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ABSTRACT

..

'.

Plastic Design Methods assume that local buckling or rlanges

and webs or WF-Beams will not occur during the rormation or plastic

hinges. Such severe condi tions made the re-examination of the

problem of plate buckling in the inelastic range necessary.

In contradiction to accepted opinions it was round that

steel columns and plates can be compressed beyond the yield point

and even into the strain hardening range without buckling. Theo-

retical results ror the required geometric proportions are pre~
,/

sented and comparison is made to experimental results,obtained

i'rom tests on model columns, angles and WF,,,Deams.

Furthermore, consideration is given to the problem or

buckling between the elastic limit and the yield stress.
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2. INTRODUCTION

2 0 1 Statement of Problem

Present-day elastic design of steel structures is based on

the concept of a specified safety factor against nominal yielding

of the most stressed fibers. Concerning the detail design of

flanges and webs of WF~beams and other plate elements, it is

therefore sufficient that the yield stress can be reached without

premature local buckling. HO''"T8ver, newer methods of' structural

design, referred to as "Plastic Designtt, ttCollapse Design", etc.,

propose to base the design on the actual load-carrying capacity

of the structure. The working loads are determined as a specified

percentage of the ultimate load. This ultimate load:! can only

be realized if the members can undergo plastic deformations at a

number of sections without local or lateral buckling, and a con­

sequent fall-off in bending moment resistance. This process is

generally referred to as the formation of plastic hinges and re-

distribution of moments. It is therefore evident that Plastic

Design imposes more severe conditions on the local buckling

characteristics of the plate elements of structural members and

requires a ~eappraisal of the problem of inelastic buckling.

Extensive literature~;' exists on the buckling of columns

and plates compressed beyond the elastic limit of the material.

Howev~r, it is generally accepted that such elements made out

of structural steel w.ill invariably buckle once the yield stress

is reached. The following statements from reference (1) may

be quoted:

~~or a summary, references (1) and (2) may be consulted.



·.

205E.9

On page l59~

"To obta.in a compressive ,load on a bar larger
than the load producing 'the yield-point stress,
it is necessary to prevent the bar from lateral
buckling at the yield point by applying some
lateral constraint. n .

And on page 385~

"Experiments 'show that, when the compr'Eis'sIv~-'·'·'·­
stress reaches the yield point of the material,
•••• the ylate buckles for any value of the
ratio b/h." : -

Essentially the same con~lusions must be drawn from the

equations for inelastic buckling presented in reference (2).

Both the column and plate buckling equations -- equations (21)

and (653) -- contain the factor ~=Et/E. When the yield stress

is reached, the tangent modulus Et reduces to zero and hence

buckling seems to be unavoidable.

At first glance, therefore, it may appear impossible to

compress structural steel elements beyond the initial yield

strain, Cf, (see Fig.la) without buckling. This situation
.I'

'would invalida.te one of the basic assumptions .of plastic'

analysis and hence make it inapplicable to structural design.

-3

*-

Fortunately this reasoning is in error. Whereas theories,

as presented in references (1)' and (2) j givea fair account of

buckling in the elastic 'range and in the inelastic range between

the proportional limit and,the initial yield point strain, Eof,

they are not applicable to ·c'ases beyond this range. A study of

the stabili ty of plates stressed int-o the strain-hardening range

has been presented in -reference (3). This paper constitutes a

continuation and extension including pertinent test data.
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2.2 Inelastic Behavior of Structural Steel

For a proper understanding of the new approach presented

in this paper a short discussion of the inelastic behavior of

structural steel is necessary. Fig.la shows the well~known

stress~strain diagram of a coupon in tension or compression.

In the elastic range the material exhibits ,homogeneous and

isotropic behavior. Yielding commences rather abruptly without

any significant indication of a proportion limit. At the yield

stress, ao ' considerable straining takes place without an in­

crease in stress such that the tangent modulus, Et , seems to

.reduce to zero. However, it should be kept in mind that the

s~rain, E, is an average strain, derived from the measurement

of an elongation (or shortening) over a certain gage length.

Actually there is no materi al within this gage +ength at a

strain between Cf and Eo. The mechanism of yielding is dis­

continuous, taking place in small slip bands by a sudden jump

of strain from Cf to So. The slip bands form successively,

starting at a "weak" point (inclusion, point of stress concen~

traction, etc.) and then spreaq, out into the rest of the specimen. -;:­

Therefore, during yielding some of the material is still

elastic while the yielded zqnes have reached the point of strain~

hardening, co. The. material within the coupon is therefore

heterogeneous. Once all material has been strain-hardened, the

stress starts to increase again. Once again, all of the material

has identical physical properties and hence is' homogeneous. How~

ever, slip produced such changes that it is no longer isotropic --

~~or an'informative description see reference (4) p.297.

(
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1. e. 9 its propert'ies are now direction dependent. If proper con­

sideration is given to these physical facts the behavior of com-

pression elements of structural steel in the yield and strain

hardening range can be explained and predicted.

3. THEOBE!ICAL INVESTIGATION

30 1 Inelastic Column Buckling

Before treating the problem of plate buckling, it may be

advantageous to first summarize the behavior of columns. The

a slender column is given by:,elastic buckling stress of
tr2.E

6'e = /( 1 1")2,

where ae = elastic buckling stress

- - . ( I )

(2 )

•, )

E = modulus of elasticity

.e. = effective column length

r - radius of gyration

In the inelastic range the theoretical stress at which

bifurcation of equilibrium will occur (bending commences) is

characterized by the tangent modulus stress(2)

1t:'2.Ei:;
6't. == (ll /.,. ) 2.

where

Et= tangent modulus

The maximum stress lies between at and the reduced modulus stress

For a rectangular section the reduced modulus is given by(l)

4E Et
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For design purposes the possible increase of the maximum stress

beyond the tangent modulus stress is generally negleoted. If

the tangent modulus Et is given,? the behavior of a column can be

predicted.

On the.basis of the simplified stress-strain diagram (Fig.

Ib) buckling would be e1astic up to the yield point stress, °0 •

1he slenderness ratio (t/r) corresponding to initiation of yield­

ing is obtained by inserting into equation (1) the values 0e=oo

and E. For smaller values of l/rbuckling will not occur immed-

iately once the yield strain cf is reached but yielding will

commence, with the formation of slip bands somewhere along the

length of the specimen. For a pin-ended column the worst sit­

uation will occur if yielding starts to spread from the center.

The bending stiffness of the middle part is greatly reduced to

EoI, Eo being the tangent modulus of the zone which has reached

strain-hardening. The end-pieces are still elastic and hence

their bending stiffness is given by ·EI (see Fig.?, case a)o

Assuming that the column is continuously compressed such that

buckling will occur without strain reversal,? the buckling con­

dition is given by the following transcendental equation:-;(-

.-
I >-) = 1T - "? . - -( 5)

where

]>2 = 0cr/oe

0cr= buckling stress

0e = elastic buckling stress

~. = parameter specifying extent of yielded zone as
shown in Figo2, case a)o

-;(-See Ref 0 (l), po 128 (Some changes in notation have been made 10
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For given values of Eo/E and 's ~ values of rj can be derived

by trial and error o As buckling occurs within the plastic range~-

i.e o the critical stress 0cr~ is equal to the yield stress 00
.'

l./r can bethe slenderness ratio computed:

6'-c..,.. "- ~o ~~ se p"'n2.E.
( "/'(")2.

or~

2 3>2- 7G
2

E( tit) - (6)- - - - - - -
0--0

The shortening of the columnj&l,is given by~

and the average. strain at which buckling occurs:
\

( t- ..2 .3 ) E. f + 2 ?; Co - --- ( 7 )
Numerical results for Equation (7) are shown in Fig. 2,

curve (a)9 derived on the basis of the following material constants:

E = 30 9000 ksi

Eo= 800 kai

E:r= 1.lxlO-3

Eo= 14xlO~3

00= 33 ksi

The yield stress~ 00j is reached for a slenderness ratio

e/r=9409 j the corresponding strain being the yield strain ef.

For smaller slenderness ratios j t/r j the buckling stress ocr re~

mains constant at the yield stress level o However, buckling will

only occur after the yielded zone at the center has spread over a

length 2 z; eresul ting in a great reduction of the bending stiff-

ness over "this section.

The avera.ge critical strain changes at first very Ii ttle

with decreasing e/r, but increases rapidly for values of e/r
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smaller than 30~ Finally~ for l/r=15.4 the entire length is

strain-hardened before buckling occurs. If e/r is still further

reduced the critical stress will increase above the yield stress

0'0' All material being strain=hardened, the tangent modulus Et

for the entire length is given by the slope of the stress-strain

curve in the strain-hardening range.

Another extreme assumption would be that yielding spreads

symmetrically from both ends. The corresponding curve (b) in

Fig.2 is considerably above the previously derived curve (a).

The foregoing reasoning is substantiated by the results of

37 tests on small model' columns whi ch are also plotted in Fig. 2. -::­

The average yield stress of the steel used was about 35 ksi. Un­

fortunately no records of the strain~hardening strain Co and the

strain-hardening modulu~ Eo are aV~ilable. Almost all test points

lie between the two theoretically derived curves. The actual

yielding may occur anywhere between these two extreme assumptions.

The experimental indications however are that strains

larger than the yield strain Cf can be reached without buckling.

For SUfficiently small 2jr.-values the point of strain...hardening,

Eo p can be~r.e.ached aria even exceeded. Corresponding,.test re'sul ts

will be given in a subs~quent section.

If theoretical predictions 9 based on Equations (1) and (2)

and a tangent modulus Et derived from a coupon stress strain

diagram, are compared to the actual behavior of structural' steel

columns such as WF-sections, built~up members, etc., a considerable

~;The test results were obtained from Mr. P. C. Paris, instructor ~t
Lehigh University. The tests were performed by him and Dr. T.A.
Hunter at the University of Michigan under the direction of Prof.
J.A. Van den Broek.
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. ~

discrepancy is observed in the ;intermediate column range 30~I/r~110,

the theoretical predictions being always considerably too high.

This situation generally has been attributed to initial imperfections,

accidental end eccentricities, etc. Bleich introduced an "effective"

coefficient, 't=Et/E--Eqo (64) reference (2)-- much below the actual

~ based on a coupon stress strain curve, in order to preserve the

applicability ofEq. (2) to inelastic buckling. However recent

theoretiqal and experimental investigations cleared up the situation

very conclusively by attributing this discrepancy to the presence of

re sidual stre's ses (5)( 6). The proportional limit of an ax ially loaded

column is reached when the sum of the applied stress piA and the

maximum compressive residual stress reaches yielding. The sub-

sequent behavior of the column depends on the distribution of the

residual stresses and the direction of buckling -- i.e., weak or

strong axis buckling. However for e/r approaching about 15, the

strain-hardening range is reached and the influence of residual

stresses is completely wiped out. From there on the buckling load

is governed by the tangent modulus, Et, only.

3.2 Inelastic Plate Buckling Under Uniform Compression

In the previous section the possibility of a column buckling

at stresses above the yield stress, Go , was shown. It can there-

fore be assumed that the same may hold true for plates. The ob-

jective of the following analysis is the derivation of a plate

buckling equation which is applicable to the strain-hardening range •

The behavior of plates which buckle in the intermediate range be­

tween the proportional limit (sum of applied and residual stress

equal to yield stress) and the strain hardening range is governed
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by the presence and distribution of residual stresses. No direct

solution of this problem has yet been developed. However, a

reasonable transition curve will be proposed.

During yielding the material changes its physical proper-

ties such that at strain-hardening the initially isotropic

material has become orthotropic -- L e., the properties are direct-

. ion dependent. In case of plane stress the stress and strain

relations of such a material can be expressed in the following

general form:

+ (8)

·....,

."

" ~

where
E = normal strain

r= shear strain

a = normal stress

't' = shear stress

Ex = tangent modulus in x direction

Ey = tangent modulus in y direction

Gt = tangent shear modulus

~x = coefficient of dilatation for increase in ax

~y = coefficient of dilatation for increase in a y
If Equa~ions(8) are valid for the entire plate cross-section, the

expressions for the bending and twisting moments in terms of the

transverse plate deflection w, become
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~ = -DxI

~ = -DyI

~y= -2Gt

o~w

oX2

-;!-W
O~~

~'2.W

2»(3Cf

where

I

t = thickness of plate

Dx = ~
l-l>l( Yy

Dy =
E:r

l~Y'C~y

The above expressions imply that buckling occurs without strain

---( 10)
b 2 '

Dx ( -) +t '

reversal. From these relations the following general expressions

for the buckling strength of uniformly compressed, rectangular

pl ates can be derived as shown in Reference (3):

(1) Loaded ~dges x=O and x= e hinged, unloaded

edge FO hinged and unloaded edge y=b free.

(see Fig.3)

°cr:= C· t )~ [
where

t := thickness of plate

b := width of plate

l :=. length of plate or half-wave length

For a long plate the first term can be neglected and the buckling

stress becomes:

( I I)
- t

(2) Same as case 1, but unloaded edge FO fixed.

The minimum value of the buckling stress occurs when the

l~ngth~to-width ratio is
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-
~ = 1.46 i

. Then

( 1'2 )

( t- )2[0076'1 {DIf D~ - O~:2 70 (Dxy '+ Dyx)-~ 1.7 r.2.'l--t]-(/3)

Dyx = y~ 1>)'
edges x=O and x= ehinged ~ unloaded

D x y = Yy Dx
(3) Loaded

,

. edges y=± d./2 hinged.

The minimum value of the buckling stress is

obtained for the following .value 'of the

length-to-width ratio:

"'--­Then

Ocr =

4J D x \
D y

( 14)

+ Dxy + Dy x +4-Cr~ -- - ( 1$) .-E~F--

(4) Same as case 3, but unloaded edges y=± ~2 -fixed.

The minimum value of the buckling stress is obtained for

Then

e= 0.66 ~ D.'
d Dy - - - - (I b')

crcr = ~. ( ~n4.554 JD.D; + 1.23'7 (]).y + :Pyx) + 4.143 GrJ
----- (1"7)

Several theories of plasticity are available for· the

det.ermination of the moduli Ex, Ey, vx' yy and Gt • The various

theoretical predictions as applied to the plate buckling problem

are summarized in Table 1. Obviously, there are significant dis-
\

crepancies between these theories. From the point of view of the

mathematical theory of plasticity the stress-strain relations

should be of the. incremental type; only the stress-strain law

used by Handelman and Prager(ll) satisfies this condition.

All theories except the last one can, therefore, be discarded.
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Although the stress-strain law of Reference (11) ,with . the

second invariant of the deviatoric stress tensor as the loading

function, has been verified experimentally by combined compression

a.n.d torsion tests on tubes of mild steel stressed into the.strain­

hardening range (12) " it ~annotbe applied without modification to

the plate buckling problem. In Reference (3Y ~t is shown how

effective values of the moduli can be obtained from, an, inc.remental

stress-strain relationshipe From the stress-strain curve for the

strain-hardening range of mild steel

£-€a= 8-- &'-0 +
Eo

with

Eo = 900 ksi

k = 21

:----£,L-(

/

m = 2

the following values of the moduli were found to be applicable:(3)

Dx =
Dy =

Dxy=

Gt =

3,000 ksi

32,800 ksi

VyDx = YxDy= 8,lOO ksi

2,400 ksi

.'

The above developed expressions for the buckling strength

of orthotropic plates can only be applied if all material is ,

strained into the s~rain~hardening range (E~Eo)o In the inter-

mediate range transition curves can be ,developed as in the case

of column buckling (see Figo2)o

Consider for instance a flange of length 2 t 0 The loaded

edges x=O and x=2 e are fixed, the unloaded edge y=0 is hinged

and the unloaded edge y=b is freeo~~ For the simplified stress-strain

·::-This exampl'e has been chosen as a basis of comparison of the theory
with the results of tests on plates with these boundary conditions
presented in Chapter 4.



curve of Fig" lb the elastic solution is valid for CJcr< CJ 0 and

obtained from Equation (10) by substituting the elastic values of

the modulL Thus

( ,q)

. If the geometry of the specimen (given by bit, b/e,) is such that

CJ cr from equation (19) would exceed the yield stress, CJ o ' yielding

will occur before the plate buckles, the stress remaining at the

yield value CJo • In order to find a solution for this case it is

necessary to assume a certain distribution of the str~in-hardened

zones, for example, yielding starts at the ends and spreads to­

wards the middle. This assumption seems to be reasonable in view

of the fixed-end restraints and has also been observed during tests"

The middle section, being still elastic, is practically

rigid compared wi th the yielded zones of length l; e. Assuming

that only the latter will deform gives

--------(~O)

The corresponding average critical strain is
."' ....

are applicable to plate elements that are

Ccr= (I - Z; ) E
f

· +
Equations ( 20) and (21)

(2, , )

free of residual stresses (for example, annealed specimens). How-

ever, as deli vered specimens contain in general residual stresses

of considerable magnitude such that partial yielding will set in

at an applied stress considerably below the yield stress. In the

following a more realistic approach to the range CJp<CJcr<CJ o will

be discussed. The elastic solution is only valid up to a limiting

stress J p• The magnitude of CJp is determined such that the sum of
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the applied stress Gp and the maximum residual compressive stress

GR equals the yield stress GOG Hence the stress Gp corresponds

to the tfeffectivEi proportional limit tf of the specimen.

3G3 Buckling at Stresses Below the Yield Stress

The elastic buckling stress, Ge , of a perfectly plane plate

of isotropic material, subjected to forces acting in its plane, is

given by:

- - - - (2..2)

where

k = plate buckling coeff~cient

This equation and the expression for the elastic buckling stress

of a column, Equation (1), can be written in dimensionless form

as follows:

b
7C.t

12 ~o ( 1- »~)

K E

- -- - -.CZ3)

- - - (24)

- - (2.5)

Equation (23) is valid for values of IX larger than a certain limit­

ing value OC p (See Fig.5). The corresponding limiting stress is

Gp • As indicated before the sum of this limiting stress and the

maximum residual stress equals the yield stress Go. From this

point, (Gp/Go,~~), a transiti~n curve must be followed to the

point where the buckling stress equals the yield stress, (G~r/Go=lp~o).

If a. specimenereaches this point all its material has been yielded



and reached the strain-hardening range. The transition curve can

generally be taken in the following form

I - ( , - ~ ) ( 0(- at. 0 )-t1..
lr"0 0!9'- ()( C>

For a column the value of ~o is relatively small and the

influence of strain-hardening is, therefore, generally neglected

by taking ~o=O. It has been shown by HUber(5), that the shape of

the transition curve for WF columns depends on the distribution

of the residual stresses and the axis about which the c·olumn

buckles (weak or strong axis). The magnitude of the residuals

determines the value of op/oo. Actual measurements ·of residual

stresses in WF shapes have furnished rather high values. In order

to be conservative, op/oo for most WF shapes should be taken equal

to 0.5.

For WF Columns the influence of residual stresses is most

pronounced if buckling takes place about the weak axis. The

transition curve was found to be approximately a straight line

(n=l, ~o=O). When the column fails by bending about the strong

axis a quadratic parabola, (n=2,~o=0) is a good approximation of

the transition curve.

For plate buckling the influence of residual stresses will

be less severe. Indeed, the buckling stress is not only dependent

on the modulus ~ in the direction of the compressive loads, but

also on the modulus Ey in the transverse direction and the shear­

ing modulus Gt. However, yielding affects the latter to a much

lesser degree than Ex (see equations 8, 10 to 17 and 18). This

influence can be taken into account through a higher value of n.

However, the transition curve given by Equation (26) can at the
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most be tangent to the elastic solution given by Equation (23).

From this condition the limiting value of n is found:

2 (eX,- - ~c)

It is suggested that this value be used for all cases of plate

buckling.

Finally, the problem remains to determine the values of ~p

and ~o. Equation (23) gives the value of ~p by sUbstituting

ae=ap,where ap is the effective proportional limit. For structural

wide-flange shapes it is conservative to take ap/a o =0.5. Thus

lXp= {2: Furthermore, the following values of ~o are determined

from Equations (2), (11), (13), (15) and (17) respectively by

substituting the given values of the moduli. In parenthesis the

corresponding values of fir, bit or d/t are given for ao= 36 ksi.

Columns 0(0 = 0.173 (e/r=15.7)

-/"Long hinged flanges: ~o = 0.455 (b/t=8.15)

Fixed flanges " Q£o = 0.461 (b/t=14. 3).
Hinged webs " O!:O = 0.588 (d/t=3 2 .3)'.
Fixed webs " ~ = 0,,579 (d/t=42 0 0).
The a,bove table suggests that the values of <x.o depend only

on the type of compression element (column, flange or web plate)

and are nearly independent of the amount of restraint. The
',,""'... ,

These values are used subsequently in,Fig" 23 where comparison to

test results is made.
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3.1+ Inelastic Plate Buckling under Combined B'tlek±-:iffg and Compression

An extension of the previous considerations to cases of plates

subj ected to bending and axi al load is' of practi cal importance.

The web of a WF-beam.subjected to a bending moment M and axial load

P presents such a case. Depending' on the ratio of p/py , Py being

the yield load of the axially loaded member and equal to GoA, the

neutral axis may lie inside or outside of the web.

First of all, the plate buckling coefficient k must be deter~

mined. The minimum values of k for a stress distribution of a fully

plastified section are shown in Fig.6. In this figure, d corres-

ponds to the depth of the web and Yo fixes the position of the

neutral axis. The values were determined by equating the work of

the external forces to the dissipation of the internal energy at

the moment of buckling, using the moduli given in Chapter 3.2.

Secondly, the strain ccr at which buckling of the web plate

occurs and the corresponding depth to thickness ratio d/t i.s of

importance. For an expedient solution of this rather involved

problem recourse to SUbsequently described test results is made.

Fig.? shows experimentally determined values of ~ as a function

of the critical strain ccr for uniformly compressed webs. The

parameter ~ is defined by equation (25) - with depth d instead

of width b -;

d.
7l.t

j 1.2 (
2. \

~ I-v)

kE
and is hence proportional to the d/t ratio. Turning now to the

problem at hand, the maximum strain of the compression flange is

taken as cm. As the strain varies linearly'over the depth of
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the section the mean strain of the compression zone in the web is

cm/2. Using this latter value in entering Fig.7 the following

values of ~ are found:

For~, ~/Ef = 12: Oc= 0 0 58

EmlEf = 8: ()(= 0.60

Em/Ef = 4: ~= 0.69

The resulting curves for the critical d/t ratios are plotted in

Fig. 8, for the specific values indicated.

Values of d/t corresponding to 00 different from 00= 33 ksi

are obtained by multiplying d/t by V33 ksi/oo•·

~ EXPERIMENTAL INVESTIGATION

4.1 Compression Tests on Short Rectangular-Columns

Contrary to commonly accepted opinion, it was stated above

that buckling of columns at stresses above the yield stress should

be possible without special precautions to prevent buckling at the

yield stress o In order to verify this statement experimentally, a
,

number of compression tests on short model columns of rectangular

cross~section were carried out. The dimensions of the sp~cimens,

cut from the flange of an 8WF40 section, (ASTM A-7 steel) were

chosen such that buckiing in the strain-hardening range could be

expected (see Table 2). The test set up is shown in Fig.9. The

columns were placed flat-ended in a hydraulic testing machine.

During the tests simultaneous load, strain and lateral deflection

readings were,taken.

The maximum loads divided by the area are plotted' In' Fig.

11, and compared with the tangent-modulus and reduced modulus loads.
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Confirmation is obtained of the prediction that the maximum load

lies between the tangent and reduced-modulus load" The behavior

of the columns is illustrated in Fige 12 showing the lateral de-

flection of the column as a function of the strain. It is obvious

from these curves that the ·columns can reach the strain-hardening

range without deflecting excessivelye The critical strains corres-

ponding to the tangent-modulus loads are indicated by 'arrows" In-

deed p at these points the deflections start to incr~ase at an

accelerated rate, confirming once again that the tangent modulus

load is the load at which bending commences"

4 e 2 Compression Tests on Angles

The next phase in the experimental program was the veri-

fication of the inelastic plate buckling theory" For this purpose

a number of compression tests on angles were carried out" When

buckling torsionally, the flanges of an equilateral angle act as

two plates, hinged along the heel and free along the outstanding

edge" The loaded ends of the. angle columns were fixed in the

testing machine against rotatione FigelO shows one of the speci-

mens after testinge The dimensions of all specimens are given in

Table 3e The specimens were machined from a 6x6x3/8 (14e9 Ib)

angle, ASTM A-7 steel, by reducing the width of the leg to the

desired dimension be Table 3 indicates that six specimens were

tested after complete annealing and two specimens were in the

"as-delivered" state e Material properties as obtained from

coupon tests are summarized in Table 4e,

Fig.13 shows the obtained stress vs" average axial strain

curves. Furthermore p the rotations of the center section were



·.



205E.9 -21

measured. They are plotted as a fUnction of the average strain in

Fig.14. In both figures the experimentally determined critical

strains are indicated by arrows. The critical strain is defined

as the strain at which the rotation starts to increase more rapidly

than it did initially. Specimens A41 and A42 did not buckle tor­

sionally but failed by bending about the weak axis. Buckling

occurred in the strain-hardening range~ thus proving once more

that buckling does not necessarily take place at the yield stress.

The results of all tests on angles are summarized in Table 5.

The theoretical solution for the strain-hardening range is

given by Equation (10) and for the yielding r'ange by Eqaution (20)

and Equation (21). Fig.15a shows a plot of ~ (parameter defining

extent of yielded zones) vs. bit as obtained from Equation (20).

As elastic deformations have been neglected in the derivation of.

this equation b/t= 00 for ~ =0 (rigid-plastic solution). From

equation (19)~ however, it follows that for S=0, b/t=20.7.

Knowing the rigid-plastic solution and the point for '~=O, corres­

ponding to the limit of the elastic solutions, the elastic-plastic

solution is sketched as a dotted line in Fig.15a. The critiqal

strain can then be determined from Equation (21).

The obtained ccr vs. bit curves are compared with test

results in Fig.15b. The theoretical curve describes adequately

the behavior ~f the test specimens.

4.3 Compression and Bending Tests on Wide-Flange Shapes

Six wide-flange shapes were tested under tW9 loading con-

ditions~

(a) Axial compression (Tests Dl~D2~D3,D4,D5,D6)

(b) Pure bending (Tests Bl~B2~B3,B4,B5,B6)
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The dimensions of all specimens are given in Table 6. Material

properties obtained from coupon tests are summarized in Table 7.

The compression specimens were placed flat-ended.in a testing

machine, the length being divided in three gage lengths over which

the change in length was measured directly with 0.0001" Ames dials o

The set-up of the compression tests is shown in Fig.21a. The bend­

ing specimens were loaded symmetrically by two concentrated loads

(see Fig.21b) and,the dimensions were chosen such that shear failure

was avoided. Again changes in length of the flanges were measured.

The resulting piA vs. cav curves for the compressions tests

and M/Z vs. Eav curves for the bending tests are plotted in Figs.

16 and 17 respectively, where

P = compressive load

A = area of cross-section

M = moment

Z = plastic section modulus

Eav = averag~ strain at center of compressed flange.

Furthermore, with the aid of a dial gage lateral deflection

measurements were taken along the edges of the flanges and the

center of the webs (see Fig. 18). For the bending tests the

lateral rotation was measured at mid-span of the beam. The loading

points were supported against lateral rotation. The observations

of web deflection, flange buckling and lateral rotation from test

B3 are plotted in Fig.18 as a typical example. From these curves

the critical strains are obtained as indicated by arrows in Figs.

16 and 17. As mentioned above, the critical strain is defined as
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the average strain at which the deflection starts to increase more

rapidly than it did initially. The'results of all tests are sum-

marized in Table 8.

The results of those tests where flange buckling was pre­

dominant are shown in Fig.19. The results of tests D4 and D6

are omitted because web buckling occurred first and caused pre-

mature flange buckling. Specimen B4 did not develop a major flange

buckle but failed by lateral-torsional buckling. This result is

therefore eliminated from Fig.19. The critical strains are plotted

as a function of bit and are compared with theoretical solutions':~

for different values of the coefficient of restraint, (3. This

coefficient represents the restraints provided by the web to the

flange. In case of elastic restraint, where r = moment per unit

length required for a unit rotation, the coefficient of restraint

'becomes

From the tests results it is seen that ~ has a value of the order

of 0.01.

For the cases where web buckling occurred first (Tests D4

and D6) or simultaneous with'flange buckling (Test D2) the results

are plotted in Fig. 20 and are compared with the theoretical solu-

tion given by Equations (15J and (17).

It is concluded that the theoretical curves give a good

description of the actual behavior of flanges and webs.

Some typical examples of wide-flange specimens after test­

ing are shown in Fig. 22. Specimen D6 failed by web buckling after

-----~~~----------------------------~----~-------------------------
.,~TheU:leoretical curves are taken from Reference 3.



just reaching the yield point stress. The yielded material is

concentrated at the top of the specimen. Simultaneous web and

flange buckling caused specimen D2 to fail after just being comp­

letely strain-hardened while specimen D5 failed by flange buckling

in the strain-hardening range. Of the bending specimens B2 and

B6 failed because of flange buckling but B4 buckled laterally

without developing a flange buckle.

4.4 Summary of Test Results

All test results are summarized in Fig. 23 showing acr/ao

as a function of the dimensionless parameter~. The figure clearly

illustrates'the difference in the behavior of columns, flanges and

webs. The values of ~ for which the strain-hardening range can be

reached are confirmed by the test results and can be taken as

follows:
,.

Column Buckling 0(0 0.17

Flange Buckling 0'0 = 0.46

Web Buckling ~o = 0.58

For flanges and webs, the shape of the transition curves

(the plotted curves correspond to the maximum value of the ex­

ponent n, Equation(27)> should be considered as reasonable inter-

. polations in the absence of sufficient test results in this part-

icular region. Concerning the transition curve for the columns

considerable experimental and theoretical data are available. (,5>
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5. RECOMMENDATIONS FOR THE GEOMETRY OF

WIDE-FLANGE SHAPES IN PLASTIC DESIGN

5.1 Flanges

The following recommendations are directly based on the"'" .

above presented theoretical and e~perimental investigation.

Flanges of WF shapes can be strained into the strain-hardening

range if (X~ 0.46. In general this is a sufficient requirement

for the development of plastic hinges. Furthermore, buckling is

then not accompanied by a sudden drop of the load (see res~lts

-25

.. of tests A31-32-33, D2 and B2 in Figs.13, 16 and 17 respectively) •

Consequently the following recommendation can be given:

The ratio of the outstanding width to the thick­

ness of flanges, bit, shall not exceed, the follow-

ing values depending on the value of the yield

stress, 0'0:

for 0'0 = 33 ksi bit ~ 8.7, and

for 0'0 = 36 ksi b/t~8.3.

5.2 Webs

(a) Uniformly Compressed Webs:

The results of compression tests on WF shapes failing by

web buckling showed that for oc=O.77 (Test D6) the yield stress

can just be reached and for ~=O.57 (Test D2) the section can be

uniformly compressed up to the strain-hardening range., For a

section subjected to an axial load only, the first attainment of the.

yield stress is generally a sufficient requirement. In this case,

therefore, the following recommendation can be given:
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If a section is subjected to an axial load

only, the ratio of the distance between the

center planes of the flanges over the thick­

ness of the web,d/t,shall not exceed the follow-

ing values depending on the magnitude of the

yield stress °0 :

-26

for 00 = 33

for °0 = 36

d/t ~ 44, and

d/t ~42o

..
(b) Webs in Compression and Bending:

WF-Members sUbjected to axial load P and bending moment M

may be required to deform plastically. Obviously the critical

depth/thickness ratio,d/t,depends not only on the stress distribu­

tion but also on the required maximum strain Em of the compression

flange. Curves relating the critical d/t to the stress distribu­

tion (parameter P/ooAw) and a given maximum strain (parameter

Em/ef) were derived in Chapter 3.4 and are shown in Fig.8. Based

on these results the following recommendation is made:

If a WF section, is subjected to axial load and

bending moment the d/t ratio shall not exceed

the values given in Fig.8. ,Except in cases

requiring large rotations the curve for cm/Ef=4

can be used.

Values of d/t for a yield stress °0 different from 33 ksi may be

obtained by mul tiplying t~e ratio by V33 ksi/Oo: From the curve.s

of Fig.8 ,three specific examples of pipa vs., allowable d/t ratios

were investigated and are shown in Fig. 24. It can be seen that

the 12.JRll.8 section, for example, is not recommended for use in



, 6.. SUMMARY

Contrarily to commonly accepted opinions columns and

plates of structural steel can be compressed beyond the yield

stress level and even into the strain-hardening range p provided

certain geometric conditions are mete After shortly discussing

the dis'continuous yielding process of structural steel the

values of these geometric conditions as slenderness ratio e/r

for columns and,width-thickness ratio for plates are derived

theoretically. The interesting observation is made that plates

-27

are reaching the strain-hardening range with a relatively smaller

reduction in the d/t-ratio than the corresponding reduction in

e/r for columns.

The findings are substantiated by a series of tests on

rectangular bars in axial compression, on angles and WF sections

in compression and WF members in bendinge

The results are used to specify the geometric cross-
,

section proportions of WF beams such that thes,e members may

develop large plastic deformations without local buckling and

a consequent fall-off in loade These later requirements are

essential for a successful application of Plastic Design Methods.
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9. NOMENCLATURE

= area

= area of web

= width of plate with one free edge

= Ex
1- 'Vx 'Yy

= E y
1- Vx vy

= YyDx

= YxDy

= width of plate'supported along all four edges

= modulus of elasticity

= strain-hardening modulus

= reduced modulus

= secant modulus

= tangent modulus

= tangent modulus in x-direction

= tangent modulus in y-direction

= modulus of elasticity in shear

= .tangent modulus in shear

= moment of inertia

= coefficient in Equation (18)

= plate buckling coefficient

= length of column andWF compression specimen

= length of WF specimen' su.b~&ete:d:t·o··pu.re.. :benq.:ing

= effective length of column

= half-wave length of buckled shape

= bending moment

-30
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m

n

r

t

x

y
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= bending moment per unit width of plate in x-direction

= bending moment per unit width of plate in y-direction

= exponent in Equation (18)

= exponent in Equation ( 26)

= maximum value of n defined by Equation (27)

= axial load

= aoA = yield load

= radius of gyration

= plate thickness

= coordinate

= coordin'ate

Yo = distance between neutral axis and compression flange

w = plate deflection

OC = dimensionless coefficient defined by Eq. (24) and Eq. (25)

Dco = value of 0( at point of strain-hard,ening

t3 = coefficient of restraint

f' = shearing, s,train

E = normal strain

cav = average strain

Ecr = critical strain

Cf = yield strain

em = maximum strain of compression flange

Eo = strain at beginning of strain-hardening

~ = coefficient determining extent of yielding

Q = angle of lateral rotation
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°
Ocr

0e

0p

, .
°0

" OR

Or

0t

't'

It;

'f

= Poisson's ratio

= coefficient of dilatation for stress increment in

x ... direction

= coefficient of dilatation for stress increment in

y-direction

= normal stress

= critical (buckling) stress

= elastic buckling stress

= stress corresponding to limit of validity of

elastic solution

= yield stress

= residual stress

= reduced-modulus stress

= tangent-modulus stress

= shear stress

= Et/E

= edge moment per unit length to produce unit rotation

of edge

)
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TABLE I'

Comparison of Moduli as Predicted by Different Theories

. .
I\)
o
\.Jl.
t1.j
•

Theory Ex By Gt "t.!X "'t.Y,
-

y

- - V " -- fi vV~~·Bleich (2) Et E E--Et--
2{ l+v} lJ' -

~E

Kaufmann (7 ) Et E E Et
lJ' if( l+r;) (E+Et )

--

Bijlaard (8 ) } Et 1
Ilyushin (9 ) Et l+l Et Esec 1 1 +3 Et-
Stowell (10 ) 4 4 Esec - 2 ~ '! Esec.. - . 3

Handelman 4EEt E Et (2V"-1) +E 2 [Et (2"1t-l)+~
( 11) 2 ( 1+tr)and Prager Et l!:+3 -Et

-I 2E E+3 Et,
_I

- -

E = modulus of elasticity
--

V = Poisson's ratio
-- dcT"Et = tangent modulus =

-dE..

Esec= secant modulus = 0'"

E

I
W
W
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TABLE 2

Dimensions of Short Columns

b t L LSpec:imen in. in. in. e./r= 2r

C2 0.745 0.544 2.80 8.9

03 0.745 0.543 3.20 10.2

04 0.745 0.543 3.65 11.6

05 0.745 0.545 4.33 13.9

06 0.745 0.545 L~. 80 15.3

C7 0.750 0.527 5.65 18.9

08 0.750 0.527 6.90 23.4

b = width

t = thickness

L = length of specimen
. L

e/r = 2r effective slenderness ratio (test

conditions simulate fixed ends)

r =\~ = radius of gyration
V12 .

-34
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TABLE 3

Dimensions of Angle Specimens

Length Width Thickness
Specimen 2e b ' . t bit 2e/b Material

(in) (in) . (in)
/

A-21 25.0 4:87 . 0.383 12.70 5014 ASTM

A-22 2500 4079 0.381 12.60 5.21 A-7

A-31 17.9 3.27 0.370 8.85 5.48 Ann-

A-J2 17.9 3.28 0.374 8.79 5.46 ealed

rA-41 12.5 2.31 0.377 6.13 5.41

A-42 12.5 2034 0·371 6.36 5.35

A-33 17.5 3.30 0.378 8.73 5.30 ASTM

A-51 21.2 4.07 0.380 10.70 5.21
A.,. 7

As-
delivered

-35



TABLE 4

Results of Angle Coupon Tests

-36

..

Yield Strain at Strain- Type of
Coupon Material Stress Strain- hardening Loading

0"0 ksi hardening f10dulus
coxl0 3 Eo ksi

Cl 37e6 14.3 906
,

compression

C2 Ann- 35.1 14.6 845 ">-

Tl ealed 36.8 18.5 903 tension

T2 38;2 20.0' 869 "
T3 1As- 40.2 9.5 877 "
T4 elivered 39.9 15.6 '1.,160 II

All coupons tested in Baldwin 60,000 lb. Hydraulic

Machine. Valve opening corresponding to testing

speed of 1 micro-in/in per second in the elastic

range.
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TABLE 5

Results of Angle Tests

--

0 0 ccr • 10 3 Ocr Type of
Test ksi ksi' Buckling

A-22 -- 3.0 32.2 torsional

A-31 34.9 16.5 35.8 torsional

A-32 34.6 16.5 35.6 torsional

A-41 35.3 -- -- bending

A-42 34.1 -- -- bending

A-3J 41.3 160 0 46.4 torsional

A-51 41.0 6.0 41.2 torsional

-37
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TABLE 6.

Dimensions of WF Specimens

. . ".'.
IV
o
\Jl.
t:r:j.

, \

A Z 2b \..~p d t w L L*
.- ..

Specimen Shape in2 in 3 in
->••

in in it! in bltf d/twln
- -

..

Bl ) Dl 10WF33 9.66 38.56 7.95 0.429 9~37 0.294 32 32 .. 9.2 31.9

B2) D2 8WF24 6.83 22.56 6.55 0.383 7.63 0.236 26 26 8.6 32.3
-

B3, D3 10WF39 11.34 45.63 8.02 0.512 9.37 0.328 32 32 7.8 28.6

B4, D4 12WF50 14.25 70.28 8.18 0.620 11.57 0.351 32 32 6.6 33.0
-

B5, D5 8WF35 10.00 33.68 8.08 0.476 7.65 0.308 32 32 8.5 24.8

B6 D6 10WF21 5.84 22.45 5.77 0.318 9.56 0.232 23 26 '9.1 40.9
-

Z = plastic section modulus (twice the static moment of half
the section about the st~ong axis)

2b = width of flange

tf = thickness of flange

d = distance between center planes of flanges

t~ - thickness of web

L = length of compression specimen

L* = length of part of bending specimen subjected to pure bending
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TABLE' 7

Results of Coupon Tests

~ • r·

Coupon Section Buckling Loca- Yield Strain at -
-. -Strain-

Tests .. tion Stress Strain- hardenfug Type 01'
(see a-yksi hardening Modulus Loading
sketch) estxl0 ;j Est ksi _.

.- -

T6 1 35.5 16.5 : 675 tens ion

T7 5 35.0 14.7 750 .. tension
10WF33 BI-Dl

C14 2 40.0 14.5 855 compression
C15 6 37.0 13.8 805 compression

35.4 18.4
'.

530 tensionT21 1
T22 8WF24 B2-D2 2 35.6 18.0· 600 tension
T23 - 3 36.3 19.3 470 tension

T31 1 35.6 14.3 525 tension

T32 10WF39 B3-D3 2 36.8 18.9 580 tension-
T33 - 3 37.8 16.3 580, tension

T41 1 37.1 18.0 500 tension
T42 12WF50 B4-D4 2 36.9 18.1 530 tension

.- T43 3 39.4 15.9 580 tension
.-

T51 1 37.6 16.9 560 tension
T52 8WF35 B5-D_S 2 37.3 16.6 465 tension

.-, i

T53 - , 3 39.9 19.6 600 tension

T61 1 38.0 20.8 520 tension
.-

T62 10WF21 B6-D6 2 34.2 23.4 570 -
tension

T63 __ 3 44.2 23.6 490 tension

5 6

Location 01'
Co~pons

All coupons
tS:3ted in
Baldwin­
60,000 lb.
Hydraulic
Machine.

Valve open­
ing corres­
ponding to
testing
speed 01' 1
micro-in/in
per sec. in
the elastic
range.

I
W
-..0
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TABLE 8

Results of WF Tests

,. " .
I\)
o
\Jl.
t:tj
•

Test ~ksi ~r . 10 3 <1Cr ks i Flange Web Type of - .

Flange Web Flange Web _e/b e/d Buckling

Dl 34.4 8.5 8.5 34.2 34.~- 1.8 0.56 flange

D2 34.0 13.5 12.7 34.0 34.0 1.5 0.50 flange & web

D3 35.2 19.0 19.0 39.0 39.0 1.5 0.46 flange

D4 35.0' 18.5 5.0 36.8 35.4 1.5 0.55 web

D5 36.6 17.0 17.0 38.0 38.0 2.1 0.56 flange
..

D6 .38.0 4.3 1.·6 33.8 37.2 -- 0.54 web

Bl ~ 7.0 ~ - - 2.4 - flange
--

B2 - 23.0 - - - 2.0 - flange & lateral

B3 - 22.5 - - - 2.2 ~ flange & lateral

B4 - 29.0 - - - - - lateral

B5 - 22.0 - - - 2.0 - flange & lateral
.~ _.-

B6 - 1.4.0 - - - 2.4 - flange & lateral

I
p-
o
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