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SYNOPSIS

.'

...

A theoretical analysis is made of the behavior of prestressed

concrete members subjected to repeated flexural loadings. Equations are

derived for the stresses and deformations in the steel reinforcement and

in the concrete in beams subjected to moments varying in value between

zero and the static ultimate.

INTRODUCTION

Before the strand fatigue testdat~' presented in Part II (1)

of this series can be used to estimate beam fatigue life, a method of
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analysis must be developed for predicting as accurately as possible the

stresses a'nd deformations in a member subjected to repeated loadings. Of

prime importance is the relation between steel stress and applied moment

in any given load cycle, since the transformation of the loading history

of a beam into the corresponding stress history for the tension reinforce-

ment is an essential step in determining beam fatigue life.

In this analytic study, an analysis is first made of the response

of prestressed concrete members of rectangular section with the steel

reinforcement placed in one horizontal layer. The more complicated cases

of beams with the reinforcement distributed between several levels and

beams with I sections are then treated briefly.

Loading is considered in two stages; zero moment to M , andon

M to static ultimate moment, where M is the moment at which crackson on

begin to open. In the first loading stage, increments of strain in the

steel and concrete are relatively small and linear stress-strain relations

are assumed for both materials. Furthermore, any previously formed flexural

cracks are closed by the internal prestressing force, and s~ even the

cracked regions are assumed to behave elastically provided the stresses

remain compressive, Le., provided M is not exceeded.
on

Conditions in the second stage of loading are considerably more

complicated. The analysis of beam behavior -is based on a consideration of

the, fo llowing :

(a) Stress-strain relations for concrete and steel,

(b) An assumed pattern of deformation in the beam in

the region of flexural cracking,

(c) Equilibrium of interrial forces.
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Tests on concrete cylinders were conducted to determine the effect

on the stress-strain relation of a prior history of fatigue loading. The

concrete stress-strain data obtained from the cylinder tests provide a

basis for the choice of an equation for the concrete stress-strain rela

tion. An idealized pattern of beam deformation is assumed which describes,

approximately, the concrete deformations observed in the beam tests.

Finally, a compatibility factor ~, which measures the degree of bond break

down between strand and concrete in the beam near a flexural crack, is

evaluated empirically from ,the deformation measurements made on the beams

during the fatigue tests.
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NOTATION

area of concrete section

cross sectional area of longitudinal tension steel

width of rectangular beam, width of top flange of I beam

effective depth of beam

distance from center of gravity of A to center of
s

gravity of A
c

modulus of ~lasticity of concrete in the n-th load cycle

t cnon-dimensionalized concrete strain; E = -e u
f cnon-dimensionalized concrete stress; F = IT

c

Fn prestressing force in beam during the n-th load cycle

F prestressing force in test beam just prior to first.se

load cycle

. concrete stress

"..
~

f'
c

f'
r

I

I
c

k

ultimate cylinder strength for the concrete

modulus of rupture of the concrete

total steel stress at moment M
l
> M

.on

full depth of concrete section

moment of inertia of steel-concrete transformed section

about centroidal axis

moment of inertia of concrete area about its centroidal

axis

dimensionless factor defining depth to neutral axis at

a cracked section

-4-
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dimensionless factor relating average concrete compressive

stress at beam failure to k3f~

dimensionless factor defining location of compressive force

in concrete compressive stress block

dimensionless factor relating concrete, strength in beam and

cylinder

distance from crack over which full or partial bond breakdown

occurs

crack spacing

E
s., ~ ..

" Ec

applied moment

moment in n-th load cycle at which cracks begin to open

distance from the center of gravity of the steel area to the

centroidal axis

dimensionless

stress-strain

dimensionless

quantity defining the shape of the concrete

€u
relation; 0( = E --f'cn

c
parameters defining the shape of the unloading

Ec

~€'c

€:s

Eel

E:. sl

E: cF

~

€ sF

e u

yJ

portion of the concrete stress-strain curve

concrete strain

inelastic strain in a concrete cylinder test

steel strain

concrete strain in top fiber of the beam

total steel strain at the cracked section at moment M
l

> Mon

elastic strain in concret~ at the steel level due to pre-

stressing force F
n

steel strain due to prestressing force F
n

concrete strain in cylinder at f'
c

compatibility factor



INITIAL LOADING STAGE, CRACKS NOT OPENED

In the first loading stage, linear relations are assumed

between stress and. strain for both concrete and steel, and strains at

different levels in the beam are assumed to vary linearly with depth.

Considering the steel-concrete composite section of a rectangular beam,

we determine the position of the centroidal axis as

A e
c

A +(m-l)A
c s

where e is the distance from the center of gravity of the concrete

area A to the center of gravity of the steel area A , x is the distance
c s .

from the center of gravity of the steel area to the centroidal axis, and

m is the modular ratio, The moment of inertia of the steel-concrete

section with respect to the centroidal axis is

I = A[h2
c 12 + (e_x)2 + (m-l)

if A
s

bh

With tensile stresses positive, the top and bottom concrete fiber stresses

and the steel stress induced by moment M are, respectively

\.. ft = -!:!l!-+e - xJc I 2 .

fb + !1 [~ _ e + xJc I 2

f
s

M+ m - x
I

If the prestressing force in the steel prior to the application

of the n~th load cycle is F , the corresponding stresses in the unloaded
n

beam are"

-6-
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ft = - F [1 he ]
cF n Ac - 2I

c

fb F [ 1 he ]- - Ac + 2IccF n

F.·
f sF

n
= +-

As

where I is the moment of inertia of the rectangular concrete section about
c

its center of gravity. The total stresses at moment M in the n-th cycle

are therefore

he] M [h
2Ic I 2

(3.1)

- Fn [1:- + he1 + ~ [!! -e + xl
Ac 2I~ I 2

(3.2)

M + m I x (3.3)

For the first cycle of loading, i.e. when n = l,.the value of

F will either be known by measurement or estimated in the design calse

culations. Cracking will take place in this initial load cycle when f~l

becomes equal to the modulus of rupture of the concrete, i.e. when

= f'r

•

•

Thus, the value of M in the first load cycle ison

f' fb
M = I t cF

01 .!. h - e + x2

(3.4)
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In subsequent load cycles cracks will begin to open when the

1 f f b . h f ) 1va ue 0 ~s zero; t us, or n ,
cn

Mon I 1
-h-e+x
2

(3.5) .

The prestressing force in the steel prior to the application of

the n-th load cycle, F , will vary slightly during the lifetime of the
n

member. Appropriate values must be chosen in each particular instance

on the basis of an analysis for creep and shrinkage losses and an

estimation of other possible effects.

SECOND LOADING STAGE, CRACKS OPEN

Concrete Stress-Strain Relation

'.

The loading portion of the concrete stress-strain curve obtained

from cylinder tests can be represented with fair approximation by the

cubic parabola

F = o<..E + (3-20<) E2 + (0<-2) E3

in which stress and strain are expressed by the non-dimensional terms

f
c

F = fT
c

and

€c
E ==-

Eu

(3.6)

Besides fulfilling the requirements that F = 1 when E
dF

= 1, dE = 0 when



-9-

E = 1, and F = o when E = 0, Eq. 3.6 also contains an open parameter

which represents the tangent modulus of elasticity at zero load for the

beginning of the n-th loading cycle,

0<.. = E
cn

E u
f'

c

A limitation must however be placed on the value ofc< to ensure that

the curve increases monotonically in the range O~ E ~l. If the ini-

tial slope is too steep, the curve reaches a maximum for E , 1 and then

becomes a minimum at E = 1. It is therefore stipulated that

2
d F c: 0 at E = 1.0
dE 2 -

which leads to the result

It will be noted thatEq. 3.6 exhibits concave-up curvature in the lower

load range when

2
d F < 0 at E = 0
dE2

Le. when

ex.. < 1.5

Equation 3.6 has been plotted for values of 0( varying between 0.5 and

3.0 in Fig. 1.

Concrete cylinders were tested to determine stress-strain

relations for the concrete and to observe the effect upon the stress-

strain relation of a prior history of fatigue loading. Strain measure-

ments were made with two six inch SR4 A-9 electric resistance strain
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gages placed 180 degrees apart on the side of the 6 x l2-in. cylinder.

In tests involving large numbers of load applications, a Whittemore

deformeter was used'with aluminum targets cemented to the side of the

cylinders to check the strain gage readings against drift. The first

load- cycle was applied statically to allow strain readings to be made

with a static strain indicator. The predetermined number of load

cycles was then applied at a rat.e of 500 cycles per minute, and finally

the specimen was tested statically to failure with strain readings being

taken at regular intervals up to the ultimate load.

Two different load cycles were used for pre-loading the 6 x l2-in.

cylinders. Each cycle had a minimum load level of 20 kips, while maximum

load levels were 100 and 130 kips. Concrete fatigue test? currently

being conducted at Fritz Engineering Laboratory indicate for this

strength concrete that the smaller load cycle, 20 to 100 kips, may be

regarded for all practical purposes as an understress,Le. to have an

infinite fatigue life. Fatigue tests to failure on three cylinders

indicated an average fatigue life of 300,000 cycles for the 20 to

130 kip load cycle. Tests were conducted with pre-loadings of 0, 20,

30,000 and 100,000 cycles. An additional test was conducted with one

million pre-loadings of the smaller cycle. Each test was replicated

at least three times.

Typical strain readings from the final loading cycle to failure

are plotted non-dimensionally in Figs. 2 through 7. The results of the

initial static test were used to determine the value of the tangent

modulus of elasticity at the commencement of the test, E The amount
co
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of inelastic strain in the cylinder due to the repeated~loadings,Ll f' ,
c

was measurecl prior to the final ·static test. Ultimate values of stress

and strain measured during the static test to failure, f' and~ ,
c u

together with the modulus of elasticity, E , were obtained during the final
cn

test. Mean values of these· quantities· are shown in the figures.

Equation 3.6 has been plotted on Figs. 2 through 7 for the
'~'

~ values providing best fit o The stress-strain data for the specimens

without prior loading, Fig. 2 and very light prior loading, Fig. 3, follow

quite well the c~bic parabola with an O(value lying between 1.5 and 2.0.

When the fatigue loading has been more intense there is a distinct

tendency for the stress-strain relation to assume a concave-up region

in the lower load range. In Fig. 5, which shows test points for speci-

mens which had been subjected to approximately one third of the number

of load cycles required to cause fatigue failure, the concave-up shape is

clearly seen. Even in such cases a cubic parabola provides a reasonable

approximation to the stress-strain curve. A more complicated equation is

certainly not justified when account is taken of the considerable varia-

tion which is observed between replications of the same test, even when

differences in values of maximum stresses and strains have been removed

by non-dimensionalizing.

The maximum value ofc(used for the correlation of test data

for high strength concrete is 2.0 which is well within the limiting

value of 3.0. It appears that values of DC,. less than 3.0 will be adequate

for practically all types of concrete. It should be noted that when

the experimental curve has an initial concave-up section, the best fit

equation will not necessarily be' obtained by substituting for OL the
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observed initial slope, but by choosing ex. to provide a good fit-at .all

load levels.

Equation 3.6 will be used to represent the stress-strain rela-

tion for concrete subjected to axial loading. Before the stress-strain

relation obtained from axially loaded test pieces is applied to the

concrete in the compressive stress block of a flexural member, two

further effects must be considered.

In previous studies(3,4) it has been found that the general

stress-strain characteristics in axial compression are applicable to

conditions involving a compressive stress gradient provided account is

taken of the unloading portion of the stress-strain relation at high

loads. The unloading curve may be represented by a second order para-

bola, as shown in Fig •. 8 which is continuous with the loading curve at

E = 1, and descends to the point F = ~ , E = 1 + t , i.e.

F = 1 (E-l) 2 (3.7)

The second effect which must be considered is the variation

in concrete strength between beam and cylinder. In static ultimate

strength theory, the strength of the concrete in the beam is usually

written as k3f~, where f~ is the cylinder strength. In most ultimate

strength studies, only the product of the factor k
3

and another factor,

k l , is evaluated, such that klk3f~ is the average stress in the concrete

compressive stress block at failure. Reliable information on the re-

lation between concrete strengths in beam and cylinder has not yet

been published. In ultimate strength theory for reinforced concrete

columns and beams,a value for k
3

of 0.85 is commonly used to account
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for size effect, poorer concrete compaction in the column or beam, etc.

This· value· will also be adopted here because of the lack of more reli-

able information. For convenience, the terms F and eX., which hencefor.th

will be used in connection with the concrete in the beam, will be taken

to be
f

c
F =. k:-f'

3 c

and

ex = Ecn

(3.8)

(3.9)

The area under the curve represented by Eq. 3.6 in the range

O~E ~El' for El Sol.O, is

j
E: l

A =

o

i.e.,

FdE

(3.10)

S
El

o FEdE

(El
)0 FdE

With the interval between El and the center of gravity of the area defined

as k
2
El ,

so that

C( + (1.5-~)El + (0.3~-0.6)Ei

k 2 = 3C;X+ (6-4O')E
l

+ (l.50<.-3)Er (3.11)
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Deformations:',in ,the Beam-

In the idealized case of perfect bonding between steel and con-

crete, Bernoulli's linear strain hypothesis leads to the following com-

patibility equation

E sl = €sF + E CF + (3.12)

where k is the ratio of depth of compression block to d, € sl and Eel

are the strains in the steel reinforcement and the concrete top fiber

respectively, andesF and €cF are the strains in the steel and in the

concrete at the steel level due to the prestressing force F. Equa
n

tion 3.12 quantitatively describes a condition of uniform bending in

which the tensile deformations consist of infinitesimal hair cracks at

infinitesimal spacings; in actual fact, however, cracks at finite width

form at finite spacings and a slip of the steel relative to the concrete

occurs for some length on either side of the crack. To represent quanti-

tatively the deformations in the beam for moments greater than M ,aon

condition is assumed in which evenly spaced vertical tension cracks

break the beam into a series of blocks. Tensile deformations below

the neutral axis are concentrated in the crack, while compressive de-

formations exist as strain in the concrete above the crack. The de-

formation of the beam is thus pictured as a series of slight kinks

which exist at the cracked sections, each kink consisting of a rota-

tion of two adjacent blocks about the neutral axis as shown in Fig. 9.

Since infinite strains cannot exist in the steel reinforcement, full

or partial breakdown of bond must exist over some finite length on

either side of each crack. To take account of this situation a com-



patibility factor, ~, maybe introduced into Eq. 3.12 as follows

€ 1 - k €. tJJ
~ sl = €sF +cF + k cl T
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(3'.13)

This type of compatibility factor has been used for ultimate

strength analysis for both flexural and shear failures(5,6). For a

stress analysis at loads less than the ultimate, a theoretical expres-

sion for the dimensionless

reasonable but approximate,

term If has been derived based on several

assumptions (7) •

I •..
I

In general, theoretical evaluation of t.p is not feasible, because

of the lack of basic information on steel-concrete bond properties and

the scattersome nature of the phenomenon. Values must therefore be

determined empirically from beam tests. Data obtained during the

beam fatigue tests described in Part 1(2) have been used to obtain the

empirical If values contained in Fig. 10. A very marked change is' seen

to occur in ~during the life of a member. The value, at first usually

in excess of unity, falls by as much as 50 percent during the early load

cycles, then tends to become reasonably constant. Considerable scatter

is also seen to exist in ~, even when obtained from beams of almost

identical properties.

If the result~ of the initial loading sequences are disregarded,

the mean value of ~for all six beams is 0.93. Before reliable figures

can be recommended a much greater number of beam tests will have to be

conducted, but for the purposes of the present study the simple value

~ = 1.0 will be taken as characteristic for the test beams after the

initial load sequence has been applied. It is emphasized, however,

that values considerably different from unity are usually to be expected.
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The effect on fatigue life of variations in If will be discussed in

Part IV of this series of papers.

Equilibrium

The dis tribution of internal stresses at a cracked section during

a particular load cycle will depend upon the magnitude of previous load-

ings. When the loading under consideration is considerably larger than

all previous ones, a field of tension stresses will exist in the concrete

immediately below the neutral axis of stress. In some circumstances,

especially at lower loads, the concrete tensile stresses are an impor-

tant consideration in the equilibrium of the section. When, however, a

previous loading has been greater than the one under consideration, cracks

will have extended above the present level of the neutral axis and there

will be no concrete tensile stresses at the section. In the present

analysis it is assumed that over loadings are evenly distributed through

the life of the member and concrete tensile stresses will be ignored in

the equilibrium considerations.

Assuming a linear distribution of strain above the crack, one

obtains for the total compressive force,

kd

C = b J. f d (3.14)c y

With

·f
F

c
= k ft:

3 c
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and

E

Eq. 3.14 may be written as

bd k f' k
C = ""'3-.;.c-

E1
FdE (3.15)

where E
1

is the extreme fiber value of E.

Equations 3.10 and 3.15 together yield

(3.16 )

provided E1 ~ L It should be noted that the range of values La:: E1 ~

1 +'t corresponds to over-loadings approaching static ultimate load, and

will not be met with in practical situations. The stress corresponding to

such high loads can however be investigated by considering also the un-

loading portion of the stress-strain relation represented by Eq. 3.7.

Horizontal forces may now be equated to yield

f 1 As s
bd k 3 f~

(3.17)

and equating internal and external moments, we obtain

where k
Z

is given in terms of E1 in Eq. 3.11.

Stresses in a Rectangular Section

The equations derived for the cracked rectangular section

are now summarized.

(3.18)



f 1 As s
bd k 3 f~
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(3.17)

(3.18)

(3.13)

Z(0.30(-0.6) E
l

(1.50(-3) Er
(3.11)

These equations, together with the steel stress-strain relation, may be

used to evaluate, for a moment M, in the n-th load cycle, the unknowns

f r k, k
Z

' and E'l •. It will be noted that the value of Fn forsl' ~sl'

the n-th load cycle must be known or estimated since it is used to

determine €sF and t.
cF

• In general, the calculations for the stress

moment relation will be simplified if values of f sl and€sl are first

chosen and substituted in Eqs. 3.17 and 3.13 to obtain k, and hence,

through Eq. 3.11, k
Z

• The corresponding values of Ml may be obtained

by substitution of values in Eq. 3.18. The process may then be re-

peated to obtain different points on the Ml - f sl curve.,

When a large number of stress-moment calculations are to be

made, it may be convenien~ to plot Eqs. 3.17 and 3.13 in the form of an

intercept chart on coordinates of E
l

and k, for appropriate values of 0(.

Equation 3.13 may be divided throughout byE and rearranged to the form
u..:,/

y/€JeS1 - EsF -€ cF ]
1 - k

k
'(3.13a)

Equations 3.17 and 3.l3a now contain the ter~s El and k in the right

hand sides, while their left hand sides are functions of ~ither f sl or
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esl' Each ,equation may be used to plot a family of curves on the El-k

coordinates. The resulting intercept chart provides values directly

for kand El without a trial and error procedure. It is convenient

also to plot k i aga-inst El using Eq. 3.ll so that k
2

can be evaluated

without calculation.

Steel at Several Different Levels in the Beam

.The above equations were derived for a rectangular section in

which all of the steel reinforcement is at a depth d below the top

surface. When the steel lies at z different levels, there will be z

different values of stress and strain for the steel. Letting the

depths of the different steel-layers be d
l
,·d

2
, ••••• d z , the corres

ponding steel stresses be f
sl

' f
s2

, ••••• f sz , and the depth to the

neutral axis be a, one obtains for the two equilibrium equations,

o ••••• •.•••• 0 ••••••

and

+ f A (d - k
2
a)sz sz z

(3.19)

~ E 3- 20<.. 2 +0<.- 2 E3
.2 1 + -3--- El 4 1 =

1

+f Asz sz (3.20)
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If it is further assumed that the bond parameter does not.vary

with the steel level, the following z compatibility equations .are

obtained,

~sl EsFl + EcFl +
d

l 1) €cl= (-. ra

E s2 €SF2 + €CF2 +
d

2
1) €:. cl if- (-a

••••••••••••••••••••••••• 00 ••••••••••••••

••••••••••••••••••••• 00 •• 00 •.••• 00 ••• 0 ••••

• • • • 0 •• 0 • 0" 0 ••• 0 0 •••••• 0 • 0 • 0 .0 0 • 0 •••••• 0 ••

Esz= €sFz + € cFz +
d

z(- - 1) r tL)
a C cl r

These equations, together with Eqs. 3.19, 3.20, 3.11, and the

stress-strain relation for the steel, must be used to obtain, by trial

and error procedure, ~he z different values of steel stress.

Beams with I Shaped Sections

In the case of beams of I section, loading must be considered

in three stages; zero moment to Man' Mon to Mt , and Mt to static ulti

mate moment, where M. is the moment at· which cracks begin .to open .andon

M is the moment at which the depth to the neutral axis is equal to the
t

depth of the top flange.

Linear stress-strain relations may be assumed for the first

loading stage and a simple elastic analysis of the section, similar to

the analysis for the initial loading stage for the rectnagular cross

section discussed earlier, provides values for steel stress and cracking

moment. In the third loading stage. the neutral axis will lie. in the top

flange and the steel stresses may be determined from an ~nGllysis of the
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>heamassuming a rectangular section with the width equal to the width of

the upper flange.

In the second loading stage, Mon ~ Ml < Mt , the beam is cracked

and the neutral axis lies in the web. Letting the value of the dimension-

less strain term E in the top concrete fiber be E
l

, and assuming a linear

distribution of compressive strains, one obtains for the value of E at

the bottom level of t~~ top flange

kd - t
E = kd El

where t is the flange thickness. The compressive force is therefore

+

i.e.

fdy
c

kd

(b-b i J
)(kd-t)

f dy
c

c =
k f' d

3 c
El

(1
b'}o FdE + (3.21)

(3.22)
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Equations for horizontal equilibrium and moment equilibrium are

E El1

f sl
A k

3
f' d k

b l

FdE FdE (3.23)- +s c El 1/

t
,0 (l-kd)E l

and

An analysis of the deformations in the beam yields the compat-

ibility condition represented by Eq. 3.13. It should be noted that

values of the bond parameter If may well vary considerably from those

for rectangular sections.

The integrals appearing in Eqs. 3.22 and 3.23 may be evaluated

without difficulty in terms of E
l

and k, and then Eqs. 3.13, 3.18, 3.22

and 3.23, together with the steel stress-strain relation, may be used

to solve for steel stress by a trial and error procedure. '/1, The main

difference between these calculations and those for a rectangular sec-

tion is that k
2

is now a function of k as well as E
l

• It is convenient

to begin the calculations by assuming a steel stress f sl ' and make trial

values of k until the correct value of€'sl is given by Eq. 3.13. The

moment corresponding to f
sl

is then obtained by substitution in Eq. 3.18.

CONCLUDING REMARKS

Assumption ofa deformation condition with finite spacing of'

vertical tension cracks has led to the use of a compatibility factor lP



-23-

in the compatibility·equation.Analysis of the beam test data has shown

that the value of ~varies considerably during the fatigue life of a

member, usually decreasing by up to 50 percent during the early load

cycles, but becoming fairly steady for the major portion of the fatigue

life. Before reliable quantitative values can be quoted for the com-

patibility factor, more extensive beam test data will be required.

The method presented in this paper may be used to determine the

steel and concrete stresses in prestressed concrete,members subjected to

bending moments varying in value between zero and static ultimate. A

numerical example of the use of the equations will be included in the

fourth and final paper of this series as part of a sample calculation

of the probable fatigue life,of a .beam of rectangular section.
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