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THE EFFECT OF BENDING
ON THE STRESSES IN ADHESIVE JOINTS

by

U. Yuceog1u and D. P. Updike
Lehigh University, Bethlehem, Pa.

ABSTRACT

The problem of stress distribution in adhesive joints where two orth­
otropic plates are bonded through a flexible adhesive layer is analyzed.
It,is shown that the effect of bending of the adherends'on the stresses in
the adhesive layer is very significant. However, the transverse shear
deformations of theadherends have in general very little influence on the
adhesive layer stresses and therefore these shear strains of adherends can
be neglected in many practical cases. It is shown that the maxiumum trans­
verse normal stress in the adhesi~e is, in general, larger than the max­
imum longitudinal shear stress.

The method of solution is applied to several examples of specific
joint geometries and material combinations. It is also shown that the for­
mulation and the solution of the problem of adhesive joints as presented
in this case is general enough to be applicable to. other related problems
such as "scarf joints", "stiffener plates", etc. in a similar fashion.

1. INTRODUCTION

The joining and extension of structural components in the form of

"adhesive (or bonded) joints" has been a very common feature in all kinds

of lightweight structures. In recent years, the developments in very

strong epoxy based adhesives and advanced composites as well as new fab­

rication methods of joints have made feasible the extensive use of ad­

hesive joints in flight vehicle structures in which lightweight and high

fatigue strength are prime requirements. Consequently, considerable

amount of analytical and experimental research has been carried out on

the stress distribution in adhesive joints. In this connection, one may

mention some early analytical work by Goland and Reissner [1], later

Mylonas [2], Cornell [3], Lubkin and Demarkles [5] and more recently

Erdogan and Ratwani [6], Sainsbury-Carter [7] and Adams and Peppiatt [8].

A good survey of the papers on adhesive joints up to 1964 can be found in

Kutscha [9]. The practical aspects of the design of adhesive joints and

adhesives are given in a recent bo~k by Bikerman [10]. For scarf joints,

Lubkin [11], Erdogan and Ratwani [6] can be mentioned.

1
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Adhesive joints are also being used increasingly ~n pr~stressed

post-tensioned concrete structures. For instance, Papault [12], LeVY

[13,14] and particularly Abeles [15] among others investigated the·

practical applications of adhesive joints to prestressed concrete struc­

tural elements.

It is of interest to·observe here that in all the references given

above., excluding Goland and Reissner [1] the effect of bending of adher­

ends on the stress distribution in adhesive layer,' has been ignored.

Also, in [6], [7] the transverse normal stress is neglected. In the case

of Goland and Reissner [1], the cylindrical bending of identical adherends

of isotropic material is considered in combination with the transverse

normal stress and longitudinal shear stress in the adhesive layer. How­

ever, they assumed adherends with equal thickness and identica1 isotropic

material in order to obtain a closed form solution to the problem. This
i .

severely limits the applicability and the practical range of the closed

form solutions given in [1].

Therefore, the purpose of this paper is to develop an analytical

model for adhesive joints in order to find the transverse normal stress

as well as longitudinal shear stress distribution in the adhesive layer

due to the bending deformations in unide~tical orthotropic adherends.

Furthermore, the thickness shear deformations in the adherends will also

be taken into account.

The results indicate that the bending of adherends drastically

change both the normal stress and shear stress concentrations in the ad­

hesive layer particularly in a joint .composed of two adherends with differ­

ent elastic constants. It will be shown that the formulation and method

of solution of the problem of adhesive joints as presented here is

general enough to handle other related problems such as "scarf jointsu~.

"double joints", etc. with relative ease.

2. FORMULATION OF THE PROBLEM

For all.practical purposes,the adhesive joints in terms of geometry

may be divided into three basic types: 1) lap joint, 2) stepped joint,

and 3) scarf (or tapered) joint as shown in Fig. 1.. In general, almost

2
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all other joints may be obtained through some combination or repetition

of these basic types. In a similar fashion, from the standpoint of

mechanics, the "stepped joint" may be considered same as the "lap jo.int'i [*]

and the' "scarf joint" is a limiting case of infinite number of "stepped

joints" put together between two end points of the scarf joint. There­

-fore ;in this work only the "lap joint" will be investigated in detail.

Other types of joints and related problems will be presented in a forth­

coming report.

A typical "lap joint" of length L shown in Fig. 2, consists of

upper and lower adherends (or plates) of different orthotropic materials

,with thicknesses hI and h2 respectively and a thin isotropic adhesive

-layer of thickness t. The principal directions of orthotropy in both
fo

:~dherends are assumed to coincide with the coordinate axes as shown in

Fig. 2a and 2b. Both upper and lower adherends are treated as orthotropic

-plates subjected to in-plane stretchin~, bending and thickness (or trans­

~erse) shear deformations. The thin adhesive layer can be considered as

composed of longitudinal shear and transverse tension-compression springs

~connecting the two adherends. In other words, it is assumed that, in the

-~adhesive layer, the dominant stresses are the longitudinal shear and

transverse (or thickness) normal stress and, furthermore, these stresses
[**1,do not change across the thickness of the adhesive (see Fig. 2 and 3).

The sign convention for ui , vi, wi (i=1,2) displacements, the strain quantities,

the stresses and stress-resultants for both adherends and adhesive layer

are those of the theory of elasticity. (See also the Appendix)

A self-contained treatment of the field equations of the shear theory

'of othotropic plates which takes into account in the average the-trans­

-yerse (or thickness) shear deformations are given in the Appendix (see

[*lprovided the vertical slits of the "stepped joint"are not filled with
'-;adhesive or their effect is ignored. This is not an unrealistic assumption
-specially if one considers the fact that the thickness of the adherends are
in general very small.

[til .
This last assumption implies that al(x,y) = a2 (x,;) = 0, LI(x,y) =

--ri(x,y) = LX and L~.(X,y) = Lj(X,y) = Ly providing that adhesiv~ thickness
~t« (hi' h

2
) • .
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also [16]). Thus, after some algebric manipulations, these equations

can be reduced, in terms of the so-called "fundamental variables" Ni ,
iii iii iii x

N ,Q, M ,M ,u, v , w , a ,a (i = 1,2), into the following system
xy x x xy x oY

of partial differential equations:

iii
N =-p-NX,x x xy,y

N1 = _
xy,x

iii 1 iP - (e12 u, + C22 v, )
Y oxy· yy

i i Li i i
~,x = - (w, + ay,y)Pz - 2 yy

M
i

= _ mi + Qi _ Mi
x,x x x 0 xY.'y

i _mio+Li i ai )M = o(w +
xy,x y 2 'y Y

and,

(i ::: 1,2) - •• 0 (la-e)

i (Ni _ iiiu, ::: C12 v'y)!Cllx x . - ....

i
(N

i i
O

i i
v, ::: F22 u'y)!F12x xy

a
i (Mi i

a
i

)!D
i (i 1,2) (If-j)= D12

=
x,X x y,y 11

w,; = ~!L~

where i = 1 and i = 2 correspond to the upper and lower adherends respect­

~vely. The sum of the distributed surface loads pi, pi, pi (i ::: 1,2) and
i i x Y z -

distributed surface moments m ,m (i::: 1,2) acting on the reference-planes
x y

-aTe- given as,

1
0

1
Tpx q -x x

1 1
- Tpy = qy y

2 2 +
px

_0
qx T

x

2 2 +py = - qy T
Y.

4
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1 1 2 2 +a (2a-e).p I:: qz - a Pz = - qz z

1 1 hI hl+t 2 2 h2
h2+t

m = Clx T'+ T m = q -+ Tx x 2 x x 2 x 2

1 1 h l hl+t 2 2 h2 h2+t
m :;: qy -+ T m = q -+ T

y. 2 y 2 Y Y 2 ., Y 2

.and the stresses in the adhesive layer are ~

CJ(~,y)
B 1 2= - (w - w )
t

G 1 1 h l 2 h
T (x,y) = - (u a -- u a2 -1) (3a-c)x t x 2 x 2

G 1 1 hI 2 h
T (x,y) = - (v a -.'- v.' - a~ 2

2
)y t y.2

where B is an elastic constant related to the Young's modulus and Poisson's

Tatio V and the shear modulus G of the 'adhesive, o(x,y) is the transverse

normal stress, T (x,y), T (x,y) are longitudinal shear stresses of the ad-x y
. hesive layer in x and'y directions respectively.'

The equations (3a-c) define the mechanical behavior ot.the adhesive

~ayer and they also correspond to the compatibility equations of the prob­

.1em i.e. peeling off, cracking or' separation are not permitted on the

interfaces between the adhesive layer and adherends.

The elastic constant B in (3.2) can be found from the.. fo110wing elastic

:stress-strain relation for the adhesive layer.

a(x,y)~ a = A(e + e + e ) + 2Gez x y z z (4)

-where a is the transverse normal stress, e , e , ez are.tha strain compon­x y
ents and,

A~ VE![(l+v) (1-2v)] (5)

~ecause of the compatibility of strains on the-inter facesbetween'-adher­

ends and adhesive layer;e and e .in the adhesive layer must be equal inx y.

5
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on the interfaces,·.magnitudeto the adherend· strains ei , e i (i = 1,2)
x y

whereas adhesive layer strain e which is given by,z

(6)

,-can be much larger ot' Ie I»(e ,e ). If e,e are neglected.;,in compari-z x y x y
,son wfth e in equation (5), then the elastic constant B of" the adhesivez
is,

B : A+ 2G = (I-V)E!(1-2v) (7)

, .
.~king it somewhat larger than Young's modulus E.

i,'l iii "'
The surface load terms p ; p , p and m , m (i = 1,2)~n (la-e) can

x y z x y -
'be easily eliminated by simply substituting (3a-c) into (~a-e). Fin-

~ly, the system (la-e) and (If-j) reduces to the following matrix form

~of a system of twenty partial differential equations with-the appropriate

,~oundary conditions in the region (al~x~bl)and (a2~y~b2)'

(m ~ n = 1,2, •• ,10)

a aYk a
2
Yk

ax Yj (x,y) = Fj (x,y, ay 'oydx

a1 ' a 1
Tmr(y) Yr(al,y) = Um (y)

, ... ) (k = j = 1,2, •• ,20)

(r = s = 1,2, •• ,20)

a
2T (x) Y (x,a2)mn r

a
= U 2(x)

m

b
2

' 1 b2T (x) Y (x,b2) = U (x)ns s ' n

:where Y
j

(x,y) is a column matrix of order 2'0 which includes all the "fund-
al b -'

<amental variables" and Um (y), U ley) are the specified boundary conditions
n 'a2 b 2:.;at x = a

1
and' x = b

l
respectively.- Simila~,ly Um (x), Un (x) are boundary

. a
cgnditions ~pecified at y = a 2 and y = b2 respectively. The matrices Tm~'

~ 1, Ta2, T 2 are coefficient matrices depending on the support conditions
ns mr ns

,along the boundaries. In general, they are unit matrices.

6



In the case of a joint with finite width in y dir~ction th~ system

(Ba-c) has to be solved. However t if it is assumed that, .the dimension

in y direction is large and that cylindrical bending occurs along the

joint in x direction t then the equations (la-j) reduce to the twelfth

order system of ordinary differential equations given bYt

dNi
ix--= - Pdx x

d~ i--= - Pdx z

d~
_ mi + Qix--=

dx x x

(i = 1 t 2)

(i = 1 t 2)

(9a-c)

(9d-f)

~i
x

where Pi. pi and mi ( 4 = 1 2) i i (2 'd) h () ( )• • tare g ven n atC t owever cr xtY , Tx x,yx z x
and T (xtY) become t

Y

. cr(xty) = cr(x) , T (xtY) = T(X)
x

, (10)

with the righthand sides of the equations (3a,b) still being valid (see

Fig. 3).

Consequently, (Ba-c) reduces to a simpler matrix form in terms of a

system of twelve ordinary differential equations with the boundary condi­

tions along the joint in the ~egion with a1 = -,t, b1 ·= + tor (-t~x~+t)

and (-~y~+CO)t

(j = k = 1,2, •• ,12)

7
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Tb Y (+l) = ub
ns s n

(m = n = 1,2, •• ,6) (lla-c)

where Ajk(x) is a coefficient matrix of order (12,12) which includes the

elastic constants and geometric dimensions such as thickness, etc. of the

adherends and the adhesive layer. P.(x) is a column matrix of order 12,
. J •

corresponding.to the.distributed loads qi, qi, ql.. The coefficient matrix
x y z

Ajk is not in general a function of x unless the thickness or the material

constants of" the adherends (or the adhesive layer) or both varies along

the length of. the joint (i.e. scarf joint). The matrix Y.(x) is again a
. J

column matrix of order 12, including all the "fundamental variables" as
. .. i i . i

its elements. The twelve fundamental variables Nl., Ql., M , u , al., wx x x x
(i= 1,2) are the unknown functions of the independent variable x. In

a b·the boundary conditions (llb,c), the matrices T and T are constantmr ns
matrices with the order of (6,12) and (6,12) respectively~ The quantities

a bU .and U are column matrices corresponding to the stress-resultants andm n
displacements prescri~ed at the ends of the adhesive joint x = - land

x = + l respectively.

The boundary conditions in (lIb) and (lIe) are obtained from the

known' stress resultants and displacements of the adherends at the ends of

the joint. In the lap joint in Fig. 2, the six boundary conditions to

be prescribed at each end may be found using the free body diagrams in

Fi 3 d F· 4 F· N1 Q1 M1 d N2 Q2 M2 h b'g. an l.g. • or l.nstance, *' *' * an *' *' * were su scrl.pt

* designates prescribed quantities at x = + l, are calculated from the

statics in terms of the distributed external force P (or in terms of bas~c

loads N , Q ,M in Fig. 4) and the geometry. Then, the boundary condi-
000

tions are:

. a~ x = -l tile column . US in (Ub) ,matrl.X .
m

1 = 0
1 = 0 a

1 = 0 N2
= 0 ~ 0 M2 0 (l2a)u w = , =x X , x

at x = +l , the column matrix Ub in (Uc)n ,

, ~ = 0 ,

8
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the lower adherend represent

(m = 1,2, •• ,6). In (1Ib,c)

Note here that in (12a) displacement boundary conditions rather

'~han the force conditions prescribed for the .upper adherend at the left

end of tbe joint. The reason for this is twofold. If the.three dis-

1 ( . 1 0 1 0 0
1 ' 0) ib d h hp acements 1.e. u = , w = , ~ = are not prescr e, t en t e

displacements throughout the joint cannot be found from (9a-f) or from

(1Ia-c). Because any arbitrary rigid body displacements can be added

~o these system of equations without violating the mathematical condi­

tions of the problem; hence, the solution to these equations would not
111

~e unique. Also, the prescribed stress resultants N*, Q*, M* must necess-
222<arily be in equilibrium with N*, Q*, M*" This equilibrium, however, is

. "already expressed through (9a-c). Therefore, in (l2a), the inclusion of

~quilibrium values of the external forces as boundary conditions, instead
111 .

·.-of displacements u* = 0, w* = 0, S* = 0, would be redundant. (With the

.,assumed fully fixed condition applied to the one section of the upper

~dherend, the displacements ui , vi, wi (i = 1) now represent displace­

~ents relative to this section. The choice of the joint end sect10n

~28ssumed fixed in no way influences the calculated stresses).

Thus, at x = - i, the displacement conditions for the upper adherend

.in combination with the force conditions for

the ~'appropriate" boundary conditions for if. m
'1;he matrices rfI, Tb are unit matrices, however, in special cases· with_ .'. . mr ns
,spring and other type of support conditions at x = + i they may have

"other nonzero components •

.Thus, the equations (1Ia) with the appropriate boundary conditions

(1Ib,c) represent a system of twelfth order linear ordinary differential

"equations. The entire system (lla-c) constitutes a so-called "two-point

,..boundary value problem" of all the three basic types of the adhesive joint.

3. METHOD OF SOLUTION OF DIFFERENTIAL EQUATIONS

The system of equations similar to (la-j) or (4a-c) and also (9a-f)

'"r (1Ia-c) has been investigated among others by Kalnins [16,17]. In

general, they can be solved by making use of numerical methods such as

"'~he "multi-segment method of inte~ration" or "finite difference methods"

9
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:aT both. However, in the case of adhesive joints under special conditions,

the equations (9a-f) (or Ua-c) have a closed form solution. This "special

case" and the more "general cases" are considered next.

The problem in both special and general cases. will be solved for ex­

ternal tension N , external shear Q and external bending moment M which
. 0 00

are'defined as the ~hree "basic loading.case~" in Fig. 4. Any other load-

ing case can be treated as a superposition of these basic loadings (pro­

vided there are no distributed surface loads onadherends).

a) Special Case (Adherends with idential thickness and material):

In order to gain some idea about the effect of the thickness shear

:deformations of adherends on the stresses -r(x} and a(x}, consider a special

case in which adherends have the same thickness and materiaL (or h1=h2=h.,
12 12 12 12 12 12 a

E1=E1=Ea , GI3=GI3=Ga' V12=V12=Va' Cll=C11=Ca' Dl1=Dll=Da' L1=L1=La where
. -'Subscript "a" denotes x direction and lib"for _y direction in identical and

;orthotropic adherends).

(l4a-c)

The quantity (Q~+Q;)-in the equation (13a) can be considered as the total

_shear resultant transmitted through the joint. It is of -interest to ob­

serve here that {f the transverse shear strain in the adherends is neglected,

.. 2 2"2 . I 2
d T/dx -(C).T= -. Gh (Q*+Q*)f (2D t). a a

d4a/dx4 - 2(0.}2 d2a/dx2 + (6)4 a= 0

2
(c) = 2G/(C t) + Gh (h +t}/(2D t)a a a a

10

In such a case the system of ordinary differential equations (9a-f)

~nd (iia-c) can easily be reduced.to two coupled ordinary differential

cequations in terms of the two unknown adhesive layer stresses a(x) and

-'"r(x} so that,



. .

then (13a) remains the same, but the parameter a in (l3b) becomes zero.

In such a case, the equations reduce to those of Goland and Reissner H].
Thus, it seems that transverse shear strains in adherends effect ma~nly

the transverse normal stress cr(x) in the adhesive layer •
.

The general solution of (13a) is,

T(X) = Al sinh cx + A2. cosh ex

(15)

However, the solution of (13b) is dependent on the relative values of a

and a•. Thus, if a<a, the general solution of (13b) is,
r"·

cr(x) = A3 sinh ax cos bx + A
4

sinh ax sin .bx

+ AS cosh ax sin bx + A
6

cosh ax cos bx

. where

. (16)

a =
(11~ ~b)

If ~a, the general solution of (13b) becomes,

cr(X) = A3 sinh ~x + A4 cosh ax

+ AS sinh bx + A
6

cosh bx :(18)

where r J1/2
a = ~2 + /o.4_a4

[. J1
/
2

b =. ~2 _ ~4_B4

(19a,b)

The maximum values of T(X) and cr(x) corresponding to each basic loading.

case .can easily be calculated from-(1S), (16) and (18) and they occur in all

loading cases at the ends of the jPint. For example, in the case of external

11



normal tension load No in Fig. 4, T(X) and a(x) are even functions of

x so that the arbitrary constants AI' A3, AS .of the solutions in (IS)

and (16), (18) and the remaining thr~e constants may be determined from

the boundary conditions (or the external equilibrium conditions) of the

joint. Thus, for external tension load No'

'.

2tT INo = ci cothc!max

tDa
2
G IBM* - k2/k1a max

where

and for a<a,

k 1 = bi sinh 2ai + at sin 2bt

k2 = bi sinh 2ai - ai sin 2bi

wh~reas, for a>a,

k1 = bi sinh bi cosh ai - at sinh a1 cosh bi.

. .
k2 = bi cosh bi sinh ai - at, cosh at sinh bi

(20a,b)

(21) .

,(22a ,b)

.(23a,b)

Similarly, in the case of external shear force Q shown in Fig. 4,o
the stresses T(X) and a(x) are even functions of the coordinate x. The

I ~

maximum values of T(X) and a(x), which occur at the joint edges, are,

2tD Cor IGh Q i = coth ci - 1/cta max a 0

tD a2G IB Q i = (k2 + k3)/kla max' 0

where, for cx<a,

12
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,and, for cPa,

... - ( 2 2 () () 2a - b )(cosh a.(..cosh b.(..)/a (25,b)

and k1 and k2 are given in (23a,b).

~n the case of bending moment loading M of Fig. 4 the expressions
o

£or L(x) and cr(x) are odd functions of x and maximum values occuring at

the edges are,

2tD"cL IGh M = tanh cla max. a 0
(26a,b)

-where k1 and k2 have been defined previously.

In order to calculate these maximum stresses, values of the ratios

1t21kl and k3/k1 as functions of at and a/a have been plotted in Figures 5

<~d 6, respectively. In these plots, the parameter describing the in­

Iluence of the transverse shearing strain of the adherends is the ratio

~ri.1a given by,

.(27)

Substituting for D and L the ratio a/a becomes fororthotropic adherends. a a
·of equal thickness and the same material,

a/a = I

I
(28,-a)

and for isotropic adherends of equal thickness and same ·material,

ala = fi2(l+V )Bh I{SOE (l-v )t}11/4L a a a a ~
(28b)

By calculating the ratio a/a from (28a) or (28b), one can determine

~or any given case whether or not the thickness shear strains in adherends

.:.:Significantly influence the maximum value of the normal stress in the

adhesive. According to Fig. 5 and Fig. 6, the curves for the values

13



a/B~l do not differ significantly from those for a/l3=O,'-thus., the in­

fluence of the thickness shear strains of adherends on maximum normal

stress cr can be ignored provided a/B$l.O.max . .'

(This is more or less valid in practical cases. For example, a

typical joint of two aluminum plates, each of h =0.1 -inch thicknessa .
with E =10 x 106psi , V =0.'33 bonded by a layer of epoxy with E=4.5 x.aa
105 psi, v=0.35 and t=O.Ol ~nch thickness, has a ratioaIB=0.77 which

is smaller than unity). On the other hand, in the- case of adherends

-with large thicknesses and small longitudinal shear modulus G13 , the

effect of the adherend thickness shear deformations.on.the adhesive

layer stresses may not be ignored.

b) General Case (Dissimilar Adherends):

: In the case of adherends with unequal thicknesses and-different

elastic properties, a closed form solution (such as given in the pre­

eeeding section) of the.two-point boundary value problem of (lla-c)

$eems not to be possible. Therefore, numerical methods have to be

"_employed in order to solve this system. The "multi-segment method of

integration" as given in [17] is most suitable for this purpose. In

fact, this method of numerical integration is used here in solving the

general case in (9a-f) or in (lla-c). This way, the t~o~point boundary

value problem of the adhesive joint reduces into a series of initial

value problems and then integrated numerically between the boundary

"points.

For the sake of simplicity, one can

to the distributed surface loads such as

consequently P. matrix in
J

loads. Then, in (lla-c),

drop the quantities corresponding

i i (. 1 2-)' (9 f) dqx' qz 1 =, 1n a- an
- ---

(lla-c) associated with the external surface

i
«Ix = o (i = 1,2; j = 1,2, .. ,12)

.~---~--

(29)

It should be emphasized here that this last additional assumption in no

·way affects either the general form of the system iIi (lla~c) or the appli­

cability of the method of solution employed here to the lap joint as well

as other type of joints.

14



Thus, a computer program based on multi~segment method"of integra­

'-tion has been develope~ to solve the equations in (9a-f) or (lla-c)- arid

bas been applied to several joints under various edge loads. The results
- .

for' a typical lap joint subjected to basic external load cases of Fig. 4

and also for a stepped joint are presented in the next section.

As it is explained at the beginning, the analysis of a "stepped joint"

~s not different from that of a lap joint. Tnerefore, it will not be

~reated as a separate case. However,· in order to point out the influence

~ofbending on the stresses in a stepped joint, even when it is under uni­

.axial tension, the results of a numerical example given in Fig. 10 will

~e discussed briefly in the n~xt section.

In passing, it may be of interest to note here that in the case of a

scarf joint (see Fig. 1) the formulation of the problem and the method of

~olution as presented in th~s paper can easily be employed. ·In such a

~case the equations (9a-f) and (1Ia-c) are exactly the same except that the

:terms of the coefficient matrix AO k become functions of x due to variation
J

Jof adherend thicknesses rather than elastic constants. The computer pro-

'gram which was developed for the general case can also easily handle the

~scarf joint problein.

-4. DISCUSSION OF RESULTS

The non-dimensional exPressions (20a), (24a), (26a) for T andmax
(20b), (24b) , (26b) for cr corresponding to the basic loading cases inmax
~ joint of identical thickness an~ material, are functions of the para-

:meters cl, Sl and the ratio alB. As it is noted earlier in the solution

--of the "special case", the transverse shear strains in adherends may be

.neglected. Thus, for practical applications, the ratio alB in the

,'~special case" becomes

ala ~O

,,;and similarly in the "general case", in (9f)

(~/L~) ~ 0 (i = 1,2)

15
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-which corresponds to _the vanishing of adherend transverse shear strains

;or consequently to the classical bending theory of thin plates.

For practical purposes, in a typical joint a/a ratio ~y be assumed

.as

a/a ~ 1 "'C (32)

-and the adhesive thickness t is in general considered to be very small

i.e. t«ha (h1 = h2 = ha). Then, the parameters ct and at become large

~and for the values of,

D > 3 DO ?_- 5C-L ~ , P\-._ - (33)

and 0 equations (ZOa,b), (Z4a,b), (26a,b) for the basic exter-max
cases can be expressed in terms of asymptotic expansions for

-"the Tmax
-0:1131 -loading

.large t.

Thus, for the external tension load N case of Fig. 4a, the asymptotico
·~values of T and 0 aremax max

T =N c/2max - 0

-~"'''~1-~ ••..•• -- .-.:

- ~ (348 ,~)

a - N(h +t)B/(2tD a2)max 0 a a

by -introducing (14a) and (14c) for c and a and also for D /e =(h )2/12 ,a a a
T and 0 can be further reduced to,
:max max

No
Tmax =-- (2G/e )1/2It a

N
a ~ ~ (3B/e )1/2

max - aIt

(358',b)

In the case of a joint subjected to external bending moment M onlyo
·~Fig. 4c), the asymptotic expressions for Tmax and 0max' derived in the

'=same manner, are

16



Tmax

M
~ ~ (0.375 G/D

a
) 1/2

It (36a,b)

M
a ~ ~ (0.5 BID )1/2

max - It a

-"""'!II':

Similarly, if the joint is under external shear force Q- in Fig. 4b, the
.:0

asymptotic expressions for T and a are,
max max

a ' ...
max,.-

Q (.t -£.)
o 0 (0.375 G/D )1/2
It· a

Q (£. -£.)
o 0 (0.5 BID )1/2
.,It', a

(37a,b)

The equations (34a,b), (36a,b) and (37a,b) all indicate that for

joints composed of identical adherends in thickness and material, maximum

~tresses occur at the edges of the adhesive joint.- Furthermore, both

a and T are of O(,l/lt.t) as t ~ 0, showing the singular' b~havior of thesemax max
stresses around the edges. Similar results are obtained 'in the more gen-

eral case with unidentical adherends. For example, ~n rig. 7, 8 and 9, a

lap joint of aluminum-epoxy-steel subjected to basic external loads demon­

-strate behavior similar to that of, a joint with identical adherends. Both

stresses a(x) and T(X) shoot up within the boundary layer region in the

neighborhood of the joint edges. This is specially-so in the pure bending

case (see Fig. 9) which clearly illustrates the effect of bending of

adherends.

Another interesting result can be obtained by estimating the ratio

a IT for basic external load cases of Fig. 4. Thus, from (35a,b), formax max
the basic tension load N ,

o "

a IT. ... (1.5 B/G)1/2
max max

~d for the basic external moment loading M ,o

a IT =~ (B/G)1/2 as t ~ 0
max max r.:-

... 3

17
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the ratio for the basic shear loading Q is equal to that of (39). Theseo . . .
~tress ratios, in the case of identical adherends, depend only on the

Poisson's ratio V of the adhesive and for practical values of v, one can

"conclude that,

a . IT > 1.0 as t ~ 0max max ==;

. ~"""- .. '-'. (40)

',and gets larger as the bending of ~he joint increases (depending on the

c~articular loading this ratio' can easily reach the value of 2 or more).

;7hese results can also be verified for the general case .~ith unidentical

..aiherends by simply comparing a and T values in Fig. 7, 8 and 9•. max max
"~ese plots again indicate that higher stress concentrations occur at the

~ge corresponding to lessstiff~r adherend and the normal stress a because- , max'
:of bending deformation; is in. general the dominant stress. As a result,

'~e tearing apart of the adhesive layer and adherends along the joint

~s likely to start and grow due to these transverse normal stress coneen­

~trations. Therefore, one may rightly call the maximum transverse normal

,;Btress a as the "tearing stress" of the adhesive -joint. On this basis,max .
~ may be said that theories which do not take into account the bending

~f the adherends cannot correctly predict the maximum stress in the ad­

."hesive layer. (For instance, in ErdClgan and Ratwani [6], Sainsbury­

~rter [7], Adams and Peppiatt [8], Lubkin [11], the effect of bending is

completely ignored).

The significance of the bending effect even on the relatively smaller

~ongitudinal shear stress .of the adhesive can best be demonstrated b~

-csimply comparing the results presented here with those which neglect both

~he bending deformation and transverse shear deformations in the adherends.

'~e equations (15) and (16) reduce to that of [6] with a(x)=O and T(X)j 0

--""if the bending stiffnesses D~l' D~1 and the transverse shear stiffnesses

.~ '. L~ are assumed to be infinite. Thus, "_" defining the quantities with

..bending ne~lected, (15) and (6) become,

cr(x) =0

18
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(42)

then the corresponding maximum shear stress T for the basic externalmax
tension load N of Fig. 4 is given by, •

Q

2iT !N =ei coth Cl 'max 0

and the asymptotic value is,

T ~ N e/2max.- 0

(43)

(44)

by using (20a) for T which includes the effect bending and transversemax
shear deformation and (43) for Tmax '

I

T !T = c coth c!!(e coth el)max max

For the small values of adhesive thickness, i.e.

'almost c!e = 2. Then,

T IT > 1max max =

(45)

t«h , the ratio is
a

(46)

Howeyer, from the asymptotic values in (34a) and (44)

(for large ei and t ~ 0) (47) .

Thus, for practical joints, this T IT ratio will have a value. some-. . max max
what close to 2. Consequently, the theories [6,7,8,11] which neglect the

. bending effect, even in the case of uniaxial external tension only, might

underestimate the maximum shear stress by nearly 50%.

Similar results are obtained for the more "general case" with uniden­

tical adherends. For instance, the comparison of the longitudinal shear

stress plot of the same "stepped joint" of Aluminum-Epoxy-Steel in Erdogan

and Ratwani [6] with that of the shear stress plot obtained by the present

authors and which includes the bending effect is given in Fig. 10.· It is

obvious that, in spite or the uniaxial external tension load, the actual .

maximum shear stress is almost twice as large as the shear stress obtained

19
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by [6]. Also, it is important to observe here that; in Fig. 10, the

'maximum transverse normal stress, because of the bending deformations

,a~ong the joint, is again very much larger than the maximum transverse

.shear stress. •

The influence of protruding lengths II and l2 outside of the J~int

;on the normal and shear stresses in the adhesive is also considered•.'

,As pointed out previously, even under uniaxial tension the adhesive

. joint, is in the state of bending regardless of the size of the pro­

~ding lengths. As an example, the stresses in A1uminum-Epoxy-Boron

~poxy joint under uniaxial tension P=I.0 are computed for protruding.

a-ength values ll=l2=l*(l*=O,L,5L) as shown in Fig. 11. It is

··~een that, after l*=5L is reached both the maximum normal stress and

<shear stress in the adhesive layer level off and remain more or 1es~

same in magnitude. Again, as expected, the maximum normal stress is
i

larger than the maximum shear stress.

:5. CONCLUSIONS

A general method of stress analysis of adhesive joints of relatively

'rigid adherends bonded through a flexible adhesive layer has been deve1o.ped

.and applied to several types of joints. Based on the numerical examples

,and the discussion in preceeding section, one can conclude the following:

1. Bending of one or both adherends is a dominant factor on the

stress distribution in adhesive joints and it occurs even in

a stepped joint under external uniaxial tension load.

2. Due to the influence of bending of adherends, the distribution

of the transverse normal stress cr(x) as well as the shear stress

T(X) in adhesive layer is drastically changed and cr is inmax
general larger than T and in some cases at least twice asmax .
large. (This point should be taken into account in the ~esign

of adhesive joints.)

3. Stress concentrations for cr(x) and T(X) occur 'at both ends of

the joint within the so-called boundary layer region, with

higher stress concentrations taking place at less stiff : ad­

herend side. Otherwise, with equaY thickness and identical

20
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a ~. (For
max

have the form

4.

5.

adherends both cr(x) and T(X) are symmetric or. skew~symmetric

as the case may be.

As the adhesive thickness t decreases the magnitudes of stress
•

concentrations at the ends of the joint increase sharply and

finally as t+O the stresses become singular i.e. T ~~
max

identical adherends these limiting expressions

T =O(l/It) and cr =O(l/{t) as t+O and formax max
unidentica1 adherends, similar forms can be expected).

The thickness shear deformations in adherends"do not signif­

icantly influences T(X) and a(x) distribution in the "adhesive

layer. For practical purposes thickness shear deformations in

adherends can be neglected unless the adherends are extermeiy

thick and deformable in shear. ~._~.,;t:

-

6.· The formulation o~ the problem and the method of solution as

presented in this work is very general and can easily be applied

to other types of joints such as "scarf joints", "double joints",

"cover plates", "joints with layered adherends", etc. without

any difficulty. (In fact,these problems have already been

. solved by the present authors and will be p~esented in a forthcoming

report as the continuation of this work.
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APPENDIX

For the sake of completeness and easy reference the field equations

of orthotropic plates which include the transverse shear deformations will

be reproduced·in this section. - Referring to Kalnins [16] (similar equa­

tionswere also obtained by other well known authors), dne can write the

equilibrium equations of the orthotropic plates in terms of the coordi­

nate system given in Fig. 2 in the following- form,

Ni + Ni + pi = 0
XY,x y,y Y

Oi + Oi + pi = 0
"'x,x -y,y z (i = 1,2) (A. la-f)

plate (or adherend) and i=2 corresponds to the

and pi, pi, pi are distributed loads and mi ~nd
x y z - x

distributed moments both acting on the middle plane (or the ref-

plane) of the upper and lower plates. The Hooke's Law or thestress--

where i=l indicates upper

lower plate (or adherend)
imare
y

erence

strain relations for an orthotropic material,

(1i = ai i i i
ex + B12 e

- x 11 Y

(1i = i i \ i iB12 ex + B22 ey y

(1i - 0-z

(i = 1,2) (A.2a-£)
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111
(J I:: .2 e C
xz xz 13

'where

(A.3a-c)

shear modul1
1z +3. Also.,

1 iand where E1, EZ are the Young's Mqduli of the material 1n the direction

~f x andy axes respectively. Similarly ci2' ci3' ci3 are the

~1ththe subscripts co~responding to coordi~ate axes x+l, y+Z,
1i.vI2 ' V21 are the Poisson's ratios of the material. The expressions for

-i -1 -i
~isplacement u , v , ware,

-1
u 1 + 1 ci1= u Z Iol

X

-_.........--

-1 i
w = w

(i = 1,2) (A.4a-c)

the normal to the middle
1 ~i

surface strains Ej,yxz'

i·::::where u ,

·.lines and

surface.
1 . i

.' Yyz ' Yl'
.

vi,'wi are middle surface displacements along x, y,
1 . . .

a and a1 are angles of rotation of
x y .

The strains e .. , in terms of middle

Y~, ~i, ~~ 1J . .

1 E1 + z1 ke lC

x x x

i
E

1 + i ky (1 = 1,2)e = zy Y

i
0e =z

2ei (~i + i
~) +. (O~ +

i oi)= z z
xy . 1 2
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1 1
'2e = yxz xz

1 1
2e = yyz yz

1 1
E

j
and other strain quantities y ,xz .

defined in terms of displacement quan-

s;, s~ in the following way,

Where middle surface strains
i 11' iii i

~:z' ltx' ,k , Y1' Y2 ,· c\, 02 are
y . ~ Y i" i

-tit1es u , v , wand rotations

1 ·1
E = U

X 'x
, E1 = u, 1

y y

1 i
Y - v· 1 - 'x

1 1
Y2 = V'y

1 1
k y"'= 8y ,y

I
I

(1 = l,2) (A.6a-d)

(1 = l,2) CA.6e-g}

-The stress-resultant and strain relations can be expressed as,'.,
". '""L ._" ._ .....

· __i i· iii
, ~ = D

11
k + D

12
k· x x y

(1 '" l,2) (A7a-d)

.~..

' .
01 '" L1 y1

."y 2 yz

-.
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" .
~Where extentiona1, bending, twisting and shearing rigidities are given a~,

Di f Bi (i)2 d i f i (i)2 d i i f i (zi)2 d ~i11 = 11 z" z, D12 = B12 z z , D22 = B22 z

iii iF11 = F12 = fG
12

dz

Ki1 = Ki2 = f Gi2 (zi)2 dz
i

(1 = 1,2) (A.Ba-e)

•

"The integrals above are to be taken across the thicknesses of the plates •

27



; .
!
;

I
I,
i -,

.'

(0) -

..
•

--{O- - ---:- - --

-~----®'

-I-
!

I

L

..
(bl-{-~-~

r~L-1

• (Cl~-.<D ~- @-t-
r L'"1

_.-.-...~-.-.

Fig. I" Basic Types of Adhesive Joints (a) Lap Joint
(b) Stepped Joint (c) Scarf Joint



..

'.

•

•

•

..

•

-x
~-x ®

Adhesive Layer

I:__I~--"1.-4...~...---..;.I--t:1
. -L---.,.

Fig. 2a Perspective View of a Lap Joint



Plate I .
._--,-ql

__~-"'::~--------+---:zl--r'D'1rt-n z-- --
--"'"--_(i)_I_-::_-_-_--r-_----.;-_-__.-:::.~L~7::...,..,..,~- ~I- - ... 'x,u',E:,lI:Z

Plate 2
.-.I dx r--

I~
.,'1 1:

J
·~l~. I

~4
12

lL

Fig. 2b Stress Distribution and Sign Convention in a Lap Joint



•

0"

J"' •

, .

:. .
\.,

Is
~ 0 •

~
~

•,
r

I .
l! "

r ·

I
\ .

•

t/2

Zl Wi 0

o 0 •

2
·qx

+ X
o

.....·1.. dx

Fig. 3 Equilibrium Element in a Lap Joint (Cylindrical Bending)



. .

I . 2
Z. Z •

N'0
_·~:x

I-- - -- - -- ---- t- - --- x
- -- - ..... ~. ...~~ ... - - - ~

'No - - ~- - - - --- 0- -
I I- -.

-to)
•

'.

.....

••
~--- ---~----... --....x

,

1------ -- - ~ - --t-

- I - I
I~- - - 10- - -- - -•

.x

j

-~ -------~ --- ~ - ...... x

~--- ---f-----1-

- I - - J -- - - -
- L -- -

. .

•

:Fig. 4 Basic Loading Cases for a Lap Joint (a) External Tension N ,
o(b) External Shear Q (c) External Bending Moment M '

o ' 0



•

•

•

:1.2

1.0

.8

N .-Qi .6--~
". "",N

.4

.2

1.2

~.,,-.41.0

.8 .

-
.6 ~

N
~

.4

..2 .

•

o .4.6 1.0 .8 .6 .4 .2 0

. ~J .. f .. 1/({3/)



•

•

3

..
o .2 .4 .6 .8 1.0 .8

Pi ~ .to ...
.6 flo

1/<{3I)

.2 .0



•

•

#

•

•

. 14.0

12.0

8.0

-12.0

-14.0

L

- - - - ~ CT(X) / (NolL)

---- T(X)/ (NeIL)

-'-'.. ';','

Fig. 7 Joint with Dissimilar Adherends- External Tension
(N =1.0, L=l.O)

o



h2=0.09

E
2=1.0XI0

7

2
11 =0.3

0~5

....

t= 0.004

E=4.45xI0
5

.G=1.65 XIO
s

h,= 0.03

E:= 3.24 xI0
6

E~= 3.5 X 10
6

.

Jt,~= 0.23

G=1.23 X 10
6

2 -tox,l0 '\,,
I \
I \

\

00 I , -- \ 10. IiJ--.;:I~=:;;;;;;:;;;:2;p===~==:::===:::;:;;:a:.~-r1, .
I . ~

I I Boron Epoxy Epoxy 2 Aluminum ,
1

2 I­
~I.OXIO

2, 30xl0

2
'~OXIO

-.

...

...

•
..

. 2
~.OXIO

2
'~4.0XI0

.6

-5.0XI0
2

-

Fig. 8 Joint with Dissimilar Adherends- External Shear
(Q =1. 0 t L=1. 0)

o



•,
JO.OXI0

21

•
L

'. 2
8.0X10

2 I (M.~tMo

, M~=MO'.
"

, I- , 2 h2
is.OXIO

~-- - - ,O"(X)/ (MO/(L)2)

T(X)/ (M
O
/(L)2)

2
-;4.0x10

r-
\ I

2 Aluminum-

0.5

!= 0.004 h2=0.09

E=4.45xI0
5

E2
:: 1.0x10

7

G= 1.65XI05
- 1I

2=0.3

Boron Epoxy Epoxy

hl =0.03

E:= 3.24X 10
6

E~=3.5XI06

JlI~= 0.23

G= 1.23x 10
6

I,
I

I
I

\~, ,

, 2
"";2.0 x 10

2
.' ---4.0xIO

•

•

•

•

.,.

-. 2
-6.0x 10 ....

Fig. 9 Joint with Dissimilar Adherends- External Bending Moment
(M

o
=1.0, L=l.O) -



-6.0

L

8.0
,
~ N' =N ~ N;=NOI *' 0

•• I,,
.. 6~O

I
I . - - ...:. -a-(xV(No/L)
I..
I#

T(X>/(NO/L)I
I

• 4.0
~. _. ~T(X)/(NO/L)I {• Ref. [6]I

O· == CT(X)/(NO/L)I
I I.

2.0 I II , ,
I ,
I ,
I , .

I 0.5 . ,..' .

,1.0,
0.0

I . ___ e-.:
• \ .--

\ /""'-'-Ref.[S] ...........

--2.0
...~J"

/
• hl=0.1 t = 0.01 h

2
= 0.1

E'= I.OX 10
7 . 5

E2=3.0 X 107E=4.45xIO

• -:4.0 11
'
=0.3 G= 1.65X 10

5 '1/2= 0.3

Aluminum Epoxy. 2 Steel•

..
-

Fig. 10 The Bending Effect on the Adhesive Shear Stresses T(X)
in a Stepped Joint with Dissimilar Adherends: (N =1.0, L=l.O)

o



1.0

h2=0.09

E
2=1.0 XI0

7

1/2: 0.3

2 Aluminum

I .

'-- ---J..---... P

Boron Epoxy Epoxy
6.0

h.= 0.03 . t= 0.004

E:=3.24XI0
6

E:4.45xI05

, J. =5.0L I
~!It E2=3.5X 106 G=1.65 XIOs

3.0 , I =1.0L •=0 23,. ·l't2·
6

2.0 1=0.0 G=1.23X10
•

e-i'" L .,.. 12 ...{

'. = /2 = J.
0.0 r-0_.0 0:.,....5=--- ...;,..-...~1.0

,....
'..J

~-~-M-b..

•

•

•

. ...
-4.0

-------- ........,-- - .....
+++++++++ ++++++++

J.= 0.0'

. J~ tOL
•
'. 5.0L

-5.0

-6.0

-2.0

-1.0

:i
~ -3.0-"-M-

'.

•

•

Fig. 11 Effect of Protruding Lengths on the Stresses in a Lap Joint
with Dissimilar Adherends. (P=l.O, L=l.O)


	Lehigh University
	Lehigh Preserve
	1975

	Effect of bending on the stresses in adhesive joints, March 1975
	U. Yuceoglu
	D. P. Updike
	Recommended Citation


	tmp.1349753097.pdf.NWyRQ

