0,
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(II) Influence Functions for Bending Moment Mx(ol,ﬁ;?,"?) , P%Iy(ol,ﬁ;lf,'?)

(1) A> M

_ | _ faD, M (Ki+Ky) 2kN }
MX-W—_—X‘_J—[[K"“ ){R AN K/)'Q Ty Rie

"(Kz/fl." /GD/){ R, _ MUKtk R+ _2KN R } ]

T L(KHK) =y
- l D M[Km‘-Kz) o _ 2K:N
My = S’W)«’—f“ [ (K’DJ K| R+ Lirir) R = Lok 1 }
- - _MKtK) & 2K N '
,DJ K’){ ki L(Ki-K ) R+ L-(K—K) Ru } J
(11) /\ <M

Mx = g [Kq(w—L)/ermm-—‘)mﬂ 2)Rs
P e 2R, AR R, )
P —
My= 8n_l/——fK4(ﬁoJ+/)R; 1‘<3(,«40‘,‘/)R4+L( /)R;
. N
+ - 2 M( +f) Rf+ L ()\"é;l)er "-'_:.4KZ R/3]

(111) A=p
M —L—(<x+%) Rs + (A-R)/Kep-n) &,

gm/x

_ ( 2H =203y H +Dxy) (A — )+2( )D,ﬂ7 VX.nyf 0,
* ; ngy(lH ng) ‘ R5 2H- D L(/\+ )7 (/\—L)/Q)E

20902 e T ]

.’lH —ony

MY: ?an):;[ ( D’-\'—)() R: T (_g‘;'—'\)\/}_(/@“'])sl
+ (2H- J.D,‘;H-#Dx:z)( 5()‘*‘2%9"; Rf_%%ﬁ(%v\)?f(—%w\)ﬁ)g

_ Dxy(2H - ny)
2ng(o., =), 5 T .
+ £ T )

lH Dxy

(4;12)-
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(iv) A= M= | (isotropic)

00

__al +n(p- q) { SH+2V+y? [~V
W= 21D Z n3 [ ¢ -;-n((@ 7))6 (3+v)(1=V) + EE e

h=|

(mpen)+2nipn)] e F V]

m,“,. MO N ¥
ek (B-9)— cn(x+§)

Coak(ﬁ-?) —cenlet=§) +(’—y)(ﬁ'7){ .

My =

. WA(ﬂ—;y) _ e h(B~9) }+ (5 )0=r)
cmA(p—r])—cn(o/——f) cmoh (B-n)- —caolort+E) IV (L4,13)

cook(B+n) —cRlxt+E) |

mA(“G+7)—CJD(o(-;) SN ((/+3p)’7+(/—w,8j{

ek (f+y) o _renh(py) { + 20-)87
cooh (B+1)—co(or-¢)  coh(ft))—co(ortF) R

{ c ook (BH] ) er(o—§)— / conh(ftn) coolo +E)—| ]
(cn/\ (ﬂ+7) eroler-§))* (ch(ﬂﬂ)‘—a)n(o/-f;))"’ ‘

1 cooh(B-N) —CoHtE) _
T [(H_U ’&7 covh(p-1) — com (ol=E) - W(/)VJ{.

b (-1 ) o M{ﬁr—%/ ; " (f;fV)(/—V)

cooh (-7 ) - cri—f)  coh(fy)—com(NH) J+v.
. cook (f+n) —¢co x+§) 1=V ‘ _
CF erohipag) e tat) T RO LIV 2p)}
pnh (Bt7]) 3 MA(ﬁwy) %_ ;(/.—y);ea .
caoh(fpn)~coolo-F)  Covh(Br)) - oo @+F) F+v

{ wé(ﬁ#-)]}aa?(o(-f/—/ 3 aﬂl(,é’-ﬁy)cm(w-rf/ / }:l
(cml\(ﬂ+7} —ealot-F))* (coh (ﬁ#}} —eao (v +¥))}

(4.13)
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From the practical point of view, the most general case is the case

where the third édge is elastically supported. The corresponding
boundary conditions of the third edge are:

My = EI“’ &u‘*ay - GKrgmmy ouv
W W e W
> D7+ Dy Sy 9vz = GKeomy ~Eleamy
. pr oW
Ty =-EI 8“4

or 0 *
T(“H D')auav av 9 -EIgya

where
EI: Bending'stiffness of the edge beam. | i
GKy: St. Venent's torsional rigidity of the edge beam.
EIw:vWarping riéidity of the edgé beam, |
The.solﬁtion can be obtained in the same way as iliustratéd befére,
thdugh it may be very complicated. |
‘Three cases treated in this chapter are éctuall& the special

cases of this particular problem.
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CHAPTER V

Influence Function for . a. Rectangular Plate
With Simply Supported Edges

Method of Solution

The influence surface for the deflection of a rectangular

plate with simply supported edges will be derived in double Fourier

series form (Navier's Solution)and thereafter it -will be converted
into a single serieé form (Levyt!s solution).
It turns out to be a simpler way to find the solution than
the ordinary method illustrated in Chapter IV.
As far as the influence‘surféceS-fpr bending moments My
and M&'are éonéerned, influence functioﬁs can be expresséd in termé
of Jacobits elliptic functions in this particular case.‘ |
Making the length of one side, say b, infinitely lafge;
fhe solutions for semi-infinite as well as infinite plate strip
will be derived again with the aid of Fourier's integrals;

Navier'!s Solution for a Rectangular Plate with Simply Supported Edges

Consider a rectangular plate whose sides are a and b res-
pectively (Fig. 5.1). The concentrated load P=1 acting at (x,y)

can be expressed in the following double Fourier Series:

o0 [-=]
Pluv) = A MTU 0 MV
V) ‘ A min b 5 AT (5.1)
W=l AT
where '
| N MmUY g,
Awmn = ab Plu,v) pn 0 b“'dLUJLV
- _4 owwz AAML“ZI
Assuming the solution W(u,v;x,y)
, | \oMmu -
W0 29) = D bun s ML o2 9T (5.2)

M-‘l Y]
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It is easily seen that all boundary conditlons are satisfied by
equation (5.2). Substituting equation (5.2) into the original
partial differential equation, bmn can be determined.

o T ac Ml (5.3)

i _ | atb ‘ -
b (D)*p, + 2 (BT H +(3L) "D,

Theréfore the solution can be written as follows:

W o= Frn () Rtuyv) | (5.
e 4= . mMn | - .
where 2 (W, v)= 2 i ATU M mmy
? / Va.b a b

M = De(ZI*2H (B AL + 0, (4T)*

This is the solution for rectangular or orthotropic plate corres-

ponding to Navier'!s solution for an isotropic plate. .

5.3 Transformation of Naviert's Solution into Levy!s Solution
Navier's solution can be transformed into Leﬁy's solution

with the aid of the following summation formulae (See (2) p.198

Appendix)
coonx | + 'IT2‘ . mAKz + T, cooh k(=2
‘ (n*+k*)* ~  2k% ' 4K? PR 4K? QoAb KT
n=
o IE_, _drhK(T=x) (0€x2sT)
@K b KT » (5.5)
[0 =] 00 .
Z coonxy - l wlnx _ CooNX )
o (nHI) (e KD K?‘I-K"Z‘_l n*+ K* NHK’ 2
__ T emhK(z-T) | ermhK-T)
k*-k? L 2k acnh K 2k* 2K alhkT

/! v
tad  (ozxs)
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Taking the case of )\>fb, the transformation will be illustrated

briefly. PFrom equation (5..4):

w ’ . ]
4 2“’ Z i BT i BT o ———-";”"m——’&"’;

W =21 Lol BT +2H(%E) (5D’ + (4E)?p,
_ 2 0o oo b BT a Wﬂ_ﬂz ‘o " (5. 6)
oAb L (Bl ok (B e /——"‘)‘< DA

f cﬂb—{[{d+v/}

- 2 N Mﬂwm M‘.ﬂ" V_VC@ |
ab zz FEDy (5 0 2 (25)°) ) M?T(H) %I(W)j

where Ky, Kp are the constantsdefined in Chapter III,

mlu-

Applying the second formula of equation (5.5) to the series of

¥y in equation (5.6):

.__"_I'.HWMTFI{ T cooh ey )1

W= ae(wo,, ) | (B T adah e
T ) T colsEgm)
(5K iy 2T e
o U} Cg2v)
(e ﬂ*”“AZiZ_J

This solution for an orthotropic rectangular plate corresponds
to- Levy!s solution for an isotropic plate. Without repeating thew
mathematical operation, the results obtained are summarized as

follows. Again non-dimensional coordinates as defined in Chapter

Iv are'employed with another new parameter ' (Fig; 5-2).

b
)y



(I) Influence Functions for the Deflection W(c,g;§,7)

(1) A> M
= a Coo nK:(ﬂ-’j-T-a‘) _ eo® ”K/(ﬂ'77~')‘)} L' R
2T Dyl )\2‘1"2 n | Kgeshuid P N g NG
(i1) A M
a:_ AAMM,O//‘UM‘ )[E A 7 oMU P-NTI)
TPy f‘“)‘zz H"(le(mlgr‘)+m-(n;qr))[< cod ”LKJ(F’ N F5) )7

n=| .
— 2o %{;(ﬂ-l—?—)‘) e 5O MKg (,6?+7—r‘)§ ( K¢ ,a,uiu{ /h/(;i‘ gwm&r +-

K> coohmk f@,lé/n Ke*) -—; b K (/9-'7 7 ) aink il -9 ')
- MAn/{;[/:’f-? —J‘/M%&(ﬂvﬁy—a"){(@ MZ n K coomiel - c@./%@;/@“”&x)j
(111) A= p | | (5.7

) ' |
R \/FZ md [%t/;;ﬁ)[ »v(%l/i'v]-%/S’7cfaAo./S7) +

::é:r/:z (M f aoérn/"[r “F) - mrsz "ﬁf ]m@mag«l%;
(Bzm)

- Trgoa\))@z m3 [MAMX’}‘ (2 AW’M?‘-W—MJ\(X 7)e dnixip-1))
M= 4

ekt / AU i k(T ) N
* b VXV (m’)TC)‘—ﬁ)ame/:\"g P Ao MO i A E

(,«357)_
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5.0 Representation of M,,,;,Mv --lnflu‘erice Functions by Jacobils /\}2‘

Differentiating the solution equation (5.7) wifh reépect‘td
oL, (8 twice, ﬁhe influence function for the bending moments can be
obtained in single series form.

| However, the theory of .elliptiq function shows that such
sery’iesf’ can be'expr_ég_;é*éd' in terms of Ja‘c_obi'é /\9 -functions. (18)
The illustration wiil be made here only ir_l—case' of )\>,M~ .
Assuming_'ﬁ??] and carrying out the differentiation of

w(, F.-;'f?) with respect to o, [6 and forming M'x(ot,'a; f,"])

W
(Dxao(l"'D/aﬁ )

= p Ko, mmm,e-»;-r) —cooh nky (749
"'7”//\z /*Z ; Ka )( MM-A-’M/Q ' jS.B)

- (K, _‘Q_L)( CGA"’K/{/G"?"):;;”‘“q—r) ;(C(D%(fo)'CnW(or+'F))

Using the relation:

Cooh o = Cov i

new complex varlables are introduced:

U+ LK,V = a ?a: Z+c‘/(,(7=68§ (5.9)
LL+L'KLV=6LZ; 7(+L‘Kl/ =ag’
so that |
o+ =17, §'+u<,7'= T
o'1+¢‘/<,/;’ -W'Z: ;+‘¢‘K2.‘oz=7rg.’.
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Using the new notation equation (5.9), equation (5.8) is rewritten:

Mx = ‘ 2 ((IQ——_- {amwﬂ'(? §o+.é.‘(;.) +c.a'on77‘/;_ Ai‘faf)

371'1/)\1 /O—MA/\.MK}
—emam(Z-0+ _Ky") C”"ZW'(Z z/- ‘—K’[) ~ccomr( T4+ ‘K‘”)

- ""7’"'77'[?“"2.—’“777') +eronm( T Z-f— Z.+ ‘K’/) +econry I+ g/ - ’7‘;2/)}

’CD/ _ _ | '
iﬁnw { ermAT({ - + L5 f.cwwﬂ'(i—fe——“ﬁl‘—)

T (F -7+ ) —emar (s~ 5 - ) —eamar (F+5.-%E)

—eocomm (7 + 7, —%’73?:) + c,cfaf)ﬂr(?*-i’*‘?)*cam”/?*fé'%j]

The theory of elliptic function furnsihes the following mathe-

matical relations:

_ 21y N g“caaznﬂ’é"
A(z247) = =4 —L@*‘T%(Z)

!
9 = et T = the period of Afo(z)

(5.10)

and
where

Using equation (5.10)

oo —r =7 K &2 2 .
Qd’DWTT'[Z-Zo-{-—F) —_ 25 >/
Z T .'2 = 32") “?‘”‘f 2 =/

n=y

where 'Z'/r -—Li_,(rz—)%-— f = e‘”—i 6"&%

Performing the mathematical operation indicated in (5.11)



_Li6

et [ 8l (BT) 8 (255
" 1742[4:251*—7)+£y42(_.?-§=——7)+17%(%ﬂ/

* f’fﬂ(liz{:i) "*17490/—@*—79_ z,jdg(?iio’—rf)}
+ (—;@--% - 670‘3/1:57“—7)+ Loy Su(TEIT )4 oy (TET
by sy Ertn) gy 5

- Logldo(FEIAT) Loy S (£25T)] ]

_ Lk
[ a

| .0, £2)9(4%)
- WRJ(%‘ %7 ’“/49/{(4994?(1*—"7

D, 4}/( 2 )’(}(_Z_tz'_)
(-5 b7 S geey )

!

where

In the same way, influence functions for the other cases of bend-
ing moments can be expressed in terms. of Jacobits elliptic function.

The results obtained are summarized as follows:-

C (1) A> M

: KzD Aﬂ/( ;—/)491 2E
My = MW&J(—[Q— 4?(”/49((”’;

K kb 4}( Lk) ) (L%
- (- B2 g 2 (*’—"/Wf—‘ﬁ ] (5.12)i
M. ; / 5 4 4} z/)ﬁ(uz)
= Ty kel (k) ?9/%—{/4?/%5-/
B(555) S, (52 |

. ‘ -
= Geoy K0 by 5 5) 5, ()
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(i1) A<M
Remembering the relations: (5.12)

K/ :K‘}..-‘*—L'K4 , 'Kz= KJ—'L\}Q

Expressions for My and My for the case A>u can be used.

(iii1) A=p

Mx =.'_4‘|Z,‘r_ RC [ (‘/—)\—+ V—Dy)/é?,,ﬂ{::‘wjj/w*w))

_z()\—-—,—,’i){ (ﬁw%ﬁgz) ) :: )

* (ﬁ 7? { u)rw.j /lﬂ{ w—_w: ) 5 ]4} ‘ '
M)’ 4_-n- R [ ( [ (“"‘”)4_9 w+w
o N I(U)-wa) I(g;-_a_)o)
(351 F*’”(o,(w-“) e

WD g
T () ( A)((wmbj A}f((w;w’)) N J

(5.12)

‘where AW, = U+ VXV . aw=x+;/r;
W, = U —IX V Qw = x-cIxy
-X ‘
2 = e 2'Wa

S. 5 Some Remarks on the Computatlon of M, (o,8; E,”)) and Mv( Y4 £, ’7)
| Accordlng to the theory of elliptlc functlons an expans:Lon v

formulae for /VQ, (2) exists:

SN )
-/VQ/(Z) = 22(—{) g )A—on—(zn-f—/)?r'i = 29 7(ﬂa«“wrz-—ng,w‘~arrz+
2?5 SR — - ) L | | (5.13)

where.. T
. where.. e s y_ng |
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In order to investigate the convergence of this series, a value

for ()’/7,.- is assumed, with d’/ﬂ‘: b/q = |, 5

g = 6_":”= oc.00 898 (isotropic)
Therefore series (5.13) converges so rapidly that the sum of first

two terms will give a very accurate result. So

. , | |
4}1(5) N 2 ZZ[?Manﬁ—PL‘ C’.:;DO’WA/G)-—-ZZ(

| (5.10)
Rt JO e /».?/+él m,?wwz‘),é)]
Putting : 3
80 . .4}, — % -+ L %]
92), ~ ZZ é[,a/w\ﬂo/ cml/@-—y 2 Sor crat{j’(é’)
¢, n~ zi'?ﬁ(c.mawﬁ,é-gzanJorMéﬁ/@)
(5.15)

|49(Z) ?-kg[' ~4z* [cn/zle—cnzor)(i_z - 27 caézlgcwzu)
Using this expansion formulae, very accurate results of My and My
can be obtained. The influence functions for My or My of semi-
infinite plate strip can be deduced from (5.12) making-b — co
Consider My.in case of X > K. |
With the aid of expan31on formula (5.15)

((o)A/O/z-r(, 49( ) A}zl
Re(L7J§Lk/J/Lg)) v D ' 7_ H

z ]

(55

Since [o > o ) Z = 0':.- |
| o | H
U EEE) | ~ apemhnapry)- cot-5))

EE)| ~ 4 gt embtipg)- cocep)
| /\9, (—%‘i“) ~ 42 'ZL[MA/{;(/’-W —ceo (o0—§))

|,19,[3-‘E"3£) o~ 4f"{'[ lel(ﬁ_’_?‘)_w(om;))




506

JEDIET o
7, (57509 (<5

Re [ /

Similarly o .
e [ Loy SEEE)Y 1 e g,
J5, (55 e AT R
Meking b—»o00 so that q — 0.
/ ' =
Mx =_W‘)T—;———E(Ko/“"l£ﬁ)(kz" - K'D' "‘R/)J

ThlS corresponds to the result obtalned previously for a semi-
1nf1n1te strlp. | |

Appllcatlon of Fourier Integrals for the Solution of Semi-Infinite

Plate Strips.
Another simple way to find the solution for the semi-infinite
plate strip is to start from the Navier'!s solution for a rectangular

plate, As‘an example an isotropic plate is considered whose in-

fluence function for the deflection is

W tw, v, Z,4) —ZZ SOM,(u),\V) Fusl % 4

- MU, WL Cﬂﬂszz(d"‘v) "”M(éf"“*’/
%DZW - 2 ()% (28] °

Making b —e oo the summation of series with respect to y 1s re-

placed by an integral

oo ‘00

2 TU coo BL(y—v) —cw%m(/ +)
Wlw, v, z,5)= ,zwnw WMH dp(5.16)
g )T s

‘Using'the'relation:

-ma

coomx _me | 2
( 2 *+a?)? du = 4a® (1+ma) (m20) (5.17)
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(5.16) can be transformed to:

Wi )= e e | ) €

213D m
m=
- (1+5yw) e
This checks the results obtained in Chapter IV,

Wy , L MY
A a W.a

Lhgtv) % )

It is apparent that the first series represents the influence
function of an infinite plate strip. The second series is due to an
anti~symmetric load P with respect to the x-axis (Mirror Method).
Further applications of the Fourier integral will be discussed in
Chapter VII,

Other Boundary Value Problems of Rectangular Plates

If a rectangular plate has two parallel edges simply
supported solutions in product form as illustrated in Chapter IV
are applicable (5-1). However, for other conditions solutions can be
obtained by superposition, taking equation (5.l) as the particular
solution of the problem, TUnfortunately the solution léads{to an
infinite number of simultaneous equations for which only approxi-
mate solutions are possible. (Fig. 5-U4)

By making.the length 6f oné edge. infinitely long.
in those solutions obtained so that changing the summation to an
integral; solutiohs for semi-infinite plate stfip can be derived.

in Fourier integral form. (Fig. 5-5).
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- CHAPTER VT

Influence PFunctions for Moments in Slab Continuous

Over Plexible Cross Beams

6.1 An Infinite Plate Strip With Simply Supported Parallel Edge
A Fige—fwl )

Ed

At y=0 the plate is continuous over an elastic cross beam
with a constant bending stiffness EI. The coordinates of a point
on the cross beam are taken as (z,0) --z being the x-coordinate -~
in order to distinguish this point from a general point (u,v),
referred té as the influence point. The deflection of a general
point (u,v) due to a concentrated load P at point P(x,y) can be

expressed by the following integral equation:

o
' L 4 .
W(xpg:5.9)= PGlep  £7) - EI(%/33;3/“"'”'?’)G(%/o’z?/o)*? (6.1)

Here again non-dimensional coordinates defined in Chapter III are

introduced with a new parameter

TZ
S =—F

The function G(dNQ;F,7) is Green's function for the deflection of
point (d,ﬂ) of an infinite plate strip with simply supported edges.
(It is given in Chapter III, p.25).

The first term under the integral sign in equation (6.1)

2 9%Wizo 59

l;I(%i/ 27* ¢ expresses the distributed reaction of the cross

beam acting on the ﬁlate.

When multiplied by Green's function G(«,p;¢,2) and inte-
grated over the length of the cfoss beam the integral qonstitutes
the influence of this beam on the deflection at point (&,f).

Assuming the deflection surface W in the form

W Cop:57) = Plapien)+ PGl F7)
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The function @ is determined by substituting (6.2) into (6.1)

| 4 (6.3)
¢(“/ﬁ/'5/7)=— 7’251/9 Wiro L) G, B, ;o)dz | -

or*
Since ¢ is a continuous function with respect to o and ﬁ , 1t
can be developed ‘into eigen-functions assoclated with Greents

function G as follows:

,.¢(°[,(0/ 5;177).;-_2 an(En) Pleg) (6.4)
n=| ' ' :
Confining the discussion to the case )\>ILL :
B (o, 0) = (K, €Tk ¢ THE) ot e

Substituting into (6.3) and replacing G By 'equat;'gqn_(3,1__4)_ glves:

| L. TEI [ 9W(e) a? Z |
Z a(x1) i (Q/'{G) S [ P ;4‘ {‘wr’/*%t'z\’-l“ — w (6.5)

(KI 6;““(1@ K e’FWK:/S) Mmo/ﬂv\amg { JZ

‘Multiplying both sides by sin ne« énd"iritegrating with respect
to &« from O to I , the ofthogonality relations simplify equvation-

(6.5) considerably.

T g pTE) . EL
2 AwlE 7 )(K € Ko € )=-T 2 2niRp by - (6.6)
(K e -rMK;,@ K, e-r'n'(ﬂ)‘/‘%%(gﬁzﬂwﬂfa@f

wi th the substltutlon

4 91 ~ ‘
TplLel - [ Pls0,87) +PGL2 0 E)]

4 : Mg e al
EW‘ am(s‘jn)mmi + QWQM\/)\z_Hz

’1_~KL TN ) alem F peam T ]

m= |

K, €

F mk,
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the function a, can be determined. Again use of the orthogonality

relations 1s made. Introducing the parameter

l (K -k )TEL (6.7)
P dappy AT

_ a? Tk | Fuk . (6.8)
an 2“371’3’4(‘(,“"(1)03")\2 kcn.'.P/( 6 C ),{L«M’VLE ‘

The non-dimensional parametér P depends on the ratio of the bend-
ing stiffness of the plate in y direction Dy'and the bending stiff-
ness of the cross beam EI as ﬁell as )\ and . Substituting the

pertinent values into (6.2) with P=1 Yields'the influence function

for the deflection:

) _ Qz = ——L- -4 MK,(ﬂ"i) £ 0K (f1)
W(Or’/ﬂ/?,7/‘27raﬂ%m2[”a( - K, € . )
T T
(6.9)
l : I{KI C-nKﬂ kz eP-”K"')(KI €_m<'€- K Cva)]MW ﬂ-/‘«;%f

n10n+f)(Kr4Q)

The first term within the parenthesis represents the ihfluencé
surface for the deflection of point (a,ﬁ), of a simply supported
plate strip without cross beam, The second term exprésses the
influence of thié beam. If the cross beam is inifinitely rigid,
that is, EI —»00 and p— O, the coefficient of the second term

reduces to:

Lo ]

f——ro 447—(44-{-‘0)[1(,‘;.—4(1’) - 413(‘(:_‘(2)
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On the other hand,. in the absence of a cross beam, EI—»0, and

p —=00 such that

/

i -

p—roo %2(’)1-#10)(/(;'—-"(2)
and the second term will disappear entirely (reduced to the case

~

of infinite plate strip). The following results were obtained
in a similar manner: | |
(I) Influence Surfaces for the deflection W((x,p;f,oz)

(1) A>p | |

_ar S
T 27r~’;-tDyW—?Z, [w(re

' - NhKa -—'K, ) - 2 . —unkK, - « . \
(K,C an‘—Kze K’,)(K;C nKﬁ*’Kze ﬁ)] o N g MnE

QK.(M))' o |

inKz((’-*]) _
‘ - - NA+p ) K-k )

K, €

where - I = TEI (kl —K, )
| . £ 4ap by A—p
(i1) A< p
' e ThKy(F-) ’
= a_: - € 0o _ . _
= 73/40(7\//&1“)&12 ( nJ (K4c 'A/Q((g 71)-7-'/(3@« m@(ﬂ 7)) {6010)
e-MKJ(p'"]) ' . \ ‘ -
- ’VI‘('»H-P) Ke (lqcﬁ‘MK;‘@ +I5 MMMIQ'&)(K,,_M'AK_‘»? +;<?ﬂ_wmq_4?)wmw,n§
where , = KeEIL
g 2apPyf pr-x*
(111) A = M ~
_ !1 | _ :l:n;’x’(‘()—v) ’ -
- 271'393\/:\72 [_'ﬁa_(/ Fuix(g-1)) € - W(l-ﬁnﬁ(&)x
ATy
—W(EM) . - g
where ( mEL

P T qap /i
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(IT) Influence- Surfaces for Moments Mx(d,p;f,*?) and My(d,ﬁ;Fﬂ])
(1) A>p

FniG (£1) —-nk(g+1) -n(K
M x = [(K _ KzD/ { C " F_—;’_ K, C i —i € (e
27]';/)\‘ Ia Z C(mHp (K=K )

-[KJ’I'(—

TNk (fH) —nlkpHay) (KA
K,D 6 K' e —KZ C . 2 N a‘;ﬂ
D;,l){ n o + (m+P) (K=K ) (] i &

= ,/—— [ (Hp-—ka ) )| £ T e e MM)JZ
Twklp1) —“(K:ﬂ-#-K:?) —'n(lq/m,p .
KDy € ke T —we } e
It KI){ K + (’Vl+f)(K1—‘<:) JM 33

(£1) X <',4

P e »p ’ o )
M TV—_—Z - K4(/u+—5';)conk4(f—7);Ka(,u—gi’—)x'

6"'"‘@((9‘"})
WM(’M)} " KalmrpT ( Ky coonet] . 2t |

(6.11)
l‘C;,(/A‘f"g;-)ao'oMK;/g +P§;(/J',?;“)Mm/<fﬂ;] A MY @einn §

M iw((o-q) | |
T T, XZ[ *’)w”‘“‘“"’?)*"f(/ﬁw“ )

\ e-m(pw ,_ ,
‘an’@[ﬁ’*?)? ~ TalntpT (K‘;anwc;qw@uwm])f |

K4(Fg5+/) aco Nk f "‘K;(/{%;"/ )Wm/éfgjwmo/,a,;nozf |
(i11) A= p | |
Mx = 2,,-,/—2[ { (x+55) % (= Rwimgp-p | €W
T g (t+m"'7){(>x+ ”')+(/\ D')m/‘p’{ _Mr_mﬂ);)wmomﬁwg

x niX{
v=erC [ Or )= (-2 mmee-ple”™

~uVx( +) N .
- "*‘If’ (¢+nvrq){c>(+gf)—(,\—_7,‘?;)wrp{e ] e ocng




upper sign ’ for @ 57
lower sign -~ for p.zn ‘
and 1f 7 <o, the signs preceding 7 must be changed in

the second series of above equations,
In-general, it appears to be impossible to sum the series
of the equation (6.11). However, for several specific values of 9
(15)(16) (17),

'such a summation can be made, The regsults obtained for the

case of a rigid cross beam, that is, p =0 are tabulated as follows,
(IIT) My, My — Influence Surfaces for the Case of the Rigid Cross
Beam ( p =0)
(1) A>p
- | [ /. 5 {
MX-’XITX [(K(A {R +K-—l<, (K,Rz—-IGR./o)

- (Kap- KD’){ R, -+

(K,R, Kleza)}J

K K

My = ;?n‘\/)e (( K'D’“Kz){ R2+K

—I(; (‘(,R—g‘kzkla){ ’

| ’,f”‘;’ (& Ry~ ki Rso) f
(11) A<p .
: Mx,_—m[)}&(ﬁ"'"l") Ra"'ky(/‘ ») R4f
L ke (pr U R+ R )t BN R g
- RIZ)"‘LKJ{/'("FDL)[ /-Q—4+ RIJ’) +'£€'(/4—£L){R/2_/€))}J
My = 47@7[4 +/)R3+Ka( —/)R4}

~{K4 IL(D +I)(RJ+ R"l)"-/(f( +’)(& R/J

o+ K ,uD =A== ) Ret Rys )+ ‘Q(_?L—/)(R’L—RJ)}]
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M = T DM—L} Rs F(x=5)5(p-1) 5,
—(,\+3;)R,,— 7(A+-,§;)S,—A/é’7(é-z§t)77
- V’)Tﬁ (A——EL)S ]

My = NW [ (a+28) R+ (X =L )50 28,

e(A+_@L)&_'E7(A+-E;)Af +A6 (X-55) T
+IXPO-2) 8, ]

Iv, )\ = ,‘"»=’ (isotropic) v ,
L 2 r 1) 1
| " '+’""z')e‘”“” T e N‘MM?

[ TET

whereé =
F T T4aD

[ " cn((ﬂ »7)——cn(a+;) | : »
= e—— e - (| — — x
Mx g [ ( I+v) /207 coh (ﬁ ) —ees (e/~F) +! VJ(‘E) 7/
( MA(ﬁ i - b(fy) ) —(1+V) x -
col G)-cooto =€) cmhgpg)—cerlorE) |
.. CohlfrY)) —coniE) _ _ ph(fry)
ch ceoh (ﬂ#})—%(a-{) { C/+u)’7+[/ w/;{(en/‘((&q}—c‘n(a-;) _
ponch (847) )__ (1~ (anC‘@f?}cm(d—'ff/—/ _ cmé(,eq)mmp—/)]
caoh (ﬁ+7)—cra(o(+?) o 7 (Co—aé(pwy)-c'aa(o(-g))‘ (ml‘(p+7)—m(u+f))’
T [ coo h (BN ) o (X+E ) _ auhtf-2)
‘M)' A_ }’7]' F(H—V) Looi CWA‘("B-?’)—CID(N—-f) - (/—y)(ﬁ 7) (coo/\(,@—q):cb(o/-f)
pnh(8-9) _ 0 oy LRAB2Y) —corttE)
Coaln({@—7)-—6n(o/+f)) (14v) Q@4(ﬂ+7)—dn(0(—f)

'_ o pek(gry) __ adehgry)
J (1927 =1 wﬁ{( coohtpry)—ces(o§)  cah(ry)—colbert)

- cohlprn)coti-F)—] _ _cohpry)catirs)—/
" )(97[( 4((9+>/}-m(o/—;// (c'mA/(qﬁ;)_-_m(w;,/z/ J



7.1

7.2

CHAPTER VII

Application of Fourier Integrals and Complex Variables

Alternative Methods of Solution

In this chapter, methods other than the ordinary methods
employed so far in Chapters! III and IV will be discussed briefly,
particularly the applicatioh of Foﬁrier integralé to the boundary
value problem of a semi-infinite as well as an ihfinife plate
strip, the application of conformal mapping to isotropic plates
whose boundaries are simply supported.

Rather than solving any particular problem, brief discussion

on the general approach of problems involved will be given.

Application of Fourier Integrals to Problems of Plate'Strips

For simplicity, only isotropic plates will be considered.
(1) Influence function of plate strip with simply supported

edges in form of Fourier Integrals: Levyt!s solution obtained in

“equation (5.7) can readily be rewritten in the form of a y-sine

series (Fig. 5-1):

ifu2x

W Z o ED ,o,('M_ MTI‘éLMfMTFV [M‘t'ﬂg(a-u‘) (M NI

MiTX A
WY e mémnx)_,_ Zzé_ﬂ (mrra cof, fmr/q —u)- —%?“A‘;im )

Maeking b —-co, the summation willhturn into an integral. In-

troducing



f [ “7 awh pla—u
mTO /‘f3 [,a,mhfa/b ///&U 4%/ ﬂoeméi(/) +

(fwt amé%(a “)— M)}Mi/ﬂmyf,{f
(dgz)

W(u,v;x/w=4 |

LwaA (a-2/f + %Aﬁa—wﬁmé»uf &méf;-“@J

M&e,& e Vp dp (usz )
Equation (7.1) .represents the influence function of deflection for
a semi-infinite isotropic plate strip with simply supported edges
in integral from., For an infinite strip, the corresponding solu-
tion is obtained by simply replacing sin yp sin vp by % cos (v-ylp,
because sin yp sin vp = % (cos(v—y)p—cQs.(v+y)?),'and.the latter is
thelimage of the formér with respect to the x-axis (Fig. 7-1).
Next the homogeneous solution of AAW=0 will be obtained in
Fourier integral form. |
(11) Homogenéous solution of AAWFO in Fourier integral form.
It isveasy to see that
( A aoc[/z_ 1“5@«,:,\/1/:1 4‘sz aw‘fﬂ( +Dz/4,(,;4¢oz)c,g,(;—w/;
satisfies the equaﬁion AAW=0, Therefore, the general expression
of the homogeneous solution can be written as
oo
Wi (u,v,; %, 4) = A(f/cwé xp + B(/)M«A 24 +CpI2p el 2p (7.2)
0
Dip) Zp .a«w\«/ux/.) eso (y—v)p dp

where A(p), B(p), C(p), D(p), are arbitrary functions of p.
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(iii) The solution for the infinite plate strip with clamped parallel
edges.

Combining equation (7.1) and equation (7.2)

Wilwv;z, g4) = Wold, VS %,3) + W, (4 V; 2,4)

with the boundary conditions

X=o0o . PV=20 g%ngo
_ _ oW __
X =a W=o X =

These four boundary conditions determine the functions A(p),B(p),
C(p), and D(p) in equation (7.1}.

Por actual computation of inflﬁence functions, the theory
of regidues or methods of numerical integration mus%ﬁ%é”éﬁiibyed.
(iv) Infinite Plate Resting on an Elastie Foundation:

The differential equation corresponding to this case is:

Daa W + Kw ‘g(.c,;) (7'3‘)

kw is the reaction of the foundation. The coefficient k:iis-usually
expressed in pounds per square inches per inch of deflection. This
quantity is generally referred to as modulus of the‘foundation.

The influence function for the deflection of a simply sup-
ported rectangular plate on an elastic foundation is given in

reference«l)’p°252) in double Fouriler series form.

}N(%V;L;): MQ$I—¢@J%K mhjgmﬂM«%?
(CGD-ME(M x) Caa-“ﬂ'(q‘f-z,))f 7‘LL)
Z e e

M { Ha’
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Making a,’b infinitely large, writing _g_'__: alf/ _%,06/ ._EL:di _'"ZI_,_Z

the double Fourier integral form can be derived

~ R A
Wilwvizy) = D //(f2+gz)2+x4 (@0"(““"/@‘7’3("?’)
o | (7.5)

"~ Coop(U-LICmP( ULy ) = ConplUtt) comp(V—y ) Feanplut2) c””jf"‘?))dﬁdf
Where x*= £ | |

D .
Equation (7.5) represents the influence function of -an infinite

'wedge platé whose opening angle is -gl (Fig; 7-2). Observing that
edges of the wedge are simply supported, it can be concluded that
the first integral represent the-influénce function for this part-
icular problem., The other three térms are nothing but the image
-of the first term with respect to either x-axis or y-axis,.

o . ] ~ ooaaa(:r-u.// e V=y)p . 2.6)
L Wlevizg) = m°D _[/ (/’2"'32) ot 4/460 o

This is the solUWtion for this particular case.

The deflection under the load can be easily computed

(W/z= = I_/M” dedo o 1 q [

i T D, | p gy T TD 2 ) Jpaixe
N7y Y 1) 2sg) |
V 2 = A s e () m2s)

BEquation (7.6) is the fundamental solution for the influenqe
functions-of the infinite plate.on:the elastic.foundation,

The method illustrated so far in this chapter cah be easily
extended tovthe case of orthotropic plates. However, general

. solutions of such problems will not be treated here.
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Application of Conformal Mapping

As mentioned in 7.1, if the shape of an isotropic plate is
‘bounded by straight lines and the edges are simply supported,
conformal mapping can be successfully applied to find the influence
functions for My and My.

Consider the moment sum'MX+My=M in Carteslian coordinate,

M= My+My=—D(1+2) 4 W (7.7
so that DAAW= —[—_!_;-'AM = gfx,o‘/)

Therefore, the fourth order plate equation reduces to a
second order equation in M. The influence functions of the bend-
ing moment Mx,My can be easilj obtained as shown subsequently,
once M is derived. Since Mx,'My,Mxy are integrals of 1inearly vary-

ing stresses, ©

X’oy’Txy over the thickness of the plete they have

the same tensor character as a two dimensional sfress field. M is
an invariant of the system,
Assuming the -edges of the plate to be straight segments and
simply supported, M will disappear along the boundary:
M=o ) (7.8)
Therefore (7.7) and (7.8) constitute the boundary value problem
in a two dimensional moment field. Aétually the influence functions
for M is directly proportional to Greents function for the deflect-"
ion of membrang . of equal shape.. -
Since Mysatisfies Laplacet!s equation except at the loading
point, 1t is possible to épply cénformal mapping tb find M in a
given domain from Green's functioh for M of the unit circle. The
‘theory of harmonic functions furnishes the Greem*s function
g(r,g;F,?).fof{the unit L:j.J:'.cZL.e:,"'-\mv~

{ | —2preme-p)+pLYy " (7.9
N _ L - (7.9)
Jr. 0, ¢) 2 Y -2prem(o+p) + P’
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Observing the similarity between g(r,@;‘p,?) and M(r,0;pp) the

parameter relating the two effects is determined such that

Mcr,o;pq)=_lU+v) [—2vpenlo-p)+rip’ (7.10)
£ P) = =i L rien(e TP

' M('r,@;p,?) for the semi-circular domain with unit radius can be

derived, taking the image of (7.10) with respect to the line of
0=0 (Fig. 7=3).

2,1 2 3
My, 0 p @)= 11V (1-2pyeoa(0-)+pr ) (y =2rpcooCotp)tp’) (7.11)
, ?j 4 z? (Vl—zrfcfam'w-l—/”) (/-2rfcao(a+7)+,o ¥

Applying the conformal mapplng X = 5 to equatlon (7.11)

Z’VC,LQ J C():o(—f—bﬂ

re e gaw

f = C_7 ?:;E

Substituting (7.12) into (7.11):

(7.12)

Ml 8)57) = —5F 2 [cokiprpy—eatr-g)fenkip-p)~cnerpfi1,13)
{. aml(ﬂ-w -0 (d—f){{ cm4(ﬂ+7)f—cn(o/+§){
This is the expression of M for a semi-infinite plate strip. M,
My can be easily obtained using following relations:
_ | | —V oM .
= [ M= =T 5% ] (7.14)
= _____ (=Y ' '
T2 [ M T
r=

W/Lc,rc ( £
Making f—roo, 77 —00 , M for an infinite plate strip can also

" be derived '

M= _LF¥ p cooh (B-7) —Coo(X+F)

4_”, - cda{('{g_%)__m(a-§) (7-15)
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This checks the result obtained by Nadail(3):P+89) yging a1go con-
formal mapping but in a different way. -

Further solutions of M for a rectangular plate or a wedge-
shaped plate could be obtained with the aid of Schwarz-Christoffeltls

-transformation,
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CHAPTER..VIII

Discussion of Singularities of Influenoe Surfaces

Singular Behavior of‘Influence Surfaces at the lnfluence_Point

In general, influence surfaces exhibit singular behavior~
at the influence point singularities are due to the singular
(particular) part of the solutions, Since regular part of the
solution does not show any 51ngularity, ‘they can be discarded as
far as the -discussion of the 51ngular1t1es are concerned,

In this chapter, a general discussion of the singularities

of influence surfaces will be given, that is, singularities of

. the influence surfaces mx,my,mxy, dx ,Qy &t an interior point of the

plate, of the corner reaction. r of a simply supported rectangular
plate of the boundary moment my of a clamped edge of the boundary
moment m, of a free edge and of support moment My ,My of slabs con-i
tinuous over a flexible cross bean, Numerical values will be pre-
sented so that the general appearance”of‘surfaces can be easily
visualized, V

Derivation of Singularities of Influence Surfaees

In the case of an isotropic plate the singular solution of

‘plate equation DAAW=q(x,y) is r®logr where r is the distance be-

tween the influence point and the loading point.

‘These singularities can be obtained considering Yhe'neigh_
borhood of the influence pointi(a,ﬁ) only, Taking the eoordinates
in this neighborhood as o

" F= oL+ &
7 =.r/3 + o
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! , with € =0 and 5=%O the terms of the influence functions are ex-
panded into series. Neglecting higher order terms in the singular
part of the solutions and discarding the regular part entirely
expressions for the singularity are obtained.
(I) Singularities of Influence Surfaces mx,rﬁxy,qy at the Interior
Point of the Plate |
_Sincé my and gqx show the same singular behavior as my and qy
respectively, my and dy will be discussed only. In order to dis-
tinguish the singular part of the influence funcfion, suffix O will
be used in every case.
Taking the solution given in (3.15)che,vicin;tj ofJﬁhe;in_

fluence point (&,p),f,? can be expressed as follows:

F= o+ &, 7=/€+5' ( €+0, 5%0 )
Consider the case of .>‘>/"‘ . Since E2o $=0

/

el /(z(ﬁ‘?}‘-m(o(-{—f) ‘A [ —cewoor
cok K(gy) ~eomto=5) ~ [ (g kg 2 £ €S
/— eoo20¢ | —or2x

Rf\/a T Rz(\),éo —
’ / 'f‘(é’-/-/c,lS‘) o /-;L(E‘+Kz3)_

Introducing polar coordinate

E=zremé , S=re~6 , 7rio
i and discarding the regular part of the influence function:
. log.2(l-cos 2&), following final result is obtained

l ) R by N N
(Ma)e ~ g [ (gl g)) bop riCem viiend)

- (K{,Uw KJ—%}) Z? r¥coorien®) J
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Slmllarly, (mXy o’(qy)o can be obtained.
The results obtalned are summarized as follows
(1) >\>rL

(mx)c [(Kzfd. K(-—f-})ﬁd» Y e b+ Kiel?)

zm//\‘ -

- (K,ﬂaxl(-pJ/)Z?- Yo+ kiais) ]

(mx‘y)o f»mpa‘v’*){l [ taa ( %9} [M(c,m)]

o / Klﬂ/‘Mﬁ - K/Mﬂ
(209)0 N 44, Coo ’“9 + k;@,\\.)ﬁ * 0@64“/(, 5]
(11) X < r |
‘ 2KJK1ML€
(e ™~ i )\a [2k(p- '2‘/ Fo (wv,«,\m*a

—K4(/4+§’),€27- .}’4-(001—35-# 2)M’ﬁcw’¢9+/41m%"é’)j

(W)xg) ~ Dy awé—zk;wacna-f-[xma
‘l-TTl)oc,;//.l.‘—)\x 07 G®9+2/<,Mﬂ¢fae9+/«twa ‘
3 / / Ky o 8 | + Ky g &
(?y/o hd dar ( ' - 2k0u Beob +f¢m;;‘a e 4-'21(‘@57@'394—/;«,«»'.9
(111) X = p

l o | Y N}
My ), ~ —g—ﬁ_—(—[ﬁ-f-—:\v_foj-),ﬁy y‘?[cmﬂ+Aw»¢9)

. 2 (A- ‘DQJ')Wﬁ J

w¢9+><

(m P — st, . M&mé;
%/ 2TXDy e G+ )ALl

/ N
(330~ T 4ay ( Pt )

Co® + X gl



(II) Corner Reaction of Simply Supported Edgev (v),
(1) A>p

rroj)\plx' ( ( f¢97' La “—{/ MK:L 6.) J
(11) X< I

2 Dxy coo B —2K3M95@9+/Lm€

_ W'Do,,|/(u‘-)\z 7 awé +J./(3W5 ewfd + [ i
(iii) A= ,,L '
TX Dy ' CoB + X ot

(III) Boundary Moment of Clamped Edge (mx)o (my)o o

(1) X >r¢'

’ 47’%‘]/\1—/*1 J Gd?ﬂ-t-/(, Wﬂ

, (Ki+K2) e + K Mﬁ
(m;)o ™~ ‘.47T|/)\1—/42 _ cn + K oo B
(i1) A<# |

. &5 :(.2xﬁwu;g )
(Ma)y D, =X ™ = o+ a9/

: ‘ . L

w - K> » —I( -2/{;&%5

( g)o ™~ ﬁv,“—‘-/\‘ | e @tra

(iii) A = /4,
(Wlx) ~ — ID\—D, | Ila, .
° Dy e 9 + X pls
~ 2.6 .
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" (IV) Boundary Moment of Free Edge (mg),

(1) A > _
| D M( & K0, KN )
(Wx)y ~ 'gf"_,\_m[z—‘_r;”““/"‘ ""(3;‘///‘*7—(%0_?&)2) (- D) L(J/C-Kz)/}

X l7r’(mla+/<ﬁm%/ - /(,qﬂ-%a)(/ ’Z(,’Z_*ﬁ:j)+

- ( Fapi- 2 L(i,K’Z) } Ligr( e+ ket :)
(11) k<ﬁ

(). ~ e { R )- ke (e ) - - 2]

Zy f‘*(Cé’b“ﬁﬁ-g,\ Coobacl @ * M lﬂ’—b;%’) + )) 2’(;(/‘»-7‘}* *-27?—’1//“*‘05,")

et Rt afﬁf;iﬂ

. - o ‘ / r_ (2H ID)‘HH-}-DX )()( _L)+( )D"S . D,
(Mxde v Fmix L { Dwy(”' Dxy) (2 )z
(

PR - D Dx 2p 2ad
e 9””’“‘“3)"'{0“3?)*'27470’5(’*0/ g”w%zm‘e/l

(V) Support MOments (n&)o’(my)o of Slabs Continuous Over a

Flexible Cross Beam

(1) A>p
' I (KitKa D, p covﬁ«/—l(;ﬂ-“"ﬁ | 3 v
r(K,H(,) ew B 1 Ky pirnn & Ry
(My), O~ z,r“: Z ﬁo/ oo K + KK ) (7 +1 ) J(f)] |
where - 2/(71\’
f Kz ﬂ'EI
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(11) A< p

| F kb, ] 2ka ket 2
(M) o S5 G EEy) vt ) T ]

).~ (- 257 -fmf 7]
.wl'.lere f f—m*_ ==
(111) A =p
mx), ~ TWTIT_(° c@g(f/\)wa +()\+"“)Jff)J
ny), i "27r't/}\— . cw’a);—/;:j;’& +(53 HJJ(JO)J
where | p= ol 228

if f*o, (mg)o,(my)o are the support moments in case of a rigld
cross beam. Furthermore, it is easily seen that 2(my),, Z(my)o
are exactly identical with the boundary moments for a clamped edge.

The function J(P} introduced here is defined as follows:

00

J‘*Lf’) Z ( 4'4 ,‘MLF)

W=1,3.5—

F( ey gt L{ gt ~I»(-f’-) '

where . :
T%;(F) is the Psi-function introduced by Gauss(za).

I-(F) (6 f'l+oz)P) o

Dnrivation is given in Appendix
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and )‘ =0, 5772156649 ---(Euler's constant)
For practical computation of ‘J-(F)’ the following two

| mathematical formulas are used.

1=
V() + 7= F eot-fTy 2 D | o (2T Log 0 (3E) |- 7 2n)
: ou ne (n=2,3 ¢----- , £=1,23-—(r))
’}fof)‘f- ' 22—%— ( ]o.—./,__z,gl—v.-_w‘)‘

n=y

General Appearance of Singularities

In order to visualize the general appearance of singulari-

“ ties, the isotropic case X = P =1 is considered here.

() (mg),, (my),, (ay), &t the interior point of a slab.

: / 1 N

(Mxy), ~ U=2D 0 59

Jm
[

Cg;)o ~ _4Q'y aen. O

() Corner reaction (r),of simply supported edge
(r), n~ 122 siicas

(¢) Boundary moments (mg),, (my)o of clamped edge

).2 . 2
(W%x)o e = pe
(21 y) A~ - il
70 T |

(d) Boundary moment (mx), of free edge

{

i 2 2 -‘ *
(I/M,,/o N/ —m[’ éag 4 "f"(/‘-—V )Mﬁj
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(e) Support moments (mx)o, (my)o of a continuous,slab

(Mx), —vaG+ (1+v)Tp) ]

(/m;)o ~ —-;-’-T’_—(— ,u,&vfé -+ .(/+V)J,(f.)J

The above équations, except (e),’were already obtained by
Pucher(u). Fig. 8-1 gives a graphical representati@n.of these
singularities. *

Knowing the singular behavior of the influence functions,
their general appearance ih specific casés can be easily drawn as
shown in Figs, 8-2 and 8-3, |

‘A three dimensional view of the (mx)o surface at the‘in-
terior point of a slab is also given in Fig..2+2.

Discussion on the'Singularities'of Orthotropic Plates

As pointed out in Chapter II (L), the domain 6% X £ |0

"*0"'§-/—L§IO is of practical importance. Therefore, numerical com-

putations were made for several cases listed in Fig. 8-1L.
Generally, the influence functions take completely different
méthematicallexpressions depending on the relation: A.%'F"
However, results of numerical computation shbw that the influence

surfaces will change their shape as well as their numerical values
confiﬁuously éccording to the value of X and p- .

The domain ,X<:rfié the case where the mathematical ex-
pressions take their most complicated'forﬁ. However, it is ex-

actly this domain where most of the data of actual bridgé slabs .

———-———‘-———-_—---——--—————-—-—-—-——--——— G e - - - - - -

¥ (mg)g, . for the interior point, (mxo) for the free edge become

infinitely large at the influence point In computing the con-
tours shown in Fig..8-1, . . the assumption ¥ =0 was made. Fur-
thermore, for the cases where the singularity tends to infinity

a value of the influence function equal to zero was assumed. As
all contours are 31m11ar this assumption does not influence their
general shape. :
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fall, (Fig. 1-4), (especially for bridge slabs, cases X =0, A<M
_(points on the fL-axis) are of imﬁortance).
Results of numericai computation are C§ilected in Figs. 8-5,
8-6, 8-7, 8-8, 89, 8-10, 8-11. |
| It is easy to understand how;mountains'(positive'ZOne) and
valleys (negative zone ) will change their shapes, contracting or
expanding depending on the value of X and P
' Some of the mathematical aspects of the sihgularities_of )
' (11)

orthotropic plates have recently been discusSéd by Mossakéwski

using a Fourier Intégral ﬁransform.
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CHAPTER IX

Summary

In this dissertation mathematical expressions for the
influence surfaces of orthotropic rectangular plates are derived.
The principal results of the investigation can be divided”into
four parts: |

(1) Cases Solved

The Green's functionvfor_the decflection of ah'infinite
orthotropic plate strip with simply supported parallel edges is
solVed”aé'a fundamental caee (Chapter IIIS Combining this
solution with the homogeneous solution for:. orthotropic rectangular
plate and determining 1tsﬂcoefficients such that the combinetion
fulfills ‘the boundary conditions at the third edge, the influence
functions for the semi-infinite plate strip with 31mply supported
parallel edges are derived in Chapter IV,

Using a solution in double Fourier seriesvform (corres-
pohoing‘to Navier'!s solution for. isotropic plate} rectangular plate
with simply supported edges is treated (Chapter V). Through
sumthation: a solution in Simple series form 1is developed. Fin-
ally, in Chapter VI, the plate'etrip continuous over a flexible

cross. beam is studied.

(2) CloeediForm Solutions

In this dissertation, most. solutions are carried through to
a’closea form.by making uée:of'seteral mathematical sumﬁation'.“
formilas, Thus, the discussion of the singularities of the influ-
ence functions become possible and the general appearance of in-
fluence surfaces around the siugularities_is made clear;uéﬁany‘

previous solutions for isotropic plates are in series form which
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-converge very s8lowly in the vicinity of the influence point and are
divergent for the point itself, They do not allow a discussion
of singular points.

(3) Discussion of the Singularities

Discarding the regular part as well as higher order terms
of the singular part in the vicinity of the influenCe point,‘thé”ﬁ‘
solutions are obtained for various_eases. Assuming various. values
for the orthotropic parameters A and M a general investigation of

the singular behavior of the influence surfaces 1s made.

(4) Practical Application
In practical application the orthotropic parameters A and -

seem to be limited as follows?

N

|0

Y ,v\

0 < fx,g!o

N

This sduare domain covers such Cases.as'tWOeway reinforced
concrete slabs, grid work systems, corrugated sheets, Pplywood plates,
stiffened plates, etc. Orthotropic bridge slabs fall generally in
" the domain A< { and even A.—‘-.,o as shown in (Fig., 1-4}).

Assuming twelve values of A\ and'l&i, numerical computation
of the singularities was carried out, and ﬁhe resuitS;were re-
presented in contour line diagraﬁs.

‘The change of the shapes as weli as numerical‘values of
influence surfaces due to changes of N\ and f are easily vis-
ualized. Since tﬁe change ef influence surfaces in shape -and
numerical value is continuous depending upon the change of )\ and

F‘ , an interpolation between the computed surfaces is'admissihle.



CHAPTER X

Appendix .

1, Mathematical Formulae for the Summation of the Serles of

the Tz;g Z

coomx

. If Z is a complex variable and l2]< | , the following

‘expansion holds.

|
-z |+-Z-+‘Z o E jZ
ExPr6581ng Z in polar conrdlnates' v _
A }’6* y(cwa-f-b ,w«e)

~end 1t conjugate | - o
. . L L ‘y

'z

=ve -r&ma—humg)
yields '
I | -2 - [=Veos @ 4V @
| —Z (l~8)('-—2) |=—2yven @+ 71"

oo
2 Y= ;E y'coomb 4+ ;E 7 “an N6
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(A)

(B)

(c)

comparing equations (A4), (B)-and (C) the 2fﬁ$owing expressions

can be derived, provided 0 7(§7T”’_

=]
" /—=Veoo &
Ce> N =
2, 4 4 | =2vem@+r?
LW

and .
oo

n=)

. n Ny — fﬂ—l'r\va
2 Vel = T T

h=)

Z W ereom8 L gy
v eond = |=2vem &+r? /‘_2-(I-Nun€+V‘AL)MD)

(E)
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Integrating equation (A)

v : 2
—-ﬁa(/f(/_g)= g+,,_§_ Z__. (F)

Msl

' . . 3 e raw~t
(’—Ywé)-t-b‘)’ﬂ»wﬁ = V /-zycw€+) "t // Vcoﬂ)(G)

) HO
u N . W ‘
. ? _::_. = %-—%—cnfna-ﬁa —,‘%—ﬂaw-”‘*é’ ' (H)
L] n=, M-_,

- 2Z

From (F),(G) and (H)

©0
"

Y c@-’he

"=
00 .
—E —-—-—- ,QAM’)'L 72

In the same way se'veral :other formulae can be derived. Only the

—TL(?f/—zrcr\aﬂ-f)”) o (I)

L= reed

w( Ymﬂ) .4 _‘ (3

final expressions are given:

' Y" 3 : .
Z S Ceni =—-—-2—{-— K?(/—z,ymzf.(‘)_

Qi AL - t@;(_z___ g2 )

| —receoX

o, /+zrwaa+r
4 J | —2ren1+r?

n

_.L C¢’D’n1 =
n

'Y”

Z Mt = 1:&...,:’(#4_“‘:*177
, N : /—vy?

’ n:)';ylg--

| —2vco x4 r? /- 2Vcr->2:-+-r‘

\
Y”Mw%l = Y Z
N =2vCoo+Y?

: 2
2%7)‘0&?%2’, = Y((Hr/c:rax-zyz
' (|—2remt+r*)?



(2) Mathematical Formulae for the Summation of the Series of

]

the e __Conx
ni+ k2

A=t

Expanding @“ into Fourler series in the range [0,271'] :

Kt . 060 ' - . ’
e [ Keoony Necwny
= — et _Nem AL - (4)
ek —| 2Kk mi+ K -

LEYE

S mik? o

changing ‘% to -k

. —kKx & N 22 . |
L S B Y <. Y S Y v\ S
C-—J.K‘n'__l - lK‘ ',n}_'_Kl ' %2+K‘7-

Combinding equation (A) and (B}

K(x-1) ‘ o2 ' o . ‘
Te _ + Keeom N\ _Newmx . (C)
EKT_ KT T 2k n*4+K - mirK?
h=| N= »
~K(1-T L2 . :
Te )= l + Kemni | N LML (D)
e T Ik T e T Tmasar
n=y n=
Adding equations (C) and (D)
Taaal\l(@r—,vr) ) | v 2k : __CoonX
PPAYE K n2+K*
or et
cont _ T _comhk(x-m) | (E)

m4g* 2K aoh kT 2K?



Differentieting equation (E) with respect to k

- ,
—og o_temr . _T_, cohK(X-T) + /
(m2+k*)* ~  2k? oAb KT 4k3

+ T (z-ﬁ)Mk{Z-r)MKﬂ'— r c,a'aA KT MAK(I ﬂ')

2K WAL .
[ o] ' .
. coonx _ | m coohk(x=T)
.. ('1'1-2+K1)1 2K* 4Kk’ el hKTT
e ‘ ‘ '

77’1. cn/»;«z—ﬂ‘}a«»l(ﬁ’ w(2r). MK(T’”’)

+ — v ,
4k? ,w—JLzar 4k* ok kT

(_‘oér_gzrr) | | | (®)

In the same way many useful summation formulae of series can be
obtained.

(3) Derivation of J(p)

It =5 (- 5kt D (- 1-c)

Kz}, 28— n=i

S-St S e

However the theory of Gamma‘functions furnishes the following

relatiohships((ZB)p, 458)).

[f’a?r(f“'f Z(/-f—K ,o+i<) 2(0«1 m+f)—
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[ ) ‘T—(P) o ___I__
" fn-o-Jo r(e) £
Making use of the reiations(_;as). .

Z%ﬁ = ~ L. 2

2 ey e, L [ﬁfuz ) 7
Y M+P | 0 l+k- - (M) r/-é) .' f
J(P) becomes o |

o 0 r(fﬂ) r’({;/
Jp) = (—rfj)_*y 2o"” (r(#ﬂ) r({?fﬂ

AT+ r gz e L [ Feay- Teo)]
where |

| T A Y
¥ i) = WE)— = | (e~ (.H&)P), >

= 0.5772/86649--- . (Euler's Constant)

J(P) is represented graphically in the following figure.
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Jep) = —é-f“P(p) + 7+ Log2 +—}(x}(%‘i)—

V£))

Function J(y)

e /
') ~ A
_ _ o /
’&T/‘(F) - r(P) - (6 - (I+OI)F) og(
o o
Y =0 §772/6 ( Eu/é‘)’é Coustaut)
| £
1 A ] ] ) L ) A A ) A
0 0.5 [ 1.5 2 25
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CHAPTER XII

Nomencl ature

Width of strips
Length of a rectangular plate
Flexural rigidity of an isotropic plate

Flexural rigidity of an orthotropic plate in the
X- and y-axes respectively

Torsional rigidity of an orthotropic plate
Some elastic constant of an orthotropic plate

Modulus of elasticity in tension and comprés#ion B

Elastic constants to charactérize theupropertiés

of an orthotropic material
Modulus of elasticity in shear

Torsional rigidity of an orthotropic plate; H:D1+2ny
Thickness of a plate

Bending rigidity of a beam

Warping rigidity of the beam

Torsional rigidity of the beam

Some Eonstant controlling elas%ic properties of an
orthotropic plate (Section (3.2))

Some elastic constants associated with free edge
boundary (Section (L.L))

Bending moment per unit length of sections of a
plate perpendicular to x- and y-axes, respectively

Twisting moment per unit length of section of a
plate perpendicular to x-axis

Infiﬁence surfaces for stMy’Mxy’ respectively
Shearing forces parallel to z-axis per unit length
of sections of a plate perpendicular to x- and
y-axes respectively

Influence surfaces for Qg and Qy respectively

Intensity of a distributed load
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(r,0)
(u,v)
Vg, Uy
X,¥,2
O(’ﬂ: f’ 77
x.
Ixy
€x: €y
ox,dy
Txy
T,T!
P
X, P
Y,

$,8.;¢, 8.
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Some transcendental functions defined in Table (I)

Influence surface for réébtion of a simply supported
rectangular corner (Section (M,Z; Iv))

Polarvcoordinates>

Rectanguler coordinates of influence point

Boundary shears corresponding to @x and'Qy, respectively°
Deflection of a plate in z-axis

Rectangular coordinates

‘Non-dimensional coordinates of the influence point (p.25)

Aspect ratio of a rectangular plate (p.lL2)

Sheariﬂg strain componént'in nectangular.coordinates
Unit elongation in x- and y-directions

Ndrﬁal components of étfess parallel to’xf énd y-axes
Shearing stress éompdnent’in rectangular coordinates
Helf periods of AJq-functions (p.46) :

Ratio of bending rigidity of a cross beam and bending
rigidity of a plate in y-direction (eq. (6.7))

Parameters controlling anisotropy of a plate (eq. (3.7))
Polisson's ratio

Non-dimensional coordinates in complex variable (eq. (5.9))
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Displacement in the
+X-direction

= Displacement in the
y-direction

Displacement in the
z-direction

TRANSVERSELY LOADED PLATE
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4
Qx = /h Txa dz
Mer i
| ' Qy = f'?}a dz
i ""Myx"‘%mx?t x . T3
g \\‘Qx"' gex A_X
. /S | A 9y
. - 2 ,/Mi;t . ,Qx
Mx - - - E : Mx& '
. /MX"' X x
Myx /4“N | N
— —~ 71 Muy + S5 A x I 2
. i dMyx iox Qx“‘"a_i
”W*%%“a;JZ/ Mo+ 5y 4 o +2Qadé
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_Figure 1-2 EQUILIBRIUM OF THE PLATE ELEMENT
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Bagic Differential Equation

]

oW otw
Dx g% + 2H gm0 EETE +D;ag4 = Py

q(x,y: external load acting on the plate and in this

case , A
( ) {O (for any point other than (x,y))
VI ‘

P=1 (at (x,y))

with prescribed boundary conditions. (either statical or

- geometrical conditions)

Figure 1-3 GREEN'S FUNCTION W(u,v;x,y) FOR THE
DEFLECTION OF AN ORTHOTROPIC PLATE
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Figure 1-4 EXAMPLES OF ORTHOTROPIC SLABS
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TABLE I

DEFINITION OF SOME IMPORTANT TRANCENDENTAL FUNCTIONS

Several functions which constitute the influence functions
of orthotropic plates are defined in the following table.
Following remarks should be observed for the application
of this table.
(1) In ordef to avoid complexitvy, every function is_written
without showing four indeperﬁdent variables o(,,@;f,?].
For example, Mg = Mg(0,f;E,7)
Ry = _Rl(ot,(g;_fQZ) , etc,
This rule should be applied to any influence functions
unless otherwise noted.
(11) The functions I-ll is defined as follows:
| Ri = Ri(o,@;F,))
(1ii) If a function has sign, the following sign convention
should be observeds
upber sign (+) for 5 §7
lower sign (-) for f 37] .'
for example:  if B> 0, 7>0.
R ;lv“—‘ Rc (d,ﬁ) f,"])

_ ~1 oo (o) | 4 A v (6-F) )
/tM (eKI(p*V)—m(O('ff)/ tll”_ (em(ﬂﬂ}—w(a—F

(iv)

"<:=u/3+l//\*—fﬁ ;o ke asIN e O

K, = Ky = [ LX (<)
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Functions Séries and Closed Form Expressions
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Series and Closed Form Expressions
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Functions Series and Closed Form Expressions
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Functions

Series and Closed Form Expressions
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- aenhko(g-n) + rmh (1)
Coakk,,(p-r)) COHEFGIPN)  Caohky(p]) —coE-F B ()
ook K3 (-1 - aunh Ke(Bn)

Cooh ky(f]) <o (& +E 2k () Covh K (B)—er (X-F f'q(,e—q))

U= .
S =+ ( pinhiG(E1) . eunh k3(8-1)

9 C@LK,(P—Y“ — Coa(o+ ¥ He(p-) coliky(f4)- el +FF Ky (BY)
- _aonhio(@-1) pivh k(g ]
Cook Ky (p) —cao(d~F whalgn))  Coohky () —Co(o/-F £K4lE)

o

—uiK(BH) _
4—2 me g A NE A NOL
T e

cnh(fr)ecot-t) =] _ cohlX(@H])en+§) = |
( cooh X '/—(lg""?) w(d‘F))l CWAV)T(/}H]) —cou(X+E)

- =115



-116 -
TABLE II

VARIOUS SINGULARITIES OF INFLUENCE SURFACES AS FUNCTIONS OF
A and e

Figures 8-5 to 8-11 are graphical representation of the
equations of stress singularities given in this Table (I1).

In derivation of these equations following assumptions were:

made:
. D A
(1) D1 =0 H= 2Dxy —% = =
' , aD

i F G H'_.'l:

(ii) or the case (G), T 1
Except cases (A) and (F), 1limit values of the surfaces stay

finite,

In‘éases (A) and (F), (mx)Q =0 is assumed since every con-
tour lines are similar to each other. In case (C) (qy)o =] is

- also assumed.,
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(A) Bending Moment (mg), (interior point)

Case | A - Egu_a‘l’im( (m,);=o

() ! | ﬁa? Y — ren® =op

(2) | | 0.5 ﬁey Y +o 59’3&(/(/+o.3!6w\~7/'—a 784 Zg(/—o,o’._&£m‘ﬁ)= 0
(3) | 0 Y c‘ao 6 = |

. 2 Py

@) 0.5 |o.5 /ifyr to,.& Leg(l-05any) - —— 228 =0

(5) 1 o I 449(7 Yy +0,28 f;,»(/—?@v:ﬂ?’cralﬁj - 0.4 Ta(tan?6) = 0
6 o5 | | K?Ho,zyﬂym‘_M42c@La/_o,745t»:’(_%=&
ol s ﬁa;y Y +o. 2r£?[/+/,2$miv»4a/—/,//; Za,i//,//a"ﬂwhla)= o

(Y ]

®) [ 1.5 | 15 | Legr +o.5 Leg(lros5ein®) - T8 < o

D115 || Legy +0:807 Lo (/-—o.K/e?ru»‘»?j—o,doyfy€/+a.o’/‘o"me,;x’ﬂ]=p
(tlo) |10 | 0 Yeeo 6=/

. [0 4B _
an {10 | 1o ﬁg)@a&ﬁoj(w?ﬁu o) - G422l =0
(t2) 0 l.O K?)’ +0,28 @7(00(‘94—/00%4&)-0,5 Za,o:'//o [Mfﬁ/:a
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(B) Twisting Moment (mxy)o (interior point)

BN

Case s Egua_‘,’ld‘rt N 87T(W|xg),
U | b2 g
(2) | | 0.5 2,309 [ Z’amf'(z. 732 Cotd) ~ Z‘a,u"(o,'/fzcoﬁ):f
(3) ‘ 0 JIY2 -2 Z.—aJ'(G,707ca/'9)
A2 O
(4) 0:3 053 | =0, 5 an B
(5) 0 | 0
| + 2B cood
6) | 05| | 0,577 £7 2o dome
. cob + Mﬂcéév"/,rMZﬂ
) ! 1.5 0,895 Le ol —rinbenld+1.5rlb
15 exc26
®) | 1> I+ 0.5a.8
@ | 15| | 2,633 tad(1.018 c16)-TaZ(0.615 cote) ]
ao)f to| o 3142~ 3 LaZlfo22¢cote)
() | 1o | to g 28
| + G awid
t2){ o |0 0
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(C) Shearing Force (qy)o (interior pdint)

Case | X e .Ezu_cd'ion N 84.(83); = |

a | 1 | y = —.é o @

(2) 1 |os v=-2 ( /OLZ,(;{ZLZL?& — '/iéf;:%ﬂ
@ |1 |o =Ll

4 |os|os y //'_40’-45%23 -

© o | re - AL

(7) | 1.5 Y= _2’#36 (m‘e—mﬂ;;c;%w.su:«’a + ca;¥+mrq;t§:;/;;mb)
S V= :ﬁ-ﬁﬂa
UNNENE y:—,z( /—ooﬁf;:ﬁ? * /+",j‘3m@)
w10 | o S LSV

(1o} 1o Yy = ,'23;%:

nz)| © | 1o Y =- fjl“«zﬂffﬁfﬁﬁfv
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(D) Corner Reaction (r)o of Simply Supported Rectangular Edges

'Case_ PN K | Egquation ! ‘g‘-{z'(.;f)o

[CHNN N §aim2e

@2 |1 |os5 , /8 478 [ tan’ (2,732 cote ) - tas(0732 cote) ]
(3) | | 0 25,133 = /¢ w(o,7.070af.ﬂj

@ | o5 | o5 | §ac26

! = O:Sﬂ"/l‘"’aﬂ

(5)01' 0

6) | 0.5 ! /| — B eoo B

coof +anbend +1.85aol

N 1.5 7.15¢ A”f Cood - acnbemd +/,50d

® | 1.5 |15 e

) le.s lﬂ 21. 467(1’4;‘(/.5/5’”:‘&}— f[ﬂv'ﬂ-’fa:(./fICafd.')‘]
to)| 1o | o 26133~ 16 ta:(a,zéfzufa)

(o | to | 1o /f?;ij*a

(12 { o | to - 0
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(E) Boundary Moment (my)o of Clamped Edge

Case A M -E%ucLHon : Em(Mylo

() | \ — f i ¥

| — 0,8 (6l

AL :
(2) | 0.5 4 T T o Freis
| @249
q Zo = -
(3 | 0 2,846 / T aeliz
@) | 05|05 Sty X

/ ——o,ls"m,;.?’

) o ! - § ol ule)
' : -1
(6) | 0.5 [ __g’ta_m—/( Y 6’6(0»«:»29
. /[ —O0.8 0
@t | - tai (1115 as)
® {1.5 | 1.5 ___ 279608
‘ o ./4_0.5%29
@y |15 || 4 Log =0 ElTeit
! +0,618acip
coo'd
0 0| o _
e “ 374%7 [+ 194~
(ar)y | 1o | 1o _ 25,30,{‘4_‘9
| + qeaé

uz2) | o | 10 — 1,789 tailr0taig )
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Boundary Moment (my), of Free Edge

case| X P E%u.a“on : (My)y = O
Mmoo Log v —0.§pinB =0
(2) | | 0.5 Za(ir—a, a37ﬁy(/+a, gééulfa/-/-a.s&7£57[/—af(o’,uv'-‘a)=a
(3) | | 0 y coo 6= |
S ey —o. ‘L) g.28 e
“4) | o0.5] 05 f(; y +o yl(/(/ 0.5 ain'g) — — 2f g
5| o | 1 Kry Y + 0,28 Z.y(cn'*a* eil®)=0
6) |os | 1 | £f7 V40,25 ey (I—cobanl)-0,287 tai (258252 ) o |
(7 {1 |15 loré;y +o,2€l,(o/(/+/,2:u'w“a}—»o,4—4722,«"//.//J>M’e9)=o
- . k) 0,78 el -

() | L5 | 1.5 z/)’-l- 0,6f07(/+o,$‘,¢ 8)-— =
9 |15 | i Logy—o, ops /6?7(/-/-/,(/aﬂ"/“")’ﬂ)-f-a:SJJ&J(‘/—Q,K/JG—"\Wzﬂ/=D
(lo) { to 0 y ¢ 8 = |

Lo Y Lo W - . “5—’4’“;'25 =-
4D | 1o | 1o 7 v +o J((.¢_9M&) TR aled
uz2) | o | 10 Kcir-p O,2£ﬁ(7(cwq§9+/oou"j@) o
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(G) Support Moment (my), of a Slab Continuocus Over Flexiple
Cross Beam '
Case A f«L Ez uLa_’f“qu N 8'"—(1"4(7)5
ay | o 2,772 - 4 a8
[ ~0,866 20
\ i , -
(2) | ! 0.5 1,811 + 2 Zod, o Fie
m29
(3) , - ‘
) I 0] { 414 £07 2 _ amzﬁ
_ 2.02¢ 08
4) _0.5 0.5 [.928 I o s aris
s | o || 3,128 - 2828 Lai( 226
. _ <[ 0,866’8
6) | 0.57 1 2.938 - 4 Ta (2555 \25)
(3) | 1.5 | 1.5 3122 - £878a 8
/+0,\S_M€
| — 0,618
. 2,69 2 X
@ s [ VANEYRITIY
I3
10 0.447 Lo e &
(to) | 10 | o 4 YT
‘ /2.4§ﬂw;f€
0 , & -
() | 10 2,92 Sy
)| o | 1o 3,917 ~0.894 Lo 10 tai’e)




-VITA

The author was born as the second child of Kanjiro aﬁd
Shizue Kawai on February 20, 1926 in Tokyo, Japan.

In April, 1949 he entered the University of Tokyo and
in March 1952 was awarded the'qegree of B.S. in Naval Architecture.
Thereafter, he continued his study in theée graduate school at the
University of Tokyo until August 195L4. | |

In September 1954 he accepted an appointment from Lehigh
University as a Research Assistant at Fritz Engineering Laboratory.



	Lehigh University
	Lehigh Preserve
	1957

	Influence surfaces of orthotropic plates, Ph.D. Dissertation, 1957
	T. Kawai
	Recommended Citation


	tmp.1349753097.pdf.1Lrhw

