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PROBABLE FATIGUE LIFE
OF

PRESTRESSED CONCRETE BEAMS

PART III: ANALYSIS OF STRESSES IN.
BEAMS SUBJECTED TO REPEATED
FLEXURAL LOADINGS

by

R. F. Warner
C. L., Hulsbos

SYNOPSTS

‘A theoretical analysis is made of the behavior of prestressed
concrete members subjected to repegted flexural loadings. Equations are
derived for the stresses and deformations in the steel reinforcement and
in the concrete inlbeams subjected to moments varying in value between

zero and the static ultimate.

INTRODUCTION

Before the strand fatigue test détgtpfésenteq in Part Il(l)

of this series can be used to estimate beam fatigue life, a method of
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analysis must be develqped for predicting as accurétely as pQSSible‘the
stresses and-deformations in a member subjectéd to repeated loadings., Of
prime importance is the relation between steel stress and applied moment
in any given load cycle, since the transformation of the loading history
of a beam into the corresponding stress history for the tension.reinforce-

ment is an essential step in determining beam fatigue life,

In this analytic study, an analysis is first made of the response
of prestressed concrete members of rectangular section with the steel
reinforcement placed in one horizontal layer. The mofe complicated cases.
of beams with the reinforcement distributed between several levels and‘-

beams with I sections are then treated briefly.

Loading is considered in two staggs; zéro.moment to Moﬁ’ and
Mon to’stgtic ultimatg moﬁent, where Mon is the moment at which pracks
begin to open. In the first loading stage, increments of straip in the
steél and concreté are relatively small and linear stress-strain relations
"are assumed for both materials. Furthermore, any pfeviously formed flexural
cracks are closed by the internal prestressing force, and so even the
cracked regions are assumed to bghave eiastically provided the stresses

remain compressive, i.e., provided_MOn is not exceeded.

Conditiéns in the second stage of loading are cohsidérably'more
complicated. The analysis of beam beﬁaviorlis b;sed on a considefation;of
the,following:

(a) Stress-strain relations for concrete andlsteel,

(b) An assumed pattern of deformafion.in the beam in

the region of flexural cracking,

(c) Equilibrium of internal forces.
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Tests on concrete cylinders were conducted to determine the effect
on the stress-strain relétion of a prior history of fatigue loadiﬁg. The‘
concrete stress-strain data obtained from the cylinder tests provide a
bagis for the choice of an equation for the concrete stress-strain rela-
tion. An idealized pattern of beam deformation is assumed which describes,
approximately, the concrete deformations observed in the beam tests.
Finally, a compatibilityvfactor 9U, which measures the degree of bond break-
down between straﬁd and concrete in the beam near a flexural crack, is
evaluated empirically from the Qeformation measurements made on the beams

during the fatigue tests.



cn

total steel stress at moment Ml> MO

NOTATION

area of concrete section

crosé sectional area of longitudinal tension steel
width of rectangular beam, width of top flange of I beam
effective depth of beam |

distance from cgnter of gravity of AS to center of
gravity of.AC

modulus of elasticity of concrete in the n-th load cycle

: €
non-dimensionalized concrete strain; E =éfg
: u
4 4 f.
non-dimensionalized concrete stress; F = r
c

prestressing force in beam during the n-th load cycle
préétressing force in test beam just prior to first

load cycle

Trgondretre stress

ultimate cylinder strength for the concrete.

modulus of rupture of the concrete

n

full depth of concrete section

moment of inertia of steel-concrete transformed section

about ‘centroidal axis

.moment of inertia of concrete area about its centroidal

axis
dimensionléss factor defining depth to neutral axis at

a cracked section
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%l

dimensionless factor relating average concrete compressive

stress at beam failure to k3fé

dimensionless factor defining location of compressive. force
in concrete compressive stress block

dimensionless factor relating concrete strength in beam and
cylinder

distance from crack over which full or partial bond breakdown
occurs |

crack spacing

B Es_

c

applied moment

moment in n-th load cycle at which cracks begin to open
distancezfrém the center of gravity of the steel area to the

centroidal axis

dimensionless quantity defining the shape of the concrete
stress-strain relation; X = Ecn é%f
dimensionless parameters defining the shape of the unloading
portion of the concrete stress-strain curve

concrete strain

inelastic strain in a concrete cylinder test

steel strain

concrete strain in top fiber of the beam

total steel strain at the cracked section ét»mbment M1 > Mon
elastic strain in concrete at the steel level due to pre-
stressing force Fn

speel straiq due to prestressing force Fh

concrete strain in cylinder at fé

compatibility factor



INITIAL LOADING STAGE, CRACKS NOT OPENED

In the first loading stage, linear relations are assumed
between stress and strain for both concrete and steel, and strains at
different levels in the beam are assumed to vary linearly with depth.
Considering the steel-concrete composite section of a rectangular beam,
we determine the position of the centroidal axis as

AC e
Ac+(m-l)AS
where e is the distance from the center of gravity of the concrete
area AC to the center of gravity of the steel area As’ E’is»the distance
from the center of gravity of the steel area to the centroidal axis, and
m is the modular ratio. The moment of inertia of the steel-concrete
section with respect to the centroidal axis is

h2 A 2

- h~ =2 )
I = AC 17 + (e-X)" + (m-1): in X

With tensile stresses positive, the top and bottom concrete fiber stresses

and the steel stress induced by moment M are, respectively

. t M|h -
. = - =|= -
fC I [é + e x}
fb = +M—[h-e+§]
c I
= M -
fs = +m I ¥

If the prestressing force in the steel prior to the application
of the n-th load cycle is Fn’ the corresponding stresses in the unloaded

beam are’



t B 1 he ]
£ =-F | &— -
cF n A 21
L. ¢ C_
b 1 he |
fr = | 2, t oI,
P
f = 4 —
sF As

where Ic is the moment of inertia of the rectangul

ar concrete section about

its center of gravity. The total stresses at moment M in the n-th cycle

are therefore.

t (1. _hel M|nh

fen =7 T | &g 21(] i [2 Te

b (1 he M|h

fcn_-Fn A, + ZIJ +I|:2-e+
_Fn M -

fsn—z— +m'I' X

E] - (3.1)
51 . (3.2)

(3.3)

For the first cycle of loading, i.e. when n = 1, .the value of

F will either be known by measurement or estimated in the design cal-

se

culations. Cracking will take place in this initi

al load cycle when f:l

becomes equal to the modulus of rupture of the concrete, i.e. when

: 1 he M|h - e
-Fse[AC+ZIC] +I‘[2 e+x:|—fr

Thus, the value of Mon in the first load cycle is

b
' -
.ft ch
Mol =1 1

2

(3.4)
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In subsequent load cycles cracks will begin to open when the

b |
value of fCn is zero; thus, for n 1,

'sz
Mon = I-T—————————— ' ] (3.5) -
'5h-e+§

The prestressing force in the steel prior to the application of
the n-th load cycle, Fn’ will vary slightly during the lifetime of the
membér° Appropriate values must be chogen in each particular instance
on the basis of an analysis for creep and shrinkage losses and an

estimation of other possible effects.

SECOND LOADING STAGE, CRACKS OPEN

Concrete Stress-Strain Relation

The loading portion of the concrete stress-strain_curGéﬁobtained
from cylinder tests can be represented with fair approximation by the
cubic parabola

F= XE+ (3-2%) B + (x-2) E? (3.6)

in which stress and strain are expressed by the non-dimensional terms

fC
F='E-,-
c
and
€
E=—
€y
. i N dF
Besides fulfilling the requirements that F = 1 when E = 1, == = 0 when

> dE



E=1, and F = 0 when E = 0, Eq. 3.6 also contains an open parameter
which represents the tangent modulus of elasticity-at zero load for the

beginning of the n-th loading cycle,

A limitation must however be placed on the value of X to ensure that
fhe curve increases monotonically in the range 0 E <1. If the ini-
tial slope is too steep, the curve reaches a maximum for E < 1 and then
becomes a minimum at E = 1, It is thérefore stipulated that

2
4F €0 at E =1.0

dr?2

[a N

which leads to the result

X € 3
It will be noted that Eq. 3.6 exhibits concave-up curvature in the lower
load range when

2

9—}’21<0 at E = 0
dE

i.e. when
xR < 1.5
Equation 3.6 has been plotted for values of o varying between 0.5 and

3.0 in Fig. 1.

Concrete cylinders were tested to determine stress-strain
relations for the concrete and to observe the effect upon the stress-
strain relation of a prior history of fatigue loading. Strain measure-

ments were made with two six inch SR4 A-9 electric resistance strain
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gages placed 180 degrees apart on the side of the 6 x 12-in, cylinder.
In tests invoelving large numbers of load applications, a Whittemore
deformeter was usediwith aluminum targets cemented to the side of the
cylinders to check the strain gage readings against drift. The first
load cycle was'applied statically to allow strain readings fo be made -
with a static strain indicator. The predetermined number of load
cycles was then applied at a rate of 500 cycles per minute, and finally

the specimen was tested statically to failure with strain readings being

taken at regular intervals up to the ultimate load.

Two different load cycles were used for pre-loading the 6 x 12-in.
cylinders. Each cycle had a minimum load level of 20 kips, while maxiﬁum
Aload levels were 100 and 130 kips. Concrete fatigue tests currently
being conducted at Fritz Engineering Laboratory indiqate for this
strength Coﬁcrete that the smaller load cycle, 20 to 100 kips, may be
regarded for all practical purposes as an understress,i.e, to have. an-
infinite fatigue life. Fatigue tests to failure on three cylinders
indicated an average fatigue life of 300,000 cycles for the 20 to
130 kip load cycle. Tests were conducted with pre-loadings of 0, 20,
30,000 and 100,000 cycles. vAn édditional test was conducted with one
million pre-loadings of the smaller cycle, Each test was replicated

at least three times,

Typical strain readings from the final loading cycle to failure
are plotted non-dimensionally in Figs. 2 through 7. The results of the
initial static test were used to determine the value of the tangent

modulus of elasticity at the commencement of the test, Eco' The amount



.
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of inelastic strain in the cylinder due to the repeatedkloadings,gjéé,

was measured prior to the final static test, Ultimate values of stress

and strain measured during the static test to failure, fé andé;u,

together with the modulus.of elasticity, Ecn’ were obtained during the final

test. Mean values of these quantities- are shown in the figures.

Equation 3.6 has been plotted on Figs. 2 through 7 for the
cé.values providing best fit, The stress-strain data for the specimens
without prior loading, Fig. 2 and very light prior loading, Fig. 3, follow
quite well the cubic parabola with an & value lying between 1.5 and 2.0.
When the fatigue loading has been more intense there is a distinct
tendency for the stress-strain relation to assume a concave-up region
in the lower load range. 1In Fig. 5, which shows test points for speci-
mens which had been subjected to approximately one third of the number
of load cycles requiréd to cause fatigﬁe failure, the concave-up shape 1is
clearly seen. Even in such cases a cubic parabola provides a reasonabie
approximation to the stress-strain curve. A more complicated equation is
certainly not justified when account is taken of the considerable varia-
tion which is observed between replications of the same test, even when
differences in values of maximum stresses and strains have been removed

by non-dimensionalizing.

The maximum value of o used for the correlation of test data
for high strength concrete is 2.0 which is well within the limiting

value of 3.0. It appears that values of X less than 3.0 will be adequate

_for practically all types of concrete. It should be noted that when

the experimental curve has an initial concave-up section, the best fit

equation will not necessarily be-obtained by substituting for ©oC the .
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observed initial slope, but by choosing & to provide a good fit .at.all

load levels,

- ~Equation 3,6 will be used to represent the stress-strain rela-
tion for concrete subjected to axial loading. Before the stress-strain
relation obtained from axially loaded test pieces is applied to the
concrete in the compressive stress block of a flexural member, two

further effects must be considered.

(3,4)

In previous studies it has been found that the general

stress-strain characteristics in axial compression are applicable to
conditions involving a compressive stress gradient provided account is
taken of the unloading portion of the stress-strain relation at high
loads. The unloading curve may be represented by a éecond order para-
bola, as shown in Fig.. 8 which is continuous with the loading curve at

E = 1, and descends to the point F ==f3, E=1+ 5', i.e.

A

F=1- P (&-1)2 | (3.7)

The second effect which must be considered is the variation
in concrete strength between beam and cylinder. In static ultimate
strength theory, the strength of the concrete in the beam is usually

written as k3fé, where fé is the cylinder strength. In most ultimate

strength studies, only the product of the factor k, and another factor,

3

kl’ is evaluated, such that k1k3fé is the average stress in the concrete

compressive stress block at failure, Reliable information on the re-
lation between concrete strengths in beam and cylinder has not yet
been published. In ultimate strength theory for reinforced concrete

columns and beams . a value for k, of 0.85 is commonly used to account

3

i



-13-

for size effect, poorer concrete compaction in the column or. beam, etc.
This- value.will also -be -adopted here because of the lack of more reli-
- -able information. For convenience, the terms F and &, which henceforth

will be used in connection with the concrete in the beam, will be taken

to be
fc
F = k"f' (3.8)
37c : :
and
€
X = 2
Een Tf (3.9)
3¢
The area under the curve represented by Eq. 3.6 in the range
0<E €E,, for E € 1.0, is
Ey
A= FdE
o
i.e.,
X 2 3-2 3 X-2 4
A= 7 E; + = E] + = Eq (3.10)

With the interval between E, and the center of gravity of the area defined

1
as k
2°1°
E]
FEdE
o i o
KoP1 T By - TE]
FdE
o
so that

X + (L.5-%0E, + (0.3%-0.6)E]

k) = 3xF (6-20E, + (1.5%3)E2

(3.11)
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Deformations: in:.the Beam
In the idealized case of perfect bonding between -steel and con-
crete, Bernoulli's linear strain hypothesis leads to the following com-

patibility equation

€~sl - EsF + ecF t+ = 1—< = ecl (3.12)

where k is the ratio of depth of compression block to d, é;sl and Ecl
are the strains in the steel reinforcement and the. concrete top fiber
respectively, and esF and écF are the strains in the steel and in the
concrete at the steel level due to the prestressing force Fn“u Equa-
tion 3.12 quantitativgly describes a condition of uniform bending in
which the tensile deformations consist of infinitesimal hair cracks at
infinitesimal spacings; in actual fact, however, cracks at finite width
form at finite spacings and a slip of the steel relative to the concrete
occurs fqr some length on either side.of the crack. To represent'quanti-
fatively the deformations in the beam for moments greater . than Mon’ a
condition is assumed in which evenly spaced vertical temsion cracks
break the beam into a series of bloéks° Tensile deformations below

the neutral axis are concentrated in the créék, while compressiye de-
formations exist as strain in the concrete above the crack, The de-
formation of the beam is thus pictured as a series of slight kinks

which exist at the cracked sections, each kink consisting of a rota-
tion of two adjacent blocks about the ngutral axis as shown in Fig. 9.
Since infinite strains cannot exist in.the steel reinforcement, fuil

or partial break&own of bond must exist over some finite length on

either side of each crack. To take account of this situation a com-
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patibility factor, 9), may be introduced into Eq. 3.12 as follows

_ 1 -k éf .
€. €st € + cl gu (3.13)
This type of compatibility factor has been used for ultimate
strength analysis for both flexural and shear failures(5’6). For a

stress analysis at loads less than the ultimate, a theoretical expres-
sion for the dimensionless term has been derived based on several

(7)

reasonable but approximate assumptions .
.

In general, theoretical evaluatioq of ins not feasible, because
of the lack of basic information on steel-concrete bond properties and
the scattersome nature.of the phenomenon. Values must therefore be
determined empirically from beam tests. - Data obtained during the
beam fatigue tests described in Part 1(2) have been used to obtain the
empirical 4)values contained in Fig., 10. A very marked change is seen
to occur in QJduring the life of a member. The value, at first usually
in excess of unity, falls by as much as 50 percent during the early load
cycles, then tends to become feasonably constant. Considerable scatter
is also seen to exist in 4), even when obtained.from beams of almost

identical properties.,

If the results of the initial loading sequences are disregarded,
the mean value of y)for all six beams is 0.93. Before reliable figures
can be recommended a much greater number of beam tests will have to be
conducted, but for the purposes of the present study the simple value
q} = 1.0 will be taken as characteristic for the test beams after the
initial load sequence has been applied. It is emphasized} however,

that values considerably different from unity are usually to be expected.
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The effect on-fatigue life of -variations in.y)will be discussed in

Part IV of this series of papers.

Equilibrium

The dis tribution of internal stresses at a cracked seqtion during
a particular load cycle will depend upon the magnitude of previous load-
ings. When the loading under consideration is considerably larger than
all previous ones, a field of tension stresses will exist in the concrete
immediately below the neutral axis of stress. In some circumstances,
especially at lower loads, the concrete tensile stresses are an impor-
tant consideration in the equilibrium of the section. .Wheﬁ,vhowever, a
previous loading has been greater than the one under consideration, cracks
will have extended above the present level of the neutral axis and there
will be no concrete tensile stresses at the section. In the present
analysis it is assumed that overloédings are-evenly distributed through
the life of .the member and concrete tensile stresses will bé ignored in

the equilibrium considerations,

Assuming a linear distribution of strain above the crack, one

obtains for the total compressive force,

kd
C=b £ d, (3.14)
[e]
With
.fc
F= e
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and
g e
€,
Eq. 3.14 may be written as
. bd k_ f' k
c=—3°¢ FdE (3.15)

E;

where E1 is the extreme fiber value of E.

Equations 3.10 and 3,15 together yield

8 3-2K 2 -2 .3

= 1
C =bd k fC k 3 A

3

provided E; & 1. It should be noted that the range of values 1.0 < E1 &

1=
1 +'5{corresponds to over-loadings approaching static ultimate load, and
will not be met with in practical situations. The stress corresponding to
such high loads can however be investigated by considering also the un-
loading portion of the stress-strain relation represented by Eq.. 3.7.
Horizontal forces may now be equated to yield
for®  _fo 3o 2 -2 3 |
.m = kl:—z— E, + _5— E] + i El‘J (3.17)

and equating internal and external moments, we obtain

M= £ A d (1 - kk) | (3.18)

where k, is given in terms of E

5 in Eq. 3.11.

1

Stresses in a Rectangular Section

The equations derived for the cracked rectangular section

are now summarized,
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£ A
sl s _ X 3-2K 2  KX-2
TR f - k ['2 E| + 3 E] +77 Eé] (3.17)
3 ¢
M= £ A d (L - kyk) (3.18)
€ - € +tE + € (3.13)
sl sF cF k cl 9} :

X+ (1.5-0) E, + (0.3%0.6) E%

k2 T 3+ (6-4%) E; + (1.5%-3) E{ - (3.11)

These equations, together with the steel stress-strain relation, may be
used to evaluate, for a moment M, in the n-th load cycle, the unknowns

fsl’ esl’ k, kZ’ and E;. - It will be noted that the value of F for

the n-th load cycle must be known or estimated since it is used to

determine €sF and €CF. In general, the cavlculations for the stress-

moment relation will be simplified if values of fS

L 3nd€sl are fJTrst

chosen and substituted in Egs. 3.17 and 3.13 to obtain k, and hence,

through Eq. 3.11, k The corresponding values of M, may be obtained

2° 1

by substitution of values in Eq. 3.18. The process may then be re-

peated to obtain different points on the Ml - fSl curve.,

When a large number of stress-moment calculations are to be
made, it may be convenient to plot Egqs. 3.17 and 3.13 in the form of an

intercept chart on coordinates of E. and k, for appropriate values of X,

1
Equation 3.13 may be divided throughout by €u and rearranged to the form

] '

pE.

Equations 3,17 and 3.13a now contain the terms E, and k in the right

1

hand sides, while their left hand sides are functions of eithef fS or

1
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e;sl' Each -equation :may be used to plot a family of curves on the El-k

.coordinates, The resulting intercept chart provides values directly

for k and E1 without a trial and error procedure. It is convenient

--also to plot. ki

5 against E

using Eq. 3.11 so that k, can be:evaluated

1 2

without calculation.

Steel at Several Different Levels in the Beam

The above equations were derived for a rectangular section in
which all of the steel reinforcemenf is at a depth d below the top
surface. When the steel lies at z different levels, there will be z
different values of stress -and sfrain for the steei. Letting the
depths of the different steel--layers be d ,.d2,.....dz, the corres-

1

ponding steel stresses be fsl’ st"""fsz’ and the depth to the

neutral axis be a, one obtains for the two equilibrium equations,

M=f _ A d, - k,a)

sl sl 1 2
+ f82 ASz (d2 - kza)
+ fsz ASz (dz - kza) (3.19)
and
Ko, 322 X2 3 1 £ . A _‘
217 T3 LT M1 ba k, f' sl “sl
' : 3 ¢
+f52 ésZ
+fSz Asz (3.20)
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If it is further ‘assumed that the bond-parameter does not.vary

with the steel level, the following z compatibility equations are

obtained,

é?sl

6552

- d
1
é.sFl + e-c]:"l + (? " 1> écl ']U

d
: 2
e.sF*2 + 6cF2 + (a -1 ecl ’f

2000000800006 06000000060000000000006€9066000ea0

9850000086006 800660086450060000600000068980000006&a8s0o0

©600©00600060000000006068600060000000008086060000

. d -
es‘z = est + éch + (_f - D écl yJ

These-equations; together with Eqs. 3.

19, 3.20, 3.11, and the

stress-strain relation for the steel, must be used to obtain, by trial

and error procedure, the z different values of

Beams with I Shaped Sections

steel stress.

In the case of beams of I section, loading must be considered

in three stages; zero moment to M , M
on’ “on

to Mt’

and Mt to static ulti-

‘mate moment, where Mon is the moment at which cracks begin to open .and

Mt is the moment at which the depth to the neutral axis is equal to the

depth of the top flange.

Linear stress-strain relations may be.

loading stage and a simple elastic analysis of
the analysis for the initial loading stage for

section discussed earlier, provides values for

assumed for the first
the section, similar to
the rectnagular cross

steel stress and cracking

moment. In the third loading stége,the neutral axis will lie.in the top

flange and the steel stresses may be determined from an analysis of . the
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~beam--assuming- a rectangular section with the width .equal to the width of

the upper flange.

In the second loading stage, Moné M1 < Mt’ the beam is cracked
and the neutral axis lies in the web. Letting the value of the dimension-

less strain term E in the top concrete fiber be E., and assuming a linear

1’
distribution of compressive strains, one.obtains for the value of E at

‘the bottom level of the top flange

_kd -t

E ka1

where t is the flange thickness. The compressive force is therefore

kd kd

= ' ’ - 7
C=hb £ dy + ®-b)) £ dy
o (kd-t)
l.€,
. " . "
k3 s :
c =2 1(; k |b'l FE + (b-b") ' FdE (3.21)
B i _ '
t

The compressive force is located at a distance kzkd from the top fiber,

where
E B
bl
EFE + (1 - 2-) EFAE
t
o (l"_)El
K, = = —_Kkd | (3.22)
1 1
bl
FAE + (1 - 2-) FdE

t
o (I-EE)El
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Equations for horizontal equilibrium and moment equilibrium are

£ (E1 ]
1 v . R BN
£ A =k £'dk|2 rag + 2P\ pyp (3.23)
sl s 3 ¢ E o E
1 1
t
0 (l-T{-(-'l.)El_

and

Mp = £ Agd (L - k).

An analysis of the deformations in the beam yields the compat-
ibility condition represented by Eq. 3.13. It should be noted that
values of the bond parameter'q)nmy well vary considerably from those

for rectangular sections,

The integrals appearing in Eqs. 3.22 and 3.23 may be eValuated

without difficulty in terms of E, and k, and then Eqs. 3.13, 3.18, 3.22

1

and 3.23, together with the steel stress-strain relation, may be used

to solve for steel stress by a trial and error procedure;Q%The main
difference between these calculations and those for a rectangular sec-

tion is that k2 is now a function of k as well as El' It is convenient

to begin the calculations by assuming a steel stress fsl’ and make trial

values of k until the correct value of'égl is given by Eq. 3.13. The

moment corresponding to fS is then obtained by substitution in Eq. 3.18.

1

o

CONCLUDING REMARKS

‘Assumption of a deformation condition with finite spacing of’

vertical tension cracks has led to the use of a compatibility factor lf)
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in the coﬁpatibility~equation. -Analysis of the beam test dafa has shown
that the value of VJyaries considerably during the fatigue life of a
member, usually decreasing by up to 50 percent during the early load
cycles, but becoming. fairly steady for the major portion of the fatigue
life. Before reliable quantitative values can be quoted for the com-

patibility factor, more.extensive beam test data will be required.

The method presented in this paper may be used to determine the
steel and concrete stresses in prestressed concrete members subjected to
bending moments varying in value between zero and static ultimate. A
numerical example of the use of the equations will be included in the
fourth and final paper of this series as part of arsample calculation

of the probable fatigue life .of a beam of rectangular section..
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