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by
Tadahiko Kawai and Bruno Thiirlimann

I. INTRODUCTION

E In two recent articles (1),(2)* influence surfaces for
bending moments of contiﬁuous slabs have been ﬁresented. In
.reference (i) Hoeland developed solutions for a slab continuous
over rigid and flexible cross beams in the form of>infinite
series. ¥ Howeve?, as the influence functions exhibit'singular
behavior at the influence point proper (i.e. point for which
the influence functions are determined), such solutions are

- divergent at this point and slowly convergent in its neighbor-
hood. For a discussion of the singularity and for exact num-
erical éomputations in the immediate vicinity,solutions in
finite form are required, ~

Such solutions have been presented in reference (2) for

- the case of rigid cross beams, In this paper solutlons in
finite form for cases of flexible crosé beams are-developed;
The singular'behavior of the influence functions for the
support moments over the cross beams is discussed. ?inally,
numerical solutions- are presented in.graphical form.

Whereas in references (1) and (2) solutions have been
obtained by using the differentiai equatioh of a transversely
loaded plate, the approach ﬁsing the integral equation is pre-
sented in this paper. Apart from a different formulation of

e - w3 ED GRG0 G0 D OR Gm D G G0 On OO 0 D 6N G0 O3 e e AD G S5 G G S g 0 e A G CE3 e OO D o M GO WE M AT N G Gw e G e G R G G e e D

* Refers to List of References.

*¥An error in the assumption of the boundary conditions ex-
pressed by the equation for qy on page 127 of reference (1)
will be pointed out shortly.
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ﬁhe problem this approach has the advantage of avoiding
boundary conditions along the cross beam. This,in,furn,shows
that the boundary condition for the shearing forces along. the
cross beam in reference (1), equation for Ay, P- 127, are in
error. Instead of using the expression for the boundary shear

Vz containing the contribution of the twisting moment, e.g.

Ve = Q- 2t =-D[%+(Z-VJ§£=]

the expression for the shearing force Q;, €.8&.

TW ., PW
% = 'D(Tﬁfaxagz)

should have been used. As the twisting moments Mxy are con-
tinuous over the support beam, they should not appear in the

boundary condition,

II. INFLUENCE SURFACE FOR DEFLECTION OF PLATE STRIP CONTINUOUS
OVER FLEXIBLE CROSS BEAM ‘

An infinite plate strip with simply supported parallel
edges is considered (Fig;l). At y=0 the plate is continuous
over an elastic cross beam with a constant bending stiffness EI.
The coordinates of a point on the cross beam are taken as (z,0)
-~z being the x-coordinate -~ in order to distinguish this point
from a general point (x,y). The deflection w of the-pléte at a
given point (u,v), referred to as the influence point, due to &
concentrated load P at point (x,y) can be expressed by the fol-

lowing integral equation: , -

a 4 o :
Wiw,v;x,y)= PGwv;x.4) —fEI %&MLG(%V,‘ZLQHZ o

o
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The function G(u,vyx,y) is the Green's function for the daflection
of point (u,v) of an infinite plate strip with simply supported.

edges. It is givern by the following. series:

o | S
G(u,v,%,4) = 2'IT3D'Z=' o (A (wv,z,4) (2)
R 08
where S[;(u,v;x,g) = [f?%(ng)]ﬁ M—M%M “Z""

with the upper sign for v§y°

and the lower sign for v=y.

B“w(z,o;xiy)
3z

expresses the distributed reaction of the cross beam acting on the

The first term under the intergral sigﬁ in equation (1),ET

plate, When multiplied by Green's function G(u,v;z,0) and inte-
grated over the length of the créss beam the integral constitutes
the influence of this beam on the deflection at point (u,v).

To simplify the following derivations ,dimensionless co-

ordinates are‘introduced(2), viz:

I _ LI . -
a = ¢ / —75—_'n J ,_E%._ ¢

Assuming the deflection surface w in the form

W B:EN) = PleupEn) + PGlo,gEn) (L)

“the function @ is determined by substituting equation () into

" equation (1):

T4
¢(u,p;?,7)-=——ﬁa§—rf 3;\1({’0’5’” Glag.g0)d (5)
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Since @ is a continuous function with respect to « and 3, it
can be developed into eigen-functions associated with the Green's

function G as follows:

P, p.5,) 2 augn) B, p)
99(«1(3) (l+n(?)8 F/UMMY

for positive values of . Substituting into equation (5) and

replacing G by equation (2) gives:

oo m .
Zan(éq)%(d,ﬁ)=_ w:EI_f %4?#(;,0)(21%2 t b (o €,o)}al; -

Multiplying both gides by sinne and 1ntegrating with respect to-

o« from O to W , the orthogonality relations simplify equation

(7) considerably. Taking into account that

7z

G2, 8:3,0) = @ap) nmy

y the following expression 1s obtained:

Tanten) (1+np)€" = - Lo L (1emg) e PUED pong ds (o)

2 4
| T
With the substitution
P*w o) _ _3* [ ¢ 2.0 + PG (30, En) ]
" 9¢4 - 3(4 ('0' 8'7) G' ;;ol /7

e

mzi.

the function éﬁ can be determined. Again the orthogonality rela-

tions are used.



26l.1 | | o -5
2/1/57 |

Introducing the parameter

_ 40D
,P—-. TEI (5)
Qu = - Pal . (H— )e /UQ"\VI 3
"7 2nmp H+p 1 3 (10)
The non-dimensional parameter p depends on the ratlo of the
3
bending stiffness of the plate, D= E%i?—gg) to the bending stiff-

ness of the cross beam EI, Substituting the pertinent values into

equation (L) with P=1 yields the influence function for deflection:

Wl giE ) = mioz [ (1 n(p-))e™™

-——7Wq5(l+nq)ﬁ+np)e ‘ém],uwmaﬂ~ww§ (11) *

upper sign 7 2 g

lower sign n £f

The first term within the parenthesis representsvthe influence
surface for the deflection of point (u,v) of a simply supported
plate strip without cross beam, The second term expresses the
influence of this beam. If the cross beam is infinitely rigid,
viz, EI—wand p— 0, the coefficient of the second term reduces

to:

1 1
11
p~o T (0FP) 07

on the other hand, in the absence of a cross beam, EI— 0 and

p—>o0 such that.

1im _?g;___— = Q
p~oo. N~ (n+p)

and the second term will disappear,
wIf 02<O the sign preceding 1 should be changed in equatlon (10)
and in the second series of equation (11),
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II1I, INFLUENCE SURFACES FOR BENDING MOMENTS:

The expressions for the influence functions of the bending
moments My and l"Iy are obtained by .differentiating equation (11)
with respect to o and. ﬁ as follows (see for exarnple_~(3), P’"%O):

' Mx-influ'ence surface: | -

(a’wz_'_

mxculﬁ) = V aﬁ

= —2-';2 ['ﬁ' (l+v) ?(!—v)n(lﬂ—q)} g* ") | (12) *

(I+VlY]) { (1+v) +(1= l")nﬁ% an-*'U]Mwot po~n E

VH’P

M.-influence surface:

b
(o) = -T2 (v-B+ S)
- oyl pEnE
ToaT § [ (H-V) F (1-vinlg YI)‘ € (13) %
- h+P(l+nq){(l+u)+(tv)np} (ﬁn)]ﬂggmuﬁd~n§ |

The influence function for the beam moment is proportional
to the curvature of the cross beam, hence:

Influence Surface for Moment of Cross Beam:

My (x, 0 ):— ;EI aagz(do)

- o0
28 _L_
v’f n

W= |

(} fzyi); "mnotmnf (lh)"%’

For the particular case of the influence functions for the support
moments over the cross beam, i,e., ,8 =0, the expressions for m

‘ and my reduce to:

e e T DD G . e e R S W G R0 G0 GD £ D G O G 06 @I O G G G S g oee S0 D D B0 G0 O 0 S0 G tH D D ED AR G D0 S N S Em G2 00 G0 Be G oo G0 Ge e GO R D Ge Go e Ow €D

* If m< 0 the sign preceding M should be changed in the second ~
series of equations(12) and (13) and in- ‘equation (14).
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Myl 0) = %Z[.;(EHV){_%__ nip((_fn)}_zvqj e_mMnu pron E (15)
my(a,0) = lf (0| 5= s (1-p) =29 J &7 amvnot astn “ae
AN ‘73ﬁ_p'[ N onp 1 2nJ¢

The series with the terms 2vn and 27{ in the above equations for
m, and My respectively, are the expressions for the influence
functions in case of a rigid cross beam,

If ?="O the above equations reduce to:

Mx(o,0) = ——vvq-i e—mlw.noz Arrn N E . (17)
. i \ (18
myle,0) = ‘4_2 e " aoamo avang o

Equz_itién (18) checks with a previously obtained result, equation
(12) of reference (2). The value of m, is ¥ times the value of
my as the curvature along the cross beam diéappears. Finally,
the expression for m, reduces to zero as the cross beam will
not deflect;
| The other extreme case is obtained if the bending rigidity
of the-cross beam disappears, p = 60 , or
| o0 ,
myla0)= _J‘-[(,W)J,((_u)nyl]e’"'lm\wawng (20)

2T
n=|

my (o,0) = -1%—5 -ln—[(;-;-v)-u_v)m'l] e A not avank : (21)



261, 1 | | -8
2/1/517 | ~
corresponding to already known results (see for example(a),

equation (6) ).

In general, it appears to be impossible. to sum the series
of equation (12) to (16) into finite expressions. However, at
least for the two specific values of p = 1/2 and p =1 such a
summation is possible., Fortunately they correspond to practical
values as will be shown presently. The details of the summation
and also the finite expressions for the general case, i.e.,
my (,) and my.( o ,p ), are given in the Appendix.,

Considering the support moments for point ( o¢,0) and the

specific value p =1, equation (14} to (16) take: the following

forms
Mx(0,0) = —-;L——Z [{I'u—‘_v) {—J—,— - n_j-!l'( -9 )"I,—'zﬁr' ] C—hq@;‘;\.-ndéxunf (22)
ne|
My (x,0) = -—ilﬁ_—i [a(!|+"v);{r~yl‘—ﬁ-— '—VTPTI-('_:W) }—-2)’,] e-m',u)»n&w—nf (23)
My (0,0) = T??,E (%i—,.—lr—,(a—nq))ef"‘wwwwf (2L)

The finite expressions for point (I 0) -- i.e., influence point

2 ?

over the cross beam at half span ---and the ratio p =1 are:

Case*o(-—— ﬁ =0; ¢ =1

My (F,0) =—8L“.-r(’|+v){ (i=(n-1)€lsmy) 2.,?3 Lml\vtlr&e) —( (+(s]—c)e’}a~i«§)7£~’—3(¢°°lf~q - 0¥ )

--z(q—:)e"(ﬂo;z )ME"‘Z(’]—')C"C@f(&/H(e,’ A««F) t“’“(c“ ))‘(25)

: / /
_ zV”)WL"].( T S )]
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my(L °) = "'""[(.-h){l -(n-ie W*% @?(C'J\")-&M«?) - (1+in- 1)(;‘]/%’) x

,ﬂ? (len]-,wlg) —2(’1—!)6"(£c-32-~l)m&§+2(7]—-f)e".cera,f x (26)

*_°_°°_L_ - - _OWL_ ” et | B |
( tﬁM(en"MF)— u‘”\(en-fm)«f)) }_ 2 Y‘M tq(mllyl_m,‘“s cgal.y’.'_wf )]
Mp(Eo) = k) Lu?(wlwrmfa;)—(l‘+cq—¢)e"n_a>§)ﬁg(co‘-n—ﬁ#«’)
(27)
- 20" Loge- q) e w20y Moo (T (220 )l (22 ) ]
Simllarly, expressions for the case of P =1/2 can be
derived, leading finally to the following equations:
Case: & = I ; B =0; p=1/2
:) = — cohn + o 3 eokdton(E-T)
"0, ) = ()| Log SIEEE 4 (e (ent- Dl S D
L"}“fm(z'* ) \ F—“"'(';% )
- e (L i T 2 SPW I E
oo (b by SIS '2w(—§-+1)(13»~( ey 2B
. ;“’_':(é:il) iy (1 (28)

m)= emhntamm ¥ 3 cobF +enlE-F)
My(Zo) = T [[HV){ ﬁa'a cooh oo ¥ 'f'(—ll-l)@ (c@{_zi_‘%)l? coh 2 ol E-)

kT cohgtenEtE) o i ,.;M(%T))
coo (5 +4)£rj Cph-n—m(-g--f}) 2 aon (St 1) T ( R

-2 /ML*(';{"‘»E) t“*-'('ﬂi_l))}plwt‘q (cwhq—Izw\«? :C@I"Il"'“‘“f )] )
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_ _ 4a Coohy + ain E j"; + coh F+en(E-T)
o2 0) =T (g o ir e (F-nef (emtE-T) Lo mu_m(il)

) , +-I
Cemlhed) by SRR e - B 1R (20

-2 il E ) R (2R )) G0

IV, DISCUSSION OF THE SINGULARITY OF THE SUPPORT MOMENTS:

Whereas it is impossible to express the influence functions
in finite form except for specific values of ¢ , a general dis-
cussion of ‘the functional belhiavior in the! immediate vicinity of
the influence point (2 , 0) can be given.f, In equation (15) and
(16) the last term of the series i‘or*.mX and my can be summed(a):

E e_mﬁ\at:wnumnfz—%_—wq ( ! ‘ — J )

cwhy - cola-¢) cohy —coo (X+E)

n=|

Considering points in the immediate neighborhood of (12r-,0) only, or
- I =
§=J+e , 7M=3

=0 S$=o0

/

and neglecting higher order terms ,the above equations reduce to:

me ~ — 2I1r [ 8215;2 -.(H'V)J(P)J | (31)
My ~ - le[’ E*i'b" — ) J(p)] (32)
(33)
| ]
J(p) (7 =W

Introducing polar coordinates © and r = £ 52 as shown in -
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Fig. 2 it follows that

8 _ o
g - ol
Loy (3,05 F+e,8) == g [V so’s = (1+0) T4p)]
. 80

%g*:; my (o, Lre,d) ""“111?‘[‘“"“19 —(1+v) T (p) ]

4 o
Ao i (T 0; T4e,8) = 24

-—0

The function J(p) can.be computed as follows:

J0)= 2 (=) = £ > (=g ) 1= 0)
Tl 5 g )

-11

(34)

(35)

(36)

(37)

However, the theory of Gamma functions furnishes the:following

relationships (for example, () _P. 458):

I
alp L?r(f))+ r Z 1+K p+K 2 (- n+p TP

|1y _ )
£ (—n" n+P) = T(p) * Y"'f' F _ |
Making use of the relations (for example,(5) p, AeB_(;‘_))t
00 " -
=) _
i_—- = — La-g 2
_(:U_ .__I__-__ T by 1
‘ ntp f I+x [rlﬁ-' (%) ] P

J (f) becomeS‘

4(38)

(39)
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T Tte) HM?“_[L_ __E'&L“

() &) T
—'2—['\__['/(‘0)+I‘+ 1,,32+_2L_,{'\}(_%'t/_)_\}(_§_)§] . (39)

Since §P~ (p) satisfies the following two-reélations:

2|

Fid)+ ¢ =L et LT 4 22 { o (2407 Loge )] = g 2n)
_ - | Vel (n=23,4---- fu|2, --=~(n=1))
Vip)+y= 25— (p=1,23-")

A=|

J(p) can be readily computed. Values are shown graphically in
Fig,3. It is a positive function which increases monotonically
from zero to infinity with increasing p.

The limit of my, My, Mp, Ca&n now be discussed., For simplicity

the assumption V =0 is made, such that:

Low malL 03 Tog,§) = == T (p) wo

F—o

&—re
J—=0

Lo Ma({—ouﬂf -—-—[,a,v 9 - j(p)] | (41)

L mb(-—o,z«-e 5) (42)

-0
d—>o

As only the limit of Moy depends upon the angle of incidence 9,
the discussion will be restricted to this case., Inspection of
Fig. 3 and equation (41) shows that for J(f)>' 1, ho angle of
incidence exists for ﬁhich My will be zero. However for J(f)é 1,
nlybecomes zero for specific values @ = 0. Five cases are con-

sidered:

o D G D o tRY RO BN D OD GD 0D DD 0 T5 GO GB G G0 G0 G ON 0N e oo $J 00 GRG0 G0 OB B0 o OD o e G0 o CD G0 ow e G0 G S O O we DU e e e e e ON G G oD op DN o o0 o

F'=0,5772156649...{Bulerts Constant)-
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(I) p =0s

J(p)=0 My(Lo:L,0) =———‘—/¢'~%zt9

(II) p=1/2: A -
JtE) = 2(F - tg2) = 04358

‘ mg(%°;£o)=—-2_’—w(u)~‘9—o.4338)
and solving the.equation: sin®@ -0,4388=0

0, = 0.7243 Rad.

(II1) p =1: ,
J(1)=0, 69315
' ma({-’o;—:}'c)=-.ﬁ-(/¢u:~)“€—o,673/6')
- Rad
(IV) P=2: ea O.Qflg v
C s@= e L, s
My(F 0,550 )= 5r(e8-1)
g, = I Rad
(V) p> 2 | 2
J(p)> I, no 6, exists
and since L nn J{P): oo

f’—roa
Lo, my(Eo; o) = +o0
This limiting case corresponds to an infinite strip with no |
cross beam. |
The results are plotted graphically in Fig.lL (a) to (e).
It can be seen that t’hé angle of incidence 6, for the zero line

increases successively from 0 to I corresponding to a change

2
in ¢ from zero to two. For values of f > 2 no zero line passes

through the influence point,
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Knowing the behavior of m at the influence point (%5,0)
and the tangents to the contour lines meeting at this point, the
general shapes of the my influence surfaces can be easily visual-
ized. Fig.5 (a) to (e) illustrate the general appearance sche=-
matically., Cases (a) and (e) are the known cases for an infinitely
rigid cross beam, ¢ =0, and no cross b;am, p =oo, respectively.

Between the two cases a steady transition takes place,

V..EXTENSICN TO THE CASE OF MULTIPLE CROSS BEAMS:

The method of the integral equation used in Chapter 2 for
the case of a single cross beam can be extended to the case of a |
plate strip supported by a series of cross beams as indicated in
Fig.6. If in addition to the bending resiétance,consideration is
given to the warping and the torsional resistance of the cross
beams ,the influence function for the deflection w of point (cx,ﬁ )

takes the following form:

W (%85 8.0) = Gla, 5,7 z = fEI 34W‘Z=f~§’”ewp £ 104

ot
W P, o bW(Zur'J Ln))] )\ 3 d .
Ea‘f EI“‘ar‘aa: - 6K S R A
(43)
where Z;,fz = dimensionless coordinates of i-th cross beam
EI4 = bending stiffness of i-th cross beam
El s = warping rigidity of i-th cross beam
GKqp = torsional rigidity (St. Venant's Torsion) of

i-th cross beam
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Gl((x,g;;,7) = Green's function for deflection of point ( d',p )
due to concentrated transverse load at point (§ ,7 )

G2 (O‘ ’ﬁQEsy))

Green's function for deflection of point ( oL, B )
due to a concentrated moment at point ( §,q )
acting about an axis parallel to the § -axis.

The function Gl is identical with equation (2), or in non-
dimensional forms

| 1' N | .
G (w05 8,7 ) = 2;‘302 b (wpie) (L)

he |

with
A V — — i‘n( -n) . .
(')bh(,og'/elf,’?) - (’ T”—(ﬂ"']})e 4 7M~nuﬂ»M’n§
G, is the li@iting case of the difference between PGl(a,F;?,Q*ét )

and PGl(a,F;f,q) as P X.approaches unity and § itself approaches

zZero, ors

Gu(o 6:5:1) = b [P Golor 32,7+5)- Py Loz

o—vs oo

--::—MZ—I—_C:‘:”{(”“ML_&N/LVL\”# : | (LI-S)

27D n

he )

The solution follows the pattern outlined in Chépter 2, the onlj

difficulty being the extent of arithmetical operations.

VI. TWO-SPAN CONTINUOUS SLAB WITH FLEXIBLE CROSS BEAMS:

The slab as shown in Pig.7 is simply supported along its
edges ¥ =0 and ¥ =7. The two end beams at q = + ¥ have the
same constant bending rigidity EI as the cross beam at N =0.
As'an example the influence surface for the support momentMy
at point ( «, 0) will Be computed, .Referring to (2) the

my-function is taken in two parts:
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My = Myq + My (L6)
where myqo is the solution of the infinite plate strip with an .
elastic cross beam at Y =0 as given by equation (16) or (27)

and M is a solution of the homogeneous plate equation:

m?u =§ (a_.. M-Lnr, + b c@l\m\q—aqu A,.,\,\an + c{nmq MaLmz)

n=t

N Y | - (47)

The sum (myo+myl} must fulfill all boundary conditions. Consider-

ing symmetry with respect to q =0 these conditions are:

At ﬂ =Q’s .
(a) %%=o (48)
However as %?%” =0 the condition becomes:
oMy, _
7¥ﬁux_o | (49)
©o/ dmy . 'my \_ TEr 'm .
(b) -1 L ar’a:; )= I= '5?% (50)

Equation (50) expresses the condition that the "shearing force"¥

at 40 is equal to half the reaction of the cross beam, Iowever

~as my, fulfills this conditiori separately the equation reduces to:

0 (3 Py, 1 o'm
- T (B ) - T | (51)

- o Cm . 0D G0 R S o Gm G D G OM GG S D W D On O G S e D) B0 o G GD G G G0 GO O GO OF G G 0V D G M GD 5 e D m K 6D su O e OF OB 63 43 O5 B 6D oo

“As my mwst fulfill the same boundary conditions as the deflection
w such terminology seems appropriate.
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At N = L5 =
(¢) oM _, (52)
an
3p .a3m %y \_ TEL 3'm,
(d) - EQ ( aq: *‘Z“Uag%{)‘”‘ at or+ (53)

‘The first condition assumes the edge free of bending moments My

‘whereas the second condition postulates the identity between the
plate boundary shear and the loading of the cross beam., Intro-
'ducing the expressions (16) and (47) for myo and myy into the .
boundary conditions (L49), (51), (52} and (53) furnishes a system
of equations for the determination of the constants ap to dj.
Explicit expressiohs for these constants in general form are
too complex. However, their actual computation for a given
example does not bffer any particular difficulty.

VII, NUMERICAL EXAMPLES:

The foregoing derivations were used for computation of
two examples:

(a) Plate Strip Continuous Over Flexible Cross Beam

Choosing the inflﬁence point (X

ig,o) and a gtiffness ratio

p = f#%%— =1,"'equation (14), (15) and (16) were used to compute

the influence surfaces for the beam moment my and the bending
moments myx and my. Furthermore, the assumpﬁion of Poiéson's
ratio v =0 makes the expressions for my and m, ldentical ei-.
5fcept for a constant multiplier, The results are plétted in two
,g}aphs (9) and (¥0). It should be noted that the plotted values

correspond to 8 T times the influence values for m, and Ny and
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2 78/ times for my. For cases other than » =0, the graphs (9)
and (10)are still applicable, Due to the fact that » does not
enter the boundary conditions,the influence surface can be

taken in the following form:

My = (""‘a)r=o + v (mx)y—o

énd similarly for m,. However for other cases where ¥ influences
the.boundary conditions (e.g.,, free edges, elastically supported
edges, ete.) suqh a procedure is not rigorously applicable and
its accuracy must be investigated from case to case.

A remark is indicated concerning the choice of p =1. A
cross section through the cross beam shown iﬁ Fig. 8 i1s considered.
The dimensions are givenlin terms of the -span length a. The
interaction between the beam and the slab is usually taken into

- account by determining an effective width of the slab acting as a
flange of the beam (see e.g.,(3) p.~119). However, for the
present qualitative consideration, it is suffiﬁiently accuraﬁe to
assume that the action of the slab forces the neutral axis of
the beam to coincide with the middle plane of the slab n-n,
Computing the moment of!inertia I of the rectangular beam
e/10 x &/25 with respect to n-n the value of ¢ is determined,

P =0,.98, A more rigorous investigation would lead to a neutral
axis slightly below n-n and hence to a smalier I and a SOmewhat
highef value of 0. Nevertheless the example shows that the

| case p =1 will correspond in practicé to a rather flexible

cross beam, the usual cases being limited between 0 < p < 1.
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(b) Two-Span Continuous Slab With Flexible Cross Beams:

. 'The platés were choéen as two square p1ates, >=T
simﬁly supported along the edges (:=0 and 5 =T (Fig.7).
Taking.the ratio P =l,equal bending Stiffeness EI for all
three cross beams was assumed, Only_the influence surface for

.‘my (.XL,0) was computed. It should be pointed out that the cal-
culations were done for ¥ =0,  Using the method‘outlinediin
Chaptér 6 thelcomputed constants an to d, of eqﬁation (47) for

_the'firstvand-third tefm of the series are given in the follow-

ing table:

a; | 5.151x1073 ay | 7.674x10710
by | 5.151x1073 by | 2.558x10710
ey | 2.830x1073 c3 7.538}(10"10
ay | s.151x1073 || d3 | 7.67hx10710

. In calculéting the my4q values,only the first term of the series
was considered. | |

| VIII: ACKNOWLEDGEMENTS

The results presented in this péper were obtained in
the course of research on moment influence surfaces sponsored
by the National Science ‘Foundation (Grant NSF-G2949). The

numerical computations and the drawings of the influence_surfaces



26l.1 | -20

were prepared by Mr. Robert G. Sarubbi, Instructor in the Depart-

ment of Civil Engineering.

APPENDIX
(a) Summation Formlae:
For summation of equations (12) to (1L) use of the follow-

ing formulae was made:

°0, Y,“ 3' | s N _ ; .
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for values of |r| < 1. Equations (A4),(B),(D) may be found in
reference (6), p.190. The derivatioh of eqﬁation (E) is given
in reference (2), p.L496, Appendix. Equations (C),(F}, (G) were

" developed similarly.
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(b) Summation of Equations (12) to (1L4): '

With the aid of the formulae (A) to (G) the series of equa-
tions (12) to (1) for the specific value ¢ =1 are summed. The
results are given without repeating the arithmetical operations.

For g=l:
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It may Be pointed out that the above expressions hold anywhere on
the plafe strip, Fig.l. The equations for the support moments of
point (%%,O) follow either by introducing o = %;, B =0 into the
above equation (H) to (K) or by summing equations (22) to (24),
'expressed in series form, directly with the use of the formulae
(A) to (G). Both procedures will lead to equations (25) to (27).
For the case of p =1/2 summation is also possible, The
results for the support moments are given by equations (28) .to

(30). However, as indicated before, no summation for a general

value of p is possible.
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