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-In Pages 3 and 12

ecg = the tensile strain which occurs in the concrete at the steel

.level during the application of the moment M, minus the value

of ece-

+
o 1
H



ACKNOWLEDGMENTS ,

This work has been carried out in the Fritz Engineer-
ing Laboratory, under the auspices of the Institute of
Research of Lehigh University, as part of an investigation
sponsored by the Lehigh Prestressed Concrete Committee

whose membership is composed of representatives from the

- following organizations: The Reinforced Concrete Research

Council; Pennsylvania Department of Highways; U. S.

- Bureau of Public Roads; Concrete Products of America,

Division of the American Marietta Company; American
Steel and Wire, Division of U, S. Steel Corporation; John

A. Roebling's Sons Corpdration; Lehigh University.

The researcﬁfprogram on prestressed concrete bridge
members is ﬁnder the direct supefvision of Professor
Carl E. Ekberg, Jr.{ Professor W. J. Eney‘is Directbr.of
the'Fritz.Enginéering Laboratory and Head of the Depart-

ment of Civil Engineering.



[¢]

SYNOPSTIS

The necessity of knowing the flexural stresses
induced in a prestressed member by an applied moment arises
in a number of instances, notably when the flexural fatigue

properties are to be determined,

Equations are here set up for the.calcﬁlation of
the stress-moment relatibns for the steel reinforcement
and the extreme fibers of the concrete of a. rectangular,
prestressed concrete section. The equations indicate the
state of stress in the section as the applied moment’is

increased from zero to the failure point.
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INTRODUCTTION

1., Introduction

Before the flexural fatigue propeffies of a érestresse&
concrete member can be calculated it is necessary to know,
for a number of cross‘sections in the member, the relation
betweenAapplied moment and the resulting stresses in the
steel reinforcement and in the extreme fibers of the concrete.
In this report equations are set up fdr the calculation of the
stréss-moment relations for a rectangular, prestressed concrete

sectipn.

Depending upon the magnitude of the applied moment, there
may or may not be flexural cracks preseht in the concrete. 1In
either case the steel and concrete stresses are calculated using

the following data:

(I) Equations of static equilibrium
-(I1) The assumption of a linear strain distribution
in the cross sections of the concrete, - .-
(I11) Thé given stress-strain relation for the steel
(IV) An assumed stress-strain relation for the con-

crete

Prior to cracking the concrete and steel stresses are rea-

sonably small and a linear relation between stress and strain



“may be assuméd for both materials. Thus the stresses in an
uncracked section are calculated in a reasénably straight
forward manner.

At higher stages of loading the céncréte stress-strain
relation is noticeably non-elastic and a more complicated
relation must be assumed. The complexity of the problem is
further increased by the possibility of yielding in the steel
and by the fact that, after cracking, the position' of the
neutral axis becomes an unknown quantity to be determined.
The solution for the cracked section is therefore more lengthy
than for the uncracked case, However a direct sp;gtion has
been made possible by the construction of an‘intercep; chart

which removes the necessity of solving simultaneous equations.

)



2. Notation and Sign Conveniion

The following notation, which follows that suggested by

the A. C. I. - A.3.C.E. Joint Committee 323*%, is used.

B¢

@ = Fr.. ecy
c

a = internal lever arm
Ac = b.h = area of entire concrete section
b = width of beam
C = total compressive force in the concrete
d = depth to C.G. of steel |
e = eccentricity of C.G. of steel with respect to the C;G.

of the concrete area

concrete strain

®
0
]

ecg = total concrete strain at the steel level
ecy = ultimate concrete strain

ec] = concrete strain at the top fibre

eg = Steel strain
E = =C

€cu
Ei, = ecl

€cu

T

* ""Proposed- Definitions and Notations for riesizessed

Concrete'

A.C.I. Journal Qct. 1952 v 49 P 85.



Ec = dinitial modulus of elasticity of the concrete
f, = concrete stress
fé = concrete ultimate stress
fg = steel stress
fge = steel stress due to effective prestress
(o]
F = effective prestress force after'&eduction of all losseé
fE = concrete stress in top fiber due to applied moment M
fz = concrete stress in bottom fiber due to applied moment ML
f% = concrete stress in top fiber due to the effective pre-
stressing force F
fg = concrete stress in the bottom fiber dug to the effective'
prestressing force F
h = total depth of beam
I = total moment of inertia of the uncracked section
I. = moment of inertia of the Unqrécked concrete
kd = depth to the neutral axis of the cracked section
kzkd = depth to the resultant compressive force in the cracked
section
kg = (lnkz)
- Es



A
p = =
b.d
p':AS
b.h
‘T = total tensile force at a cracked seCtibn
X = distance from C.G. of the steel to the N.A. of the
composite uncracked‘section{
Sign Convention: In the following, compressive stresses

are taken as positive and tensile stresses as negative.



UNCRACKED SECTION

3. Uncracked Section, Approximate Solution

In the loading stage prior to cracking, a first approxi-
mation to the behavior of a prestressed member may be ob-
tained by néglecting the increase in steel stress, which
occurs with increased moment as a result of the small elastic

deformation in the beam. Then we may write:

M = F.a

where M = applied moment
F = .fseAs = effective prestressing force in the steel
a = lever arm, i.e., the distance between the center

of gravity of the compressive force and the cen-
ter of gravity of the tension force,

It follows that "a" increases linearly with M as shown in
Figure I.

The concrete stresses are obtained as the sum of the
streéses at initial prestress plus the stresses due to the

applied load. Thus, with compressive stresses positive,

€ . ¢t €
f- = f- + fL

[ F a
. ..‘....0.".."2
b b b
fc--fF'l'fL
e * F . F h
e - 'eo-— e
et (o™ D22y s



i.e, . 6
t _ ,F - _ be
fF-+A l-3)
C
and
ey s
C
and so t _F 6 6M
fL=LF_ (@ - 08y 4+ OM
c AC( )t o2
o » 5 o e s e o & o o« o+ 5
similarly

2 o F_ (1 4 6ey - 6M
¢ A ( +h) bhl

The steel stresses have of course been assumed to remain con-

stant at £ ., , the steel stress due to effective prestress.

The error involved in the above method may be expected

to be less than 107%.

4, Stresses at an Uncracked Section

To take into account the variation in steel stréss, the
analysis is made by treating the section as a composité mem-
ber, calculating the stresses resulting from the applied
moment, M, and adding them, as before, to the initial stresses
due to the effectivé prestress.,

Referring to Figure 2, the position of the neutral axis

of the composite section is found as:

- _ Ac,,e '6‘
AC+(n_l)AS . ° . . ° e o . . . . . ° ° . ) .




where e is the distance from the center of gravity of the

concrete area A, to the center of gravity of the steel area

Ag, and X is the distance from the center of gravity of the

steel area to the neutral axis.

The moment of inertia of the composite section is

where p' =

The stresses

3
= ‘3—'% + b.h(e-)%2 + (n-1)As %2
2 .
= AC l‘_l__ + (e-i)z + (n‘l).P'.}-{z]._ . . . . 7
12 :
%§E = Proportion of steel reinforcement to

total concrete area.

moment M; are:

" M h _
=+ T (7+e-%)
b_ . M b _ =y
£ 1 (- ¢+%

and the total concrete stresses are given by

f

(o

=fo + £

L

in the concrete due to the applied



t=+ £ (-8 ¥ (b -
f =+ i Q- +7 (F+e -5

F 6e. M ,h i,
fg:.*Ac L+ -1 (3-e+X%)

The additional steel stress due to M is

Xl

I
o]
HIX

£sL.

and the total steel stress is therefore

M
or
fS = As + nOI OX . . . - . . . . [3 . . . () .

It should be noted that in the above equations "I"
refers to thetotal moment of inertia of the cross-section

and is given by Equation 7.



CRACKED _SECTION

5. Stress-Strain Relation for Concrete

A cubic parabola is here used to represent the stress-
" strain relation for the concrete and is plotted, in dimension-

less form, in Figure 3. The general equation for such a

curve,
F=A] E3 +A) E2 + A3 E + A, S 0
where F = £$
fe
and E = Sc_
€cu,

is convenient to work with, but at the same time contains a
sufficient number of coefficients, Aj, A, A3z, A4.
to give a reasonable approximation to the actual

stress-strain relation.

. "The coefficients are evaluated such that

| dF _ ¢ - E '
(a) when E =0, aE « f% -€cu (i.e. the slope of the
: c '

- stress strain curve at zero stress is equal to the initial
modulus of elasticity of the concrete)

(b) when E = 1.0, %% =0 (the slope of the stress strain

curve is zero at ultimate stress)
(¢) when E =0, F =0, and

(d) E=1.0, F=1.0

410



- 11

'The resulting expression, in dimensionless form, is

F=aE- Qa-3)E2+ (@-2)E3 . ... .. 1
Ec :
Where a= ?r ° ecu - L 0 o o o L] o a e o o o o ° * L] L 12
C

or, in the more usual notation,

, ) |
EE = E$ e . SN - E$ e =38\ &+ E%. e -2|[ S\
fe  f¢ €cu fe €cu fe ' €cu

For equatidn 11 to represent a monotonically increasing
‘curve'between E=0 and E = 1, as shown in Figure 3, a limita-
tién ﬁuét be placed on the value of @, the initial slope of
the curve. If the initial slope is too steep, the curve
reaches its méximum value at a smaller value of E and then be-

‘comes a minimum at E = 1, This is illustrated in Figure 3.

Thus it is stipﬁlated that

2
aF £ 0 at E =1.0
g2
i.e. = -2(2¢-3) 4+ 3x2x(@-2)E< 0 at E =1.0
.' ag 3 ° . ° ° ° ° ° . ° ° o o ° L] . ° . ° 13

The desirable values of @ to give a good approximation

to the actual stress-strain relation are discussed later.
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6. Strain Distribution

A linear strain distribution is assumed at the section
under consideration, as in Figure 4. The total strain in

the steel, when moment M is applied, is

eS ‘== ese + ece + ecs o a ° o o ° ° ° e ] ° . o . O ]—4

where €ge strain in the steel due to effective prestress

.o = Strain in the concrete at the steel level due
to effective prestress.
ecg = total strain in concrete at steel level after

the moment M is applied.

also . ec, = total strain in concrete at the top fiber

after the moment M is applied

The usual assumption of ''perfect' bonding is implied in

the above equation.

. Thus the total steel strain, eg, can be thought of as
the sum of two components, ecg and (ege + €ce). The latter
quantity may be considered to have a constant value for a
given beam., For a pretensioned beam, it is equal to the

total initial steel pre-stress egi minus inelastic losses,

If the losses can be ignored

(ege + €ce) = €gi



=13

Rewriting equation 14

eS = (ese + ece) = ecs o L. L] L] ° L] L] ] o L] ' . L] L] 15

be

From Figure Se it can be seen that

€cl ecy + €cs
kd ~ d
l1.e. .
€cs = LiE ecl e o s e e e o e e e e e ;'. . 163

dividing throughout by egy we obtain

€cs 1-k ecl
ecu C k ecu e o e o e o e o o e e« o o 16
Now the strain at a distance ''x'"' above the level of the
neutral axis is
' X
e = e o ==
(; Cl kd . L] L o ° o» ° L] o . . L [ . . . . l7a

and again dividing by e,

ecu - ecu ' m © . ° ° . o‘ e a o o e . - . . . 0 l7b



oY
€c; x
E = o i =
ecu kdnoocaaoooooanuuoac17
hence
dE ecll '
—‘—=-——_-.—-000050n'.lﬂ€060018
ax €cu kd

Equatiomé 16 and 18 will be used later,

7. Equilibrium Equations

Considering the concrete compressive stress block
abcve the neutral axis of the cracked section, as shown in

Figure 5, we have:

kd

which may be written as

€,

\reC]_ ) C_ = \3; \Q_ ‘g&-‘é:.&\E
C =b.fs .| -< dec %

.}n fe . a-é-c o “
) Lo‘d'k\ g

or, with ~ e - 2

E%‘ = F, ‘
fC

eXe



—— = E
€cu
) and
v e
s ecu ’
Ey
_ ' dx
C =b.f, F IE dE
o _

but from equation 18

& | kd
dE E1

hence we can rewrite (20) in dimensionless form as

E1
C = 1 .k F.dE
b.d.fé E1 g
) (o)

or
C = o . 20-3 . 2 a-2 - 3
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In the usual notation this is

8. Value of «

It is generally accepted that e

cu» the ultimate strain

in the top fiber of the beam, is a constant, the values
quoted by different investigators lie between 0.003 and

‘ E
0.004. 1It is also usual for the ratio f$ to be assumed,
.- ’ C

for practical purposes, a constant, Choosing ecy as 0.003
and a value of 1000 for Eg_ the parameter @ becomes 3 which,
- :
£e
as can be seen from equation 13, is the maximum value it

may take,

The value
will be used here. Equation 22 then becomes

£ = L3 _on.2,12 , ,
bd,fc k{Z}E]‘ El +8El°30°oo¢..an‘o 24
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9. Position of the Center of Gravity of the Compressive

Stress Block

To determine the value of the applied moment, M, in
terms of the internal stresses, it is necessary to know
the length of the internal lever arm and hence of the posi-

tion of the resultant compressive force C. M is given by

M = C d(l-kzk) 4 e e o s s e 8 o o © s e ¢ a2 o 25

The parameter k, is chosen to represent the position
of the force C and may be found by a consideration of the
geometry of the cubic parabola. Referring to Fi§££é>6 it
can be éeen that the value of k, will depend upon the value
of E1, but although Ej may vary between zero and unity only
a small variation can occur in kZ' Limits to the value of
ko can easily be found by replacing the parabola OPA, on the
one hand by the straight.line OBA, and, on the other, by
the rectangle OF1A; thus it is shown that the value of

k., must always be between 0.5 and 0.33,

2
In evaluating ky, it will be convenient to work with

the antit
- qu y ké = (l-kz),



then, from Figure 7,

T - Ey Ey
] k5. Ep FdE = E.F. dp
. o o
‘ ¢ considering the left hand side of the equation,
E1 Ep |
k) Eq F dE = k) Ej { QE - (201-3)E2 + (01-2)E3l dE
o : o
3 El4 l5
=k) .| el - a3) 2+ (@-2) ——
2 { 7 T (03 -+ (&)

and now considering the right hand side,

T El E1

E.F.dE \ ag? - (2a-3)E3 + (@-2)E*] dE

(a) ) O
CY 3 20-3 Q-2
= 3E - E14 + — Eq >

o

Hence, with a = 3,
3 1
1 -7%E +535E?2
ky = 3 _ L
S



and

tion

10.

. 25

Equation 25 is plotted in Figure 7 which shows the varia-

to be from 0.33 for E; = 0, to 0.4 for E{ = 1.0.

Calculation of Stresses

Summarizing the equations applyinqto the cracked section;

F=o0E- Qe3)E2 + (233 ... .. .1
ecs = €s ~ (€se *+€ce) . . . . 4 4 4 4 s e 4w e w . .15
€cs _ 1-k .
cn . K El . . . e e e e e e e e I 16
c _ 1.3 .2, 12 |
m‘k[ZEl. E1+—8—E1X,....,....24
M =C.d (L-kpk) = £g.Ag d (L-kgk) + o & v v v o . . . . 25
3 1
l-ZEl+§E12
ke =1 - 26
> 3 T . .
5" Eq +~Z Elz
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Equations (16) and (24), which contain as unknowns

€cs C

——, k, Ei and
een’ 2 1 Btatfz’ have been used to construct the

intercept chart in Figure 7.

In obtaining the separate points on the stress moment
curve, it will be convenient to first assume a steel stress,

calculate the corresponding values of k, E, f, and then the

applied moment.

The procedure is as follows:

(a) choose values of eg and fg from a point on the stress-

strain curve of the steel and find ecg as

ecs = es - (ese + ece)

écs . ' ’ .
and thence = > remembering that (ege + ece) is a known
cu -

quantity for a given beam which depends only on the initial

prestressing force and the losses. eg, = 0.003.

(b) Calculate C = T = fSAS and hence b.g..fci



e,

(c) Enter the intercept chart shown in Figure 7 using the

ﬁ e . “C
values of ESE and B_E__T given in steps (a) and (b),
cu dofe

hence find k and El

(d) Using the concrete stress strain relation Equation 11

and the value of E; from step (c), find F; and félg‘

(e) Calculate the moment M as

M = fg Ag d(L-kgk)

where ko can be read off Figure 7 for the corresponding

value of El-‘

Thus the steel and concrete stresses fg and fc1,

given in steps (a) and (d), correspond to the moment M

given in step (e).

11, Ultimate Strength

The ultimate flexural moment for the section is ob-

tained from the equations in section|O by placing F = 1.0

and E = 1.0, | |

1-k

€g = €gg * €ce * €y - E

- 21
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k fS AS

0.75 D.d.fg © © ¢ ° ° = o o o o o o o o o o o = 28
M = fs oASOd(l-kzk) o L4 © L] o © o o o . 0 o L o o o o L 29
kz = 004 ° ° ° o ° ° ° o o s ° o o ° ° ° s ° ° ° o ° 30

The calculation is carried out by choosing a trial value
of fg, calculating k with equation 28 and hence eg with
equation 27. The correct value of fg has been chosen when the
value .of eg, obgained from equation 27, agrees with.the value

obtained from the steel stress strain curve,



SAMPLE CALCULATTION

12, Calculafion of the'Stress=Moment Relations for a

Prestressed Beam

To illustrate the use of the equations, the

stress-moment relations are now obtained for a prestressed

beam.

The details of the section, which are given below,

Aréfer to test beam A8 in the series,tests described in

Progress Report 18. A full description of the manufacture

and testing of the beam is given in that report.

The relevent data are,

b

8 in
18 in
13 in
0.653 in

6260 1b/sq. in

96.33 kips, fg; = 22:33 = 147.5 kips/in.?

0.653

92.47 kips, fso = 22:47 = 141.3 kips/in.?2
P so 0653 P

85.73 kips, fgo = .SSégg = 131.2 kips/in.?

ese + ece = 0.0060

- 23
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Ultimate Flexural Moment

T Try f£g = 250 kips/sq. in. eg = 0.0127 (Figure 8)
. _ k = 0,335 (Equation 28)
; eg = 0.0126 (Equation 27)

This is sufficiently close to 0.0127

]

M = 250,000 x0.653 <13 (L - 0.4% 0,335) (Equation 29)

1.835 x 109 in. 1b.

(Observed ultimate moment = 1.810 ¥ 10° in. 1b.)

Uncracked Section

_ 144 x 4 - 3.93 §

x = T4 + (5-1)0.653 ~ =-72 ¢ | (Equation 6)
8 x 183 '

I = —q5—— +8x18(-3, 93)% + (5-1)0.653 ~ 3.93%

(Equation 7)

I = 3940 in

(a) Zero Moment

F = 85.73 kips, f£go = 131.2 kips/sq in.
t 83.73 6x4
fe =+ G -5 (Equation 8)

~ 199 1b/sq in (negative sign means tension)
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£b E oLl Equation 8
A @+ (Equation 8)

]

+ 1390 1b/sq in

(b) Cracking Moment

1
Taking £t = - 75 f¢

1

- 626 1b/sq in

and substituting values in equation 8

_ _ 85,730 24, M _

626 = i — 1+ l8) 3938 9 -4+ 3.93)

M = 879,000 in 1b

(Observed cracking moment = 863,000 in 1b)
F M ' .

= — — Equation 9
fg A +n. T x (Eq )

= 137,000 1b./sq in.
t
£F = - 199 4 872,000 (g 4 4 _ 3 93y (Equation 8)

3938

1840 1b/sq. in.

Cracked Section

The calculations for the cracked section have been car-
ried out in Tabular form on the following page. The procedure

used is described on pages 20 and 21,



kipe/
160
180
200
210
220
230
240

0.604
.680
756
.74
.832
.869
,905

CALCULATIONS FOR

fahg eg

104.5 0.006L
117.5 = .0069
130.6  .0076
137.1  .0080
143.7  .0085
150.2 .0093
156.7 .~ .0101

€cs

0.000L
.0009
.0016
.0020
.0025
.0033
0041

CRACKED SECTION

€cs C
ooy  b..T%
0.133 0.161
.300 181
.516  .201
666 211
833,221
1,083 .231
1.377 241

Ej

.18
.30
41
.48
5L
.6l

Tl

0.70
.50
iy
42
-39
. 37
.36

0.34
.35
.36
.36
- 37
.37
.38

0.45

1 035
1 260
1 430
1 512
1 598
1 682
1 750

0,563
.685
TTT
.822
.868
.91l
.950

9t -
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(a) Stresses due to effective prestressing force, F.

-t 4+ g€
£ T ip

G G ee > See Wi WO e G SIS ot ere =l

£y

(b) stresses when moment M;, less than the cracking
: moment, is applied.

Figure 1: UNCRACKED SECTION

. (Approximate Solution for Concrete Stresses)

——

hyd -# - — C.G. Concrete o o
| F#”?“"‘“" -~ - C.G. Ccmposite Section

- Figure 2: = UNCRACKED SECTION



Figure 3:

CUBIC PARABOLA

- 28
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zero concrete strain

si

(a) - Strain prior to stress
transfer

- 29 .

iec

Cse

-~

€ce

(b) Strain due to effective
prestress

- eg

-

(c) Total strain at moment, M,

Figure &4:

i

 CRACKED SECTION

Strain. Distribution at Various Stages of Loading"
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