Composition and property variation of two steels, Welding Journal, Vol. 28, p. 227-s, 1949, Reprint No. 66.(49-3)

C.J. Osborn

A. F. Scotchbrook
R.D. Stout
B. G. Johnston

Follow this and additional works at: http:// preserve.lehigh.edu/engr-civil-environmental-fritz-labreports

Recommended Citation

Osborn, C. J.; Scotchbrook, A. F.; Stout, R. D.; and Johnston, B. G., "Composition and property variation of two steels, Welding Journal, Vol. 28, p. 227-s, 1949, Reprint No. 66.(49-3)" (1949). Fritz Laboratory Reports. Paper 1444.
http:// preserve.lehigh.edu/engr-civil-environmental-fritz-lab-reports/1444

This draft miorpporates, the revisions of the text which were suggested at the lash two project meeting. Tables I, E, VT, Fino. 1, $7 a, 7 b, 8 b ; 10 b, 11 b, 12$ and 13 have been left out. Figo.2,3,4, sand 6 have been consolidated into Tables I + IL.
this If there is time after our study. of this draft, perhaps we can go on with reivecion of legoril $\# 3$.
as

WHE TEWRCT OP PAPRICATION ZROOBSSBS
OR STEBLS USED TH PRESSURE vESSELS

PROGRESS REPORT NO 2

by C. J. Osborna, A. F. Acotehbrook, n. D. stouts, and B. O. Johnston ${ }^{2}$

FORESORD
This ta the gecond of man acries of reports (see referoneo 10)

 purpose ef the tom is to sturiy the affect of fabrication pro-
 treatmont, whenne or otrein aging, on the zelatuo tenconey of various stoele toward bittive falure at low tomparature. The steels, ong maned and tho otbar elram nua kalled, oach in two plate thelmesses ($5 / 8^{0}$ and $17 / 4^{\prime \prime}$) who obtalnod for the initial paxt of the project.

This zoport progents the regulte of a sexies of testa suggested by the Hateriale Duleton of the pessure voesed Research Comatibec to detomine the yardation of eomposition
 uged in the main investigation since tho stosls invostigaton
 Enginoexlue Laboratory, Lohigh Thi veroity, Bethlohem, Fa.
 Lom Eb Wiversity.
3. Aseociate proxessor of Metalluegy tehigh Univerefly 4. Directors Epita Enginecring Laboretory, and Professor of

are being used we other researeh program sponsored by the

 saet that the variatons-are of the nature and within the

IEPRONTCHON

The tondency of a ate日l to fail an a brittio fashon 10
 and mok io elyoady known coneornixe tho factoratheh goven this tondency. It is lnom, for stamio, that chemeal sompor
 that, othar thengs baing ogual, the tonasition temponature of a steel rasea neth/increase in its corvon aontont. 1 other elemente,

However; 4 is gieo known thet within a aingle heat or etpal, and oven githin a single ingot or plate, there ootix merked
 times or holama in the iadle before poumtng suceessive ingots, and fow begregation and miming offocto durng olidsteation af the indert. ginco such ompositton differonces way woll be of approciable mignitude, thatr diotabution and their influonee
 matters of ponstarable ingortance te tho enginecr.
 steel whoce wesp histontes wero complotely known, in order to obtais matraration on thess and allese questions. one heat.

 A-70. The former, an oluminum-kilied heat, had been cast into
 18.* The Thessure Vesel Researea' Comat toe obtan ned platos from ingots numbered 1, 2, 3, 4 , 5 , and 0% ingote 1 and 3
 The top halwes of ingots 1,2 , and wers mill nomalized; Ingots 1. 3, fa ant 0 mere used in the present investigation. The riming steal heat had bsen cast into four groups of bottome cot on langth
 610^{11} ethe six $5 / 8^{11}$ plates fon the prossure Vessel Reasareh Coxamtios ocalne Proin tho sirst eroup and the six 1 1/4" platos from the thete. one plete of each thicinoss was used in thas Investigetan.

The follontat tosts were perfomed at wione places with cboen
In the solucte ingots:

1. Chenteal Analysea
2. Gocroscople Inspection controiled aeay etch; sulghup mints.
3. 政eroscopic Inspoctiont as enolled wetallographics sneluston oount; grain coarsentu teste; mequald mon toats.
4. Wehanteal rests: strip tenstles: 0.505" tonsilos; Buthell hardness; Charpy keyhole specimens, single and aomble wath.

Each of these will be alscussed indivicualiy.

* Other particulare conceming the mill bistorles of both heate ave fityen in an Appondix of the report.

I. Chomical Compogition

The distribution of allogiag oiogents and impuritios in killod and pimmed ste日l ingots has been investigetad at considexible length by the Iron and Steel Inctitute; comattee on the Heterogenelty of gtoel Ingote ${ }^{4-9}$

In the present investigation, amplos for chomatal analygid vede taken from the A-rol ingota 1,4 and 9 at the top; midale and bottom center, and ryon ingot 9 at the top and made odges also from one saml and one large A-70 ingot at the top, midde and bottom contex, and top and bottom edge.

The peanuta for the A-801 (Al-killod) steol are given in

1. Gancomang compostion aifferencos from ingot to $1 n g o t$ Whent the hat, the last angot (No 9) appearg to be lower in carbong menganese, asitoon, aluminum, aluman, and nttrogen than the two eavleow ingots, but it oppeavet) to bo agpreciably higher in gulphux and slightly higheq
 vanadum, and molybanum wepe approximately the same in all ingots. Tho decreaskg earbon, manganose, dileon and aluminum contents probably zesult from oxiaation in the 1adie. The increastig sulphir contont may be due to denstby eggregation of anlphates in the leale.
2. On the vertical conterline of exoh ingot carbon. ranganeso, phodphorus, ulphur, and silloon appear to Cecrease slicktiy fron top to bottone In Ingot 9, at minum inoreases markedy yous top to bottome
3. From tia 12nited meaults avallable (mgot Noe 9) it appears that at loast sulphur and phosphorus increase
fron the edge to center of the Inget. The British Invegtigators 5,6 found phosphomas segregation of the orter shown in Fige 4 only in ingotamuch largen than Ingot Ho. 9. otherwise the magnitude and motexn of segregation is much as inadeafea by Hatilela. $4,5,6$
4. The naminum and minumu values of eamben content socurded ase at the top and bettom center eespectively

 shenifloent reatures are:
5. The cronp of larger Ingets polled to $1 / 4^{\prime \prime}$ wes cegt same 20 mutes after the group of malier ingots. The average compostitions of the two Ingote vere not very asferent except with wegard to aluminum when pas apsecetably higher in the lapge ingot oving to a rurthop acaition of aluminum to reauce gasoing in this groxp.
 tungeten, vanadiua, molybdenuri and nitrogen eegregated very lettio in olther of the ingote exmined.
6. cerbon, sulphur and alumina contente wore appreciably highes at the top conter of the ingot then elsewhere; while the aluainum content was a mintmon at thie point.
7. The marimur and minumu values of carbon contont recorded ocoumed at the top of the small ingot (10.7), the range being . 14\% to .25\%. This 19 a groater parge than was observea in the $A-201$ steol but/ is not inconsistont Whth pervious reports on minaling steel ingotis. 6

A (VYyNADAD de op etch and a sulphur print were de on plate samples frow the top, middle and bottom center of A-201. ingots 1, 4, and 9, and A-70 ingots 2 and 7. All samples ware longitudinal.

The sulphur prints wore made by applying velox pos photographic paper soaked in 48 sulphuric acid to a ground surface for 10 matter. Copies of some of the prints are shown in Page. 1 and Le Th all cases it was clear that sulphur had segregated to the top of the ingot. The low sulphur content of the rim as seen in 7 酸 2 was very marked.

The deep etch treatment cons sated of 30 minutes of 50% hydrochlopte acid of 160° \%. Some of the results are shown in Figs. 3 and 4. Here the grater cleanliness at the bottom of the ingots is evident from the loss severe attack during etchings The dirt of other unsoundness discovered by the deep etch appears coarser and less uniform in the A-70 $\begin{aligned} & \text { ingot than in the } A-201 .\end{aligned}$ The controlled etch ala not bow any significant difference between ingots of the same heat.

III. zeroscople Inspection

Vang saraplos from the same locations as the macrospecimens, thelusion counts wore first wade on the unetehed specimens according to A. S.T. M. Specification E A5-A6T, Method A. The Gecominant type of inclusion on in both steels was the globular oxtco. There was no great cleferonco between the two steels in regard to the number and distribution of non-aetellile
 from ingot to ingot.

The mictoetructures at the top, midele, and bottori cen of A-201 ingots ty, and 9 are ahowin inge. 5 and 6. The
 the top of 2ngot 1. The as-rolled samples of $5 / 8^{\prime \prime}$ plate freta ingot 1 have finer grain 180 than the semples of $21 / 4^{3}$ pleto taken row tho correaponding posithons in ingot 9 .

Fig. 7 shows wiorostructures the top, middie, and bottom center of Amp ingot R. It is ovident that the carbon content inereaget from the bottom to the top of the ingot agaln the $5 / 8^{\circ}$ plato had a finer grain sizo than tho $1 / 4^{\circ}$ plate.

Tho gainecoassening characteriatlos of tho two staves were studiea oy bro wethods on samples from the widale of A-201 ingeta 1 and 9, and $4-70$ ingots 2 and $7 ; 1.0 .3$ one $5 / 6^{\circ}$ and one $1 / 4^{\prime \prime}$ plate from gach heat.

MoQuasa-Btan teats pore made at $1675^{\circ} \mathrm{F}$ In accordanee with A. S. T. 緆 Specifacaton $19-46$ and the following resulte vero obtainect

Hecual a-man Grain sise
A-201. $5 / 8^{6}$ patate ($\left.\operatorname{Ingot} 2\right)$ 8
A-801, $11 / 4^{\text {It }}$ plate (Ingot 9) 3
A-70. 5/8 plata (Ingot 7) 3
$A-70,1.1 /$ A 4 giate (Ingot 2) 4
 grain-coateontige teats was wan on the stme four pletes by holding amall smales for one hour at each of the following temperaturest $\quad 1650^{\circ}$

$$
1350^{\circ} \%, 1500^{\circ}, \wedge^{1800^{\circ} \mathrm{F}}, 1960^{\circ} \text {, and } 2100^{\circ} \mathrm{F}
$$

 1360\% and $1500^{\circ} \mathrm{F}$ were water quenched ditectiy. All quenchec samplea were tompered at $800^{\circ} \%$. Thit procedure gave mincostmetupes In wit oh tho avictentio grain size was outined by formte In a demt matitu of bemperec matoneste.
from fre resulto (TableIII) of these tosts 1 t can be segz that both tion wamag and the aluminumorilled steels have a burp comsenasule tomperature or temperature range. In the rimming steal thia is about $1800^{\circ} \mathrm{p}$ phile in the killec oteol
 oomesenink equperature of tomporature range is characteristic of steels conteining aluminum or certain other grain refining olements auch as vanatum and titanimot the hoat records end chemlcal andyses shot that al uminum was ndea to both of these ateels.

It is notoworthy that the zong holding tine (8 hours) at $1675{ }^{\circ} \mathrm{F}$ in the seguaid-mm test caused tho rimung bteel to
 reaults for the wo ateale. On the otber hand, the grein coargening tosuita in peble II do not frideate such mexted deforeace.

7v. sochanscal gestes

A. Standsengle Touts

Going the A. S. T. H. standard rectangular tonsile test-
 tion wore investrated at the rollowing locations within the two heats:

A-201 (A1-4ijled steel) - Ingote 1; 3, and 9 at the top, middle, and bot tom eenter:

A-70 (ndmang sted - Inget 2 and 7 at the bop, mideyes and botton center.

Duylfate gopelnons wero tosted both parallel and trangvewe to the poling dipection and the quorege roalts of these duplteate teste aye ctron in mables IV 0 Scne conclusions mey be Gxam from thede rooulta
(1) The tuctility, as shom by the $\%$ reduction of ares; Wa invariably less in tho transverse specinans that
 at fremence seome groater in the ease of the A-201 than the $4-70$ ateal.
(13) Hthough the plates were faziy mplomig there was genorat inorease in ductility and aecrease in strength Sto the tog to bottom of a11 ingets. meling,
(114) he $6 / 8^{\text {I }}$ platos ohowed apprectably hagher ydela polnte and gli ghty higher atwength that $11 / 4^{\prime \prime}$ plates foom the sane haat, ie日., compaming plater spom ormodponatng postatung win the ingots.

B. Tonstig. Tosts on 505^{11} Bans

 tho two stacis wat ontainod from standard 505° atameten Dar spectmonsf In adestion to woasuremente of ductility, the followtag valuee were recondeat

Dugalicate speccimens oriented parallel and Transveree to the ralling direiction were talsein from the top edge and conter, middle edge and center, and liollom conter of ing.er 9, and the Topo aud looltom center

Nominal Fifeld yount $=\frac{\text { Wield hoad }}{\text { Original Area }}$
紋

True greaking stress $=\frac{\text { Breaking Load }}{\text { Area at Ereaking }}$

These recults lead to essentially the same conclusions as aid the strip tensile pesults.
(1) The duetility as expressed by Blongation and $\%$ reduction $_{8}$
 trangerese specimens. In the dase of $A-201$ material, the yield point was about 2, 500 psi hegher for the longituainel specimens, while the A-70 epecimens shaved no sicuificant difference with orientation. Hominal breaking atress was about 5,000 psi lower in the perallel secimens for the Aceold material, and about 1,300 for the $A-70$ waterial. The true breaking etrese averaged about 8,500 psi higher for parallel speoimens. The nominel maximus atress, did not vary much with orientation.
(2) In both ingots from top to bettom there was a general ineverse in ductility of ebout 5% end decrase in streagth of about 5,000 psi for the nominal maximum
 and the A-201 ingot the auctility increased ?. about 1.5\% and the nominal arimum deoreased about 200 . Whese trends are consistent with the ohemical
pai. segragation reported earliter.

MLI Test Reports

Comparing leboratory ata with the tensilo results given In the nill teat peports, the discrepency betwoon field points measured at the laboratory ane at the atil was very atriding. The dower loadiag rate used in the rodeareh laboratory, opt
 apecimens, cetemmined a yield point nometimes as much as 10,000 p.s.1. 1ower than that dotemined at the mil. This divergenge Is well-known and it shoula bo remembered whon the possibilety of Incroesing coskgn streases is oonalaered.

C. Brinel Eancness

The Bednell hardness vas deternined at the some locationg as the stage tenglie suvvey, ualng a 3000 kg 10 ad and 10 mate ba11. 發hee lixpressions were mede at each lecation.

The averege hardness for both sbealid wh 160 and is was clear that thenenval the heraness decteases from top to bottom of an ingot, the atforence from top to bottom being of the orcer of 10 pointa Brinell.

D. Ghargy Teanglt on Curves

 seme loestrons as the atrip tensilo specimens. The standard keyhole notetea specimen was used in that survey (A. S. W. We
 with the not ch perpendienlar to the plate surface and the Iond axis of the specimen parallel to the rolliag directione Twentyfoum spectimeneme taken from each location and four of taeso were tested at oach of six selected tomperaturea\% x The byeach specimen
was 4 the total onergy absoriodnturing testinga roact alrectiy fros the Charpy machine, form,
and the \% Lateral contraction below the notch, and the \% cleavage In the fracture surface pore measureatafter testing of

The method of plotting results was the same as described for ot her note tests in a previous paper on this work io and. the transit ton temperatures reported sum able v ere defined as before, as the temperature at which the curve has a velum oguel to the enthetic meant of ito wexmum and minumura values

In addition to the standard key halo harpy specimen a
 Chappy specimen show in Fig. 22. The results of this survey are also C liven in Table V .
signiefeat features of the santa are:

1. The Cherpy transition temperature according to any of the three brittlemepas criteria used was considerably Lower for normalized plate than for as -rolled plates from tho same ingot.
2. Disregarding the two normalized plates in Table V, the transition temperatures generally decreased from the top to bottom of an ingot. This effect was most mapped in the $\%$ cleavage transition temperature a, where the afferance between top and bottom of an 1 gob wee as high as 35° with the single wd th specimens and as high as $46^{\circ} \%$ using double with specimens. Using the criterion of energy absorption, the change In transition temperature within an ingot was much Less.
3. The transition temperature for $5 / 8^{\prime \prime}$ plate was approchabiy Lower than for the corresponding $11 / 4^{\prime \prime}$ material.
4. Transition temperatures for $A-70$ mimalne steel were about 70° higher than those for A-201 killed steel.
5. Transitat on temperatures using fracture appearence as the criterion of brittieness were invariably higher (by as much as $50^{\circ} \mathrm{F}$) then those obtained using olether of the othey criteria.
6. Hranaition temperatures pbteined with double width secelans were ht gher the the corresponding temperetures ootalned with single wiath specimens.

SWMARy

An investigation has beon conduated into the variation of chemieal pemposition and physical properties within plates
 Specifleation A-801, the other to A-70. Both heats axhibito segragation and poperty variation generally of the type and magnitude to be expected.

The chenseal composition was found to vary approximatoly as Indicated by the extensive work of hetrield and his colleborators.

In tenation tosts, the ductility was found to increase and the atrength to deorease from top to bottom and from center to edge of an theot. in Gharpy teats, both single and double wiath, the transitien temperiture become lover from top to bottom of all ingots. These effects mere all consistent with the observed chemical segregetion.
\mathbb{P} Yield points detemined in the laboratory were invariably much lowey than those quoted by the mill test reports for the same material.
momalised plates had greater auctibity and much lower Charpy 7 transition tomperatures than simllar plates as rolled.
plates of $5 / 8^{\prime \prime}$ thickness had a higher yield point, greater strength, and lower transition tenteratures than $11 / 4^{\prime \prime}$ plate.

The rumang stoel hat altghty lower gratn coarsentng tempersture and ach highor charpy transition tempopatures than the killea steel.

AGKMOXLDDGRENG

Tas projoct was carried out jointiy by the Frite Engineerdag Laboratory of the oivil Engineering bepartment and by the Ketallumg pagartment of Lohigh university. It was sponsoxed by the fressure Vossol Rosearch Commttee of the Welatng Reseameh
 Samand is Ghatruan of the Pressure Vessel Rosearch Comittoo.
 E. Ross cument sxecutive gecretary The Fabrication Disition of FVRO gevo bochacal guidanco and gigyoval of various abagea of the work, under the guidence of Ghatrman Haxry Boqudnan. The sateriale livision of pVre was sesponsible for the tnitial planning of the investigation and nomowledgment, 1 a due in parte cular to Chatzman D. B. Rosshetm and Hy. R. H. Caughey for assistance in this respect.

Chemical Compost

-
ROLIOE 001 I/4

TABLE II

Chguci al Compositian of A-70 Ingots

 Holled to $11 / 4^{\prime \prime}$

Top edee	. 22	. 36	. 020	. 034	. 02	. 14	.10	. 04	. 04	. 02	. 01	. 017	. 004	. 004
Top certer	. 23	.35	. 017	. 032	. 02	.15	.10	. 04	. 04	.02	. 01	. 007	. 005	.006
sidale conter	. 20	.35	$.018$. 028	.62	1.5	. 09	. 04	. 04	. 02	. 01	. 038	. 003	. 003
Bottom adge	. 24	. 34	>2019	.080	. 02	24	. 09	. 04	. 04	. 02	. 01	. 019	. 002	.003
Bottoin conte	. 3	34				$.15$								

Rolled to $5 / 8^{\prime \prime}$

Top edze	. 24	. 36	. 018	. 017	. 02	. 12	. 09	. 04	. 04	. 02	. 01	. 012	. 002	. 004
Top center Madde	. 25	. 37	. 020	. 035	. 02	. 14	.10	. 04	. 04	. 02	. 01	. 005	. 003	. 005
	. 28	. 3	. 019	. 028	.82	. 12	.10	. 04	. 04	. 08	. 01	. 010	. 002	. 004
Botton adgo	. 13	. 36	. 020	. 021	. 02	. 12	. 00	. 04	. 04	. 02	. 01	.012	. 002	. 003
Bottom Conter.	. 19	436	. 010	. 020	. 02	. 13	. 10	. 04	. 04	. 02	. 01	. 028	.002	. 003

PROGRESS REPORT NO. 2

WITHIN HEAT VARIATION OF COMPOSITION AND PROPERTIES IN A
RIMMING AND AN ALUMINUN-KILLED STEEL

by C. J. Osborn ${ }^{\text {I }}$, A. F. Scotchbrook ${ }^{2}$, R. D. Stout ${ }^{3}$, and B. G. Johnston ${ }^{4}$

FOREWORD
This is the second of a series of reports (see reference 10) describing the results of work performed at Lehigh University for the Fabrication Division of the Pressure Vessel Research Committee or The Welding Research Council. The underlying purpose of the work is to study the effect of fabrication processes involving plastic strain with or without subsequent heattreatment, welding or strain aging, on the relative tendency of various steels toward brittle failure at low temperature. Two steels, one rimmed and the other aluminum killed, each in two plate thicknesses (5/8" and 1 1/4"), were obtained for the initial part of the project.

1. Pressure Vessel Research Committee Fellow at Fritz Engineering Laboratory, Lehigh University, Bethlehom, Pa.
2. Assistant Research Engineer, Fritz Engineering Laboratory, Lehigh University.
3. Associate Professor of Metallurgy, Lehigh University.
4. Director, Fritz Engineering Laboratory, and Professor of Civi= Engineering, Lehigh University.

This report presents the results of a series of tests suggested by the Materials Division of the Pressure Vessel Research Committee to determine the variation of composition and mechanical properties within the two heats of steol being used in the main investigation.

INTRODUCTION

The tendency of a steel to fail in a brittle fashion is of tremendous practical importance in engineering structures and much is already known concerning the factors which govern this tendency. It is known, for example, that chemical compo= sition exerts an important influence on the mode of failure and that, other things being equal, the transition temperature of a steel increases with its carbon content. ${ }^{l}$ Other elements, notably manganese ${ }^{2}$ and nitrogen, are also considered by some to affect the transition temperature. In the simple tension test, too, the influence of chemical composition on strength and ductility is well-known.

However, it is also known that within a single heat of steel, and even within a single ingot or plate, there occur marked differences in composition. These arise both from the different times of holding in the ladle before pouring successive ingots, and from segregation and rimming effects during solidi= fication of the ingots. Since such composition differences may well be of appreciable magnitude, their distribution and their influence on fracture characteristics and other physical properties become matters of considerable importance to the engineer.

The present investigation was performed on two heats of steel, whose prior history was completely known, in order to obtain information on these and allied questions. One heat, aluminum-killed, had been supplied to A. S. T. M. Specification A-201 and the other, a rimming ste日l, to A. S. T. M. Speci= fication $A-70$. The former, aluminummilled, heat had been cast into 9 big-end-up hot-topped ingots, $34^{\prime \prime} \times 66^{\prime \prime}$, each weighing 50, 450 1b.* The Pressure Vessel Research Committee obtained plates from ingots numbered $1,2,3,4,5$, and 9 , as shown in Fig. 1 , and ingots $1,3,4$, and 9 were used in the present investigation. The rimming steel heat had been cast into four groups of bottom-poured ingots, the six $5 / 8^{\prime \prime}$ plates for the Pressure Vessel Research Committee coming from the first group** and the six 1 I/4" plates from the third** One plate of each thickness was used in this investigation.

The following tests were performed at various places within the selected ingots:

- 1. Chemical Analyses

2. Macroscopic Inspection: controlled deep etch; sulphur prints.
3. Microscopic Inspection: as-rolled metallographic; inclusion count; grain coarsening tests; McQuaid Ehn tests.
4. Mechanical Tests: strip tensiles; Brinell hardness; Charpy keyhole, single and double width, transition curves.

* Other particulars concerning the mill histories of both heats are given in an Appendix of this report.
** Each ingot rolled to one plate, $24^{\prime}-0^{\prime \prime} \times 6^{\prime}-0^{\prime \prime}$.

Each of these will be discussed individually.

I. Chemical Composition

The distribution of alloying elements and impurities in steel ingots has been investigated at considerable length by The Iron and Steel Institute, Committee on the Heterogeneity of Steel Ingots. The findings of this Committee regarding segregation in killed steel were summarized by Hatfield, ${ }^{4}$. and later reports gave the results of work on rimming steel. $7,8,9$ The relevant reports of the Comnittee are listed ${ }^{4-9}$ as references at the end of this report.

In the present investigation, samples for analysis were taken from the $A-201$ ingots 1,4, and 9 at the top, middle and bottom center, and from ingot 9 at the top and middle edge; alsof rom one small and one large $A-70$ ingot at the top, midde and bottom center, and top and botton edge.

The results for the $A-201$ (Al-killed) steel are given in Figs. 2, 3, and 4. The following significant observations may be made concerning them:

1. Concerning composition differences from ingot to ingot within the heat, the last ingot (No. 9) appears to be . lower in carbon, manganese, silicon, aluminum, aluminas. and nitrogen than the two earlier ingots, but it appears to becappreciably higher in sulphur and slightly higher in phosphorus, copper, and chromium. Nickel, tungsten, vanadium, and molybdenum were approximately the same in all ingots. The decreasing carbon, manganese, silicon and aluminum contents probably result from oxidation in the
ladle. The increasing sulphur content may be due to density segregation of sulphides in the lade.
2. On the vertical centerline of each ingot carbon, manganese, phosphorus, sulphur, and silicon appear to decrease slightly from top to bottom. In Ingot 9, aluminum increases markedly from top to bottom.
3. From the limited results available (Ingot No. 9) it appeans that at least sulphur and phosphorus increase from the edge to center of the ingot. The British investigators ${ }^{5,6}$ found phosphorus segregation of the order shown in Fig. 4 only in ingots much larger than Ingot No. 9. Otherwise the magnitude and pattern of segregation is much as indicated by Hatfield. $4,5,6$
4. The maximum and minimum values of carbon content recorded are at the top and bottom center respectively of Ingot No. $4 ;$ the range is $.14 \%$ to . 18%.

Results for the A-70 (rimming steel) are given in Figs. 5 and 6. Significant features are:

1. The group of larger ingots (Fig. 5) was cast some 10 minutes after the group of smaller ingots (Fig. 6). The average compositions of the two ingots were not very different except with regard to aluminum which vas appreciably higher in the large ingot owing to a furtinaz addition of aluminum to reduce gassing in this group.
2. Manganese, phosphorus, silicon, nickel, copper, chromim $u m$, tungsten, vanadium, molybdenum and nitrogen segregated very little in either of the ingots examined.
3. Carbon, sulphur and alumina contents were appreciably higher at the top center of the ingot than elsewhere, while the aluminum content was a minimum at this point.
4. The maximum and minimum values of carbon content recorded occurred at the top of the small ingot (No. 7, Fig. 6), the range being 014% to $.25 \%$. This is a greater range than was observed in the A-201 steel but is not inconsistent with previous reports on rimming steel ingots. ${ }^{6}$

II. Macroscopic Inspection

A controlled deep etch and a sulphur print were made on plate samples from the top, middle and bottom center of A-201 ingots 1,4 , and 9 , and $A-70$ ingots 2 and 7. All samples were longitudinal.

The sulphur prints were made by applying Velox $\mathrm{F}-3$ photographic paper soaked in 4% sulphuric acid to a ground surface for 10 minutes. Copies of the prints are shown in Figs. 7 and 8. In all cases it is clear that sulphur has segregated to the top of the ingot. The low sulphur content of the rim is very marked in Figs. 8a and 8b.

The deep etch treatment consisted of 30 minutes in 50% hydrochloric acid at $150^{\circ} \mathrm{F}$. Some of the results are shown in Figs. 9a and 9b. Here the greater cleanliness at the bottom of the ingots is evident from the less severe attack during etching. The dirt or other unsoundness discovered by the deep etch appears coarser and less uniform in the A-70 ingot than in
the $A-201$. As the controlled etch did not show any significant difference between ingots of the same heat, only one ingot from each heat is shown in Fig. 9.

III: Microscopic Inspection
Using samples from the same locations as the macrospecimens, inclusion counts were first made on the unetched specimens according to A.S.T. M. Specification E 45-46T, Method A: The results are given in Table l. The predominant type of inclusion in both steels is the globular oxide. There is no great difference between the two steels in regard to the number and distribution of non-metallic inclusions and within each heat there seems to be little variation from ingot to ingot.

The microstructures at the top, middle, and bottom center of $\mathrm{A}-201$ ingots 1,4 , and 9 are shown in Figs. $10 \mathrm{a}, \mathrm{b}$, and c respectively. The top plates from ingots 1 and 4 were normalized and the very fine grain size produced by this treatment is noteworthy in both ingots. A.S.T. M. grain size numbers (ferritic) are listed in Table 1. It is evident from the micrographs in Fig. 10 that the as-rolled samples of $5 / 8^{\prime \prime}$ plate from Ingot 1 have a finer grain size than the sample of $1 / 4^{\prime \prime}$ plate taken from the corresponding powitions in Ingots 4 and 9 .

Figs. lla and b show microstructures at the top, middle, and bottom center of $A-70$ ingots 2 and 7 respectively. It is evident that the $5 / 8^{\prime \prime}$ plate (Fig. llb) has a finer grain size than the I I/4" plate (Fig. Ila); also that the carbon content increases from the bottom to the top of each ingot.

The grain coarsening characteristics of the two steels were studied by two methods on samples from the middle of $A-201$ ingots 1 and 9, and A-70 ingots 2 and 7; i.e., one $5 / 8^{\prime \prime}$ and one 1 / $4^{\prime \prime}$ plate from each heat.

McQuaid-Ehn tests were made at $1675^{\circ} \mathrm{F}$ in accordance with A. S. T. M. Specification E 19-46 and the following results were obtained:

McQuaid-Ehn
Grain Size
A-201, 5/8" plate (Ingot 1) 8
A-201, 1 1/4" plate (Ingot 9) 8
A-70, 5/8" plate (Ingot 7) 3
A-70, $11 / 4^{\prime \prime}$ plate (Ingot 2). 4

In addition to the standard McQuaid-Ehn test, a series of grain-coarsening tests was run on the same four plates by holding small samples for one hour at each of the following temperatures:
$1350^{\circ} \mathrm{F}, 1500^{\circ} \mathrm{F}, 1650^{\circ} \mathrm{F}, 1800^{\circ} \mathrm{F}, 1950^{\circ} \mathrm{F}$, añd $2100^{\circ} \mathrm{F}$.

Samples at the four higher temperatures were transferred to another furnace at $1500^{\circ} \mathrm{F}$ for an hour before water quenching; those at $1350^{\circ} \mathrm{F}$ and $1500^{\circ} \mathrm{F}$ were water quenched directly. All quenched samples were tempered at $800^{\circ} \mathrm{F}$. This procedure gave microstructures in which the austenitic grain size was outlined by ferrite in a dark matrix of tempered martensite.

From the results (Table II) of these tests it can be seen that both the rimming and the aluminum-killed steels have a sharp coarsening temperature or temperature range. In the rimming steel this is about $1800^{\circ} \mathrm{F}$, while in the killed steel it is slightly higher, although not above $1950^{\circ} \mathrm{F}$. A sharp coarsening temperature or temperature range is characteristic of steels containing aluminum or certain other grain refining elements such as vandium and titanium; the heat records and chemical analyses show that aluminum was added to both of these steels.

It is noteworthy that the long annealing time (8 hours) at $1675^{\circ} \mathrm{F}$ in the McQuaid-Ehn test caused the rimming ste日l to coarsen very markedly, so that this test indicated very different results for the two ste日ls. On the other hand, the results in Table II do not indicate such a marked difference.

IV. Mechanical Tests

A. Strip Tensile Tests

Using the A.S.T. M. standard rectangular tensile testpiece (for example see Specification A 201-46) the tensile properm ties were investigated at the following locations within the two heats:

A-201. (Al-killed steel) $=$ Ingots $1,3,4$, and 9 at the top, middle, and bottom center.:

A-70 (rimming steel)-Ingots 2 and 7 at the top; middie,. and bottom center.

Duplicate specimens were tested both parallel and transverse to the rolling direction and the average results of these duplicate tests are given in Tables III and IV. Some conclusions may
be drawn from these tables.
(i) The ductility, as shown by the \% reduction of area, was invariably less in the transverse specimens than in the longitudinal specimens from the same location and the \% elongation ($8^{\prime \prime}$ gage length) usually showed thîs effect also. The yield stress and maximum stress were generally slightly lower in the transverse directior.
(ii) Although the plates were fairly uniform, there was a general increase in ductility and decrease in strength from the top to bottom of all ingots.
(iii) The $5 / 8^{\prime \prime}$ plates showed appreciably higher yield points and slightly higher strength and ductility than 1 1/4" plates from the same heat, i.e., comparing plates from corresponding positions within the ingots.
(iv) The mill normalizing had caused no significant change in the tensile properties of the A-201 plates.

B. Tensile Tests on .505" Bars

Some additional information on the tensile properties of the two steels is given in Table V. These results were obtained on the standard. .505" diameter bar specimens.
\% Elongation was measured on a $2^{\prime \prime}$ gauge length

$$
\begin{aligned}
\% R \cdot A \cdot & \text { (Reduction of area) }=\frac{A_{0}-A_{b}}{A_{0}} \times 100 \text { where } \\
A_{0}= & \text { initial cross-sectional area } \\
A_{b}= & \text { cross-sectional area at breaking } \\
& A_{m}=\quad " \quad \| \text { maximum load } \\
E= & \left.\ln \frac{A_{0}}{A_{b}} ; E_{u}=\text { (uniform ductility }\right)=\ln \frac{A_{0}}{A_{m}} \\
E_{n}=(n e c k i n g ~ d u c t i l i t y) & =\ln \frac{A_{m}}{A_{b}}
\end{aligned}
$$

$$
-11-
$$

Nominal Yield Point $=\frac{\text { Yield Load }}{A_{0}}$
Nominal Maximum Stress $=\frac{\text { Maximum Load }}{A_{0}}$
Nominal Breaking Stress $=\frac{\text { Breaking Load }}{A_{0}}$
True Breaking Stress $=\frac{\text { Breaking Load }}{A_{b}}$
The results in Table V lead to essentially the same conclusions as did the strip tensile results.
(I) The ductility (\% Elong., \% R.A., ϵ and ϵ_{n}), yield point (A-201 plates only) and true breaking stress were appreciably higher in longitudinal than in transverse specimens. Nominal breaking stress was appreciably lower in the longitudinal specimens. Nominal maximum stress, and yield point (A-70 plate only), did not vary much with orientation and the results for ϵ_{u} were erratic.
(2) In both ingots there was a general increase in ductility and decrease in strength from top to bottom and, in the A-201 ingot, from center to edge. These trends are consistent with the chemical segregation reported earlier.

Mill Test Reports

Comparing Tables III, IV, and V with the tensile results given in the mill test reports (see Appendix), the discrepancy between yield points measured at the laboratory and at the mill is very striking. The slower loading rate used in the research laboratory determined a yield point sometimes as much as 10,000 p.s.i. lower than that determined at the mill. This divergence
is well-known and it should be remembered when the possibility of increasing design stresses is considered.
C. Brinell Hardness

The Brinell hardness was determined at the same locations as the strip tensile survey, using a 3000 kg . load and a 10 mm . bail. Three impressions vere made at each location.

From the results, summarized in Table VI it is clear that in general the hardness decreases from top to bottom of an ingot, the difference from top to bottom being of the order of 10 points Brinell.

D. Charpy Transition Curves

Charpy impact tests were performed on samples from the same locations as the strip tensile specimens. The standard keyholo notched specimen was used in this survey (A. S. T. M. Specification E23-41T, Fig. 3, Type B), all specimens being cut with the notch perpendicular to the plate surface and the long axis of the specimen parallel to the rolling direction. See Fig. 12. Twenty-four specimens were taken from each location and these were tested four at each of six selected temperatures. In addition to the total energy absorbed during testing, which can be read directly from the Charpy machine, the following measurements were made on each test-piece:
(1) The \% lateral contraction below the notch after testing,
(2) The \% cleavage in the fracture surface after testing.

The method of plotting results was the same as described for other notch tests in a previous paper on this work ${ }^{10}$ and the transition temperatures reported in Table VII were defined as before, as the temporature at which the curve has a value equal to the arithmetic mean of its maximum and minumum values. For an example, see Fig. 13.

In addition to the standard key-hole Charpy specimen a survey of the $11 / 4^{\prime \prime}$ plates was made using the double width Charpy specimen shown in Fig. 12. The results of this survey are also given in Table VII.

Significant features of the results are:

1. The Charpy transition temperature according to any of the three brittleness criteria used was considerably lower for normalized plate than for as-rolled plates from the same ingot.
2. Disregarding the two normalized plates in Table VII, the transition temperatures generally decreased from the top to bottom of an ingot. This effect was most marked in the \% cleavage transition temperatures, where the difference between top and bottom of an ingot was as high as $35^{\circ} \mathrm{F}$ with the single width specimens and as high as $46^{\circ} \mathrm{F}$ using double width specimens. Using the common brittleness criterion of energy absorption, the change in transition temperature within an ingot was much less.
3. The transition temperature for $5 / 8^{\prime \prime}$ plate was appreciably lower than for the corresponding 1 1/4" material.
4. Transition temperatures using fracture appearance as the criterion of brittleness were invariably higher (by as much as $50^{\circ} \mathrm{F}$) than those obtained using either of the other criteria.
5. Transition temperatures obtained with double width specimens were higher than the corresponding temperatures obtained with single width specimens.

Items 4 and 5 are of particular interest in connection with the ideas advanced in Progress Report No. 1.10

SUMDARY

An investigation has been conducted into the variation of chemical composition and physical properties within plates rolled from two heats of steel, one conforming to A. S. T. M* Specification A-201, the othor to A-70. Both heats exhibited segregation and property variation generally of the type and magnitude to be expoctod.

The chemical composition was found to vary approximately as indicated by the extensive work of Hatfield and his collaborators.

In tension tests, the ductility was found to incroaso and the strength to decroase from top to bottom and from center to edge of an ingot. In Charpy tests, both single and double width, the transition temperature decreased from top to bottom of all ingots. These effects were all consistent with the observed chemical segregation.

Yield points determined in the laboratory were invariably
much lower than those quoted by the mill test reports for the same material.

Normalized plates had greater ductility and much lower Charpy transition temperatures than similar plates as rolled. Similar differences were observed between $5 / 8^{\prime \prime}$ plate and $11 / 4^{\text {it }}$ plate from tho same heat.

ACKNOWLEDGMENTS

This project was carried out jointly by the Fritz Engineoring Laboratory of the Civil Engineering Department and by the Metallurgy Department of Lehigh University. It was sponsored by the Pressure Vessel Resoarch Committee of the Welding Resoarch Council, which is directed by Mr. William Spraragen. Mr. Walter Semans is Chairman of the Pressure Vessel Research Committee, Mr. Russell J. Love former Executive Secretary and Mr. Boniface E. Rossi current Executive Secretary. The Fabrication Division of PVRC gave tochnical guidance and approval of various stages of the work, under the guidance of Chairman Harry Boardman. The Materials Division of PVRC was responsible for the initial planning of the investigation and acknowledgment is due in particular to Chairman D. B. Rosshoim and Mr. R. H. Caughey for assistance in this respect.

References

1i Kinzel, A. B., "Ductility of Steels for Welded Structures", Trans. A: S. M., 40, pp. 27-82 (1948).
2. Barr, W., and Honeyman, A. J. K., "Effoct of the Manganese/ Carbon Ratio on the Brittle Fracture of Mild Stoel", Jnl. Iron and Steel Inst., 157 (II), 239-242 (Oct. 1947).
3. Kahn, N. A. and Imbembo, E. A., "Notch-Sensitivity of Ship Plate - Correlation of Laboratory-Scale Tests with LargeScale Plate Tests," Paper to A.S.T. M. Annual Moeting, Detroit, June, 1948.
4. Hatfiold, W. Ho, "The Work of the Heterogeneity Steel Ingots Committee.". Iron and Steel Inst., Spec. Rep. No. 12 (1936).
"Report on the Heterogeneity of Steel Ingots", Jnl. Iron and Steol Inst., 113, pp. 39-151, (1926).

Steel Ingots", Ibid, 117, pp. 401-547, (1928). Steel Ingots", Iron and Steel Inst., Spec. Rep. No. 9, (1935).
"Soventh Report on the Heterogeneity of Steol Ingots", Iron and Stool Inst., Spec. Rop. No. 16, (1937).
9.
-------i-- "Ninth Report on the Hetorogeneity of Steel Ingots", Iron and Steel Inst., Spec. Rep. No. 27, (1939).
10. Osborn, C. J., Scotchbrook, A. F., Stout, R. D., and Johnston, B• G., "A Comparison of Notch Tests and Notch Brittleness Criteria", The Wolding Jomrnal.

Appendix

MILL HISTORY OF THE TWO PVRC HEATS

A. Mill History of Killed Steel Plates, A.S.T.M. A-201

1. Open Hearth
a) Material charged:

Hot Metal	$327,000 \mathrm{lb}$.
Lime	$32,000 \mathrm{lb}$.
Ore	$72,000 \mathrm{lb}$.

b) Working of heat: Melt Analysis $1.22 \% \mathrm{C}$

Furnace Additions

Lime	$5,000 \mathrm{lb}$.
Ore	900 lb.
Si Mn	$2,700 \mathrm{lb}$.
$\mathrm{Mn} \mathrm{(80} \mathrm{\%)}$	$600 \mathrm{lb}$.

Time of working 3 hrs .5 mins.

Tap Analysis	$0.14 \% \mathrm{C} ;$
Tapping Temperature	$0.15 \% \mathrm{Mn}$.
	$3060 / 3080^{\circ} \mathrm{F}$

$80 \% \mathrm{Mn} \quad 70010$. Aluminum 550 lb .
(corresponding to 2.4 Ib . per ton)
c) Pouring: Total weight of steel 460,650 Ib .

9 big-end-up hot topped ingots, $34^{\prime \prime} \times 66^{\prime \prime}$, were poured, the weight of each being

50,450 1b。
Total pouring time (9 ingots) 45 mins. Pouring temperature, Start $2910^{\circ} \mathrm{F}$ Finish $2870^{\circ} \mathrm{F}$
d) Ladle Analysis

Ingot No.	C	Min	P	S	Si	Ni	Cr	Mo	Cu
2		.16	.54	.012	.024	.20	.04	.02	.01
4	.15	.53	-	.06					
9	.16	.52	.016	-	-	-	-	-	-

2. Rolling
a) Slab Mill: Ingots 1, 2, 3, 4, 5, and 9 were sent to the slabbing mill soaking pits.

Time from pouring to charging 7 hrs .30 mins. Time in pits
Temperature drawn Slab sizes rolled

Ingots Nos. Slabs from each Slab Size
1, 3
$2,4,5,9$

4	$60^{\prime \prime}$	\times	5	$1 / 2^{\prime \prime}$	\times	103	\div
2	$60^{\prime \prime}$	\times	9	$1 / 2^{\prime \prime}$	\times	118	$\because /$

b) Finishing Mill Plates were rolled 12 days after slabbing.

Heating time: $5 / 8^{\prime \prime}$ Gauge -3 hrs .

$$
1 \mathrm{I} / 4^{\mathrm{it}} \text {. Gauge }-3 \mathrm{hrs} \text {. } 15 \mathrm{mins} \text {. }
$$

Drawing Temperature: $2375^{\circ} \mathrm{F}$
The finishing temperatures and test results on all as rolled plates are given in the following table:

1	7437-1	1890	5/8'	-	63300	-	
1	7438 -B	1880	"	38480	63380	32.0	O.K.
1	T	"	11	-	64070	-	
3	$7427-B$	1820	"	42520	63950	28.2	O.K.
3	T	"	"	-	63270	-	
3	7428-B	1820	4	41340	64240	30.7	O.K.
3	T	"	11	-	62560	-	
3	$7429-B$	1880	"	40380	63920	32.7	O.R.
3	T	"	"	-	63150	-	
3	$7430-B$	1840	"	41110	64280	31.5	O.K.
3	T	"	"	$=$	63270	-	

3. Heat Treatment

Four plates of each thickness were heated to $1580^{\circ} \mathrm{F}$, equalized, maintained 1 hour and air cooled. Finishing temperatures and physical properties on these plates were as follows:

Ingot No. Plate No. Finish Gauge Y.P. T.S. \% Bend Temp. ${ }^{\circ} \mathrm{F}$ p.s.i. p.s.i. Along. Test

1	$7439-B$	1840	$5 / 8^{\prime \prime}$	38040	58700	34.2	$0 . \mathrm{K}$.
1	T	$"$	$" 1$	-	58570	-	-
1	$7440-\mathrm{B}$	1870	$"$	39680	61260	34.5	$0 . \mathrm{K}$.
1	T	$"$	$" 1$	-	60880	-	-
2	$7442-\mathrm{B}$	1900	$11 / 4^{\prime \prime}$	36940	59130	37.0	$0 . \mathrm{K}$.
2	T	$"$	$"$	-	58850	-	-
4	$7434-\mathrm{B}$	1900	$"$	37020	60730	36.0	$0 . \mathrm{K}$.
4	T	$"$	$" 1$	-	60330	-	-

4. Summary

The following steel was received:
11 plates $5 / 8^{\prime \prime} \times 72^{\prime \prime} \times 288^{\prime \prime}$ as rolled 40,885 10.
4 plates $5 / 8^{\prime \prime} \times 72^{\prime \prime} \times 288^{\prime \prime}$ normalized 15,150 lb.
9 plates $11 / 4^{\prime \prime} \times 72^{\prime \prime} \times 288^{\prime \prime}$ as rolled 67,950 lb.
4 plates $11 / 4^{\prime \prime} \times 72^{\prime \prime} \times 288^{\prime \prime}$ normalized $30,17016$.
Total weight $=154,155 \mathrm{lb}$.
All plates fell within the specification range of physical properties.
B. Mill History of Rimming Steel Plates, A.S.T.M. A-70

1. Open Hearth
$\begin{array}{llr}\text { a) Material Charged: } & \text { Scrap } & 138,600 \mathrm{lb.} \\ & \text { Pig } & 74,000 \mathrm{lb.} \\ & \text { Lime } & 6,300 \mathrm{lb} . \\ & \text { Limestone } & 4,000 \mathrm{lb} .\end{array}$
b) Working of heat:

Melt Analysis
Furnace Additions:

Time of working:
Tap Analysis:
Tapping Temperature:
Ladle Additions:
$0.74 \% \mathrm{C}$

Lime	$2,000 \mathrm{lb}$.
Roll Scale	$3,000.1 \mathrm{~b}$.
FeMn (80\%)	$1,050 \mathrm{lb}$.
Spiegel	840 lb.
Fluorspar	200 lb.

2 hrs. 3 mins.
$0.14 \% \mathrm{C} ; 16.00 \% \mathrm{FeO}$ in siag $2980^{\circ} \mathrm{F}$
Coal 280 1b. Aluminum 10 lb .
CaO 750 lb .
c) Pouring: Total weight of steel 187,000 1b.

8 bottom-poured ingots $34^{\prime \prime} \times 14^{\prime \prime}$ were poured to
a depth of $46^{\prime \prime}$, each weighing 5050 lb .
6 bottom-poured ingots $48^{\prime \prime} \times 17^{\prime \prime}$ were poured to a depth of $551 / 2^{1 \prime}$, each weighing $10,500 \mathrm{lb}$.

Two groups of ingots for other orders were also poured from this heat.

Pouring time: $34^{\prime \prime} \times 14^{\prime \prime}$ group 5.40 min. 48'. x 17". group \quad Total 86 min .

Pouring Temperature: $34^{\prime \prime} \times 14^{\prime \prime}$ group $2875^{\circ} \mathrm{F}$ $48^{\prime \prime} \times 17^{\prime \prime}$ group $2860^{\circ} \mathrm{F}$
d) Ladle Analysis

$$
\begin{array}{ccccccc}
\mathrm{C} & \mathrm{Mn} & \mathrm{P} & \mathrm{~S} & \mathrm{Ni} & \mathrm{Cr} & \mathrm{Cu} \\
.25 & .36 & .016 & .031 & .15 & .058 & .19
\end{array}
$$

2. Rolling
a) Slab Mill:
6 small and 6 large ingots were conditioned and rolled.

Time from pouring to charging in pits $42 / 44$ hours
Soaking: Small ingots $7 \mathrm{hrs}$.20 mins . at $2350^{\circ} \mathrm{F}$ Large ingots $11 \mathrm{hrs}$.25 mins . at $2370^{\circ} \mathrm{F}$

Slab thickness: small $\quad 3.40^{\prime \prime}$ $\operatorname{large} 5.75^{\prime \prime}$

Slab temperature: small $2000^{\circ} \mathrm{F}$ large $\quad 1980^{\circ} \mathrm{F}$
b) Finishing Mill: All slabs ran straight through the finish mill without intermediate heating.

Individual finishing temperatures are given in the following table together with the mill test results:

Ingot No.	Plate Gauge	$\begin{aligned} & \text { Finish } \\ & \text { Temp. }{ }^{\circ} \mathrm{F} \end{aligned}$	$\begin{gathered} \text { Y.P. } \\ \text { p.s.i. } \end{gathered}$	$\begin{aligned} & \text { T.S. } \\ & \text { p.s.i. } \end{aligned}$	$\begin{aligned} & \stackrel{\%}{\%} \\ & \text { Elong. } \end{aligned}$
1	$11 / 4^{\prime \prime}$	$2000^{\circ} \mathrm{F}$	-	58800	-
			39100	59700	29.5
2	11	$2000^{\circ} \mathrm{F}$	-	60200	-
			39600	59700	30.0
3	"	$2000^{\circ} \mathrm{F}$	-	59100	-
			38900	58600	32.0.
4	11	$2000^{\circ} \mathrm{F}$	-	59400	- -
			38500	59000	29.5
7	$5 \% 8^{\prime \prime}$	$2000^{\circ} \mathrm{F}$	-	55400	-
			39600	62800	27.5
9	"	$2000^{\circ} \mathrm{F}$	-	63800	-
			38600	63300	27.0
11	11	$2000^{\circ} \mathrm{F}$	-	63800	-
			37300	64500	27.5
12	${ }^{1}$	$2000^{\circ} \mathrm{F}$	-	62700	-
			39100	63000	27.5

All bend tests satisfactory.

3. Heat Treatment

Two plates of each thickness were heated to $1630^{\circ} \mathrm{F}$, equalized, held 1 hoúr per inch of section and air colled. Finishing temperatures and test results on these plates were as follows:

Ingot No.	Plate Gauge	$\begin{gathered} \text { Finish } \\ \text { Temp. } \Leftrightarrow \text {.F } \end{gathered}$	$\begin{gathered} \text { Y.P. } \\ \text { p.s.i. } \end{gathered}$	$\begin{gathered} \text { T.S. } \\ \text { p.s.i. } \end{gathered}$	$\begin{aligned} & \% \\ & \text { Elong : } \end{aligned}$
5	$11 / 4^{\prime \prime}$	$2000^{\circ} \mathrm{F}$	-	61200	-
			38300	60500	28.5
6	18	$1980^{\circ} \mathrm{F}$	-	61000	-
			38700	60200	27.5
8	5/8	$2010^{\circ} \mathrm{F}$	-	63200	-
			39900	64400	27:5
10	i	$2010^{\circ} \mathrm{F}$	-	63400	-
			38800	62300	27.0

All bend tests satisfactory
4. Summary

The rimmed steel received was comprised of the following:

4 plates $5 / 8^{\prime \prime} \times 72^{\prime \prime} \times 288^{\prime \prime}$ as rolled 15055 lb .
2 plates $5 / 8^{\prime \prime} \times 72^{\prime \prime} \times 288^{\prime \prime}$ normalized 75301 b .
4 plates 1 1/4" $\times 72^{\prime \prime} \times 288^{\prime \prime}$ as rolled 29970 lb .
2 plates 1 1/4" x 72" x 288" normalized 14980 1b. Total weight $=67535 \mathrm{Ib}$ 。

All plates fell within the specification range of physical properties.

Tablo I. Inclusion Counts and Grain Sizo

Sulfido Type Alumina Type Silicate Globular Grica | Type Type Oxide Size |
| :---: |

$\therefore 70$
Ingot 7 (5/8.")

top		1 H	2 T				5 T	5 H	7
middle	2 T	1 H		$2 H$	$3 T$	3 H	4 T	5 H	7
bottom						4 H	4 T		7

A-201
Ingot 1 (5/8")

top		3 H	4 T		2 T	2 H	10
middle	3 T	3 H	4 T	4 H	4 T	4 H	7
bottom		3 H	5 T	3 H	3 T	3 H	$7 / 2$

Ingot 4 ($1 \frac{1}{4}{ }^{\prime \prime}$)

top	2 T	3 H	5 T	4 H	4 T		8
middle	2 T	3 H	4 T	4 H	3 T	4 H	7
bottom		4 H	3 T	3 H	4 T		7

Ingot 9 ($1 \frac{1}{4}$ ")

top		4 H	4 T	5 H	5 T		7
middle	4 T	2 H	4 T	5 H	5 T	3 H	7
bottom		4 H	4 T		3 T	4 H	7

$$
\begin{aligned}
\text { Key - Sulfide Type } \\
\text { Alumina Type } \\
\text { Silicate Type } \\
\text { Globular Type oxides } \because
\end{aligned}
$$

$T=T h i n$
H = Heavy
1 = Sparse distribution
5 = Heavy distribution

Table II. Grain-Coarsening Results

Heated 1 hour at temp. ${ }^{\circ} \mathrm{F}$	A. S. T. M. Grain Size No.			
	5/8'1 A - 201	1 1/4" A = 01	5/8' \cdot A.70	1 1/4'* A -70
1350	8	7	8	7
1500	7	7	7	7
1650	7	7	7	7
1800	7	6	$7+3$	$7+3$
1950	$7+3$	1-3	3	3
2100	3	1-3	2-3	2-3

TENSILE PROPERTIES OF A-201 PLATES

Ingot	Position	```Orientation to Rolling Diroction```	Upper Yiold Point p.s.i.	Lower Yield Point p.s.i.	Nominal Maximum p.s.i.	\%E1 onga tion	\%Roduction of Aroa
1	- Top*	Parallel	37,100	36,850	60,250	33.8	59.6
"	'	Transverso	38,400	38,000	59,500	30.1	58.5
\because	Middle	Parallel	35,600	35,100	60,600	30.5	56.9
I'	"	Transverse	36,000	35,800	60,600	31.2	55.8
"	Bottom	Parallel	34,800	34,400	58,700	32.2	66.4
π	1	Tränsverse	35; 500	34,600	58,750	31.7	58.6
3	Top	Parallel	-36,900	35,750	61,800	29.8	58.8
11	"	Transverse	37,300	36,700	61,650	29.0	57.4
"	Middle	Parallel	35,900	35,600	60,750	32.8	64.1
"	11	Transverse	35,800	35,400	60,300	-	54.9
11	Bottom	Parallel	36,100	35,700	59,600	28.9	65.1
\because	"	Transverse	35,300	34,900	58,600	31.6	59.9
4	Top*	Parallel	32,800	32,600	59,600	30.5	60.9
"	\%	Transvense	32,600	32,300	59,200	31.8	54.1
11	Middle	Parallel	31,800	31,400	59,500	34.9	61.8
"	"	Transverse	32,300	31,800	59,100	32.9	53.6
11	Bottom	Parallol	31,400	31;000	56,700.	35.1	64.7
"	I'	Transverse	31,600	30,700	56,400	33.1	58.8
9	Top	Parallol	31,500	31,300	59,700	32.6	57.1
"	1	Transverse	32,500	31,200	59,800	31.0	49.2
11	Middlo	Parallel	32,500	31,300	59,800	29.7	60.0
"	"	Transverse	31,700	31,200	59,500	-	51.1
11	Bottom	Parallel	30,600	29,900	57,300	35.0	63.2
11	"	Transverse	29,900	29,100	55,400	34.5	55.5

TABLE IV

TENSILE PROPERTIES OF A-70 PLATES

| Tngot Position Orientation | Upper Lower Nominal \%Elonga- \%Roducm | | | |
| :---: | :---: | :---: | :---: | :---: | :---: |
| | to | Yield Yield Maximum tion | tion | |
| | Rolling | Point Point p.s.i. | | of Arca |

7	Top	Parallel	35,600	34,200	61,000	30.5	56.3
1	"	Transverse	35,900	35,500	60,800	27.2	54.5
"	Middle	Parallel	34,000	33,300	58,400	30.7	59.3
11	"	Transverse	33,600	33,500	58,000	29.3	55.8
\prime	Bottom	Parallel	32,200	30,400	55,600	31.0	61.4
1	1	Transverse	32,500	32,200	56,100	28.1	58.1
2	Top	Parallol	29,500	27,800	57,500	31.5	56:3
"	"	Transverse	29,100	28,000	57,200	30.8	52.5
"	Middle	Parallel	28,800	27,300	55,700	33.2	55.8
"	"	Transverse	27,700	27,200	55,000	29.4	53.5
"	Bottom	Parailel	27,200	25,500	53,400	33.6	58.1
1	"	Transverso	26,700	26,300	53,100	33.6	55.8

Ingot 7 is $5 / 8^{\prime \prime}$ plate; 2 is $I-1 / 4^{\prime \prime}$

TABIE V. TENSILE PROPERTIES IN TVO INGOTS

A-201 Ingot No. 9, $11 / 4^{\prime \prime}$ plates

Top edge	L	41.0	64.7	1.041	. 210	. 832	33,330	44,600	126,400	62,000
"	T	37.5	56.6	. 844	.197	. 647	31,860	50,700	116,800	62,000
Top center	L	38.5	62.0	. 969	. 185	. 782	33,900	48,500	127,400	64,000
" "	T	37.8	54.8	.799	. 187	. 613	31,800	52,200	116,000	63,800
middle edge	L	40.0	65.7	1.027	. 229	. 844	33,900	44,200	129,700	60,800
" "	T	33.5	58.9	. 893	. 170	. 720	31,500	50,200	122,400	62,000
Middlo center	L	39.5	63.2	1.001	. 166	. 836	32,100	45,800	124,500	62,300
${ }^{1}$	T	34.5	56.5	. 836	.175	. 661	30,900	51,000	115,000	61,300
Bottom center	L	42.8	67.2	1.113	. 215	. 898	33,200	40,400	122,900	58,700
"	T	42.5	63.2	1.005	. 227	.778	28,900	44,000	120,300	58,100

A-70 Ingot No. 2, 1 1/4" platos

Top center	L	37.3	56.3	.825	.185	.641	29,300	50,200	114,400	62,200
" 1	T	31.2	54.2	.780	.200	. 580	29,400	51,700	112,700	62,300
Bottom center	L	40.9	62.4	.990	.178	. 812	29,290	43,800	116,700	55,700
11	T	33.6	55.8	.817	. 204	. 613	30,550	45,000	102,000	55,900

L, Longitucinal, or parallel to direction of rolling.
T, Transverse, or perpendictilar to diroction of rolling.

TaOIe VI. BRINELL HARDNESS SURVEY

A-201 HEAT

Ingot No. 1		
Top*	157	B.H.N.
Middle	166	B.H.N.
Bottom	161	B.H.N.
Ingot No. 4		
Top*	157	B.H.N.
Middle	159	B.H.N.
Bottom	155	B.H.N.

A-70 HEAT

Ingot	No.		Ingot No. 7		
Top	164	B.H.N.	Top	169	B.H.N.
Middle	158	B.H.N.	Middle	158	B.H.N.
Bottom	157	B.H.N.	Bottom	152	B.H.N.

Single Width Specimen Double Width Specimen
$\because \quad \% \quad \%$ con- $\%$ \% Con= Enorgy Cleavage traction Energy Cleavage traction A-201 Stool (Aluminum-killed)

Ingot l, Top*	-80	-52	-92			
Middlo	-50	---	-50			
Bottom	-60	-18	-52			
Ingot 3, Top	-61	-13	-62			
Middlo	-61	-33	-66		-19	-35
Bottom	-70	-42	-69		+20	-17
Ingot 4, Top*	-47	-28	-44	-29	-14	-32
Middlo	-22	+12	-27	-17	-17	+42
Bottom	-35	-10	-38	-17		
Ingot 9, Top	-25	+25	-26	+2	-15	+34

A -70 Steel (Rimming)

Ingot 2, Top	+57	+65	+37	+63	+116	+42
Middle	+56	+68	+31	+50	+92	+31
Bottom	+34	+47	+27	+42	+70	+29
Ingot 7; Top	+8	+48	+8			
Middle	+12	+40	-6			
Bottom	+4	+33	-2			

[^0]

BOTTOM
=_ NORMALIZED
---- NOT IN P.V.R.C. ORDER

FIG. 1 LOCATION OF PLATES WITHIN A-2OI HEAT
INGOTS I AND 3 WERE ROLLED TO 5V8" PLATE, OTHERS TO II/4' PLATE.
ALL PLATES 24' $\times 6^{\prime}$.

C	$.15 ;$	Mn	$.54 ;$	P	$.018 ;$
S	$.02 \mathrm{O} ;$	Si	$.20 ;$	Cu	$.05 ;$
Al	$.038 ;$	$\mathrm{Al}_{2} \mathrm{O}_{3}$	$.004 ;$	N_{2}	.004.

Bottom

Fig. 2 \% Composition in A-201 Ingot No. 1.

* Analyses apply at positions indicated by asterisks. Notes:
(1) The following analyses held for all positions Ni .05; Cr. .04; !! .04; V .02; Mo. .01.
(2) This was a $34^{\prime \prime} \times 66^{\prime \prime}$ ingot weighing 50,450 1b. and rolled to $5 / 8^{\prime \prime}$ plate.

```
Top
\begin{tabular}{llllll}
\(*\) \\
C & \(.18 ;\) & Mn & \(.55 ;\) & P & \(.020 ;\) \\
S & \(.022 ;\) & Ni & \(.05 ;\) & Cr & \(.04 ;\) \\
Cu & \(.06 ;\) & & & Al & \(.045 ;\) \\
\(\mathrm{Al}_{2} \mathrm{O}_{3}\) & \(.003 ;\) & & & \(\mathrm{N}_{2}\) & \(.004 ;\)
\end{tabular}
```

	C	.15;	Mn	. 55	P	.020;
	S	. 019 ;	Ni	.06;	Cr	.05\%
*	Cu	.07;			A1	. 041 ;
	$\mathrm{Al}_{2} \mathrm{O}_{3}$. 006			N_{2}	. 004 .

C	$.14 ;$	$\mathrm{Mn} .53 ;$	P	
S	$.018 ;$	$\mathrm{N} 1.019 ;$		
Cu	$.06 ;$		$\mathrm{Cr} .04 ;$	
$\mathrm{Al}_{2} \mathrm{O}_{3}$	$.003 ;$			$\mathrm{Al} .040 ;$
			$\mathrm{N}_{2} .004 ;$	

Bottom

FIg. 3. \% Composition in A-2O1 Ingot No. 4.

* Analyses apply at positions indicated by asterisks. Notes:
(1) The following analyses held for all positions Si .20; W .04; V .02; Mo .O1.
(2) This was a $34^{\prime \prime} \times 66^{\prime \prime}$ ingot weighing $50,450 \mathrm{lb}$. and rolled to $11 / 4^{\prime \prime}$. plate.

Top

C	.16;	Mn	.	P	. 01		C	.1	Mn	.54,	P	. 022
S	.023;	Si	.19;	Ni	.05;		S	.026;	Si	.19;	Ni	.06;
Cr	.04;	cu	.06;	Al	.038;		Cr	.05;	Cu	.07;	A1	.027;
$\mathrm{Al}_{2} \mathrm{O}_{3}$.004;			N_{2}	. 004 .		$\mathrm{AI}_{2} \mathrm{O}_{3}$.002;			N_{2}	. 003.

C	.17	Mn	. 55	P	. 014	C	. 15	Mn	. 5	P	.0
S	.023;	Si	.18;	Ni	.05;	S	.025;	Si	.19;	Ni	.05;
* Cr	.04;	Cu	.06;	A1	.034;	Cr	. 04 :	Cu	.08;	Al	.026;
$\mathrm{Al}_{2} \mathrm{O}_{3}$.004;			N_{2}	. 004 .	$\mathrm{Al}_{2} \mathrm{O}_{3}$.002;			N_{2}	.003.

C	$.15 ;$	Mn	$.54 ;$	P
S	$.023 ; \mathrm{Si}$	$.019 ;$		
Cr	$.05 ;$	Ni	$.06 ;$	
$\mathrm{Al}_{2} \mathrm{O}_{3}$	$.005 ;$		$.08 ;$	Al
${ }^{\circ}$	$.042 ;$			
			N_{2}	.004

Bottom

Fig. 4 \% Composition in A-201 Ingot No. 9

* Analyses apply at positions indicated by asterisks. Notes:
(1) The following analyses held for all positions W .04; V .02; Mo..01.
(2.) This was a $34^{\prime \prime} \times 66^{\prime \prime}$ ingot weighing $50,450 \mathrm{Ib}$. and rolled to $11 / 4^{\prime \prime}$. plate.

Top

C	$.20 ;$	Mn	$.35 ;$
P	$.018 ;$	S	$.028 ;$
Si	$.02 ;$	Ni	$.10 ;$
Cr	$.05 ;$	Cu	$.14 ;$
Al	$.021 ;$	$\mathrm{Al}_{2} \mathrm{O}_{3}$	$.003 ;$
N 2	$.003 ;$		

C	$.14 ;$	Mn	$.34 ;$	C	$.18 ;$	Mn
P	$.018 ;$	S	$.020 ;$	P	$.018 ;$	S
Si	$.01 ;$	Ni	$.09 ;$	Si	$.02 ;$	Ni
Cr	$.04 ;$	Cu	$.14 ;$	Cr	$.04 ;$	
$\mathrm{Al} .019 ;$	$\mathrm{Al}_{2} \mathrm{O}_{3}$	$.002 ;$	Cu	$.15 ;$		
$\mathrm{N}_{2} .003 ;$			$\mathrm{Al}_{2} .038 ;$	$\mathrm{Al}_{2} \mathrm{O}_{3}$	$.003 ;$	
			N_{2}	$.003 ;$		

Bottom
Fig. 5: \% Composition in A-70 Ingot No. 2.

* Analysés apply at positions indicated by asterisks.

Notes:
(1) The following analyses held for all positions: W. .04; V .02; Mo .01.
(2) This was a $48^{\prime \prime} \times 17^{\prime \prime}$ ingot weighing 10,500.16. and rolled to $1 / 4^{\prime \prime}$. plate.

Top

$* \mathrm{C}$	$.14 ;$	Mn	$.36 ;$	P	$.018 ;$	${ }^{*} \mathrm{C}$	$.25 ; \mathrm{Mn}$	$.37 ;$	P	$.020 ;$
S	$.017 ;$	Ni	$.09 ;$	Cu	$.12 ;$	S	$.035 ; \mathrm{Ni}$	$.10 ;$	Cu	$.14 ;$
Al	$.012 ;$	$\mathrm{Al}_{2} \mathrm{O}_{3}$	$.002 ;$	N 2	.004	Cl	Al	$.005 ; \mathrm{Al}_{2} \mathrm{O}_{3}$	$.003 ;$	N_{2}

$$
\begin{array}{cccc}
\mathrm{C} & .22 ; \mathrm{Mn} & .37 ; & \mathrm{P} \\
\times \mathrm{S} & .028 \mathrm{Ni} & .10 ; & \mathrm{Cu} \\
\mathrm{Al} & .12 ; \\
\mathrm{Al} ; \mathrm{Al}_{2} \mathrm{O}_{3} & .002 ; & \mathrm{N}_{2} & .004
\end{array}
$$

C	$.18 ;$	Mn	$.35 ;$	P	$.020 ;$	C	$.19 ;$	Mn	$.36 ;$	P	$.019 ;$
S	$.021 ;$	Ni	$.09 ;$	Cu	$.12 ;$	S	$.02 \mathrm{O} ;$	Ni	$.10 ;$	Cu	$.13 ;$
Al	$.012 ;$	$\mathrm{Al}_{2} \mathrm{O}_{3}$	$.002 ;$	N 2	$.003 ;$	Al	$.028 ;$	$\mathrm{Al}_{2} \mathrm{O}_{3}$	$.002 ;$	N_{2}	$.003 ;$

Bottom

Fig. 6% Composition in A-70 Ingot No. 7.

* Analyses apply at positions indicated by asterisks. Notes:
(1) The following analyses held for all positions; Si. 02; Cr :04; W. .04; V .02; Mo .01.
(2) This was a $34^{\prime \prime} \times 74^{\prime \prime}$ ingot weighing $5,0501 \mathrm{~b}$. and rolled to $5 / 8^{\prime \prime}$ plate.

W, Whaty.

MIDDLE

 BOTTOM

Fig. 7a

A-201
INGOT 4

TOP

MIDDLE

Fig. 7c Sulphur prints of $\mathrm{A}-201$, Ingot 9

Fig. 9a
Deep-etch specimens from $A-201$, Ingot 9

Top

Middle

Middle

Top

Middle

Bottom

Fig. 10c A-201, Inget 9
Micrographs at 100 x , Nital etch

FIG. 12 . ORIENTATION OF SINGLE AND DOUBLE-WIDTH CHARPY SPECIMENS IN I $1 / 4^{\prime \prime}$ PLATE. EXGEPT FOR DOUBLE WIDTH AS SHOWN, THESE ARE STANDARD KEYHOLE-NOTCH SPECIMENS (A.S.T.M. E23-4IT).

FIG. G3 GHARPY TRANSITION GURVES FOR A-70, I 1/4" MATERIAL. STANDARD KEYHOLE NOTCH SPEGIMEN.

[^0]: * Normalizod plato

