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THE EFFECT OF BENDING
ON THE STRESSES IN ADHESIVE JOINTS

A‘by

u. Yucedglu and D. P. Updike
Lehigh University, Bethlehem, Pa.

ABSTRACT

' The problem of stress distribution in adhesive joints where two orth-
otropic plates are bonded through a flexible adhesive layer is analyzed.
It is shown that the effect of bending of the adherends on the stresses in
the adhesive layer is very significant. However, the transverse shear
deformations of the ‘adherends have in general very little influence on the
adhesive layer stresses and therefore these shear strains of adherends can
be neglected in many practical cases. It is shown that the maxiumum trans-
verse normal stress in the adhesive is, in general, larger than the max-
imum longitudinal shear stress.

The method of solution is applied to several examples of specific
Joint geometries and material combinations. It is also shown that the for-
mulation and the solution of the problem of adhesive joints as presented
in this case is general encugh to be applicable to other related problems

- such as "scarf joints", "stiffener plates”, etc. in a similar fashion.

1. INTRODUCTION

The joining and extension of structural components in the form of
"adhesive (or bonded) joints" has been a very common feature in all kinds
of lightweight structures. In recent years, the developments in very
strong epoxy based adhesives and advanced composifes as well as new fab-
rication methods of joints have made feasible the extensive use of ad-
hesive joints in flighﬁ vehicle structures in which lightweight and high
fatigue strength are prime requirements. Consequently, considerable
amount of analytical and experimental research has been carried out on

the stress distribution in adhesive joints. In this connection, one may

mention some early analytical work by Goland and Reissner [1], later

Mylonas [2], Cornell [3], Lubkin and Demarkles [5] and more recently
Erdogan and Ratwani [6], Sainsbury-Carter [7] and Adams and Peppiatt [8].

A good survey of the papers on adhesive joints up to 1964 can be found in

Kutscha [9]. The practical aspects of the design of adhesive joints and
adhesives are given in a recent book by Bikerman [10]. For scarf joints,

Lubkin [11], Erdogan and Ratwani [6] can be mentioned.
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Adhesive joints are also being used increasingly in prestressed
post-tensioned concrete structures. For instance, Papault [12] Levy

[13,14] and particularly Abeles [15) among others investigated the.

practical applications of adhesive'joints to prestressed concrete struc-

tural elements.

It is of interest to observe here that in all the references given

above, excluding Goland and Reissner [1] the effect of bending of adher-

- ends on the stress distribution in adhesive 1eyer,'has been ignored.

Also, in [6], [7] the transverse normal stress is neglected. In the case
of Goland and Reissner [1], the cylindrical bending of identical adherends

of isotropic material is considered in combination with the transverse

" normal stress and longitudinal shear stress in the adhesive layer. How-

ever, they assumed adherends with equal thickness and identical isotropic
material in order to obtaln a closed form solution to the problem. This '
severely limits the appllcab111ty and the practlcal range of the closed

form solutions given in [1].

»Therefore, the purpose of this paoer is to develop an analytical
model for adhesive joints in order to find the transverse normal stress
as well as longitudinal shear stress distribution in the adhesive layer
due to the bending deformations in unidentical orthotropic adherends.'
Furthermore, the thickness shear deformatlons in the adherends w111 also

be taken into account.

The results indicate that the bending of adherends drastically
change both the normal stress and shear stress concentrations in the ad-
hesive layer particularly in a joint composed of two adherends with differ-

ent elastic constants. It will be shown that the formulation and method

of solution of the problem of adhesive joints as presented here is

general enough to handle other related problems such as "scarf joints", .

- "double joints", etc. with relative ease.

2, FORMULATION OF THE PROBLEM

For all practical purposes, the adhesive joints in terms of geometry
may be divided into three basic types: 1) lap joint, 2) stepped joint,

and 3) scarf (or tapered) joint ashsbown in Fig. 1. 1In general, almost




all other joints may be obtained through some combination or repetition
of these basic types. In a similar fashion, from the standpoint.of o
mechanics, the "stepped joint" may be considered same as the "lap jqint“[*]
and the "scarf joint" is é limiting case of infinite number of "stepped
joints" put together between two end points of the scarf joint. There-
fore in this work only the "lap joint" will be inQestigated in detail.

4Other fypes of joints and related problems will be presented in 5 forth-

coming report.

A typical "lap joint" of length L shown in Fig. 2, consists of
upper and lower adherends (or plates) of‘differentvorthofropic materials
with thicknesses h1 and h2 respectively and a thin isotropic adhesive
layer of thickness t. The principal directions of orthotropy in both
adherends are assumed to céincidépwith the coordinate axes as shown in
Fig. 2a and 2b. .Both upper and lower adherends are treated as orthotropic
'tplates subjected to in-plane stretching, bending and thickness (6r-trans—
-verse) shear deformations. The thin adhesive layer can be considered as
~composed of longitudinal shear and transverse tension—compression springs
<comnecting the two adherends. In other words, it is assumed that, in the
--adhesive layer, the dominant stresses are the longitudinal shear and
transverse (or thickness) normal stress and, furthermore, these stresses
-do not change across the thickness of the adhesive (see Fig. 2 and 3).[**]
The sign convention for ui, vi, wi (i=1,2) displacements, the strain quantities,
the stresses and stress-resultants for both adherehds-and adhesive layer

are those of the. theory of elaéticity. (See a136 the Appendix)

A self-contained treatment of the field equations of the shear theory
-of othotropic plates which takes into account in the average the trans-

“éerée (or thickness) shear deformations are given in the Appendix (see

t*]Provided the vertical slits of the "stepped joint'" are not filled with
~adhesive or their effect is ignored. This is not an unrealistic assumption
-gpecially if one considers the fact that the thickness of the adherends are
in general very small.

[++] | |

This last assumption implies that Ol(x,y) = oz(x,y) = g, Ti(x,y) =

“Tz(x,y) = T, and Tl(x,y) = Tz(x,y) = T, providing that adhesive thickness
X X y. ’ Yy y

“t<<(hy,hy). , .



- e -

i 4 4
Ny Qo Mo My

also [16]). Thus, after some algebric ménipulations, these equations

can be reduced, in terms of the so-called "fundamental variables" N

i

s ul, vl, wl, B;, B; (i = 1,2), into the following system

of partial differential equations:

N =-p -N
X,X X XY,y
SR i 1 1 4
ny,x = py (012 u,_xy + C22 v’yy)
£ __ 44,4, i el |
Qx,x p, - L, (w’yy + By,y) (1. 1,2) . (1a-e)
M = ~-m + Qi vt -
X,X X X XY,y
Mi - - mi'+ Li'(w i + 81) - (Di Bl -Di ’Bi y
Xy, X 2 ? 12 Tx,xy 22 "y,yy
and, :
i _ i d i - S e
U, (Nx C12 v,y)/qll - o
o4 i 4 i i
Vox -'(ny Fa2 u’y)/FIZ -
A SR S i . | - =
Bx,x = (Mx D}, By,y)/D11 ‘1 1,2) H (1£f-3)
i i i L1 i
By!xA' (M%y'— 312 Bx,y)/Kll o )
S SRR T S |
Yoy T Q/1Ly Bxl

where i = 1 and i = 2 correspond to the upper and lower adherends respeét—
ively. The sum of the distributed surface loads p:; p;, p: (i = 1,2) and
distributed surface moments m;, m; (i= 1,2) acting on the fefeiéhce'planes .

are given as, . S

1 1 2 . . - e Tmme t T em Dl
- - = - + P
P " Tx ’ Py YW * T T _
11 2 - s
= - T ’ = - + T
% qy y Py q



P, =49, -0 , p,=-9q,%0 . (a-e)
h h,+t h h +t
1 _ 1 _l 1 2 _ 272 2
T %2 T 2 0 T % +-Tx 2
ml _ 1 hl . h1+t mz _ 2 EZ.+ . h2+t
y 2Ty 0 T Y0 2
and the stresses in the adhesive layer are : »
B , 1 2 -
O(x,y) T (w -w)
.G ,1 _ .11 2 7272 . ) o
T (x,y) = S (u By 3 — U Bx_Z ) B r(3a-c)
h h
171 2 2 2
-Ty(x,y) =t --B-y‘. 27~ Vo= By )

where B is an elastic constant related to the Young's modulus and Poisson's
Tatio vV and the shear modulus G of the adhesive, 0(x,y) is the transverse
~normal stress, Tx(x,y), Ty(x,y) are longitudinal shear stresses of the ad-

“hesive layer in x and‘y directions respeéctively. -~ - -

The equatlons (3a-c) define the mechanical behavior of ‘the adhesive
layer and they also correspond to the compatibility equatlons of the prob-
lem i.e. peeling off, cracking or separation are not permltted on the

interfaces between the adhesive layer and adherends.

The elastic constant B in (3.2) can be found from theufoilowing elastic

:stress~strain relation for the adhesive layer.

O(x,y)é oz = )\(ex + ey + ez) + 2Gez .2 (4)

. where 0 is the transverse normal stress, e s ey, e, are. the. strain compon-

ents and,v _
A = VE/[(1+v) (1-2V)] L _';,1 .‘;; (5)

Because of the compatibility of strains on the inter faces'between"adher—

. ends and.adhesive.,l'ay‘er;“ex and eyzin the adhesive layer must be equal in



-boundary conditions in the region (alfxfbi)'and (azfysz),

magnitude to the adherend strains ei, e; (1 =1,2) on the‘interfaces,”

whereas adhesive layer strain e, which is given by, <
12 S | : ‘
e, = (W -w )/t . I (6)

can be much larger or le |>>(e ,e ). If e ,ey are neglected. 4n compari-

“son with ez in equation (5), then the elastic constant B of the adhe31ve

is,

w
[{H]

A+ 26 = (1-V)E/(1-2v) ‘ S (7)‘

-making it somewhat larger than Young's modulus E.

The surface load terms pi; ﬁ;, pi and-mi, m; (i = 1,2)7in (la-e) can

‘be easily eliminated by simply substituting (3a-c) into (2a-e). Fin-

ally, the system (la-e) and (1f-j) reduces to the following matrix form

-0f a system of twenty partial differential equations with -the appropriate

k%

. 2
a—ax-Yj(x,y) - Fy Gy, ?—yk ngTz ;o) (k=4 =1,2,..,20)
a; . ' a, | .
T Y (a;,y) =0 ) (m=n-=12,..,10)
! Lt | | |
Tas () Y (bpoy) = Uy 1) (r =s=1,2,..,20) . (8a-e)
T:fl(x) Y (5,3) = U2
. b, )
Tns(x) Ys(x’bZ) ='Un (3)

-where Y (x,y) is a column matrix of order 20 which includes all the "fund-
*amental variables" and U 1(y) U 1(y) are the specifled boundary conditions
at x = a; and x =b, respectlvely. Sim11ar1y U (x) U 2(x) are boundary
conditions spec1f1ed at y = a, and y = b2 respectively The matrices T 1,
T 1, Taz, T 2 are coeff1c1ent matrices depending on the support conditions

“ns’ "mr
.along the boundarles. In general, they are unit matrices.
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In the case of a joint with finite width in y direction fhg system
(éa—c) has to be solved. However, if it is assumed that the dimension
in y direction is large and that cyiindrical bending occurs along the
joint in x direction, then the equafions_(la-j) reduce to the.twelfth

order system. of ordinary differential equations given by,

ant

Qs n.ﬁ- o
§1x3L- “IQQ*. “lx
1
1
™

: (1=1,2) T (9am0)
i, ‘
=Ty + Qx
and,
i

du i, i

dx Nilcll

dsi 1,1 » | o

o = Mx/Dll , (1 =1,2) | _ . (9d4-£)

. i
dw~ _ 1,1 i
dx Qx/Ll - Bx

where pi, p: and mi (i=1,2) are given in (2a,c,d) however o(x,y), Tx(x,y)

and Ty(x,y) become,
oGy =0, Ty =T, T ey) 20 (10)

with the righthand sides of the equations (3a,b) still being valid (see
Fig. 3). ‘ o ‘

\

Consequently, (8a-c) reduces to a simpler matrix form in terms of a
system of twelve ordinary differential equations with the boundary condi-
tions along the joint in the region with'a1 =-2, b1.= + £ or (-£5X5+£)
and (-o<y<i),

(x) (G =k=1,2,..,12) .

'

; ) 1
I Yj(x) = Ajk(x)Yk(x) + Pj



Tor Y0 = 4 m=n=12..6) (11a-c)
b b P
T, Y (+0) = U (r = s =1,2,..,12)

where Ajk(x) is a coefficient matrix of order (12,12).which includes the
elastic constants and geometric dimensions such as thickness, etc. of the
adherends and the adhesive layer. P.(x) is a column matrix of order 12,
corresponding .to the distributed loads qi, qi, q, *. The coefficient matrix
jk is not in general a functlon of x unless the thickness or the material
constants of the adherends (or the adhesive layer) or both varies along
the length of the joint (i.e. scarf joint). .The matrix Yj(x) is ‘again a.
column matrix of order 12, including all the "fundamental variables" as’
i i i i
x ’ B » W
(i 1 2) are the unknown functions of the independent variable x. 1Imn

its elements. The twelve fundamental variables Nl, Q1

the boundary conditions (11b,c), the matrices Tmr and T:s are constant
matrices with the order of (6,12) and (6,12) respectively' The quantities

b
U .and U are column matrices correspondlng to the stress-resultants and

displacements prescribed at the ends of the adhesive 301nt x = - £ and

x = + £ respectively.

The boundary conditions in (11b) and (llc) are obtained from the
kﬁowﬁ'stress resultants and displacements of the adherends at the ends of
the joint. In the lap joint in Fig. 2, the six boundafy conditions to
be prescribed at each end may be found using fhe free body diagrams in i
Fig} 3 and Fig. 4. For instance, Ni, Qi, Mi and Ni, Qi, Mi where subscript .
* designates prescribed quantities at x = + £, are calculated from the
statics in terms of the distributed external force P (or in terms of basic
loads No, Qo’ Mo in Fig. 4) and the geometry. Then, Fhe boundary condi- -

tions are'

-at x = -f , the column matrlx Um in (llb),

1 l 1 2 . 2 2
P =0 =0 , %x =0 , Nx =0 s Qx =0 , Mx =0 (122)
at x = +f , the column matrix Uz in (1llc),
1 1 1 2 2 2 2
Ni=0 , Q=0 , M =0 , No<N, , =05 , M2 = M2 (12b)
.



Note here that in (12a) displacement boundary conditions rather
~than the force conditions prescribed for the upper adherend at the 1eft.
end of the joint. The reason for this is twofold. If the three dis-

1. 0, B1 = 0) are not preécribed, then the

placements (i.e. u1 =0, w
displacements throughout the joint cannot be found from (9a-f) or from
(lla-p). Because any arbitrary rigid body displacements can be added
‘to these system of equations without violating the mathematical condi-
" tions of the problem; hence, the solution to these equations woﬁld not

be unique. Also, the préscribéd stress resultants Ni, Qi, Mi must necess-—

:aarily be in equilibrium with Ni, Qi, Mi, This equilibrium, however, is .
-:already expressed through (9a-c). Thefefore, in (12a), the inclusion of
sequilibrium values of the external forces as.boundary conditions, instead
-of displacements ul =0, wl = 0, Bi = 0, would be rédundant. (With the
-assumed fully fixed condition applied to the one section of the upper

- :adherend, the disblacements ui, vi, wi (1 = 1) now represent displace-
Zments relative to this section. The choice of the joint end section

zassumed fixed in no way influences the calculated stresses).

Thus, at x = - £, the displacement conditions for the upper adherend
An combination with the force conditions for the lower adherend represent
the "appropriate" boundary conditions for Uz (m=1,2,..,6). In (llb,c)
“Ehg mgtrices TZr’ Tgs are unit matrices, however, in special cases with
spring and other type of support conditions at x = + £ they may have

-‘other nonzero components.

.Thus, the equations (11a) with the appropriate boundary conditions
(11b,c) represent a system of twelfth order linear ordinary differentialr
wequations. The entire system (lla-c) constitutes a so-called "two-point’

-boundary value problem" of all the three basic types of the adhesive joint.

| 3. METHOD OF SOLUTION OF DIFFERENTIAL EQUATIONS

The system of equations similar to (la-j) or (4a-c) and also (9a-f)
~or (lla-c) has been investigated among others by Kalnins [16,17]. In
-general, they can be solved by making use of numerical methods such as

~+the "multi-segment method of integration" or "finite difference methods"
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E[=EJ=E_, G]4=G),=C_

or both. However, in the caée of adhesive joints under special conditions,
the equations (9a—f) (or lla-c) have a closed form solution. ' This "sﬁecial

case" and the more "general cases" are considered next.

The problem in both special .and general cases. will be solved for ex-
ternal tension N o* external shear Q and external bendlng moment M which
are defined as the three "b331c loading cases in Fig. 4. Any other load-
-ing case can be treated as a superp031tlon of these basic loadings (pro- |

vided there are no distributed surface loads on adherends).

a) Special Case (Adherends with idential thickness and material):

In order to gain some idea about the effect of the thickness shear
deformations of adherends on the stresses T(x) and 0(x), consider a special

case in which adherends have the same thickness and material, (or h1 =h,.=h .

2 &
1 .2 1 2 1 2 C1 C2 Dl _n2 <D 1 2

i 1376137655 V127Vi2™Va» €117€117C,» DPyy7Dy17D,» LIy =L, where

" :subscript "a" denotes X dlrectlon and "b" for y direction in 1dent1ca1 and

. :orthotropic adherends).

In such-a.case the system of ordinary differential equations (9a-f)

zand (lla-c) can easily be reduced to two coupled ordinary differential
-equations in terms of the two unknown adhesive layer stresses 0(x) and

“t(x) so that,

a’t/ax? ~(e)2r= - Gh_(Qp+2)/ (20 t)

@3 e
datax - 2t? Polax ¥ B o= 0 | |
2 . _ .
(c) = 2G/(cat). + Gha(ha+c)/(2pac)‘
@By e e

(@ 28/00,0)

The quantity (Q1+Q§)nin the equation (13a) can be considered as the total

shear resultant transmitted through the joint. It is of interest to ob-

serve here that if the transverse shear strain in the adherends is neglected,

10
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then (13a) remains the same, but the parémeter‘a'in (13b) becomes zero.
In such a case, the equations reduce to those of Goland and Reissner [1].
Thus, it seems that transverse shear strains in adherends effect mainly

the transverse normal stress 0(x) in the adhesive layer.

The genefal solution of (13a) is,

T(x) =,A1 sinh cx + Az_cosh cx
+ ch_(QM+q?)/(2p te?) R | (15)
a Q*+Q* a© a '
However, the solution of (13b) ié dependent on the relative values_of o

and B. Thus, if a<B, the general_solution of (13b) is,
o(x) = A3 sinh ax cos bx + A4 sinh ax sin bx

+ A cosh ax sin bx +‘A.6 cosh ax cos bx (1)

-whére.
' _ 2 2 1/2
a [(B +.a7)/2] - (17a,b)
b= [(8% - o®)/21!/? |

If o>B, the general solution of (13b) becomes,
o(x) = A3 sinh ax + A4 cosh ax

+ A5 sinh bx + A.6 cosh bx . (18)

where 41/2
[ >

Ca = |a? & B |
| - _1/2 . - (19a,b)
— _1 .

b= az - /a4—84

The maximum values of T(x) and 0(x) corresponding to each basic loading
caselcan'easily be calculated from (15), (16) and (18) and they occur im all

loading cases at the ends of the joint. For example, in the case of external

11



normal tension load N, in Fig. 4, T(x) and 0(x) are even functions of
x so that the arbi;rary constants Al’ A3, As_of the solutions in (15).

and (16), (18) and the remaining three constants may be determined from
the boundary conditions (or the external equilibrium'conditions) of the

joint. Thus, for external tension load N,,

28t /N_ = cf coth c?

max’' © ~ (20a,b)
tp 8%G /ﬁM = k. /k,
a~ max % 2'71
where '
MmN 0/ ' (21).
and fof o<B,
k1 = bf sinh 2af + af sin 2b2
' . (22a,b)
k2 = bl sinh 2af - af sin 2bQ
‘whereas, for o>f,
' kl = bl sinh bl cosh af - af sinh al cosh bf.

. {23a,b)

N

k. = bl cosh bl sinh af - af cosh af sinh bf
Similarly, in the case of external shear force Q° shown in Fig. 4,
‘the stresses T(x) and o(x) are even functions of the coordinate x. The -

maximum values of T(x) and 6(x), which occur at the joint edges, are,

- 2tD acrmaxlchaqo!, = coth cf - 1/c

(24a,b)
:naezcmax/B»Qoz = (k, + k) /i)
where, for o<B,
ky = 2ab(cosh 2al + cos 2:13-1’.)/32 | : B (25a)

12



;uni, for o>B,

Ky = - (az'- bz)(cosh aZ‘cpsh'bl)/B2 A . . (éS,bf

and kl and k2 are given in (23a,b). .

In the case of bending moment loading Mo of Fig. 4 the expressions
for 1(x) and 0(x) are odd functions of x and maximum values occuring at

the edges are;

'2tD;chax/GhaM°-= tanh cf - :
. i . (26a,b)

2
tDaB Umax/BMB = kllkz.

~where kl and k2 have been defined previbusly.

In order to calculate these maximum stresses, values of the ratios
~1(2/1(1 and k3/k1 as functions of B£ and a/B have been plotted in Figures 5
-;and ¢, respectively. In these plots, the parameter describing the in-
fluence of the transverse shearing strain of the adherends is the ratio

';d/B given by,
- , |1/% . _
«/B = (0.5 BD_/{(L,) t} - (27)

Substituting for Da and La the ratio o/B becomes for orthotropic adherends

of equal thickness and the same material,
S 25 n2,7]1/4 , 28
a/B = [%Bgapa/{SO(l va)(Ga) ti] o (28,a)
-and for isotropic adherends of equal thickness and same material,
o/ = [12(14v_ )Bh_/{50E_(1-v )e}|1/4 . (28b)
. a’a a a ‘ '

By calculating the ratio a/Bf from (28a) or (28b), one éan determine
for any given case whether or not the thickness shear strains in adherends
-gignificantly influence the maximum value of the normal stress in the

*  adhesive. According to Fig. 5 and Fig. 6, the curves for the values
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a/B<1 do not differ significantly from those for a/8=0,~thus, the in-
fluence of the thickness shear strains of adherequ on maximum normal

stress 0 can be ignored provided o/B<1.0.

(This is more or less valid in practical cases. For example, a
typical joint of two aluminum plates, each of ha=0;1 inch thickness
with Ea=10 X 106psi, Va=0;33 bonded by a layer of epoxy with E=4.5 x
105 psi, v=0.35 and t=0.01 inch thickness, has a ratio o/B=0,77 which
is smaller than unity). On the other hand, in the'casgwof adherends
-uith large thicknesses aﬂd small longitudinal shear modulus 013, the
effect of the adherend thickness shear»deformations,on,the adhesive

layer stresses may not be ignored.

b) General Case (Dissimilar Adherends):

‘ In the case of-adherends with unequal thicknesses aﬁd-different
elastic properties, a closed form solution (such as given in the pre-
ceeding section) of the two-point Boundary value problem of (1la-c)
seems not to be possible. Therefore, numerical methods have to be
-employed in order to solve this system. The "multi-segment method of
_iqtegfation" as giveh in [17] is most suitable for this purpose. In
fact, this method of numerical integration is used here in solving the
general case in (9a-f) or in (lla-c). This way, the tﬁbfpoint boundary
value problem of the adhesive joint reduces into a series of initial
'valge problems and then integrated numerically between the boundary

'points;

For the sake of simplicity, one can drop the quantities corresponding
to the distributed surface loads such as qi, qi (i= 1,25 in (9a-f) and
consequently Pj matrix in (lla-c) associated with‘thg egternal surface
" loads. Then, in (lla-c),

q: = q: = 0 or Pj(x) =0 (i=1,2; j=1,2,..,12) (29)
It should be emphasized here that this last additional assumption in no
-way affects either the general form of the system in (1la=¢) or the appli-
cability of the method of sclution employed here to the lap joint as well

as other type of joints.



Thus, a computer program based on multi-segment method of integra-
tion has been developed to solve the equations in (9a-f) or (lla-c) ard
_<haé_been applied to several joints under various edge loads. The results
for a typicalllap joint subjected to basic external load cases of Fig. 4
and also for a stepped joint afe presented in the next section.

As it is explained af the beginning, the analysis of a "stepped joint
_518 not different from that of a lap joint. Therefore, it will not be
'tréated as a separate case. However, in order to point out the influence
-of bending on the stresses in a stepped joint, even whéen it is under uni-
axial tension, the results of a numerical example given in Fig. 10 wiil

_be discussed briefly in the next section.

In passing, it may be of interest to note here that in the case of a
scarf joint (see Fig. 1) the formulation of the problem and the method of
solution as presented in th&s paper can easily be employed. -In such a
-«case the equations (9a-f) aﬁd (1la-c) are exactly the same except that the

iterms of the coefficient matrix Aj become functions of x due to variation

, jk
iof adherend thicknesses rather than elastic constants. The computer pro-
‘gram which was developed for the general case can also easily handle the

->scarf joint problem. -

4. DISCUSSION OF RESULTS

The non~dimensional exbressions (20a), (24a), (26a) for Toox and
(20b), (24b), (26b) for O ax corresponding to the basic loading cases in
:a joint of identical thickness and material, are functions of the para-
meters cf, BL and the ratio a/B. As it is noted earlier in the solution
~-of the "special case'", the transverse shear strains in adherends may be
-neglected. Thus, for practical applications, the ratio a/B in the

. "special case” becomes

a/g >0 | : - @O
-and similarly in the "general case", in (9f)

@/Lp+0 (=12 . - | a1
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-which corresponds to .the vanishing of adherend transverse shear strains

:0r consequently to the classical bending theory of thin plates.

For practical purposes, in a typical joint a/B ratio may be assuﬁedf

.as
o/B 5 1 | SR e (32)

—and the adhesive thickness t is in general considered to be very small

i.e. t<<ha(h1'= h, =.ha). Then, the parameters cf and BL become large

sand for the values of,

k23, BLZS - o - (33)

RV’

-the Tm;x and O ax equations (20a,b), (24a,b), (26a,b) for the basic Exter—
- snal loading cases can be expressed in terms of asymptotic expansions for

large L.

Thus, for the external tension load No case of Fig. 4a, the asymptotic

~wvalues of T and © are

. © max max
Tmax _E Noclz . . e ez PSR ':~ A—‘.- (34a’b)
o = N-(h +t)B/(2tD Bz)
max - o a . a

by introducing (1l4a) and (14c) for c and B and also for D /C (h ) /12

T and 0 can be further reduced to,
max max

N

o - : / . :
fnex 2 7 ac/cpt? L @)
c = i (38/C)) 12 | " | .4 .
max - V’E a

In the case of a joint subjected to external behding moment Mo only
~~=(Fig. 4c), the asymptotic expressions for Tnax and Omax’ derived in the

“§ame manner, are
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=

Ty & — (0.375 c/na)”", R
vt (36a,b)
M o - o

o, == .58m)M2 -
't

Similarly, if the joint is under external shear force Q in Fig. 4b, the

as otic expressions. for a r
ympt P . nd o ax 2Tes

Thax = —— — (0.375 G/D ) : el
” "E : 7t (37a,b)
Qo(zo_z) . 1/2 ‘ o
Opax 2 — — — (0.5 B/Da) _

vt

The equations (34a,b), (36a,b) and (37a;b) all ihdicate that for
joints'composed of identical adherends in thickness and material, maximum
stresses occur at the edges of the adhesive joint.” Furthermore, both
qma# and Toax 2T€ of 0(;/{?) as t =+ 0, showing the singﬁlér’behavior of these
stresses around the edges. Similar results are obtéined'in the more gen-
eral case with unidentical adherends. For example, in Fig. 7, 8 and 9, a
lap joint of aluminum-epoxy-steel subJected to b381c external loads demon-
strate behavior similar to that of a joint with identical adherends. Both
stresses 0(x) and T(x) shoot up within the boundary layer fegion iﬁ the
-neighborhood of the joint edges. This is specially-so in the pure bending
case (see Fig. 9) which clearly illustrates the effect of bending of

adherends.

Another interesting result can be obtained by estimating the ratio

o /Tt for basic external load cases of Fig. 4. Thus, from (35a,b), for
max max

the basic tension load No,

. y 1/2 o -
O‘max/‘rmax = (1.5 B/G) . . (38)

and for the basic external moment loading Mo’

cmaxlrmax = 72-5 (B/G)ll2 ast >0 a . (39)
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the ratio for the basic shear loading Qo is equal to that of (39). These
stress ratios, in the case of identical adherends, depend only on the
Poisson's ratio v of the adhesive and for practical values of v, one can -

-conclude that,

0T 2 1.0 as £ 0 o (40)

L4 .
}énd gets larger as the bending of the joint iﬁcreases (depending on the
sparticular loading this ratio can easily reaéhvthe value of 2 or more)f
‘These results$s can also be verified for the general cage.with unidentical
.Aadherends by simply comparing O ax and Tnax values in Fig. 7, 8 and 9.
“These plots again indicate that higher stress concentrations occur at the
sedge corresponding to less.stiffgr adherend and the normal stréés, cma , because
;of bending deformation, is inxgeneral the dominant stress. As a result,
sthe tearing apart of the adhesive layer and adherends along the joint
4s likely to start and grow due to these transverse normal stress concen-
strations. Therefore, one may rightly call the maximum transverse hormal
stress O ax 25 the'"tgaring stress" of thé adhesive “joint. On this basis,
At may be said that theories which do not take into account the bending
=of tﬁe adherends cannot correctly predict the maximum stress in the ad-
' xheéive layer. (For instance, in Erdogan and Ratwani [6], Sainsbury-
'—ﬁCérter [7], Adams and Peppiatt [81, Lubkin [11], the effect of bending is
completely ignored). o \

 The significance of the bending effect even on the relatively smalier
longitudinal shear stress of the adhesive can best be demonstrated by
--simply comparing the results presented here with those which neglect both
the bending deformation and transverse shear deformations in the adherends.
*The equations (15) and (16) reduce to that of [6] with g(x)Z0 and T(x)# 0
-~if the bending stiffnessgs D}l, Dil and the transverse shear stiffnesses
;L%{ L1 are assumed to be infinite. Thus, "~" defining the quantities with
-bending neglected, (15) and (16) become,
AT m2a |
2~ () T(x) =0
dx : : : -
§(x) =0 h | ~ (41a,b)
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€)%= 26/(C,t) : | (42)

then the corresponding maximum shear stress Tmax‘for the basic external

tension load No of Fig. 4 is given b&, .

ZZTmax/No =ck goth ct -

~ (43)
- and tﬁe asymptotic value is,
Toax = Noc/2 : _ . (44)

- by using (20a) for Thax which includeé the effect bending and transverse

shear deformation and (43) for T R
) _ : max

T T, = cot!h ct/(E coth &) 4 : (45)
For thg’small valiues of adhesive thickness, i.e. t<<ha,~the ratio is
‘almost ¢/¢ = 2. Then, ‘

t /i >s1 . | 46)
max max = - o ‘ :

However, from the asymptotic values in (34a) and (44)

~

‘l'max/‘tmax ® 2 (for large c¢f and t+0) (Y R

Thus, for practical jbints, this Tmax/?max'ratio will have a value some-
what close to 2. Consequently, the theories [6,7,8,11] which neglect the
_bending effect, even in the case of uniaXial'external tension only, might

underestimate the maximum shear stress by nearly 50%.

Similar results are obtained for the more "general case" with uniden-
ticél.adherends. For instance, the comparison of the longitudinal shear
stress plot of the same "stepped joint" of Aluminum-Epoxy-Steel in Erdogan
and Ratwani [6] with that of the shear stress plot obtained by the present
authors and which includes the bending effect is given in Fig. 10.. It is
ob#ious that, in spite of the uniéiial external»tension load, the actual

maximum shear stress is almost twice as large as the shear stress obtained
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by [6]. Also, it is important to observe here that; in Fig. 10, the
maximum transverse normal stress, because of the bendiﬁg deformations
-along the joint, is again very much larger than the. maximum transverse

.shear stress. i . *

The influence of protruding lengths Zl and Zz outside of the'jéint
on the normal and shear stresses in the adhesive is also considered.
-As pointed out previously, even under uniaxial temsion the adhesive
;-joint, is in the staté of bending regardless of the size of the pro-
truding lengths. As an example, the stresses in Aluminum-Epoxy-Boron

“Epoxy joint under uniaxial tension P=1.0 are computed for protruding -

- . L

dength values £1=£2=£*(£*=0,t,5L) as shown in Fig. 11. It is - T

--s8een that, after £*=5L is reached both the maximum normal stress and s

. :shear stress in the adhesive layer level off and remain more or less. R

same in magnitude. Again, as expected, the maximum normal stress is

i _
larger than the maximum shear stress.

5. CONCLUSIONS S e

A'gene:al method of stress analysis of adhesive joinﬁs of relatively
Tigid adherends bonded through a flexible adhesive layer has been developed
.and applied to several types of joints. Based on the numerical examples

.and the discussion in preceeding seétion, one can conclude the following:

1. Bending of one or both adherends is a dominant factor on the -
stress distribution in adhesive joints and it occurs even in

- a stepped joint under external uniaxial tension load.

2. Due to the influence of bending of adherends, the distribution
6f the transverse normal stress 0(x) as well as the shear stress
T(x) in adhesive layer is drasticaliy changed'and O ax is in
general larger than Tmax and in some cases at least twipe as
.large. (This point should be taken into account in the design

of adhesive joints.)

3. Stress concentrations for o(x) and T(x) occur at both ends of
the joint within the so-called boundary layer region, with
higher stress concentrations taking place at less stiff - ad-

herend side. Otherwise, with equal thickness and identical
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adherends both 0(x) and T(x) are symmetric or skew-symmetric

as the case may be.

4. As the adhesive thickness't'deereéses the-magnifudes of stréss
concentrations at the ends of the joint increase sharply and
finally as t*0 the stresses become singular i.e. Tmax+w: )
Umax*w} (For identical adherends these limiting expressions
have the form rmax=0(1//E) and Umax=0(1/VE) as t*0 and for

unidentical adherends, similar forms can be expected).

5. The thickness shear deformations in adherends do not signif-
icantly influences T(x) and o(x) distribution in the'adhesiﬁe
-layer. For practical purposesAthickness shear deformations in
adherends can be neglectéd unless the adherends are extermely

thick and deformable in shear. = Bees

6. The formulation oé the problem and the method of solution as
presented in this‘work isvvery general and can easily be applied
to other types of joints such as "scarf joints", "double joihts",
"cover plates", "joints with layered adherends”, etc. without
any difficulty. (In fact,these problems ﬁave already been

.solved by the present authors and will be pgesented in a forthcoming
‘report as the continuation of this work.
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APPENDIX

For the sake of completeness and easy reference the field equatiohs
of orthotropic plates which include the transverse shear deformations will
be reproduced in this section. Referring to Kalnins [16] (similar equa-

tions were also obtained by other well known authors), Jne can write the

~equilibrium equations of the orthotropic plates in terms of the coordi-

nate system given in Fig. 2 in the following form,

i i £ ' :
= = ) -

Qx.x + QY,Y tp, =0 =12 , (A.la 2
v e - Qi +mi =0
XyX XysY X X
iR Q:; +m- =0
Xy,X  Y,Y

e S |

Xy  yx

where i=1 indicétes upper plate (or adherend) and i=2 corresponds to the
lower plate (or adherend) and pi, pi,'p: are distributed loads and mi and
m; are distributed moments both acting on the middle plane (or the ref-

erence plane) of the upper and lower plates. The Hooke's Law or the stress--

-strain relations for an orthotropic material,

i i 4 i 1

.ox = B11 °x + 312 ey
ol < B, ef+ 2l ol
o: ~0
\
°iy =2 eiy 6], (t = 1,2) -  (A.2a-f)
0;2 = 2 e;z G;3
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o'xz =2 €xz G13
‘where
Byy = Ey/ (1= Vv 21)
i_ i i i R S 1 o
312‘ V1gE)/ (1 = VipVap) = VyEp/ (L - Vi 21) (1=12) (4.3a-c)

i i

o i,
Bgy = E3/ (1 = vy,vo)

22

and where Ei, E; are the Young's Moduli of the material in the direction
:0f x and 'y axes respectlvely. Similarly G12’ ;3, 13 are the shear moduli

swith . the subscrlpts correspondlng to coordlnate axes x*1, y*2, z +3. Also,

i
le’ v21 are the Poisson's ratios of the material. . The expressions for

-1 =1 =i
«displacement u~, v°, w are,

-4 1, iy
u =u +z sx
=i+ 2t gt (1=1,2 '[; L (AJba=c)
ot § i
= w

-zwhere u’, vi, wi are middle surface displacements along X, ¥» zi coordinate

"lines and B and B _are angles of rotation of the normal to the middle

surface. The,stralns e13’ in terms of middle surface stralns € . s {;z
: i i i i
YYZ’ Yl’ Yza 61: 62 ’
ei = ei + zi kK
X x X .-
i 1.1 ) | )
e =€ +z k (i =1,2) _
oy y y 7 . eh ' (A.5a-f)
ei =0
z

i i i i i 4
2ef = (8] + 2 si) + (842t 8y
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2exz_= sz
i
2eyz = sz

Where middle surface strains ei and other strain quantities Yi

1 14 i 3

~sz kx, y’in’ YZ’ 51, 62 are defined in terms of displacement quan-

“tities ul, v', w and rotations B s B in the. following way,

i 1 1_ 1
ex = “’x ’ EY Uay
1_ 1 11
Yl b v’x ’ Y2 = v’y // A
- .. (1 =1,2) (A.6a=d)
k = ’ k.= - '
x ex,x 4 BY:Y
QR | i i
61 By,x ’ 62 B Bx,y
i_ i
Yez~ Yo T B
4 1,4 , s |
Yyz= Wy T By : (1 =1,2) ~ (Abeg)
i 4, .4
Yoy~ Y1+ 72

)

"The stress-resultant and strain relations can be expressed as,‘

- . . —— - T .

1 .4, 4 i 3
'M1=D k" +D k, Mian k+D k
X 1{ X 12 7y B y 12 22 v
H1=1,2 ~ (A7a-d)
LR G P R S SR WD o e
¥ 110 12¥2 N xy 1117 12 72 yx
1_.1.1 1
Qx L Yz ? _Qy = LZ sz
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Where extentional, bending, twisting and shearing rigiditieé are given ag,

10 .1 4

cilié S Bil_dzi, ciz = [ Bj, dz7, C,, = J B;Z dzt

Dil_= S Bil zH? azt, Dy, =/ Biz (zh? a2t, D;Z =/ B;Z (zf)2 dzt
Fil = Fiz = flci2 dzt | B i-=1,2) (A.aa;g)

Kil = Kiz S Giz (zi)2 dzi

doesdat desdat

‘The integrals above are to be taken across the thicknesses of the plates.
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