View metadata, citation and similar papers at core.ac.uk brought to you by fCORE

provided by Lehigh University: Lehigh Preserve

Lehigh University
Lehigh Preserve

Fritz Laboratory Reports Civil and Environmental Engineering

1959

Buckling of uniformly compressed steegplates in
the strain-hardening range, August 195

G. Haaijer

Follow this and additional works at: http://preserve.lehigh.edu/engr-civil-environmental-fritz-lab-
reports

Recommended Citation
Haaijer, G., "Buckling of uniformly compressed steel plates in the strain-hardening range, August 1956" (1959). Fritz Laboratory

Reports. Paper 1423.
http://preserve.lehigh.edu/engr-civil-environmental-fritz-lab-reports/1423

This Technical Report is brought to you for free and open access by the Civil and Environmental Engineering at Lehigh Preserve. It has been accepted
for inclusion in Fritz Laboratory Reports by an authorized administrator of Lehigh Preserve. For more information, please contact

preserve@lehigh.edu.


https://core.ac.uk/display/228625039?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://preserve.lehigh.edu?utm_source=preserve.lehigh.edu%2Fengr-civil-environmental-fritz-lab-reports%2F1423&utm_medium=PDF&utm_campaign=PDFCoverPages
http://preserve.lehigh.edu/engr-civil-environmental-fritz-lab-reports?utm_source=preserve.lehigh.edu%2Fengr-civil-environmental-fritz-lab-reports%2F1423&utm_medium=PDF&utm_campaign=PDFCoverPages
http://preserve.lehigh.edu/engr-civil-environmental?utm_source=preserve.lehigh.edu%2Fengr-civil-environmental-fritz-lab-reports%2F1423&utm_medium=PDF&utm_campaign=PDFCoverPages
http://preserve.lehigh.edu/engr-civil-environmental-fritz-lab-reports?utm_source=preserve.lehigh.edu%2Fengr-civil-environmental-fritz-lab-reports%2F1423&utm_medium=PDF&utm_campaign=PDFCoverPages
http://preserve.lehigh.edu/engr-civil-environmental-fritz-lab-reports?utm_source=preserve.lehigh.edu%2Fengr-civil-environmental-fritz-lab-reports%2F1423&utm_medium=PDF&utm_campaign=PDFCoverPages
http://preserve.lehigh.edu/engr-civil-environmental-fritz-lab-reports/1423?utm_source=preserve.lehigh.edu%2Fengr-civil-environmental-fritz-lab-reports%2F1423&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:preserve@lehigh.edu

Welded.COQtinuous Frames and Their Components

Progress Report No. 20

BUCKLING'OF'UNIFORMLYACOM?RE§SED STEEL PLATES IN

,THE.STRAIN-HARDENING RANGE

by

Geerhard Haaijer

This work has been carried out as a part of

’ an investigation sponsored jointly by the
Welding Research Council and the Department
of the Navy with funds furnished by the
following:

‘American Institute of Steel Construction
American Iron and Steel Institute
Institute of Research, Lehigh University
Column Research Council (Advisory) ‘
Office of Naval Research (Contract No. 39303)
" Bureau of Ships-
Bureau of Yards and Docks

- Fritz Engineering Laboratory
_Department of .Civil Engineering
» ' . Lehigh University
‘Bethlehem, Pennsylvania

August, 1956

Fritz Laboratory Report No. 205E.7



¢20.6
L5&7¢.
No, 3 d5 F,]




TABLE OF CONTENTS

SYNOPSIS

INTRODUCTION .

BUCKLING OF RECTANGULAR ORTHOTROPIC PLATES .

3.1 _General .

3.2 Plates with One Free Edge

3.3 Plates Supported Along All Four Edges .

INCREMENTAL STRESS-STRAIN RELATIONS
4.1 General . . . ., . .

4.2 Loading Function f = J2
INFLUENCE OF INITIAL IMPERFECTIONS
5.1 General .

5.2 .Simplified WF Columm

5.3 Simplified Cruciform Section .

_STRESS-STRAIN.RELATIONS FOR THE .STRAIN-HARDENING

RANGE OF STEEL
6.1 :Results of .Coupon Tests
6.2 The Tangent-Modulus in Shear .

6.3 Bi-Axial Normal Stresses

COMPARISON WITH TEST RESULTS .

7.1 Cbmpression Tests on_Angleé
7.2 Tests on Wide-Flange Shapes
7.3 Summary .

ACKNOWLEDGMENTS .

REFERENCES

NOMENCLATURE .

TABLES .

FIGURES

Page

11
13
13
14
17
17
18
19
22
22
24

25
32
32
34
35
37
38
40

44



205E.7

1. 3YNOPSIS

The appiication of plastic design to continuous frames con-
structed of wide-flénge shapes, imposes more severe limitations on the
geemetry of these shapes than conventional elastic design. In regions
where yielding starts first, the flanges must be able to sustain strains
considerablyllarger than the yield strain without the occurrence of local

(plate) buckling.

.With this pracpical application in mind, the problem of
buckling of steel plates compressed beyond the yield strain is treated
in the present paper. In thé strain-hardening range the material is
considered to be homogeneous. However, because of the'yiélding process
the material cannot be expected to remain isotropic. Therefore, general
expressions for the buckling strength are derived assuminé the material

to have become orthogonally anisotropic.

Orthogonal anisotropy in the caée ofvplane'stress.is expressed
mathematically by stress-strain relations involving five moduli. ﬁumefical
values of the moduli are estimated from,theAincremental theory of plasti-
city taking the second invariant of the deviatoric stress tensor as the
loading function. The influence of initial imperfections is taken into
account through proper adjustmegt of the values of the moduli. 1In select-
ing these values due consideration is given to the.results of buckling

tests.

In the yielding range the average strain in the direction of
loading is between the strain at which yielding starts and the strain at
‘the beginning of strain-hardening. For this case the material is considered

to be partly elastic and partly strained up to the strain-hardening range.




205E.7 : -2

Finally, theoretical estimates are compared with test results.

. It is considered that the theory adequately describes the behavior.
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2. INTRODUCTION

Presently used steel wide-flange shapes are proportioned
such thét no local buckling occurs within the elastic range. Consé-
quen%ly they can safely be used for structures in which the‘deSign is
based uéon_theoretical first yield as the limiting condition (conventioﬁal
design). However, design based upon ultimate strength (plastic design)
imposes more severe requirements on the sections with regard to local
Buckling. The structure will reach its full ultimate load only if those
parts where yielding starts first, can undergo sufficiently large
deformations. For framed structures constructed of wide-flange shapes
the flanges at-the abéve mentioned locations must then be able to sustain
strains considerably larger than the yield strain. Consequently the
flanges should be préportioned such that local (plate) buckling .does not

occur under this condition.

Iﬁ,order to solve problems of plate buckling the reiationships
between the increments of stresses and strains due to the deflection of
the piate out of its plane must be known. Within the elastic range the
assumption that the material is isotropic and homogeneous leads to pre-
dictions which are in good agreément.with,test results(1), A satisfactory
transition curve for the range from the elastic limit stress to the yield
stress can easily be obtained by applying Bleich's semi-rational theory

to an effective stress-~strain curve(2).

.During the yielding process the material is heterogeneous.
Yielding takés place in so-called slip bands and the strain jumps from
its value at the elastic limit to that at the beginning of strain-
hardening(3). ‘When all the material has been strained to the strain-

hardening range. the material. again bécomes "homogeneous. . In.the
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strain—hardening range, stress-strain relations of different theories
S . ‘ . I
of plasticity could be applied. Such theories can be divided into two
" groups: deformation or total stress-strain relations and incremental

stress-strain relations.

.Bijlaard(A) was first to apply deformation stress-strain
relations to the plate buckling problem. The theory was developed further
by Ilyushln(S) and modified by Stowell(6) Incremental stress-strain
_relatlons were applled by Handelman .and Prager(7) An extensive survey
of stress-straln.relatlons‘1n the plastic range has beeh,made by Druckerfsi
.Although the necessity for an incremental type of mathematical theory of
plasticity has been shown, the results of plastic buckling tests on
‘aluminum plates are well correlated by a deformation thedry and bear no
resemblance to predictions of incremental theory."Onat_and Drucker(9)
investigated the influeﬁce of initiallimpeffections on torsional buckling
for a simplified model of a cruciform section. For this caée the paradox
appears at its worst. Onat and Drucker showed that.incremental plasticity
leads to proper results when unavoidable initial imperfections are taken

into account.

All theoriés of plate buékling in the plastic range imply
orthotropic behavior of the material. This éssumptibnvseemS‘to be very.
reasonable. Therefore, in the present report general expressions for
the buckling strength of orthotropic plates are derived from general
stress-strain relations involving five moduli (Chapter 3). Tests of
steel tubes under combined compression and torsion showed that the

behavior of the material is well described by the incremental theory
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Generalities on stress and strain and incremental stress-strain

relations are summarized in Chapter 4. ' The influence of initial imper-
fections is illustrated in Chapter 5. From the results of coupon tests
numerical yalues of tﬁe moduli are then obtained in Chapter 6. The
influence of initial iﬁperfections is taken into account through adjust-
ment of the valuesféf“the ﬁoduli.'_Combining:the results .of Chapte¥s _
3 and 6 gives numericai solutions of the plate buckling problem which are

compared with test results in Chapter 7.

In summary, then, the objective is to predict the strain at
which buckling occurs in steel plate elements when the strain has exceeded

the elastic limit,
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3. BUGCKLING OF RECTANGULAR

ORTHOTROPIC PLATES

3.1 General

Consider a rectangular steel plate taking the center plane of the
plate as the x - y coordinate plane. Compressing the plate in the x -
direction into the strain-hardening range may affect all deformation
properties of the material. Hence the tangent moduli, Ey and Ey in the
X - and y - direction respectively, are probably different. The same

may hold for the coefficients of dilatation,ﬂ/k.and~v§ in the x - and y -

direction. The shear modulus, G, may also be affected.

Thus

96 . L oty L L )

a(r)( Ex Bo—y Ey

O&x _ _ Yy dey_ _ x > (3.1)
a(yy Ely elop® E

where | '
= normal strain
shear strain

= normal stress

Q9 xx®
il

= shear stress
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Then the relations between theﬁincrements of strains and stresses

can be written as follows:

de,

Xd@ % dg, )

E Ey

dey

~ Ve d + 1 d
. g a
ot By (3.2)

CiZ&y<? 7%; drtxy

/

- If equations (3.2) are valid for the entire cross-section the expressions
for the bending and twisting moments in terms of the deflection, w, in the

direction of the z-axis become

M,= - l-“/ < ]: + -Zi-. Ce . (3.3)

= E I azw
P4Y x\/ [ x i;;a e e (3.4)
? .
M. :"Zgliay N )
where

T g

: |2 ‘

t = thickness of plate.

The condition that the bent position is in equilibrium can be

expressed by the following differential equation:

“w .43___ __tg. 2w . .l. . (3.6)
D, + 2H + D, 4 By T o
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where

l‘vx’\/\/

D, = Yy By
Ty

]>Yx': AL EQL‘

l'.\/x\/v
2H = Dyy+Dy, +4G,

‘The derivation of these equations may be found in the pertinent:
literature(11), Only if HZ = DXDy, an assumption made by Bleich(2), can

solutions of this differential equation be easily obtained.

If the plate is initally perfectly plane the value of ox at which
bifurcation of equilibrium occurs (the plane and the bent position are
both equilibrium positions) is'detefmined by equation (3.6). The
condition that both the plane and the bent position_arg equilibrium
positions can also be expressed in terms of work. The additional work
done by the external forces due to bending of the plate must equal the

change in internal energy of the plate.

This yields the following integral equation

[T - [[DGY

+ Dy + (0, + D) (L) (3%) +

+ 4Gt(—aa:_g’;>2] dxdy .G
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When external restraints are provided to the plate the right-hand
side of equation (3.7) has to be supplemented by additional terms expres-

sing the work done by these restraints.

By assuming an appropriate deflection surface, equation (3.7)
gives an. approximate solution. The degree of approximation depends upon
‘the correctness of the assumed deflection surface. 1In any case the result

will be conservative.

3.2 Plates With Qne Free Edge
For a rectangular plate with the loaded edges x = 0 and x = £ hinged,
edge y = 0 restrained against rotation and edge y = b free (Flg 1) the

following deflection surface is assumed

w=[As +B{<Y\+Q<D,+az( FIECE- SR

The ratio B/A depends upon the amount of restraint. In the case
of elastic restaint, where ¥ = moment per unit length required for a

unit rotation

a.B . 7o | |
B—K.— 201 C e e e (3.9)

Deflection surface (3.8) is similar to the one used by Lundquist
and Stowell(lz). It can be show%zg%at better results are obtained with

equation (3.8) if the following values for'al and a, are used

For 0<B< 0.1 a; = - 0.7
ap = 0.2
and for (3 = 00 a; = -1.10
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Substituting w' in equation (3.7) and integrating gives

| Ly <8
Ox = |2b‘[ <Tr b)+ D<Wb\ J52+662,+,/3262

_  BC,+BCs
.(ny + Dyx) :L-;*’BC,‘*BZCZ

+5C
+ 4G, . 1*BCtBL, Lo (3.10)
} . L +0BC +3%C,
where
ci = 1/2+.2/5a +1/3 a
Cp = 1/5 + 1/3, a, + 1/7 (a%+ Zaz) + 1/4;a1a2 + 1/9 a%
2
C3 = 4 + 12a; + 144/5 ag + 12a; + l6ap + 36aja)
C4 = 1+ 28.1 -+ 38.2
Cs =  2/3 + 2a + 1/5 (6a% + l4ay) + 3ajap + 12/7 a3
G =  2(L+ap+ay)
Cy = 4/3 + 3al + 1/5 (Qa% + 16a2) + 4aja; + 16/7 ag
AN
The minimum value, o.,, of o, is obtained for £/b given by
4T 2. 1 4
:@ - TT\/3+©C,,:/561 .\ Dx C ... (3.1D)
b 2B+ B3°C, Dy

In the limiting cases when the edge y = 0 is hinged or completely fixed

equation (3.10) reduces to

a.) Edge y = 0 hinged (3= 0) and ¢ =

G = (ﬂ [”D" <—%>2+ GJ | C e e (3.12)

For a 1ong plate the first term can be neglected and

Ty = (%) G, e . (3.13)

-10




205E.7 . , ' o -11
b.) Edge y = 0‘comp1et.ely fixed (B3=00)

The minimum value, g.,, of 0, is obtained when the half-wave & -

length £ satisfies

%’:/4\4/% (3.14)

Oé.r; (ib)z [0,1769@ -0 2.70 (Dyy nyx) + 1.712 G—t]

Then

(3.15)

3.3 Plates Supported Along All Four Edges

The loaded edges x = 0 and x = £ are hinged and the edges y = T d/2
have equal restraint against rotation (Fig. 2). For this case the following

deflection surface is used(13)

W = [Brr (A+B - COS d SN T;ix L. .+ (3.16)

The ratio B/A depends on the amount of restraint. For elastic restraints

_ with 7 = moment per unit length required for unit rotation

. B _ »d , e (317
B-%- %, e

Substituting w from equation (3.16) in equation (3.7) 4dnd integrating

gives

o 'b % (l. ‘%'1)6 8205
% = 1T2Td‘[ H * D, (d) 4;SB‘+:+B’:

) 2
z+6g+6c4
+ (Dyy + +
( xy YX) i+lBCl+BzCz

+Bc + BT |
q
+ 4G, - L*Bcn‘f'BCz .. .. (3.18)
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wi‘th
cp =

cy =

cy =

C4 =

The minimum

£
d

0.09472
0.00921
0.04736

0.01139

value of oy is obtained for £ given by

_ ‘b z+BCiBC,
Dy T (Gt B)BIBT,

(3.19)

In the limiting cases, when the unloaded edges y = T d/2 are hinged

or completely fixed, the minimum values of g, are

a.) Edges vy = T d/2 hinged (B=0)

Oz L) [2DD 4D,y #Dy + 4G.] ...

where

A
d

Ry
Dy

b.) Edges y =t d/2 completely fixed ([ =00)

G = 2 (&) [4554 VDD, + 1.237 (D, +Dy) +

where-

A

d

In the

+ 4.943 Gt]

0.664 /D |
= i X i
b6 D

following chapters values of Dy Dy, DXy’:Dyx

(3.20)

(3.21)

(3.22)

(3.23)

and G, will be

-12

determined. On substituting these values in the above general expressions,

numerical solutions to the local buckling problem will be obtained.
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. 4, IﬁN.C‘R,E MENTAL STRESS -

STRAIN RELATIONS

4.1 General

It is commonly assumed that yielding occurs whenever some function
of strgss, £ (cij)f equals some number, k. If the material is originally
isotropic. this yield condition is independent of the orieﬁtation,of the
coordinate system. In this instance f must be a function of the stress
invariants. -An extension of the yield function is obtained by assuming
the existence of a loading fuﬁction, f (qij), which_depe@ds upon the
state of stress and strain and the history éf loading. For ideally
plastic materials plastic flow occurs whenever f equals some number k.
For materials eXhibitiﬁg strain-hardeﬁing plastic deformations. occur when

the loading function exceeds k.
Prager(15) proved that, if

1. a loading function exists, and
2, the relation between infinitessimals of stress

and strain in linear,

the only permissible stress-strain relation for strain-hardening material

when loading is

P Fof of ,
deu' = Fa—o_:)- T&Ek_l— dGKl X o e e o (4,_1).

* Tensor notation is used in referring to generalized stress and strain.
Cartesian coordinates X1, X2, and x3, corresponding to the x, y, and z
axis of engineering notation are denoted by letter subscripts.i, j, k, 1,
which take the values 1, 2, and 3. Thus the nine components of stress
and strain tensors are represented by single symbols gy; andg 4
respectively. Repeated subscripts indicate summation. "“See e.g. Ref. l4.




205E.7 -14

and when unloading is

P
def = O | C L (62)
where €Ej = plastic component of strain €ij and F and f are functions
of stress and strain. The geometric proof of Prager's stress-strain
law (equations 4.1 and 4.2) is also included by Drucker in his survey of

stress-strain relations in the plastic range(s).

 As no information was available concerning the actual behavior of
steel in the strain-hardening range a few tests were carried out on
combined compression and torsion of steel tubes (10) The tubes were
compressed into the strain-hardening range and then subjected to torsion
_wﬁile keeping the axial load constant. It was found that for this
particular loading-path the behavior'is very well described by Prager's
incremental stress-strain relations taking f = Jy, whexre Jy is the

second variant of the deviatoric stress tensor.¥

Although these tests are by no means a general verification .of
this theory they give some indication of its possible validity. In view
of these results and on account of its simplicity, the loading function

f = Jy will be applied in the following derivations.

4.2 - Loading Function f = J2

Applying the loading function f = Jp to equations (4.1) and (4.2) gives

dez = F Sij d\Tz A )

* The state of stress, with components gji, can be split into two parts: a
uniform tension (or compression), s, and another state of stress, with
components sij, having the same shear stress but zero mean normal stress,
The latter is called the deviatoric stress tensor. Thus ¢ij = sij + sdij
with s = 1/3 gii. The second -<invariant is given by Jp = 1/2 Sij Sij-
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when dJp; > 0

and

‘ . dez = O o o o e (404)
when dJp; £ 0

o . e s .
The increments of the elastic components, €jj, of the strains are given

by Hooke's law

d&% = I—}Y ClO’;J' - -?:-1 d Ty i S C )
where
E = modulus of elasticity
= Poisson's ratio
. 6ij = Kronecker delta, defined as unity for i = j and zero -

for i # j

For the case of plane stress (0z = Txz = Tyz = 0) the stress-strain

.relations, written in unabridged form, are

de, = £ do, - L doy + 4 F (0,-0,) 3 oo @0

d§y=—fldcx+—%cm§+-%F(2¢fqn)dJ;o,.. 4.7)

O
m
N

]

~X (darde,) =% F (gt ay)dd, - (48

dy = 2(|E+'V) dT + 2FTdT N X))

when

d7, = + (20,~ ) do, + 3 (20,-¢)da, +27dT >0

(4.10)
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and
_ | v
dey = = do, ——Edcyy ... (k1D
Y
dey = - do, + £ doy C e (h12)
de. == Y (doy+doy) C e (4.13)
dy = 20+v) 47 L (4.14)
E
when

The function F can be obtained from the results of a simple coupon

test for which Oy =T = dcy =dr =0

Denoting
da} -
== = F (4.15)
de. —t
F is defined by equation (4.6) as
E o= 31_ [_ln_'_—? L. (4.16)
43, LE, EJ '

Because pf unavoidable initial imperfections the above derived
stress-strain relations camnot be applied without modification to the
local buckling problem. .After investigating the influence of initial
imperfections on two simplified models in thé next chapter effective
stress-strain relations for tﬁe strain hardening range of steel will be

derived in Chapter 6.
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5. INFLUENCE OF INITIAL

IMPERFECTIONS

5.1 General

A perfectly pléne platg will remain plane if it is subjected to .
loads acting in its center plane whichAdo not exceed the corresponding
buckling loads. 1In the case of léngitudinal loading in,thé %-éﬂdireétion
producing a s;até‘of,stress with gy as the only éomponent, this state
of stress will remain unchaﬁged up to the point when buckling occurs.
Consequently the buckling stress can_Be obtained from stress-strain

relations (4.6) to (4.9) with Oy =1 = 0.

However, the buckling strength of actual plates with unavoidable
imperfections does not agree with the predictions for peffectly plane
plates. The main reason for the discrepancy seems to be equation (4.9)
which predicts elastic behavior with regard to the superimposed shear

stresses.

Applying a simplified stress-strain diagram to a simplified model
of a cruciform section Onat aﬁd Drucker(g) have shown that small
unavoidable imperfections-may -account for the difference between pre-
dicted and actual behavior. . Apparently the influence of imperfections .

"on sections which fail by torsional buckling is completely different
froﬁ those which fail in bending. The latter case-has been investigatéd

by Wilder, Brooks and Mathauser(16),

In the following, this difference in behavior will be illustrated
for simplified models which buckle in the strain-hardening range. The
applied simplified stress-strain curve with n= E/Eg = 40:isshown in Fig. 3.
Reasons why the compressive stresses can exceed the yield stress, gg,

will be discussed in Chapter 6.
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5.2 Simplified WF Column

The simplified WF column consists of two thiﬁvflanges of equal ...
area separated by a web of infinite shear stiffness and negligible
areaJ(Fig._h). Instead of a true initial imperfection, the deflections
at the beginning of strain-hardening (o = o5 and € = go) are used in

the computations.

.Following the same approach as Wilder, Brooks and Mathauser the

deflection curve is assumed to be

y=9 5in,ﬂ£—>i c e . (5.1)
At the beginning of strain-hardening

Y, = Y SN __)réx e (5.2)
The load vs deflection curve is found by considering equilibrium of
the center section of the column.

For the first part of the load vs deflection curve the strain in
both flanges increases and the relation between average stress and

deflection is given by

gzgc_@&,,)ig G
O/C) O_o cy0 ‘F
where
A- o = average stress of both flanges

Oy = %Et (t 1t modulus” stress)

t ( /. )2 tangent modulus’ stress) .

\g \
£ = YA
d = depth of section

value of f.at beginning of strain-hardening.

+h
o]
1}
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Strain reversal occurs for
/] _Toy [ .
(I O-t) ]CO S (5.4)
The corresponding stress, og, is obtained from equation (5.3) by substi-
tuting £ = fg.

After strain-reversal has started the load vs deflection relation is

given by

[ h+!)+{] To [2(n+,)+{] gt AT (‘C t5)
... (5.5)
Figure 6 shows curves of c/cé vs £ for ot/op = 1.2 and different
values of fo. The figure illustrates: the behavior of the column for loads
.corresponding to stresses g = 0£° Although the deflections start to
increase more rapidly the load continues to increase. Therefore it is.
safe to use the tangent-modulus load, which corresponds to o = gt, as

the limit of usefulness of the columm.

5.3 Simplified Cruciform Section

In contrést to the above example the influence of initial imper-
fections on the'bﬁCRling strength of a column of simplified cruciform
cross-section will now be.illustrated.‘ The solution of the problem as
given by Onat and Drucker{9) can be applied without modification to the

simplified stress strain curve of Fig. 3.

The cross-section consists of a thin shell of constant thickness
h (Fig. 5). The column which is loaded uniformly is assumed to fail by

twisting. The ends are considered as providing no restraint, which
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- considerably simplifies the kinematics of the problem .and makes the
state of -stress and strain the same at each cross-section. An approxi-

mate solution for small values of Y is given as

A1, ‘ L
G = Jo (_%%Q 2ﬂ+ Oe ['_@_%ZH] . . .. (5.6)

where '
_' t)4 632

’)a = 3t2

0 = angle of twist per unit length

o= 2G L1226

E. | . E
2
of = 3t;'c; (elastic torsional buckling stress)

e = b?.

Results for the strain-hardening range of steel, n' =.46 (n = 40)
are shown in Fig. 7. Load vs twist curves a?e plotted for initial
imperfections b8, .= 0, 0.01° and 0.1°, b@ being the angle of twist
between twé cross-sections a distance b apart. 1In all cases the

ratio of the elastic buckling stress to the yield stress is five.
(0e/5, = 5)

 It is seen that very small imperfections cause a considerable
reduction of the column strength. .A perfectly straight member~wou1d
reach its elastic buckling load, for the case considered Ué/do‘= 5.
.An imperféction_at 0.= 0o and ¢ = g5 of bO, = 0.01° reduces the maximum
Aload to cm/co = 1l.4. Consequently the application.of?the J2 incremental
theory to a perfectly plane plate which fails primarily by twisting cannot

be expected to correctly predict the buckling strength of actual plates.
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Rather than attempt to solve the buckling pfoblem of a plate with
initial imperfections, effective stress-strain relations are determined
‘in the next chapter. It will be necessary to modify the values of'Dx,
Dy, Dxy, Dyx, and Gt such that the -application to the general expressions
of .Chapter 3 will resu1t in a correct description of the behavior of

actual plates.
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6. STRESS-STRAIN RELATIONS. :

FOR THE STRAIN-HARDENING

RANGE OF STEEL

6.1 Results of .Coupon Tests

A simplified stress-strain curve obtéined,from_a simple coupon
test is shown in Fig. 3. It must be borne in mind that the, strain
represents an average strain measured over a certain gage‘length, It
~woﬁld be entirely erroneous to assume that the local strains within the
plastic range from é€f to ¢, are equal to the average strain.' Yielding
of ﬁild steel océurs in small slip bands(3). Slip tékES'place in a
"jump'" such that the strain_acroés such a narrow band jumps from ef to egq.
The first slip. band originates at a weak point in the specimen, due to
an inclusion, a stress concentration or other defects. From there on

yielding will spread along the'specimen.

This consideration leads to the conclusion that there is no material
within the specimen at a strain between the yield strain, eg, and the
strain-hardening strain, e, . Either the material is still elastic or it

‘has reached the sﬁrain-hardening range.

In the strain-hardening range, € > €p, the material is again
homogeneous and 'in this range the "J, theory of plasticity" will be
applied. In the intermediate range, ef < € < €5, the specimen can be

considered to consist of two materials.

The results of 21 compression coupon tests carried out at Fritz
Engineering Laboratory are summarized in Table 1. The coupons were cut
from the flanges of WF shapes and from angles. For the interpretation

of the results of éoupon_tests the following must be taken into account.
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Coupons are tested continuously in a hydraulic testing machine. It has
become customary in Fritz Laboratory to test coupons With a valve opening
of the machine corresponding to a strain rate of 1 micro in./in.per
second in the elastic range. It has been shown by Huber and Beedle(17)
that the ratio of the yield stress of a static test (where the load
settles down after each increment of strain) and the yieid stress of a
continuous coupon test is approximately 0.925. ,Conéequenfly a value of
the yield stress, gy, of 0.925 x 39.2 = 36 ksi will be used in the

following derivations.

.Stress-strain curves for the strain-hardening range as obtained
from 5 selected boupon_tests have been replotted in Fig. 8. Coupons 9
and 18 represent the extreme cases while 5, 15, and 17 represent tests

with "average' results.

The average stress-strain curve for the strain-hardening range

can be expressed by the three Parameters introduced by Ramberg and

Osgood(ls).
0-0Ov T - go\"

€-€o = 0% +K<T> . ... (6.1)
where |

O, = 36 ksi

€, = 14 X 10-3 in./in.

Ec = 900 ksi¥

K = 21

m = 2

Equation (&.1) is also plotted in Fig. 8.

* The values of Eg in Table 1 are taken from Fritz Laboratory reports in which
they are usually not given as the slope of the stress-strain curve at the
initiation of strain-hardening but as the slope at a strain somewhat larger
than ¢y,. Consequently E, as used in equation (6.1) is larger than the average
value given in Table 1.
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The information now available is sufficient to determine F (Jj)
.defined by equation (4.16). From equations (4.16) and (6.1) it follows

that

F = [67.357—'— - 59/.667—"—] (108 nS L (6.2)
VI Jz Kips

for J, > 1/3 cg.=-432 kipsz/in;4

6.2 Ihe Tangent-Modulus In Shear

Consider the case where sﬁear stresses, T, are superimposed on a .
constant normal stress, oy, takinglcy = 0 and doy = de = 0. The
relations between.tﬁe increments of stress and strain given by equatioﬁs

(4.6) and (4.9) reduce to

de, = 2F o, TdT | C . (6.3)

1

dy = 2 ‘g“ dT + 4Fr3dT L (6.8)
Integrating equation (6.4) gives the relationship between 7 and ¥
as shown in Fig. 9 for o, = 36 ksi.and g, = 48 ksi. The corresponding

slope

Gt=d—§ .. .. (6.5)

is plotted in Fig. 10.

It is seen from Fig. 10 that the value of Gt.dropsyrapidly for
small values of P . However, in the region 2,000 ksi < Gy < 3,000 ksi

the decrease becomes slower.  Consequently. any value in this region

-24
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.could be selected as a useful value of G, for the stréin-hardening Ll

range of steel. On account of the results of torsional buckling tests

on angle speciﬁens presented in Chapter 7, the value Gy = 2,400 ksi is
selected as being applicable to the strain-hardening fangew From Fig. 9

it follows that the influence of the magnitude of the normal stress can .

be neglected for that part of the strain-hardening range under consideration.

\
¢
i

6.3 Bi-Axial Normal Stresses

For regions of a plate in which cross bending is of importance the
shear stresses are zero or very small, e.g. the center of plates supported

,along‘all,fourvedgeé or the fixed edge of a clamped outstanding flange.

In this case equations (4.6) and (4.7) reduce to

+§' F (20_7(— O—y)zj C!O_x t

m|—-

+ éF (2a,~ o;)zj da,

ml—

ol
[%-gp (26,- 0)(Roy- ) day . ... @0

m<

_ [“"“gLF<20-x‘OY><2U\/—O.X)] do’x e . (6.7)

Comparing equations (6.6) and (6.7) with equations (3.2) gives

F (204-0,) (6.8

| | /5 :
T f+§F(_2(yy_o—x) Ce e . (6.9)
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% _é F (’?\Gxﬂo-\/) (2\0'y—0'x)
] | ’
T?.+§5 F (245}"G§)2

Vi (6.10)

’\/y: QEL_% F(ZGx‘O\/)(ZGy‘O‘x\)

! / 2 (6.11)
k) F(2g,-0y)

For .a perfectly plane plate (cy = 0) equations (6.8) to (6.11)

reduce to

E.= E. - Ce e (.6.12)
E\/: %E—SEEJ: x . c.. . (6.13)
v, = E‘(Z},;ZV) Ee L (618)
Vy = ZEF_:-(%,I;EZ::) Ev - ... (6.15)

Equations (6.12) to (6.15) have been applied with different notation

by Handelman and Prager(7).
Equatith'(6,9) to (6.11) are valid only if

dJ, > O | ce .. (6.16)

or rewritten

2dag, - da, >0 > ... (6.1D)

and with equations (6.6) and (6.7)

(2-v) dey = (1-2v)dey> O -. C .. (6.18)
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Figure 11 shows the assumed linear strain distribution due to

curvatures ng and de in the x - and y - directions.

dey = de, + zdK, C e (6.19)

dey: dez+2de - . . . (6.20)

where .de; and dep are strain increments of: the central plane in the x-

and y-direction and z is the distance to the central plane.

The condition that all of the'section is deformed plastically

is obtained by substituting equétions (6.19) and (6.20) in equation (6.18)

(2’V)<d€,+deKX)— ("2'V)<d62+2de> > 0O (6.21)
for -t/2 £ z & t/2

The increase of the force per unit width in the x - direction,
Ny, is found by irearranging, equation (3.2) and integrating over the

thickness of the plate

dN, f%(dcrx

(6.22)
The increase of the force per unit width in the y - direction is
t2 .
d!\/y=f (doy)dz =
-ty e e e (6.23)

=Dt (de, +% de.)

-27
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However, no external forces are applied in the y - direction, thus
dNy =0 | Ce . (6.28)

or

de, = -V.de, C ... (6.25)

Substituting equation (6.25) in (6.22) gives

dN’.‘, = £, .t de, | S (R
The plasticity condition, equation (6.21), then becomes

[2—v+(;—2'v)-j?x]de,+(2—v)zdt<x—(l-—2v)§clxy >0 .. (6.27)
for - t/2 €z € t/2

If the neutral zone between loading and unloading zones is at z = t/2,

equation (6.27) gives

dE, - t/Z{(Z—’V)de -("2’\/) C{Ky-} : . (6.28)
| 2-v+ (1- ZW/)’V; e

Obviously dej > 0 only if

de<% dk; .. (6.29)

Checking the plasticity condition (6.27) for dej given by equation (6.21)

shows that condition (6.27) is not violated if (6.29) is satisfied.




205E.7 -29

'lf the neutral zone is at z = - t/2 equation (6.27) gives
[— ) -
de, _ t/2t(1-2v) dKy - (2- V) dk«} ... . (6.30)

2=+ (1-2V) Vi

and dej > 0 only if

dk, > f%i?%; dK, | C ... (6.31)

‘'The plasticity condition (6.27) is not violated if equation (6.31) is

satisfied.
From equations (6.28) and (6.30) it is seen that
de, = O

and consequently according to equation (6.26)

dN, = 0

for

2-V
ety dK, c ... (6.32)

tl

dK,

Furthermore dJ2 = 0 for the entire cross-section. Thus

d@x = _2]— dgy ' _ o e e (6.33)

for an initially plane plate with oy = 0. .

In this case, since bending is not accompanied by an increase in
axial load the influence of initial imperfections will be the greatest.
. ‘ I3 3 * wl,
Suppose biaxial loading starts at oy = oy, oy = 0, e = e§, €y = €§. Then

it follows from equation (4.10) with equation (6.33) that initially

dJ, = +a,do, | L (6.34)
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If during biaxial loading the ratio of dg, and dcy is taken according to

equation (6.33), then integrating equation (6.34) gives
_ * 2 _ | #2 2 6
— - L + e e .35
J, J, + ay 5 0x + T . | (6.35)

.Applying equations (6.8) to (6.11) to the computation of the moduli D,

Dy and Dxy as defined by equation (3.6) gives:

D, = RS-TZ . .« . (6.36)

D, = RSP—TZ .. . . (6.37)

Diy = Dyy = 1-?—-51:?2 | C e . (6.38)
where

R.: é? + é; F g*? e e e (6.39)

5:é.+ép(%m_632 C o .. (6.40)

-ﬂ:%,%pqxgaﬂﬁ) C oo . (6.41)

" The re;ults are shown graphically in Fig. 12 for d:-= 36 ksi and
oi = 54 ksi. From these results it can be concluded that the influence
of the magnitude of d; is negligibly small. It is not obvious, however,
which values of Dy, Dy and Dxy should be selected as being applicable in
the strain-hardening range.  Fortunately, compression tests on wide-flange

sections presented in Chapter 7 reveal that the ratios of the half-wave
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length of the buckled shape over the depth of the section for the cases

of web buckling are 0.55 and 0,54 (Tests D4 and D6 respectively). .According
to equation (3.21) this ratio is equal to fnggﬁi; if the small restraining
effects of the flanges.are neglected. Figure 13 shows the influence of
oy/c: oﬁ G Dx/Dy . Oq account of the results of the web buckling tests
the values of Dx,.Dy and,ny corresponding to cy/c§ = 0.34 have been

selected as applicable to the strain-hardening range.

Thus
D, = 3,000 ksi
'Dy = 32f800 ksi
D = D = 8,100 ksi

Xy yx

o~
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7. COMPARISON WITH TEST RESULTS

“For the selection of applicable values of Dy, Dy, ny, Dyx.and
Gt use has been made of the results of local (plate) buckling tests.
The results are summarized here and are presented in more detail in

.another paper(lg).

7.1 Compression Tests on Angles

A number 'of compression tests on angles were performéd with the
purpose of checking the theoretical estimates developed above. -Angle
specimens have better knownvboundary conditions than WF sections and
therefore give a more positive check. .When buckling torsionally under
the action of an axial load, the flanges of the angle act as two plates
each with one free and one hinged edge, the heel forming the hinged edge.
The loaded ends of the column were fixed against rotation in the testing
machine. The dimensions of all specimens are given in Table 2. Besides
the longitudinal strains aﬁ the flange tips and the heel, the rotation
of the center section was measured. From the rotation measurements
the critical average strain was determined. The results of the angle

tests are summarized in Table 3.

:When all of the material is strained into the strain-hardening
range (ec.p > go) the theoretical solution is given by equation (3.12),
the length of the angle specimen being 2L. .A solution for the yielding

range (ef £ €cr £ €g) can be derived if the following three. assumptions

are made:
1. The material is elastic up to the yield stress.
2. In the yield range the specimen is partly elastic and
partly strain-hardened.
3. The strain-hardening zones initiate at both ends and

move toward the middle.
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From the first assumption it follows that, if ocy £ o, the critical

stress is given by
_ 6 )2 mE bz ‘
Ter = () [W) (T\*G] e G0

When gcp obtained from equation (7.1) exceeds 0o, yielding will have
commenced. From the second assumption it then follows that the middle
section, being still elastic, is practically rigid compared with the
yielded zones. -Assuming that only the latter will deform results in the

following .expression for the buckling stress

Ter = 0o = (£) [ ZD"QL) ] »(7.2)

where
§[_ = length .of .each yielded ione

The corresponding critical strain is

=‘(|-¢)e_$+¢,e° | . )

‘Substituting in equation (7.2) the values of Dy and Gy this equation
de%frmines the relationship between b/t and {. For L/b = 2,65, the

average value of the tested sections, the b/t vs { curve has been plotted
in Fig. 14 as a solid line. .As elastic deformations have been neglected
in equation (7.2) b/t = OO for { = 0. For this case b/t.= 20.7 which

is found from,equation_(7.1)'gy taking o = 36 ksi and L/b = 2.65.

Knowing the rigid.plgstic solution .and the point for { = 0 of the elastic-
plastic sblution-théjlaﬁter has béen  sketched in Fig. 14 ds a dotted.line. The
elastic-plastic solution of b/t vs { with eqﬁation (7.3) gives €.p 85 @

function of b/t for the range €f < €cr < €p- The complete theoretical
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. ¢urves are shown in Fig. 15 for L/b =00 and L/b = 2.65, and are compared
wWith the test results. The theoretical curves give a good description of

the buckling strength.

7.2 Tests on Wide-Flange Shapes

In order to investigate the actual behavior of WF shapes with
regard to local buckling, six different shapes were each tested under

two loading conditions:

(a) Axial compression (Test D1, D2, D3, D4, D5, D6)

(b) Pure Bending (Test Bl, B2, B3, B4, B5, B6)

The dimensions of all WF specimens are given in Table 4 and the test

results are summarized in Table 5.

For the cases where flange buckling was predominant the critical
strains of the flanges vs the b/t ratios and the theoretical curves are
plotted in Fig. 16. The theoretical solu£ion is given by equation (3.10).
The results of tests D4 and D6 are omitted because web buckling occurred

- first and obviously caused premature flange buckling. Furthermore

N-} specimen B4 did not .develop a major flange buckle but failed by lateral
buckling. Therefore this pesult has also been eliminated from Fig. 16.

.. From this figure it can be concluded that, if premature web buckling is
prevénted, the webs of the tested sections provide some restraint to the
flanges corresponding to a value of B from O to about 0.05. Comparing

- the theoretical values of the half-wave length over flange width ratio
given by equation (3.11l) and plotted in Fig. 17, with the measured
values of the bending tests given in Table 5 shows that the theory gives
a/good.description,of the actual behavior. For the axial loading tests

the half-wave length was obviously influenced by web buékling, except for

specimen D5 which had the smallest d/t ratio.
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'.'.qufpgélééses where web buckling occurred first (Test D4 and D6)
or éiﬁ;iféﬁgaﬁs,%ifh flange buckling (Test D2) the critical strains are
ﬁlégtéﬁ;§§ the a/t ratios as in Fig. 18. Comparison is made with the
theoretiéél ﬁoiﬁtions given by equations (3.20) and (3.22) for the cases
of zero and full restraint respectively. Again favorable agreement is
obtained. The values of £4/d given by equation (3.21) and plotted in
Fig. 19 necessarily agree with the experimental values because Dy and Dy

were selected in view of these test results.

7.3 Summary

The results of the investigation presented in this paper can be
divided into two parts: firstly the derivation of stress-strain relations
for the strain-hardening range of structural steel arnd secondly their

application.. to the plate buckling problem.

Effective stress-strain relations were determined describing the
orthotropic behavior of steel after it has been compressed into the

strain-hardening range. The following values of the moduli were found

to be applicable:

Dy = 3,000 ksi
Dy = 32,800 ksi
Dyy = Dyx = 8,100 ksi
Gr = 2,400 ksi

It is considered that the agreement between theory and test results

(Figs. 15, 16, and 18) justifies this approach to the problem.

A direct practical application of the findings presented in this
paper is the prevention of local buckling of outstanding flanges in con-

tinuous frames, in which the design is based upon ultimate strength.
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From the required rotation: capacity of the plastic hinges the strains
of the flanges can be determined. Fig. 16 then gives the required b/t

ratio, for B = 0.01.

These stress-strain relations could equally well be applied to
other problems involving the occurrence of shear and biaxial stresses

and strains in thé strain-hardening range of steel.




205E.7

8. ACKNOWLEDGMENTS

!

This paper is based on a Ph.D. dissertation presented to the
Graduate Faculty of Lehigh University. The author is greatly indebted
to Dr. Bruno Thﬂrlimann who supervised the research project. His .advice

and suggestions are sincerely appreciadted.

The project was part of the research program "Welded Continuous
Frames and Their Components', carried out at Fritz Engineering Labératory,
Lehigh University, Bethlehem, Pennsylvania under the general direction of
Dr. Lynn S. Beedle; the investigation is sponsored jointly by the Welding
Research .Council and the Dépértment'of the Navy with funds furnished by
the American‘Institut; of Steel Construction, AmericanAIron,and Steel
Institute, Column Research Council (Advisory), Office of Naval Research
(Contract_39303), Bureau of Ships and Bureau of Yards and Docks.
.Piofessor:William J. Eney is Director of Fritz Engineering Laboratory

and Head of the Department of .Civil Engineering.




205E.7

10.

11.

12.

13.

-38

9 REFERENCES

. Timoshenko, S., "THEORY OF ELASTIC STABILITY', McGraw-Hill, New

York, 1936.

Bleiéh, F., "BUCKLING STRENGTH OF METAL STRUCTURES', McGraw-Hill,
New York, 1952.

Nadai, A., "THEORY OF FLOW AND FRACTURE OF SOLIDS'", McGraw-Hill,
New York, 1950. :

Bijlaard, P. P., '"SOME CONTRIBUTIONS TO THE THEORY OF ELASTIC AND
PLASTIC STABILITY", International Association for Bridge
and Structural Engineering, Vol. VIII, 1947.

Ilyushin, A. A., "STABILITY OF PLATES AND SHELLS BEYOND THE @ .
PROPORTIONAL LIMIT', (Translated from Russian), NACA TM-116,
October, 1947.

Stowell, E. Z., "A UNIFIED THEORY OF PLASTIC BUCKLING OF COLUMNS
AND PLATES", NACA Report 898, 1948.

Handelman, G. H. and Prager, W., "PLASTIC BUCKLING OF A RECTANGULAR
PLATE UNDER EDGE THRUSTS', NACA TN-1530, August, 1948.

Drucker, D. C., "STRESS-STRAIN RELATIONS IN THE PLASTIC RANGE -- A
SURVEY OF THEORY AND EXPERIMENT'", Report All Sl1, Graduate
Division of Applied Mathematics, Brown University,
December, 1950.

‘Onat, E. T. and Drucker, D. C., "INELASTIC INSTABILITY AND INCREMENTAL

THEORIES OF PLASTICITY', Journal of the Aeronautical
Sciences, Vol. 20, No. 3, March, 1953.

‘Haaijer, G. and Thilrlimann, B., "COMBINED COMPRESSION AND TORSION OF
STEEL TUBES IN THE STRAIN-HARDENING RANGE', Fritz Laboratory
Report 241.2, Lehigh University (in preparation).

Girkmann, K. "FLACHENTRAGWERKE", 2nd Edition, Springer Verlag,
Vienna, 1948.

Lundquist, E. E. and Stowell, E. Z., "CRITICAL COMPRESSIVE STRESS
FOR OUTSTANDING FLANGES'", NACA Report 734, 1942,

Lundquist, E. E. and Stowell, E. Z., "CRITICAL COMPRESSIVE STRESS
- " FOR FLAT RECTANGULAR PLATES SUPPORTED ALONG ALL EDGES AND
ELASTICALLY RESTRAINED AGAINST ROTATION ALONG THE UNLOADED
EDGES", NACA Report No. 733, 1942,




205E.7

14,

15.

16.

17.

18.

19,

20.

-39

.Sokolnikoff, I. 5., "MATHEMATICAL THEORY OF ELASTICITY", McGraw-Hill,

New York, 1946.

Prager, W., YRECENT DEVELOPMENTS IN THE MATHEMATICAL THEORY .OF
PLASTICITY", Journal of Applied Physics, Vol. 20, Nr 3,
1949. '

.Wilder, T. W., III; Brooks, W.. A., Jr.; and Mathauser, E. E.

"THE EFFECT OF INITIAL CURVATURE ON THE .STRENGTH OF AN
INELASTIC COLUMN'", NACA TN 2872, January, 1953.

Huber, A. W. and Beedle, L. S., "RESIDUAL STRESS AND THE COMPRESSIVE
.STRENGTH OF STEEL'", Welding Journal, 33 (12), December,
1954,

Ramberg ,;W. and Osgood, R., "DESCRIPTION OF STRESS-STRAIN CURVES BY

THREE PARAMETERS', NACA TN 902, 1943.

Haaijer, G. and Thirlimann, B., "“ON INELASTIC LOCAL BUCKLING IN
STEEL", A Theoretical and Experimental Study with
Recommendations for the Geometry of Wide-Flange Shapes
in Plastic Design, Fritz Laboratory Report 205E.8, Lehigh
_University, August, 1956. '

Haaijer, G. "LOCAL BUCKLING OF WIDE FLANGE SHAPES", Ph.D. Dissertation
1956, Lehigh University. : :




205E. 7

10. NOMENCLATURE

Tensor Notation

F = function’défined by equation (4.1)
£ = yleld and loading function

i, j; k, £, m - are lettér sub#cripts taking thefvalugs;1,2; and 3

,Jz = secqnd invariant Qf‘deviatoric_St;ess'tengor
k = constant

s =  ‘mean normal stress.

815 = components of;deviatpric.stregs tensor

;xi = coordinate axis

835 = Kronééker delta

*gij = coﬁPOﬁents‘of‘Strain‘ten8qr

é:j = . elastic strain component

;Ej = plastic strain component

ojj =  compoments of stress tensor

,Engineering Notation

A, a;, a; - are constants
B = constant
b = width of plate with one free edge

€1+ C2, C35 Cy,

Ex
1=V, "V,

Ey

. I"’Vx'\/y

v, D,
Vi Dy

width

Cs, C6,'C7 - -are constants

of plate supported along all four edges.
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modulus of elasticity

tangent modulus

tangent modulus in x - direction

tangent modulus in y - direction

strain—héfdening modulus

ratio of § over depth of simplified column

valué of f at initiation of strain-hardening

value of £ at-which_strain reversal takes plaée

modulus of elasticity in shear

tangent modulus in shear

function defined by.equation (3.6)

thickness of sheet forming simplified cruciform.sectioﬁ
moment of inertia per unit width of plate

constant

curvaturebof plaﬁe in x - direction

curvature of plate in,y - direction

twist of plate

half-wave length of buckled shape

bending moment per unit width of plate in x - directiéd
bending moment per unit width of plate in y ~ direction

torsional moment per unit width of plate in -

axial force per unit width of plate in x - direction

axial force per unit width of plate in y - direction
exponent in equation (6.1)

ratio of modulus of elasticity over tangent moédulus
ratio defined by equation (5.6)

function defined by equation (6.39)

function defined by equation (6.40)
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<

function defined by equation (6.41)
thickness of plate

deflection of plate

cqordinaté axis

coordinate axis

deflectién,of simplified column
maximum value of y

coordinate axis

B/A = coefficient of restraint

angular strain in xy plane

critical strain cdrresponding to O.p

yield strain

strain at initiation of strain-hardening
normal strain in x - direction

value of €, at which biaxial loading starts
normal strain in y - direction

value of ¢, at which biaxial loéding starts

y
coefficient determining length of yielded 2zone

angle df twist per unit length

Poisson's ratio

coefficient of dilatation for stress increment in x - direction
coefficient of dilatation for stress increment in y - direction
critical (buckling) stress

elastic buckling stress

yield stress

value of ¢ at which_strain_reversal takes place

normal stress in x - direction
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value of oy at which biaxial loading starts
normal stress in .y - direction |

shear stress

function defined by equation (6.10)

edge moment per unit length to produce unit rotation .of edge
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TABLE 1

RESULTS OF COMPRESSION COUPON TESTS

i € E
.Coupon Fr;iibtib‘ Section kzz_ xig3 _kgi Note
1 220A-UF3 14WF30 39.7 | 13.0 730 |All WF section
2 220A-UF4 " 41.5 | 14,6 690 coupons taken
3 220A-LF1 " 42,5 | 14.6 650 | from flanges
4 220A-LF2 " 39.0 | 12.5 790
5 220A-LF3 " 39.7 | 12.5 730
6 "220A-LF4 1 42.0 | 13.0 670
7 220A-A " 40.8 | 15.0 640
8 220A-B " 40.8 | 12.5 675
9 220A-D " 40.3 | 15.5 650
10 220A-E L 39.6 | 14.5 650
11 220A-F " 35.3 | (6.0) | 780
12 220A-G L 36.2 | (6.5) | 700
13 220A-B2F3 8WF31 40.0 | 17.4 770
14 220A+B2F6 " | 38.8 | 11.5 810
15 220A-B2F7 " 39.0 | 14.8 730
16 205E-Cl4 10WF33 40.0 | 14.5 855
17 205E-C15 " 37.0 | 13.8 805
18 205E-C2 8WF40 38.4 | 12.8 | 1060
19 205E-C9 1.6.6.3/8 | 39.0 | 12.8 | 710
20 205E+C12 " 37.6 | 14.3 906
21 _.205E=C13 1 35.1 | 14.6 845
Average Values* 39.2 13.9 755

* Numbers in parentheses not used for determining average value:
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TABLE 2
DIMENSIONS OF ANGLE SPECIMENS
3 Length Width Thickness
Specimen | o1 (in.) | b (in.) t (in.) b/t 2L/b | i Material
A-21 25.0 4.87 0.383 12.70 | 5.14 A
A-22 25.0 4.79 0.381 12.60 | 5.21
A-31 17.9 3.27 0.370 8.85 | 5.48 |  Annealed
A-32 17.9 3.28 0.374 8.79 | 5.46
A-41 12.5 2.31 0.377 6.13 | 5.41
A-42 12.5 2.34 0.371 6.36 | 5.35
v ’
A-33 17.5 3.30 0.378 8.73 | 5.30 4
.As-Delivered
A-51 21.2 4.07 0.380 10.70 | 5.21
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) , ‘ TABLE 3

* : RESULTS OF ANGLE TESTS
Test _1::1 Sex "10° Eii 'ﬁﬂiiﬁig
A-22 | -- 3.0 32.2 tofsiongl '
A-31 | 34.9 16.5 35.8 Atorsional
A-32 | 34.6 16.5 35.6 torsiqnai
A-41 35.3 -- -- bending

. A-42 | 34.1 -- -- bending

. A-?3 41.3 16.0 46.4 | torsional
A-51 | 41.0 6.0 41.2 | torsional
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TABLE 4

DIMENSIONS OFAWF.SPECIMENS

2b te d ty L fLL

Spec. |Shape in in in in in | in b/eg| d/ty

B1 DI |10WF33 | 7.95 | 0.429 | 9.37 [0.294 32 |32] 9.2 | 31.9
B2 D2 | 8WF24 | 6.55|0.383 | 7.63 |0.236 | 26| 26| 8.6 | 32.3
B3 D3 |10WF39 | 8.02 | 0.512 | 9.37 {0.328 32| 32| 7.8 | 28.6
B4 D4 |12WF50 | 8.18 | 0.620 | 11.57 [ 0.351 | 32| 32| 6.6 | 33.0
B5'D5 | 8WF35 | 8.08| 0.476 | 7.65|0.308 | 32| 32| 8.5 | 24.8

B6 D6 |10WF21 | 5.77 | 0.318 | 9.56 | 0.232 23| 26( 9.1 | 40.9

2b = width of flange

tg = thickness of flange

d = distance between center planes of flanges
t, = thickness of web

L = length of compression 'specimen

Ll = length of part of bending specimen subjected to pure bending
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TABLE 5

RESULTS OF WF TESTS

Test ki“,oi €er” 107 cr ksi Flange Wep Type of Buckling
Flange | Web | Flange | Web £/b L/ ,

D1 34.4 8.5 8.5 34.2 34.2 1.8 0.56 flange
 D2 34.0 13.5 12.7 34.0 34.0 1.5 0.50 flange &‘web
D3 35.2 19.0 19.0 39.0 39.0 1.5 0.46 flange

b4 35.0 18.5 5.0 36.8 35.4 1.5 0.55 web

D5 | 36.6 | 17.0 17.0 | 38.0 38.0 | 2.2 |0.56 flange

D6 | 38.0 4.3 1.6 | 33.8 | 37.2 -- 0.54 web

Bl | -- 7.0 | -- - - | 2.4 - flange

B2 | -~ | 23.0 | -- | == | -- |2.0 | -- |flange & lateral
B3 .-- -1 22.5 - -- -- 2.2 -- | flange & lateral
B4 -- | 29.0 -- -- -- -- -- lateral

B5 -- 22.0 B -- -- 2.0 - flange & lateral
B6 — 14.0 -- -— -— 2.4 -- flange &"lateral
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