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INFLUENCE SURFACES FOR MOMENTS IN SLABS
CONTINUOUS OVER FLEXIBLE CROSS BEAMS

by
Tadahiko Kawai and Bruno Th"l!lrlimann

.,

10 INTRODUCTION

In two recent articles (l)~(2)* influence surfaces for

bending moments of continuous slabs have been presented. In

"reference (1) Hoeland developed solutions for a slab continuous

over rigid and flexible cross beams in the form of infinite

series. -;,,-::- However ~ as the influence functfons exhibit singular

behavior at the influence point proper (i.~. point for which

the influence functions are determined)~ such solutions are

divergent at this point and slowly convergent in its neighbor-

hood. For a discussion of the singularity and for exact num-

erical computations in the immediate vicinity,solutions in

finite form are required.

Such solutions have been presented in reference (2) for

the case of rigid cross beams. In this paper solutions in

finite form for cases of flexible cross beams are developed.

The singular behavior of the influence functions for the

support moments over the cross beams is discussed. Fina11y~

numerical solutions are presented in,graphical form.

Whereas in references (1) and (2) solutions have been

obtained by using the differential equation of a transversely

loaded plate~ the approach using the integral equation is pre-

sented in this paper. Apart from a different formulation of

* Refe~s to List of References.
-::--::-An error in the assumption' of the boundary conditions ex­

pressed by the equation for qy on page 127 of reference (1)
will be pointed out shortly~
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the problem this approach has the advantage of avoiding

boundary conditions along the cross beam. This,in. turn, shows

that the boundary condition for the shearing forces along. the

cross beam in reference (1), equation for qy' po 127, are in

error. Instead of using the expression for the boundary shear

Vx containing the contribution of the twisting moment, eo g.

1~' - (Q ~) - D[ tw + ( ) iw Jvx - x - a 1: - - aXJ 2-)1 axa~;l

the expression for the shearing force Qx ' e.g.

( iw iW)
Q.x: = -D 0 x3 + axot

should have been used. As the twisting moments Mxy are con­

tinuous over the support beam, they should not appear in the

boundary condition.

II. INFLUENCE SURFACE FOR DEFLECTION OF PLATE STRIP CONTINUOUS

OVER FLEXIBLE CROSS BEAM

An infinite plate strip with simply supported parallel

edges is considered (Fig.l)o At y=O the plate is continuous

over an elastic cross beam with a constant bending stiffness EI.

The coordinates of a point on the cross beam are taken as (z,O)

--z being the x-coordinate in order to distinguish this point

from a general point (x,y). The deflection w of the plate at a

given point (u,v), referred to as the influence point, due to ~

concentrated load P at point (x,y) can be expressed by the fol-

lowing integral equation:

(1)
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=3

The function G(u,v;x,y) is the Greenvs function for the deflection

of point (u,v) of an infinite plate strip with simply supported

edgeso It is given by the following. series:

where

( 2)

with the upper sign for ~Yo

and the· lower sign for ~Ye

The first term under the intergral sign in equation (1) ,EI JIw( Z3 ~~x ,y)

expresses the distributed reaction of the cross beam acting on the

plate o . When multiplied by Green's function'G(u,v;z,O) and inte=

grated over the length of the cross beam the integral constitutes

the influence of this beam on the deflection at point (U,V)e

To simplify the following derivations ,dimensionless co­

ordinates are introduced(2), viz:

(3 )

...JIiL = 'YI
/ 0.. I I

Assuming the deflection surface w in the form

the function ¢ is determined by substituting equation (4) into

equation (1):

¢ (rx, ~; F, ~ ) .= -



26401
2/1/57

-4

Since ¢ is a continuous function with respect to OG and (J ~ it

can be developed into eigen-functions associated with the Greenvs

function G as follows:

00

~.(OCI(i/L1) .=;z o..~(L1) CR(CX/~)
11= I

p.J 01.., (3) ::: C1+'" (J) e-.,p~ Yl-~

for positive values of ~ 0 Substituting into equation (5) and

replacing G by equation (2) gives:

( 6)

i

~ TEI!.lTa4W {t.o)[ 0..1. ~ t rl. 1
~ Q"(~~)P.J{)(J~) =- o..-i 0 ar4- 2.rrJD~ rn.t 'f1'M[OI./~;?'())d..> (7)

Mul tiplying both ~ides by sinnOL and integrating with respect to

(X. from 0 to 1f 1 the orthogonality relations simplify equation

(7) considerablyo Taking into account that

the following expression is obtained:

With the substitution

00 ~..... ~

=-2 [ W14a. ...(~.ry) ~ rn r -+ 2.~~ Wl ¢tH( ~,o; ~,YJ) J
"'::.1..

the function ~ can be determined o Again the orthogonality rela~

tions are usedo
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Introducing the parameter
() = 4dD
I irEI

_-,-Vl;,-._ (1+ VI h) e-M~~ VI ~
VI T P (

-5

The non-dimensional parameter p depends on the ratio of the
E h 3

bending stiffness of the plate, D= 12(1-V:a) to the bending stiff-

ness of the cross beam EI. SUbstituting the pertinent values into

equation (4) with P=l yields the influence ~unction for deflection:

00

2;~L[~( I "f n(~_~))e±nlf':")
1'1=1

j upper sign ry 6 ~

lower sign 'Yf ~ (3

The first term within the par~nthesis represents the influence

surface for the deflection of point (u,v) of a simply supported

plate strip without cross beam.. T4e second term expresses the

influence of this beam. If the cross beam is infinitely rigid,

viz. EI-oo and P--+" 0, the coefficient of the second term reduces

to:
lim
p-o

On the other hand, in the absence of a cross beam, EI- 0 and

p -00 such that

and the second term will disappear.

-------~---~-------------------------------------------------------
~~If iYl. <:0 the sign preceding "1 should be changed in equation (10)

and in the second series of equation (II).
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III. INFLUENCE SURFACES FOR BENDING MOMENTS:

The expressions for the influence functions of the bending

moments Mx and My are obtained by differentiating equation (11)

with respect to lX and. (3 as follows (see for example(3), p... 260):

~-influence surface:

_ 1r~D ( 7lw OlW )
'm x (Ol.,(3) --~ aat:1 +V a~1.

QO

= 2~l [f{ (1+)1) i=-(I-}l)l'I{~-~)Ie±"(~-~) (12)-;;-
1'\::.1

- ~~p (l+n~J [ (I+v) +( H)np \e-n(~+,)]~Y\OI~"~

(13) -;;­

- hlp (I+ Vl 1){ (1+1J)+('-V)l'lf} e-~(~;-~) J~\'l0/~1'\~

My-influence surface:

WI 'I (0/. A) = _ 1fo ( II ()W + alW )
(J , ("' a. 1 aell a~l

= -2~ 2 [+{ (I+V) f (I-Y)V\(~-1) \ e±~(~-1)
1'1=1

The influence function for the beam moment is proportional

to the curvature of the cross beam, hence:

Influence Surface for Moment of Cross Beam:

W\ b (0<., 0 ) =_ 1I
1EI 'lw (a., 0 )
Q.L aOl:l

. 00 ' ..

= 2a.:-
i
~{·_I __I_(~-oVl)le-I'I~~Y\Ol~I1.f

lflf LJ . VI VI +p I·, T
11~ I

(14) -;~

For the particular case of the influence functi~ns for the support

moments over the cross beam, i.e., ~ =0, the expressions for ~

and llly reduce to:

-----------------~~-----------------------~--------------------------
~;- If Itt -<: 0 the sign preceding "l should be changed in the second /

series of equations (12) and (13) and in-'equation (14) 0
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(15)

(16)

The series with the terms 2 ')I ~ and 2 ~ in the above equations for

mx and my respectively, are the expressions for the influence

fUnctions in case of a rigid cross beam.

If r ="0 the above equations reduce to:

VV\l)C ~ fX,O) = - ~~ 2 e-I\~ ~nOl ~ Ii\~
11= I

Equation (18) checks with a previously obtained result, equation

(12) of reference (2)e The value of m~ is ~ times the value of

m~ as the curvature along the cross beam disappears. Finally,

the expression for mb reduces to zero as the cross beam will

not deflect.

(18)

The other extreme case is obtain~d if the bending rigidity

of the-cross beam disappears, p = 00 , or

00 .

WI)C ( ol, 0 ) = .2~ L+[(I+v) + ( ,- v) n1Je-I'I ~~ V\ 0( A~n~
11= I

( 20)

WI~ (Ol,O) = 2.~:2 +r (I+v)-CI-V)l'l1 ] e-l'\1~y\'0l ~\I\.~
~=I .

(21)
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corresponding to already known results (see for example (2) ~

equation (6) ).

In general, it appears to be impossible. to sum the series

of equation (12) to (16) into finite expressions. However, at

least for the two specific values of p = 1/2 and p =1 such a

summation is possible. Fortunately they correspond to practical

values as will be shown presently. The details of the summation

and also the finite expressions for the general case, i.e.,

111x (tJ(,!) and illy (fX, (i ), are given in the Appendix.

Considering the support moments for point ( oL, 0) and the

specific value f =1, equation (14) to (16) take .. the fo~lowing

form:

Wi bi it, 0)= ;;:.2 r~ :.L ~~I (H~ J) e.~"...:-",-,,~ ... f
rl""l

(22)

(23)

The finite expressions for point (~, O) -- i.e., influence point

over the cross beam at half span --and the ratio r =1 are:

Case: rJ.. = 1-; @=0; f =1
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W1~( flo) = -8~ r(:+v) {1-(~-i)e1~5~ eo (c<"'~1+1l-~::..,r) - (!+(1-i)e.~(~~) .x

t d (CA~'-~~) -1.(i-,)e.~(,e1J2-~),'1~f+2.(~-,)e~c~f x (26)

(~( e~c~~r1- ra;;'( e;;!r)) ~- 2'~~~t'1C:4V4~_~E - CQ~?+~~ )]

mb(¥,o) = 2.~~ [( 1-(1-I)e~p.<.'..... ~) t? (Cd<>~~ -t-~~ ) -( r+c?-I)e1A-'~r) to(c~t.~-~,O

(27)

-- 2 (~-I) e~ (L1 2 - 1) 4.1.~ f t 2(1-/ ) e~ ~~ (t:o- ...-I( e~C~l~) -ta:.'(e~C;lr)) ]

Similarly~ expressions for the case of p =1/2 can be

derived~ leading finally to the following equations:

Cas e:: 0( = .:g: ; e=0; e =1/2
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In equation (15) and

my can be summed(2):

IV. DISCUSSION' OF THE SINGULARITY OF THE SUPPORT MOMENTS:

Wher.e;as ,i.tis impossible to express the influence functions

in finite form except for specific value-sof 9 ' a general dis­

cussion of the functional behavior in the! immediate vicinity of

the influence point (~ , 0) can be given.!

(16) the last term of the series for mx and

I
~ -~~. . "J (' ')-Gt e ~rlOi ~ I1f = T AMVPl ~ CoDA~-ClJ\J(oI-~) - ~~? -C4;)(Ol+t)

Considering points in the immediate neighborhood of (1 ,0) only, or

,

and neglecting higher order terms ,the above equations reduce to:

'2

mx
rv __I [ ))0

""":" ( 1+)1 ) J(P) ]
2l1" E2+ S~

gl. #

yyt~ I"'V
__I r - (/+v)JepJ]

.2Tr e+o~
(32)

WI b rv ~2Q J (p) .
r . ~ I I

J (P).' = L (n - n+p )
n= 1,3.1;'" r-~-

Introducing polar coordinates Q and r = ..; £1+ o. as shown in

(33)
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Fig. 2 it follows that

-11

The function J(r) can~be computed as follows:

J(fl =2, !-}- ~1p) = +-1 (+- ..~p)( 1- I-I)')
n=I.3.5-·· r1: J

00 00.., 00 ..

- _' [ ~ _I _ ---L.\ - ~ L::ll. ~ (-I) J
.,.. 2 L ( t'I .,: ~ fop J LJ VI +6 n+r

"=1' "~J Ma'

However, the theory of Gamma functions furnishes the ;following

relationships (for example,(4) p. 458):
00 00

ip~~rJ+ r =~ (~~K - p;K) =Z!+- ~lp )~+
. ~ (I ') r{f) I
.. ~ Iil- Vl+f = r(pJ + t + T

Making us:"~f the relations (for example, (5) p.28(~»:
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J CfJ =.J- [ rtf) +r..,. in[ i + -2
1 f rt.f!1) ct-fJ I J

2. f{f) (f Tll!f) r(-f) {

= {- [ -t(f J+ r- + L? 2 + {- (~ ( e:')-t {+J ~ ] .;~

~T/' _ Jifl JOO Of ( dOl
where I (p) - nf} ::= I> ( e - (J+d jP}Oi I

Since -t (f) satisfies the following two-relations:
IJItl-l1 . .

'f(t) + t = - f ca-t ~n7T t 2L 1Co:> ( 1~) 1.0-; ,o..~y: ) ~ - t~ (2 Yl)

_ . ~. I )I.. , ('It:2,J,4---- J.-/'2,---(n-I))
i" (P)·+ r::=~ -yt- (r: I, 2,3, ----)

1\ =-1

J(p} can be readily computedo Values are shown graphically in

Figo3.. It is a positive function which increases monotonically

from zero to infinity with increasing fo

The limit of IDxy myy mb, can now be discussedo For simplicity

the assumption )) =0 is made, such that:

~~ Wla(-t0ifi-e;f) =- 2~ r~",-~e- ](P)J
~-o

As only the limit of my depends upon the angle of incidence Q,

the discussion will be restricted to this case o Inspection of

(41)

(42)

)" =0 0 5772156649...!EulerVs Constant)·

Figo 3 and equation (41) shows that for J (F) > 1, no angle of

incidence- exists for which my will be zero o However for J(r}~ 1,

my becomes zero for specific values g = Qo. Five cases are con­

sidered:

-~--~-~----~-,----~-------~~-----------~-------------------------
-~~
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(I) P=0:

-13

J (f )=0

R'uJ I

WI J(f; 0 i f J 0) = - 1n- (~~ - o. 4J 88)

and solving the\ equation: sinlaQ-O. 4388=0

eo = 0.72.43 R.~J.

(III) P=1:

J(1)=0.69315

(IV) f =2:

(V) f> 2

J( 2)=1
VYl q({ 0; ~ , 0) = - .2~ ( .v.~ ~61- I )

() -..lL R~
0-.2

and since

J(p» I, no Qo exists

tl.-<. J tp) = 00r-1lO

::,:

R..:-. V\'\o (1; OJ ~J 0) = + 00
f-

This limiting case corresponds to an inf'inite strip with no

cross beam.

The results are plotted graphically in Fig.4 (a) to (e).

It can be seen that the angle of' incidence Go f'or the zero line

increases successively f'rom 0 to ~ corresponding to a change

in p f'rom zero to two. For values of' f > 2 no zero line passes

through the inf'luence point.
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Knowing the behavior of my at the influence point (.-f ~ 0)

and the tangents to the contour lines meeting at this point~ the

general shapes of the ffiy influence surfaces can be easily visual­

ized o Figo5 (a) to (e) illustrate the general appearance sche­

maticallyo Cases (a) and (e) are the known cases for an infinitely
I

rigid cross beam~ r =0 j) and no cross beamj) P = 00., respective1yo

Between the two cases a steady transition takes place o

Vo EXTENSION TO THE CASE OF MULTIPLE CROSS BEAMS:

The method of the integral equation used in Chapter 2 for

the case of a single cross beam can be extended to the case of a

plate strip supported by a series of cross beams as indicated in

Fig0 90 If in addition to the bending resistance, consideration is

given to the warping and the torsional resistance of the cross

be ams J the influence function for the deflection w of point ( d.. ~ ~ )

takes the following form:

where t;~ J t-i = dimensionless coordinates of i-th cross beam

Eli = bending stiffness of i-th cross beam

E~i = warping rigidity of i-th cross beam

GKT = torsional rigidity (St o VenantVs Torsion) of

i-th cross beam
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= Green Us function for defle ction of point ((j., ~ (3 )

(44)

due to concentrated transverse load at point ( f ~ 1 )
G2 (Ol. ~ ~; f ~1) = Green Vs function for deflection of point ((i... ~ (i )

due to a concentrated moment at point ( ~ ~ ~ )

acting about an axis parallel to the t ~axis.

The function Gl is identical with equation (2)~ or in non­

dimensional form:

Gr, (IX, p; f, 7) = 2.~~.2 ~J <p. (0/, ~ ; q )
"'~ I

with

G2 is the limiting case of the difference between PG1(OL~f;~"~+d- )

and PGl (Ol.~ f;f~') as P a approaches unity and 0". itself approaches

zero$ or:

\.
\

G:~ (cJ.) ~ ; f, ~) = ~L': [p G)·011 ~ ; f 11 Tb ) - f 0\ l0<1(3 j ~I~)J
. ~_. ~

::: _ (&-~)" _'_.eu,cf-'/J1V-:"-t\.0' "a...~Yl.B
27T"D L 'n ,-

~=I

(45)

The solution follows the pattern outlined in Chapter 2~ the only

difficulty being' the extent of arithmetical operatio~s.

VI. TWO-SPAN CONTINUOUS SLAB WITH FLEXIBLE CROSS BEAMS:

The slab as shown in Fig.? is simply supported along its

edges ~ =0 and r = 1T 0 The two end beams at 1 = + f ha;ve the

same constapt bending rigidity EI as the cross beam at 1 =0.

As an example the influence surface for the support moment My

at point ( Ol., 0) will be computed•. Referring to (2) the

my-function is taken in two parts:



my = myo + myl

where myo is the solution of the infinite plate strip with an

elastic cross beam at , =0 as given by equation (16) or (27)

and IDyl is a solution of the homogeneous plate equation~

WI. ~I =2(0.... ~~ n~ + b" c.",,~ ~ \ + Co. 'V\~ .u-;",kY\ ~ + d~ ,n 1~fJ<Jl"7)
~:I

-16

(46)

The sum (mYO+lTlyl) must fulfill all boundary conditiol1So Consider­

ing symmetry !'lith respect to ~ =0 these conditions are:

At ~ =0'::

( a)

However as

~'=o
dyt

~ =0 the condition becomes:
a~

(48)

(b)

Equation (50) expresses the condition that the "shearing force If-;i-

at +0 is equal to half the reaction of the cross beamo However

as IDyo fulfills this condition separately the equation reduces to:

~l-As my must fulfill the same boundary conditions as the deflection
w such terminology seems appropriate o
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At , =~c =,.. :
( c) =0

( d)

The first condition assumes the edge free of bending moments My

whereas the second condition postulates the identity between the

plate boundary shear and the loading of the cross beamo Intro­

ducing the expressions (16) and (47) for myo and my1 into the

boundary conditions (49), ,-51), (.52). and (53) furnishes a system

of equations for the determination of the constants an to dno

Explicit expressions for these const~ts in general form are

too complex. However, their actual computation for a given '.

example does not offer any particular difficulty.

Vllo NUMERICAL EXAMPLES:

The foregoing derivations were used for computation of

two examples:

(a) Plate Strip Continuous Over Flexible Cross Beam

Choosing the influence point (i ,0) and a' stiffness ratio

p = 4aD
1fEI =1,' equation (14)', (15) and (16) were used to compute

the influence surfaces for the beam moment mb and the bending

moments mx and myo Furthermore, the assumption of Poisson's

ratio v =0 makes the expressions for mb and Inx identical ex­

"cept for a constant mul tipliero The results are plotted in two
"

",graphs (9) and (1'0). It should be noted that the plotted values

correspond to 8 11" times the influence values for ~ and my and
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2 ~2/a times for mb• For cases other than v =0 1 the graphs (9)

and (10) are still applicable. Due to the fact that )}' does not

enter the boundary conditions,the influence surface can be

taken in the following form:

and similarly for IDx. However for other cases where ~ influences

the boundary conditions (e. g., free edges, elasti,cally supported

edges, etc.) such a procedure is not rigorously applicable and

its accuracy must be investigated from case to case.

A remark is indicated concerning the choice of f =1. A

cross section through the cross beam shown in Fig. 8 is considered.

The dimensions are given in terms of the 'span length a. The

interaction between the beam and the slab is usually t~ren into

,account by determining an effective width of the slab acting as a

flange of the beam (see eo go, (3) po' 119). However, for the

present qual~tative consideration lit is sufficiently accurate to

assume that the action of the slab forces the neutral axis of

the beam to coincide with the middle plane of the slab n-n.

Computing the moment o~ inertia I of the rectangular beam

a/10 x a/25 with respect to n-n the value of ~ is determined.,

~ =0.98. A more rigorous invest~gationwould lead to a neutral

axis slightly below n-n and hence to a smaller I and a somewhat

higher value of f. Neve~theless the example shows that the

case f =1 will correspond in practice to a rather flexible

cross beam, the usual cases being limited between 0 < p < 1.
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iEl Two-Span Continuou~ Slab With Flexible Cross Beams:
,

The plates were chosen as two square plates, 1-' = 7f

simply supported a.:t.ong the edges f' =0 and ~ = 7T (Fig.1l.

Taking the ratio r =l,equal bending stiffeness EI for all

three cross beams was assumed. Only the influence surface for
, 1fmy (~,O) was computed. It should be pointed out that ~he cal-

culations were done for Y =0. Using the method outlined in

Chapter 6 the computed constants ~ to dn of equation (47) for

the first and third term of the series are given in the foll.ow-

ing table:

al 5.151xlO":3 a3 7. 674xlO- lO '

bl 5.15lxlO-3 b3 2. 558xlO-10

cli 2.830xlO-3 c3 7.538xlO-1O

d' 5.151xlO-3 d3 7.674xlO-lO
1

In calculating themYl values"only the first term of the series

was considered.
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APPENDIX

(a) Summation Formulae:

For summation of' equations (12) to (14) use of' the f'ollow-

ing f'ormulae was made:

( A)

~ y'" \
£n~Y\X:=

~·I

~-I( (B)

2+ C~nx
n=I~.5····

I .
=4la

I -t 2 Y C-(f() X -+ r 1.

1-2.Y~x.+Yl.
(e)

~ y~ \
~ n ~VlX. =
~:I.J.5'--

2Y~X )
I - Y4.

( D)

00

L n t 1- Y Cavx_~_2.L( I_Y2.
-I) ( E)r C,dO n 1. =

I .... .2YCdO x."" y 2 - 2- I -2 Y CCf'l :x + Y~
":.1

00

l \1\ \ Y~'X
( F)Y ~Y\.x.. :-

l-l.YCO<>'X+ yl
tl =-1

2 1\ . y~ (I+Y'l.)Cd<>X.-2Y \
Y\ f Cd.:> 'Yl X :: (G)

(I -2YCdi:>l:+y2 Yn=1

f'orvalues of' Irl < 1. Equations (A),(B},(D) may be f'ound in
. .

ref'erence (6), p.190. The derivation of' equation (E) is given

in ref'erence (2), p.496, Appendix. Equations eCl, (F}, (G) were

. developed similarly.
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(b) Summation of Equations (12) to (14):

With the aiq of the formulae (A) to (G) the series of equa­

tions (12) to (14) for the spe cific value q =1 are summed o The

results are given without repeating the aritrunetical operations.

For q=1:

8rr WI )«(cx'~/·~/1) = (I +v) f Atn eooh(f-ryJ - C4J(0l+f) '+( I-v )(fi-7) ~h.(~-7) ( I'--a U1;)h(~-ry)-CAfO(a.-O Cq;)h(~-?)-e.tJO(ri-V

, ) {'k ( /
- c..cPt..(~-~)-CA1V(a.+-V +( 1+11) .'1 fLNV' (f±?) CAJVI..(~*7)-e.co(0I"~)-

__---'--I__) +(± n-I) e~±?[C(1O(~+f}f~$(C,.&7;(((3-:J:1 J-C<fQ(CHf))-
c--~(((3±~) -c.oo(Ol+f) I (j

Cdi:J(rX.-rJ ~J (e..tro h((d±7)-c(J<)(ot-n) -2( ld2':f~)~o<~r-

2~((X+-!)~( ~(O!+f) ) +:2 ~(a.-f) ta::..( ~(IX-O )) 1+
e{Jt:7 -C-<lD(Ot+t) e~x.? -Cdo>(()(-f) )

(l-V)~ !(t-=F 7)e~t1 [CO"i>(ottO 1.~{ C~~ (~ti )-C-~(rx.+o) - C-etO'Ol-~) )t

l(J{crr.J~(~±ry)-~(rx.-r))-2{ 02f~)~O!~f-2~(r.t.t~J)(

~( ~(rxtc) j +2~ux-{)~l ~((){-rJjJ ± /C40h((1t7) CUDlex-sJ-/
eP-J: ~-<g.J(0{+'f;J re~r.t.C4<J(d.-E;J _ ~ ((c<pi..{~!7) -Ctm(Ci-'f)) ~

- c-avh.(f±7)CdU(d.+fJ-/ L)+(/f )~((l±) ( I -
(ClPt..((3:t1) -~(o(tn) ~ ? C-Pl.((J±1)-e.CO(0l-f)

__..:....-1__)} (H)
C6:JJ.df ± 7) - CA/"O(OI+f)
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I

.

..

8rr Wld(cXIPj!.~) = (tH) i __ C4<J((e-1U-~((){+f) - (I-V)(f-1) ~~(rJ-?)(-,...-.-:..I_--
~-d Cd<>~ (~-~) - uolot-f) Cd<JL(~-7)-Cd'> (Ol-t)

I _, f I h Il (I 1)
- ~h.((J-1)-C.(fO((I,+f)) +c I+V)f:r: ~ ~ {,±7} Ctr.JU(l:1:~}~(O(-F) - Co;>h{~±?)-~O{+f)

+ (± ~-I)ef~? [ C/'O{ot+~} [d( C,~h (~±?)-Ctle(O(-O)-cc>(oI-f) JrJ(Cftl{(i±7)-c~(O/+r))

- 2(l-2.,.~)~()I~~ -2..~(OH-!) w(· A~(ot+f} )t2.~(Ol+f)('
d e~:t~ -cco(Ol+f)

ta..';'( p~(~-"V)J +(I-v) a {U1=)IJ ) e~±~ [ C-~(Ol+·tJ ~(~"((J±YJ) -CAO(oI.+f))e ~ -<.r<>(0l-f) r" ~ d '

-Cd'>(01-0 ~J(CdO( ((3r1) -C.rc)(Ol-fJ) -2{ l1 2r1) ~cx~~ - 2 ~(ot+O x

t~( ~Ol4-~)) -t 2 ~(ol-r) w(-. ~{ol-f} J]± YJ (C4<>t(p:J;?J cdJf-tJ-1 i

cft~:-e~(ot."'f) . e~J:7-uv(oI-O) '( 1(~~(f:J;1)-c.OQ{Ol·-F)t

_ clfOl..ta4)C6:l(OltfJ- 1 ) +(1 )~",t..(/it'tl)( I _ I "}
(c(pl(~±~J-c..P(ot+!)r ~1 r ( Cd<>~{~;/;7)-c4i>(0i-rJ C4UJ.(lz1)-C~(ot+f)/

( I)

."if: M" ( Ol, 0; F.?) = tb'1 CtfC'
h1- ClfO{ot. rf} +(±1-t)e±~ { C.~(ol-i-S) '~,1 (cr.JA ~ -C.d'>(OHfJ)

o Ctr.>h ~ - ~ (o(-[) (/

- CO;) (Ci -f) t(J ( CtJV~ 1- C.~(OI-f)) ~ 2 ( 1. d 2 "f 7)~ Ol~ { - 2. ::-(O!~e) ~

4...-i( ~.....to(+~)) T 2.~(ol.-i) .~( ~(Ol-f) ) 1 (K)
e :i:1-CqJ(ON$) e±~ -cco(ot.-f) r
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It may be pointed out that the above expre~sions hold anywhere on

the plate strip, Fig.l. The equations for the s~pport moments of

point (~,O) follow eithe+ by introducing ~ = ~, f =0 into the

above equation (H) to (K) or by summing equations (22) to (24),

expressed in series form, directly with the use of the forr®lae

(A) to (G). Both procedures will lead to equations (25) to (27L

For the case of p =1/2 summation is also possible. The

results for the support moments are given by equations (28) "to

(30). However, as indicated before, no summation for a general

value of p is possible.
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Figure 6
Plate Strip With

Multiple Cross Beams
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