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ABSTRACT

The general method of solution for the maximum carrying
capacity of columns containing residual stresses is first presented}
Application is then made to a specific example of an H~columm. The
influence of an asymmetric residual stress distribution is considered
and the results are presented in the usual forms as column curves
for axially and eccentrically applied loads. Next, approximate
solutions are presented for beam-columns having an idealized elastic-
blastic stress-strain relationship and which contain residual stresses
whose patterns have at least one axis of symmetry. The results of
these studies are also éhown in the form of column curves. Finally,
the theory is compared with test results which have been reported

in various publications.
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I. INTRODUCTION

© It is known that residual stresses are set up in beams and
colums due to non-uniform éooling, cold straightening and other manu=-
facturing processes. The influence of these initial stresses may be
considerable for axially loaded steel columns depending on the geometry
of the section and the residual stress distribution.(l’2) |

Ketter, Kaminsky and Beedle3) are the first, to the authors'
knowledge, who have studied the influence of residual stress on the
behavior of beam=-columms. They have shown how the thrust-moment~curva-
ture relationships of a wide~flange mémbers are influenced by a symme=-
trical, "cooling" type residual stress pattern. Having this information,
it is possible to determine the ultimate carrying capacity of eccen-
trically loaded members, which contain such residuals, along the lines
of the classical inelastic column theory,(h)

This paper is concerned with the determination of the influence .
of residual stress on the strength of columns of equal end eccentricities.
These end eccentricities are assumed to lie on the same side of the
member and result in a single curvature type of deformation. In addition,
it will be presupposed that ﬁhe‘member gontaips a residual stress dis-
tribuﬁion having at leést one axis of symmetry.

In the presentation of the analytical solution to the problem,
there is first discussed a general method suitable for any material.

This rigorous treatment is applicable to axially loaded colums as well
as ‘the eccentrically loaded ones. The approximate solutions which are
considered later, however, are only applicable when the material has a

stress-strain curve which closely approximates the idealized elastic-fully

»
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plastic case, as is typical of mild structural steel.

II. GENERAL METHOD OF SOLUTICN

If loads are applied eccentrically to a member or if, on the
other hand, residual stresses do not have axial symmetry and a thrust
is gpplied axially; a simple solution to the problem of determining
the ultimate carrying capacity of the given member is not possible.

It is first necessary to assume deflections and by success?ve adjust-
ment to arrive ét the correct deformation for a given loading. In
general such a procedure is very similar to the classical method of'
solution as outlined by Karmangh) Approximate solutions, on the other
hand may be obtained by working with assumed deflections curves, as

did Jezek(h) and others. Such procedures will be presented and mater-
ially reduces the amount of numerical work that is required to obtain
an answer to a given problem.

At;first no stipulation will be made as to the shape of the
cross=-section nor to the stress~strain relationship of the material.
It will be assumed, however, that the deflections are symmetric with
fespect to the center of the member and that the ends are pinned.
Furthermore, it will be assumed that the residual stresses have at
least one axis of symmetry and are uniform throughout the length. The
possibilities of lateral-torsional or local instability are speci-
fically excluded. | Instability (maxirmm load) will be considered as

a condition of excessive.bending in the plane of the applied moments.
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Consider the eccentrically loaded colwrm shown in Figure (1a).
For any section along the length of the member, strains can be described
in terms of the compressive strain, €., and the bending strain (i.e.
curvatufe), B, at that section (éee Figure lc). Knowing the stress-
strain relationship of the material in question (e.g. Figure 1b), it is
possible to compute the internal force, P, and moment, M, for various
assumed values of €, and ¢x‘ The results of such calculations can be
plotted as "u" verses "g" and "P" versus "g" curves for constant values
of the parameter €c , "u" is the deflection plus the eccentricity at the
section in question. Typical curves showing the relationships to be
expected are given in Figures (1d) and (le). Eliminating €, from these
two curves, the three variables u, P and @ can be combined into one
graph as shown in Figure (1f).

To determine the critical length for_a colum subjected to a
given thrust, P, applied at an eccentricity, e; a deflected shape,
u(x),~mst be assumed. (See Figure lg.) Entering Figure (1f) with the
value u, a value of @, is obtained for the given load P (Figure 1h).
Double integration of fp yields another deflection, up, that contains
the length, L, as a parameter. This process can be repeated until
Un=un,q from which "L" is obtained.

In determining the critical length, Lcr it is necessary to vary
the magnitude of the center deflection, U s and go thrqugh the same
process as described above until a maximum value of the length has °
been realizedo(h)

Residual stresses influence the u-P-@ relationship and there-

by influence the carrying capacity of a member containing such stresses.
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The procedure for determining the critical length when the magnitude of
the load and residual stresses are given may be summarized as follows:

1. Determine P and M for various values of €
and @. Calcilate u=M/P.

2. Plot P-f and M-ff graphs, where €, is a parameter
for both relationships.

3. Combine the two graphs into one u-P-f graph by
the elimination of €. '

i, Assume a deflected shape of the column (ul).

S. From the u~P-@ graph of step 3, determine @ for
the given P value.

6. Numerically integrateto obtain a new deflection
(up) and continue until up=up47.

7. Determine the critical length by varying the magni-
tude of the center deflection. The maximum length
obtained by this process is the critical length.

IIT. APPLICATION OF THE GENERAL METHOD OF SOLUTION TO
AXTALLY AND ECCENTRICALLY LOADED H-COLUMNS

.The general method outlined in the previous section will now
be applied to the specific solution of an H;column which contaimsa cold-
_ bending typelof residual stress pattern in the flanges. Since sections
of this type usually fail by combined bending and twist, when bending
‘is imposed about the major axis of the cross=-section, only weak axis
loading and instability will be considered.' It should be noted that
the residual stress pattern for cold bending being asymmetric would

tend to increase this possibility of lateral=-torsional instability.
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The column to be investigated has a cross-section as shown
in Figure 2a. The flanges are'assumed to contain the residual stress
distribution shown in Figure 2b. The initial stresses are further
presupposed to be constant along the lénéth of the colurm. The material
properties and stress-strain curve are as given in Figure 2c.

Firstly, it is necessary to calculate the axial thrust and the
bending mement corresponding to various assumed values of the compressive
strain, €, and curvature, @ (see Figure 2d). The-limiting curves of
applied strain, shown by the 1ight solid lines in Figure 2d, correspond
to that condition of yield'point stress minus the initial residual stress.
'For a large number of combination of these two parameters the following

can be written after integrating and simplifying:
P=3 04656 - 21,1, (_63-_175_70_; 1 )
7, E[ 56 - 2L+ 375-—2— (22 2€y)(".6___+o.s

X
_Lzey 0.25- 1) (.-c. Zey ] cerneene (D)

and v
B M 3% | o133 2+o 1o-§=——< 0.1250 _ x12
b ‘f)' HP 5 LT 2€y) P
+_ 3 +O.l250> '...............‘l..'..."....'(z)
3¢, \b |
where
) _(etc ¢b>
& : €y 2€y .....‘.........."‘l.'.'.’(3)
b 0,75 + @b

5%
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¢

is a measure of the distance from the flange center to the yield zone
created due to the applied loading. Equations (1), (2) and (3) are

valid in the range.

' b
..}.c.l.._ > 0.250 and .g < 2.581
b Gy

The results of the calculations using these equations are
given in Figure 3 where ratios of the three parameters u, P and § are
plotted far constant values of the variable EC/ €y. Eliminating €c/€y
as indicated by the dashed lines in Figure 3, the direct relationship
between u and @ with P as ;che variable is obtained as shown in Figure L.

With this information the numerical procedure outlined in
the preceeding section can be applied. A sample calculation is shown
in Figure 5.

The final results of these calculations can be presented in
the conventional form as column curves with the eccentricity ratio,
ec/r?, as the variable. These have been shown in Figure 6. It should
be noted that they are valid only for the assumed residual stress dis=~
tribution. Also shown on this figure as dashed curves, are the cor=-
responding elastic solutions of the second order stress problem (secant
solution) with the outer fiber at the yield point stress (no residual
stress). In addition, certain approximate solutions and test points
are shown that will be diséussed later in this paper.

Even with the u~f-P relationship of Figure L given, the nu-

merical work required to obtain a sufficient number of values of (L/r) or




is farmidable. An approximate solution which requires much iess work can
be realized by assuming a deflected shape of the member. It is then only
necessary to vary the magnitude of the center-line deflection to obtain
the critical slenderness ratio.

Assuming a sine curve for ‘the approximate deflected shape of
the member, the curvature at the centerline section is given by the
expression

]
¢0 = (uo"e) I-‘;- 0oooocoaooeooooocoo.coo'oooo.ooo.(h)

from which

Oo‘ooooaoooooooaocooeoooooo.oo.o(s)

or in terms of non-dimensional variables

1

(=2
La_TI._b_ ______1_)_______ ocoboooo-ooaoooo-oooooao--(é)
A€y Lo
N Ey

Substituting in equation (6) corresponding values of u, and @, (from
Figure L) for constant values of the axial thrust, P, Lypax may be ob-
tained within a few trials. The results of this approximation are
shown in Figure 6 for particular values of P/Py by the open circles.
In spite of the simplification obtained by assuming a parti-
cular type of deflected shape, the work required is still considerable.
This is especially true if the influence of several different residual
stress patterns is desired. This follows from the fact that for each

pattern a new set of curves similar to those shown in Figure L (for
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u-g-P) would be required. In the following, a relatively simple solution
to the problem will be obtained which is applicable to beam-columns of

both rectangular and simplified H-shape cross-sections.

IV. APPROXTMATE SOLUTIONS

Bending About the Strong Axis

An idealized section is assumed which is composed of two rec-
tangular flanges and a shear resisting web of neglibable area. For a
particular wide-flange shape the properties of the idealized section

(marked with the subscript "i") can be computed as follows:

2 dj  e@w ed
A=h;, IsI; =Ar®, rerj = > = 2 312
- i

(See Figure 7.)

The residual stress distribution is assumed to be piecewise
linear and constant along the length. The deflection curve is assumed
to be a sine curve with the maiimﬁm deflection, u,, at the center of
the member. Furthermore, the moment diagram is symmetric with fespect
to the center, where the moment has the value My=P(uy)+m,. The other
suppositions are the same as those listed earlier.

The equilibrium equations at the center of the member can
be written in the following forms¥

P=P1(€1,Gr) +P2 (el,ﬁ) oooooo-oooocooc.o‘oooooo-uoo}ooo(?)

and 4
I\'IO=P(U.0) + Ng = E—[Pl(el’cr)"Pz(el,ﬂ):l -oowoo»oooooooo.oo(B)

*A detailed derivation of these expression is given in the appendix.
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1

at the centerline section is

where P_ and P, are the forces taken by the flanges. The curvature

2
= T (9)
(o) U.O OB 000 S OGO0ODODGOS SO 0GO0O08083500688800080008s00

Combining equations (7), (8) and (9) an expression of the following form

is obtained:
F= F(P, Ug s L,O.r, mO) ooooooooooo'oﬂoo-ooooooo-.ooo'oo'o.(lO)

To determine the critical load corresponding to a given situation, the

maximm value of
P= P(uo, L, Gr, m.o) oooooooooooooooooooooooooooooo..(ll)

must be ascertained. For a given length, L, residual stresses,Cp, and

moment, my, the maximum. value is determined from

——.——=O

dug

O0O00009'000D0.'.00.ﬁd..00‘.9.Q’.Q'-..O..'..0.0.(lz)

Using the implicit form of the function F

dF_ OF dP , _OF
dug OP duy; Qup

or

oF

oug,

3 O 000000000.0;0......'...0’..0.000000(13)

Equation (13) then defines the critical value of ug,which when substi-

tuted into equations (10) and (11) gives
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F =P, L, q, m)

or 3 - ] oooooooooao.oooco-.oooo.o'aoo(lh)
P =P, 0y, m)

To obtain the critical length, Leps of a columm subjected to
a given loading, P, residual stress, 0., and moment, m,, the maximum

value of
L = L(uo, P, Gr’ mo) 'oooooooaooooooooooc-oocoo-ooo.c(ls)

mist be determined. The condition for a maximum is

dL
duO

= O .000.0000.0.0.0..00‘...0.00‘000........000000(16)

and

dfF _OF dL , OF _

eoo-ooooooooo.ocooo--oo-,loo.('.l7)

or as in the previous case

TO Eko .OOOQOOOGQOOQDOD.....0.90.06000'0.000...(18)

Thereby the proof is given that Lax=Lep.
For a linear variation of residual stresses between the flange
edges and the flange center the analytical evaluation corresponding to

equation (14) becomes

- 1 Oer -
Efb (S%S_ + o
. . 2 - (yy Ad
O, XL 11 - 5 veose(19)
s p-Zex )? |
2(Gy~Gop ) +ED CE
B Gb-obr )2
Og
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. where Gp is the pseudo-proportional limit;'that is, G‘y-o‘rc (see Figure 7):

. and O is the stress corresponding to the Buler load.
For the case where Gp=0, @=0 and & p=Cys equation (19) takes a
form that is expressable as the quadratic equation (see also equation m,

Appendix)

T \2 (G>(l+ 0% s2my, Gpy Op
vy — | —— Lo — ) wte | e = () B ¢2{¢]
(Gy ) Oy Ty <dPy Gy) Gy 20

When ( -f:) = 0 the stability problem reduces to a stress equi-
librium problem and the influence of residual stress, which is in equili-
brium within itself, is wiped out for full yielding of the cross~-section.
For an H-section the simple plastic theorjr gives for bending about the

* strong axis:

(.9.)2 + Klﬂlﬁs_%‘; {bt(d-t)m(g._t)a} =0 vereeo(21)

and

(qg') 2 +2 (%)(EQ _1>'+ z‘—bl’-‘? - [2;51_'_ J= 0 veevenneees(22)
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Bending About the Weak Axis

The idealized section may in this case be assumed to con=
sist of a single rectangle made up of the two flanges. The deriva=-
tion follows closely the previous one.

Two basic types stress distribution are possible. Due to
axial thrust and bending moment the general pattern will be either
of the cases shown in Figure 8. In case I (Figure 8b) it is assumed
that yielding is only in compression; whereas, in case II (Figure 8¢)
yielding occurs in both tension and compression. The rate-of change
of the residual stress at the outer fiber is given as before by the
angle @ .

It is possible from the internal stress distribution to

express the corresponding forces and moments as followsss¢

Case I Case II
PBP(¢0, Xl, o—r) P=P(¢O, Xl’ X2, Gr) coc.ocooo(23)
MosMo(ﬁo, x1, Op) Mo (Pos X152, Op)evecanes(2l)
¢0 L2 uo ¢o i—-z—_uo .‘000.'..'00000(25)

where xq and x, are measures of the distance from the center of the

section to the beginning of the plastic'zones (see Figure 8). The

zero subscript refers to the section at the middle of the member.
For both cases I and II the expressions can be reduced by

combining equations (23), (2L), and (25). There results

F:F(P,UO,L’G.I.,IHO) oo.oo..ol.o;o.toooc.ooo.uooo'o00000000(26)

#See Appendix (b).
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It should be noted that this equatioh has the same form as equation (10).
Therefore, the critical centerline deflection and the solution of the
function, F, are obtained in the same manner as that given earlier.

The resulting analytical expressions for critical stress are

[ Em . 9 (LY, 2m |°
T\-aE O‘CI' i) 2 r Pb : e
GCI‘:—IT? 1- - ‘ Eé;-'otiocoo..(’27)
( ;) - [3Bebiéa, | | ase I)
| Cer _
T A2
worea [ :
(Op+5 Egb) : ‘
ET® _ (28)
Ger= . . besssscccsscs 28
‘ (Case II)
30,4580\ ling (e );gg(g.f)a
[\ 30ep Pb Gb+%g@b In2 _

where as before Op is the pseudo=-proportional 1imit,($y-o}c, EQuations

(27) and (28) are the solutions to the problem. They musi be solved by

fpial and error. | ”
If no residual stresses are pfesent © =0, =0y and the

equations become

op 2o 3
- 1T : '
GCI’“,'(Z-)Z_' 1— ib oooo*o.zé;;éoiiocooootooyo'(29)
_ \r/. QJZ -]

o - 0\C]."

2mg
for <1
o::'_(.Pb .‘>
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and 3

Sy
G_Cr= E‘nz ) ..‘.‘....0.....‘.O‘.........(BO)
Oy _ Lmy, G 3 . (Case II)
Ger P60y

After rewriting in a slightly different form, equations (29) and (30)
are identical to the solutions given:by Jezek(h)

4 simple 1limit for the range of applicability of equations
(27) and (28) cannot be givén because of their complexity. The follow-
ing, however, will aid in the estimation of that limit. If case I
applies, but equation (38) for case II was used, the actual critical
slenderness ratio and critical stress will be larger than the computed
values. If on the other hand case II applies, but case I was used,
the actual critical slenderhess_ratio and critical stress will be .
smaller than the computed values.

For short columns (whére L/r is less than about 50) equations
(27) and (28) do not hold since the developed stress distribution at
the centerline section will be different from that assumed. However,
for the limiting case of L/r=0 the section becomes fully yielded, the
stability problem reduces to one of a stress consideration and corres-
pondingly the influence of residual stress vanishes. For the H-profile

the simple plastic theory for weak axis bending becomes

RN

(%_‘a_(_o%_x.z_wﬁ%ff_))_+(§£g; -(.}'LEE.-_]) =0 (31)
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Interpolation between the results of equations (27) or (28) and equation
. (31) for critical stresses in short columms (Oé%éEO) can be done with-~
out appreciable error.
of particﬁiar interest is the application of this approximate
solution to the problem solved previously by the more exact methods.
The results of thése calculations are shown in Figure 6, The approximate
solution (filled circles) is in very good agreement with the "exact!

solution.

V. DISCUSSION

a The rigorous development for the carrying capacity of axially
and eccentrically loaded columns forced to bend about their.weak axis
is given by the solid lines in Figure 6. The solution to the second
order stress problem (secant;éblﬁtibh) is shown by the dashed line for
corresponding values of ec/r® (0.1, 0.5 and 1.0). For an eccentri-
city ratie ec/r*=0.1 and slehderness values 664L/r£130 the secant solu-

tion (neglectiné any initial imperfections) would be unsafe as shown

byAthé cross-hatched area; whereas, for slenderness ratioes below 60

it is too conservative.®* Figure 6 also shows that the assumption of

a sine curve for the deflected shape of the column gives good results
(open circles).

ﬂ Because of the large amount of time required to obtain the
rigorous solution, the approximate methods were developed to afford a
rapid study of the influence of various residual stress_distributioné.
1t is necessary, however, to first determine how closely these approx-

imate solutions are to the rigorous solution. Good agreement is

#It should be emphasized that these statements hold for the one parti-

cular pattern of residual stress assumed. Other distributions, however,

would show similar results.
[
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demonstrated far several residual stress distributions and axes of
bending (Figures 6, 9 and 12). In each of these figures the approxi-
mate values have been shown as filled circles. Far L/r=0 the values
were calculated for the actual cross-sectional shape by the simple
plastic theory. For all cases shown, the approximate solutions were
in close agreement with the more exact ones. (The rigorous solutions
of Figures 9 and 12 were taken from Reference 3 where a slighth"
different method was used.)

The effects of varying the initial residual stress distri-

bution in the flange of an idealized H-shape are shown in Figures 11

and 13 fqr bending about the strong and weak axes respectively. A.
constant .valué of the eccen’oricityl ratios e/r=0.5 and ec/r*=0.5 was
assumed. The nlﬁe of Egb is varied while the compressive residual
stress at the flange tips is assumed to be 20 ksi and the yleld point
stress is 4O ksi. A value of Eyb=60 would result in a residual stress
distribution that would not be unlike those observed in typical wide=-
flahge ahapes.(a) It should be noted by comparison of the column
curves corresponding to Epb=60 (shown by the heavy solid line) and
Oy=0, that case which neglecté residual stress, the influence of
residual stress is still pronounced (see Figure 11 and 13). Figure

10 shows the diminishing effect of residual stress on eccentric column
strength as the: ecqqntricity, is increased.

In addition to the theoretical conclusioms discusged above
it is possible to compare predicted strengths as presented in this
raport to colum test results that have been reported in the literaw
ture and for which residual stress measurements were made.

Although the residual stress patterns correspond only
roughly to the assumed pattern of Figure 6, the result of two
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cold straightened axial column tests (I/r=70 and 7905)(6) have been
shown on Figure 6 by the open squares. The latter column,(§'= 79J§
was straightened in the laboratory under a loading which subjected
the meﬁbers to uniform moment. The measured values of maximum resi-
dual stress were 8 and 6 ksi which is about one half of the value
assumed in the rigorous solution. As would be expected, the column
test result lies above the theoretical solution. The other column
(L/r=70) was also cold-straightened in the labeoratory but by a single
concentrated load at the center of the member. For such a condition
of loading, the residual stress pattern along the member will not be
uniform. Furthermore, a higher residual stress will result at the
center-line section of the column. The column test result is shown
in Figure 6.

The result of an additional column test is shown in Figure
9. This test was part of a separate investigation on "Welded Con-
tinuous Frames and Their Components” currently being carried out at
Fritz Engineering Laboratory. Interpolation shows good agreement
with the theory.

The results of the column tests reporﬁed in Reference 5 are
shown in Figure 10. These tests cover relatively low slenderness
ratios due to the fact that the end supports were also pin-eﬁded in
the weak direction. Although these tests fall in slenderness and

eccentricity ratios which do not demonstrate the full significance of

residual stress, and even though the members failed by lateral-torsional

buckling, there is reasonable agreement with the theory. The possi=-
bility of differences between the residual stresses measured on one
piece of the material as opposed to those present in the various columms

is also a condition that would tend to alter the test correlation.(l)
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For an eccentricity normal to the plane of the web one test
result is available for comparison. This test is also due to the
previously cited study being carried out at Fritz Laboratory on "Welded
Continuous Frames"”. Here again, interpolation shows good agreement
with the theory (Figure 12).

One variable that has not as yet been stressed in this report,
but which is also very important, is the yield point stress. The ec-
centric colum curves for (¢ =0 in Figures 1l and 13 eould also be inter-
preted as column curves for a yield point of 20 ksi, where residual

stresses are zero and the reference stress, Uy, is taken as LO ksi.

VI, SUMMARY

A general method, applicable to both eccentrically and
axially loaded columms was developed along the lines of the classical
inelastic colﬁmn theory. In the.development it was assumed that the
residual stress distribution had at least one axis of symmetry
which was further assumed to be normal to the plane of bending.

Approximate solutions, based on the same concepts as Jezek's
solution for beam-columns, were then presented for the rectangular and
idealized H-section of elasto-plastic material.

Results compare well with the rigorous solutions and also -
with test.results. It was shown that the influence of residual stress
decreased with increasing eccentricities. Up to a value-of the eccen=
tricity ratio of about ec/rz=l.0, the influence of residual stress in

determining the carrying caﬁacity of the member may be considerable,
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IX. NOMENCLATURE

‘crogs~sectional area

flange width or width of rectangle
depth of H=-section or rectangle
eccentricity of loads

Young's modulus of elasticity ‘

- moment of inertia

total length of a pin~-ended column
slenderness ratio

moment

moment due to lateral loads on columm

load on a colum

critical or maximum load on a column

Euler buckling load for a pin-ended column

axial load corresponding to yileld point stress across
entire section

radius of gyration in the plane of bending
flange thickness |
deflection in x-direction

distances from the center of the cross-section to the
beginning of the yielded area (see Figures 2d and 8)

unit strain

maximum compressive strain

strain corresponding to the yield point
normal stress o
proportional limit stress

eritical applied average stress on a column

Euler buckling stress




220A.31

2]
Q

residual stress

residual stress at flange edges

residual stress atvflange centers

yield stress level; average stress in the plastic range
rate of residual stress variation (see Figure 7 or 8)

curvature
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X. APPENDIX

Derivation of Approximate Solutions

In this Appendix the derivations are given for the approxi=-
mate solutions for the idealized H and rectangular section discussed
in Section IV. The assumptions and limitation are listed in the

earlier section and will not be repeated here.

a). Bending about the strong axis of an H-shape

Referring to Figure 7, the higher stressed flange of the
idealized section is assumed to carry a load Pl which is a function

of the strain Gl and the linear residual stress pattern.

P

A ' - 2 ;R )
1" hgE [Eel(mpb) (2€))%2(8€,)0,-G; ] cererenenaees(a)

The load carried by the other flange is given by

A
P2= -Z-l:EEl-E¢d:l oooo-oooooooocoonoo.oQQooooooooooeoooooo(b)

The stress in this less highly stressed flange will, for all intents
and purposes, remain elastic.

The total axial thrust on the columm is then given by the
sum of equations (a) and (b). That is,

P=P1+P,

or

P-_-z—g-@[2Ee1(crp+E@b)-(Eel)z-ﬁpz-(Esob)(Eﬂfod)] ceseeense(c)

The corresponding internal moment at the centerline section is
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M0=Pl10+mo ‘é‘(Pl P2) oooooo-aooooo-ooooocoroooo'oonc~oo(d)

B Mo= E%%’{(E@b)(E}ngd)+2E€16‘p-(EEl)2-(Gp) :] N ) |
From equation (c),Eel can be expressed as follows:
Eef(Egobwp)-\l (Eng)z+(Eng)(26p~E¢Od-if) | PPN €

where

¢0= —2-‘(1'0 oo.ooooooooeootooon-ooo'oo-..o.v-o.ooooootooooa(g)

Writing equation (e) in implicit form F and performing a partial dif-

ferentiation with respect to Ugs the following is obtained:

O=P=- E% [(Etgb) %.gz_ + Z(GP-EGJ-)-%EEQ)} cecescesssssnsss(h)
. (o]

From equation (f)

En°
(Egb)
B(Egl) = Sp La ‘1': .-oooooo"0'000<i)

D u, 2)\] (E@b)?‘-;(Ec_pb)(20‘p~E¢od—2§) A

which when substituted into equation (h) gives

OnP-PE Om ¢ ...........a.(j)
:
(E@b)2+E@b(26b- I“a uo~.3£1

The Euler load, Pg, for the idealized section is given by:

....O.‘Oﬂ‘000..‘.‘0000...‘..‘..‘0..‘.".’...‘..(1{)

T2EA®
PET
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From equation (j) u, is obtained.

L2 2P- pr .......’....‘..........(1)
U | T T T (28 2]

)
Pg
Substituting u, into equation (d)

P\® Pyl Egb Pgp Egb 2m, Pg
EUIEN: . M-
) 2
Py Py |0y 20y Py 20y(2- ﬁE) y ¥

P Epb Lo
+ P_E §E+ @ e E(pb-—- = 0 ooooooo;oonconoo(m)
y |Oy Oy(2- 2) 03,(2-?.)2
,_PE PE

- Solving this péeudo-quadratic equation and rearranging termsfgives
finally equation (19). Setting<fp=5& and =0 equation (20), which
is the approximate solution when no residual stresses are present

in the column, is obtained.

(b). Bending about -the weak axis of an H shape

Case I: Yielding only in Compression

Axial equilibrium requires that at the center of the colummn

the following equation must be satisfied:

b/2

X3
5 “J&*}#ES)(? - x)] dx +f[o‘p+ %2 -Exl(g3+¢o)+E¢ox]dx ceseo(n)
. ) YA :

When integrated and corresponding terms combined, this becomes
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O=Xl +X b— o+ )J o o— —— sescsces (o]
17 EC ) Ba | ¢,

Solving for Xy,

2 g"Ii !
20, b+Egb* -

Xla"-"' ooonoo.‘ooo.oooooooo.o.o(p)

E(@9+8,)

Moment equilibrium at the center section requires that

b/2
My P Egb
J.::-— .m'_o...= +L) IS X ]
" au°+ = ‘;(o“p > x gpx- dx
X1
*1

' L{Gp+ Eg& - Exl((?+¢o)} x* E¢0x2 X eovereese(q)

-b/2

After integrating and 'combining terms, the following expression can .

be written:

Fax? (g e Qo) - @B 20 0 o L)

where

follows from the assumed sine deflection curve. The partial derivation

of F with respect to uy gives
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Pofw

3 b+E ba‘ 2p
(x1+ g‘) o | 20p0tBP- 2 12PL?
- 2

oooeoooooooo-o(S)“

B

Eatr?

Expressing u, from equation (s) and substituting its value into

equation (r) the follewing is obtained:

1 1 3 p L? Mo

= = EBob>=l] =~ = —
. 12PI2 | 3 ~(b)+ | 3 go7-h 3 o th vesscese(5)
- EaT\‘2

"I%

20, DHEGLS -

from which equation (27) was directly obtained.

Case Il: VYielding in Tension and Compression

As in the preceeding case the equations for axial thrust

and moment equilibrium at the column center are as follows:

- b/2

xl_ '
‘éP' = J' l:G‘p"'E@(g‘ -x):’ dx + [ I_O' p+ ;2_L_ E@b-Exl(SP+¢o)+E¢oX] dx
*1 “x2 |
-b/2 |
R j [GPJAE@(;R-X)J X vrernrnonannansenornnses(n)
-xz -
from which

2P
O:: --E-;.-- (@+¢0)X12+((?+¢0)X22 ocooaooooooooooQOoocoooo.(V)

However, x1 and X, are related by geometry (see Figure 8¢).

\
\
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%(20‘p+E<9b) = X1 @#0,) + %Q+B))  cerenrrvorocnscosnsaal(w) |

Solving equation (v) and (w) é:hm:.ltaneously:

—~ 1 )

G+ 5 EQb -

. p 2 (P P w?ooooo-ooooonoooooca(X)
Xl = E((?+¢ ) - 26 a-l-FKpab

5 0 p -

—6 o4 !’. b P ]
R

LE ((? +Bs) 26pa+E Pab ] ’

The moment at the center of the column equals
b/2
M, P
—_— - My 1
a a u0+ —;— = ‘:(Up + E E(S)b)x - E@xz} d.x_

X1
X ~b/2
+ {[{Gp + -]é‘Elpb-Exl(69+¢o)} x+E¢ox2:] dx+ J[(@f %-Elpb)x-E(sbca:, dx
X . ' X
.,............a...(y) )
from which
F= %'Ei (o, 2%‘5%)- 51491)3~x13(69+¢0)~x23(<9+¢0)~ % Uo- -6-;“—,5 20 ceeeea(n)

As before F is a linear function of u,. The partial derivative of F

gives:
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a; 1
Ip . 1.0\
2<E+2b(9)

((_P'l" TLzuo)3= ooooooaooccoo(aa)
L* ® 2
Fa Tr®

Expressing u, from equation (aa) and substituting into equation (z).

2 P=

,(0p 1 s _ 2
(4 '2"9‘95'3 1 tm. | 2Ea% 6p 12
0 =|—Z %bz(gﬁ+%‘b}9—-é-(9b?— Mo _ ] * Fa®

R : Sl O = L
Fa 1°
1.\ s |
. -6 6% +§b@) | '.00...‘......'.....(bb)

from which equation (28) can be directly obtained.
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FIG. 1: PROCEDURE FOR THE SOIUTION OF ECCENTRICALLY
LOADED COLUMNS
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FIG. 2; RESIDUAL STRESS AND APPLIED STRESS IN STEEL COLUMN
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PARABOLA }/’1’___—[_
!

Wn

W

! I nel +] -
o |
| '
Pne1 : ¢n: ¢n+1: l .1
]
ne-ll ; n+l nel n n+l
| >\ | >\ ] { A l )\
| | 1 l‘ » T -1
N
Wy = (Fpey + 20 Fp + &)
P e0.8| |- =o0.0125
P b
y
L Lo
A= p% = 16:-?, €y=( 3)(107)

POINT 0 1 2 3 & FACTOR
uy~e/b 0 0.0273 0.0498 0.0647 0.0700 1.0
uy/b 0.0125 0.0398 0.0623 |, 0.0772 i 0.0825 1.0

2 0.2Lo 0.805 1.310 1.770 1.930 €,/b
W 9.600 15,675 20.940 11.420 Ey/12b

| Ny
SHEAR 57.635  L8.035 32.360 11.420 Ey/12b
A 7N .
u,=e/b 0 57.635 1105.670 [138.030 |149.450 ey2/12b
CHECK 0 0.0270 0.0495 0.0646 0.0700 1.0
2 L2

0.07 = 149.L5 fl?-\-

12b%

r 149

) = Q0T 5 05 (106) = (66.1)>
g 522 (1) = (661

-FIG. 5: EXAMPLE OF NUMERICAL DEFLECTION CALCULATION
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FIG. 6: AXTAL AND ECCENTRIC COLUMN CURVES - COLD BENDING
RESIDUAL STRESSES
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FIG. 8: APPROXIMATE ANALYSIS - RECTANGULAR COLIMN
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FIG. 9: ECCENTRIC COLUMN C'URVES(3) - COMPARISON

WITH APPROXIMATE SOIUTION AND TESTS.
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_FIG. 10: ECCENTRIC COLUMN CURVES AND TESTS
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FIG. 11: INFLUENCE OF RESIDUAL STRESSES ON
ECCENTRIC COLUMN CURVE.
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