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Abstract

Forrulas are derived for the effective width of
circular cylindrical shells roeinforced by ribs in the
~circumferential dirsction. 1In caseslwhere the shell

can be considered to extend to infinity the effective

width devends on two parameters, Jah and A=n %.

The first parameter is a function of the radius "a"

and the thickness h of the shell, the second contains
In éddition the factor n representing the influence of
the stress distribution in circumferentiel direction.

Certain simplifications, the influence of which
was investigated and found to be insignificant, are
introduced in order to present a diégram for the
effective width in 4i fferent cases,

“or the 1limiting case where the radius "a" of the
shell increases to infinity the correspondence to the
effective width of a T-Beam with a stralght axis is

established,

Introduction

~

The problem of the effectlve width of T-Beams with

a straight axis (Fig. 1) was extensively investigated

during the past 30 years (see Ref. (1) to (5)*. The
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¥Tor 1ist of references see p. 28



actual stress distribution in the flange is replaced

by an imaginary constant stress distribution over the
effective width. Taking instead of the actual flange

a flange of width equal to the effective width, the
ordinary beam theory (cross sections remain plane) can
be used to calculate the fiber stressas and the
deflection of the rib. The advantages of this procedure
ars qﬁite obﬁious,

The case of a curved T=Beam was taken up by U,
Finsterwalder (6), H. Bleich (7) and The Ve Karman‘(B)..
In Ref. (6) the general unsymmetrical case 1s treated
wlth certain simplifications and fhe solution is not
developed for practical applications. H. Bleich
“investigates the bending of curved knees of T=- and H-
sections. In Ref. (8) a formula® for the effective
7idth is givén which does not .coincide with ths résults
of this abridgment. .
| The application of cylindrical shells spiffénéd oy
ribs in cichmferential direction (Fig. 2) hes :
enteredAmany different fields, including shell arch; 
'roofs, airplane fuselages, pressure vessels, submarinés,'

hot metal ladles, etc. The analysis of such structures-

*v. Karman gives the formula 2 =0,54 ‘V ah without any
<~

derivation. In the present abridgment, it is shown
that the numerical coefficient is not a constante. °



is very involved, and thers seems to be a specific need
for establishing the effective width of cylindrical
shells stiffened by ribs in order to simplify their
analysis.ﬁ

This paper 1s an abridgment of a doctoral
di ssertation® in which a compreheﬁsive'study of this

problem was made. Herein the most important results,

including some derivations, are presented,.

I. Definition of the Effective ~idth:

Consider a circular cylinder of radius "a" and

thickness h, stiffened by a rib and subjected to
arbitrary radial loads in the plane of the rib (Fige. 2).
The dlstribution of the direct forces Ny, = Gph* of the
shell in clrcumferential direction may be as shown in
Tig. 2, (EY’)x=o being the direct force along the ribe
The width b of a circular ring of equal radius "a" and
thickness h under the same loads shall be détermined,
under the assumption of a constant stress distribution
(N? )x=p Over the width of the ring, so as to make the
rib strcsses of both structures identical,

Sruno Tnllrlimann: "The Effective Width of Circulcr
Cylindrical Shells Reinforced by Ribs', FhD-

Dissertation, Lehigh University, 1950, Ref. (12).
¥ for 1list of notations see p. 25 , also Flge 3.



The action of the rib on the shell may be found
by taking equilibrium for a cut ¢= constant:

S = /Nj,-dx (1)
where S is the total force of the rib acting on the
shell. The integral is taken over the entire length
of the shell; The ring must resist to the same action
of the rib (Fig. 2):

S = b(’N? ) =0

Hence the width b of the ring is:

b o= o
-(W;szo (2)

Physically, S may be thought of as being the force in
a string stretched around the c¢ylinder. If S is
constant, the actlion of the string consists in a constant
radial line load around the cylinder. In case S varies
as a function of P » tangential shear forces are
acting: on the shell in addition. From Eg. (1) it fol=-
lows that S5 1s positive as & compressive force in
the string,li? being positive as a tensile forcee.

In summary, the effective width b of a cyllinder
is found by stretching around the cylinder a string
under & string.forece S, calcwlating the direct force
(Ngp )x=p directly under the string and applying Eq. (2).
The imaginary T-seétion, composed of the rib as web and
the eflective width as flange, giveé rib stresses equal

s

to the one of the actual structure.



ITI. Calculation of the Effective Width:

In this chapter a solution of the differentlal
equations of ecylindrical shells, acted upon by boundary
forces is presented. Then the effective width is

calculated by the above described procedure,

1. Circular Cylindrical Shell Under DBoundary Forces:

In general, 10 forces and moments are acting on an
infinitesimal shell element dx-adg of a clrcular
eylindrical shell (Fig. 3)e. The displacements u, v
‘and w in axial, circumferential and radial direction
respectively, are shown in the same Fige The general
solution of the differential equations for arbitrary

conditions at the boundaries x = constant 1s very

complicated.¥ Miesel derived an approximate solution
sufficiently close for any practical application.,*¥
Assume a variation of the stresées in difcumferential
direction in form of the function cos ng (n being

the number of complete waves) and furthermore, the
gecond boundary x = 1 sufficiently far removed, to

be of no influence on the boundary x=o. Then, any

. unknown quantlity H, where H stands for é force, moment
or displacement, has the form:

* See Ref. (9), p. 123 and Ref. (10), p. 01.

** Ref, (10), p. 48. liiesel's notations were changed
to conform with the ones adopted in this paper.
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A}

H= ?’I’Ce“/"2§ {klsin(/alg +y)+kgcos(/al§ +)V)] cos nﬁo(B)

In the following Table A the most important forces,
mcments and di splacements arc glven in this form. The
2 constants of integration .are Cand Y. M gnd /a2
are coeflicients depending on the shell dimensions.,
Polsson's ratio P and the number n of the harmonic
under consideration. H, kj and ks are constants
depending on the quantity He The string force S as

defined by Eg. (1) 1s:w
| Sp(x) = /IJ?dx | (4)
x

By replacing N? by its value from the Table 4,

Sn(x) becomes:

[ 4
Sp(x) = m?-}%xff .72 ,uz(,“f - pAra- <2+7°>)sin</‘1§+$”>

+/ll(,l/§ + i-.l*(l- le') (2+P)) cos(/ul§ +y )J cos nedx
and performlng the integrationt

Sa(x) = & 22 Ce‘/‘gg[- 2At=L(24) sin (uS+y)

+,ul/42 cos(/Ul§ +SV)] cos ntf (5)
To the tangentlal shear foerce in circumferential
direction Hxso (see Fig. 3), the twilsting moment ngo
contributes a coniponent M,
a X9
of the string force S,(x), the total tangential shear

Expressed as a function

I'orce T becomes:



TAPLE A

a radius of cylinder

h thickness of cylinder

P PDLSSOH'S ratio for the material

n the harmonic under consideration (number of conulete
cosinea=waves of the sitresses in Plchm;@fGnt al

_ direction)

C,y constants of intsegration

= po = EEIh ¢ Bra- L Ly

V3

il

d=nfE
¥ = 12a% —
2 = a 1 1 1
n* Mo = 4\/?/ng1 + gx&(l_ 5’5) _,_'/%Az

1l

1 k[l+ %’l*(l- -15-)}
‘ n® )

H H ky ko
E __%1% - 1 0
") 1 Y 2"'1
Nx Eh(g + '11{' ) Mo - M
Ne E %? ﬂé[ 1 T X (1- j;)(2+pﬂ ,ﬂlﬁﬂ %}f(i' ;ig P+PJ
M E ah (1= R°P g (14 B°P
x v & Mo ﬁ{—') Ay (14 k')
-+ ah ‘ n?
e T PP L) Hy 0+ B
Sn(x) | B 2R ZIJ\‘*(l- =) (2+D) Vbl
Generél Case:
“#, %
H = BCe ky - si.n(,ulg + V) 4 kg-cos(/dl§+y) cos n¢

Special Case:

My = E 91? Co “[/42(1- n\/_‘f_)sin (ugrp) -/(1 (1+

P 3 ﬁ
nﬁg)cos (/lllfa Wilcos ng



= 1. =1 _5n(x)
T Nx?+'EK“P E'*%;‘” (6)

This shear force T must be used for deslgning the

diagonal steel in reinforced concrete shells adjacent

to stiffenerse.

2e Effective Width of an Infinltely Long Cylinder

(Poisson's ratio P = 0)

The following derivations are greatly simplified.
if Polsson's ratio P 1s taken esqual to zero. Ths
influence of thils simplificatioﬁ is insignificanﬁ for
concrete. - In the case of steel { P = 0.3) the error
invelved amounts to about 2.5%. |

In the middle part of an infinitely long cylinder
a string force S 1s applied (Fig. 4). S can have any
variation. It is always possible to‘present it in
form of a Fourier series., The effective width will be
derived for the n'} term of this series. Consider
the unlit string force:

S = Spcos ng =1 cosng (7).
Each of the two parts on both sides of the string will
carry half of this string force. The continuity for the
2 marts reqguires that the slope in x=direction at x = 0
is zero. Sy using Table A the 2 conditions take the

form:



x = O Sn(O) =-;,E .2‘%{1- CMy s cos ¥ cos ng = % cos ng
B Jw = - EC sinycos ng =0
0X

The second of these equations requires ¢= 0 and the

other constant of integration becomes:

C = & X
1 Eabuu,
. {8)
p =20

Nj, is calculated by replacing in Table A the two

constants G and y by the expressions (8):

(1\?? ) g=p = .é.é./%‘.é.{/tg + %..lé < {1- n—12?) cos n¢ (9)

The effective width is the ratio of the applied string

force S to the direct Force Np at x = 0 (Bgq. (2)):

1T
Mo |1+
2
2/412
If 4, is replaced by its value glven in Table 4,
b = 1.52 |ah L . A
— ' (1~ )
. 1lae 1 1l 12 n
[ - e ) :
| 942
(10)

In case of axial symmetry the number n of the waves
of the string force S around the cylinder is zero (string

force S is constant). A=n g- being proportional to n
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will be zero toc, and Egq. (10) reduces to:
A= 01 b =1.52 Ya (11)

e
—

o

Eg. (10) is'essentially a function of the two para-
meters Mah and A . It can be shown that in practical
piteats Dol . nh 1y the temme 1 a7 1
anplications (a <5. 3 =< 2) the terms == and A*(1 5.z-)

may be safely neglected.* Then the effective width

becomes:
1

N3« =10 (12)

which is an expression in terms of the two parameters

Van and Aonly. For the purpose of tabulating Kg. (12)
the following form is chosen:

h = K-V ah

(122a)

K o= __ 1.52
‘/1+ Lae, l)f ‘
\[ z 4 (3 (12b)

Fig. 5 is a graph representing the coefficient X
for the present (Bl=00) and several other cases as a
function of A . ©Note the rapld decrease of the
gffective width by increasing A-.

'
- WS aE W o MR MR AN W WS W G R s T e WD am 8 EE WS WY WS ME mm s e

* See Ref, (12), p. 37 for an investigation of this
simplificatione.
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The cross bending stress GO, under the rlb will

be calculated.
(Table 2 and Bq.
(M)

The bending moment My at x = 0 1s:

—Z-/l—a—é- cos n¢ (13)

Computing the bending stress Gk and the direct

stress Sp (Eq. (9)) the ratio of the two stresses

becomes:

7321 . 1

Fara-Ly 4 11 1

1
s L= ==)

(3 2 M3

" Using the same simplifications as for BEq. (10)

Ox

%

of-

‘14 + j;‘lz

s

(14) -

The use of Eq. (14) is guite obvious. It gives

with a2 winimum of calculation the maximum cross bending

stress Gk if the the direct stress G? is known. ‘ote

that
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for axially symmetrical loads (n = A = 0) the maximum
cross bending stress is 1.73 times the stress G? .
Expressions for the direct force N}’ and the
bending momenﬁ My at a distance x f;om an applied string
force S = Sn cos ng can be calculated. In Ref. (12)
tables of these values as function of the paramenters
Bx and A are computed. By means of these tables
1

JP and My in the shell are readlly determined, once

the string force S is known.

3. Effective Width of a Semi=infinite Cylinder:

A unit string force S=1 cos ne , making n complete
. cosine-waves around the clrcumference, 1s applied to
the end of a semi-infinite cylinder. The boundary
conditions for the free end x=o0 are

x=o: S,{(0) =1 cos ne

M =0 | (15)

The derivations of the effective width may be
found in Fef. (12), p. 46. ZHventually the following -
expression is arrived at:

2
b = 0.38 \ah 1 14 X
\/1+%.A‘3’+.}=- N 31+ L )¢
V 5 )

Using the form:

(16)
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b =K Vah (164a)

where:t K

' . 2
= 0.38 14+ X ‘
\/\f1+ %}L* + L) 31+ %.)“* |
B (16D)
values of XK for different values of A are given in
the graph of Fig. 5 (case ,Bl = 0)., The effective

width ls readlly determined by use of this diagram,.

For axial symmetry (n = A = 0), Egq. (16) reduces

b = 0.38 ¢ ah ' (17)

The ratio of the maximum cross bending stress Gy

(occurs at a certain distance from the free end x=o) to

the direct stress G‘? at x=0 1s for the case of axlal

symme try:

A= O:
G—x

G-?max = 04056

With increasing A this ratio decreases rapidly

G

(A=1 ; |=X
* ¢
Fige 5 allows the calculation of the effective

= 0.30)

width for a cylinder extendins on one side of the rib
to infinity* and havi'ng a finite overhang 1 on the other

- ws s e M @ Ww W we wn we  we

* A boundary at a finite dlstance d may be considered
to be at infinity if ABd > 2.4 (Sec Ref. (12), p. 25)
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gide (0=<? << o0 ),

In Ref, (12) the derivation of new solutions by
superpositicrn of the two cases given herein, (infinitely
long and semi-infinite cylinder) is shown. In addition
the effective width for some special cases, under con=
dition of axial symmetry, is calculated {effective width

of the curved flange of a knes of H-section, etc.)

4o Discussion of the Equations for the “ffective Width:

A few remarks may he made about the physical meaning
of the derived equations. In case of axial symmetry no
direct.shear forces qu,, N ?X‘and twisting moments MXT”
M ¢x are present in the shell. The ef?ective width b,
siven bw Tig. (11) or (17) is solely a function of ah.
b dewvends on the ability of the shell to escape radially
(displacement w)., The factor {Eﬂ‘describes this

'property. In the general case, the parameter d=n /E
‘ a

enters the expressions for the effective width (Eq..v(12)
and (16)). A4 1is proportional tec the tangential shear
forces T transmitted by the string (or in the actual case
by ﬁhe rib) to the shell (compare Eq. (6) and (7)). It
takes into account the lag of the direct shear forces NX?
and,N'?X on the effective width. .

In summary, two effects govern the effective width of

a cylindrical shell, the escaning in radlal direction and
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the lag of the direct shear forces. In the T-Beam
problem  (flange plate is planse) the first factor

does not enter.

I1I. The Effective Width of Cylindrical Shells in Casse

the Radius of the Shell Increases to Infinity

1o The Problem:

The question arises as to what the effective width
of a cylindrical shell becomes if the radius "a" of the
shell‘approaéhes Iinfinity. Obviously ﬁhe axis‘of the
rib and the middle plane of the shell become straight and
the effective width should be identical with the
effective width of a flat plate reinforced by a riﬁ
(T=Beam)s No dlfficulty exists in proﬁing that the
differemtial equations of the shell reduce to the
differential equation of a flat plate if the radius "a"
is increased to infinlty.

Hevertheless this does not prove that the equations
for the efiective width of cylindrical shells given in
the previous'two chapteré will check with those of the
corresponding T-Beams. Ior Missel's approximate solution
(Bqe. (3)) was uéed for the calcuvlations and further
simplifi catlons Were introducsd (gn 10) in order to

got expressions depending on twe parameters A and vah onlye
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Hence the limiting process“dtvwwill bhe applied to the
derived formulas for the effective width directly and
these results will be compared to the correspending

equations of a T=-Beam with a straizht axis,.

o2, Effective Width of a T-Beam With a Straight Axis:

Solutions of this problem may be found in Ref. (1)
to (5). The followin;,hmaéases are presented without
derivations, taken from ief. {(11), p. 112,

a) T=Beam with an infinitely wide flange:
A conbinuous T-Beam with a flange sufficlently

large to be considered as extending to infinity

}—

]
supported by eguidistant supports with spans L (Fig. 6).
y is the coordinate in the direction of the rib, x Ls

t

o~ a3

aken perpendicular to it. The load acting on the rib

P = pp cos8 ;%— v

~

If volsson's ratio P is assumed to be zero the

of'7ective width cf the beam is

=4 T - A
h = 2 e = 0,424 . 18
3 L (18)

A simple beam of equal span I has the same

o0

effective wildth if cross-beams at the supports are

provided and ars adequate to carry shesr forces Tqu
e:

b) Beam with an infinitely wide flange on ons sicd
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Differing from the previous case, the beam has an
infinitely wide flange on one side only (Fig. 6b). All
other conditions are equal. By neglecting the |
torsional stiffeness of the rib, the effective width is:

1l L o
b 2 T (28)

Ths only varliable in the two equations (18) and
(19) is the span L. It is quite obvious that the
effective width increases toc infinity if the span L —> o0 .
This fact will be of importance in the following

discussione

3o Effective Width of Cylindrical Shells for the

Limiting Case's =~ oo:

The string force S = 3, cos ne and Eence the
direct stress G@ varigs in n ooﬁplete cosine-waves
around the cylinder (Fig. 7). The length of one half-
wave 1s L. and the angle corresponding to this arc
length T 1s: |

N =

P

The number n of complete waves around the cylinder is

hence: .
i Ta

pae g e ]

n = > T,

4

'And the parameter W (Table £) &s a function of the halfl-

wave length I, brcomes:
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A=nfB=Tafr - Loy (20)

Consider the radius "a" increasing to infinity. During

this process the half -wave length T or the number n
of the waves can be kept constant. If the latter 1is
done the lcngth L beccmes iniinitely long. This
ﬁould then correspond to a T=Beam of infinite span,
" a case which certainlﬁ does not have any practical
meaning. Therefore the 1ehgth L will be kepf constantoe
a) "Infinitely long cylinders:

The following equation-for the effective width was
derived((Eq.(lé):'

b =1.52 fan 1
1 1na 1 éj
1+ -
Wi 54 \FB‘A

Pl - * 'n' A1 .
substituting A= 5 ‘/ah and rearranging

b=le52L 1
..’T -

o]

Now, in the 1limit as d = o0

o

(D) g ey = 0+427 L (21)

-

This checks within 0.5% the value of the effective

width of the corresponding T-Beam (Eq.(18)).
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b) Semi=infinite cylinder:
The effective width is given by Eq. (16):
2
b = 0.38 yah 1 1+ A

/¢1+%.33+.}_2 g2

Substituting ,};=-;E—-- ah and rearranging

N

b = Os 58 L 1+ 1

J[/.X* 3’T%;'+ %:

the 1imit "a'—= 00 (and in consequence A—o00) glves:

(b)gmoo = 0.187 L (22)

The dlfferenee between this value and the one of
the corresponding T=Beam (%q. (19) is 1.4%.
¢) The case of axial symmetry:

The effective width for A= 0 (axial symmetry)
is given by Eq. (11) and (17) respectively. Obviously,
if the radius "a" is increased to infinity, b becomes
infinitely large. But the corresponding T=Ream has a
span T = 00 whose effective width 1is b = 0© (Eq. (18)
and (12)«. The correspondence between the two problems is
established for this special case too. Actually, the
stability will set an upper limlt for the effective

width. A short treatment of this problem may be found

in Ref. (12), p. 66.
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4, Conclusions

1. It was shown that the effective width of
cylindrical shells reduces to the eflective width of the
corresnonding T-Beams with a straight axis if the
radius of the shell is increased to infinity. The
chaeck is complete from the practical point of view
(difterences of 0.5% and 1.4%), but it is not a
mathematically exact one. This is to be expected as
an approximate solution (Eq. (3)) was used for the
derivation of the effective width of cylindricael shells.

2. The close correspondence established between
the two problems for the limiting case "a" = 00 may
be considered as a justification for the use of the
abproximate solution Eq. (3).

3« The derived formulas for the effective width
are not limited by a certain value of the radius "é".
They are based on the general principlss of the theory.
of elasticity. The stability of the shell and of the
combination of the shell an: the rib gives an upper

1imit, a problem which exists equally for the effective

width of the T-Beam.
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Section A-A:

a0 0 - b©

Fig. 6.

-~

- . of the shell

- Middle surface

Fig. T
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NOTATIONS

Roman Alphabet

=

oo

k, k!

k1, kg
K (B1,A4)

M

M?

g 5 Hox

radius of the shell

sffective widbh

constant of integration, Eq. (3) or Table A
base of natural 1ogarithm

modulus of elasticity

thickness of the shell

symbol for any.force, moment etc., of the
shell

coefficient depending on the quantity H
under consideration, Table A |
coefficients definsd in Table A
coefficlents defined in Table A

function of the two parameters A1 and 4 ,
used for the effective width

length of the shell in'axial direction
span of T=Beam or halfewave length of the
string force S (Fig. 6 and 7)

bending moment psr unit width of the shell
in axial direction

bending moment per unit width of the shell
in circumferential éirection

twisting moments ner unit width of the
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shell

n nt? term of a Fourier series (number of
complete cosine=waves of the string force
S around the cylinder)

N4 direct force per unlt width of the shell in
axial direction

N? | direct force per unit width of the shell in
circumferential direction

Nx? s N?x dirsct shear forces per unit width of the

shell
Ps Do distributed line load, Fig. 6
Qx normal shear force ner unit width of the shell

acting on a face x = constant

Q? normal sh&ar {orce per unit width of the shell
acting on a facse p= constant

S string force 8 defined by Eg. (1)

Sp(x) - string force at a distance x in the cass of
the nth harmonic, dsfined by Eq. (5)

T total shear force per unit width of shsll in

~ircumferential direction, Fqg. (6)

u displacement in axial direction, Flg. 3

v displacement in circumferential direction,
Fig. 3

w displacement in radial direction, positive

outward, Tig. 3
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X coordinate of the shell in axial direction
¥ coordinate of the T-Feam in direction of its
axis

Gresk Alphabet

& angle corresponding to a half-wave of the
string force (Fig. 7)

B _ shell_coe?ficient, depending on the thickness
h and the radius "a" of the shell, Fig. 5

A parameter of the effective width, see Table A

M1 /12 numerical coefficients, defined in Table A

p Poisson's ratio

G stress

Gy bending stress in axial dlrection

Cﬂr direct stress in circumferential dlrection’

tk? shear stress of the shell on a cut x = constant

in circumfersential direction

T&x shear stress in the flange of a T=Beam
b angular coordinate of the shell in clrcumfeven=

tial direction

§ dimensionless coordinate in x=direction
- X
(&=2)
p angle, constant of integration, ¥q. (3) or

Table A
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