Lehigh University Lehigh Preserve

Fritz Laboratory Reports

Civil and Environmental Engineering

1966

Computer program for ultimate strength of longitudinally stiffened panels (small b/t), May 1966

Bruce A. Bott

Jun Kondo

Alexis Ostapenko

Follow this and additional works at: http://preserve.lehigh.edu/engr-civil-environmental-fritz-lab-reports

Recommended Citation

Bott, Bruce A.; Kondo, Jun; and Ostapenko, Alexis, "Computer program for ultimate strength of longitudinally stiffened panels (small b/t), May 1966" (1966). *Fritz Laboratory Reports*. Paper 1664. http://preserve.lehigh.edu/engr-civil-environmental-fritz-lab-reports/1664

This Technical Report is brought to you for free and open access by the Civil and Environmental Engineering at Lehigh Preserve. It has been accepted for inclusion in Fritz Laboratory Reports by an authorized administrator of Lehigh Preserve. For more information, please contact preserve@lehigh.edu.

ERRATA

Page 1 - Pirst paragraph, last sentence Change; "lengths and panel"	to read "lengths a panel",
Page 2 - Second paragraph, second sente Change; "completed" to 'com Second paragraph, last sentenc 'Omit "now"	ence mpletely" ce
Page 3 - Program part no. 3 Change to read; Function & 2nd order parabolic equation Finding Zeros.	2 which finds the zero root of a on by using Newton's Method for
Page 5 - Part III, No. 2b Change; 'exceptable' to 'ac	ceptable"
Page 5 - Variable QIC Change; "interation" to "if	Seration"
Acknowledgements - Change 'Marily' to '	'Marilyn''
Page 3 - Program part no. 3 Change to read; Function VA using a parabolic equation.	L which computes a value
P. 9 of 13	
Previously read	Should read
C14 = x(17) + C12 * (C3 - CR * CS)	C14 = x(17) + C12 = (C3 - REL = CS) = CR
x(12) = x(11) - (C2 * (C13 - 0.5 * 0 * C2) + C3 * (C14 - 0.5 * C12 * C3))/REL	$ \begin{array}{r} x(12) = x(11) - C2 * (C13 + .5 * Q * C2) \\ - C3 * (C14/REL + .5 * C12 * C3) \end{array} $
P. 10 £ 13	
x (18) = C14 + C12 * CR * CS	x(18) = C14 + C12 * CR * REL * CS
P. 11 of 13	
AL(K) = AL(K - 2)5 * C1 * C1/C2	AL(K) = AL(K - 2) - 0,125 * C1 * C1/C2
	· · · · · · · · · · · · · · · · · · ·

BUILT-UP MEMBERS IN PLASTIC DESIGN

COMPUTER PROGRAM FOR

ULTIMATE STRENGTH OF

LONGITUDINALLY STIFFENED PANELS

(SMALL b/t)

by

Bruce A. Bott

Jun Kondo

Alexis Ostapenko

This work has been carried out as a part of an investigation sponsored by the Department of the Navy with funds furnished by the Bureau of Ships Contract, NObs-94092

Reproduction of this report in whole or in part is permitted for any purpose of the United States Government.

Fritz Engineering Laboratory Department of Civil Engineering Lehigh University Bethlehem, Pennsylvania

May, 1966

Fritz Engineering Laboratory Report No. 248.16

INTRODUCTION

One of the more common ship building elements are the longitudinally stiffened plates of Fig. 1(a).⁽¹⁾ Their frequent use in ships makes a thorough knowledge of their behavior important. Consequently, a computer program was developed for the analysis of such sections subjected to the combined transverse and axial loading shown in Fig. 1(b). The program described in this report is an improved Fortran II version of the program originally written in WIZ* by Jun Kondo. The program analyzes a stiffened plate panel and determines the maximum fixed and simply supported lengths and panel can have under a given loading.

The analysis is basically a two step process. The main program first develops a moment-curvature-thrust curve for the given section. Then the integration subroutine determines the maximum fixed and simply supported lengths allowable for a series of midpoint starting curvatures. Plotting these maximum lengths against the midpoint starting curvatures produces a curve which is concave downward. The peak on this curve is the maximum length the panel can have under the given loading.

In the course of this analysis, the effects of residual stresses and differing yield points in the stiffener and in the plate are considered. There are no limitations imposed on the relative proportions of the cross section other than the requirement

* A GE compiler used at Lehigh University

that the ratio of the stiffener spacing to the plate thickness (b/t) be sufficiently small (less than about 40) to prevent plate buckling.

In the integration procedure used in the program, the section is called upon to resist both positive and negative bending moments. However, it was found that, for hybrid sections (different yield points in plate and stiffeners) subjected to high values of axial load, the moment-curvature curve would shift under varying load until it was completed on one side of the curvature axis (only positive or only negative moments). Such a position indicates that under axial load alone, the section requires the application of some internal moment along its center line in order to maintain equilibrium. The integration cannot be performed for such cases and this is now printed out on the output.

In addition to this alteration, provision has also been made for some identifying run or data set number to be included on the output. This number which is part of the input data, appears on the various pages of the output and aids in correlating results with input data.

The text of this report deals primarily with the preparation of data for the program, technical information about the program and its operation, and an explanation of the output. The appendices include a program listing (the main program, integration subroutine, and two required functions) and a series of example runs. The arrangement of the explanatory text conforms to the standards of Ship Design, Division Instruction 10462 of the Bureau of Ships, U. S. Navy.

PART I - IDENTIFICATION

- 2. <u>Brief Description</u>: On the basis of a computed M-Ø-P curve for the section under analysis, the program makes successive computations of the fixed and simply supported panel lengths corresponding to a given loading for each of a series of mid-point curvatures. By comparing each new set of lengths with those obtained on the last try, the maximum length is determined.

The program consists of four parts:

- 1) The main program which provides the $M-\emptyset-P$ relationship for the section.
- Subroutine INTEG (integration) which determines the simply supported and fixed lengths corresponding to a given combination of axial and lateral load for some midpoint curvature.
- 3) Function BC which computes, by parabolic interpolation, the peak value between 3 pts. on a curve.
- 4) Function VAL which computes, by parabolic interpolation, the peak value between 3 points on a curve.

Input data is read directly from cards into the main program. Termination occurs when an END card is read. (The main program will iterate through successive sets of data and within each of these sets, subroutine INTEG will iterate the value of lateral loading).

- 3. a) <u>Author</u>: Jun Kondo, Bruce A. Bott, and Alexis Ostapenko, Lehigh University.
 - b) Date: May, 1966

- 4. Code: Fortran II
- 5. <u>Machine</u>: GE 225 (any other machine accepting Fortran II may be used).

6. Security Classification: Unclassified

7.	Estimated Running Time:	Punch input data	1.0 min
		Run time	<u>2.5</u> min
		Total	3.5 min

PART II - PURPOSE & METHOD

 <u>Description of Theory</u>: See "Ultimate Strength of Longitudinally Stiffened Plate Panels Subjected to Combined Axial and Lateral Loading", by Jun Kondo, Fritz Engineering Laboratory Report No. 248.13, Lehigh University, 1965.

2. Assumptions:

- No buckling as a result, the program is applicable only to sections with low b/t ratios.
- 2) The edges of the plate are assumed free.
- 3) The distribution of the residual stresses in the plate is assumed to be rectangular. The residual stress distribution in the stiffener flange is assumed to be triangular. The residual stresses in the web of the stiffener have small effect and are therefore neglected. (See Fig. 2).
- 3. References: See report listed in 1) above.

PART III - RESTRICTIONS

- 1. General Restrictions: None
- 2. Limitations For Use:
 - a) The condition of $G_{FC} = G_{FT} = 0$ (no residual stress in the stiffener flange) will not run. (It results in division by zero).
 - b) Ratios of $G_{ST} > 2.0$ do not produce exceptable results in all cases and the output should be closely examined.
- 3. Nonstandard Hardware & Tapes: None
- 4. Maximum Array Sizes: 6 Arrays are used: FI (200)
 - CM (200)
 - EPS (200)
 - AL (30)
 - χ (25)
 - B (14)

PART IV - NONSTANDARD MACHINE OPERATING INSTRUCTIONS

- 1. Special Operating Instructions: None
- 2. Restart Instructions: None
- 3. Error Correction: None

. .

PART V - DATA PREPARATION

1. Card Input Form:

Card	Format	Variable Name	Comment
, l	I 5	IRUN	Label for data set (i.eset #15)
2	7F10.4	AST	Nondimensional area of stiffener
		D	Nondimensional depth
		AFF	Nondimensional area of flange
		GRC	Nondimensional residual stress in plate
		GST	Ratio of yield stress in stiffener to yield stress in plate
		GFC	Nondimensional compressive resi- dual stress in stiffener flange
		GFT	Nondimensional tensile residual stress in stiffener flange
3	6F10.4	Р	Nondimensional axial load
,		QI	Nondimensional initial value of lateral load (for iteration in subroutine)
· .		QIC	Nondimensional increment of lateral load (for interation in subroutine)
		QMAX	Nondimensional maximum value of lateral load to be run
		DSI	Increment of panel length to be used in subroutine Integ
		FIC	Increment of curvature for sub- routine Integ

For additional data sets repeat the above sequence.

Last card - End (1st 3 columns) this terminates the run with an illegal character on a data card.

2. <u>s</u>	Sample Input:							Format Comment
	55							I5
	.3	10.0	.45	0.0	1.0	0.3	0.3	7F10.4
	.4	0.0	3.0	3.0	.18	.15		6F10.4

3. Output Form Description:

Page

Comment

- 1 & 2 Lists input data and run number for checking and later identification. Lists some computed member properties (identified on output). Lists 201 points on the M-Ø-P plot for the given panel.
- 3(&4)* Lists values of axial load P and lateral load Q.

Lists length, lateral midheight deflection, vertical movement of ends, fixed end moment, and end slope for a given midheight curvature. For each value of midheight curvature, this information is produced twice, once for the fixed condition and once for the pinned end condition.

As a peak of L is passed in each of the plots of PHC vs. L, (fixed end and pinned end) the peak value of L and the corresponding values of other quantities are computed and printed.

5 Summary of results for each combination of axial and lateral load.

4. Symbol List and Definitions:

А	Total area of section divided by area of plate
AF	Area of flange divided by area of plate
AFF	Area of stiffener flange divided by area of stiffener

* Depending on amount of output

AI	Moment of inertia of the section (Nondimensional)
AMPN	Negative plastic moment capacity of the section (Nondimensional)
AST	Stiffener cross sectional area divided by area of plate
AW	Area of web divided by area of plate
В	Matrix which stores the results obtained by the integ- ration subroutine for later printing in the summary of results
BC	Function which establishes equilibrium and compati- bility for each length increment
BRC	Total width of compressive residual stress zone in the plate divided by the total plate width
BRT	Width of tensile residual stress zone in plate divided by total plate width
CM	Moment array for the M - \emptyset - P Plot
CMO	Moment at point zero (see EPSO)
COSF	Cosine function
· D	Depth of stiffener divided by plate thickness
Dl	Total section depth divided by plate thickness
D3	Distance from elastic neutral axis to the extreme fiber in the stiffener flange divided by the plate thickness
DSI	Increment of length used in the integration subroutine
EPS	Strain in the extreme fiber of the plate
EPSO	In the original language used for this program, dimensi-
	oning an array for 200 locations reserved 201 machine
	locations (0-200 inclusive). In Fortran II, dimensioning
	for 200 locations reserves exactly 200 locations (1-200
	inclusive). Therefore in the Fortran II translation, it
	was necessary to create the variable EPSO to correspond
	to the location EPS(0) in the original version.
EY	Yield strain
FI	Curvature array for the M - \emptyset - P plot
FIC	Increment of curvature in the integration subroutine
FTO	Curvature at point zero (see EPSO)

GFC	Compressive residual stress in the stiffener flange
	$(\sigma_{\rm fc})$ divided by the yield stress of the plate $(\sigma_{\rm yp})^*$
GFT	Tensile residual stress in the stiffener flange ($_{\sigmaf^+}$)
	divided by the yield stress of the plate*
GRC	Compressive residual stress in the plate ($_{\sigma_{ m rc}}$) divided
	by the yield stress of the plate*
GST	Yield point in the stiffener divided by the yield
	point in the plate
Н	Resultant force acting on the cross section in the
	z-direction
I	Counter
IRUN	Run number or data set number
ISW	Switching parameter
ISWA	Switching parameter
ISWB	Switching parameter
ISWC	Switching parameter
ISWD	Switching parameter
JA	Counter
JB	Counter
К	Counter
N	Counter
P	Nondimensional axial load as a fraction of the yield
	axial load $(P/P_y)^{**}$, where $P_y = (yield point of plate)$
	x (total panel area)
PHC	Curvature at the midheight of the section
Q	Lateral load (Nondimensional) (Q=(q)(E)(b)(d)/(yield
	point of plate) ² (total area) where:
	q = Hydrostatic pressure on section
	E = Modulus of elasticity
	b = Stiffener spacing
	d = Distancé from elastic neutral axis to extreme
	fiber in stiffener flange)

<sup>See Fig. 2
** Note that this quantity can reach a value greater than 1.0 for</sup> some sections. .

QI	Initial lateral load value to be run
QIC	Increment of lateral load in the integration sub- routine
QMAX	Maximum lateral load value to be run
S	Section modulus (Nondimensional)
SINF	Sine Function
SQRTF	Square root function
VAL	Function for parabolic interpolation of curve peaks
W	Thickness of the stiffener web divided by the plate thickness

The following variables and arrays are intermediate and have no general definition:

AL*	Cll	F
Cl	C12	Χ*
C2	C13	
C3	C14	

* Array

С	MAIN PROGRAM PAGE PROGRAM LISTING
. C C	THIS IS THE REGINNING OF THE MAIN PROGRAM WHICH CONPUTES THE PAGE OF 3
C	ALL CUANTITIES ARE PLACED IN COMMON SO THAT THEY HILL BE AVAILABLE
c	TO THE SUBRUCTINE AND THE FUNCTIONS HILD ARE REQUIRED.
c	1P, REL, ISWA, ISWB, ISWD, ISWD, ISW, AL, DBI, CM, CMO, AMLI, JB, 2017 C2, C3, REY, C11, C12, C13, C14, EY, CR, Ampny C5, CA, CB, K/ 3FIC, LP/ QMAX, QIC, IRUN
0 0 0 0 0	200 FOINTS WILL HE COMPUTED ON THE M - PHI - P CURVE HENCE, 200 LCCATION <u>s are dimensioned for moment (cm), curvature</u> (FI), and strain in the outer firer of the plate (eps).
c	DIMENSIUN CM(200), FI(200), EPS(200), AL(30), X(25)
	READ IN THE MATA SET NUMBER AND PRINT IT ON THE TOP OF THE FIRST PAGE OF CUTPLT.
	1 READ 33, IRUN 33 FORMAT (15) PRINT 2004 IRUN 200 FORMAT (9H1DATA SET, 15)
а с с с	REAU THE NECESSARY INPUT DATA AND PRINT IT OUT ON THE OUTPUT SHEET So that input can be correlated with results.
	PRINT 201 201 FOFMAT (11HUIN ^P UT DATA//) READ 20,AST,U.AFF,GRC.GST.GFC.GFI.P. <u>QI.DIC.GMAX.DS1.FIC</u> 20 FURMAT (7F10.4) PRINT 31 31 FORMAT (1HD. XX. 3HAST. 7X. 1HD. /X. 3HAFF. 4X. 3HORC. 6X.
	1 3FGST, 6X, 3HGC, 6X, 3HGFT, 7X, 1HP, 7X, 2HQ1, 6X, 3HQ1C, 5X, 2 4HQMAX, 6X, 3HDST, 6X, 3HFTC, //] FRINT 30, AST, D, AFF, GRC, GST, GFC, GET, P, Q1, Q1C, GMAX, DST,
с	1 FIL 30 FOFMAT L 13F9.51
c c	COMPLIE SECTION PROPERTIES.
	EY = 1.3344595E-3 REY = 3.6530254E-2 D1 = D + 1. BRT = GRC / (1. + GRC)
	AF = AFF + AST

2 of 13

.

C6 = EL / D3 ----C7 = EL / 11 AI = A + EL + D3 + .5 + (D + 1./3. + AH + D + 1. + D/3.1) S = AI / EIRR = SORTE (AT Z A 1 REL = PH / EL CR = D3 / AR C1 = A + FC2 = .5 +1 1. + GST + AST + C11 C3 = C1 + EL AMPN =1.5+1GST+AW+R+D21-2.+C2+(D1=.5+C21+C31/S PRINT OUT THESE SECTION PROPERTIES IN A TABLE. PRINT 32 32 FORMAT LIGHOSECTION PROPERTIES 1 PRINT 166 166 FOFMAT [1H0,8x,3HAST,13x,1H0,13x,3HAFF,12x,3HQRC,13x,2HRH,13x,2HFL 1 . 12x, 4HAMPN, 13x, 1HP, //] PRINT 107. AST. D. AFF. GHC.RR. EL. AMPN, P 167 FORMAT 1 8F15.71 FOR ANY HYBRID SECTION, HIGH AXIAL LOADS WILL CAUSE THE MOMENT -CURVATURE LURVE TO LIE ALL ON ONE SIDE OF THE CURVATURE AXIS. HENCE, THE FULLGWING CHECK IS NECESSARY. SEE IF THERE IS A NEGATIVE LEG ON THE MOMENT - CURVATURE CURVE. IF NOT, OU ON TO THE NEXT SET OF DATA. IF L APPN 1 34, 35, 35 35 PRINT 36 SE FORMAT & SHEJAXIAL LOAD TOC HIGH ISECTION CANNOT MAINTAIN EQUILIER 110111 GO TO 1 SET OF THE HEADINGS FOR THE OUTPUT OF THE MOHENT . CURVATURE . STRAIN RELATIONS. 34 PRINT 168 167 FORMAT (140, 7%, 14N, 9%, SHFT[N], 11%, SHCM[N], 11%, 6HEPS[N], 1 10x, 1HN, 9X, 5HFT[N], 11X, 5HCHIN], 11X, 6HEPS[N], ///] COMPLIE THE FEQUIRED 200 POINTS ON THE CURVE. X[1] = -BAT

X[2] = HRT X[3] = HRT X[4] = HRC X[4] = HRC X[4] = H X[4] = H AL[17] = C1 AL[19] = C1 AL[10] = C AL[21] = C

. C

C C

Ċ

0000

C C C C

С

С

C

C C

С

C C

C

PAGE 3 3 OF 13 AL[22] = 0.······· CA = AF / IGFC + GFTI FI1901 = P + GST + GFT C1 = L1. + GRC - P 1 + C6 C2 = [1. - GRC - GST + GFC] + C7 IFT FI1901 - C11 2, 100, 100 100 FI(90) = Ct2 IFI FI(90) - C23 101, 101, 3 101 FI(90) = .01 3 AL(30) = -P C6 C1 = P - GST + GFCIFE AL1301 - C11 102, 102, 4 102 AL(30] = C1 -----4 IF! AL(30) - C2) 5, 103, 103 103 AL(30) = -.01 ------. 5 N = 91 ISW = 16. 15kC = 6 DEP = =.005 JA = 10 GO TO 24 - 6 N ≖ 90 ISWC = 7 AL[30] = Fi[90]DEP = .005 GO TO 24 7 X[25] = .02 ٠ ISH = 14ISWA = 16 ··· ·- · · · ISWB = 18ISWC = 8 - ISWD = 9 1 = 3 a constraint and an an annual a second of the P N = N = 1 IF(N) 21, 104, 104 -----104 AMLT = [AL126] - AL[25]]/[AL[29] - AL[28]] 9 AL[30] = A|[29] + x[25] GO TO 10 21 N = 91. ISHA = 16 ISK8: = 18 IS+C = 22 ISKD = 23 _____ X(25) = .02 AL[29] = F1[91] AL1281 = F1(901 DEP = 0.005 AL1261 = CM(911 AL1251 # CM(901 the second se AL(23) = EPS(91)22 N = N + 1 IFIN - 2001 105, 105, 27 105 AMLT = [AL[26] - AL[25]]/[AL[28] - AL[291] 23 AL(30) = AL(29) - x(25)GO TO 10

· · · · · · ·

· · · · · ·

С

		PAGE
.		
	ALI231 -= P + ALI3017 00	
106	IFL ALIJUIT 201 100, 20 ATTACT = .001	
125	F = AL(30) / EL	
	$C^{\mu} = C_{h} + F$	
	CH = P + F + DS	
	CU 107 K = 1, 8	
107	AL/K1 = 0.	
	X(7) = -65	
	X(A) = US	
	X()) = -24 X(10) = -F+2.	
	x(11) = Gir = 1.	
	X(12) = X(11) - F	
	DU 108 K = 17, 20	
10e	X[K] = X[K+A] + 2	
	x[13] = -F-GST	
	x[34] = x[35] - F = 0	
	X(13) = X(14) + GFC X(16) = X(14) + GFT	
	CO 109 K # 21. 24	
109	X[K] = X[K-8] + 2. * GSF	
	DO 12 * = 1, 8	
	IFT AL[23] + X[K+8]1 11, 111, 111	
111	AL(K) = X(K)	
	AL[K+5] = X[K+H] CO TO 12	
11	IFT 41/231 A VIKA4413 112, 112, 12	
112		
	AL(N+8) = x[(+16)]	
12	CONTINUE	
	AL[15]=AL[15] - GFC	
	AL(16] = AL(16) + GFT	
	CI = U. Γ2 = Δ + F	
	C11 = AL(7) + GFC	
	C12 = AL[81 + GFT	
	C13 = C11 - C12	
	C2 = C2 + C13	
	C3 = C3 + 2.*(C11*AL(15) * C12* AL(16))*(C11*GFC+C12* GFT)	
	UU 110 K = 19 79 2 C14 = Alida - Alidaat	
	C14 = PC(K) + AC(K+A)	
	C15 = AL[4+1] + AL[K+9]	
	C12 = C14 + C15	
	C13 = C14 + 4L[K+8] + C15 + AL[K+9]	
	C1 = C1 + C11	
110		
110	15 - 62 + 61 + 631 26. 113.	
113	C2 = 2, + C2	
	AL (24) = 80(01, 02, 03, AL (23))	

C

.

,

IF(ABSF[1.-AL[24]/AL[23]] + .000001] 13, 114, 114 114 JA = JA = 1

4 of 13

			······································		P • _
-	IFI JA 1 13. 115. 115				<u>50F13</u>
	115 AL(23) = AL(24)			• •	
ł	26 ALT23] = ALT23] + DEP		· · · · · · · · · · · · · · · · · · ·		
1	GO TO 10	·			······
	13 AL(27) = 0.				
,	JB = K + 1				
	C3 = 0.				
	$\begin{array}{cccccccccccccccccccccccccccccccccccc$				
	C2 = AL[JB] + C1 + C	[AL[J8+16]	- C1 / (3. + F))		
	C3 = C3 + C2				
	117 JB = JP = <u>1</u> 116 Alig71 = Alig71 - C3				
!	JA = 10	······			
; C					• • • • • •
C	THE NEXT STATEMENT IS SENSITI	VE TO AXIAL E Division 1	LOAD (SECTION MODULUS S By 7580 For High Values of		
Ċ	AXIAL LOAD P.		TTERU FOR ALBA INCUES OF		·····
. C					
	AL(27) = AL(30) +(A+EL+	[AL[24]+CB]	•.5+AL [27]/F1/S		
	GO TO 118		· · · · · · · · · · · · · · · · · · ·		
	14 C1 # ABSFILALIZAJ#AMLT.	+ X1251 1 /	AL[27] = 1.]		
	IF (C1001) 15, 130	, 130			
•	ISU 1 # 1 # 1 IFUI 16, 16, 131				
	131 LH = ISWA				
	60 TO 518				
		1921 10		· · · · · ·	
	IF(11 16, 16, 133				
	133 LA = ISWR				
	GO TO 118 16 IETNI (37, 138, 137			·	
	138 FIC # AL(30)			······································	-
	CHC = AL[27]				
	EPSD # AL1241 GD TD 436	•	· ·		
	137 FILN] # AL(30)				
	CHIN] = AL(27)				
	EPS[N] = AL[24]			· · · · · · · · · · · · · · · · · · ·	
	DO 134 K = 23, 29				
	134 AL[K] = AL[K+1]				
÷	LB = ISWC				
	GO TO 118 17 via61 = 02				
	ISWA = 16				• • •
	ISW8 = 18				
	GO TO 135				•
	10 X[23] # .+ 1044 # 17	•			

• •

* *

.

•

6 0E 13

GO TO 135 $19 \times (25) = .5$ ISW8 = 16 ISHA = 18 -135 LB = 18WD GO TO 118 PRINT OUT THE COMPUTED POINTS AFTER CHECKING TO SEE IF THERE IS A POSITIVE BRANCH ON THE MEMENT - CURVATURE CURVE, I THIS CHECK IS SIMILAR TO THAT PERFORMED AFTER THE PHINT OUT OF SECTION PROPERT-IES ABOVE.] 27 N = D IF [CH0] 37, 37, 139 37 PRINT 36 60 TO 1 139 PRINT 169. N. FIO, CMO, EFSO 169 FORMAT [217X, 13, 3F16,71] CO 142 N = 1, 100 NN = N + 100 PRINT 169, N. FILNI, CMINI, EPSINI, NN, FILNNI, CMINNI, EPSINNI 142 CONTINUE ONCE THE 200 POINTS HAVE BEEN COMPUTED, GU TO THE INTEGRATION STEP CALL INTEG UPON RETURN FROM THE INTEGRATION STEP, GO FACK AND SEE IF THERE IS ANOTHER SET OF LATA. GO TD 1 THE NEXT SERIES OF STATEMENTS IS A ROUTINE TO DETERMINE WHERE THE PROGRAM SHOULD EPANCH TO NEXT. GIVEN THE VALUE OF THE SWITCHING PARAMETER ISH, ISHA, ISWE, ISHC, ISHD, THE ROUTINE PICKS THE STATEMENT NUMBER TO GO TO NEXT. 11P IF(LB-10) 119, 98, 120 119 L8 # LF - 5 GO TO 1 6, 7, 8, 9 1, LE 120 IFIL8-201 121, 98, 122 121 L8 = LE - 13 GO TO 114. 98. 16. 17. 18. 19]. 15 122 LU = LF - 21 GO TO 1225 2315 LB SHOULD AN INTEX IN SOME OF STATEMENT GET OUT OF BOUNDS, THIS STATEMENT WILL BE CALLED AND THE PROGRAM WILL TERMINATE. 9P PRINT 47 97 FORMAT (4601CB) 99 CALL EALT ENT

C

C

Ĉ

Č

¢

ċ

C C

С

С

C C

С

C C

C C C

С

C C C

Ċ

ŧ.

		······································			717
SUPROUTINE INTEG			••••••••••••••••••••••••••••••••••••••		/ OF 13
SUBROUTINE INTEG IS A PRO	GRAM WHICH WHEN	GIVEN THE MOMENT -			
CURVATURE RELATION FOR A	SECTION, WILL DE	TERMINE THE MAXIMUM			
FIXED AND PINNED LENGTH T	HAT THE SECTION	CAN SUSTAIN UNDER A GIVEN	ļ		
LATERAL AND ANTAL LUAD.					
		MMON ON THEY HILL BE			
AVAILARIE FROM THE MAIN P	ROBRAM.	HIGH SO THET WILL BE		· · · · · · · · ·	
		,			
COMMON I, N, EPS, 8	RT, X, BRC, FI,	C7, GST, FPSO, F10, Q1, F	JÅ,		
1P, REL, ISWA, ISWB,	ISHC, ISHD, ISH	ALA DELA CMA CHOA AMLIA	<u></u>		
JFIC, LH, GMAX, QIC,	IRUN				
DIMENSION CHI2001,	F1(200), EPS(200	J. AL(30], X(25), B(14)			
MOMENT - CHRVATLES CUEVE	ARE CHECKED FOR	A POSSIBLE STARTING			
CURVATURE. IF NO TRANSVE	RSE LOAD IS ACTI	NG ON THE SECTION, THIS			
WILL USUALLY BE CHOSEN AT	THE ORIGIN. L	POINT 981			
N = 00					
102 IF (EPSIN)-1.1 90.	100, 100				
100 IF (EPSIN)+RRT-XI1	1+BRC-,991 50, 5	0, 91			
50 IF (FPR(N)-FI(N)/C7	+GST] 51, 101, 1	01			
4 IF (EPSO+BRT-X[11]+	ARC991 3, 3, 5	······································			
3 IF LEPSO-Ft0/C7+GST	3 5, 101, 101				
BOOM CTATEMENTS & AND EA	SCION TT CAN BE	REEN THAT RAME CURVATURE			
0.4 LESS THAN THAT DETERM	INED ABOVE IS US	ED AS A STARTING POINT			
TO INSURE THAT THE PEAK C	F THE CURVE WILL	BE PASSED THROUGH,		.	
101 N = N - 1					
IF (N) 1, 2, 102	· · · ·				
TE NO SUTTABLE FOINT CAN	RE FOUND. OD ON	TO THE NEXT DATA SET.			
					•
1 RETURN	-	· · · · · · · · · · · · · · · · · · ·		-	
51 G = FI(N) = .4		······			
tr tad two tal≩					
THE NEXT STATEMENTS ARE T	HE ONES WHICH CH	ODSE THE CURVATURE AT THE			
ORIGIN AS A STARTING POIN	T IF LATERAL LOA	D IS ZERO.			
TE [0] 60, 103, 60					
103 F + F1/90)4				· · · · · · · · · · · · · · · · · · ·	
GO TO 61					
67 F # G					

۵

*

,

. . SET UP THE TITLES FOR THE INTEGRATION AND LIST THE VALUE OF THE LOADS AT THE THE THE SHEET. IF JXA OR JXH ARE 1, THIS INDICATES THAT CONVERGENCE HAS NOT BEEN OBTAINED YET FOR EITHEP THE FIXED OR PINNED END CASE FOR THE PRESENT VALUE OF Q. WHEN CONVERGENCE IS OBTAINED. THEY WILL BE SET TO ZERO AND THIS WILL CAUSE THE RESULTS TO BE PRINTED ON THE

PRINT 409 409 FORMAT [1H1 1 PRINT 104, P , Q . 104 FORMAT E 17HOADIAL LOAD (P1 =, F7.4, 4%, 18HEATERAL LOAD (0) =, 1 F7.4 1 ~ Q = O+PEL . JXA = 5JXP = 1 PRINT 105 105 FORMAT L 1HO, 7X, CHCURVATURE, By, SHLENGTH, GX, THLATERAL, 9X, 1 BEVERTICAL, 9%, 6F END , 11%, 3HEND , 11%, 1HH3

PRINT 10 10 FORMAT LILY, PHAT, 26%, 10HOFFLECTION, 7%, ANNOVEMENT, 9%, 6HMOMEN JT. 10X. SHSLOPE 1

PRINT 11 11 FORMAT L BY, 9HHIDHEIGHT, PIX, ISHAT MIDHEIGHT 1

ISPA = 1 . . . 1568 # 76 $IS \models C = 1$ - DO 106 K = 1, 30

104 AL(K) = n. 62 154 = 1

ISND # 1 X1171 # P X[19] = DST

C

C

С

С

C

Č

C

C

SUMMARY SHEET.

DST = FSI

DO 107 K = 1, 16 107 X[F] = 0.

SN = 0. CS = 1.

N = 200

10P N = N - 1

300 IF [N] 76, 200, 109 109 IF (FIIN) - PHC) 108, 110, 110

200 IF (FIO- FHC1 108, 201, 201

201 AMIT = [FIN-PHC]//FIN-FI[1]] X[11] # CMO-AMUT+(CHO-CH[1]) GO TO 202

110 AMLT # [FIIN] - PHOJ/(FIIN)+FIIN+1)1 X[11] = CH(N] -AHLT+[CH(N]+CH(N+1]]

202 IF [X[11]] 111, 111, 63

111 PHC = PHC + .1 GO TO 300

63 IF (N1 203; 204, 203

204 X[21] = EFS0-AMLT+(EPS0-EPS(1))

GO TO 205

203 X(21) = EFS(N)+AMLT+(EPS(N)+PPS(N+1))

PAGE 2

0= 13

.....

PAGE 3 - -- ------. 9 OF 13 205 x(23) # Phc J8 = 5ñ 131 JB = JP - 1 IF (JB1 112, 90, 90 112 AL/2] = 1. GO TO 95 90 I = 1 X[20] = DST x(25) = X(23) 113 C1 # [¥[23]/3. +X[25]/6.]*REL*X[20] C2 = [CS-SN+C1+REY1+X(20) C3 = [SN/REY+C5+C11+X120] C11 = PEY+CR C13 = Y[151 + 0 + 102 + 014 + SN1 C12 # " + FY -C14 = Y(171 + C12 + 1C3 - CR + CS1 x(12)=*(111-[C2+[C13-.5+0+C21+C3+[C14-.5+C12+C3]]/REL 115 N = N + 1IF IN) 64, 206, 114 206 IF ICHO-X[12]] 115, 116, 116 114 IF [CMIN] - X[121] 115, 116, 116 116 [F [X[12] - CM[N+1]] 117, 66, 66 117 N = N + 1IF [N+2001 116, 118, 118 114 C1 = X/12) - AMPN IF (C11 119, 119, 120 124 GO TO 165, 671, ISWD 119 C1 = X/111 - AMPN x(20) = .5+x(20)+Ci/(x(11)+x(12)) GO TO 43 64 C1 = CMU - X(11) N = 1 x(20) = .2 + x(20) + C1/(x(12)-x(11)) GO TO 43 65 x(20) = .1+x(20) 43 I = I + 1 IF [] = 151 113, 113, 49 64 IF [N] 207, 208, 207 208 AMLT = [CM0-X[121]/[CM0+CM[11] X(24) = FIO-AMLT+(FTO+FI(1)) X(22) = FFS0-AMLT+IFPS0+FPS(1)) GO TO 48 207 AMIT = [CMIN] - X[12]]/[CMIN]-CMIN+1]] X[24] = FIIN1-AMIT+(FIIN)-FIIN+11] X1221 - FFSIN1 -AMIT + (EPSIN) - EPSIN+111 GO TO 68 67 C4 = [CM(2n0) - AMPN]/C1X[24] = [C4 + 1.1+FT[200]+SORTFLABSF[F1[200]-+[F1[200]-F1[199]]+C5 1]] C5 # C4+C1//CM[1991-CM[2001] x(22) = (C4+1,)+EPS(200)-SORTF(ABSF(EPS(200)+(EPS(200)-EPS(199))+ 105)) 68 [F [ABSF[1,-x[25]/x[24]]-,00001] 69, 121, 121 121 I = 1 + 11F/1-151 102, 122, 69

.

. . .

*

PAGE 4 • · · · · · · · · · and an and a second 122 X[25] = X[24] 10 0= 13 GO TO 113 69 C1 = X1231 + X1241 X[14] = X[13] + .5+REY+REL+61+X[20] SN = SINF(x[14]) ··· . . . ··· CS . COSFIX(14)) · · · · · X[16] = C13-C0-C11+SN X[18] = C14-C12+CR+CS Y[0] = X181 - C7 x[9] = x[8] + C3· · · · · X161 # X151 + 2. + 02 X(3) = X(2) + 4.+X1201/(2.+FV+1X121)+X1221+C1+R#L+CR11 C5 * X(24) • X(23) CA * X(19) GO TO 170, 711, 18W 70 IF (x(12)) 123, 71, 71 128 C1 = [¥[12]-X[1]]+X[19] C2 = [x[10]-x[11]]+x[20] C4 • [¥[19]+¥[20]]+X[19]+X[20] C3 = [C1 + C2]/C4 C4 = [C1 + X19]-C2+X120]]/C4 and the second C1 = BC1C3; C4, xtii), 0,1 AL(29) = X1131 +1X1231+.5+C3+C5/X(201)+REY+REL+C1 AL1231 = 0. ISV = 2 15WD = 2 DST = .2+DST K = 5 DO 124 1 = 1, 7, 3 ALTKI = VALTXIII, XTI+II, XTT+PI, C11 124 K = K + 6 71 JF [X(14)] 125, 72, 72 125 C1 # +5+C5+REY+REL/X(20) C2 # X1231+REY+RFL C3 = -X[20]+[C5+X[23]/C5] C1 = BC(C1, C2, X(13), C3) AL1303 = 0. K = 6 DO 126 I = 1, 10, 3 ALIKI = VALIXITI, XIT+TI, XIT+21, C11 124 K = K + 6 95 K = 30 128 PRINT 127, PHC. ALIK-24], ALIK-18], ALIK-121, ALIK-6], ALIK) 127 FORMAT LIFA, 7FTA.AT K = K = 1 IF IK - 281 129, 129, 128 129 GO TO 173, 751, 1544 72 DO 130 I = 1, 23 $13^{n} \times (1) = \times (1+1)$ 1 = 1 GO TO 131 73 IFTAL (4) - AL (41) 133, 132, 132 132 GO TO 175, 771, 154C 133 ISWA # 2 KzA

.

```
PAGE 5
```

1548 # JSKP - 1 74 C1 = A[[K+4] - A[[K]]C2 = AL [K] - 2.+AL [K-2]+AL [K-4] C3 = +F + F1C + C1/C2 CA = FTCCB = CAALIK] # ALIK-2]-.5+01+01/02 K = K + 6 134 ALIKI = VALIALIK-41, AL[K-2], ALIK], C3] K = K + 6IF [K-31] 134, 135, 135 135 AAA = PHC - FIC + C3 PRINT CUT WHETHER THE PINNED END CASE OR THE FIXED END CASE HAS REEN FOUND. FACCORDING TO WHETHER THE END MOMENT IS ZERO OR NOT. IF [AL[K-6]] 13, 12, 13 12 PRINT 14 14 FORMAT [19HOFIXED END CASE] 8 = XL

• .

```
GU TO +5

17 PRINT 16

14 FORMAT [ 14HOPINNED END CASE ]

JX = 1

JXF = 0

15 PRINT 127, AAA

R[JX] = AAA

AAA = F + Q+EY+TAL[K=18]+TCOSF[AL[K=6]]=1.]+CR]

B[JX + 1] = AL[K=30]

B[JX+2] = AL[K=24]

B[JX+3] = AL[K=72]

B[JX+4] = AL[K=12]

B[JX+4] = AL[K=6]

B[JX+6] = AAA
```

PRINT OUT THE REQUIRED INFORMATION.

C

С

C C

с С

С

.

```
PRINT 136, ALIK-301, ALIK-241, ALIK-181, ALIK-121, ALIK-61, AAA
136 FORMAT [160, 16x, 6F16.8]
          IFIISWP-651 137, 137, 138
137 LB = ISWA - 59
           GO TO 160, 61, 62, 63, 64, 653, 18
138 IF LISWE - 701 139, 139, 140
139 LB = 15WP - 65
          GO TO 166, 67, 68, 69, 701, LB
140 IB = ISWB - 70
          GO TO 171, 72, 73, 74, 75, 761, 18
  75 IF (AL15) - AL(31) 141, 77, 77
                                                                                                                 141 K = 5
         ISHB = ISHA + 1
       . ISWC = 2
          GO TO 74
  74 0 = 0/#EL
           PRINT 408. TRUN
                                                                       a service a service and a service and a service and a service and a service a s
```

11 OF 13

404 FORMAT I SHIDATA SET, 1X, 15 1 PRINT 104, P. 0 PRINT 400 400 FORMAT L 19HOSUMMARY OF RESULTS 1 PRINT 105 PRINT 10 PRINT 11 PRINT 16 IF IJXR 1 402, 401, 402 401 PRINT 127, TREJAL, JX = 1, 71 GO TO 405 402 PRINT 406 406 FORMAT L 15HOND CONVERGENCE 1 405 PRINT 14 IF [JXA] 404, 403, 484 403 PRINT 127. (BLJX1, JX = 8, 34) GO TO 407 404 PRINT 406 INCREMENT THE VALUE OF O AND CHECK TO SEE IF THE MAXIMUM VALUE HAS BEEN REACHED. IF IT HAS BEEN EXCEEDED, RETURN TO THE MAIN PROGRAM ATHERWISE, RUN THE NEXT CASE. 407 C = Q ¥ Q1C IF 10 - 0PAX1 60, 60, 142

```
IF [0 + OFAX] 60, 40, 14

142 RETURN

77 JA = JA - 1

PHC = PHC + FTC

DO 143 K = 1, 27, 2

ALTKJ = ALTK + 21

143 ALTK+15 = ALTK+31

GO TO 62

ENT OF PRCGRAM
```

PAGE 6

12 OF 13

1

FUNCTION BC

FUNCTION BOIDD1, BC2, BC3, BC4) C3 = 8C3 C4 = 8C4 KK = 15

END

.

8. J. S.

٠

FUNCTION VA

FUNCTION VALUA, R. C. DI COMMON I. N. EPS, PRT. X. BRC. FI. C7. GST. FPSO. FIO. OI. F. JA. 1R. REL. ISMA. ISWB. TSWC. ISWD. ISW. AL. DSI. CH. CMO. AMLT. JB. 2C1. C2. C3. REY. C11. C12. C13. C14. EY. CR. AMPN. C5. CA. CB. K. 3FIC. LH. UMAX. QIC DIMENSION CM(2001. F112001. EPS(2001. AL(301. X(25) AA = 1C-B1+CA BH = CA+CE+(CA+CH) CC = (A+H)+CH DU = IAA+(C1/ABH CC = [AA+CA-CC+CB]/BH VAL = PD+C+C + CC+C + B RETURN ENC

13 OF 13

SET	50 1 5	T OF INPUT	DATA		E	AMPLE	Runs	
					B			
			1					
ST	D AFF	GRC GST	GFC GFT	F	10 10	C GHAX	DSI FIC	
10000 10	.00000 0.45000	0. 2.00000	U.30000 r.300	00 0.600.0	1.00000 2.0	0000 3.00000	0.14060 0.15060	
ION PHU	PERTIES							
	<u>.</u>	AFF	GRC	KP	F		4PN P	
		0.4110.000			-		· · · · · · · · · · · · · · · · · · ·	
0.30400 - P	Points		U.	3,03476	50 6./11	•1./7	56882 U+64404	····
N	FTIN1	CM [N]	EPSINI	N ·	FILNI	ÇM (N)	EPS[N]	
<i>t</i> .	45 400 4000			No. No.	TELINE	DRAWN BY	HAND TO OUT	
0 1	14.9026888	2.4072640	11.56007P0	101	-1.300000	-1.2793965	012620857	ABLE.
	<u>14.4026888</u>	2.4067272	11.1722259	142	-1.3200000	-1.2949763	0.2511941	<u> </u>
	13.4U20888	2,4054635	10.3965226	104	-1.3600000	-1.3247933	0.2488664	
5	12.9026888 12.4026888	2.4047186 2.4038617	10.0086703	105	-1.3800000	-1.3390161	U.2446182 U.2404536	
1	11.9026888	2,4029371	9.2329658	107	-1.4200000	-1.3658623	0.2364006	
<u>b</u>	10.9024888	2.4018658	8.8451135	108	-1.4400000	-1.3782849	0.2324668	
J.U	14.4026888	2.3992410	8.4572809	126	-1.4600000	-1.4010867	0.220022/	
11	¥,¥U26668	2,3976206	7.0815565	121	-1.5000000	-1.4114634	0.2213860	
12	<u>5.4026888</u>	2.3957350	7.2937046	112		-1.4211546	0.21/9348	
14	L.4026888	2,3909039	6,5180005	114	-1.5600000	-1.4384692	3.2114007	
15	1.9026888	2.3877724	6.1301481	115	-1.5800000	-1.4460057	1.200319/	
17	7.3026888	2,3831330	5.6647257	117	-1.6200000	-1,4592163	0.2025340	
18	1.2026889	2,3822450	5.5871553	118	-1.6400000	-1.4647206	0.1440330	
19	/.1026889	2,3813191	5.5095849	109	-1.6600000	-1.4695102	0.19/2600	
21	0.9026889	2,3793456	5.3544440	121	-1.7000000	-1.4777878	0.194/913	····
62	0.0026889	2,3782520	5.2768735	1/2	-1.7200000	-1.4817238	0.1879436	
23 24	0,/U26859 6.6U26889	2.37/1924	5.1993032	123	-1.7400000 -1.7400300	+1,4855400	0.10/0086	
25	6.5026889	2.3748379	5.0441624	125	-1.7800000	-1.4929325	0.1823624	
20	6.4026889	2.3735769	4.9665920	100	-1.8000001	-1.4963180	J.1803497	
20	0.2026889	2.3708695	4.00902]5 4.8114511	128	-1.8200001 -1.8400ù01	-1.4997021	U+1/5259/ U-1/53318	
29	0.1026889	2:3694150	4.7338807	169	-1.8600001	-1.5061817	U.L/3/453	
<u></u>	0.0026889	2,3678672	4.6563103	130	-1.8800001	-1.5092848	0.1/15196	
52	5.0026689	2.3645911	4.5011695	- 132	-1.9200001	-1.5152346	0.1093141	
33	5./026889	2,5628116	4.4235991	1.3	-1.9400001	-1.5180878	0.1049016	
	5.6026889	2,3609358	4.3460267	134	-1,9600001	-1,5208639	0.1623135	
36	5.4026890	2,3568671	4.1906878	105	-2.0000001	-1.5261963	0.1000000	
31	5.3026890	2,3546579	4.1133175	137	-2.0200001	-1.5287577	0.1504/58	
<u>39</u>	5.1026890	2.3523201	4.0357470	108 108	-2.0400001	-1,5312528	0.1343372	,,
40	5.0026890	2,5472171	3.8806043	140	-2.0800001	-1,5360538	U+1723349 U+15J2884	
41	4.9026890	2,3444282	3.8030359	141	-2.1006001	-1.5383626	0.1492373	
42	4.0026890 4.7026890	2.3414632 2.3382641	3.7254654 3.6478075	142	-2.1200001	-1.5466147	<u>0.1462412</u>	

•

¥

• •

▲ 3'

	45	4.5026890	2.3289915	3.4841740	1 145	-2.1800001	-1.5470449	0.14ú≤794
	46	4.4026890	2.3228031	3.3984828	146	-2.2000001	-1.5490857	0.1383198
• • •	47	4.3026830	2.3156804	3.3100476	147	*2.2206001	-1.5510781	0.1353734
	48	4.2026890	2.3076808	3.2219464	1 148	-2.2460001	-1.5530236	4.1344400
• • •	49	4.1026830	2.2987835	3.1317659	149	-2.2600661	-1.5549239	0.1325192
	50	4.0026890	2.2889851	3.0406325	150	-2.2500001	-1.5567862	4.1346107
••••••••••••••••	51	3.7426890	2.2782701	2.9487667	121	-2.3600001	-1.5585942	1.128/142
	52	3.0026890	2.2006458	2.8564582	152	-2.3200001	-1.56036/1	0.1260295
•	53	3./020891	2.2540052	2.7638351	153	-2.3400001	-1.5621062	0.1247362
	54	5.6026891	2.2404658	2.6709982	154	-2.3640441	-1.5637948	0.1230942
	75	3.5026891	2.2257736	2.5780400	1 > 5	-2.3600001	-1.5654520	0.1212431
	56	5.4046891	2.2099025	2.4850463	126	-2.4006601	-1.5670731	6.1194027
	57	3.3026891	2.1927526	2.3920988	157	-2.4200001	-1.5666592	0.1175726
	84	3,2016891	2.1745926	2.2989141	158	-2.4406061	-1.5762112	<u>U.115/531</u>
	54	3.10<6891	2.1560724	2.2049131	159	-2.4600001	-1.5717313	6.1137434
	60	2.6026891	2.0620307	1.7314649	100	-2.4800001	-1.5732125	0.1121435
	61	2.10<6891	1.9679632	1,2579550	101	-2.50000001	-1.5746736	0.110.3531
		2.0846891	1.9642005	1.2390146	102	-2.520000k	-1.5760996	<u>0.1082721</u>
	b 3	2.0620891	1.9586025	1.2216787	- 103	-2.5400002	-1.5774984	0.160003
	. 64	2.0426891	1.9505050	1.2066423	104	-2.5600002	-1.576664B	<u>0.1101374</u>
	65	2.0246891	1.9407451	1.1931379	105	-2.5600002	-1.5802057	U.1132833
• •	66	2,0025891	1,9296515	1,1807553	106	-2.60000LZ	-1,5815198	0.1015376
	6/	1.78%0891	1.9175580	1.1692445	107	-2.6200002	-1.58280/5	0.0770006
	00	1.9626891	1.9046467	1.1584396	108	-2.6400002	-1.584076b	<u>0.0560717</u>
	04	1.9446891	1.8910462	1,1482236	109	-2.6600002	-1.5853091	0.0563509
	<u>/u</u> .	1.9245891	1.8768511	1.1385104	1/0	-2.6800062	-1.5865236	0.0546380
	/1	1.9026891	1,8621337	1.1292344	1/1	-2.7800002	-1.5922603	0.0161861
-		1.0026891	1.0409509	1.1203442	1/2	•2.8800002	-1.5974966	0.0//9092
	/3	1.0040841	1.8313467	1,1117987	1/3	-5.8800005	-1.6022777	0.0601000
·····		1.0420841	1.0123992	1.1032643	1/4		-1.0000/45	0.00101/0
	/5	1.824AA91	1,/990185	1,0956132	1/5	-3.100002	-1.6107282	0.0539747
		1 /4:44.11	4 /483300	1. 140474221	1.2		-1.0144/86	<u> </u>
	//	1. /	1 / 481170	1 0777447			-1.01/9309	0.0380415
		1 // 4 8 9 3 1	1 / 306 78 7	1 0449947	1/0	-3.4000002	-1 4240045	
	· //	1 / / 4 6 9 31	1 /197343	1 0554014			-1 -0242002	0.023/128
·· ·· ··· -	<u> </u>	1 /11260071	1 6947475	1 11597474	1.1	-3 78600002	-1 -102/0328	<u> </u>
	80 80	1 6026804	4 6764774	4 0449009	401	-3.7800002	-1.0270020	
			1 6529719	1.0400014	1.1.3	=1.9860002	-1 6365224	
	60	1 6424901	4 4199538	1 0118430	1444	-319000002	-1 6347815	-0.0(91490
	<u>9.</u> 11	1.626891	1.6203211	1.0278736	185	-4.1800002	+1.538842L	-4.0161465
	86	1.0000001	1.6011848	1.0220301	166	-4.2800002	=1.6408353	-6.0252055
	8/	1.5846891	1,5818488	1.0163259	107	-4.5800002	-1.042731.3	-0.0229701
	68	1.2646891	1.5623181	1.0107558	108	-4.4800002	-1.0445355	-0.009/954
	89	1.5465891	1.5425970	1.0053152	109	-4.5800002	-1.0462562	-11.11465747
	50	1.5226891	1,9226891	1.0000000	140	-4.6800002	-1.0479053	-0.0233110
	ΥΥ	-1.1000000	-1,1000000	0.3110375	191	-4./800002	-1.0494827	-0.01000/
	92	-1.1200000	-1.1198005	0.3058184	172	-4.8800002	-1.0509956	-0.0140642
	43	-1.1400000	-1,1391991	0.3006692	143	-4.9800002	-1.0524496	-0.0/32856
	74	-1,1600000	-1.1581916	0.2955908	174	-5.0800002	-1.0538486	-4.0/96734
	95	-1.1800000	-1.1767738	0.2905837	175	-5.1800002	-1.0551967	-0.0164269
	96	-1,2000000	-1,1949411	0.2856489	196	-5.2800002	-1.0564976	-U.D525541
	41	-1.2200000	-1.2126892	0.28078/1	197	-5.3800002	-1.6577551	-0.0554505
	98	-1.2400000	-1.2300134	0.2759990	178	-5.480uuuz	-1.6569717	-0.115919/
	99	-1.2600000	-1,2469092	0.2712856	179	-5.5800002	-1.0601503	-U.1123631
	160	-1.<800000	-1,2633/19	0,2666475	200	-5.6800002	-1.0612937	-0.116/820

INTEGRAT	10N (15]	VALUE OF	LATERAL	LOAD)		
ХІАЦ (ОДЙ (Р.)	AGONO LATERAL	. <u>rovo taj ≡ 1*00t</u>	10	· · · · · · · · · · · · · · · · · · ·		
CUEVATURE At Micheight	LENGTH	DEFLECTION	MOVEMENT	END	SUUNE	Pt
1+12268908	4.07110956	4,06751471		-1-67226054		
1+12268908	2.4.683550	2,40400402	0.27814882		<u>u. U1343920</u>	
1.2/268908	4.03484308	4.09104/32	0.61109844	-1.69798695		
1,2/268988	2.51358573	2.50142984	0.34126885		<u> </u>	
1.42268908	4.11204668	4.10803633	0.71742250	-1.71822067	0	
1.42208948	2.53921272	2.58033050	0.40777684	<u>0.</u>	0.01829276	
1.5/268986	4.12509719	4.12033846	0.82365271	-1.734775/U		·····
1.5/268908	2,66512030	2.66270403	0.47709823	<u> </u>	4.424/0855	
1.72268907	4.13362832	4.12911963	0.92519191	-1.74866327		
1.72268907	2.72818986	2.72564643	0.5454/100	<u></u>	0.02319611	
1.87268907	4.13564405	4.13086783	1.01855362	-1.75840529	· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·
1.87268907	2.7/720389	2.774532/2	0.60997330	<u>().e</u>	0.02543053	
2.02268907	4.13076895	4.12575119	1.0967505/	-1.76402207	Q	
2.02268907	2.81973954	2.80493388	0.66490289		0.02731336	
KED END CASE	(CONVERG	ENCE OB	TAINED FO		NO SASE)	
1.84156763			<u></u>			
	4.13623729	4.13106951	1.00043005	-1.75072321	<u> </u>	<u>h.oun5763</u>
2.17268907	4 . 1 2 2 0 6 8 7 5	4.11691526	1.13202530	-1.76527454		
2.17268907	2.81620870	2.81312542	0_68986462		0.02815718	
2.32268907	4.07926380	4.09401396	1.15497561	-1,74657302		
2.32268907	2.81450250	2.81153647	0.71036223	Q	0.02885095	
NED END CASE	(CONVER		TAINED F	DA PINNED A	END CASE)	
2.21638395	-			· · · · · · · · · · · · · · · · · · ·		
	2.81759614	2.81364879	0.69629632	a.	0.0285/476	6.60038755

.

CURVATURE	LENGTH		VERTICAL	END	END	
AT MICHEIGHT	· ·	DEFLECTION AT MIDHEIGHT	MOVEMENT	MUMENT	32075	
NNED ENE CASE			· · · · · · · · · · · · · · · · · · ·			
2.21638395	2+81759614	2.81364570	<u>0.6942943</u> ?	Q.	0+02837476	<u>0.60038755</u>
1.84156763	4.13623729	4.13106951	1.00043005	-1,75072321		4.6445743
						·
				·		<u></u>
	····		· · · ·	· · · · · · · · · · · · · · · · · · ·		•
· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·		·····			
						<u> </u>
·						
-			······			· · · · · · · · · · · · · · · · · · ·
		·		·		
		· · · · · · · · · · · · · · · · · · · ·	•			
		· · · · · · · · · · · · · · · · · · ·		· · · · · · · · · · · · · · · · · · ·	······································	

• •

▲*

÷

•

INTEGRA	TION (2 NO YALVE	OF LAT .	TRAL LOAD)	
AXIAL LUAD (P) = 0.	6000 LATERA	L LOAD (0) # 3.000	۱ <u>۵</u>			
CURVATURE	LENGTH.		VERTICAL	END	ENU	
AT <u>MICHEIGHT</u>	·	DEFLECTION	MOVEMENT	MOMENT	SLOAF	
1.12268908	2.57083684	2,56858224	0.21410266			
1.12268908	1.59169997	1.59039629	0.12131962	ů	0.00870010	
1,27268908	2.60217483	2,59815178	0.26475942	-1.63891260	<u>.</u>	i
1.27268908	1.6/727686	1.67588962	0.15284842	fi	0.01063506	·
1.42268908	2.6/276283	2.67023901	0.31797853	-1.7077900/	<u> </u>	
1.42268908	1.75532001	1.75385062	D.18747495	U	U_01244694	
1.57268908	2.72667642	2.72399172	0.37481162	-1.748791/8	<u></u>	
1.57268908	1.82690435	1.82535298	0.22465957		0.01432229	
1,72268907	2.75874868	2.75590469	0.42822114	-1-75042445		
1.72268907	1.88937145	1.88773904	0.26214709		n. 41615997	
1,87268907	2.79123848	2.78821967	0.48240130	-1.76912137		······································
1.87268907	1,94101678	1.93930295	0.29859413	Ü •	<u>u.41759190</u>	
2.02268907	2.80962516	2.80646301	0.52691270	-1.76978623	u	
2.02268907	1.9/886271	1.97706879	0.33070243	<u>u</u> .	0.019381/5	· · · · · · · · · · · · · · · · · · ·
2.17268907	2,80627318	2.80300452	0.54616035	-1.749794/0		
2+1/268907	1.99084859	1.988999/3	0.34646101	<u>)</u> .•	0.02009267	
FIXED END CASE		· · · · · · · · · · · · · · · · · · ·			·····	<u></u> ,
2.0/455973				·····		
	2.81452425	2.80772179	0.53642651	-1.76520953	U.	6.60009600
2,32268907	2.81221478	2.80888032	0.56450032	-1.76030774		
2.32268907	1.99771252	1,99581259	0.35901549	<u>()</u>	0,02000196	
2.47268907	2,81368395	2.81025218	0.58405119	-1.76308859	0	······
2.47268907	2.00327366	2.00131012	0.37291964	<u>.</u>	U. U212/4/1	
2.62268546	2.80536355	2.80177368	0.6067519>	-1.74966753	<u>U.•</u>	
2.62268906	2.0.581774	2.00376004	0.38999625		0.02205115	
2.77268906	2.81047643	2,80655424	0.63472511	-1.77173435	Û	
2.//268906	2.00829611	2.00614318	0.40/15410	J	0.02282921	
2 02268006	3 8.1793014	2 402066444	0 45010546			

• •

2.92268906	2.01070845	2.00845912	0.424338/2	<u>.</u>	u.U230U927	
3.07268906	2.80486144	2.80085946	0.68359204	-1.77361226		
3.0/268906	2,0130513J	2.01070435	0.44161385	<u>u</u> .	0.02439109	
3.22268906	2.80185528	2.79770909	0.70771922	-1.77390540		<u> </u>
3.22268906	2.01523170	2.01278707	0.45876549		0.02510706	
3.3/268906	2.79879633	2.79450598	0.73099353	-1.77413283	0.	
3.37268906	2.01708852	2.01454851	0.47537403		H. U2591872	
3.52268906	2.79564367	2.79121209	0.75253704	-1.77426860		
3.52268906	2.01836653	2.01573656	0.49078962		1.02601514	i
3.67268905	2.79299571	2.78850663	0.77237551	-1.77587318		
3.67268905	2.01902921	2,01631508	0,50497994	0.	0.02725631	
3+82268905	2.78947544	2,78486383	0.7907779/	-1.77574892	0.	
3.82268905	2.01910828	2,01631442	0.51818722	<u> </u>	U.02765472	i
3.97268905	2.78721121	2.78246110	0.80440108	-1.77353224		
3.97268905	2.01853893	2,01566842	0.53055271	0.	0.02841863	
PINNED END CASE						
3.74597961						
	2.01929363	2,01639054	0,51329301	0.	U.U2763251 U.60085696	
						;
	-		· · ·			
					·	
. · · · · · · · · · · · · · · · · · · ·	······	· · · · ·				
· · · · · · · · · · · · · · · · · · ·		· · · ·				
	· · · · · · · · · · · · · · · · · · ·				· · · · · · · · · · · · · · · · · · ·	
····		······································				
· · · · · · · · · · · · · · · · · · ·	•	•				

	· .	•				
DATA SET 50	· · ·	· · · · · · · · · · · · · · · · · · ·		· · · · · · · · · · · · · · · · · · ·		······
AXIAL LOAD (P) = 0.	6000 LATERAL	LCAD [D] # 3.000	Q			
SUMMARY OF RESULTS						
	LENGTH	DEFLECTION	MOVEMENT	END MOMENT	ENU SLOPE	i:
PINNED ENT CASE						
3.74597961	2.01929363	2.01639054	0.51329301		H.02703251	u.6##85598
FIXED ENU CASE						
2.07455993	2.81482425	2.80772179	0.53642651	-1.76520953	Ú.	<u></u>
			······	· · · · · · · · · · · · · · · · · · ·		······································
	<u> </u>	·			· · ·	······································
		na		······		·
····						
No. 10. 10. 10. 10. 10. 10. 10. 10. 10. 10						
·						
• · · · · · · · · · · · · · · · · · · ·						
			<u></u>			
·	· · · · · · · · · · · · · · · · · · ·					•
			<u> </u>			
			·			
	· · · · · · · · · · · · · · · · · · ·					
						······

😼

÷

									0.00			
FIC	0\$1		arc		۲	WF 1	- UP U	U 3 T		AP 7	ц 	TEA
00 0.15000	0.1AUU	2.00000	1.00000	1.00000	0.70000	0.30000	0.30000	1.00000	0.12900	0 • 4 5 0 0 0	10.00000	0.30000
						·					ROPERTIES	SECTION P
Р	MPN	A	EL		HR	JAC	. (AFF		D	ST	A
0.700000	34045	-0.43	/115385	0 в	3.03478	150000	0.1	4500000	00 0	10,00000	0000	M
· EP5[N]	·····	CH(N)		FILNI	- N	0.000	EPSI	N.)	CMI	1(4)	-20111	N
							1.214	A1 A 3 B	1.50	8261744	τ	
0.6510482	1	0.1793965	0 -	•0.20000	101	400	3.149	73569	1.59	7261764	3.	1
0.6465635		0.21049783	1 <u>0 </u>	-0.22000	143	127	2.980	<u>45043</u> 55789	1,99	6261264 5261764	<u></u>	2
U-6378288		0.2247933		-0.26000	144	1974	2.896	45697	1,59	4261764	3	4
0.6335807		0.2390101	- 10	-0.28000	105	1304	2.811!	34690	1,59	3261764	3.	5
0.6254875		U.2651741	U -	-0.32000	107	1756	2,6424	09422	1,59	1261764		/
U.621/764		0.2704092	u -	-0.34000	108	1561	2.625	06599	1.59	1061764		8
0.6162754		0.2805317	U -	-0.36000	109	020	2.0085	03490	1,59	0861764	5.	9
U.6118558	L	0.3037003	u -	-0.40000	111	482	2.5730	96316	1.58	0461764	<u> </u>	11
0.6089179		0.3110492		-0.42000	112	1694	2.956	92275	1,58	0201764	S,	12
0.6001519		0.317451/	U -	-0.44000	113	686	2.5386	87943	1,58	0061764	5.	13
<u>U.6032524</u>	Ļ	0.3230274	<u> </u>	-0.46000	114	537	2,921	<u>83329</u> 78418	1.98	9801/04	<u> </u>	15
0.59863/4	·	0.3317800	U	0.50000	116	110	2.4854	73278	1.58	9401764	2,	16
0.590/104		0.3349836	0 -	0.520000	117	963	2,4673	67853	1,58	9261764	2.	1/
0.5447504		0-3374163	0P	-0.540000	118	940	2.4402	<u>82167</u>	1.98	<u>9061764</u>	2.1	18
0.5929383		0.3390818	u. =	-0.580000	120	472	2.4128	50025	1.58	8661764	2.	20
0.5695394		0.3414310	U =	-0.600000	121	124	2.3945	43575	1,58	8461764	2.	21
0.55/6896		0.3424614	<u>v</u> -	-0.620000	122	090	2.3761	36873	1,58	8261764	2.	22
U • 50 6 2 6 8 9		0.3434105	U -	-0,640000 -0.66000	123	409	2.3301	29923	1,58	0U91/04 7861764	2.0	23
0.5050721		0.3451003	U =	0.680000	125	261	2.3205	15273	1,58	/001764	2.	25
0.5010591		0.3458557	<u>u</u> -	0.700001	126	110	2,3021	06475	1,28	/461764	2.	20
0.500333		0 -3465597	U -	-0.720000	127	5A9	2.2842	74304 78884	1.57	7261764	2.	27 28
0.5770381		0.3478338	<u> </u>	-0.760000	129	894	2.2499	60353	1.57	6861764	2,0	29
0.5755660		0.3484125	<u>u</u> -	0.780000	150	990	2.233	38801	1,57	6661764	2,1	<u> 3 U</u>
0.5/41093		0.34895/1	U -	0.800000	101	723	2.2172	14299	1,57	0401764	2.0	31
0.5726670		<u>U.3494708</u> 0	<u>v -</u>	0.840000	102	933	2.1847	<u>30893</u> 96611	1.54	5061764	2.0	33
0.5698216		0.3504163	U -	0,860000	134	454	2.1704	23471	1,56	861764	2,1	34
1.5684168		0.3508527	0 -	-0.880n00	135	242	2.1553	37476	1,55	5661764 .	2.9	35
0.5670230		0.35126/7	<u>u -</u>	0.900000	136	228	2.1404	48621	1.35	5261764	<u> </u>	36
U-5050396		0.3516629	U =	-0.920000 •0.920000	137 138	130	2.1111	10892 69272	1,54	0001704	2.1	38
0.5629010		0.3524005	<u> </u>	0.960000	139	252	2.0965	14734	1,54	4861764	2,4	39
U.5015448		0.3527456	U+	0.980000	140	239	2.0826	54247	1,53	4661765	2.	40
0.5661967		0.3530764	υ -	•1.000000	141	713	2.0685	10778	1,533	9901765	2.4	41

* *

• •

.

• •

45	2.3601765	1,5066768	2.0137601	145	-1.0300000	-0-3542776	U.5540767
46	2.3461765	1.4998352	2.0004154	146	-1.1000000	-0.3545515	U.5535628
47	2.3261745	1.4927944	1.9870970	147	=1.1200000	-0.3548104	H. 5522548
48	2.3061765	1.4856685	1.9736811	148	-1.1400000	-0.3550727	4.5549523
49	2.2861765	1.4784593	1.9601703	149	-1.1600000	=0.3553211	1.5490554
50	2.2661765	1.4711687	1.9445475	1 10	-1 18000000	-1.4555621	1.5653628
	2 2461768	1 4617083	1 9134753	1.71	-1 20.00000	-0.3657801	U 5476752
52	2 2 2 4 6 1 7 4 5	1 4563404	1 4100049	1.52	-1 22400000	-0.456024/	0.545/924
	2,2291/03	1.4305498		1/2	-1.2200000		
53	2.2001/03	1.4400242	1.4012823	123	-1.2400000	-0. (5.440)	0.50497100
	2.1001/05	4735497	1 41704.00	124		-0 45-4714	
22	2.1001/05	1,433548/	1.0//2029	125	-1.2800000	-0.3506/11	0.2419004
	2.1401/05	1.4220012	1.003100/	120	-1.3800000	<u></u>	<u> </u>
27	2.1201/05	1.41/9820	1.8489835	12/	-1.4800000	-0.3585302	U • D = 94401
28	2.1001/05	1.4100924	1.8347332	128	-1,5800000	-0.3593515	0.5636830
28	2.0801/55	1,4021333	1.8204119	129	-1.6800000	-0.3601086	0.51/1/34
6U	2.0661765	1.3941057	1.8060217	100	-1.7800000	-0.3008215	<u>1.511_063</u>
61	2.0461765	1.3860106	1,7915646	101	-1,8800UJU	-0.3614992	0.5050754
62	2.0201765	1.3778486	1.7770423	102	<u>-1.9800000</u>	<u>-11-3621484</u>	<u></u>
63	2.0001765	1,3696206	1./624568	103	-2.0800000 0	-0.3627745	0.4931023
64	1.9861765	1.3613273	1.7478098	104	-2.1800000	-0.3633814	u.4171521
65	1,9661765	1,3529694	1./331032	105	-2.2800000	-0.3639725	0.4112220
00	1.9461765	1.3445473	1.7183387	106	-2.3800001	-0.3645502	0.4/53095
67	1.9261765	1.3360618	1.7035179	107	-2.4800001	-0.3651100	0.4154125
. 68	1.8201765	1.2928269	1.6287816	108	-2.5800001	-0.36567.55	0.4655292
69	1.7201765	1.2491532	1,5541393	109	+2.6800001	-0.3602222	0.4570583
10	1.0261765	1.2051988	1.4798896	1/0	-2.7800001	=0.3667638	451/982
/1	1.5261765	1.1608981	1.4040959	1/1	-2.8800001	-11.3072994	U.445948U
12	1.5061765	1,1519892	1.3913945	1/2	-3.3800000	-11.35441144	4160140
73	1.4861765	1 1430633	1 1747074	1/3	-1 8400001	-0 3794464	4 21.75.331
/4	1.4661765	1.1341166	1.3620706	1/4	-3,000091 4 4800001	-0.0724400	11 + OC / OKKI
75		0 9024618	1.0043023	1/5	= 4 Hattata1	-0. \$7776 \$4	. 2 5112774
15	0.9461765	0.4930140	0.9901717	1/6		-0.3775039	0.3002779
//	U. 9261765	1 4812021	0.9763047	1/7		-0 (91405)	
, , , H	017201705	0,0002,000	0 9641017	1/1	-5.0800001	-0.0814099	
/0	U.8861765	0 4584330	0.9516044	1/0	-4 9800001		
hu	N. 5661765		0 9439070	1.80	-0.000000 -0.000000	-0.0040004	U. EFOUEEE
	0.0001705	0,0440/38	0,77302/2	100	-/.3850001	-0.3880945	0.2024100
83	0 8261765	0.0200199	0.9349239	101		-0.38/4264	0.1791205
62	0.0201733	0,91281//	0.7200400	102	-0.3800001	-0.3806760	0.1203844
03 54	0.0001/55	0./901//3	0.9184953	105	-9.8800001	-0.3898561	0.1341451
	0./001/05	U.//89/24	0.91159/1	104	-9.3803001	-0.3909//1	<u>U.1123535</u>
0)	0./001/05	0./0125//	0.90469//	105	-A'9900001	-0.3920473	0.0909678
	0./401/05	0./430/43	0.0981556	106	-10.3800001	-0.3930/3/	0.0059514
87	0./201/05	0./244535	0.8919383	10/	-10.8800001	-0.3940626	6.0492120
08	0./001/65	0./054190	0.8860199	108	-11.3800001	-0.395010/	0.0289034
89	0.0801/65	0,0859889	0.8803795	109	-11.8800001	-0.3959425	0.0060 19 0
YU	0.0001/05	0,0661/65	0.8750000	190	-12.3800001	-1.3968415	-0.0110094
91	-u,UCUCOOO	-0.0000000	0.7000000	1 191	-12.88000001	-0.3977129	™1.0∪bo 33 9
	-0.0200000	-0.0198005	0.6947819	192	-13.3800001	-0.3985599	-u.0500722
5 - 5	-0.040000	-0.0391991	0.6896317	193	-13.88000000	-0.3993854	- U • U (· 9 3 3 6 3
94	-1.0600000	-0,0581916	0.0845532	174	-14,3800001	-0.4001920	-0.0014369
95	-u.usucooo	-0,0767738	0.6795462	175	-14.88000001	-0.4009819	-11.11/3842
96	-0.1000000	-0.0949411	0.6746114	140	-15,3800001	-8.4617500	-U.1:01869
97	-u.1200000	-0.1126892	0.6697495	197	-15.88000001	-0.4025177	-0.1448535
98	-0,1400000	-0,1300134	0.6649615	178	-16.3800001	-0.4032607	-0.1033917
99	-0.1600000	-0.1469092	0.0602480	199	-16.8500001	-0.4040051	-0.1110000
100	-0.180000	-0,1633719	0.0556100	200	-1/.3800001	-0.4047325	-0.2101104
				······································	·····		······································

INTEGRATION (IST VALUE OF LATERAL LOAD) AXIAL LOAL (P) = 0.7000 LATERAL LOAD (0) = 1.0000 LENGTH VERTICAL END CURVATURE LATERAL END DEFLECTION AT HOVEHENT MOMENT SLOPE MICHEIGHT T NIDHEIGHT 1.82617646 2.72442954 2.72035938 0.47386804 -0.42650039 1.82617646 2.30511181 2.30220012 0.37881113 ۵. 0-01804234 1.9/617645 2.72357570 2.71929364 0.54892778 -0.42795795 1,97617645 2.31663970 2.31363557 0.41024452 0.01953338 -FIXED END CASE 1.90112946 4.08536409 3.06000485 0.54763976 -0.48036550 11.10030692 2.12617645 2.72158591 2.71709727 0.55116718 -0-42927768 Π. 2.12617645 2.32976163 2.32260954 0.4434101/ 0.02096694 IJ. 2+27617645 2.71782564 2.71315076 0.58844623 -0.42727406 2.27617645 2.33226548 2.32897178 0.47508439 0.42253871 θ. 2.71337361 2.42617645 2.70851181 0.61877997 -0.42943830 Π. 2.42617645 2.33564932 2.33222425 0.5041271/ 0.02360952 0. 2.57617645 2.70658723 2.70159398 0.64339913 -0.43093823 2.5/617645 2.33439902 2.33087361 0.92953103 0.02456223 ۵. FINNED END CASE 2.46070611 2,33614045 2.33232119 0.50973113 0.02385701 0.70028371 **n**

CÚSVATLRE AT MICHEIGHT	L'ENGTH	LATERAL DEFLECTION AT MIDHEIGHT	MOVEMENT	END. MOMENT	ENU SLOPE	
2.40070611	2.33614145	2.33232119	0.50973113	J.	0+02385701	u./ua28371
IXED END CASE						
1.94112946	4.03536409	5.06010485	0.54763975	J.4813658 0		L./UUSU492
· · · · · · · · · · · · · · · · · · ·						
		A	<u> </u>			
			****	•		
· · · · · · · · · · · · · · · · · · ·		······				
					······································	
	······································					

AXIAL LUAD (P) = 0.7		L LOAD (0) = 2.000	1	· · ·		
		L.LWAN.184.7.818899	• • • • • • • • • • • • • • • • • • •	• · · · · · · · · · · · · · · · · · · ·	<u> </u>	
CURVATURE	LENGTH		VERTICAL	END MONENT	ENU St ope	h
MICHEIGHT	*	AT MIDHEIGHT		HUHEN -	3_072	
1.82617646	2.20269113	2.19952009	0.30255146	-0.42384951	0.	
1.82617646	1.8/451370	1.87222364	0.24846919		0.01455644	
1.97617645	2.21281248	2.20943468	0.33728325	-0.42869707	•	· .
1.9/617645	1.82575292	1.89334303	0.2749732/	Ū	0.01593851	
2.12617645	2.22019017	2,21659661	0.37012072	-0.43085532		
2-12617645	1.91297653	1.91043634	0.30155917	٥,	0.01737565	· · · · · · · · · · · · · · · · · · ·
2.27617645	2.22625429	2.22242532		<u></u>		•
2,27617645	1.92766224	1,92499349	0.32712704	Q.	0.018/0494	· · · · · · · · · · · · · · · · ·
2.42617645	2.23235133	2.22838954	0.42650303	-0.43107132	Q	
2,42617645	1.93923618	1.93644920	0.35071536	Q	0.01989653	
2 57617645	2.23455493	2.23043693	0.44639527	~0.43159782		
2.5/617645	1,94515393	1.94227928	0.36828580	Q +	0.020/6947	
2,72617644	2.23306170	2,22885144		-0.43188793		<u></u>
2./2617644	1.94576422	1,94283301	0.37922508	Q.,	U. 02130319	
FIXED END CASE						
2,59058812			·····			
	2.23462319	2.23044235	0.44791647	-0.43103596		0.70049679
2.87617644	2.22944940	2.22526711	0.46505799	-0.43237573		
2.87617644	1.94258801	1.93962483	0.38458925	0.	0.02155318	<u></u>
PINNED ENE CASE			·····			•
2.67535293	•····	·				
· · · · · · · · · · · · · · · · · · ·	1.94663361	1.943066/6	0.37614309	0.	0.02115414	0.700415/1
			<u> </u>			
-					······································	

● *****

á á.

-							
-							
	CUEVATURE AT MICHEIGHI	Léngth	LATERAL DEFLECTION AT MIDHEIGHT	VERTICAL MOVEMENT	END MOMENT	ENU Slope	<u>ь</u>
-	PINNED ENC CASE						
	2.67535293	1.94663361	1.94306676	0 37614304		6+02115414	0.70041871
	FIXED END CASE					<u></u>	
	2.59058812	2.23462318	2.23044235	0.4479164/	- 0.43163596		<u> </u>
-			· ·				
			· · · · · · · · · · · · · · · · · · ·	·			· · · · · · · · · · · · · · · · · · ·
			·····	·			
		`			·		
		· ·					
			·				
							· · · · · · · · · · · · · · · · · · ·
	· · · · · · · · · · · · · · · · · · ·					·····	
			······································				· · · · · · · · · · · · · · · · · · ·
			······································	······································			
				······································			
			······································		·		
· –	<u> </u>	······································			<u> </u>		
					¢	·	
					<u></u>		
				·			
			······································				

3 RE SET OF INPUT PATA DATA SET 16 INPUT DATA AST 1 AFF GRC GST GFC GFT P 91 010 UNAX FIC DSI 0.30000 10.00000 0.45000 0. 2.00000 0.30000 0.30000 1.20000 1.00000 2.00000 3.00000 0.18000 0.15000 SECTION PROPERTIES AFF AST D GRC KR EL AMPN Ρ 0.3000000 10.0000000 0.4500000 0. 3,0347850 8.7115385 -0.9533657 1.2000000 N FILMI CHINI EPS[N] N FICNI UMENI EPS(N) AXIAL LOAP TOO HIGH (SECTION CANNOT MAINTAIN EQUILIBRIUN) HALT COMPUTATIONS ON THIS DATA SET. NO ADDITIONAL DATA SETT. THEREPORE THE RUN TERMINATES. .

(a) TYPICAL MID-SHIP CROSS SECTION

(b) LOADING ON THE SHIP BOTTOM PANEL DUE TO WAVE ACTION-HOGGING

Fig. 1 LONGITUDINALLY STIFFENED PLATE PANELS IN THE SHIP BOTTOM STRUCTURE.

248.16

248.16

Fig. 2 Typical Cross Section With Simplified Residual Stress Distribution

REFERENCES

1.

Kondo, J.

ULTIMATE STRENGTH OF LONGITUDINALLY STIFFENED PLATE PANELS SUBJECTED TO COMBINED AXIAL AND LATERAL LOADING, Fritz Engineering Laboratory Report No. 248.13, Lehigh University, 1965

ACKNOWLEDGEMENTS

This study is part of a research project "Built-Up Members in Plastic Design" currently being carried out at Fritz Engineering Laboratory, Lehigh University, Bethlehem, Pennsylvania. Professor William J. Eney is Head of the Laboratory, and Professor Lynn S. Beedle is Director.

The research has been sponsored by the Department of the Navy under the Bureau of Ships Contract NObs-94092. The study was initiated by Mr. John Vasta of the Bureau of Ships. His interest in the support of the project is gratefully acknowledged.

The task of translating the original program was greatly facilitated by the cooperation of the staff of the Lehigh University Computer Laboratory.

Messrs. J. Vojta and R. A. Strawbridge made significant contribution by offering general assistance. The report was typed by Miss Marily L. Courtright. Her cooperation is appreciated.

مەتىقەت راھائەتچىدى مەسىمچىد€ يون راھ

÷

0

¥

· · · · ·

. . .

Lehigh University

OCT 1 9 2010

Library