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ABSTRACT

The general method of solution for the maximum carrying

capacity of columns containing residual stresses is first presented.

Application is then made to a specific example of an H-column. The

influence of an asymmetric residual stress distribution is considered

and the results are presented in the usual forms as column curves

for axially and eccentrically applied loads. Next, approximate

solutions are presented for beam-columns having an idealized elastic­

plastic stress-strain relationship and which contain residual stresses

whose patterns have at least one axis of symmetry. The results of

these studies are also shown in the form of colunm curves. Finally,

the theory is compared with test results which have been reported

in various publications.
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1. INTRODUCTION

. It is lmown that residual stresses are set up in beams and

columns due to non-uniform cooling, cold straightening and other manu-

facturing processes. The influence of these initial stresses may be

considerable for axially loaded steel columns depending on the geometry

of the section and the residual stress distribution. (1,2)

Ketter, Kaminsky and Beedle(3) are the first, to the authors'

lmowledge, who have studied the influence of residual stress on the

behavior of beam-columns. They have shown how the thrust-moment-curva-

ture relationships of a wide-flange members are influenced by a symme-

trical, lIcooling" type residual stress pattern. Having this information,

it is possible to determine the ultimate carrYing capacity of eccen-

trically loaded members, which contain such residuals, along the lines

of the classical inelastic column theory.(4)

This paper is concerned with the determination of the influence

of residual stress on the strength of columns of equal end eccentricities.

These end eccentricities are assumed to lie on the same side of the

member and result in a single curvature. t;ype of deformation. In addition,

it will be presupposed that the member contains a residual stress dis­

tribution having at least one axis of symmetry.

In the presentation of the analytical solution to the problem,

there is first discussed a general method suitable for any material.

This rigorous treatment is applicable to axially loaded columns as well

as the eccentrically loaded ones. The approximate solutions which are

considered later, however, are only applicable when the material has a

stress-strain curve which closely approximates the idealized elastic-fully



•

220A.31

plastic case, as is typical of mild structural steel.

11.:. GENERAL }1ETHOD OF SOLUTION

-2

If loads are applied eccentrically to a member or if, on the

other hand, residual stresses do not have axial symmetry and a thrust

is applied axially; a simple soluU on to the problem of determining

the ultimate carrying capacity of the given member is not possible.

It is first necessary to assume deflections and by successive adjust-

ment to arrive at the correct deformation for a given loading. In

general such a procedure is very similar to the classical method of

solution as outlined by Karman~4) Approximate solutions, on the other

hand may be obtained by working with assumed deflections curves, as

did Jezek(4) and others. Such procedures will be presented and mater-

ially reduces the amount of numerical work that is required to obtain

an answer to a given problem.

At first no stipulation will be made as to the shape of the

cross-section nor to the stress-strain relationship of the material.

It will be assumed, however, that the deflections are symmetric with

respect to the center of the member and that the ends are pinned.

Furthermore, it will be assumed that the residual stresses have at

least one axis of symmetry and are uniform throughout the length. The

possibilities of lateral-torsional or local instability are speci-

fically excluded. Instability (maximum load) will be considered as

a condition of excessive. bending in the plane of the applied moments.
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Consider the eccentrically loaded column shown in Figure (la).

..

•

..

For any section along the length of the member, strains can be described

in terms of the compressive strain, Ec , and the bending strain (i.e.

curvature), .0x' at that section (see Figure lc). Knowing the stress­

strain relationship of the material in question (e.g. Figure lb), it is

possible to compute the internal force, P, and moment, M, for various

assumed values of Ec and .0x. The results of such calculations can be

plotted as lIu" verses 1I¢" and lip" versus ".0" curves for constant values

of the parameter Ec • "u" is the deflection plus the eccentricity at the

section in question. Typical curves showing the relationships to be

expected are given in Figures (ld) and (Ie). Eliminating Ec from these

two curves, the three variables u, P and ¢ can be combined into one

graph as shown in Figure (If) •

To determine the critical length for a column subjected to a

given thrust, P, applied at an eccentricity, e; a deflected shape,

u(x),- Imlst be assumed. (See Figure 19.) Entering Figure (If) with the

value u, a value of .02 is obtained for the given load P (Figure lh).

Double integration of .02 yields another deflection, u2, that contains

the length, L, as a parameter. This process can be repeated until

Un=un+1 from which "L" is obtained.

In determining the critical length, Lcr it is necessary to vary

the magnitude of the center deflection, u , and go through the sameo

process as described above until a maxiImlm value of the length has .

been realized.(4)

Residual stresses influence the u-P-¢ relationship and there-

by influence the carrYing capacity of a member containing such stresses.
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The procedure for determining the critical length when the magnitude of

the load and residual stresses are given may be swmnarized as follows:

1. Determ.me P and M for various values of Ec
and .0. Calculate u=M/P.

2. Plot P-¢ and lVJ:~¢ graphs 3 where Cc is a parameter
for both relationships.

3. Combine the two graphs into one u-P-¢ graph by
the elimination of Ec '

4. Assume a deflected shape of the column (uI)'

5. From the u-P-¢ graph of step 3, determine .0 for
the given P value.

6. Numerically integrate to obtain a new defleotion
(u2) and continue until uri=un+l'

7. Determine the critical length by varying the magni­
tude of the center deflection. The maximum length
obtained by this process is the critical length.

III. APPLICATION OF THE GENERAL METHOD OF SOLUTION TO
AXIALLY .AND ECCENTRICALLY LOADED H-COLUMNS

The general method outlined in the previous section will now

be applied to the specific ~olution of an H-column which contai.r:s a cold-

bending type of residual stress pattern in the flanges. Since sections

of this type usually fail by combined bending and twist, when bending

'is imposed about the major axis of the cross-section, only weak axis

loading and instability will be considered.' It should be noted that

the residual stress pattern for cold bending being asymmetric would

tend to increase this possibility of lateral-torsional instability.
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The column to be investigated has a cross-section as shown

in Figure 2a. The flanges are assumed to contain the residual stress

distribution shown in Figure 2b. The initial stresses are further

"presupposed to be constant along tJ::e length of the column. The material

properties and stress-strain curve are as given :i,.n Figure 2c.

FirstlY, it is necessary to calculate the axial thrust and the

bending moment corresponding to various assumed values of the compressive

strain, Ec ' and curvature, ¢ (see Figure 2d). The limiting curves of

applied strain, shown by the light solid lines in Figure 2d, correspond

to that condition of yield point stress minus the initial residual stress.

For a large number of combination of these two parameters the following

can be written after integrating and simplifying:

! C f [0.656 _.~+1.375~ +( Ec - AJ Fl +0.5)
Py 4 b b Ey 2Ey)~

~ '2'¢E
b
y

(0.25-
X
b

"J/ \+ -3
1

((Eye - 2¢E
y

b
) J',~ ~ •••••••••••••••••• (1)

and

+-
3Ey

(:~3 + O.125~J •.••••••••••••••••••••• -••••••·(2)

where

~
2 _ (Ec ¢b )

j- 2EyXl Ey .••.•••••••.•..•• ·•.•.•... (3)
b 2.75 + ¢b-Ey
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•
is a measure of t:re distance from the flange center to the yield zone

created due to the applied loading. Equations (1), (2) and (3) are

valid in the range.

Xl b¢
_ ~ 0.250 and -
b Ey

< 2.581

';

•

'~

The results of the calculations using these equations are

given in Figure 3 where ratios' of the three parameters u, P and ¢ are

plotted far- constant values of the variable E.c/Ey • Eliminating EclEy

as indicated by the dashed lines in Figure 3, the direct relationship

between u and ¢ with P as the variable is obtained as shown in Figure 4.

With this information the numerical procedure outlined in

the preceeding section can be applied. A sample calculation is shown

in Figure 5.

The final results of these calculations can be presented in

the conventional form as column curves with the eccentricity ratio,

ec/r2, as the variable. These have been shown in Figure 6. It should

be noted that they are valid only for the assumed residual stress dis-

tribution. Also shown on this figure as dashed curves, are the cor­

responding elastic solutions of the second order stress problem (secant

solution) with the outer fiber at the yield point stress (no residual

stress). In addition, certain approximate solutions and test points

are shown that will be discussed later in this paper.

Even v-rith the u-¢-P relationship of Figure 4 given, the nu­

merical work required to obtain a sufficient number of values of (L/r) cr
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is formidable. An approx:iJnate solution which requires much less work can

be realized by assuming a deflected shape of the member. It is then only

necessary to vary the magnitude of the center-line deflection to obtain

the critical slenderness ratio.

Assuming a sine curve for the approximate deflected shape of

the member, the curvature at the centerline section is given by the

'f

expression

from which

i?0- e
L=TT

, ¢o

.000000.0000 e 0 0 •• 00 •• 00.0.0 •••••• (4)

.. 0'0 0 0 0.0.00000.0 •• 000 •• 0.0 ••••• (5)

• or in terms of non-dimensional variables

Substituting in equation (6) corresponding values of U o and ¢o (from

Figure 4) for constant values of the axial thrust, P, Lmax may be ob­

tained within a few trials. The results of this approximation are

shawn in Figure 6 for particular values 'of p/Py by the open circles.

In spite of the simplification obtained by assuming a parti­

cular type of deflected shape, the work required is still considerable.

This is especially true if the influence of several different residual

stress patterns is desired. This follows from the fact that for each

pattern a new set of curves similar to those shown in Figure 4 (for
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u-¢-p) would be required.

-8

In the following, a relatively simple solution

•

•

to the problem will be obtained which is applicable to beam-columns of

both rectangular and simplified H-shape cross-sections.

IV. APPROXDlATE SOllJTIONS

Bending About the Strong Axis

An idealized section is assumed which is composed of two rec-

tangular flanges and a shear resisting web of neglibable area. For a

particular wide-flange shape the properties of the idealized section

(marked with the subscript "ill) can be computed as follows:

=Ar2
di §~;«;. ed

AllSAi , 11111. r=ri = -, :::r = 2
~

,
2 d· 2r ~

(See Figure 7.)

The residual stress distribution is assumed to be piecewise

linear and constant along the· length. The deflection curve is assumed

to be a sine curve with the maximum deflection, uo ' at the center of

the member. Furthermore, the moment diagram is symmetric with respect

to the center, where the moment has the value Mo=P(uo)+IIlo. The other

suppositions are the same as those listed earlier.

The equilibrium equations at the center of the member can

be written in the following form:-l~

000000. 0 0000 •• 0 ••.000 ••••••••••• (7)•
and

P=Pl(El,~r) +P2 (El ,¢)

No=P(uo) + rna = ~ [Pl(El,<rr)-P2 (El ,¢)] ••••• 0-0 •••••••••• (8)

*A detailed derivation of these expression is given in the appendix.
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• where P
l

and P2 are the forces taken by the flanges. The curvature

at the centerline section is

060000000000.0 ••• 0000.0.0-.0 •••• 0 •••••••• (9)

Combining equations (7), (8) and (9) an expression of the following form

is obtained:

o 0 • 0 ••• 0 • 0 • 0" ••••• 0 ••• ~ ~ • ( 10)

To determine the critical load corresponding to a given situation, the

maximum value of

P =p(uo' L, ~r, rna) •• 0 •• 0 •••••••••••••••••••••••••• (11)

must be ascertained. FOr a given length, L, residual stresses, CJ'r, and

moment, ll1o, the maximum value is determined from

dP =0
duo o 0 0 0 0 0 ., 4> • 0 0 0 0 0 ••• 0 0 •• 0 •• 0 0'. 0 •••• ••.•• 0 ••••••••• ( 12 )

Using the implicit form of the functionF

or

= 0

= 0 ••• ooooo •• o~o ••••••••••• ~ •••••••••• (13)

•
Equation (13) then defines the critical value of uo,which when substi­

tuted into equations (10) and (11) gives
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or

-10

.000000000 ••• 00.0 •• 0 • 0" •••••• (14)

To obtain the critical length, Lcr ' of a column subjected to

'a given loading, P, residual stress, err' and moment, mo' the maxirml.m

value of

•••••••••••••••••• 0 ••••••••••••• ( 15)

must be determined. The condition for a maxirml.m is

and

or as in the previous case

elF
duo E, 0 • 0 0 0 0 0 0 0 0 0 0 • 0 0 0 0 ••••• 0 • 0 0 • 0 0 0 0- 0 ••••••••• (18)

Thereby the proof is given that Lma.x=Lcr •

For a linear variation of residual stresses between the flange

edges and the flange center the analytical evaluation corresponding to

equation (J..4) becomes

••••• (19)
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where <rp is the pseudo-proportional limit; that is, <J -a (see Figure 7):
y rc

and (JE is the stress corresponding to the Euler load •

For the case where crr=O, ¢=O and (Jp=<fy , equation (19) takes a

form that is expressable as the quadratic equati0n (see also equation m,

Appendix)

(£..)2 _G~)(l+~) _(.~~~)+ ~ = 0a:; ('L ...r dP (20)
y' ,~:I vy y <fy <Jy

When (~) = 0 the stability proplem ,reduces to a stress equi­

librium problem and the influence of residual stress, which is in equili-

brium within itself, is wiped out for full yielding of the cross-section.

For an H-section the simple plastic the0ry gives for bending about the

strong axis:

and

for
(f-Cfy

L w(d-2t)
- A

.. (cr) 2 +2 (r)(bd -l~. 4b mo - [2bd ]- - - +-- --1 =0
cry' cry A A PyA

............ (22)

for cr-Cfy
w~(..d.....-2__t~)

~ -
A
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Bending About the Weak Axis

-12

•

'.

•

The idealized section may in this case be assumed to con-

sist of a single rectangle made up of the two flanges. The deriva-

tion follows closely the previous one.

Two basic types stress distribution are possible. Due to

axial thrust and bending moment the general pattern will be either

of the cases shown in Figure 8. In case I (Figure 8b) it is asswned

that yielding is only in compression; whereas, in case II (Figure 8c)

yielding occurs in both tension and compression. The rate of change

of the residual stress at the outer fiber is given as before by the

angle '5' •

It is possible from the internal stress distribution to

express the corresponding forces and moments as follows :~f

Case I

p=p(¢o, xl, Or)

Mo=Mo(¢o, xl, Or)

¢ = 1f2
o L2 Uo

Case II

p=p(¢o, xl' x2 ' Gr ) ••••••••• (23)

Mo=Mo(¢o' xI'X2, (Jr)·········(24)

¢ 1\2
0= --- U o .•••••••••••••• (25)

L' 2--

where xl and x2 are measures of the distance from the center of the

section to the beginning of the plastic zones (see Figure 8). The

zero subscript refers to the section at the middle of the member •

For both cases I and II the expre~sions can be reduced by

combining equations (23), (24), and (25). There results

••••••••••••••••• 0 •••••••••••••••••••• (26)

~lSee Appendix (b).



220A.31 -13

•

It should be noted that this equation has the same form as equation (10).

Therefore, the critical centerline deflection and the solution of the

function, F, are obtained in the same manner as that given earlier.

The resulting analytical expressions for critical stress are

~ - gJ:2 {_rL )2 + ~ l3
(fer \I \ Pb,

1-------
1

1

[?Elgb+6Cfp 1-6
~ <fer j -!

~-.;.:~-:;,-~••.•.•• (27)
(Case I)

•

and 1 (E~r J.,2«fp+'2 D9b) 1')
••••••••••. (28)
(Case II)

where as before (Jp is the pseudo-proportiQnal limit, (Jy-orc~ Equations

(27) and (28) are the solutions to the problem. They Imlst be solved by

tr,ial and error.

If no residual stresses are present ~ =0, CS-p=<Jy and the

equations become

(
2mo

for
',' Pb

••••·•••••.•••••••••••••• ~ •• (·29)
(Case I) .
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and

( 2mo
for \ Pb

-14

• •••...•.••.•.••••••.••••••• (30)
(Case II)

•

After rewriting in a slightly different form, equations (29) and (30)

are identical to the solutions given by Jezek~4)

A simple limit for the range of applicability of equations

(27) and (28) cannot be given because of their complexity. The follow-

ing, however, will aid in the estilnation of that limit. If case I

applies, but equation (38) for case II was used, the actual critical

slenderness ratio and critical stress will be larger than the computed

values. If on the other hand case II applies, but case I was used,

the actual critical slenderness ratio and critical stress will be

smaller than the computed values.

For short colwnns (where L/r is less than about 50) equations

(27) and (28) do not hold since the developed stress distribution at

the centerline section will be different from that assumed. However,

for the limiting case of L/r=O the section becomes fully yielded, the

stability problem reduces to one of a stress consideration and corres-

pondingly the inf luence of residual stress vanishes. For the H-profile

the simple plastic theory f-or weak axis bending becomes

.••.••.•....... (31)
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Interpolation between the results of equations (27) or (28) and equation

(31) for critical stresses in short columns (0 ~ 1 £50) can be done with­
r

out appreciable error.

Of particular interest is the application of this approximate

solution to the problem solved previously by the more exact methods.

The results of these calculations are shown in Figure 6. The approximate

solution (filled circles) is in very good agreement with the Ilexactll

solution.

v. DISCUSSION

The rigorous development for the carrying capac~ty of axially

and eccentrically loaded columns forced to bend about their weak axis

is given by the solid lines in Figure 6. The solution to the second

order stress problem (secant· solution) is shown by the dashed line for

corresponding values of ec/r2 (0.1, 0.5 and 1.0). For an eccentri­

city ratio ec/r2 =0.1 and slenderness values 60fL/r~130 the secant solu­

tion (neglecting any initial imperfections) would be unsafe as shown

by the cross-hatched area; whereas, for slenderness ratios below 60

it is too conservative.~*, Figure 6 also shows that the assumption of

a sine curve for the deflected shape of the column gives good results

(open circles) •

Because of the large amount of time required to obtain the

rigorous solution, the approximate methods were developed to afford a

rapid study of the influence of various residual stress distributions.

It is necessary, however, to first determine how closely these approx-

imate solutions are to the rigorous solution. Good agreement is

~*,It should be emphasized that these statements hold for the one parti­
cular pattern of residual stress aSSU1lled. Other distributions, however,
would show similar results.
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demonstrated tor several residual stress distributions and axes of

bend:1ng (Figures 6" 9 and 12). In eaoh ot these tigures the approxi­

mate values have been shown as tilled circles. For L/r-o the values

were calculated tor the actual cross-sectional shape by the s:l.mple

plastic theory. For all cases shown" the approximate solutlons were

in close agreement with the more exact ones. ('!'he rigorous solutions

ot Figures 9 and 12 were taken from Reterence 3 where a sllght~

difterent method was used.)

The efteots ot varying the initial residual stress distr:1-'

bution in the nange ot an idealized H-shape are shown in Figurellll

and 13 tor bending about the strong and weak axes respectiveq. A.

constant value ot the eocentricity ratios e/r-O.' and ec/r2-o.s was

assumed. The value of Etgb is varied while the ccapressive residual

stress at the tlange tips is assumed to be 20 ksi and the yield po~t

stress is,40 ks:1. A value ot ElPb-60 would result in a res~l stress

distribution that would not be unlike those observed in t1Pical wide­

tlange shapes. (2) It should be noted by comParison ot the column

curves corresponding to ~ba60 (shown bY'the heaV)" solid lUle) and

(fr-O" that case which neglects residual stress" the intluence of

residual stress is still pronounced (see Figure 11 and 1.3). Figure

10 shows the d1minishing eftect, of residual stress on eccentric colwm

strength as the eccentricity is increased.

In addition to the theoretical conclusions diSCUSsed above
. , : .. ' ,"::1.

it is possible to compare predioted strenaths as presented in this

report to'column test results that have been reported in the l1tera~

ture and tar whioh residual stress measurements were made.

Although the residual stress patternscorrespond·only

roughly to the assumed pattern ot Figure 6"the result ot two
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cold straightened axial column tests (L/r~70 and 79.5)(6) have been

shown on Figure 6 by the open squares. The latter column ( ~ = 79.5)

was straightened in the laboratory under a loading which subjected

the members to uniform moment. The measured values of maximum resi-

dual stress were 8 and 6 k;:3i which is about one half of the value

assumed in the rigorous solution. As would be expected, the column

test result lies above the theoretical solution. The other column

(L/r=70) was also cold-straightened in the laboratory but bj' a single

concentrated load at the center of the member. For such a condition

t

of loading, the residual stress pattern along the member will not be

uniform. Furthermore, a higher residual stress will result at the

center-line section of the column. The column test result is shown

in Figure 6.

The result of an additional column test is shown in Figure

This test was part of a separate investigation on "Welded Con-

tinuous Frames and Their Components" currently being carried out at

Fritz Engineering Laboratory. Interpolation shows· good agreement

with the theory.

The results of the column tests reported in Reference 5 are

shown in Figure 10. These tests cover relatively low slenderness

ratios due to the fact that the end supports were also pin-ended in

the weak direction. Although these tests fall in slenderness and

eccentricity ratios which do not demonstrate the full significance of

residual stress, and even though the members failed by lateral-torsional

buckling, there is reasonable agreement with the theory. The possi-

bility of differences between the residual stresses measured on one

piece of the material as opposed to those present in the various columns

is also a condition that would tend to alter the test correlation. (1)
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For an eccentricity normal to the plane of the web one test

result is available for comparison. This test is also due to the

previously cited study being carried out at Fritz Laboratory on llWelded

Continuous Frames". Here again, interpolation shows good agreement

with the theory (Figure 12).

One variable that has not as yet been stressed in this report,

but which is also very important, is the yield point stress. The ec­

centric colunm curves for <g =0 in Figures 11 and 13 could also be inter­

preted as colunm curves for a yield point of 20 ksi, ~vhere residual

stresses are zero and the reference stress, cry, is taken as 40 ksi.

VI. SUMMARY



•
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IX 0 NOMENCLATURE-
'cross-sectional area

flange width or width of rectangle

depth of H-section or rectangle

eccentricity of loads

Young's modulus of elasticity

. moment of inertia

total length of a pin-ended column

slenderness ratio

moment

moment due to lateral loads on column

load on a column

critical or maximum load on a column

Euler buckling load for a pin-ended column

axial load corresponding to yield point stress across
entire section

radius of gyration in the plane of bending

flange thickness

deflection in x-direction

distances from the center of the cross-section to the
beginning of the yielded area (see Figures 2d and 8)

unit strain

maximum compressive strain

strain corresponding to the yield point

normal stress

proportional limit stress

critical applied average stress on a column

Euler buckling stress
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residual stress

residual stress at flange edges

residual stress at flange centers

yield stress level; average stress in the plastic range

rate of residual stress variation (see Figure 7 or 8)

curvature
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X. APPENDIX
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Derivatio,£.. of Approximate Solutions

In this Append:bc the derivations are given for the approxi..

mate solutions for the idealized H and rectangular section discussed

in Section IV. The assumptions and limitation are listed in the

earlier section and will not be repeated here.

a). !3.ending abou~ the strong axis of an H"shape

Referr'ing to :Figure ?, the higher stressed flange of the

idealized section is assumed to carry a load PI which is a function

of the strain El and the linear residual stress pattern •

•
.•••• -•••...•. (a)

The load carried by the other flange is given by

The stress in this less highly stressed flange Will, for all intents

and purposes, remain elastic 0

The total axial thrust on the column is then given by the

sum of equations (a) and (b). That is,

paPl+P2

or

The corresponding internal moment at the centerline section is



\
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or

where

-24

M =Pu +m a .:! (Pl-P2) .oo (d)o 0 0 2

From equation (c) ,EEl can be expressed as fol-lows:

Writing equation (e) in implicit form F and performing a partial dif-

ferentiation with respect to u o' the following is obtained:

o=p-~ f(Elgb) ¥t + 2(cr: -EEl) d (EEl)] •••••••••••••••• (h)
~b L L - p dUo

From equation (f)

which when substituted into equation (h) gives

The Euler load, J1;, for the idealized section is given by:

••••••• oo.oo,o •••••••• o ••••••• '••••••• ~ ••• ,••• ·•• (k)
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From equation (j) Uo is obtained.

Substituting Uo into equation (d)

-25

. ..•.•.•••.••••.•...•.• (1)

••••••• ~ •••••••• (m)

Solving this pseudo-quadratic equation and rearranging terms' gives

finally equation (19). Setting (Jp=Oy andg:>~O equation (20), which

is the approximate solution when no residual stresses are present

in the column, is obtained.

(b). Bending about the weak axiS of an H shape

Case I: Yielding only in Compression

Axial equilibrium requires that at the center of the colUmn

the following equation must be satisfied:

b/2 xl

~ =J~+Eg>(~ - x)] <Ix +f[<V ~b -Ex1(~Po)+E¢o"] dx ..... (n)

xl -b/2

When integrated and corresponding terms combined, this becomes
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Solv:ing for xl'

••••••• '••••••••• o ••••••• (p)

*

'.
•

Moment equilibrium at the center section requires that

b/2

;. ~ =U o + ~ ~J~op+E~b) x -E~.J dx

xl

Xl

+J[{ op+ E~b - ExI (q>+¢o) } x + E¢ox"Jdx (q)

-b/2

After integrating and combining terms, the following expression can .

be written:

where

follows from the assumed sine deflection curve. The partial derivation

of F with res];:e ct to U o gives
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.OOOOOOOOOOO.6(S)~

•

•

f'

•

Expressing U o from equation (s) and substituting its value into

equation (r) the following is obtained:

[12
PL2l-31 [ -3

1
E<gb

3
-4 ~ 1T~ + 4 ~ao j (5)o -(b)+ ....-..-------- ••••••••.

= Ea 11
2

_ 2<Jpb+Etgb2 _ .~

from which equation (27) was directly obtained•

Case II~ Yieldin6 in Tension and Conpression

As in the preceeding case the equations for axial tht-ust

and moment equilibrium at the column center are as follows:

- b/2 Xl .

==J~p+E'9<~ -x~ dx +ffp+ ~ Er¥>-Exl(ep+¢0 )+E¢""] dx

. X;l -x2

-b/2

+ S [Op+ECP(~ - xJ dx (u)
-x2

:trom which

However, Xl and x2 are related by geometry (see Figure Be).
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Solving equation (v) and (w) simultaneously:

j, '
___p /' 100000,000 •• 00000000 (x)
26'"pa+Er9ab

-2(J.-p-a-+-:-~-a-b-- ]

The moment at the center of the colunm equals

a

b/2

~ uo+ :c -fGcrp + ~ EY9b)x - E\'X"] dx

Xl

Xl

+ J~\Jp + ~b-Exl(~+¢0) } x+E¢ox" ] dx.

-x2

from which

-b/2

J[(()p+ ~b)X-o/Jdx

-x2

oo •••••••••••••••• -(y) .

"

3 b
3

( ~,~) 1 3 3~ ¢) 3~ ¢) 6p 6mo _F= -- <r. + ':;"l~j'.PD - .::::.i,1iib -Xl \(()+ -x \'9+ - - Uo- - = 0, 2E P 2 2':r '-r 0 2 0 Ea Fa .....• (z)

As before F is a linear function of u o• The partial derivative of F

gives:
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3P L2

F;-iT2
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.oooooo •••••• (aa)

Expressing Uo from equation (aa) and sUbstituting into equation (z) •

.. • • 00.00 •••••••••••• • (bb)

•

from which equation (28) can be directly obtained •
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FIG" 1: PROCEDURE FOR THE SOIDTION OF ECCENTIUCALLY
LOADED COllJMNS
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Residual pattern for section yielded to
1/4 depth prior to unloading
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•

Ec

I~
Ei

~I

""---

b
xl

b-2
1.0 0 1.0

~/E."
Y

(d)

FIG. 2: RESTImAL STRESS AND APPLIED STRESS IN STEEL COLUMN
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PARABOLA w
n

_
1 wn

1~
• I I

I I I J lI I

¢n+l:• ¢n-l' ¢n'
I I
I I I

n-l n n+l n-l n n+l

I.. A >joe ~ ~I lool
1\

~-
~ ~I

wn S ~ (¢n-l + 10 ¢n + ¢n+l)

.. 0.8 ]
eb lOt 0.0125

!
-

POllITT 0 1 2 3 cl FACTOR

ul-e/ b 0 0.0273 0.0498 0.0647 0.0700 1.0

uJ.!b 0.0125 0.0398 0.0623 ~ 0.0772
i

0.0825 1.0

¢2 0.240 0.805 1.310 1. 770 1.930 E: /bY

W 9.600 15.675 20.940 11.420 E/12bn
/ "- ;/

SHEAR 57.635 48.035 32.360 11.420 Ey /12b

/ '" / ~
E 2/12b2

u
2
-e/b 0 57.635 105.670 138.030 149.450

y

CHECK 0 0.0270 0.0495 0.0646 0.0700 1.0

)

. FIG. 5: EXAMPLE OF NUMERICAL DEFLECTION CALCULATION
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FIG. 6: AXIAL AND ECCENTRIC COLUMN CURVES - COLD BENDING
RESIDUAL STRESSES
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Stress Distribution
in Tension Flange

Residual Stress
Distribution in
Flanges

Stress Distri­
bution in
Compression
Flange
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d·r ::: r. ::: .2;,
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w
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•
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FIG. 7: ACTUAL AND IDEALIZED SECTION WITH STRESS DISTRmJTION

CASE II

(c)

FIG. 8: APPROXIMATE ANALYSIS - RECTANGULAR COLUMN
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FIG. 9: ECCENTRIC COLUMN CURVE~/3) - COMPARISON
WITH APPROXJM.ATE SOIDTION .AND TESTS.
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FIG. 11: INFLUENCE OF RESIDUAL STRESSES ON
ECCENTRIC COLUMN CURVE.
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FIG. 12: ECCENTRIC COLUMN CURVES - COMPARISON
WITH APPROXIMATE SOLUTION AND TESTS
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FIG. 13: lNFLUENCE OF RESIDUAL STR.ESSES ON
ECCENTRIC COLUMN CURVE.
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