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1. INTRODUCTION

This report presents a methodology and the relevant computer
program for the inversion of "tri-diagonal' matrices by making use of

its inherent properties.

A tri-diagonal matrix is one which has elements on the main
diagonal, and which has elements once removed from the main diagonal.
Each element may be a matrix itself, but each element must have the

same dimensions as every other element.

The tri-diagonal matrix must be square and non-singular,

and each sub-matrix must be square and non-singular (Fig. 1).

The application of tri-diagbnal inversion scheme to complex
structures was described by B. E. Gatewood and Norik Ohanian (Ref. 1).
This article points out that a truss, or a frame, can;be arranged in
sections so that members f;om each section attach only in the section,
or to éhe two adjacent sections; then it is ﬁossible to generate
the stiffness matrix directly in tri-diagonal sub-matrix form from
the generalized force-displacement equations for éach member.and the
equilibrium gquations for each joint of the structure. The size of
the sub-matrices is determined by the'number of joints in the Section-

and the number -of displacement components for each joint.

"In Gatewood and Ohanian's artiéle, each sub-matrix could be

of any arbitrary size. However, as was pointed out earlier, this
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subroutine handles only the case of each sub-matrix being the same .
size. It should be noted that the largest mattrix that has to be in-
verted by standard procedures is a matrix having the same dimensions

as the sub-matrix.

'As a demonstration of the formulation of a tri-diagonal
matrix, a simple frame will be set up (Fig. 2) using the "Direct

Stiffness" method and including axial effects.

Although Ehe example is valid for use in the tri-diagonal
matrix subroutine, in general, the ordinary formulation of the direct
~stiffness_method_does not permit the use of this subroutine. That
is, if more than two mémbers frame ingo a joint or if axial defor-

mations are neglected.

. The purpose of this study is not merely to invert a specific
type of matrix, but to invert it efficiently making use of the known
properties of symmetry.

'

It is known that ﬁhe matrix is symmetric (Fig. 1) and,
tﬁerefore, its inverse is‘also symmetric. For the.matrix to be sym-
metric, the sub-matrices on-thé ﬁain diagonal must be symmetric; and
the off-diagonal sub-matrices must equal their transposed counterparts
(A, . = AL Y.

=iy i



2. MATHEMATICAL FORMULATION
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Writing the equations for the first row of rij,

RSTRSTIRE STR-S T S C)

K

-Isll'-F-lz_ + K, '322 = 0 (b)
Ky B3 ¥Ry By = 0 (e
1SH 214 +§12'§24 = 0 (d)

Ky By PR By = 0 ()




From Equation (a) o
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Writing the equations for the second row of.[I],
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Following the same procedure for the other rows of [I],
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which are the recurrence formulae for all but the first and last rows.

For the first row (see Eq. (I)),
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And, for the last row,
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3. LOGICAL FLOW CHART

From an examination of the recurrence‘fo;muiae obtained from
the derivation, it is obvious that two 'sweeps'" of the matrix are
ﬁeeded.. The first sweep progresses down the three-dimensional vector
calculating the T and G matrices. The second sweep progresses up the

three-dimensional vector calculating the F matrices.

Below is shown a logical flow chart for the program. It-
will be noted that the second sweep has been broken down into two

steps.

Calculate the G and T matrices
and store in the three-dimensional

vector of the impact matrix (Fig. 3).

Calculate the diagonal elements of the
inverse, Fii’ and store in a three-

dimentional vector (Fig. 4).

Calculate the off-diagonal elements of
the inverse, Fij (j>i), and store in the

vector with the Fii elements (Fig. 5).




4. LIMITATIONS

., The limitations of the program, from a mathematical point of
view, are those of symmetry and banding. The limitations of the pro-

gram, from a practical point of view, are the capacity of the machine

and the size of the sub-matrices.

The program»has been written for a maximum sub-matrix size

" -of nine elements. This dimension can be changed by changing the
DIMENSION statement in the-subroutine anq by changing the value of the
variable JOB. It is not advisable to increase the vélue of JOB much
béyond the value needed for a particular job (run) because this only

serves to tie up core storage with zeros.

The limitation of the machine capacity (core storage) can be
bvercome by using disk étorage.

It should also be noted that the form, in which the inverted
matrix is retufﬁed to the calling program, is such that the resulting
inverted matrix is not suitable for further mathematical operaFion-
it is return as a three-dimensional vector rather than é two-dimensional

array. The form of the three-dimensional vector is illustrated by the

form of the output from the subroutine.



5. . INPUT

Input to the subroutine consists of the banded matrix K
stored as a three~dimensional vector with the Eii's stored in the odd

locations and the Eij's (where j>i) stored in the even locations.

[ x,,

Ko

Ky

Ky3

nn

N, the number of gii's in the banded matrix; M, the actual size of

each sub-matrix; MN, M times N; 2N-1, 2 time N minus 1; IO, number of
. N .
output unit; and JKKJ, ¥ i. (See Fig. 6 for the input matrix used for
o | i=1 o '
the test run of this program).
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6. OUTPUT

The output is only a listing of the upper triangle of the
inverted matrix. It is-only a listing of the three-dimensional vector.
The.iﬁdividual sub-matrices are labeled to show their position in the
assembled two-dimensional inverted matrix. (See Fig. 7 for the output

from the test run of this program).
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.7.. STORAGE LOCATIONS

The storage locations required to store the total, unaltered
e 2 .
banded matrix is M x N . The storage required for this subroutine

can be broken down as follows.

The original matrix can be stored as a three-dimensional
vector composed of only the upper‘triangular portion of thé original
banded matrix. This will require N storage locations for thelgii's
and N-1 storage locations for the Eij's (j>i). Therefore, the total
stérage locations are used to store the T and gvmatrices calculated in

the subroutine,

The inverted matrix requires 0.50 x M x N storage locations

. . . . 2
if stored element by element. However, this subroutine requires M x
N '

i=1 storage locations for the inverted matrix.

Therefore the total storage required (not including '"scratch"

matrices) is

N

s=@n-1 M3 - X

N(N+1)_M2-——2-(N2+5N-2)

2 2 : ,
as composed to M N for storing just the total original banded matrix.



For comparative purposes with M = 2,

1172

1 ‘8
2 24
3 44
4 68
5 96
6 128
7 164
8 204
9 248
10 296
And with M = 4
N ..
1 32
2 96
3 176
-4 272
5 384
1 )
0 ]
] []
1 t
1] . ]
. 100 83,984

16

36

64

100
144
196
256
324

400

16
64
144
256

400

160,000

Ratio

2.00
1.50
1.22
1.06
0.96
0.89
0.84
0.80
0.77

0.74

Ratio

2.00

1.50

1.22

1.06

0.96

0.52-
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8. NUMBER OF BASIC OPERATIONS

Basic operations, as considered here, are matrix addition,
multiplication, inversion and transposition. Basic operations does
not include the transfer back and forth from a two-dimensional array to

part of a three-dimensional vector.

Strictly speaking the matrix inversion is not a basic operation
because it involves some of the other basic operations. However, in

order to arrive at an approximate figure, matrix inversion will be

considered a basic operation.

The number of basic operations will be computed for each block

of calculation as shown in the Logical Flow Chart.

1. For calculating the T and G matrices,
. (a) each G matrix, except the first one, requires

1l - multiplication
1 - addition
1l - inversion

(the first one requires only one inversion) and -
(b) each T matrix requirés
' 2 - multiplications
Therefore, for this block of operation,
OP1 = (N-;) 3)+N+ (N-1) (2) = 3N -3+N+2N.- 2
=6N - 5

2. For calculating the diagonal sub-matrices of the inverted
matrix,
(a) each Fs matrix, except the last one, requires
1 - transposition
2 - multiplications
1 - addition -

—— (the last one, F , doesn't require any basic operations).
. - ? Tn,n . v



Therefore, for this block of operation,
OP2 = (N-1) (4) = 4N - 4.

3. For calculating the off-diagonal sub-matrices (Eij for
j>i) of the inverted matrix,
(a) each Eij (for j>i) matrix requires
1 - multiplication
Therefore for this block of operation,

N | _N _ N
oP, = (& i-N) (1) = 52(N + 1) - N= 7 (N-1).
i=1 '

3

The total number of basic operations is

OP

0P1+0P'2+0P3=6N-5+4N-4+§(—1;:11

0P = 1/2 (N> + 19N - 18).

(It should be noted that each of these basic operations is performed
on a sub-matrix of size M x M.)

For comparative purposes,

N N 1w op
1 1 . 19 1
2 | 4 - 38 12
3 9 57 24
4 16 76 37
5 25 .95 51
6 36 114 66
7 49 . 133 82
8 64 152 ‘ 99
9 81 171 117

10 100 | 190 136

-14



-15

9. .SUMMARY

The purpose of the program is to efficiéntly invert a large
matrix which can be partitioned into a symmetric, triple-banded matrix.
For a Friai run with M = 2 and N = 5, it was found that the standard
invérsion routine is faster. It is believed that a break-even point,
as far as the execution time is concerned, would be reached for MN = 40.

As far as a storage is concerned, the break even point occurs for N = 5.

As for the form of the output from the subroutine, it should
be remembered that ideally a very large matrix will be inverted which
can not be stored completely in the core of the machine. Therefore,
the form of‘the output should be either a punched deck containing the
inverse of the input matrix which would be used as input with another
program or aSSembigd and stored on magnetic tape. The choice is up
to the indi;idual user. The user will hafe to write an "assembler"
subroutine ﬁo handle the problem as well as develop techniques for
manipulating such a large matrix on magnetic tape so that it can be

used in other operations leading to the desired solution.
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PROGRAM LISTING
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SUBROUTINE TRIBAND (AK,F,N,M,JKKJ,MN,I0)

DIMENSION AK(M,M,MN),FQ1,M JKKJ) A(9 9),B(9,9) C(9 9),D(9,9),E(9,9
1),G(9),H(9)

:************************************************************************

.

K MATRIX MUST BE SYMMETRIC - THAT IS, EACH K-SUBMATRIX ON THE  * .

MAIN DIAGONAL MUST BE SYMMETRIC (K(I,I)=TRANSPOSE OF K(I,I)) AND *

' EACH K-SUBMATRIX OFF THE MAIN DIAGONAL MUST BE SUCH THAT K(I,J)= *

TRANSPOSE OF K(J,I). : *

i : . *®

TRtk kShokhkik Rk kR e d ek Rl Rele ke ke Rk kR ik Tk R hededek ket ok dokdokdok St okt kol ket Sl e ke

JOB=9
0B
0B
0.0
0.0
0.0
0.0
55 E(I,J)=0.0
DO 5002 II=1,M

fhkdokkdk ki fohhddhkkhddokfddohofokdekdokoloddokdchdododedodo ke feded L e o e A e e i T e e

CALCUIATE T AND G MATRICES AND STORE THEM IN THE AK MATRIX,
THIS DESTRYOS THE ORIGINAL AK MATRIX,

NOTE - G MATRICES ARE K ODD AND T MATRICES ARE K EVEN.

* ok ok % % d

FkRklkikikdddkikidiokiokhkidddekiokkkidoiodeikdilokiodeldodokdododdololidoiokdoldololddeloiololio kel

DO 100 K=1,MN,2
KRK=K+1
KK=K-1
IF (KK.EQ.0) GO TO 3
DO 1 1=1,M
DO 1 J=1,M
1 A(1,J)=AK(I,J,KK)
DO 5001 II=1,M
DO 5001 JJ=1,M
"DUM=A(II,JJ)
A(11,33)=A(JJ,1I)
5001 A(JJ,1I)=DUM
DO 5003 IK=1,M
DO 5003 I1J=1,M
SuM=0.0
DO 5003 II=1,M
SUM=SUM +A (IK, 11)*3(11 1J3)
- 5003 C(IK,IJ)=SM
- 3 DO 2 I=1,M
. DO 2 J=1,M
2 A(I,J)=AK(I,J,K) :
DO 5004 IK=1,M : : :
DO 5004 IJ=1,M : ’ ' ’ .
5004 E(IK,I1J)=A(IK,1J)+C (IK,1J)
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Kk dekdedelodofodokkodedodedehdekdolohdodededededoddokdedek ok detekdode ddededodelededededededede dededededodedode dedededede dedodededok

THE FOLLOWING INVERSION SCHEME WAS MODIFIED TO HANDLE THE
INVERSION OF A SINGLE ELEMENT ARRAY - E(1,1) - BY
HERBERT L. BILL, JR.

* % o ok

Fededededodedodok Sk dededede dek ke dedelolelolioloholodelolotolole de dole dokodedodedolelodoloedolodedoiote detok Jede dete ot dele dodedniododetek

THE FOLLOWING INVERSION SCHEME IS BASED ON THE SUBROUTINE MINV
AUTHORED BY SAMPATH IYENGAR.

REFERENCE - GENERAL INFORMATION MANUAL, AN INTRODUCTION TO
ENGINEERING ANALYSIS FOR COMPUTERS (IBM). :

* % ok F ok ¥

kkkkkhkkkkikhiokhlkihhlhkiohkikiddkikhihhhickiliokkihlhllhlikillihhikikihihik

IFM.EQ.1) GO TO 6052

MI1=M-1

DO 5005 IK=1,M :
Fedckdoicdododelolodokdelolololololoiolclooloiololololololnlolelelolololodololo ololodelelodolololololedolo ol doioeloleolodoloielelo ook

: *

SEARCH FOR THE LARGEST ABSOLUTE-VALUED ELEMENT IN THE FIRST *
COLUMN., EXCHANGE THE FIRST ROW WITH THE CORRESPONDING ROW, *
%

wkkkkkikiiokklkiohkiokhihiokikkkiokilkiokilhhikikkikhdokkkiohhlilkioiohkkikihkikk

BIG=0.0
LIMIT=M-IK+1
NR=1
D05006 IKK=1,LIMIT
ABSA=ABS (E (IKK, 1))
IF (BIG.GE.ABSA) GO TO 5007
BIG=ABSA :
NR=IKK
- 5007 CONTINUE
5006 CONTINUE
: H(IK)=IK
IF (NR.EQ.1) GO TO 5010
T=E(1,J)
E(1,3)=E(NR,J)
5008 E(NR,J)=T
H(IK)=IK+NR-1

Fokdedokiodeiok ok tolelofohodelol ol ook toldok foleldelok k kdodck dokiolek deleke ke de kol fo e oo lodeloedede e dedodode de
A K
CREATE PIVOT ROW ELEMENTS, : T %

*
Kededekedekdfelofi feleldolololohiolloldok ook ook ok folelek ko dokodetoleko dodelokedokede el dodedodelodelolololedofoletoedokek

5010 DO 5009 J=1,NM1

. JPl=J+1

5009 G(J)=E(1,JP1)/E(1,1)
GM)=1.0/E(1,1)
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R S o o o o O e e r b oy e S T S S S S S R A o S o b S R e R e

*
COMPUTE NEW VALUES FOR THE MATRIX ELEMENTS WHILE SIMULTANEOUSLY %
RENUMBERING THE ROWS. . *
*

kfkhkhikikihkiikikihihidlikihlkhiidhiikliiihikiohkikichkiikiklkhihkikihkikihks

DO 5011 I=2,M
M™1=1-1
E(IM1,M)=-E(I,1)*G M)
DO 5011 J=1,NM1
JP1=J+1

5011 E(mMM1,J)=E(I,JP1)-E(I,1)*G(J)
DO 5012 J=1,M

5012 EQM,J)=G(J)

5005 CONTINUE

fekdekdohfhhkllihkhhlldedkiohbiickihldhbiiddkiddcdadhdohihiddkddddokididddddohdiihi

%
. *
MATCH COLUMN EXCHANGES WITH THE PREVIOUS ROW EXCHANGES., . %

. . . %

Ffekdok ok kkdohkblodidioliokikkkldokkkiokihiivick Tloldoh ik otk flokiok T kiokik kkikichiokk

DO 5013 IKK=1,M
IK=M+1- IKK
IF (H(IK).EQ.IK) GO TO 5014
NC=H (IK)
DO 5013 I=1,M
T=E(I,IK)
E(I,IK)=E(I,NC)
E(I,NC)=T '
5014 CONTINUE
5013 CONTINUE
GO TO 6053
6052 E(1,1)=1.0/E(1,1)
6053 DO 4 I=1,M
DO 4 J=1,M
4 AK(I,J,K)=E(I,J)
DO 5020 IK=1,M
DO 5020 IJ=1,M
SUM=0.0
‘DO 5020 II=1,M _
. SUM=SUM+D(IK,II)+E(II,IJ)
5020 A(IK,IJ)=SUM
-~ DO 5 I=1,M
DO 5 J=1,M
5 E(I,J)=AK(I,J,KKK)
IF (KK.EQ.0) GO TO 9
DO 6 I=1,M
DO 6 J=1,M
AK(I,J ,KK)=B(1,J)
'CONTINUE -

O O
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DO 5021 IK=1,M
DO 5021 1J=1,M
SUM=0.0
DO 5021 II=1.,M
. SUM=SUM+A (IK,II)*E(II,LJ)
5021 B(IK,I1J)=SUM
100 CONTINUE
DO 7 I=1,J0B
DO 7 J 1 JOB

*********‘%%%************************************************************

ASSEMBLE THE INVERSE OF AK - ESTABLISH THE F MATRIX,

% % 3k b

ASSEMBLE THE MAIN DIAGONAL OF F.

R e e B o o i e o R e e o o o T R L o s e e

~

K=MN
NN=N+2
DO 57 I=1,J0B
DO 57 J=1,J0B
57 D(1,J)=0.0
DO 114 JJ=1,N
KK=K+1
NN=NN-1
IF (NN.GT.N) GO TO 58
DO 45 I=1,M
: DO 45 J-1,M
45 A(I,J)=AK(I,J,KK)
DO 5030 I=1,M
DO 5030 J=1,M
5030 B(J,I)=A(I,J)
DO 5031 IK=1,M
DO 5031 IJ=1,M
SUM=0.0
DO 5031 II=1,M
SUM=SUM+E(IK,II)*B(II,1J)
© 5031 C(IK,IJ)=SUM
DO 5032 IK=1,M
DO 5032 1J=1,M
SUM=0.0
DO 5032 I1I=1,M
" SUM=SUM+A(IK,II)*C(IL, IJ)
5032 D(IK,1J)=SUM
DO 46 I=1,M
DO 46 J=1,M
46 F(I,J,NN)=E(I,J)
58 DO 47 I=1.M
DO 47 J=1,M
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47  A(1,J)=AK(I,J,K)
DO 5033 I=1,M
: DO 5033 J=1,M
5033 E(I,J)=A(L,J)+D(I,J)

114 K=K-2
NN=1
DO 48 I=1,M
DO 48 J=1,M
48 F(I,J,NN)=E(I,J)

kuFkfhhkihhiiokiklohhkkhdkkivkhddkflhddhihiohilhikikkihiddtddfdkidkdhdlhifhdhior

ASSEMBLE THE OFF DIAGONAL ELEMENTS OF F,

Fedcdodoividolokokodololoioletokdolelolokololo bk ofokdokdoloefok kelok dodedohk dededofododedolodo tolodedededolo ok e ke kede o dodedede

KJ=2
KJJ=JKKJ
MMNM=N-1
NMN=2*N-2
NNMMN=N
JKMKJIN=JKKJ
JK=2
DO 215 II=1,MMM
DO 205 I=1,M
DO 205 J=1,M
205 A(I,J)=AK(I,J,NMN)
DO 206 I=1,M
DO 206 J=1,M
206 B(I,J)=F(I,J,NNMMN)
DO 5040 IK=1,M
DO 5040 1J=1,M
SUM=0.0
DO 5040 INIK=1,M
SUM=SUM+A(IK,INIK)*B (INIK,IJ)
5040 C(IK,I1J)=SUM
DO 207 1=1,M
DO 207 J=1,M
207 F(1,J,JKMKIN)=C(I,J)
JKMKIN=JKMKIN-JK
IF(II.EQ.1) GO TO 235
JIK=II-1
JKJI=KJJ
DO 216 JKJKKJ=1,JIK
JIK=JKI-JIK
DO 208 I=1,M
DO 208 J=1,M
208 D(1,J)=F(1,J,JKJ)
DO 5041 IK=1,M
DO 5041 1J=1,M
SUM=0.0
.DO 5041 INIK=1,M :
SUM=SUM+A(IK, INIK)*D (INIK,1J)

%

t***

b



5041
209
216
235

215

JRI=JKI+1
CONTINUE
KJJ=KJJ-KJ
KJI=KJ+1
JK=JK+1
NMN=NMN-2
NNMMN=NNMNN- 1
CONTINUE
Fededededekdededoedolodde ko dokedeko ok ko looodoioloke ok ko dokededodole dedodededoledeleko dodede doedede dele dedededede dede ede de dodede ke e
: *
THE INVERSION IS COMPLETE. *
*
THE SUBMATRICES OF THE INVERSE ARE STORED AS A COLUMN VECTOR *
WITH THE FIRST BLOCK OF THE VECTOR BEING THE SUBMATRICES OF %
THE MAIN DIAGONAL OF THE INVERSE, AND WITH THE SECOND BLOCK *
OF THE VECTOR BEING THE OFF-DIAGONAL SUBMATRICES OF THE
UPPER TRIANGLE OF THE INVERSE ARRANGED BY ROWS.
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E(IK,L1J)=SuM
DO 209 I=1,M
DO 209 J=1,M
F(I,J,JJK)=E(I,J)

Fodededokdoldolofoho fodeloledolok lololodefoko fokiolele doledoledeldededodelo ol dededole edoledo fodedo dededodedededelededededede dedede dededede

6002

6000

6001
- 6000
6000

WRITE (10,2000)

DO 6002 K=1,N ,

WRITE (10, 1000) K,K, ((F(I,J,K),J=1,M),I=1,M)
LL=N+1

JK=N-1

NN=2

DO 6001 I=1,JK

DO 6000 J=NN,N

WRITE(10,1000) I,J,((F(K,L LL),L=1,M),K=1,M)
LL=LL+1 : :
NN=NN+1

CONTINUE o

FORMAT (1HO, 12X, %F (*,12,% % 12 ,%)*// 2 (2X,F10,3,8X,F10.3/)////)
FORMAT (1H1)

RETURN

END

* & *



11.

FIGURES
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Fig. 1 The Tri-Diagonal or Triple-Band Matrix
with 2x2 Sub-Matrices
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Fig. 2 Schematic Formulation of the Direct
Stiffness Method for the Sample Frame
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Fig. 2 (Continued)




INPUT DATA
TRANSFERRED FROM
CALLING PROGRAM

Yes

KK=0
Y No

K(J,T)=K(I,J)T

C(I,J)=K(J,I)*T(K-1)

E(I,J)=K(KK)+C(I,J) A
!
E(1,J)=(E(T,0))"}

{

G=E

CT(K)=E*K(K+1)

©

Matrices, and for Storing the T and
Matrices in the Three-Dimensional
Vector of the Input Matrix

Fig. 3 Glow Chart for Calculating the T and

G
&
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K=

Yes

No

17, 1)=1(1,3)T

C=F (I+1, I+1)*T(J,I)

N

D=T(I,J)*C

~

F(I,I)=G(I)+D -

Fig. 4 Flow Chart for Calculating and Storing
the Diagonal Elements of the Inverse
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F(N-1,N)=T(N-1,N)*F (N,l\i)

Yes

\=1

No -

F(N-1,N+1)=T (N-1,N)*F (N,N+1)

4

WRITE F(I,J)

Fig. 5 Flow Chart for Calculating and Sorting
the Off-Diagonal Elements of the Inverse
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—-INPUT MATRIX IN NORMAL NOTATION:

2.00 1.00 1.00 0.50 0.00 O 00 0.00 0.00 -0.00 0.00

1.00 2.00 0.50 1.00 .00 0.00 0.00 00 00 00
00  0.50 00 0.50 .50 25 00 00 00 00
0.50 00 0.50 1.00 .25 50 00 00 00 00
00 00 50 0.25 2.00 1.00 00 0.50 0.00 0.00
00 00 25 0.50 1.00 2.00 0.50 00 0.00 0.00
00 00 00 0 00 1.00 0.50 00 0.50 50 25
00 00 00 0.00 0.50 .00 0.50 1.00 25 0.50
00 00 00 0.00 00 .00 50 25 3.00 50
00 00 00 0.00 00 .00 25 50 50 3.00

- INPUT MATRIX AS A THREE-DIMENSIONAL VECTOR:

[(2.00 1.00
1.00 2.00
1.00 0.50
0.50 1.00
1.00 0.50
0.50 1.00
0.50 0.25
0.25 0.50
2.00 1.00
1.00 2.00
1.00 0.50
0.50 1.00
1.00 0.50
0.50 1.00
0.50 0.25
0.25 0.50
3.00 1.50
1.50 3.00

Fig..6 Input Matrix for Test Run of the Program




OUTPUT AS OBTAINED FROM

THE SUBROUTINE:

F(1,1)

148 -1,
.074 2.
F(2,2)
926 -2.
.963 5.
F(3,3)
259 --1.
.630 3
F(4,4)
333 .-2
667 5
F(5,5)
593 -0
.296 0
F(1,2)
.963 1.
481 -2,
F(1,3)
.630  -0.
815 1
F(1,4)
.778 0.
.889 -1

074
148

963
926

630

.259

.667
.333

.296
.593

481
963

815

.630

889

778

Fig. 7 >Upper Triangle of the Inverse of the Input

Matrix for the Test Run
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F(1,5)
0.296 -0.148
-0.148 0.296
F(2,3)
-3.259 1.630
1.630 -3.259
F(2,4)
3.556 -1.778
-1.778 3.556
F(2,5)
-0.593 0.296
0.296 -0.593
F(3,4)
-3.556 1.778
1.778 - -3.556
F(3,5)
0.593 -0.296
-0.296 0.593
F(4,5)
-0.889 0.444
0.444  -0.889
Fig. 7 (Continued)
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