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ABSTRACT
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In plastic design of steel struc~Qres, it is generally

assumed that the influence of shear forces on the plastic

moment is negligible. However, in some structures, for

instance built-up members with cutauts or Vierendeel girders,

high shear forces may be accompanied by high axial forces.,

causing an appreciable reduction of the full plastic moment

of the cross-section. Therefore this influence on the plastic

moment should be studied and if necessary taken into· account.

Although there are several studies on the influence of

shear or axial forces on the plastic moment little seems to

be known about the combined effect of shear and axial forces.

It appears that plastic design of built-up members re-

quires the solution of two problems, one to establish the

interaction curves for the plastic moment under the influence

of both shear and axial forces and second to develop a design

procedure based on these interaction curves. In this paper

the combined effect of shear and axial forces on the plastic

moment is studied by using lower bound WethpQ in the plastic
~:=:, esmee:=::::e== t!i6~~~'1':£ "7 ....illi;i

analysis. Interaction curves are presented using non-

dimensionsl parameters. Tests on the influence of shear and

axial forces were carried out which confirm the theoretical

analys is. Finally a design procedure of a built-up beam wi th -

a cut-out was developed using an iteration method.
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1. INTRODUCTION

1.1 Scope of Investigation

-1

..

"Simple Plastic Theoryll of steel structures is based on

certain assumptions concerning the bending moment-curvature

relationship of members. It is assumed to be linearly elastic

up to the full plastic moment Mp. Thereafter rotation takes

place at constant moment, i.e., the member acts as if it con-

tained a hinge rotation under a restraining moment Mp . This

concept of the formation and indefinite rotation of a plastic

hinge in a member whenever the fUll plastic moment is main-

tained at a section is of fundamental importance in this

theory. In fact, the simplicity of the plastic analysis is
,

due entirely to this concept. However, it must be recognized

that the fUll plastic moment of a given member is actually

not a definite, constant quantity. This is partly so because

the static yield stress on which it is based is dependent to

some extent on the manner of loading and the previous loading

history. The fUll plastic moment Mp is equal to the product

5"y.Z, where 6Y is the$tatic yield stress and Z is the plastic

section modulus whose value depends solely upon the geometry

of 'the cross-section. Thus variations in the value of the

fUll plastic moment Mp will occur whenever effects are brought

into play which alter the value of the static yield stress •

As is well known, the yield stress of structural steel is

affected by the rate of loading, the temperature of the speci­

men, and also by strain aging. Fortunately, it appears that
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these effects will usually be quite small. Other factors which

affect the value of the full plastic moment are the presence of

axial thrust and shear force. Since in applications of plastic

analysis, plastic hinges and hence the plastic moment usually

occur at positions where one or both of these influences are

present, it is of considerable importance to be able to pre-

dict the changes in the value of the full plastic moment due

to these causes. It will appear that in many practical cases.

the effects of axial thrust and shear force are very small.

Therefore the practice of neglecting these influences can be

justified. However, there are types of structures for which

it is important to make a proper allowance for these effects.

For instance, in built-up members with cutouts or Vierendeel

girders, high shear forces may be accompanied by high axial

forces, causing an appreciable reduction of the full plastic

moment.

Horne(l) studied the effect of shear on the plastic

moment, assuming an idealized stress-strain relationship for

a perfectly plastic material. Starting from the maximum shear

theory of yielding and the equation of equilibrium for a state

of plane stress, he obtained the parabolic shear stress dis-

tribution in the central elastic core. The reduction of the

plastic moment due to shear for the case of a cantilever

I-beam becomes:

Mp - Mps ) Z'
1 + 1.774 tt2 - 1

=
~ z

1.774 tt2
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where

Mp = full plastic moment of the section

Mps = reduced plastic moment due to shear

t = web thickness

Z = plastic section modulus

e = length of cantilever

-3

From this analysis Horne derived the critical ratio t/dw =

Z n0.632 td2 - 0.176 with v equal to the cantilever length and

dw equal to the <web depth. Under this condition shear yielding

occurs along the neutral axis, the shear stress distribution

being parabolic over the entire depth of the web. For ex ample,

for a 10WF29 this limiting value becomes g/dw = 0.62. Finally

he concluded that the reduction in the plastic moment due to

shear is small except for very short beams. For instance,

the reduction in the carrying capacity due to shear stress is

about 3% for a wide flange beam with e/d =2.0.w

Fujita(2) followed this lower bound method to determine

the effect of shear on the plastic moment for a cantilever

with a rectangular cross-section. He used Mises' yielding

condition. His results were modified for wide flange shapes
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be expressed as

where

8- .
9 [ J 1 + .2

4
z. --a ­
t~

-4

Mps = reduced plastic moment due to shear

t = web thickness

e., = length of cantilever beam

Z = plastic section modulus

For 10WF29,

t = 0.289 "

Z = 34·7"3

dw = 9.22"

t'= 18·44" for g/dw = 2.0

Therefore ~.,.s. = 0.8.50 and the reducti on is 1.5%. This result
p

is quite different from Horne's result which is equal to

3% for this case.

On the other hand, Green(4), Leth(.5), Onat(6) and

Drucker(7) have studied the same problem by means of the upper

and lower bound theorems, the true value lying between these

two bounds. They proposed several types of velocity fields

for upper bounds as well as the stress fields for lower

bounds. For example, Drucker obtained the following expres-

sion for a rectangular section by using a lower bound

2 (.f:.d)2 ( d)1 - cos 1:

'I
J;.

for d<:'Tr.
e: 2
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for e/d = 2.0

-5

0.979

resulting into a reduction of 2.1%.

The effect of an axial force on the plastic moment have

been also studied since Baker, Horne and Roderick in 1949.

After Baker's study on this problem Ketter(8), Onat(9) have

developed the effect of axial force on full plastic moment.

The reduction of full plastic moment can be expressed as

for the case of neutral axis in web

A... (1 _ 1..)
2Z Ty

.[ A T Jd - 2b (1 - iiiY)

,..

for the case of neutral axis in flange,

where

Mpc = reduced plastic moment due to thrust

T = axial force

Ty = 6"y.A

A = total cros s- sec tional area

b = width of flange

d = depth of beam

t = thickness of web

Z = plastic section modulus of wide flange shapes



248.1 -6

Horne (10) investigated the effect of both shear and axial

force on the plastic moment and proposed an interaction curve

of moment, shear and thrust.

The objective of this paper is to evaluate the combined.

effects of shear and axial force on the plastic moment. Two

approaches were studied in a theoretical analysis. A few

tests were carried out under different ratios of shear and

axial force in order to confirm the theoretical analysis.

The two approaches mentioned above are as follows.

Approach (A,):
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of the known quantities such as dimensions and load is deter-

mined, the Mises v condition of yielding gives the interaction

curves between shear, axial force and reduced full plastic

moment.

Approach (B):

Similar assumptions as in the previous approach (A) are

made. The flanges carry no shearing stress and the shearing

stress ~ in the web is uniform. However, in this approach (B)

the intensity of shearing stress is assumed to be equal to the

mean value of V/Aw' where V is the shear force acting at the

end of the cantilever and Aw is the area of the web. In the

case of a cantilever beam subjected to bending as well as

shear and axial force, the contribution of bending stress to

the plastification of the cross-section is reduced by the

presence of shear and axial force. For a short beam, the

effect of the shear force is rather severe. Plastic failure

will be caused mainly by shear rather than bending. This

tendency of shear failure will be accelerated by the presence

of an axial force. Therefore the shearing stress might be

assumed to be of uniform distribution along the depth of the

beam and its intensity equal to V/Aw as an extreme case of

shear failure in a short beam. Tests confirm this possi~

bility of uniform distribution of shear stress by the pattern

of slip lines occurring at yielding.
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2.1 Test Program

II. DESCRIPTION OF TESTS

-8

Since the reduction of the full plastic moment due to

shear is generally negligible when the ratio t/dw ' length of

beam divided by depth of the web, is greater than 4, the

ratio tid of the test specimens was chosen such that a con-, w

siderable reduction of the full plastic moment due to shear

only could be expected from the tests. From the theoretical

analysis of wide flange shapes, presented in the subsequent

, Chapter IV, the critical value for shear failure is given

by e/dw = 1.85; assuming that the values Af/A
w

and df/dw of

the wide flange shapes are equal to 2.0 and 1.05 respectively,

where Af stands for the total area of the upper and lower

flange, Aw is the web area, df the distance of the center line

of the two flanges, and dw the depth of the web. This critical

yalue may be affected by the presence of an axial force. An-

ticipating the results of the theoretical analysis the critical

values £/d for shear failure of a wide flange shape with
w

Af/A
w

= 2.0 and df/d
w

= 1.05 are reduced by an axial' force T

as follows:

o

1.85

0.1

1.60

0.2

1·30

0·3

1.05

0·4

0·75

Hence, the critical ratio t/dw is inversely proportional to

the ratio of axial force T/Ty , where Ty is equal to 0yA, A

being the total area of the cross-section. Ty is therefore
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the axial force which produces yielding of the cross-section

under axial force only. A considerable reduction of the

plastic moment can be obtained when the ratio t/dw is close

to the critical value for shear failure. However, the local

disturbance of the stress distribution in the cross-section

of the beam due to the application of loading may also affect

the test result if the beam is quite short compared to its

depth. According to St. VenantVs principle this end effect
~~

can be neglected when the ratio £/dw is greater than 2.0.

Therefore the length over depth ratio ~/dw of the specimen

was fixed at 2.0.

The particular set-up chosen is shown in Fig. 1. Axial

tension was applied to the specimens in order to diminish

the tendency of lateral buckling in the plastic range. The

ratio of axial tension to shear, T/V, varies according to

the length of the fixture as shown in Fig. 2. The ratio

Mpm/M
p

' where Mpm is the reduced plastic moment of the section,

is also shown in Fig. 2 according to the length of the fixture.

For test specimens No.1, No. 2 and N0.3, the ratio T/Ty is

0.13, 0.19 and 0.37 respectively. It was determined analyt-

ically that the reduction in the plastic moment due to shear

and thrust should be more than 30% for specimen No. 3 such

that the test results should give a definite answer concerning

the reliability of the theoretical analysis even if the results

should be influenced by some experimental errors. The load P,

axial tension T and shear V in Fig. 2 are computed using yield

stress Dy = 36ksi .
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2.2 Test Specimens

The wide flange shape 10WF29 was chosen for the test

-10

.
:.

specimens because the ratios AflA = 2.176 and df/d = 1.054
w w

are close to the mean values for wide flange shapes, AflA = 2.0
w

and dfldw = 1.05 respectively. The length of the specimens

is 18 1/2" so that the ratio ~Idw = 2. O. The specimens were

welded to the flange plate of the wide flange shape 12WF58

by using a continuous fillet weld of 1/3" as shown in Fig. 1­

The fixing beam 12WF58 was stiffened by means of vertical and

diagonal stiffener~ of 1/2" thick plate welded to the web

plate .

After testing a specimen, the tested section was cut off

by flame cutting and the new test section was welded to the

fixing beam as shown in Fig. 1 by dotted lines.

Loading pins of 3" diameter were welded to the specimen

and the fixture so that a tensile force could be applied by

using a standard testing machine. Figure 1 illustrates the

method of load application. Since the end of the test speci­

mens were tapered and stiffened by means of a 3/4" thick plate

the axial force could easily be transmitted to the flange

plate of the specimen.

2.3 Test Set-Up

The instrumentation for these tests consisted of seven

d~al gages. Three of them were used for deflection measure-

ments along the center line of the flange plate, two were
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curvature gages and last two measured the rotation on both

sides of the web plate as shown in Fig. 1. The deflections

were measured at distances of 3 inches, 7 inches and 11 inches

from the load point. The dial gage frame for the deflection

measurement was welded to the stiffeners of the fixing beam

so that the deformation due to warping at fixed end of the

cantilever would not affect the base line of the dial gages

,( Phot 0 1). The gage length of the curvature gage was 1" and

the measuring position was chosen as close as practical to

the fixed end of the specimens because of the steep gradient

of the applied moment. The total rotation angle was measured

by means of the dial gages indicating the relative rotation

between the flange plate of the fixture and a reference point

on the web plate of the specimen. The gage length of the

rotation gage was 11 1/2 inches. A screw type testing machine

was used for the loading because of its accuracy and conven-

ience for the deflection control in plastic range (Photo 2).

2.4 Test Procedure

The rate of application of load was about 0.03 inches

per inch per minute in the plastic range and a short time

(about 5 minutes) was taken to allow the load and strains to

reach equilibrium at each step of loading. For the specimen

No. 1 (T/T
y

= 0.13), the first yield line started along the

web center at a load equal to 66.3kips . Yielding of the

flange on tension side of the beam commenced at the load of
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69.2kips . The yield lines at the flange on compression side

of the beam developed at load of 86.1kips . Hence yielding in

web due to shear and thrust preceded yielding in the flange

plates due to bending and axial force. For specimen No. 2

(T/Ty = 0.19), initial yielding started similarly in the

web plate at a load of 69.9kips and yield line commenced in

the flange .on tension side of the beam at load of 99kips .

For specimen N0.3 (TIT = 0.37), the initial yield started. y
at in web plate and the flange plate on tension side of the

beam simultaneously. All specimens, No. 1 to N0.3, exhibited

strain-hardening at once before the yielding spreaded over the

specimens. This means that there is no flat portion neither

in load-deflection nor moment-curvature diagrams of the speci-

mens. As shown in Photo 3 neither lateral nor local buckling

occurred in the plastic range before cracking started from the

corner of the fillet welds between the flange plates of the

specimens and the fixing beam. Although failure of each speci-

men took place by fracture of the welds, a considerable plastic

deformation was obtained for each specimen in the strain-

hardening range prior to crack initiation shown in Fig. 3. No

sudden fracture of the brittle type occurred in any specimen.

2.5 Coupon Tests

To obtain the mechanical properties of the steel, two

standard tensile specimens (ASTf-l1 A- 359) from the flange plate

and one from the web plate of the 10"WF'29 beam were prepared.
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The specimens were tested in a hydraulic testing machine.

Load and elongation over an 8 inch gage length were measured

and plotted by means or an automatic stress-strain recorder.

This instrument could record strains well into strain­

hardening without resetting.

The rate or application or load was about 0.007 inches

per inch per minute in the plastic range, a rate much lower

than the usual standard mill test rate. This reduced rate

or loading was used because the results were to be used to

predict values ror static tests where equilibrium or load and

derormation would be obtained at each load increment berore

readings would be taken. A unique reature or these tests was

the taking or "static yield load" readings i<l1 the yield range.

Arter the yield region had been reached, but berore strain­

hardening had commenced, the strain rate was reduced to zero

rora period of a rew minutes to allow the load to reach an

equilibrium point. Static readings were then taken. From

this reading the lowest possible yield stress could be cal­

culated.

2.6 Control Test

A length or the 10WF29 section was tested as a control

beam to obtain moment-curvature relationship under pure bending.

The specimen tested was 76 inches long with vertical stirreners

welded at support and load points to prevent web crippling

(Fig. 10). A screw type universal testing machine was used
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to apply load to the specimen supported on rollers on a

76 inch span. Loads were applied at the points 2 feet from

the both ends of the beam using a spre~der beam to distri­

bute the testing machine load to two rollers.

The instrumentation used to measure the curvature in the

constant moment region consisted of two dial gages recording

bending strains over a 10 inch gage length and a dial indicator,

recording center deflection.

Load was applied continuously at a moderate rate which

allowed gage readings to be taken without interrupting the

loading. After the plastic range had been reached, it was nec­

essary to halt the application of load twice to allow resetting

of the dial indicators. Loading was continued until the ulti­

mate load was reached, after considerable strain-hardening

followed by a gradual drop in load due to instability of the

compression flange.

III. RESULTS OF TESTS

3.1 Determination of Modified Plastic Moment, Mpm

If a beam is subjected to a constant moment over part of

its length the load~deflection or moment-curvature diagram

shows a definite flat portion in the plastic range. However,

under a mcment gradient no such flat portion exists. There­

fore a criterion must be chosen to determine the plastic

moment. The following method was used. The load deflection
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curves, such as shown in Fig. 3, show. a definite break. For

small loads the specimens exhibited purely elastic behavior.

After yielding the increase in deflection is very much accel-

erated. The point of intersection of the tangents to the

elastic and strain-hardening part of the curve determines a

load Pu . Beyond this load large plastic deformations take

place and a hinge develops without too significant an increase

in load. Hence, the moment corresponding to this load is taken

equal to the plastic moment Mpm. By static for the cantilever

specimens it follows Hpm = Pu e.

Similarly the value of Mpm can be obtained from a moment­

curvature diagram of a beam under moment gradient. The inter-

section of the tangents drawn to the elastic and strain-

hardening part determines Mpm as shown in Fig. 6.

Finally, the theoretical "failure" load Pu is defined

similarly as the point at which the rotation of the equivalent

hinge takes place rapidly in the beam under moment gradient as

shown in Fig. 7. The values of Mpm obtained from deflection,

curvature and rotation measurements are described in the fol-

lowing part and compared to the theoretical values.

(a) Mpm obtained from Load-Deflection Curves

Figure 3 shows the load-deflection curves for each speci­

men No.1, 2 and 3 corresponding to the condition TIT equaly

to 0.13, 0.19 and 0.37 respectively. The deflection was

measured 3 inches from the loading point. Figure 4 and 5 show
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the load-deflection curves for deflections measured at 7 and

11 inches from the loading point respectively. The dashed

lines in Fig. 3 represent the theoretical load-deflection

curve. If this curve differs from the tangent to the strain-

hardening part a dotted line was drawn to the experimental

curve in order to determine Pu or Mpm. The loads Pu determined

from the different load-deflection curves measured at 3, 7 and

11 inches from the loading give fair correlation. The results

are summarized in Table I. The maximum test loads were reached

at the initiation of a crack in the welds.

(b) Moment-Curvature Curves

The moment-curvature diagram of each specimen is shown

in Fig. 6. From these curves the reduced plastic moment Mpm

was derived as 1030 kips-inches, 101+0 kips-inches and 860 kips-

inches for specimen No.1, 2 and 3 respectively. The corre-

sponding loads Pu are obtained by dividing Mpm by the length of

the cantilever beam, hence Pu equals 70 kips, 85 kips and 126

kips respectively. The rotations at maximum moment are depend­

ent on the T/T ratio as may be seen from Fig. 6. The specimen
y

No.1 (T/T = 0.13) shows the largest rotation among the threey
specimens. The curvatures at maximum moment for each specimen

reached 2.15 radian/in., 1.87 radian/ in., and 0.7 radian/in.

for No.1, No. 2 and No. 3 respectively .
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(c) Hinge Rotation Curves
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Load-hinge rotation curves are shown in Fig. 7. Since

the hinge rotation is defined as the inelastic rotation taking

flace within a certain length of beam, no rotation takes place

below the proportional limit. Therefore the load Pu from the

rotation curves c an be obtained by the intersection between

tangent to that curve in the strain-hardening range and the

vertical axis of load in Fig. 7. The hinge rotation is given

by

= 6 - SRP _ Q
9p Gage Length of Rotation Gage e

where

corresponding angle rotation resulted from a

deflection due to shear force

v = shear force at the end of a cantilever beam

i = length of a be am

x = distance from free edge of a beam

6 = deflection of a beam at a reference point of

the rotation gage

t RP = reading of a dial gage for rotation measurement

The above expression is explained as follows. The deflection

due to shear indicates a certain amount of reading on the

rotation gage. But this rotation must be subtracted from the

test result as indicated in Fig. 8. From Fig. 7, the load Pu
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is given by 70 kips, 82 kips and 120 kips respectively.

-18

Finally, the values Pu obtained by different methods

of measurement are compared to each other and to theoretical

predictions as shown in Table I. From this Table I, Pu can

be determined as

Thy 0.13 0.19 0·37

~ 70kips 82kips 126kips

3.2 Lateral Rotation

The difference in readings of the two rotation gages

mounted on both sides of the w~b plate gives the lateral rota­

tion. The development of lateral rotation indicates the initia­

tion of lateral or local buckling. These values are plotted on

Fig. 9 for each specimen. Specimen No. 1 has developed con­

siderable lateral rotation compared to the other two specimens.

However, no evidence of lateral buckling was noticed as seen

in Photo 3. Specimen No. 2 rotated to one side up to a certain

load and then turned back to the reverse side because of a

slight initial distortion due to fillet welding. Figure 9 shows

that the maximum loads are given by neither lateral nor local

buckling but the initiation of crack at fillet welds for these

special cases. The width over thickness ratio of the flange

plate is 11.6 for a 10WF29. This value is much less than the

critical ratio 17 for· the local buckling of a flange plate in

strain-hardening range. The maximum unbraced length to pre­

vent the lateral buckling in plastic range under moment gradient



.I

248.1

is approximately given by the following expression.

-19

= 48 for the moment ratio f= ~ = 0
p

Cf = restraint factor

where

= 1.0 for simply supported
ends

fyy = radius of gyration about weak axis

Therefore

lyy= 1.34 inches for 10WF29

L ~- 64. r:':;; inches

•

Since the length of the specimen is only 18.5 inches and the

maximum unbraced length is larger than 64.5 inches for this

case, then no lateral buckling could happen in these tests.

The local buckles on the compression side at the fixed end

of the beam as evident in Photo 3 for specimen No. 1 and

No. 2 occurred after considerable cracking along the fillet

welds had developed.

3· 3 Maximum Load

As mentioned in the previrn~s section the maximum loads

for these test specimens were reached at the initiation of

crack along the welds. The values of maximum loads are given

in the following table. Also shown are the corresponding

nominal stresses computed by means of conventional methods

using the values of I = 374in 4 and A = 20.5in 2 for 1/3 inch

fillet welds .
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TIT 0.13 0.19 0·37y

Pmax 117 kips 137 kips 181 kips

Tmax 71 kips 104 kips 169 kips

Vmax 95 kips 91 kips 65 kips

Mmax 1760k-inches 1680k-inches 1200k-inches

Obend 35.6ksi 34·1ksi 2~.. 6ksi ( at throat)

otension 4.9ksi 7.1ksi 11. 7ksi ( at throat)

S'total 40.5ksi 41. 2ksi 36.3ksi ( at throat)

<'tav. 6.5ksi 6.3 ksi
4·5

ksi ( at throat)

'tav. web
35.8 KSj 34.2K':>i 24·4ksi (at web)

These stresses are average stresses at the throat. Assuming

stress concentration factor of say 1.5, the stresses reached

approximately 60ksi . This value corresponds approximately to

the ultimate tensile strength of a weld produced by an ordinary

E 6000 type electrode. The average shearing stress of the

flange fillets was quite small compared to the ones of the web

plate where the shearing stress is beyond the yield stress

under pure shear.

3.4 Results of Coupon and Control Tests

a) Coupon Test

The area-mean values of Young's modulus E, strain-

hardening modulus Est and static yield level ~y computed from
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the results of the coupon tests were as follows:

E = 29,000ksi

-21

b) Control Test

The moment-curvature relationship of the control beam

under uniform moment is shown in Fig. 10. The upper part of

this figure gives an enlarged portion of the diagram in order

to indicate more clearly the flat portion of this diagram and

the value of full plastic moment Mp ' This value of the full

plastic moment obtained from the control test is 1,240 k-inches.

It was used as the standard value to compute the reduction in

full plastic moment due to shear and axial force. The value

of full plastic moment computed by means of the plastic modulus

Z for a 10WF29 and the static yield stress obtained from coupon

tests is

r1 = 6':Z = 37 x 34·7 = 1284 kip-inchesp y

Hence, the value obtained from the control test is 3.5% less

than the calculated one. This difference is due mostly to

the difference between the actual dimensions of wide flange

section on the handbook (AISC) values.
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IV. THEORETICAL ANALYSIS

4.1 Determination of Modified Plastic Moment Mpm Under

Moment, Shear and Axial Forces

-22

In general exact solutions of problems involving plasti-

city are not possible. However, two powerful tools are avail-

able to estimate the carrying capacity. It has been demon­

strated(ll) that a solution satisfying equilibrium conditions

gives a lower bound of the carrying capacity, thus producing

a safe estimate even if a corresponding mechanism does not

develop. A solution which concentrates on the collapse mode,

or a possible velocity field gives an upper bound for the

collapse load. Here, a lower bound solution is discussed and

two approximations are proposed.

a) Lower Bound Method

A lower bound requires that the stress distribution in

wide flange s~ction satisfies the condition of equilibrium

and also the boundary conditions. Under certain limitations

of the magnitude of shear and axial force, the stress dis-

tribution is assumed to be the same as that in a beam with

rectangular cross-section. As shown by Prager and Hodge(ll) ,

and also by Horne(l), under the simplifying assumptions which

have been made the shear stress ~ must be zero in the outer

plastic regions, where the normal stress is ~y. The corre­

sponding stress distribution is shown in Fig. 11. This stress

distribution seems to be reasonable as long as the axial force
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T is small and the neutral axis is located in the web. Under

these conditions the shearing stress distribution is parabolic

and also symmetric about neutral axis. From Fig. 11, the

•

moment at section A-A is given by:

Af r
M = fly . 2 • df + bY . vI . L

and the axial force T by:

T = f;-y • w • (2 'to)

With:

where

~ y02 - 101= v,x

(1)

6'-y = static yield stress, the value of '7.0 is:

Substituting Eq. (2) into (1),

V·X = o-y ~ [A:rd:r + t A,,<\, • t . (A:r:A,,)2 . (~y)2 - ~ WY02J

(3 )

In the elastic portion of the web, the normal stress c varies

linearly:

S-=S': J.
y . Yo
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and

dO--- = - a-dx y

-24

The shearing stress in the web is determined by the equation

of equilibrium:

-as'" 'a'C
- + - = 0'dX- 'O~

or

'd()-
= ---

'Ox
=

(4)
•

Taking the proper boundary conditions into account

7: - -' S': r(~ )2. - I J. d.1Jo
- 2.J Y L1 ao ~ ;(.

Differentiating Eq. (3) wi th respect to ;(., an expression for

the derivativ6 dyo is obtained
dx

2 dyo
V = - 3 w YoCi'Y· ~

or

dyo __ J.
dx 2

V

Substituting this expression into Eq. (4) gives:

According to this equation the shear reaches a maximum for

y. = 0 (neutral axis). From the limiting value of ~ = ~y

( 6)
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determined from Mises i yield condition,
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for yielding under pure shear. Introducing this value into

Eq. (6) the distance Yo is found

Yo = Jd3 . ...::L
~ 5""y uT

Combining Eq. (8) with Eq. (3) an expression for the maximum

moment at x = t c an be derived.

where tJI = v. t = reduced plastic momentpm

or

where

Z = ; Afdf + t Aw~ = plastic modulus of WF shapes

where

~ = w~ 2 and ~= T
(., w· t· 6Y
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..
Therefore, the reduction in full plastic moment due to shear

and axial forces is given by Eq. (9). However, this equation

is derived from an assumed stress distribution as shown in

Fig. 11. The applicability of this Eq. (9) is obviously given

by:

~ 0 + Yo ..:::.
dw
2

From El:q. ( 2) and (8)

Aw + Af T ill' V ~+ ~

2w Ty 4 rsyw 2

or

(1 +
Af T .3. V <: 1 (10)-) - +Aw Ty

2 . Vy -

where

The reduction in the full plastic moment within the limitation

. of Eq. (10) is shown in Fig. 12 by means of the non-dimensional

parameters S and ~. As may be seen the interaction curves

between the reduced plastic moment, shear and axial forces are

limited to a small range of axial force. It is therefore nec-

essary to assume a different type of stress distribution in

wide flange shapes imposing less restrictions to cover prac-

tic al cases.
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(12)As proposed by Heyman and Dutton an empirical dis-

tribution of S- and rt' at the cross- section where a plastic
/

hinge occurs, can be assumed to consist of a constant shear

stress ~ and a constant longitudinal normal stress through-

,/

)

out the web, together with zero shear stress and a uniform

longitudinal normal stress ~y in the flanges. In addition,

it is assumed that ~ and ~ satisfy the Mises u yield condition,

In the following two possible approaches are outlined. Their

applicability will be tested by comparison with experimental

resul ts.

b) Approximate Approach (A)

A stress distribution at the fixed end of the cantilever

beam is assumed as shown in Fig. 13. The normal stress in

the flange plates reaches rJy ' the flanges being assumed to

carry no shearing stress. The normal stress in the web is

S o-y where ~ is a non-d-imensional factor less than unity.

Its value is determined from the condition that the combina-

tion of the normal stress ~ S-y and the shearing stress ~ ful­

fills Mises' yield condition. If it is assumed that the dis-

tribution of the flange stresses varies linearly over an

infinitesimal beam length dx where the plastic hinge forms the

magnitude of the shearing stress ~ is determined as follows

, f see Fig. 13) 0
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or

At :i.. I
- Z" T . Dy + 1: t-tT '" :X.
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(12)

Introducing into the yield condition, Eq. (11), the normal

stress \S-y and the above determined shearing stress fixes

the value of S:

t, = j
Using this value, the reduced plastic moment is given by the

following expression

This equation holds as long as the neutral axis is located

within the web, the limiting value being:

then

and

L=~'~'1 1 \
1 - (\ + ~,)~ ( ;y t-

2,' Afdf
Aw d",
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For the case in which the neutral axis falls within the

flange plate, that is,

-29

the reduction in the plastic moment is given by

Mp~
IY1 -p

( !iL)( ~ (I + ~) T J4 OI~ AlAI - Aw Ty
--~-------_..:.--_)(

( \+ Z ~w) [ 1+' 3 ( # )2 J

Finally, if shear failure governs:

(16)

Equations (13), (lIt), (15) and (16) are plotted in Fig. 13

by using the values of

Af
A = 2.0

w
and

L

c) Approximate Approach (E)

If a cantilever beam is quite short, for instance

t/dw ~ 2.0, then the plastification of the built-in end will
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be produced primarily by shear yielding rather than bending.

The presence of axial force accelerates the initiation of

yielding. The simplest assumption concerning a distribution

of shearing stress is to postulate a uniform stress ~ over

the web, or:

where v = shear force at end of cantilever

A = area of webw

The magnitude of axial force T is given using a notation

illustrated in Fig. 14 (a)

(18)

where ~ o-y = normal stress in web

o <. "10 < 1

The Mises' yield condition is fulfilled if

( ~ S- ) 2 + 3~2 = 0: 2 (19)y y

or

~2 + 3 (.:L)2 = 1Oy

From E:q. (18),

~
T I ( A T-' 1+..!2f.-)·

'20 Aw <ly Lo Aw Ty
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and from Eq. (17)
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Substituting these expressions for ~ and 't/c-: into Eq. (19),y

then

( 20)

For the limiting case, to = 1, the corresponding moment is

Fr om Eq. ( 20) ,

Afdf
Mpm 2~

wCiw
and -)

M ::
p Afdf

1 + 2 Aw~ (21)
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In this range, the neutral axis is located in the web

and the reduced plastic moment Mpm can be expressed as

From Eq. (20)

z
'( =

o

and

-)

( 1+ ~)~ (..L..)2..
A", Ty

..
Therefore

or

)( [ 2 t1 - ( 1+~ )"-(~n-t(I+2 ~:tX~)-2~IJ{4HZ

+ [{I- (I + ~Y(~)J"--t \1+2 ~:1~)(~;) -.2 ~:t I~J = 0
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For

2.0, 1. 05

tJ1P1\-1
3.1'B5· -­

Mp

2 M 2
.z (/-'1 I- )-27( ~-o,808) 1-

T., 2 l"fp :;
1 ,

provided

14pm
~ f 0.808

Mpm T
Equation (22) gives the interaction curves between~, T and

p y
df for the case in which the neutral axis is located in the

w M ' A d
web, that is MPm >0. 808, assuming --f = 2.0 and df = 1. 05.

p M Aw w
For the case of MPm ~ 0.808 or the neutral axis lies within

p
the flange, the stress distribution is assumed as shown in

Fig. 14 (b).

Then

where:

\
(~ );a

y

, t = distance of penetration of yielding (Fig. 14. (b)).
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From Mises' yield condition:

and

Therefore

-3~·

(~)4 _ rz + ,2. 6 ( I+.z Af ~f ) (~) _ ~( I + .&.)( I) _
Vy l AJT Awd"" !VIp .w- Aw Ty

- [26 + Z (I + k)(2- )J2. ==- 0
MY Aw Ty
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For

AfA == 2.0,
w

-35

or

provided

Mpm L:..
IJl = 0.808

p
for

d f
and d == 1. 05

w

r-ipm
Equations (22) and (23) are connected together at == 0.808Mp

as shown in Fig. 14-' Figure 14 shows that the reduction in

the plastic moment due to shear becomes less for higher values

of the axial force. In other words, it is not necessary to

consider the effect of shear if a high axial force is present.
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The reduction in the plastic moment is due mainly to the in-

fluence of this axial force. Figure 15 shows the reduction

of the plastic moment for a constant ratio of length to depth

of a cantilever beam, t/dw = 2.0, due to various values of

axial force. The two curves shown are cross curves of Fig. 13

and 14 at t/dw = 2. O. The test points obt ained from experi­

ments reported in the first part of this paper are also plotted.

They show a surprisingly fair correlation with approacli (B)

rather than approach (A)o This means that the assumed stress

distribution of approach (B) leads to results which are satis-

factory for design purposes.

4.2 Deflection of Beams in Strain-Hardening Range

a) Assumptions(13)

The actual moment curvature relation for a wide flange

section is approximated by an idealized curve as shown in

Fig. 17 (a). This curve consists of a straight line from an

elastic limit at M/Mpm = 00915 to the line M/Mpm = 1 at

did = 2 0 The latter selection of the point where the'P 'Ppm ••

cross-section is considered to be fully yielded is quite arbi-

trary. The extent of yielding in the flange is then given by

JYI
d. = 1 - 00915 MPm

o

b) Equivalent Hinge Rotation

From Fig. 17 (b) the inelastic angular rotation g can

be computed by integrating the inelastic part of the curvature



diagram. It consists of three parts: The first part Cdesig­

nated as (1) in Fig. 17 (b)) is the region between Mpm and

Mo. For the time being it is assumed that the slope of the

..
•
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moment vs. curvature curve in the strain-hardening region

-37

..

is the same as in the elastic region. A correction of this

assumption will be introduced as part two. Hence:

where

Mp~

EI

Therefore

Mp1>l )
Mo

The second part, shown as (2) in Fig. 17 (b) comes from the

difference between the bending stiffness in the strain-

hardening region, Bsh·I, and that in the elastic region, EI.

Therefore

~l )J
EI

or

_I(~_ 1)( E: - 1)( 1_ IV1p~)
2J MpWl Est. ~ 0
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The third part is the region (3) in Fig. 17 (b) due essen-

tially to the progressive plastification of the cross-section.

Its extent depends also on the residual stress in rolled

sections.

8 3
I

l ' 4>p~-
Z

where

~ + l (1- 0,9 15 ~~h·~ ), t
Me>

or

- MpWl tl 0.0 g 5·
Me

Therefore

0,0425
MpWl

M o (26)

~

Adding Eq. (24), (25) and (26), the total inelastic angle

is

where

epst ePst Mp cPst.
--.

<Ppm 1>p Mp-M K 'Pp

Me Mo . \'1 p Mo

/'VI p'Wl Mp Mp~ K Mr
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and K = reduction factor of ~p due to shear and thrust

For structural steels, ASTM-A7(14)

E = 30,000 ksi

-39

Mpm
= --Np •

900 ksi

12 ¢p

Therefore

where Mo = Vt, V = shear force

c) Computation of Deflection

Deflection of the beam in strain-hardening. range may be

constructed by the following components.

1. Elastic deflection due to bending up to elastic

limit shear Vue

2. Elastic deflection due to shear up to elastic·

limi t she ar Vu '

3. Deflection due to hinge rotation.

4. Deflection due to bending in strain-hardening region

for ~V, where ~V = V - Vue

5. Deflection due to shear in strain-hardening region

for ~V.

The total deflection is given by

• ('28)
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where

-4°

~=

'32.3

Vu. (2.. Q. - 31 ;C+ ;L)

b EI

Vu..(Q.-x)

4 Avv

x = distance from free end

~3 == (Q - .:;(}8 Q is given by Eq. (27)

~V( Q- ;()

Gst = shear modulus in strain-hardening range =
2,400 ksi (14)

+

The deflection for each specimen No.1, 2 and 3 were computed

in this fashion and are plotted in Fig. 3 in dashed lines.

These curves for the deflections of the beam in strain-

hardening range show fair correlation with the test results

as may be seen in Fig. 3.
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Vo APPLICATION OF RESUL'IS TO DESIGN PROBLEM
-ULTIJ'iIATE LOAD OF BEAN WITH CUT- OUT-

A simply supported beam with a cut-out is subjected to

a transverse concentrated load at an arbitrary position as

shown in Fig. 18 Cal. Although the beam is externally stati-

cally determinate it is internally three times statically-

indeterminate as can be readily seen. Using" Plastic Analysis"

the numbers of possible hinges are five, four around the cut-

out and one under the concentrated load. Subtracting the number

of redundants from the number of possible hinges furnishes the

number of independent mechanisms. These two mechanisms are

illustrated in Fig. 18 (b) and (c).

Let Mp be the full plastic moment of the beam at the cut­

out and mlVI.p be that of the original beam. Neglecting for the

time being any influence of shear and axial force, the ultimate

load corresponding to mechanism (I) in Fig. 18 ~b) is given by

and for mechanism (II) in Fig. 18 (c) by

L
= f,3'£4 . roMp

Comparing these two loads it is concluded that mechanism (I)

will occur when
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•

In most built-up beams with cut-out, however, the in-

fluence of high thrust and shear forces at the cut-out causes

a considerable reduction in the plastic moment. Cross-sections

through thebe am at A-A and B-B are shown in Fig. 18 (d). For

mechanism (1) the condition of forces in Fig. 18 (b) is given

by the following equations.

where Mpm = reduced plastic moment due to shear and thrust

•

The equilibrium equation is

vi = Mu + ML + Th
2

and V = ~ PuL

where Pu = ultimate load

1.2- e !It if
~Therefore T =-h- Pu - - . . PuL . h L

T
t' Mpm

or = 2- (29)h t

P = L Mpm
(3°)2 - .u l4 l

From the interaction curves of M, T and V in Fig. 14 which are

computed by using the approach (B) and from the Eq. (29), the

reduced plastic moment Mpm can be obtained by means of an

iteration method. Then the ultimate load Pu is given by
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lTq. (30).
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L L L
For example, taking d = 6' h~ = 15 and it = 3' the

ultimate load is computed as a function of the length of the

cut=out in the following manner.

Therefore

P..y;=0.040

R-ei =2.112
w

0.045

2·376

0.050

2.640

0.075

3·960

0.100

5·280

•

•

For JL = 2.112 eLl = 0.04), assume!T = 0.60 as a first approx-
dw y

imation j then from Fig. 14

1'1
M

Pm
= 0.445

p

Therefore from Eq. (29),

Repeating this process as follows,

TIT = 0.60 0.42 0.57 0·45 0.54 0.47 0·52 0.49 0.50 0·50
y ~/~/ +/~/~/~/~/ t/ ~/~

Mpm/Mp=0.445 0.605 0.475 0·58 0·50 0·56 0·52 0·53 0·53 0·53

this iteration method converges to

T/Ty = 0.50

1-1pm/Hp = o. 53
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Thererore

£4
L

where Ao is the total cross-sectional area at section B-B in

Pig. 18 (d) 0 In a similar way the rollowing values are obtained

by the iteration method.

tiL = 0.01 0.02 0.025 0.035 0.04 0.075 0.100

~dw = 0·528 1.056 10 320 1.850 2.112 3.960 5.280

Mpm/M = 0.230 0·465 0·390 0·495 0·530 0.735 0.815
p

•

Q4 PuL . cryAo = 0.106 0.106 0.0718 0.0650 0.0616 0.0450 0.0375

•

These results are shown in Fig. 18 (e). For this example, both

beams at the cut~out may rail by shear ir the ratio or length

or the cut- out over length or the beam is less than 0.04. In .

the region the ultimate load Pu is independent or the length

or the cut-outo

For the case in which the ratio is greater than 0.04 the

beam rails in the rashion or bending type at the reduced plastic:

moment Mpm under the inrluence or shear and axial rorces.

VI. SUMMARY OF RESULTS AND CONCLUS IONS

The inrluence or both shear and axial rorces on the plastic

moment or a wide rlange cantilever beam was studied theoretically

on the basis or a lower bound method or plastic analysis. Two
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approaches were proposed, the difference being in the deriv-

ation of the shearing stress. Both approaches give good

correlations with test results for a small axial force. How-

ever, one of the t~o methods is valid even under high axial

force. The confirming tests show that this approach (B),

based on the average shearing stress method gives fair pre­

diction even for a relatively short beam (~/dw = 2.0) under

the combination of high axial and shear forces (Fig. 15). The

interaction curves between moment, shear and axial forces based

on approach (B) were computed for the case of ~~ = 2.0 and

df-- = 1.05 which are representative values for most wide flange
dw '

beams. As can be seen from Fig. 14, the reduction of the

plastic moment is mainly due to axial fo~ce: when g/dw ~ 5.0 .

The question arises if the influence of shear and axial

force on the plastic moment cannot be obtained by investigating

the two effects separately and superimposing the two reductions.

If the T/Ty ratio is not too high and also if the t/dw ratio is

not too small, then the reduction of the plastic moment as

illustrated in Fig. 14 is very close to the reduction obtained

by superposition of these two effects. In other words, the

following simplified approach can be used

where

Mp = full plastic moment of the cross-section
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l
lVl pm = reduced plastic moment due to shear and thrust

Mps = reduced plastic moment due to shear only

Mpc = reduced plastic moment due to thrust only

and also

Mps 8 ti2

L~ .9- 'Z \

IJ= 1 +
t t 2Mp 9 4

Mpc A2 T
Mp

= 1 -
_ 0

~T) (neutral ax is in web)
4tz y

(32)

(33)

•

= ~ (1 - !...) .[ d - ~b (1 _ ~)lTy y'J

Equation (31) can also be expressed as

Mpm)~ Mps Mpc
(1 - rvIp - (1 - Mp ) + (1 - Mp )

(neutral axis
in flange)

..

•

This means that the reduction of the plastic moment in percent

due to the combination of shear and axial forces is equal to

the sum of reduction in percent due to shear and axial force

respectively. For design purposes, Eq. (34) with Eq. (32) and

(33) is simple and also practical. The error of this approxi­

mation is within 3% compared to the approach (B) over a con­

siderable range of i/dw andT/Ty o

The deflection of a beam in the strain-hardening range

can be predicted with fair accuracy as shown by the test results

illustrated in Fig. 3. In the analysis the deflection was
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separated into the following three components:

10 Elastic deflection due to bending and shear up to

elastic limit shear Vu ' corresponding to the

theoretical failure load Pu .

2. Deflection due to hinge rotation given by Eq. (27).

3. Deflection due to bending and shear in the strain­

hardening range for ~V where ~V = V - Vu .

Finally the theoretical failure load Pu for a built-up

beam with cut-out was computed by means of iteration method

using the iteraction curves of M, V and T in Fig. 14. The

result is given in Fig. 18 (e) showing the range of shear

failure and bending failure respectively•
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IX. NOMENCLATURE

•

Af =

Aw =

d. =

b =
d =

df =

dw =

=:

=:

A total cross=sectional area of wide flange shapes

cross=sectional area of built-up beam at section

B-B in Fig. 18 (a)

total flange area of wide flange shapes

web area of wide flange shapes

coefficient of extent of strain-hardening region

fl ange width

depth of wide flange shapes

distance between center line of flanges

depth of web

S, [1,82 , $3' $'4' ~5 = deflections

E =:

Est =

G =

Gst =

I =:

K =

=:

=:

=:

=
=:

readings of a dial gage for rotation measurement

deflection of a beam at a reference point of the

rotation gage

Young Y s modulus

strain-hardening modulus

shear modulus

shear modulus in strain-hardening region

moment of inertia of a cross-section

reduction factor in full plastic moment due to

shear and axial forces

-length of built-up be am

length of a cantilever beam

full plastic moment of cross-section
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reduced plastic moment due to axial force

fixed end moment of a cantilever beam

reduced plastic moment due to shear and axial forces

reduced plastic moment due to shear force

theoretical ultimate load or llfailure lt load of wide

flange shapes

curvature corresponding to Mpm

curvature at the starting point of strain-hardening

radius of gyration of wide flange shapes about weak axis

section modulus of cross-section

static yield stress

corresponding angle rotation resulted from deflection

due to shear in elastic region

hinge rotation angle

thickness of flange plate

axial force

axial yield force :::: 0yA

shearing stress

shear force

shear force at Pu

shear yield force :::: ~y~

distance from free end of a cantilever beam

distance from neutral axis of cross-section

plastic modulus of wide flange shapes

thickness of web plate
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Comparison of Theoretical "Failure"

Load Pu Obtained from Different Methods
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-

•

No. 1 Noo 2 No. 3
Methods T/T = 0.13 T/Ty = 0.19 T/Ty = 0.37y

1 Deflection I (3" ) 70 kips 82 kips 126 kips

·2 Deflection II (7 tl
) 70 82 126

J Deflection III (11 If ) 70 82 126

4 I Curvature 70 85 126I

I
r-' Hinge Rotation 70 82 120;)

6 Theol"'etical CA) 73 82 79,

7 Theoretical ('B) 70 82 124

TABLE I
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PHOTO 1 - TEST SET-UP
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PHOTO 2 - TESTING MACHINE
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PHOTO 3 - MODE OF FAILURE OF SPEC IMENS
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Rotation Gage ••••• 2

Deflection Gage 3

Curvature Gage •••• 2

/T/T = Oel3/Y
/ Specimen NOe 1

I
~

II .,

7
3~

II"
'..

INSTRUMENTATI ON:

ge61

32.6"•

,"'

FIG. 1 ~ TEST SPECIMENS 4ND INSTRUMENTATION
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Mpm T/T ~ T/V P.T~V. f\)

(kips)
.p-

k-in YMp en.
I I-'

1250 0.5 1.0 5.0 I Specimen No.3 Specimen No.2 Specimen No.1 130
T/Ty = 0.37 T/Ty = 0.19 T/Ty = 0.13

I I 120
I

I1000 0.4 0.8 4.0 I 110
I

,

I I 100I

I
. I

750 0.3 0.6 3.0 I 90
I

80

500 002 0.4 2.0 70

60

250 0.1 002 1.0 50

40

0 0 0 0 30 B

\Jl.
0 10 20 30 en

Length of Fixture "D" (inches)

FIG. 2 - CONTROL CURVES FOR TEST SET-UP
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"Failure ll Load from
Load Deflection Curve

./ Fracture tt Welds

,,/' Fracture
at WfldS

1/dw = 2.0

o : 'T/Ty '= 0.13

)( : T/Ty = 0 .19

A ~ T/Ty = 0.37

-: Test

---:' Theory

Tangent to Deflection
Curve in Str~in-

Hardening,/" /
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/

" /
/ Fracture

Pu = / at Welds
126k /

/
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Deflection (inches) .at 3 inches from end
.

FIG. 3 - LOAD-DEFLECTION CURVES (1)
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o ~ T/Ty ::; 0 0 13

/' x =T/Ty = 0.19
I~ Tangent to

D ->'1 • C • A : T/Ty :::: v" 0 37/ e.L ectlon urve In
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FIQ. 4 - LOAD-DEFLECTION CURVES (II)
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Deflection Curve
Strain~HardeningRange

f
r
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FIG. 5 ~ LOAD-DEFLECTION CURVES (III)
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MPm = Modified Plastic Moment

P = llFai1ure 11 Load'from .
u Moment Curvature Curve

M· =1050k - .v"'"
pm /"

~ =1040k -V
. ~ M =860k- 11

4: pm

J
(.

500

f\)
+:-
co

1/dw =
.

2.0 I-'

0 . T/Ty = 0.13.
2000 )( • T/Ty = 0.19•.. · 'T/Ty = 0.37,

, '
If

o
o 0.2 0.2 o 0 4 0 0 • 2 0 .4 0 .6 -*81. 0 "" 1. 2" 1. 4

.Curvature ---........... _ T Radians/inch
1.6 1.8

FIG 0 6 = MOMENT-CURVATURE DIAGRAM
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Pu : "Failure" Load from' Hinge Rotation
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-t=""
CD.

l,/dw = 2.0 ......

0 • T/Ty = 0.13.
20 )t T/Ty = 0.19

A : T/Ty = 0.37

10
'0
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o

H

1

0' 1 2- - 3 0' ·'1
Rota t ion Angle er (radians)

321o
fJ'---!----1-_--'-_--L._---l__L...-_J......_.L-_...L-_....L._--L_....!.._-L_---L_~,

7 x 10=2

FIUo 7 - EQUIVALENT HINGE ROTATION



NOTATIONS ~.

,

•

..

(a) Elastic Bending

(b) Plastic Bending

/1 ~ ~RP

Gage Length of Rotation Gage

.$. = Deflection

Subscript e = Elastic
Subscript p = Plastic
Subscript R = Rotation gage
Subscript s = Shear
Subscript b = Bending

A

9 = Angle change

FIG. 8 - ANALYSIS OF ROTATION GAGE
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Crack at Welds

1/dw = 2 0 0
o T/Ty = 0.13

T/Ty =.- 0.19

.6 : T/Ty == 0 0 37

Crack at Welds

I 'Jt

I
I
I
I
Ir
I
I
I

I

Crack at Welds

~ !
JC-~ I
"'-" "' I

~~~

00'-----L--.L.--...L----4L.---..Il.o----!1L.--.--~-·:--~· - -~---I0--l..L.-_...Il2--3.L---+4---f5 x 10=2

Lateral Rotation (radians) ----~~

FIG. 9 = LATERAL ROTATION
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1. 240 k-inches
r - - - - - -:m,..;:::::-="':"'p_---_-----4----=--=::-
I
I
I
I
I
I

IvToment

(Kips= in)

500

•

0
x 10-3

0 0·5 . 1. 0 1.5 2.0
Curvature ep (radiarn/in) •

~

•

.\1 1·500 t
Buckling at Flange

Plate
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FIG. 10 - MOMENT-CURVATURE CURVE OF THE
CONTROL BEAM (UNIFORM MOMENT)



-67 .

~A
o

T
'~

FIG. 11 - ASSUMED STRESS DISTRIBUTION IN WF SHAPES

'tz: = 0.4.

Z = PI as tic Modulus
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• FIG. 12 - INTERACT I ON CURVES BETWEEN MOMENT, SHEAR
AND AXIAL FORCES (NEUTRAL AXIS IN WEB)
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FIG. 13 - INTERACTION CURVES BETWEEN MOMENT, SHEAR
AND AXIAL FORCES-=AFPROACH (A)--
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Case (a) Case (b)

0.(

0.6

0.5

Approach (B)

1:::. V / A'N
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.2 jd\H
o 1.0 2.0 3.0 4.0 5·0

10 Or~-T-"--I~7""---";T-r=:::r=::::C===1

1

•

,

•
• FIG. 14 - INTERACTION CURVES BETWEEN MOJ.VlENT, SHEAR

AND AXIAL FORCES-·-APPROACH (B)~-
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Test Specimens
I T/Ty = 0.13

10WF29

-=.=-=="-=~, -'T/T = 0 19
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\ ~~ Test Results
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\

~\Approach (A)

,
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,
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0
• 0 0.2 0·4 0.6 0.8 l.0

• T
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FIG. 15 - REDUCTION OF PLASTIC MOMENT DUE
TO SHEAR AND AXIAL FORCE:
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Determination of "Failure" Load
Pufrom Test Results----Tangent

'­
t Strain-Hardening Range

Deflection, Curvature or Rotation

•,.

1

•

1
Load Pu
(Kips)

100

. E./dw = 2.0

I:) Te s t Re suI t

Approach (B)

--...
~

"""-
Approach (A) ~

0·40·30.20.1o
50 L....------J. -J..._---.::...---l...- -L-__--I

I

•
.....

\

FIG. 16 - "FAILURE" LOAD Pu OFWF-BEAM UNDER
MOMENT, SHEAR AND AXIAL FORCE
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FIG. 17 (a) - ASSUMED MOMENT-CURVATURE CURVE
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FIG. 17 (b) - ASSUMED CURVATURE DIAGRAM
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FIG. 18 (e) - ULTIMATE LOAD OF BUILT-UP
BEAM WITH CUT OUT
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