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J.. S Y N 0 PSI S

-1

The application of plastic design to continuous frames con-

structed of wide-flange shapes, imposes more severe limitations on .,the

geometry of these shapes than conventional elastic design. In regions

where yielding starts first, the flanges must be able to sustain strains

considerably larger than the yield strain without the occurrence of local

(plate) buckling.

With this prac~ica1 application in mind, the problem of

buckling of steel plates compressed beyond the yield strain is treated

in the present paper. In the strain-hardening range the material is

considered to be homogeneous. However, because of the yielding process

the material cannot be expected to remain isotropic. Therefore, general

exp'ressions for the buckling strength are derived assuming the lUaterial

to have become orthogonally anisotropic.

Orthogonal anisotropy in the case of plane stress. ~s eXJ?ressed

mathematically by stress-strain relations involving five moduli. Numerical

values of the moduli are estimated from the incremental theory of plasti-

city taking the second invariant of the deviatoric stress tensor as the

loading function. The influence of initial imperfections is taken into

account through proper adjustment of the values of the moduli. Inselect-

ing these values due consideration is given to the results of buckling

tests.

In the yielding range the average strain in the direction of

loading is between the strain .at which yielding starts and the strain at

the beginning of strain-hardening. For this case the material i~ consi4ered

to be partly elastic and partly strained up to the strain-hardening range.
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Finally, theoretical estimates are compared with test results.

It is considered that the theory adequately describes the behavior.
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2. I N TRO D U C T ION

Presently used steel wide-flange shapes are' proportioned

such that no local buckling occurs within the elastic range. Conse-
.,

quently they can safely be .us'ed for structures in which the design is

based upon theoretical first yield as the limiting condition (conventional

design). However, design based upon ultimate strength (plastic design)

imposes more severe requirements on the sections with regard to local

buckling. The. structure will reach its full ultimate load only if those

parts where yielding starts first, can undergo sufficiently large

deformations. For framed structures constructed of wide-flange shapes

the flanges at the .above mentioned locations must then be able to sus.tain

strains considerably larger than the yield strain. Consequently the

flanges should be proportioned such that local (plate) buckling .does not

occur under this condition.

In .order to solve problems of plate buckling the relationships

bet~een the increments of stresses and strains due to the deflection of

the plate out of its plane must be known. Within the elastic range the

assumption that the material is isotropic and homogeneous leads to pre-

dictions which are in good agreement with .test results(l). Asatisfactory

transition curve for the range from the elastic limit stress to the yield

stress can easily be obtained by applying Bleich's semi-rational theory,

to an effective .stress-strain curve(2).

During the yielding process the material is heterogeneous.

Yielding takes place in so-called siip bands and the strain jumps from

its value at the elastic limit to that at the beg~nning of strain-

hardening(3). When all the material has been strained to the strain-

hardening range. the material.' again becomes.holuogeneotls 0 '.' In.',the
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strain-hardening range, stress-strain relations of different theories

of plasticity c<tuld be applied. Such' theoriies can be divided into two

groups: deformation or total stress-strain.relations and incremental

stress-strain relations.

Bijlaard(4) was first to apply deformation stress-strain

-4

relations to the plate buckling problem. The theory" was devel.oped further

by Ilyushin(5) and modified by Stowell (6),. Incremental stress..,str:ain

relations were applied by Handelman.and Prager,(7). An extensive survey

of stress-strain .relations in the plastic range has been made by Dtucker{8>.

.Although the necessity for an incremental type of mathematical theory of

plasticity has been shown, the results ofp.lastic buckling tests on

aluminum plates are well correlated by a deformation. theory and bear no

resemblance to predictions of incremental theory. Onat and Dtucker(9)

investigated the influence of initial imperfections on torsional buckling

for a simplified model ofa cruciform section. For this case the paradox

appears at its worst. Onat and Drucker showed that incremental plasticity

leads to proper results "Then unavoidable initial imper'fections are taken

into account.

All theories of plate buckling in the plastic range imply

orthotropic behavior of the .material. This assumption seems to be very

reasonable. Therefore, in the present report general expressions for

the buckling strength of orthotropicplates are derived from general

stress-.strain relatiorls involving five moduli (Chapter 3). Tests of

steel tubes under combined compression and torsion showed that the

behavior of the material is well described by the incremental. theory
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Generalities on stress and strain and incremental stress-strain

relations are summarized in Chapter.4•. The influence of initial imper

fections is illustrated in Chapter 5. From the results of coupon tests

numerical values of the moduli are then obtained in Chapter 6. The

influence of initial i.mperfections is taken into account through adjust

ment of the values' of"the inoduli. Combin-ingthe results .orChapters_ .

3 and 6 gives numerical solutions of the plate buckling problem which are

compared with test results in Chapter 7.

In summary, then, the objective is to predict the s.train .at

.which buckling occurs in steel plate elements when the strain has exceeded

the elastic limit •



•

205E.7

3. B U C K LIN G o F RECTANGULAR

-6

o R T HO T RO PIC PLATE,S

•

3.1 General

Consider a rectangular steel plate taking th,e center plane of the

plate as the x - y coordinate plane. Compressing the plate in the x -

direction into the strain-hardening range may affect all deformation

properties of the material. Hence the tangent moduli., Ex and Ey in the

x - and y - direction respectively, are probably different.' The same

may hold for the coefficients of di1atation,1fx ,andvry in the x - and y -

direction. The shear modulus, Gt , may also be affected.

Thus

d E. x I dEy I= - -=
d<Jx Ex o<Jy Ey

dE x - ~ dE. "Yx . . . (3.1)- ~=
d<fy E y oO-x Ex

dOxy - I- --
dTxy G-t

where

E. = normal. strain

'0 = shear strain

(J = normal st.ress

T = shear stress
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Then the relations between the '-increments of strains and st:t;'esses

can be written as follows:

-7

d -' Y dId' Cy - - ~ '<r + - cr
'Ex x Ey Y

d J( __I d'L
Uxy - G xy

t,

(3.2)

.If equations (3.2) ,are va.lid for the entire cross-section the expressions

for the bending and twisting mqments in terms of the deflection, w, in the

direction of the z-axis become

•
M :: -

X
(3.3)

where

M :: - 2 G: I C> (.w
xy t dX 'OJ

(3.5)

I = .1C
12.

t = thickness of plate.

The condition that the bent position is in equilibrium can be

expressed by the following differential equation:

. (3.6)
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where

Dx
- Ex-

1- "< Yy

"Dy ::: Ey

I-Y~"'0

Dxy =. Y y E~

I -I/,/'l/y

Dyx
"Iv.. E y

1- Yx-Vy

2H Dxy T Dyx + 4Gt

The derivation of these equations may be found in the pertinent

literature (11) . Only if H2 = DxDy ' an assumption made by Bleich(2), can

solutions of this differential equation be easily obtained •

If the plate is inita11y perfectly plane the value of ax at which

bifurcation of equilibrium occurs (the plane and the bent position are

both ,equilibrium positions) is 'determined by equation (3.6). The

condition that both the plane and the bent position are equilibrium.

positions can also be expressed in terms of work. The additional work. .

done by the external forces due to bending of the pla.te must equal the

change in internal energy of the plate.

This y~elds the following integral equation

crTt JJ (~~f dxdy . = ff ~"(f;r +

+

(3.7)
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When external restraints are provided to the plate the right-hand

-9

side of equation (3,7) has to be supplemented by additiorial terms expres-

sing the work done by these restraints,

By assuming an appropriate deflection surface) equation (3,7)

gives an, approximate solution. The degree of approximation depends upon

the correctness of the assumed deflection surface, In any case the result

will be conservative.

3.Z Plates With One Free Edge

For a rectangular plate with the loaded edges x= 0 and x = £ hinged)

edge y = 0 restrained against rotation and edge y = b free (Fig. 1) the

following deflecfionsurface is assumed

(3.8)

The ratio BfA depends upon the amoun't of restraint. In the case

of elastic restaint) where '"'f! = moment per unit length required for a

unit rotation

B= B
A

(3.9)

Deflection surface (3,8) is similar to the one used by Lundquist

a~d Stowell(lZ). It can be show&Z~~at better results are obtained with

equation (3.8) if the following values foral and aZ are used

For 0 <- B<0: 1

and for r3 = CfJ

al = - 0.7

az = O.Z

al - 1.10

aZ = 0.54
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Substituting \'1' in equation (3.7) and integrating gives

(D D) BC4 +Bt 5
- xy + YX • L f-J. C 62-

..3+/....;,+ C2,
+

+

where

(3.10)

C1 = l/Z +Z/5 a1 + 1/3 aZ

1/5 + 1/3, a1 + 1/7 Z
+ 1/4: a1a Z + 1/9

'z
Cz .- (a1 ,+ 2aZ) aZ

Z Z
C3 = 4 + 1Za1 + 144/5 aZ + 1Za1 + 16a2 + 36a1aZ

C4 = 1 + Za1 + 3aZ

C5 Z/3 + 2a1 + 1/5 Z 2= (6a1 + 14a2) + 3a1a2 + 1Z/7 a2

C6 = 2 (1 + al + a2)

4/3 + 3a1 + 1/5
Z . 2

C7 = (9al + 16a2) + 4a182 + 16/7 a2

The minimum value, acr' of ax is obtained for £/b given by

f = IT 4 i + 6e, +(:/'"C2.
b 2B+ B:l.C 3

(3.11)

In the limiting cases when the edge y = 0 is hing~d or completely fixed

equation (3.10) reduces to

a.) Edge y = 0 hin~ed (6.= 0) and £ = L

For a long plate the first term can be neglected and

(3.12)

(3.13 )
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b.) Edge y = 0 complet.ely fixed «(3=(Y)

The minimum vahle, Ocr' of Ox is obtained when the h-alf:'wave

length £ satisfies

-11

I. 46VE; I

Then

(3.14)

(3 .15~

3.3 Plates Supported Along All Four Edges

The loaded edges x = 0 and x = £ are hinged and t.he edges y = t d/2

have equal restraint against rotation (Fig. 2). For this case the following

deflection surface is used(13)

W = [Brr(J -~) + (A+B) . C05 ~y] sin ~x . . .. (3.16)

The rati,.o BfA depends on the amount of restraint. For elastic restraints

with 'YJ = moment per uni.t length required for unit rotation

(3.17)

Substituting w from equation (3.16) in equation (3. T) and integrating

gives

• *+6c, -t 6
2

c4

4+Be, + e/Cz. +

+

(3.18)



-12

The minimum value of Ox. is obtained for £ given by

(3.19)

In the limiting cases, when the unloaded edges y = t d/2 are hinged

or completely fixed, the minimum values of Ox are

a.) Edges y = t d/2 hinged (6 = 0)

where

(3.20)

(3.21)

b.) Edges y = t d/2 completely fixed (6=00)

1T 2 (t 2 [ .
Cfc~ = IT \Q) 4.554 VDx Dy ' + 1.237 (Dxy + Dyx ) +

.,.. 4.943 G-t ]

where'

(3.22)

},
d

(3.23 )

In the following chapt.ers values of Dx.' Dy ' Diy'. Dyx and Gt .wi.ll be

determined. On substituting these values in the abov.e general expressions,

numerical solutions to the local buckling problem will be obtained.
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4~1 General

S TRA ,I N ,R E LA T I 0 N8

It is commonly assumed that yielding occurs whenever some function

of stress, f (crij)"; equals some number, k.' ,If the material is originally

isotropic this yie~d condition is independent of the orientation of the

coordinate system. In this instance f must be a function of the stress

invariants. An extension ,of the yield function is obtai~ed by assuming

the existence of a loading function, f (cr· .), which depends upon the
~J

state of stress and strain and the history of loading. For ideally

plastic materials plastic flow occurs whenever fequals some number k.

For materials exhibiting strain-h~rdening plastic deformations, occur when

the loading function exceeds k.

Prager(15) proved that, if

1. a lo~ding function exists, and

2. the relation between infinitessimals of stress

and strain in linear,

the only permissible stress-strain relation for strain-hardening material

when loading is

d€~,
IJ (4.1)

* Tensor notation is used in referring to generalized stress and strain.
Cartesia~ coordinates xl, x2, and x3, corresponding to the x, y, and z
axis of engineering notation are denoted by letter subscripts,i, j, k, 1,
which take the values 1, 2, and 3. Thus the nine components of stress
and strain tensors are represented by single symbols crij and E. ij
respectively. Repeated subscripts indicate summation. See e.g._Ref. 14.
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and when unloading is

-14

d E,~.
IJ

o (4.2)

p
where E' ,1J = plastic component of strain €ij and F and f are functions

..

of stress and strain. The geometric proof of frager's stress-strain

law (equations 4.1 and 4.2) is also included by Drucker in his survey of

stress-strain relations in the plastic. range(8) .

. As no information was available concerning the actual behavior of

steel in the ~train-hardening range a few tests were carried out on

combined compression and torsion of steel tubes(lO). The tubes were

compressed into the strain-hardening range and then subjected to torsion

while keeping the axial load constant. It was found that for this

particular loading-path the behavior is very well descri.bed by Prager's

incremental stress":strain relations taking f = J2, where J2 is the

second variant of the deviatoric stress tensor.*

Although these tests are by no means a general verification of

this theory they give some indication .of its possible validity. Inview

of these results and on account of its simplicity, the loading function

f = J2 will be applied in the following .derivations.

4.2 . Loading Functionf = J2

Applying the loading function f = J2 to equations (4.1) and (4.2) gives

(4.3)

.. * The state of stress, with components Oij' can be split into two parts: a
uniform tension (or compression), s, and another state of stress, .with
components Sij, having the same shear stress but zero mean normal stress.
The latter is called the deviatoric stress tensor. Thus Oij = Sij + SDij
with s = 1/3 oii. The second invariant is given by J2 = 1/2 Sij Sij.



The increments of the. ela.sti.c components, €~j' of the strains are given

by Hooke's law

where

(4.5)

•

E = modulus of elasticity

Poisson's ratio

Kronecker delta, defined as unity for i = j and zero

for 1. 1: j

For the case of plane stress (uz= Txz Tyz = 0) the stress-strain

relatibns, written in unabridged form, are

(4.6)

(4.7)

dE z = - ~ (d Cfx+ defy) - 1- F (ux + uy) d 32 · . · (4.8)

do - 2(1+'Y) d1; -+ 2. F L d02. . . · . . · (4.9)
E

when

dJ2 +(2<Tx -:- <Ty) dux +
I ( 2cry - o-J d <Jy + 2TdT > 0=:
3

• .0 · (4.l0)
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.. and

• dc x
I dCJx Vd (4.11)
E - E CSy

dey y dcr)( + t day, (4.12)r- r- . .
t:.

OE: z - - ~ (d (fx + d cr y) . . . (4.13)

dO' =. 2(I+Y) d'L . . (4.14)
E

when

The function F can be obtained from the results of a simple coupon

• test for which cry

Denoting

'r = dcr = d-r = ay

(4.15)

F is defined by equation (4,.6) as

F - I l
-I

EJ
(4.16)

..

Because of unavoidable initial imperfections the above derived

stress-strai.n relations cannot be applied without modification to the

local buckling problem. ,After investigating the influence of initial

imperfections on two simplified models in the next chapter effective

stress-strain rela.e:ions for the strain hardening range of steel will be

derived in Chap ter 6.

" '
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5. I'N.F L U E N CEO F I NI T I A L

IMPERFECT IONS

-17

..

..

5.1 General

A perfectly plane plate will remain plane if it is subjected to

loads acting in its center plane which do not exceed the corresponding

buckling loads. In the case of longitudinal loading in the x' ';"direCtion

producing a state of .stress with ax as the only component, this state

of stress will remain unchanged up to the point .when buckling occurs.

Consequently the buckling stress can be obtained from stress-strain

.relations (4.6) to (4.9) with 0y = ~ = O.

However, the buckling strength of actual plates with .unavoidable

imperfections does not agree with the predictions for perfectly plane

plates. The. main reason for the discrepancy seems to be equation (4.9)

which predicts elastic behavior with regard to the superimposed shear

stresses.

Applying a simplified stress-strain diagram to a simplified model

of a cruciform sectionOnat and Drucker(9) qave shown that small

unavoidable imperfections'mayaccount for the difference between pre

dicted and actual.behavior.. Apparently the influence of imperfections

on .sections which fail by torsional buckling is completely different

from those which fail in bending. The latter case-has been investigated

by Wilder, Brooks and Mathauser(16).

In the following, this difference in behavior.will be illustrated

for simplified models which buckle in the s train-hardening range. The

applied simplified stress-strain curve with n= EiEt=40~;is::Shownin Fig. 3.

Reasons why the compressive stress'es can exceed the yield stress, 00 ,

will be discussed in Chapter 6.
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5.2 Simplified WF Column

The simplified WF column consists of two thin flanges of equal

area separated bya web of infinite she,ar stiffness and negligible

area (Fig. 4). Instead of a true initial imperfection, the deflections

at the beginning of strain~haidening (0 = 0 0 and E = Eo) are used in

the computations .

. Following the same approach as Wilder, Brooks and Mathauser the

deflection curve is assumed to be

y Y 51n TTX,y (5.1)

At the beginning of strain-hardening

Y :: Y, Sin ITX
o 0 T (5.2)

The load vs deflection curve is found by considering equilibrium of

the center section of the column.

For the first part of the load vs deflection curve the strain in

both flanges increases and the relation between average stress and

deflection is given by

where

(5.3)

= average stress of both flanges

• (J.
IT" E't

t (1/'('Y (tangent mo du 1us:s,t.res s.):-

f = 9/d
d = depth "f section

f o = value .of fat beginning of strain-hardening.
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Strain reversal occurs for

(5.4)

-19

The corresponding stress, as' is obtained from equation (5.3) by suosti-

tuting f = f s '

After strain-reversal has s~arted the load vs deflection relation is

given by

cr[ n-I f]
0"0 2.(Vl+I) +

(5.5)

•

Figure 6 shows curves of alao vs f for at/ao = 1.2 and different

values of fOe The figure illustrates the behavior of the column for loads

r-'corresponding to stresses a = at. Although the deflections start to

increase more rapidly the load continues to increase. Therefore it is

safe to use the tangent modulus load, which corresponds to a = at, as

the limit of usefulness of the column.

5.3 Simplified Cruciform Section

In contrast to the above example the influence of initial imper-

fections on the buckling strength of a column of simplified cruciform. . ,

cross-section will now be. illustrated. The solution of the problem as

given by Qnat and Drucker(9) can he applied without modification to the

simplified stress strain curve of Fig. 3 .

The cross-section consists of a thin shell of constant thickness

h (Fig. 5). The column which is loaded uniformly is assumed to fail by

twisting. The ends are considered as providing no restraint, which
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considerably simplifies the kinematics of the problem and makes the

-20

• state of stress and strain the same at each cross-section. Anapproxi-

mate solution for small values of )V is given as

where

(5.6)

.'

Q

n '

=

=

=

angle of twist per unit length

3& -r 1_ 3G:
Et E:

3t~ G (elastic torsional buckling stress)
b~

..

..

,Results for the strain-hardening range of steel, n ' =46 (n = 40)

,are shown in Fig. 7. Load vs twist curves are plotted for initial

imperfections bQo = 0, 0.01 0 and 0.10 , bQ being the angle of twist

between two cross-sections a distance b apart. In all cases the

ratio of the elastic buckling stress to the yield stress is five.

'It is seen that very small imperfections cause a considerable

reduction of the column strength. A p~rfect1y straight member would

reach its elastic buck11ng load, for the case considered a~/ao = 5.

,An imperfection at a,= ao and E: =E:o of bQo = 0.010 reduces the maximum

load to am/ao =; 1.4. ,Consequently the applicationoLthe J2 incremental

theory to a perfectly plane plate which fails primarily by twisting cannot

be expected to correctly predict the bucf1ing strength of actual plates.
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•

Rather than attempt to solve the buckling problem of a plate with

initi~l imperfections, effective stress-strain relations are determined

·in the next chapter. It will be necessary to modify the values of Dx '

Dy , Dxy , Dyx , and Gt such that the application to the general expressions

of Chapter 3 will result in.a correct description of the behavior of

actual plates.
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6.S T R ES S - S T R A .I.N
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HARD E N .1 NG

S TEE L

•

6.1 Results of Coupon Tests

.Asimplified stress-strain curve obtained from a simple coupon

test is showntnFig. 3. It must be borne in mind that the,strain

represents an average strain measured over a certain gage length~ It

would be entirely erroneous to assume that the local strains within the

plastic range from Ef to Eo are equal to the average strain. Yielding

of mild steel occurs in .small slip bands(3).Slip takes'place in.a

"jump·· such that the strain across such a narrow band jumps from Ef to EO.

The first slip band originates at a weak point in the specimen, ,due to

an inclusion, a stress concentration .orother defects. From there on

yielding will spread along the specimen.

This consideration leads to the conclusi.on that, there is no material

within the specimen .at a strain between the yield strain, Ef, and the

strain-hardening strain, Eo. Either the material .is still elastic or it

has reached the strain-hardening range.

In the strain-hardening range, E '> EO, the material is again

homogeneous and in this range the"J2 theory of plasticity" will be

app~ied. In the intermediate range, Ef < E <Eo, the specimen can be

considered to consist of two materials.

The results of 21 compression coupon tests carried out at.Fritz

Engineering Laboratory are sunnnarized in Table 1. The coupons were cut

from the flanges ofWF shapes and from angles. For the interpretation

.of the results of coupon tests the following must be taken into account.
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Coupons are tested continuously ina hydraulic testing machine. It has

become customary in Fritz Laboratory to test coupons with a valve opening

of the machine corresponding to a strain rate of 1 micro in.jin,per

second in the elastic range. It has been shown by Huber and Beedle(17)

that the ratio of the yield stress of a static test (where the load

settles down after each increment of strain) and the yield stress of a

continuous coupon test is approximately 0.925. Consequently a value of

the yield stress, 00' of 0.925 x 39.2 = 36 ksi will be used in the

following derivations .

. Stress-strain curves for the strain-hardening range as obtained

from 5 selected coupon tests have been replotted in Fig. 8. Coupons 9

and 18 represent the extreme cases while 5, 15, and 17 represent tests

with lI ave rage'l results.

The average stress-strain curve for the stra.in-hardening range

can be expressed by the three parameters introduced by Ramberg and

Osgood(18).

E - Co =

where

(J- ero
Eo

+ k ((J- <Jo)rYl
. Eo

(6.1)

=

=

36 ksi

14· x 10-3 . /.
~n. ~n.

900 ksi*

K

m

=

=

21

2

•
Equation (6.1) is also plotted in Fig. 8.

* The values of Eo in Table 1 are taken from Fritz Laboratory reports in which
they are usually not given as the slope of the stress-strain curve at the
initiation of strain-hardening but as the slope at a strain somewhat larger
than€o ~ .Consequently Eo as used in equation (6.1) i.s larger than the average
value given in Table 1.
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The information now avai~ab1e is sufficient to determine F (J2)

-Z4

.defined by equation (4.16). From equations (4.16) and (6.1) it follows

that

F = [67.357vJ; - 59/.667 jz J y 10-
6 ~~p653

for JZ> 1/3 a~43Z kipsZ/in .. 4

.6.2 The Tangent-Modulus In Shear

(6.Z)

Consider the casew~ere shear stresses, T, are superimposed on a

constant normal stress, ax, taking ay = °and dax F day = 0. The

relations between .the increments of stress and strain given by equations

(4.6) and (4.9) reduce to

..
-~FcrTdT3 x (6.3)

do - (6'.4)

Integrating equation (6.4) gives the relationship between T and cr

as shown in Fig. 9 for ax = 36 ksi .and ax = 48 ksi. The corresponding

slope

is plotted in Fig. 10.

• • 0 " ,<6.5)

•

It is seen from Fig. 10 that the value of Gt drops rapidly for

small values of 7f. However ,in the region ,Z ,000 ksi < Gt < 3,000 ksi

the decrease becomes slower.. Consequently any value in this region
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could be selected as a useful value of Gt for the strain-hardening .. ,,'

range of steel. On .account of the results of torsional buckling tests

on angle specimens presented in Chapter 7, the value Gt = 2,400 ksi is

,:",25

..

selected as being applicable to the strain-ha:t;'dening range.. From Fig . 9

it follows that the influence of the magnitude of the normal stress can

be neglected for that part of the strain-hardening range under consideration.

6.3 Bi-Axial Normal Stresses

For regions of a plate in which cr9Ss bending is of importance the

shear stresses are zero or very small, e.g. the center 'of plates supported

along all four edges or the fixed edge of a clamped outstanding flange.

In this c,ase equat.ions (4~ 6) and (4.7) reduce to

dEy=U+i"F(2.cry-oSJ dcry f

- [~- ~ F(2CTx-(Jy)(2cry-cr,)] clcr,

(6.6)

(6.7)

Comparing equations (6.6) and (6.7) with equations (3.2) gives

_I
Ex

_I
Ey

(6.8)

(6.9)
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= :g -§ F (2())( - cry) ( 2. (jy - ()x )

o I I ( )2
E +9 F 2.crx - Uy

F- ~ F (2<Jx-(j"v)(2Uy-())<)

~ + ~ F(2-<ry -<rx)'

(6.10)

(6.11)

-2.6

Fora perfectly plane plate (cry = 0> equations (6.8) to (6.11)

reduce to

Ex -= Et

E = 4E Et,
y E + 3 Et,

• E-(I-2.'Y)~t'Yx = 'ZoE

'\Iy = 2E-(1-2--v)Et

E +3 E t

<6.12)

(6.13)

(6.14)

(6.15)

Equations (6.12) to (6.15) have been ,appli,e"d with different notation

by Handelman oand Prager(7).

Equations (6.9) to (6.11) are valid only if

•

dJz > 0

or rewritten

and with equations (6.6) and (6.7)

(6.16)

(6.17)

(6.18)
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Figure 11 shows the assumed linear strain distribution due to

curvatures dKx anddKy in .the x ~ and y - directions .

-27

(6.19)

(6.20)

whered€l and d€2 are strain increments of the central plane in the x-

and y-direction .and z is the distance to the central plane.

The condition that all of the section is deformed plastically

is obtained by substituting equations (6.19) and (6.20) in equation (6.18)

/

(6.21)

for -t/2 G,. z £:: t/2

The: increase of the force per unit width in the x- direction,

Nx ' is found by Lrear.r.angiJrrg , equation (3. 2) and integrating over the

(6.22)

The increase of the force per unit.width in th,e y - direction is

..

(6.23)
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However, no external forces are applied in the y - direction, thus

-28

(6.24)

or

(6.25)

Substituting equation (6.25) in (6.22) gives

•

The plasticitycondltion, equation (6.21), then becomes

(6.26)

for - t/2 6 z 6 t/2

If the neutral zone between loading and unloading zones is at z = t/2,

equation (6.27) gives

•

dE.,= t/Z{(Z-'Y)dK x -(1-2'V) dKJ
1- - 'Y + (I - 2 'V) 'Vx

Obviously dEl> 0 only if

dk < 2-"1 dk'
y 1-2'V X

(6.28)

(6.29)

Checking the plasticity condition (6.27) for dEl given by equation (6.21)

shows that conditidn (6.27) is not ~iolated if (6.29) is satisfied.
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If the neutral zone is at z = - t/2 equation (6.27) gives

and dEl/ 0 only if

dk y / 2-Y dk"
\ - 2-v "

-29

(6.30)

(6.31)

•

The plasticity condition (6.27) is not violated if equation (6.31) is

satisfied.

From equations (6.28) and (6.30) it is seen that

and consequently according to equation (6.26)

dN = 0x

for

2-Y
\ - 2 'Y

(6.32)

Furthermore dJ2 = 0 for the entire cross-section. Thus

for an initially plane plate with cry = O.

(6.33)

•

•

In this case, since bending is not accompanied by an increase in

axial load the influence of ini.tial imperfections will be the greatest.

Suppose biaxial loading starts at crx = cr~, cry = 0, Ex = E~, Ey = E9' Then

it follows from equation (4.10) with equation (6.33) that initially

(6.34)
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•
If during biaxial loading the ratio of dox and dOy is taken according to

equation (6.33), then integrating equat:lon (6.34) gives

J = J* + ((,
2 Z Y

(6.35)

,Applying equations (6.8) to (6.11) to the comp~tationof the moduli Dx '

Dy and Dxy as defined by equation (3.6) gives:

•

•

Dx = .5
RS-T2.

Dy = "R
R5-T'

'Oxy = Dyx
T

"R5-T z

where

R= I + ± F" 0-*'E 9

5= I +_1 F ( i o-y - cr:fE 9

T~ 'V 2. F * (2 - *)S 9 o-x 2' <Ty CJx

(6.36)

(6.37)

(6.39)

(6.40)

(6.41)

..

The results are shown graphically in Fig. 12 for d~ = 36 ksiand

o~ = 54 ksL From these results it can be concluded that the i.nfluence

of the magnitude of d~ is negligibly small. It is not obvious, however,

which values of Dx , Dy and Dxy should be 'selected as being applicable in

the strain-hardening range. ,Fortunately, compression tests on wide-flange

sections presented in Chapter 7 reveal that the ratios of the half-wave
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length of the buckled shape over the depth of the section for the cases

-31

if the small restraining

of web buckling are 0.55 and 0~54 (Tests D4 and D6 respectively) ..According

\4/ / rto equation (3.21) this ratio is equal to VDx Dy

effects of the f1anges.are neglected. Figure 13 shows the influence of

*Oy/ox on On account of the results of the web buckling tests

. *the values of Dx,Dy andDxy corresponding to Oy/ox = 0.34 have been

selected as applicable to the strain-hardening range.

Thus

Dx = 3,000 ksi

Dy = 32,800 ksi

Dxy = Dyx = 8,100 ksi

•

"
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•
:For the sele.ctionof applicable values of Ox, Dy ' Dxy ' Dyx. and

Gt use has been made of the results of local (plate) buckling tests.

The results are summarized here and are presented in more detail in

.another paper(19).

7.1 Compression Tests on Angles

A number of compression tests on angles were performed with the

purpose of checking the theoretical estimates developed above. Angle

specimens have better known boundary conditions thanWF .sections and

therefore give a more positive check.. When buckling torsionally under

the action of an axial load, the flanges of the angle act as two plates

each with one free and one hinged edge, the heel formi.ng the hinged edge.

The loaded ends of the column were fixed against rotation in the testing

machine. The dimensions of all specimens are given in Table 2. Besides

the longitudinal strains at the flange tips and the heel, the rotation

of the center section was measured. From the rotation measurements

the critical average strain was determined. The results of the angle

tests are summarized in Table 3.

When all of the material is strained into the strain-ha~dening

.range (Ecr ~ Eo) the theoretical solution is given by equation (3.12),

the length of the angle specimen being 2L.. A solution for the yielding

range (Ef <. Ecr <. Eo) can be derived if the following three .. assumptions

are made:

1. The material is elastic up to the yield stress.

2. In the yield range the specimen is partly elastic and

partly strain-hardened.

3. The strain-hardening zones initiate at both ends and

move toward the middle.
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From the first assumption it follows that, i.f acr ~ 0'0 the critical

stress is given by

-33

( t )2 [ IT· E ( b)2. J
creV"'= 1) 12(I-Y2.) T + GJ (7.1)

WhenO'cr obtained from equation (7.1) exceeds 0'0 yielding will have

corrnnenced. From the second assumption it then follows that the middle

section, being .stillelastic, is practically rigid compared with the

yielded zones. ·Assuming that only the latter .will .deform results in the

following expression for the buckling stress

where

_ _ fJL,70 [rr2Dx ( b )2 l
0"'(.'(" - ero - \ b) 12 S· L + Gtj (7.2)

SL = length of each yielded zone

The corresponding critical strain is

Substituting in equation (7.2) the values of Dx and Gt this equation

de\ermineS the rel;itionship between .bl t and S. For Lib = 2.65, the

average value of the tested sections, the bit vs S curve has been plotted

in Fig. 14 as a solid line .. As elastic deformations have been neglected

in equation (7.2) bit = (X) for S = O. For this cas'e bit = 20.7 which

is found from equation (7.1) by taking 0' = 36 ksi and Lib = 2.65.

Knowing the rigidpl~s.tic solu.tion .and the point for S = 0 of the elastic-

plastic solution the latter has been sketched in Fig. '14' as a' dotte'd. line. The, . .

elastic-plastic solutio.nof bit vs S with equation (7.3) gives ~cr as a

function .of bit .for the range Ef < ~cr < Eo. The complete theoretical
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curves are shown in Fig. 15 for Lib = CO and Lib = 2.65, and are compared

with the test results. The theoretical curves give a good description of

the buckling strength.

7.2 Tests on Wide-Flange Shapes

In order to investigate the actual behavior of WF shapes with .

regard to local buckling, six different shapes were each tested under

two loading conditions:

(a) Axial compression (Test Dl, D2, D3, D4, D5, D6)

(b) Pure Bending (Test Bl, B2, B3, B4, B5, B6)

The dimensions of all WF sp~cimens are given in Table 4 and the test

results are summarized in Table 5.

For the cases where flange buckling was predominant the critical

strains of the flanges vs the bit ratios and the theoretical curves are

plotted in Fig. 16. The theoretical solution is given by equation (3.10).

The results of tests D4 and D6 are omitted because web buckling occurred

. first and obviously caused premature flange buckling. Furthermore

specimen B4 did not develop a major flange buckle but failed by lateral

buckling. Therefore this result has also been eliminated from Fig. 16 .

.from this figure it can be concluded that, if premature web buckling is

prevented, the webs of the tested sections provide some restraint to the

flanges corresponding to a value of ~ from 0 to about 0.05. Comparing

the theoretical values of the half-wave length over flange width ratio

given by equation (3.11) and plotted in Fig,. 17, with the measured

values of the bending tests given in Table 5 shows that the theory gives

~good description of the actual behavior. For the axial loading tests

the half-wave length was obviously influenced by web buckling, except for

specimenD5 which had the smallest d/t ratio.
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For.:the'cases where web buckling occurred first (Test D4 and D6)

or ~im~it';m~ous :With flange buckling (Test D2) the critical strains are

plottedvs the d/t ratios as in Fig. 18. Compari.son is made with the

theoretical solutions given by equations (3.20) and (3.22) for the cases

of zero and full restraint respectively. Again favorable agreement is

obtained. The values of £/d given by equation (3.21) and plotted in

Fig. 19 necessarily agree with the experimental values because Dx and Dy

were selected in view of these test results.

7.3 Surrnnary

The results of the investigation presented in th.is paper can be

divided into two parts: firstly the derivation of stress-strain relations

for the strain-hardening range of structural steel and secondly their

application. to the plate buckling problem.

Effective stress-strain relations were determined describing the

orthotropic behavior of steel after it has been compressed into the

strain-hardening range. The following values of th.e moduli were found

to be applicable:

Dx = 3,000 ksi

Dy = 32,800 ksi

Dxy = Dyx = 8,100 ksi

Gt - 2,400 ksi

It is considered that the agreement between theory and test results

(Figs. 15, 16, and 18) justifies this approach to the problem.

·A direct practical application of the findings presented in this

paper is the prevention of local buckling of outstanding flanges in con

tinuous frames, in which the design is based upon ultimate strength.
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From the required rotation-capacity of the plastic hinges the strains

of the flanges can be determined. Fig. 16 then gives the required bit

ratio, for ~ = 0.01.

These stress-strain relations could equally well be applied to

other problems involving the occurrence of'shear and biaxial stresses

and strains in the strain-hardening range of steel.

-36
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10. NOMEN .CL A. T. Ult.E.

Tensor Notation

Jt

f

=

=

function,':diHined bye'quation ·(4.l)

yield ~n.d los.dingfunction

:1., j, k, I- ,m are tetter s.llbscripts taking thE! val1Je~s"'l,,2, an,cf 3

·J2 =
.k =

s =

Sij =
xi =

°ij =

'f::ij =
e

€ij =
.' P =€lj

°ij =

second invariant of devi~toric str,ess tE!tl~or

me~nn.o~l .st ress

comppnetlts ofdeviatpricstres.·s t.ensor

cporditlate ,aXifl

Kronecke:r delta

compon.ents of strain tensor

ela.stic straincpmponent

plastic strain component

cpmp(),nentsof .stresS ten.$o,r

Engineering Notation

A,· aI' .a2- are constants

B

b

.:iiI

=

con.stant
\ .

width of plate with .one free edge

•

,Dx =

Dy =.

D' '=", xy

.Pyx =

d = width of plate s.upportedalongall £,our: .e,~ge's
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E =

Et =

Ex =

Ey =

Eo =

f =

f o =

f
s
' =

G =

Gt =

H =

h =

I =

K =

·ISc =

Ky =,

Kxy =

1- =

Mx =

.My =

~; =

Nx -

Ny =

.m =

n =

n l =

R =

S =

modulus of elasticity

tangent modulus

tangent modulus in x - direction

tangent modulus in y - direction

strain'-hardening modulus

ratio of y over depth of simplified column

value of f at initiation .of strain-hardening

value of f at which strain reversal takes plac'e

modulus of elasticity in shear

tangent modulus in shear

function defined by equation (3.6)

thickness of sheet forming simplified cruciform .section

moment of inertia per unit width of plate

constant

curvature of plate in x - direction

curvature of plate iny -direction

twist ·of plate

half-wave length .of buckled shape

bending moment per unit w~dth of plate inx

bend~ngmoment per unit width of plate iny - direction

torsional moment per unit width of plate in

axial force per unit width of plate in x - direction

axial force per unit width of plate in y - direction

exponent in equation (6'.1)

ratio of modulus of elasticity over tangent modulus

ratio defined by equation (5.6)

function defined by equation (6.39)

function defined by equation (6.40)

-41
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• .T = function .defined by equation (6.41)

t = thickness of plate

w = deflection of plate

x = coordinate axis

y = coordinate axis

y = deflection of simplified column

y = maximum value of y

z = coordinate axis

~ = BfA = coefficient of restraint

axy = angular strain in xyplane

Ecr = critical strain corresponding to ocr

Ef = yield strain

~o = strain at initiation of strain-hardening

Ex = no.rmal strain in x - direction

* = value o£ at which biaxial loading startsE.x Ex

€y = normal strain in y - direction

* Value of at which biaxial loading€y = €y starts

S = coefficient determining length of yielded zone

Q = angle of twist per unit length

'Y = Poisson's ratio

"Ix = coefficient of dilatation for stress increment in x - direction

'Vy = coefficient of dilatation for stress increment in y - direction

ocr = critical (buckling) stress

.. o'e = elastic buckling stress

°0 = yield stress

Os = value of oat which strain reversal takes place

Ox .- normal stress in x - direction
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*ax =

ay =

't"xy =

~ =

y; =

value of ax at which biaxial loading .starts

normal stress iny - direction

shear stress

function defined by equation (6.10)

edge moment per unit length to produce unit rotation.ofedge

-43
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TABLE 1

.RESULTS OF CQMPRESSIONCOUPON TESTS

Coupon Fritz Lab. Section Go Eo Eo
NoteNumber ksi x103 ksi

1 220A-UF3 14WF30 39.7 13.0 730 All WF section
2 220A-UF4 " 41. 5 . 14.6 690 coupons taken
3 220A-LF1 " 42.5 14.6 650 from flanges
4 220A-LF2 11 39.0 12.5 790
5 220A-LF3 11 39.7 12.5 730
6 ·220A-LF4 11 42.0 13.0 670
7 2201\-:A 40.8 15.0 640
8 220A-B 40.8 12.5 675
9 220A-:D· 40.3 15.5 650

10 220A-E 39.6 14.5 650
11 220A-F 35.3 .(6.0) 780
12 220A-G 36.2 (6.5) 700
13 220A-B2F3 8WF31 40.0 17.4 770
14 220A':"B2F6 q 38.8 11.5 810
15 220A...B2F7 11 39.0 14.8 730

16 205E-C14 10WF33 40.0 14.5 855
17 205E-C15 " 37;0 13 .8 805
18 205E-C2 8WF40 38.4 12.8 1060 ~

19 205E-C9 L6 .6. 3/8 39.0 12.8 710
20 20'5E.,.C12 " 37.6 14.3 906
21 . ,205E;,;.C13 " .35.1 14~6 845

Average Va1ues* 39.2 13.9 755

* Numbers in parenthese~ not used for determining average value;
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TABLE" 2

DIMENSIONS OF ANGLE .SPECIMENS
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.Specimen
Length W:i,.dth Thickness

bit 2L/b -. -

2L (in. ) b (in. ) t (in. ) - - Material

A-21 25.0 4.87 0~383 12.70 5.14 ,

A-:-22 25.0 4.79 0.381 12.60 5.21

A-31 17.9 3.27 0.370 8.85 5.48 Annealed

A-32 17.9 3.28 0.374 8.79 5.46

A-41 12.5 2.31 0.377 6.13 5.41

A-42 12.5 2.34 0.371 6.36 5.35 ,
J

A-33 17.5 3.30 0.~78 8.73 5.30 +
As-Delivered

1\,-51 21.2 4.07 0.380 10.70 5.21 ..
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TABLE 3

RESULTS ·OF ANGLE TESTS

Test ao
E· 103 acr Type of

ksi cr ksi Buckling

A-22 -- 3.0 32.2 torsional

,A-3l 34.9 16.5 35.8 torsional

4--32 34.6 16.5 35.6 torsional

4--41 35.3 -- -- bending

A-42 34.1 -- -- bending

A-33 41.3 16.0 ,46.4 torsional

A-51 41.0 6.0 41.2 torsional

..,46
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TABLE 4

•

DIMENSIONS OF. WFSPECIMENS

2b tf • d t w L L1
.Spec. Shape in in in in in in bltf d/tw

BID1 10WF33 7.95 0.429 ·9.37 0.294 32 32 9.2 31.9

B2 D2 8WF24 6.55 0.383 7.63 0.236 26 26 8.6 32.3

B3 D3 10WF39 8.02 0.512 9.37 0.328 32 32 7.8 28.6

B4 D4 12~F50 8.18 0.620 11. 57 0.351 32 32 6.6 33.0

B5D5 8WF35 8.08 0.476 7.65 0.308 32 32 8.5 24.8

B6 D6 10WF21 5.77 0.318 9.56 0.232 23 ·26 9.1 40.9

1

2b = width of flange

tf = thickness of flange

• d = distance between center planes of flanges

t w = thickness of web

L = length of compression specimen

L1 = length of part of bending specimen subjected to pure bending

..
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TABLE 5

RESULTS OF WF TESTS
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ao E cr . 103 acr ksi Flange Web TypeTest ksi
of Buckling

Flange Web Flange Web P,/b p, /d

01 34:4 8.5 8.5 34.2 34.2 1.8 0.56 flange

02 34.0 13.5 12.7 34.0 34.0 1.5 0.50 flange & .web

03 35.2 19.0 19.0 39.0 ~9.0 1.5 0.46 flange

04 35.0 18.5 5.0 36.8 35.4 1.5 0.55 web

05 36.6 17 .0 17.0 .38.0 38.0 2.!l! 0.56 flange

06 38.0 4.3 1.6 33.8 37.2 -- 0.54 web,

B1 -- 7.0 -- - - -- 2.4 -- flange

B2 -- 23.0 -- -- -- 2.0 -- flange & lateral

B3 -- 22.5 -- -- 2.2 -- flange & lateral

B4 -- 29.0 -- -- -- -- -- lateral

I B5 22.0 O' -- -- -- 2.0 -- flange & lateral--
B6 -- 14.0 -- -- -- 2.4 -- flange tr lateral
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Fig, l' - Plate with one fv-ee edse

FrB' :2 -. Plate suppay-ted at all four edge.s

5t-re.ss
()

•

..

00 --r--------"'l""~-----l----

I
I
I
I

I D,("'c tg f

FiS" 3 - Simplr'fied 5tr-ess - .sty-ain cu'("ve



205£.7

d

. (,'fo.s.s - 0ectioY"l

~ \ ~
)( ,

Iy ~

\

I \
I

R. I 1

I

I,
I, .

l I h...,
"P

y

-50

WF column

cr055 - 5ection

:z:z.. _h

tl I

b

=rt
<r = ex

p

Fig' ·5 - Simplified C{'ucifoy-m Column



".

)

~05£.7

1.5 I------r-----~---_._---____,

1.4
(Jt - /.~
~

-

() 1.3
00

•

" 1.2

1./

/.0
0 0.0';.,5 0.050 0.075 0./00

t :: 8cr

F"8' (Q - Effect of initial 1m pe'rfec t ion.s on a

.. .simplified INF oection



205£.7 -52

6

5

4

-----~ b6o=O

rz-==
~

,

CIe ~ 5
0"0

. ben :. 0.0/ 0

/ be~ ': 0./ 0

It::- / -
o z

be
3 4

•

F i 8-' 7 - I VI flu e VI ceo f i1'1 'I t ial impe y- f e c.. t i 0 VI 0

on Q simplified c~ucifo'fm ~eGtion



'. • .. • •
~

0
U,
f1l.
~

40
x. coupon 18
+ II 5
Cl I' /5
• II 17

30 0 II 9
-- Eq; 7./ with:

(J- Go Eo = 900 ~5i

Ksi k = ~I

VI:: I-.

~O

10

Q

/0 20 30 40 50 60x/0- 3

€ - £'0
,

C1l
~

Fig, (3 - Re.sulto of COmp'le.s5/on COUpO-VI Te5t~ IY') the 5tV""ain -

HC\Y""deniYlEj. ROVise



• •

L
r\si

/5

/0

5

Fi8- 9 - . 5u pe'("po~itjon of 5heo'Y' Otv-e55 on COY) -staYit

No'fvy) a I Sty-e5s



'205£.7 -55

15000

12500

/0000

7500

5000

2500

-

'--

\

I

~ rSelected VQl ue G-
t
=?-400 ksi

~
-------

o 3 4

•

~i8' 10 -- The TQV'1seVlt 5heQ,(" l"1od u IU5



•

,

2.05£.7 -56

dy

•

..

Fig" II - A.s5umed linea.y- .st'fQin di5ty-ibution



205£.7 -57
35,000 ...------r------,.-----,---r----,

+ 0.50+ 0.2.5 '

- - --- - ---==-+-~~

- 0.25 0

uY/rs;
I~flueVice of (Jy/Ux*Fig' /2

•

30)000
'~~

~ AI,?'

~~+~.;\ I '
~i,"~ ~De., I
~'" " , '

I
?-~OOO

'7 <)1-

(/)1
Q)

21
~I

Dx
\11
~I

Dy 'lO/OOO
I)
(l)

Dxy
~\

(VI

• C?;'* ~V'~ If)I
~d:~+u-' I6'"r.~

• J';' "- I
/5)000

~

~o;.'*
~

0'~0+ ~ !S
"(j~ +0' .

5("+,\ ~
oJ".

10)000
/

"" 'lliJ
~

5/000



1.00

•

I

•

205£.7 -58

I
I

'~ :
5 ~ :O.7 I------+----=~_...:::::--~-I-------+---i---~

~ (7-* I
O'~ ~ 0'6 I
.1- ~ -; ~s/ I

·)tfrS/.-.....:::~

I "~0.50 l------+------+-----4--J--~::....;,::--I

I " ........
I "-

I
I
I

o. ~5 1----..:..---1------+------+--+--1 ---1

I
I
I
I
I

-0.50 - 0.25 0.50

•



205E.7 -59

•

"
eICl-5tic. plo.5tic.

/5

20 P.----\-:---+------+---

10

25

5

0 0.2.5 0·50 0,75 /.00

~
•

Fig. 14- Yield Pene tVQti OY\ C Q3 0 FUVlctioYl of bit
tal( Lib = 2.65



r-Lt

b ·T

-i~
\\LA =00 Lib = 2.G5 .

&. AVigie .Te,st
tl - Theo\'"etical Cu("ve5\ fo\'" ()o ~ 3G ksi

\\:- I-=-A3:2.

c.,o 3------ ---l-1-f-=----~------- -----

\
-

"-

~A5"1

~L____ £.A?-?.~----------- 1--------

•

30

/0

o
o 5 /0

•

/5 20 25

AY't8/ es with Theov-eticol. cuy-ve:s

I
(5)
o



• ..

m WF CO mp're,55;On Te~t

o WF Bending Test

- Theoretical ClAnes

foy- CS0 ~ 3G k"i
(3 ~ coefficient of l""e5t~int

~-------

"20

30

x I o-~
40 ...-------,.---,.-,--~---.-__._--__r_---___,_---.__,

10

o
o

~T _

5 /0 /5 20 25

Fie, 16 - Buckling of Wide - Flo.V1ge Ohape-s I
()l



1- - .

•

. - ~ . - "
.. _----._- --'--

4-

3

/

..

, I

f3 = coeffIcient of'(e:Jt'foiVlt

!3-CP--- - - - -- ----------
%-0.80

....

0

0 0.5 1.0 /.5 2.0

(3
I

Fig- Ha If - wo.ve
OJ

[7 - LeYlBth of OutotOYl4 iY\8 FloY\g6v N



30

20

10

o

•

I I \
(J.) a:>

\; \\

- ~ d <a

-

WF Compre.s5;on leot \Theoretical CU'fve

feY- <So::: 36 Kai

B -; c.oefficieV'lt of 'festV"aint \ \60-=---- ___ ---1----- -~~--1- ---- ----

D4
EJ

"£:'f ___ DG
---- ----I~ '----m... --- ----

0 10 20 30 40 50 60

o/t

Fi8' /8 - Buck/ins of \rVeb.s of VI/de - Flanged 5hope.s .( Un;fo~vtl COWl p'le.s~ i00 I
(j)

GI



.> .

/.00

0.75

0·60

0.25

o

(3= c.oeffic.ient of 'fe.stV""aint

f3-oo-----
~-O.365.

o ?.5 . 10.0

Hqff - WQve length of web.:>'


	Lehigh University
	Lehigh Preserve
	1959

	Buckling of uniformly compressed steel plates in the strain-hardening range, August 1956
	G. Haaijer
	Recommended Citation


	tmp.1349700844.pdf.HMMJy

