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Abstract,

Forr.lUlas are derived for the effective width of

circular cylindrical shells rein~forced by ribs in the

cirClJ.m.fel~ential direction. In cases where the shell

can be considered to extend to infinity the effective

width depends on two parameters, Jahl and .A = n J ~ ~
lI a llThe first parameter is a function of the radius

and the thickness h of the shell, the second contains

in addi ti on the factor n repre sent j.ng the influence of

the stress distribution in circw~ferential direction.

Certnin simplifications, the influence of which

was investigated' and found to be insi gnificant, are

introduced in order to present a diagr&~ for the

effecti ve 'width in di fferent case s.

~1101~ the limiting case vIhere the radius lI a ll of the

shell increases to infinity the correspondence to the

effective width of a T-Beam with a straight axis is

established.

Introduction. .
The problem of the effective width of T-Beams With

a strni6ht axis (Fig. 1) was extensively investigated

during the past 30 years (see Ref. (1) to (5)>*. The

- - - - - - - - - - - - - - -
*For list of references see p. 28
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actual stress distribution in the flange is replaced

by an imaginary constant stress distribution over the

effective widtho Taking instead of the actual flange

a flange of width equal to the effective· width, the

ordinary beam theory (cross sections remain plane) can

be used to calculate the fiber stresses and the

deflection of the rib. The advantages of this procedure

are qUite obvious 0

'rhe case of a curvetl T-Beam was taken up by U.

Finsterwalder (6), H. Bleich (7) and Th. v. Karman (8) •.

In Hef. (6) the general unsy:nmetrical case is treated

with certain simplifications and the solation is not

developed for practical applications. Ho Bleich

investigates the bending of curved knees of T- ahd H­

sections. In Ref. (8) a formula* for the e~fectiv~

width is given which does not coincide with the results

of this abridgment. ~

The a:?plication of cylindrical shells stiffened by

ribs in circumferential direction (Figo 2) has

entered many different fields, including shell arch·

roofs, airplane fuselages, pressure vessels, submarines,

hot metal ladles, etc. The analysis of such structures·

- - - - - - - - - -. - - - - - - - - - - - - - - - - -
*v. KarJnan gi ves the formUla ~ =0054 . r;:h wi thout· any

~ .
derivation. In the present abridgment, it is shown
that the numerical coefficient is not a constant.
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is very involved, and there seems to be a specific need

for establishing the effective width of cylindrical

shells stiffened by ribs in order to simplify their

analysis.

This paper is an abridgu~nt of a doctoral

dissertation* in which a comp-rehensivestudy of this

problem rJas made. Herein the most important resul t"s,

including some derivations, are presented.

I. Dafinition of the Effectlve "'idth:

Consider a c:l.rcular cylinder of radius "a" and

tluckness h, stiffened by a rib and sUbjected to

arbitrary radial loads in the plane of the rib (FiS_ 2).

The di stribution of the direct forces lJ, = <:rfh'* of the

shell in circwnferential direction may be as shown in

?ig. 2, (IT j> )x=o being the direct force along the rib u

The w:Ldth b of a circular ring of equal radius "a" and

thickness h under the same loads shall be determined,

under the assumption of a constant stress distribution

(N f )x=o over the width of the ring, so as t a make the

rib stresses of both structures identical.

* 3runo Thfirlimann: "The Effective Width of Circulc:r
Cylindrical Shells Reinforced by RibS";. PhD­
Vis3ertation, I,ehigh University, 1950, Ref. (12).

~ For list of notations see p<,25 , also Fig. 3.



4

The action of the rib on the shell may be found

by taking equilibrium for a cut f= constant:

S = fN t . dx (' 1 )

where S is the total force of the rib acting on the

shell. The integral is taken over the entire length

of the shell. The ring must resist to the same action

of the rib (Fi g. 2):

S = b(N 1 )x=o

Hence the width b of the ring is:

S
b =

~x=o (2)

Physically, S rna y be thought of· e.s be/lng the force in

a strine; stretched around the cylinder. If S is

constant, the action of the string consists in a constant

radial line load around the cylinder. In case S varies

as a function of 1 ' tangential shear forces are

actin!, on the shell in addition. From Eq. (I) it fol-

lows that S 1s positive as a compressive force in

the string, Nl' be ing positive as a tensile force.

In summary, the effective Width b of a cylinder

is found by stretching aroUnd the cylinder a string

tmder a string. force S, calcluating the direct force

{N1' )X=0 directly under the string and applying Eq. (2).

The inl£tf::inary T-section, composed of the rib as web and

the etCective width as flange, gives rib stresses equal

to the one of the actual structureo



5

II. Calculation of the Effect~ve Widt~:

In this chapter a solution of the differential

equations of cylindrical shells, acted upon by boundary

forces is presented. Then the effective width is

calculated by the above described procedure.

1. Circular Cylindrical Shell Under Boundary Forces.:

In general, 10 forces and moments are acting on an

infinitesimal shell element dx··adf of a ci rcular

cylindrical shell (Fig. 3) '. The di splaceme nt s u, v

and w in axial, circumferential and radial direction

respectively, are shown in the same Fig. 'rhe general

solution of the differential equations for arbitrary

conditions at the boundaries x = constant is very

complicated.* Miesel derived an appro;dmate solution

sufficiently close for any practical application.**

ASSlline a variation of the stresses in circwnferential

direction in form of the function cos np (n being

the nwnber of complete waves) and furthermore, the

second boundary x = ~ SUfficiently far removed, to

be of no influence on the boundaryx=o. Then, any

unknown quantity H, where H stands for a force, moment

or di splacement, has the form:

- - - - - - - - - - - - - - - - - - - - - .- - - - - -* See Ref. (9), p. 123 and Ref. (10), p. 31.
** Ref. (10), p. 48. :Jiesel's notations were changed

to conform with the ones adopted in this paper.
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~ = Hee -)t2
S

[k1 sin(jllS + r )+k2cosY.lS + r)] ccs n r(:3)

In the following Table A the most important forces,

moments and displacements arc given in this form. The

2 constants of· integrati on are C and If. )'1 ~nd ~2

are coefficients depending on the shell dimensions,

Poisson's ratio 1J and the n1..U11ber n of the harmonlc

under consideration. H, kl and k2 are constants

depending on the quantity Ho The string force S as

defined by Eq. 0.) is:
DO

.

. Sn(x) = x JNr dx ( 4 )

By replacing ~9' by its value from the Table A,

Sn(x) becomes:

Sn(x) = Ee~x1:.,"2S[f~l -P 4(1- t.-) (2+ 1J)) sin(hS+ 11')

+h(P2 + ~14 (1-~) (2+ P») COSy-IS + r )] ccs nrdx

and perfonning the integration:

Sn( x) = g ¥ ee -I'2S[- ~.A 4 (1- J;,.)( 2+))) 'sin (hf+ r )
+1'1,#200s(/15 +11')] cos ncr (5)

To the tangential shear force in circ1..wlierential

direction uxp (see Fig. 3), the twisting moment MXf
contributes a component ~ MX<f. Expressed as a function

of the string force Sn(x~ the total tangential shear

forc.e T becomes:
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TABLE .A.
a radius of cylinder
h tlJiclmess of cylinder
p Poisson's ratio for the material
n the harmonic under consideration (number of complete

cosine-waves of the ;:\tresses in circumferent::.al
directi on)

C,'f constants of integration

H H kl k2

E dW -E 1 0-ox
Nx Eh{ 1 + n 2 -l)

'#2 -#1K k'

N~
k' 2h P [,Il"- l A4(1- l)(2+1»] A.[I'~+ 1~4 (1- .1,,1 (2+J'~"-' T 2 1 4' n 2

11

ah 2 .,
M E 1'2(1 - !l..E.-) 7'1(1+ ~~':.)x K fk'- {k"
M1 E ah 11

2
n 2

K )J2(P- =--) -"ul(lJ+ -){kI (ki~'-

Sn(x) E 2ah
- l14

( 1- .l.} (2+P) 1'1 '/A-2k'" '4 n2

General Case:
.n _jJ. ~ [

H = IrCe 2

Special Case:- .....

ah -}lrJf 2
Mx = E T Co ,... ~(1- ~)sin }p~r)

Vk'

\
"

. ...

+k2' COS\h-s+rl] cos n'f

7'1' (1+ n~)C os 'J':JHr)] COs n 'f

, .

-,
, ,

'r '__,__



1 1 Sn(:x:) ( )
T ::s: NXf + a Mxtp =a .d~ ·6

This shear force T must be used for designing the

diagonal steel in reinforced concrete shells adjacent

to stiffeners.

2. Effective Width of an Infinitely Long Cylinder

(Poisson's ratio 1J = 0)

The following derivations are greatly simplified.

if Poisson's ratio 1-> is taken equal to zero. The

influence of this simplification is insignificant for

concrete •. In the case of steel ( V = 0.3) the error

involved ~~ounts to about 2.5%.

In the middle part of an infinitely long cylinder

a string force S is applied (PIg. 4). S can have any

variation. It is always possibie to present it in

form of a Fourier series. The effective width will be

derived for the nth term of this series. Consider

the unit string force:

S = Sncos n~ = 1 cos n T ( 7)

Each of the two parts on both· s1 de s of the string will

carry half of this string force o The continuity for the

2 parts requires that the slope in x-direction at x = 0

is zero. By using Table A the 2 conditions take the

form:
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x = 0:

The second of these equations requires y= 0 and the

other consta.nt of integrr3.tion becomes:

f = 0

N~ is calculated by replacine in Table A the two

constants C and fI by the e::pressions (8):

(Hal )x=o = --L [/12
2 + lX' . (1- -1.) ] cos nCO (9)

J 2a;2 r 2 n 2 J

The effective width is the ratio of the applied string

force S to the ·direct Force!Tr at x = 0 (Eq. (2»:

b"= S =
. (N9') x=o

If 1'-2 Is

2a

~2
(10)

In case of axial syrmnetry the number n of the wnves

of the strtng force S around the cylinder is zero (string

force S is constant). A= nN being proportiona.l to n
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will be zero too, and Eq. (10) reduces to:

.A= 0-: b = 1.52 r;:h {II)

Eq. (10) is' essentially a function of the two para­

meters Vah' and 1. It can be shown that in practical

applications (h
a

< ~ ; nh <1) the te~1S ~ and Jl4(1-~)
\) a 2 n n

may be safely neglected.* Then the effective width

becomes:

b = 1.52. Jah' 1

, i"

(12)

which is an expression in terms of the two parameters

Vah' and.A only. For ·the purpose of tabulat in£; Eq. (12)

the follo~ing form is chosen:

b=K'Y;;;
(12a)

K = __1---...0.5_2 _

(12b)

Fig. 5 is a graph representing the coefficient K

for the pre sent ·«(31 = (0) . and several other cases as a

functi on of .A • Note the rapid decrease of the

~frectivB width by increasing 1 .

- - - - - - - - - - - - - - - - - - - - - - - - - -* See Ref. (12), p. 37 for an investigation of this
siT:1plificati on.
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The cross bending stress ~x under the rib will

be calculated. The bending mome nt Mx at x = 0 is:

(Tab1 e A and li:q. (8) )

1
(Mx)x=o = - 4~2 cos nr

Conputing the bending stress Ux and the direct

stress ~, (Eq. (9)) the ratio of the two stresses

bec Oi~les:

6Mx

1.7321

3a

• 1

14 (1- ::4)1+ rl__

, Using the same simplifications as for'Eq. (10)

1.7321=------------
x=o

(14)

The use of Eq~ (14) is quite obvious. It gives

vlj_tha. minimum of calculation the maximum cross bend:lng

stress Ux if the the ~_rect stress u
f

is known. Note

that
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for axially symmetri cal loads (n = .A = ?), the maximum

cross bending stress is 1.73 ti~es the stress crf •

EX1.)ressions for the direct force NT and the

bending moment Mx at a di stance x from an applied string

force S = Sn cos nf can be calculat ed. In Ref. (12)

tables of these values as fUnction of the paramenters

f3x and ~ are computed.

1\T d·{'· th h 11.'l f an hlX In e s e

By means of these tables

are readily determined, once

the string force S is known.

3. Effect!ve Width of a Semi -lnfin! te Cylinder:

A unit string force 3=1 cos ny> , making n complete

cosine-wav8S around the circwnference, is applied to

the end of a semi-infinite cylinder. The boundary

condi ti ana for the fre e end x=o are

x=o: 3n ( 0) = 1 cos n f
Mx = 0 } (15)

The derivations of the effective width may be

found in Ref. (12), p. 46. Zventually the following

expression is arrived at:

b = 0.38 r;h 1

Jr;b=+=~=A=4::;-i-+-~-.-).......2

{3

1+
( 16)

Using the form:
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b=K r;.h (16 a)

where: K =

(16b)

values of K for different values of ~ are given in

the C:.'aph of Fig. 5 (case j3l = 0). The effective

widtt: 1s readily determined by use of this diagram.

For axial symmetry (n = A = 0), Eq. (16) reduces

to:

b = 0.38 ..r;;;; (17)

1'he ratio of the maximum cross bending stress CS" x

(occurs at a certain distance from the free end x=o) to

the direct stress C)~ at x=o is for the case of axial

syrmnetry:

.A = 0:

..,

G"xf
iffmax =0.56

With increasing ~ this ratio decreases rapidly
crx- = 0.30)
<J~

FiC. 5 allows the calc\.J.la tion of the effective

( A = 1

width Cor a cylinder extending on one side of the rib

to infinity* and havi'ng a finite overhang ~ on the other

_ .. ~----- .. ---------- .. --_ .... _--
* A boundary at a finite distance d may be considered

to be' at infinity if f3d > 2.4 (Seo Ref. (12), p. 25)'
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side (0 ~ 'L ~ 00 ).

In Refo (12) the derivation of new solutions by

superpositi0n of the two cases given herein, (infinitely

long and semi-infinite cylinder) is shown. In addition

the effective vddth for some special cases, under con-

dition of axial s~netry, is calculated (effective width

of the curved flange of a knee or H-section, etc.)

4. Discussion 0:: the 1£quati,o:qs for the '~ff'ective y'!idth:

A few remarks may be made about the physical meaninG

of the derived equations. In case of axial symmetry no

direr::t shear forces Nxcp , N fX and twisting moments I.lxf '

M 'x are present in the shell. The effective width b,

given b";, F;q. (11) or (17) is solely a function of

b clenenc}s on the abili ty of the shell to escape radially

(displacement w). The factor vah'deScr:Lbes this

In the general case, the parameterproperty. n/;'
ent er s tbe express! ons for the effective width (Eq.. (12)

and (16)). 1 is proportional to the tangential shear

forces T transmitted by the string (or in the actual. case

by the rib) to the shell (compare Eq. (6)- and (7)). It

a cylindrical shell, the e8c89in6 in radial direction and
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the lag of the di re ct shear fOI'ce s. In the T-Beam

proolem (flange plate is plane) the first factor

does not enter.

III. The Effective Width of Cylindrical Shells in Case

the Radius of the Shell Increases to lnfini~x

10 The Problem:

The question arises as to what the effective w·ldth

of a cylindrical shell becomes if the radius "all of the

shell approaches infinity. Obviously the axis of the

rib and the middle n1ane of the shell become straight and. .L::. _

the effective width should bEl identical wi th the .

effective width of a flat plate reinforced by a rib

(T-Beam). No difficulty exis.ts in proving that the

differential equations· of the shell reduce to the

differential equation of a flat plate if the radius "all

is increased to infinity.

Nevertheless this does not prove that the equations

for the ef:(ecti ve width; of cylindrical shells given in

the previous two chapters vrill check wi th those of th.6

corre sponding T-Beams 0 For Mia sel' s approximate solnti on

(Eq. (3) was used for the calculations anc1f"urther

simpl.lf:i. cati ons were introduced (p 0 10) in order to

get expressions depending on tv'lO parameters .A and Jah' onlyo
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I t ' 1° ° to \I 1\ ° 1 b 1°' tI- ence ae lml 1. ng pro ces s a. -+oov'1l1 e app l.ea '0 the

derived formulas for the effective vddth directly and

these reaD.lts will be compared to the corr8sponding

equations of a T-Beam with a st!>aight axis.

2. Effective Width of aT-Beam Vifith a Straight Ax;t~~.:

Solutions of this problem m€:.y be found in Ref. (1)

to (5). rrhe followinc two csses are presented wi thout

derivations, taken from Lef. (11);, p. 112.

a) 'r-r:~eam wi th an in£:1. ni tely wide flange:

A contlnuons T-Beam with a nunge s1).ffici"ently

large to be considered as extending to infinity is

supported by equidistant supports ~ith spans L (Fig. 6).

Y is the coordinate in the direction of the rib, x is

taken perpendi cular to it. The load acting on the ri b

is:

P ::: Po cos ....!....L Y

, If ?oisson's ratio l> is assumed to be zero, the

effective width of the beam is

b =! ~ = 0 424 L (18)3'lr ....

A simple beam of equal span L has the same

effectl.ve rddth. if cross-beams at the supports are

provided and are adequate to carry shear force s

b) Beam with an infinitely wide flange on one side:
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Dlffering from the previous case, the beam has an

infinitely wide flange on one side only (Fig. 6b)~' All

other conditions are equal. By neglecting the

torsional stiffeness of the rib, the effective width is:

b = 1~ = 0.159 L
2 'it'

(19)

The only variable in the two equations (18 ) and

(19) is the span L. It is qUite obvious that ihe

effecti ve 1.'rl.dth increases to :1.nf'ini ty :1.f the span L -+- 00 O'

Thi s tact will be of importance in the follovving

discus:.:~ion.

3. Ef~ective Width.of CYlindrical Shells for the
• It

'1'h8 string force S = 3n cos nf and hence the

direct stress C>f varies in n complete cosine-waves

around the cylinder (Fig. 7). The length of one half-

wave is L and the angle corresponding to this arc

length Lis:

oc. = L
a

The nt.Lmbor n of complete waves around the cylinder is

hence:

1/a= -r
'And the parameter .A. CI'able 1,) a.s a function of the lJalf-

wave lensth I, b'~comes:
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1= nJ~ '= ~a /h' 'It'
yah' (20)= -y;-L a

Consider the radi us !lall incre asi ng to in1'i ni ty. During

this process too half-wave 1ensth I, or the number n

of the wavos can be kept constant. If the latter is

done the length L becomes infinitely long. This

would then correspond to aT-Beam 0 f 1nf1nite span,

a case which certainly does not have any practical'

meanins. 'l'herefore the length L will be l\ept constanto

a) Infinitely long cylinders:

'1'he following equation -for the effective width WEi.S

der':!- ved ( (Eq. (12):

b ~ 1.52 r;h 1

~-';ubst-' .l.il J_~ nO",- i. u.__ LJJ. 0

//
1+ 1 J 4' + -1:....J. 2

~ 0'
.A = ~ (8.h and rearranging

b = 1.• 52 L
.' 't

1

it
I

+1+ '1-2 '{3
NOVJ Jl in the limit as 1- 00

(21 )

.,. .
This checks wi thin 0.57;' the value of the effectIve

w:i,dth of' the corresponding T-Beam(Eq. (18).). '
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b) Semi-infinite cylinder:

The effective width is given by.Eq. (16):
Ala

rearranging

II II (the limit a - 00 and in consequence

Substi tuting .1= -{-- .yah' and

b = 0.38 L ...;l~ _

'Ir
1+ 1

3/ 1+ l'.?t.4 2

A- (0) gives:

(b)a __ oo = 0.157 L (22)

The differenee between this value and the one of

the corresponding T-Beam (~q. (19) is 1.4%.

c) The case of axial s~netry:

rrhe effective width for 1= 0 (axial symmetry)

is given by Eq. (11) and (17) respectivelYQ Obviously,

if the radius lIan is increased to infinity, b becomes

infinitely large. But the corresponding T-Beam has a

span L = 00 whose effective width i·s b = 00 (Eq. (18)

and (18). The correspondence between the two problems is

established for this special case too. Actually, the

stability will set an upper limit for the effective

Width. A .short treatment of thfs problem may be found

J.n Ref. (12), p. 66.
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4. Conclusions

1. It was shown that the effective width of

cylindrical shells reduces to the ef:ective width of the

corres90ndin b T-Beams with a straight axis if the

rad~us of the shell is increased to infinity. The

check is complete from the practical point of view

(dif('erences of 0.5% and 1.410, but it is not a

mDthematically exact one. This is to be expected as

an approximate solution (Eq. (3)) wa:;! used·for the

derivation of the effective width of cylindrical shellso

2. The close corresponden~e established between

the two problems for the limitln,f:, case flail = 00 may

be considered as a justification for the use of the

approximate solution Eq. (3).'

3. The derived formuls.s for the. effective width

are not lim:lted by a certain value of the radius "B,I.

They. are based on the general principles of the theory

of elasticity. The stability of the shell and of the

combination of' the shell a.m; the rib gives an upper

limit, a problem which exists equally for the effective

width of the T-Beam.
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stress distribution

'--- Flange (flat plate)

""""----- Rib

Cylinder

- X ------110 f-I--- X

T- Beam Fig. I

Ring
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......

(NQ») .
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Fig. 2
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a)

Forces ~ Moments

Variation of String Force S

Fig. 3.:

String

Fi 9' It



Fig..5
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Fig. '{;:

Middle surface

of the shell
Str ing force S: Sncos nCf

Fig. r:r:.
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NOTATIONS

Roman AlDhabet
,"

a

b

c

e

E

h

H

k, k'

~

1

radius of the shell

effecti ve width

constant'of integration, Eq. (3) or Table A

base of natural logarithm

modulus of elasticity

thickness of the shell

symbol for any force, moment etc., of the

shell

coefficient depending on the quantity H

under consideration, Table A

coefficients defined in Table A

coefficients defined in Table A

function of the two parame ters (3~ and ~ ,

used for the effective width

length of the she'll in' axial direction

span of T-Beam. or half-wave length of the

strln~ force S (Fig. 6 and 7)

bending moment per unit width of the shell

in axial direction

bending moment p~r uni t wi dth of the shell

in circumferential direction

tWistinG moments !,)8.r unit width of the



n

p, Po

s

Sn(X)

T

u

v

w
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shell

nth term of a :'<'ourier serie s (number of

co~plete cosine~lav8s of the string force

S around the cylinder)

direct force per unit width of the shell in

axial directi on

direct force per unit width of .the shell in

circumferential direction

direct shear forces per unit width of the

shell

distributed line load, Yig. 6

normal shear force ~er unit width of the shell

acting on a face x c constant

normal shear force per unit width of the shell

acting on a face f= constant

string force c' den.ne d by Eq. (l)u

string force at a distance x in the case of

the nth harmonic, defined by Eq. ("5)

total shear force per unit width of shell in

~ircumferential direction, Fq. (6)

di splacement in axial direction, Fig. 3·

displacement in circumferential direction~

Fig. 3

displacement in rndial direction, positive

outward, fig. 3



x

y
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coordi na te of the shell in axial dire ction

coordinate of the T-neam in direction of its

axis

Greek Alphabet

angle corresponding to a half-wuve of the

string force (Fig. 7)

l

)1-1; 1"2
p

()

O""x

CS'rr

LX<p

'Lyx

Cf

If

shell coefficient, depending on the thickness

h and the radius "all of the shell, Fig. 5

parame ter of the effecti ve wi dth, see Table A

numerical coefficients, defined in Table A

Poisson's ratio

stress

bending stress in axial direction

direct stress in circumferential direction"

shear stress of the shell on a cut x = constant

in c ircnmferential eli re ct ion

shear stress in the flange of aT-Beam

angular coordinate of the shell in ci rcu.,-;lfe:,'en-

tial direction

dimensionless coordinate in x-direction

(s= ~ )
angle, constant of integration, l;'q. (3) or

Table A
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