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1 • INTRODUCT ION

This report presents a methodology and the relevant computer

program for the inversion of "tri-diagona1" matrices by making use of

its inherent properties.

A tri-diagonal matrix is one which has elements on the main

diagonal, and which has elements once removed from the main diagonal.

Each element may be a matrix itself, but each element ~ust have the

same dimensions as every other element.

The tri-diagona1 matrix must be square and non-singular,

and each sub-matrix must be square and non-singular (Fig. 1) •

The application of tri-diagonal inversion scheme to complex

structures was described by B. E. Gatewood and Norik Ohanian (Ref. 1).

This article points out that a truss, or a frame, can.be arranged in

sections so that members from each section attach only in the section,

or to the two adjacent sections; then it is possible to generate

the stiffness matrix directly in tri-diagona1 sub-matrix form from

the generalized force-displacement equations for each member and the

equilibrium equations for each joint of the structure. The size of

the sub-matrices is determined by the number of joints in the section

and the number 'of displacement components for each joint .

. In Gatewood and Ohanian's article, each sub-matrix could be

. of any arbitrary size. However, as was pointed out earlier, this
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subroutine handles only the case of each sub-matrix being the same.

size. It should be noted that the largest matrix that has to be in-

verted by standard procedures is a matrix having the same dimensions

as the sub-matrix.

As a demonstration of the formulation of a tri-diagonal

matrix, a simple frame will be set up (Fig. 2) using the "Direct

Stiffness" method and including axial effects.

Although the example is valid for use in the tri-diagonal

matrix subroutine, in general, the ordinary formulation of the direct

stiffness method does not permit the use of this subroutine. That

is, if more than two members frame into a joint or if axial defor-

mations are neglected.

The purpose of this study is not merely to invert a specific

type of matrix, but to invert it efficiently making use of the known

properties of symmetry.

It·is known that the matrix is symmetric (Fig. 1) and,

therefore, its inverse is ·also symmetric. For the matrix to be sym-

metric, the sub-matrices on the main diagonal must be symmetric; and

the off~diagonal sub-matrices must equ~l their transposed counterparts

T
(A .. = A .. ).
-1.J -:-J 1.
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2. MATHEMATICAL FORMULATION

o --------~--- 0

!11 !12 0 0 0 ------------ 0

!21 !22 !23 Q

o !32 !33 !34 Q ------------ Q

--------0 KKK- -n-1,n-2 -n-1,n-1 -n-1,n

!ll !12 ----------------- !In

!21 !22

=

o K K-n,n-1 -nn Kn1 Kn2 ----------------- Knn

..

I 0 0 ------------------- 0

010

= 0 0 I

o ------~----------

,I 0

o I

Writing the equations for the first row of [IJ,

.!11 !ll +!12 !21 = I (a)

!l1'!12 +!12 !22
;:; 0 (b)

!11 !l3 + !12 !23 = 0 (c)

!11 ! 14 + !12 !24 = 0 (d)

:/.'

K F + K F = 0 (e)-11 -In -12 -2n



From Equation (a)
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-1
!.ll = ~ll

From Equation (b)

-1 'T
= - !11 !12 !22 = !21

-1 T
= (-~ll ~12 !.ZZ) .

From Equation (c)

-1
!.13 = - ~ll ~12 !.Z3·

From Equation (d)

And, in general, from Equation (e)

F = - K -1 K F .
-In -ll-lZ -Zn

Define

!lZ

•

Then

-1 -1 -1· T
!.ll = ~ll + !lZ !.Zl = ~ll +!n (-!ll !12 !.ZZ)

-1 T -1 T T
-= ~11 + !lZ (!12 !.ZZ) = !ll + !lZ !.22 !12

!14 = !12 KZ4
I
I
I
I
I

KIn !lZ KZ n

1.
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Writing the equations for the second row of-[IJ,

!2i Ell + !22 E2l + !23 I 3l = 0 (a)

!2l I l2 + !22 I 23 + !23 I 32 = I (b)

!2l ED + !22 E23 + !23 E33 = 0 (c)

!2l E14 + !22 I 24 + ~3 I 34 = 0 (d)
",,
I
I

!2l I ln + !22 I 2n + !23 E3n

Noting that

. -1
E12 = - !ll '!12 E22

as found from the solution of the first row, and substituting this
values into Eq. (b) above

-1
!2l (-!ll !l2 E22 ) + !22 I 22 + !23 I 32 = I

-1
(-!21 !1l!l2 + !22) I 22 = 1. - !23 I 32

(~1 I l2 + !22) f 22 = 1. - !23 I 32

-1
E22 = (!22 + !2l I 12 ) (1. - !23 I 32 )

~ -1 -1
·E23 = (!23 + !21 I 13 ) - (!23 +!21 I l2 ) !23 I 32 ·

Noting that

as found from the solution of the first row, and substituting this
value into Eq. (c) above

(!2l I l2 + !23) I 23 = - !23 I 33

-1
E23 = - (!21 I 12 .+ !23) !23 I 33

-5
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Define

Then

-1 -1 T
+ !2l !12) + !23 !.32 = (!22 + !21 !12) + !23 F23

-1 T
+ !2l !12) + 1:23 I 33 !23 and

-'

!.24 = 1:23 I 34
. I

I,
I

. I

F = T F-2n -23 -3n

Following the same procedure for the other rows of r11,

F = (K + K . T )-1 + T F T T
-m-l,m-l -m-l,m-l -m-l,m-2 -m-2,m-l -m-l,m -rom -m-l,m

F = T" F-m-l,n -m-l,m -m,n

T = - (K + K T )-1 K
-m-l,m -m-l,m-l -m-l,m-2 -m-2,m-l -m-l,m

which are the recurrence formulae for all but the first and last rows.
For the first row (see Eq. (I»,

-1 . T
III =!ll + !12 I 22 !12

!.In = !12 I 2n

-1
!U !12

And, for the last row,

F = (K + K T )-1
-n,n -n,n -n,n-l-n-l,n

2.
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3. LOGICAL FLOW CHART

From an examination of the recurrence formulae obtained from

the derivation, it is obvious that two "sweeps" of the matrix are

needed. The first sweep progresses down the three-dimensional vector

calculating the I and Q. matrices. The second sweep progresses up the

three-dimensional vector calculating the F matrices.

Below is shown a logical flow chart for the program. It

will be noted that the second sweep has been broken down into two

steps.

Calculate the G and T matrices- -
and store in the three-dimensional

vector of the impact matrix (Fig. 3).

~

Calculate the diagonal elements of the

inverse, F .. , and store in a three-
11

dimentional vector (Fig. 4) .

Calculate the off-diagonal elements of

the inverse, F .. (j>i) , and store in the
1J .

vector with the F .. elements (Fig. 5).
11
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4. LIMITATIONS

The limitations of the program, from a mathematical point of

view, are those of symmetry and banding. The limitations of the pro-

gram, from a practical point of view, are the capacity of the machine

and the size of the sub-matrices.

The program has been written for a maximum sub-matrix size

·of nine elements. This dimension can be changed by changing the

DIMENSION statement in the subroutine and by changing the value of the

variable JOB. It is not advisable to increase the value of JOB much

beyond the value needed for a particular job (run) because this only

serves to tie up core storage with zeros.

The limitation of the machine capacity (core storage) can be

overcome by using disk storage.

It should also be noted that the form, in which the inverted

matrix is returned to the calling program, is such that the resulting

inverted matrix is not suitable for further mathematical operation-

it is return as a three-dimensional vector rather than a two-dimensional

array. The form of the three-dimensional vector is illustrated by the

form of the output from the subroutine.
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5.. INPUT

Input to the subroutine consists of the banded matrix K

stored as a three-dimensional vector with the K.. 's stored in the odd
. -~~

locations and the K.. 's (where j>i), stored in the even locations.
-~J

Knn

N, the number of K.. 's in the banded matrix; M, the actual size of
-~~

each sub-matrix; MN, M times N; 2N-1, 2 time N minus 1; 10, number of
N

output unit; and JKKJ, ~i. (See Fig. 6 for the input matrix used for
i=l

the test run of this program).
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6. OUTPUT

The output is only a listing of the upper triangle of the

inverted matrix. It is only a listing of the three-dimensional vector.

The individual sub-matrices are labeled to show their position in the

assembled two-dimensional inverted matrix. (See Fig. 7 for the output

from the test run of this program).



The storage required for this subroutine
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.7. STORAGE LOCATIONS

The storage locations required to store the total, unaltered

b d d . M2 2an e matrix ~s x N •

can be broken down as follows.

The original matrix can be stored as a three-dimensional

vector composed of only the upper triangular portion of the original

banded matrix. This will require N storage locations for the K .. 's
. -~~

and N-1 storage locations ·for the K.. 's (j>i). Therefore,· the total
-~J

storage locations are used to store the T and G matrices calculated in

the· subroutine.

if
N
~

i=l

2 2
The inverted matrix requires 0.50 x M x N storage locations

d 1 b 1 H h · b· . M2
store e ement y e ement. owever, t ~s su rout~ne requ~res x

storage locations for the inverted matrix.

Therefore the total storage required (not including "scratch"

matrices) is

2 12M
2

2
. S = (2N - 1) M + 2" N (N + 1) M = 2" (N + 5N - 2)

as composed to M
2

N
2

for storing just the total original banded matrix.
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8. NUMBER OF BASIC OPERATIONS

Basic operations, as considered here, are matrix addition,

multiplication, inversion and transposition. Basic operations does

not include the transfer back and forth from a two-dimensional array to

part of a three-dimensional vector.

Strictly speaking the matrix inversion is not a basic operation

because it involves some of the other basic operations. However, in

order to arrive at an approximate figure, matrix inversion will be

considered a basic operation.

The number of basic operations will be computed for each block

of calculation as shown in the Logical Flow Chart.

1. For calculating the! and Q matrices,

(a) each Q matrix, except the first one, requires

1 - multiplication
1 - addition
1 - inversion

(the first one requires only one inversion) and _~I

(b) each T matrix requires

2 - multiplications

Therefore, for this block of operation,

OPI = (N-l) (3) + N + (N-l) (2) = 3N - 3 + N + 2N- 2

= 6N - 5

2. For calculating the diagonal sub-matrices of the inverted

matrix,

,
.- /

(a) each F .. matrix, except the last one, requires
-~~ .

1 - transposition
2 - multiplications
1 - addition·

(the last one, ~,n' doesn't require any basic operations) .



Therefore, for this block of operation,

OP2 = (N-l) (4) = 4N - 4.

-14

3. For calculating the off-diagonal sub-matrices (F .. for
-1.J

j>i) of the inverted matrix,

(a) each F .. (for j>i) matrix requires
-1.J

1 - multiplication

Therefore for this block of operation,

OP = (~ i-N) (1) = I2(N + 1) - N = ~ (N-1).
3 i=l· 2

The total number of basic operations is

OP = OPI + OP2 + OP3 = 6N - 5 + 4 N - 4 + N(N-l)
2

OP = 1/2 (N
2 + 19N - 18).

(It should be noted that each of these basic operations is performed

on a sub-matrix of size M x M.)

For comparative purposes,

N N
2

19N OP

1 1 19 1

2 4 38 12

3 9 57 24

4 16 76 37

5 25 95 51

6 36 114 66

7 49 133 82

8 64 152 99

9 81 171 - 117

10 100 190 136
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9. ,SUMMARY

The purpose of the program is to efficiently invert a large

matrix which can be partitioned into a symmetric, triple-banded matrix.

For a trial run with M = 2 and N = 5, it was found that the standard

inversion routine is faster. It is believed that a break-even point,

as far as the execution time is concerned, would be reached for MN = 40.

As far as a storage is concerned, the break even point occurs for N = 5.

As for the form of the output from the subroutine, it should

be remembered that ideally a very large matrix will be inverted which

can not be stored completely in the core of the machine. Therefore,

the form of the output should be either a punched deck containing the

inverse of the input matrix which would be used as input with another

program or assembled and stored on magnetic tape. The choice is up

to the individual user. The user will have to write an "assembler"

subroutine to handle the problem as well as develop techniques for

manipulating such a large matrix on magnetic tape so that it can be

used in other op~rations leading'to the desired solution.
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10. PROGRAM LISTING
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SUBROUTINE TRIBAND (AK,F,N,M,JKKJ,MN,IO)
DIMENSION AK(M ,M ,MN),F (M ,M ,JKKJ) ,A (9,9) ,B (9,9) ,C (9,9),D (9,9) ,E (9,9

1) ,G(9),H (9)
. ************7~~~******************************************7~************~k

*
K MATRIX MUST BE SYMMETRIC - THAT IS, EACH K-SUBMATRIX ON THE *
MAIN DIAGONAL MUST BE SYMMETRIC (K(I,I)=TRANSPOSE OF K(I,I» AND *
EACH K-SUBMATRIX OFF THE MAIN DIAGONAL MUST BE SUCH THAT K(I,J)= *
TRANSPOSE OF K(J, I). *

*
'***************~~********~~********************~~****************~~****

JOB=9
DO 55 I=l,JOB
DO 55 J=l,JOB
A(I,J)=O.O
B(I,J)=O.O
C(I,J)=O.O
D(I,J)=O.O

55 E(I,J)=O.O
.'. DO 5002 II=l,M
*************~~**********************7~**********~~****~***********~~****

*
CALCULATE T AND G MATRICES AND STORE THEM IN THE AK MATRIX. *
THIS DESTRYOS THE ORIGINAL AK MATRIX. *

*NOTE - G MATRICES ARE K ODD ANDT MATRICES ARE KEVEN. *

*
********~~~~********************************irl(************************~~(

DO 100 K=1,MN,2
KKK=K+1
KK=K-1
IF(KK.EQ.O) GO TO 3
DO 1 I=l,M
DO 1 J=l,M

1 A(I,J)=AK(I,J,KK)
DO 5001 II=l,M
DO 5001 JJ=l,M

.. DUM=A (II ,JJ)
A(II,JJ)=A(JJ,II)
A(JJ,II)=DUM
DO 5003 IK=l,M
DO 5003 13=l,M
SUM=O.O
DO 5003 II=l,M
SUM=SUM+A (IK, II)*B (II, 13)
C(IK, 13) = SUM
DO 2 I=l,M
DO 2 J=l,M

2 A(I,J)=AK(I,J,K)
DO 5004 IK=l,M
DO 5004 IJ=l,M
E (IK, IJ)=A (IK, IJ)+C (IK,IJ)



THE FOLLOWING INVERSION SCHEME WAS MODIFIED TO HANDLE THE
INVERSION OF A SINGLE ELEMENT ARRAY - E(1,1) - BY
HERBERT L. BILL, JR.
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************~~************************************7(******~~(**************

*
*
*
*
*

*******~~****~~*****7(******************************~~**~~**~rn****~~~~****

*THE FOLLOWING INVERSION SCHEME IS BASED ON THE SUBROUTINE MINV *
AUTHORED BY SAMPATH IYENGAR. *

*.REFERENCE - GENERAL INFORMATION MANUAL, AN INTRODUCTION TO *
ENGINEERING ANALYSIS FOR COMPUTERS (IBM). *

*
*************************7~***~~**************~~************~~***********

IF(M.EQ.1) GO TO 6052
NM1=M-1
DO 5005 IK=1,M

*****~~**********~~**7(***~~************~rn***~~****~rn*************~rn*****

*
SEARCH FOR THE LARGEST ABSOLUTE-VALUED ELEMENT IN THE FIRST *
COLUMN. EXCHANGE THE FIRST ROW WITH THE CORRESPONDING ROW. *

*
**************7(**************~(****~~********************~~******~~~rn****

BIG=O.O
LIMIT=M-IK+ 1
NR=l
D05006 IKK=1,LIMIT
ABSA=ABS (E (IKK, 1))
IF(BIG.GE.ABSA) GO TO 5007
BIG=ABSA
NR=IKK

5007 CONTINUE
5006 CONTINUE

H(IK)=IK
IF(NR.EQ.1) GO TO 5010
T=E(1,J)

.E(l,J)=E (NR,J)
5008 E(NR,J)=T

H(IK)=IK+NR-1

*****************~rn********~~rn****~~************7(***********************

CREATE PIVOT ROW ELEMENTS. *
*
*

*********~-k*~~********************************~~***********~k***********

5010 DO 5009 J=l,NMl
JP1=J+1

5009 G(J)=E(l,JPl)/E{l,l)
G(M)=!. OlE (1,1)
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*******************~7*************************1rn**************~~~*********

*COMPUTE NEW VALUES FOR THE MATRIX ELEMENTS WHILE SIMULTANEOUSLY *
RENUMBERING THE ROWS. *

*
*************~~*******~7***********************~7********1rn************

DO 5011 I=2,M
IM1=I-1
E(IM1 ,M)=-E (I, l)*G (M)
DO 5011 J=1,NM1
JP1=J+1

5011 E(IM1,J)=E(I,JP1)-E(I,1)*G(J)
DO 5012 J=l,M

5012 E(M,J)=G(J)
5005 CONTINUE

*************************************************************************

MATCH COI1JMN EXCHANGES WITH THE PREVIOUS ROW EXCHANGES. *
*
*

****~~7**********~k******************1rn**********************************

5

5020

5014
5013

6052
6053

DO 5013 IKK=l,M
IK=M+1-IKK
IF(H(IK).EQ.IK) GO TO 5014
NC=H(IK)
DO 5013 I=l,M
T=E(I,IK)
E(I,IK)=E(I,NC)
E(I,NC)=T
CONTINUE
CONTINUE
GO TO 6053
E(1,1)=1.0/E(1,1)
DO 4 I=1,M
DO 4 J=1,M

4 AK(I,J,K)=E(I,J)
DO 5020 IK=1,M
DO 5020 IJ=1,M
SUM=O.O
DO 5020 II=1,M
SUM=SUM+D(IK,II)+E(II,IJ)
A(IK, IJ)=SUM
DO 5 I=1,M
DO 5 J=1,M
E(I,J)=AK(I,J,KKK)
IF(KK.EQ.O) GO TO 9
DO 6 I=1,M
DO 6 J=1,M

6 AK(I,J,KK)=B(I,J)
9 ·CONTINUE
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DO 5021 IK=l,M
DO 5021 IJ=l,M
SUM=O.O
DO 5021 II=l,M
SUM=SUM+A (IK,II)*E(II,IJ)

5021 B(IK,IJ)=SUM
100 CONTINUE

DO 7 I=l,JOB
DO 7 J=l,JOB
B(I,J)=O.O

7 E(I,J)=O.O

*********~~********~~**********~~***********~k****~~*******~k************

ASSEMBLE THE INVERSE OF AK - ESTABLISH THE F MATRIX.

ASSEMBLE THE MAIN DIAGONAL OF F.

*
*
*
*
*

**********m~*************************************************~~(**********

K=MN
NN=N+2
DO 57 I=l,JOB
DO 57 J=l,JOB

57 D(I,J)=O.O
DO 114 JJ=l,N
KK=K+1
NN=NN-1
IF(NN.GT.N) GO TO 58
DO 45 I=l,M
DO 45 J-1,M

45 A(I,J)=AK(I,J,KK)
DO 5030 I=l,M
DO 5030 J=l,M

5030 B(J,I)=A(I,J)
DO 5031 IK=l,M
DO 5031 IJ=l,M
SUM=O.O
DO 5031 iI=l,M
SUM=SUM+E(IK,II)*B(II,IJ)

5031 C(IK,IJ)=SUM
DO 5032 IK=l,M
DO 5032 IJ=l,M
SUM=O.O
DO 5032 II=l,M
SUM=SUM+A(IK, II)*C (II, IJ)

5032 D(IK,IJ)=SUM
DO 46 I=l,M
DO 46 J=l,M

46 F(I,J,NN)=E(I,J)
58 DO 47 I=l,M

DO 47 J=l,M
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47 A(I,J)=AK(I,J,K)
DO 5033 1=l,M
DO 5033 J=l,M

5033 E(1,J)=A(I,J)+D(1,J)
114 K=K-2

NN=l
DO 48 1=l,M
DO 48 J=l,M

48 F(I,J,NN)=E(1,J)

*****~-k********~~******7(*******~~********************~~******************

ASSEMBLE THE OFF DIAGONAL ELEMENTS OF F. *
*
*

***~~****************************j~~-k*****~~**************~~*************

KJ=2
KJJ=JKKJ
MNM=N-l
NMN=2*N-2
NNMMN=N
JKMKJN=JKKJ
JK=2
DO 215 II=1,MNM
DO 205 1=l,M
DO 205 J=l,M

205 A(1,J)=AK(1,J,NMN)
DO 206 I=l,M
DO 206 J=l,M

206 B(1,J)=F(1,J,NNMMN)
DO 5040 1K=l,M
DO 5040 1J=l,M
SUM=O.O
DO 5040 1N1K=l,M
SUM=SUM+A(1K,1N1K)*B(1N1K,1J)

5040 C'(1K,1J)=SUM
DO 207 1=l,M
DO 207 J=l,M

207 F(1,J,JKMKJN)=C(1,J)
JKMKJN=JKMKJN-JK
1F(11.EQ.l) GO TO 235
J1K=II-l
JKJ=KJJ
DO 216 JKJKKJ=l,J1K
JJK=JKJ-J1K
DO 208 1=l,M
DO 208 J=l,M

208 D(1,J)=F(1,J,JKJ)
DO 5041 iK=l,M
DO 5041 IJ=l,M
SUM=O.O

. DO 5041 1N1K=l,M.
SUM=SUM+A(1K,1~1K)*D(1N1K,1J) .
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5041 E(IK,IJ)=SUM
DO 209 I=1,M
DO 209 J=I,M

209 F(I,J,JJK)=E(I,J)
JKJ=JKJ+l

216 CONTINUE
KJJ=KJJ-KJ
KJ=KJ+l

235 JK=JK+l
NMN=NMN-2
NNMMN=NNMNN-1

215 CONTINUE

*THE INVERSION IS COMPLETE. *

*THE SUBMATRICES OF THE INVERSE ARE STORED AS A COLUMN VECTOR *
WITH THE FIRST BLOCK OF THE VECTOR BEING THE SUBMATRICES OF *
THE MAIN DIAGONAL OF THE INVERSE, AND WITH THE SECOND BLOCK *
OF THE VECTOR BEING THE OFF-DIAGONAL SUBMATRICES OF THE *
UPPER TRIANGLE OF THE INVERSE ARRANGED BY ROWS. *

*
************~~**~~*******~-k****~k*~~****************************~~~7*****

WRITE(1O,2000)
DO 6002 K=I,N

6002 WRITE(10,1000) K,K,«F(I,J,K),J=I,M),I=I,M)
LL=N+ 1
JK=N-1
NN=2
DO 6001 I=I,JK
DO 6000 J=NN,N
WRITE(10,1000) I,J,«F(K,L LL),L=I,M),K=I,M)

6000 LL=LL+1
NN=NN+l

6001 CONTINUE
6000 FORMAT(IHO,12X,*F(*,12,*,*,12,*)*//,2(2X,F10,3,8X,FI0.3/)////)
6000 FORMAT (IHl)

REWRN
END
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Fig. 1 The Tri-Diagonal or Triple-Band Matrix
with 2x2 Sub-Matrices
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C

1B I" *6'

~A f F~.
E,

X = Ku

X = Ku %- 10'~ 15' -----;f- 10' ~

AE/L 0 0 0 0 0

0 l2EI/L3 6EI/L2
0 0 0

0 6EI/L2 4EI/L 0 0 0

k .. = --------------------------------------------------
-:-:~J

0 0 0 AE/L 0 0

0 0 0 0 l2EI/L3 6EI/L
2

0 0 0 0 6EI/L2 4EI/L

T =

cosine

-sine

o ;

sine

cosine

o

o

1

o

o

o

o

o

o

o

o

o

0 0 0 cosine .sine 0

0 0 0 -sine cosine 0

0 0 0 0 0 1

k ..
T-= T k ..T

-~J - -~J-

K = L;k

.:;'

Fig. 2 Schematic Formulation of the Direct
Stiffness Method for the Sample Fraine



JOINT
LOAD

A

A B c

o

D

o

E

o

F

o

K =

B

C o BC CD
~C + ~C

o o

o

o

o

D

E

F

o

o

o

o

o

o

o

o

kDE
-ED.

o

o

kDE + kEF kEF
-EE -EE -EF

Fig. 2 (Continued)



Yes

INPUT DATA
TRANSFERRED FRCM

CALLING PROGRAM

C(I,J)=K(J,I)*T(K-l)

E(I,J)=K(KK)+C(I,J)

E(I,J)=(E(I,J»-l

T(K)=E*K(K+ 1)
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Fig: 3 Glow Chart for Calculating the T and G
Matrices, and for Storing the T and G

Matrices in the Three-Dimensional 
Vector of the Input Matrix



Yes

T(J,I)=T(I,J)T
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~':"'.

C=F(I+l, I+l)*T(J ,I)

D=T(I,J)*C

F(I,I)=G(I)+D

Fig. 4 Flow Chart for Calculating and Storing
the Diagonal Elements of the Inverse



F(N-1,N)=T(N-1,N)*F(N,N)

Yes

No .

F (N-l,N+1)=T(N-1,N)*F (N ,N+ 1)
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REWRN

Fig. 5 Flow Chart for Calculating and Sorting
-the Off-Diagonal Elements of the Inverse



--INPUT MATRIX IN NORMAL NOTATION:
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2.00

1.00

1.00

0.50

1.00

2.00

0.50

1.00

1.00 0.50

0.50 1.00

1.00 0.50

0.50 1.00

0.00 a 00

0.00 0.00

0.50 0.25

0.25 0.50

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00 0.00 0.50 0.25 2.00 1.00 1.00 0.50 0.00 0.00

0.00 0.00 0.25 0.50 1.00 2.00 0.50 1.00 0.00 0.00
--------------------------------------------------------------------
0.00 0.00 0.00 a 00 1.00 0.50 1.00 0.50 0.50 0.25

0.00 0.00 0.00 0.00 0.50 1.00 0.50 1.00 0.25 0.50

0.00

0.00

0.00

0.00

0.00 0.00

0.00 0.00

0.00 0.00

0.00 0.00

0.50

0.25

0.25

0.50

3.00

1.50

1.50

3.00

INPUT MATRIX AS A THREE-DIMENSIONAL VECTOR:

2.00 1.00
1.00 2.00

1.00 0.50
0.50 1.00

1.00 0.50
a.50 1.00

a .50 0.25
0.25 0.50

2.00 1.00
1.00 2.00

1.00 0.50
0.50 1.00

1.00 0.50
0.50 1.00

0.50 0.25
0.25 0.50

3.00 1.50
1. 50 3.00

Fig. 6 Input Matrix for Test· Run of the Program



OUTPUT AS OBTAINED FRCM THE SUBROUTINE:

F(l)l)
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2.148
-1.074

-1.074
2.148

F (2 )2)

5.926
-2.963

-2.963
5.926

F (3) 3)

3.259· --1.630
-1.630 3.259

F(4)4)

5.333 . -2.667
-2.667 5.333

F(5)5)

0.593
-0.296

-0.296
0.593

F(1)2)

-2.963
1.481

1.481
-2.963

F (1) 3)

1.630
-0.815

-0.815
1.630

F (1)4)

-1. 778
0.889

0.889
-1. 778

I •

I ..

Fig. 7 Upper Triangle of the Inverse of the Input
Matrix for the Test Run



_ F(1,5)
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0.296
-0.148

-0.148
0.296

F(2,3)

-3.259
1.630

1.630
-3.259 .

F(2,4)

3.556
-1. 778

-1. 778
3.556

F (2,5)

-0.593
0.296

0.296
-0.593

•
F(3,4)

-3.556
1. 778

1.778
-3.556

F (3,5)

0.593
-0.296

-0.296
0.593

F(4,5)

-0.889 0.444
0.444 -0.889

Fig. 7 (Continued)



..

J -

12. BIBLIOGRAPHY

1. Gatewood, B. E. and Ohanian, N.
"Tri-Diagonal Matrix Method for Complex Structures",
Journal of the Structural Division, Proceedings of
the America;-Society of Civil Engineers, ·Vol. 91,
ST2, April 1965, pp. 27~4l. .

2. Martin, H. C.
Introduction to Matrix Methods of Structural Analysis,
McGraw-Hill Book Co., New York, 1966, pp. 69-168.

3. Przemieniecki, J. S.
Theory of Matrix Structural Analysis, McGraw-Hill Book
Co., New York, 1968, pp. 427-428 .

-32



-33

13. ACKNOWLEDGMENTS

Thanks and appreciation are due to Miss Karen Philbin and

Mrs. Jane tenner for typing and proofreading this report.


	Lehigh University
	Lehigh Preserve
	1969

	Inversion of tri-submatrix banded matrices, June 1969
	H. Jr. Bill
	C. N. Kostem
	Recommended Citation


	tmp.1349753097.pdf.PCYIL

