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l. SYNOPSTIS

Thé application of»plastié design to continuous frames
constructed of wide-flange shapes, imposes more severe limitations on
the geometry of these shapes than conventional elastic design. 1In
regions where yield}ng starts first the flanges must be able to sustain
strains considerably larger than the yield strain without the occurence

of local (plate) buckling.

With this practical application in mind, the problem of
buckling of steel plates compressed beyond the yield strain is treated
in the present dissertation, In the strain-hardening range the material
is considered to be homogeneous. However, because of the yielding
process the material cannot be expected to remain isotropic. Therefore,
general expressions for the buckling strength are derived assuming the

material to have become orthogonally anisotropic.

Orthogonal anisotropy in the case of plane stress is expressed
mathematically by stress-strain relations inVo1ving five moduli.
Numerical values of éhe moduli are eétimated from the incremental
theory of plasticity taking the second invariant of the deviatoric
stress tensor as the loading function. The influence of initial
imperfections is taken into account through proper adjustment of the

values of the moduli.

In the yielding range the average strain in the direction of
loading is between the strain at which yielding starts and the strain

"at the beginning of strain-hardening. For this case the material
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is considered to be partly elastic and partly strained up to the strain-

hardening range.

'Finally, theoretical estimates are compared with test results.

Fair agreement is obtained.



2. INTRODUCTTION

Presently used steel wide-flange shapes are proportioned such
that no local buck}ing occurs within the elastic range. ConseqUently
they can safely be used forAstructures in which the design is based upon
theoretical first yield as the limiting condition (conventional design).
However, design based upon ultimate strength (plastic design) imposes
more severe req&irements on the sections with regard to iocal buckling.
The structure will reach its full ultimate 1bad only if those parts
where yielding starts first, can undergo sufficiently large
deformations. For framed structures constructed of wide-flange shapes
the flanges at the above mentioned locations must then be able to
sustain strains considerably larger than the yield strain. Consequently
the flanges should be proportidned such that local (plate) buckling

does not occur under this condition.

In order to solve problems of plate buckling the relationships
between the increments of stresses and strains due to the deflection
of the plate out of its plane must be known. Within the elastic range
the assumption thatAthe material is isotropic and homogeneous leads
to predictions which are in good agreemént with test results(l)*.
A satisfactory transition curve for the range from the elastic limit
stress to the yield stress can easily be obtained by applying Bleich}s

semi-rational theory to an effective stress-strain curve(2).

* See list of references, page 49 .
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During the yielding process the material is heterogeneous.

-Yielding takes place in so-called slip bands and the strain jumps from
its value at the elastic limit to that at the beginning of strain-
hardening(3), When all tﬁe material has been strained to the strain-
hardening range the material again becomes homogeneous. To the
stréin-hardening range, stress-strain relations of different theories
of plasticity could be applied. Such theories can bg divided into

two groups: deformation or total stress-strain relations and

incremental stress-~strain relations.

Bijlaard(4) was first to apply deformation stress-strain
relations to the plate buckling problem. The theory was developed
further by Ilyushin(3) and modified by Stowell(e)° Incremental
stress-strain relations were applied by Handelman and Prager(7).

An extensive survey of stress-strain relations in the plastic range

has been made by Drucker(8). Although the necessity for an incremental
type of mathematical theory of plasticity has been shown, the results
of plastic buckling tests on aluminum plates are well correlated by. a
deformation theory and bear no resemblance to predictions of
incremental theory. Onat and Drucker(9) investigated the influence

of initial imperfections on tor§iona1 buckling for a simplified

model of a cruciform section. .For this case the paradbx appears at

its worst. Onat and Drucker showed that incremental plasticity leads
to proper results when unavoidable initial imperfections are taken

into account.

All theories of plate buckling in the plastic range imply

orthotropic behavior of the material. This assumption seems to be



very reasonable. Therefore, in the present dissertation general
expressions for the buckling strength of orthotropic plates are

derived from general stress~strain relations involving five moduli
(Chapter 3). Tests by the author on combined compression and torsion

of steel tubes showed that the behavior of the material is well described
by the incremental theory with the second invariant of the deviatoric
stress tensor as the loading function(10), Consequently, this theory

is used in order to obtain values of the moduli of the general stress-

strain relations.

Generalities on stress and strain and incremental stress-
strain relations are reviewed in Chapters 4 and 5. The influence of
initial imperfections is illustrated in Chapter 6. From the results
of coupon tests numerical values of the moduli are then obtained in
Chapter 7. .The influence of initial imperfections is taken into
account through adjustment of the value of the shear,modulus. Combining
the results of Chapters 3 and 7 gives numerical solutions of the local
buckling problem presented in Chapter 8. Theoretical predictions are

compared with test results in Chapter 9.
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3. BUCKLING OF RECTANGULAR
ORTHOTROPIC PLATES

3.1 .General

Consider a rectangular steel plate taking the center plane of
the ﬁlate as the x - y coordinate plane. Compressing the plate in the
.X - direction into the strain:hardening range ﬁay affect all
deformation properties of the material. Hence the tangent moduli, Eg
and.Ey in the x - and y - direction reépéctively,'are probably
different. The same may hold for the coefficients of dilatatiori,vX
and W& in the x - and y - dirgctionQ The shear modqlus, Gy, may also
be affected.

Thus '

0 €x l_ 2>€y 1

20x  Ex a“_oy "~ Ey

"V .

°€x R 4 ?iix - _Y:& . . . (3.1)
o0y Ey Doy E,
OYxy _ 1

?)Txy It

where

€ = normal strain

a .= shear strain

v = normal stress

T = shear stress
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Then the relations between the increments of strains and

stresses can be written as follows:

1 . Y-
= = . L
dey By do, o dcy
' y
- X l
dey = - -——Ex do’x + Ey dO'y o . . B o (3\:2)

daky

1
Gp YTxy

If equations (3.2) are valid for the entire cross-section the

expressions for the bending and twisting moments in terms of the

deflection, w, in the direction of the z-axis become

2 ,
Exl [3w+v a—zw—_‘ . .. (3.3)

M = - T-ve vy | ox2 Y oy2 |
2., ] ' ,
o BT 2% o W . . . (3.4)
M, 1YYy oy2  ¥*oxZ2 |
2% | (3.5)
where
3
1= B
12
t = thickness of plate.

The condition that the bent position is in equilibrium can

be expressed by the following differential equation:
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b o (M ofw P -
TR oxb T 9x2y2 7\ Yoyb Uxbxz (3.6)
where
D = ‘_.&__‘E"I |
X l-?%‘Yy
p = EyT
Ty 1’1%'Vy

2H = vD, + VD, + 2y

The derivation of these equations may be found in the
pertinent literature(1l), Only if HZ = Dny, an assumption made by
Bleich(z), can solutions of this differential equation be easily ob-

tained.

1f the plate is initially perfectly plane .the value of Ox
at which bifurcation of equilibrium occurs (the plane and the bent
position are both.eéuilibrium positions) is determined by equation
(3.6), The condition that both the plane and the bent position Are
equilibrium positions can also be expressed in terms of work.  The |
additional work done by the external forces due torbending of the.plate

must equal the change in internal energy of the plate.



This yields the following integral equation
2
) +

AR N R

ot 15| 22) % axay = 1i[n 23

X

24\ 2] | .
+ 2ny ‘é%i;;)‘ J dxdy . . (3.7

When external restraints are provided to the plate the right-
hand side of eqﬁation (3.7) has to be supplemented by additional

terms expressing the work done by these restraints.

By assuming an appropriate deflection surface, equation (3.7)
gives an approximate solution. The degree of approximation depends
upon the correctness of the assumed deflection surface. 1In any case

the result will be conservative.

3.2 Plates with one.Free‘Edge

For a rectangular plate with the loaded edges x = 0 and
x = J hinged, edge y = 0 restrained against rotation and edge y = b

free (figure 1) the following deflection surface is assumed

2 3 ‘ L = : ,
= X pA pAN X ;o IX
w- [Ab+B{‘b\+al (b\+a2 (b) }:|51n1z . . (3.8)
The ratio B/A depends upon the amount of restraint. In the
case of elastic restraint, where )0=rmoment per unit length required_
for a unit rotation
B b '
p o= 5 = *b_ . : . . . (3.9)

2Dy
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Deflection surface (3.8) is similar to the one used by
Lundquist andetowell(lz). . As shown in the appendix better results are
‘obtained with equation (3.8) if the following values for a; and ap are

used

For 0 < B < 0.3 a;j - =..- 0.7
a, = 0.2.

and for B = o0 a; =- ;1.11
a, = 0.57.

Substituting w in equation (3.7) and integrating gives

2 2 b 2 2
o = a3y (3 R
12(1- v,y )/ : + BCy + 62-02,
) .
1 BC, + p2C
- (WEy + ”kEy) (E)O . ..4 z +
3 + BCy + B4Cy
| (1) 1+ pce + 2y | ‘
+ 4 (1-7vy) Gy (g). T ‘ : (3.10)
‘ 1 ‘ 2
where
C1 = 1/2 + 2/5 a; + 1/3 ay
= 2 2
C2 = 1/5+1/3 a; +1/7 (a_1 + az) + 1/4 aja, + 1/9. ay
= 2 2
€y = 4 + 12a1 + 144/5 a; + 12al + 16a2A+ 36a1a2
.C =



o
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= 2 ' v 2
_c5 2/3 + 2a1v+ 1/5. (6a1 + 14a2) + 3a1a2 +12/7 a2
C, = 2(1 + a; + ay)
C; = 4/3+3a) +1/5 (9a2 + 16ay) + 4aja; + 16/7 a2

The minimum value, 0,,., of o, is obtained for 4/b given by

4 1 —
3+ BCp + B2y 4f g _
) = U . 2 . . - . (3.11)
[+ 28 + B~ Cj E

In the limiting cases when the edge y = 0 is hinged or complétély

b

I

o=

fixed equation (3.10) reduces to

a. 'Edge y = 0 hinged (8 = 0) and 4 = L
e = (8 [ ey (B) L
Oer = | B 1§?T:ﬁ7;1;;) L Gt . . (3.12)

For a long plate the first term can.be_neglected and
| . 2 - .
ey = (E) G, . S . . . (3.13)

b. ‘Edge y = 0 completely fixed (B =0C9)

The minimum value, o.,., of 5, is obtained when the half-wave

length £ satisfies

4 , :
% = 1.39 Ex . . . . . . (3.14)

(5)2[10,14 EyEy - 3.88 (YyEy +VyEy) +1.82¢
x _ , . Ut

(3.15)
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3.3 Plates'Supported»Along;All Four Edges

The loaded edges x = 0 and'x = f are hinged and the edges
y = 1 d/2 have equal restraint against rotation (figure 2). For this

case the following deflection surface is used(l3)
3. L)+ 1Y | g1ntX ’ |
w = |Bef¥, - ..)+ A+ B) . cos & |sin®® . .  (3.16
[ (d“" )" ) d] 4 .16

The ratio B/A depends on the amount of restraint. For elastic restraints

with 7#; moment per unit length required for unit rotation
B=§=')Zd_ . : . . ,, . (3.17)

;Substituting w from equation (3.16) in equation (3:Ii) and integrating
AN

gives
1 ., 2 2
252 [_{E l)2+-E'.£2', 7 Tt 22 )B + B“cy
O T 12(1- Yx v L *ls M - 2 +
y 1/4 + ey + B“cy
2 .2
. l) 1/4 + Bey + Bicy
+ ( VyE, + V4Ey) . ((;. - TG T e, T B, +
- 1\2 1/4 + pey + ey ’
+ 4(1-V, Vy)-G (-a-) o . 1 . . . (3.18)
t 1/4 + Bci + Bécy '
with
¢, = p.09472
c, = 0.00921
cy = 0.04736
c4 = 0.01139
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The minimum value of oy is obtained for £ given by

4 e, 1/4 + ey + p2ey

Ey 1/4+ (Ci + 2/x2) B + B2C3

IS

(3.19)

In the limiting caées, when the unloaded edges y = ¥ d/2

are hinged or completely fixed, the minimum values of oy are

a. Edges y =+ d/2 hinged (B8 = 0)

- a?
Ocr = 17 (

)Z[Z-VEXEY + VyEx + YxEy

vl-‘"x'Vy

ajer

+ 4Gt:}. . (3.20)

where

2 \4/—1; |
x .
= —_— T A D)
d Ey R ,

b. Edges y =+ d/2 completely fixed (B =00)

x2 (_t_)z [ 4.554 VExEy + 1,237 (VxBy + VyEy)

%r = 13 |4 - Ve Vy

+ 4.943 Gt:l T € I 13

where

4 rg : . :
+X : .
= 0.66 \/ B - s e e e e ... (3.23)

v Vs V& and G,

WIS

In the following chapters values of E., E
will be determined. On.substitutihg these values in the above general
expressions, numerical solutions to the local buckling problem will be

obtained.



4.1 General

4. STRESS

AND STRAIN

14

The moduli of the orthotropic stress-strain relations of

equations (3.2) will be determined using the mathematical theory of

plasticity. -After summarizing generalities on stress and strain in

the present chapter a review of the theory will be given in Chapter 5.

In order to save space and time tensor notation will be used in

referring to generalized_stress:and'strain.

In tensor notation cartesian coordinates xy, X, and X3,

corresponding to the x, y and z axis of engineering notation are

~, o
denoted by letter subscripts i, j, k,}£§;which take the values 1, 2

and 3.

. The nine components of stress and strain tensors are

represented by single symbols 0 and eijvrespectively.~

and

11
21

31

11

21

a1

92

%22

932

0l3

993

33

13
23

€33

\

o] T T

b4 Xy Xz
T o T
YK y yz
T T o}

zx zZy -z

e . L2, 12y,

Vi &y Yy
l/ayzx _1/2 zy €z

By definition

- (4.1)

(4.2)
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Due to symmetfy of the tensors,

Os: = O e e v e e e e e e (4.3)

ij ji

€5 = €51 - e e e e e (44)

‘the stress and strain tensors each consist of 6 independent components.
The derivation of equations (4.3) and (4.4) can be found in the
pertinent literature, e.g. in Sokolnikoff's book oﬁ the mathematical
theory of:elasticity(la).

As 1s customary in tensor notation repeated subscripts will

1

indicate summation. Furthermore, thegKr@necker~delta, 5ij’ is defined

i

as unity for i =’j and zero for i # j.

The state of stress, with components gj4 can be split into
two parts: a uniform tension (or compression), 8, and another state

of stress, with components s having the same shear stress but zero

ijo
mean normal stress. The latter is called the .deviatoric stress tensor.
Thus

013 = Sij + Sﬁij S I I T (4.5)
with

P 7 S D)

Similarly, the strain tensor with components €13 can be
divided into a uniform expansion, e, and a deviatoric strain tensor with

components eij'
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Thus

Eij = eij + eaij . . . . . . . . - ° o (4- 7)

~and

e = 1/3 eii e cec & wwme e ce . . . « (4.8)

4.2 Invariants
The derivation of the principal stresées,:cp;,from,the“6.inde-

\eads
pendent components, 0ijs of the stress tensor loads to a cubic equation

3 2
op * Aoy + Bop, + € =0 . . . . . . . (4.9)

The coefficients A, B and C are functions of the stress components.
.As equation (4.9) must be independent of the arbitrarily chosen
coordinate axis, xj, the coefficients A, B and C are necessarily in-

variants. It is customary to choose as the first invariant
Il = ckk ( = - A) . . . . . . . . . . . (4-10)

With regard to plastic deformations the deviatoric stress
tensor is more important than the stress tensor itself. The invariants
specifying the state of deviatoric stress are obtained from a cubic

equation similar to equation (4.9).
+ A'S2 4+ B'S, 4+ €' = 0 . .. . . . (4.11)

The invariants are e

‘Jl = Skk = Okk --asﬁkk = 0 . . . . . . (4.12)
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Jy = L/2syys (=-BY . L . . L L. (4.13)

J3 = 13 si5 850 s (=-C) . . o L L (4.14)

4.3 Yield Conditions

It is commonly assumed that yielaing occurs whenever some
funciion.of stress, f (oij), equals some number, k., If the material
is originally isotropic this yield condition is independent of the
orientation of the coordinate system. In this instance f must be a
function of the stress invariants.. Bridgman(ls) haé investigated the
influence of Ij and found that'pressurés of the order of the yield

stress have practically no influence on yielding. The yield condition

thus becomes

£ (T2 d3) = K+ v e e e ... (4.15)

One of the simplest yield conditions is the Huber-von

Mises-Hencky criterion
3, = K : (4.16
Jy = k. B B (R )

where k denotes the yield stress in pure shear. 1t represents a
surface of constant distortional strain energy. Nadai pointed out

that it is also a constant octahedral shear stress criterion.

¢

Tresca's maximum shear stress criterion is mathematically

more complicated ‘and takes the form

¥
3 2 2.2
- 27J3 - 36k°J, + 96k

4
.4J2

I - 64k® = 0 . (4.17)

2
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However, as mentioned,by’Prager(l6),_even under the most
unfavorable circumstances the value of \/Ez-furnished by Tresca's
yield condition differs from the value of k furnished by the Mises
condition only by about 15%. Furthermore, test results usually fall
in between the predictions of Tresca's and'Misesj yield conditions.
.On account of its greater simplicity the Mises coﬁdition is generally

preferred for theoretical analysis,
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5. INCREMENTAL ,S'TJR“E”S“S -

STRAIN RELATIONS

5.1 General

An extension of the yield function is obtained by assuming
the existence of a loading function, f (dij)z which”depénds upon. the
state of stress and strain and the-histqry of loading. . For ideally
plastic materials plastic floﬁ occurs Qhenéver'f'equals some number k.
For materials exhibiting strain-hardening plasticidefdrmations obcgr

when the loadiﬁg function exceeds k.
Prager(17) proved that, if

1. _A loading function exists
2. The relation between infinitesimals of stress and strain

is linear,

the only permissible stress-strain relation for strain-hardening

material when loading is

P of Df

deyy = Fbcij Sop1 . dop; - - - (L') C o . . (5.1)
_ ‘ R,. Vo&yﬂﬂﬂ A\ .
_.and when unloading is A% ,“ywAﬁK _
! w&k
po_ | ' »
deij - 0 . . c e . ) . . . . e e . .o . (5.2)
where e?j = plastic .component.of . strain €5 and F and f are

functions. df..@.t’ressf..and. &tra}in-> .)D{//YO\/\'N» ook Styess 9 ’YWC,L/‘\, \NL( 8{ .
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The geometric proof of Prager's stress-strain law (equations 5.1 and
5.2) is also included by Drucker in his survey of stress-strain

relations in the plastic range(S).

Applying different types of loading functions Edelman and
.Druckef(ls) have derived various incremental stress—straiﬁ,relations

‘from,Prager's law.

As no information was available concerning the actual
behavior of steel in the strain-hardening range the author carried
out .a few tests on combined compression and torsion of steel tubeé(lo).
. The tubes were compressed into the strain-hardening range and then
subjected to torsion while keeping the axial load constant. It was
found that for this particular loading path the behavior is very well
described,by'Pragesz incremental stress-strain relations taking

£f = Js.

. Although these tests are by no means a general verification
of this theory they give some indication of its possible wvalidity. 1In
view of these results and on account of its simplicity, the loading

function f = Jy will be applied in the following derivations.

\

5.2 Loading Function f = Jp

Applying the loading function f = Jy to equations (5.1) and
(5.2)

P . ,
def Posg, &) .o o oo (53

when dJ, > 0



de;

~when

The increments of the elastic.components;-eij, of the strains are

'lj

43y, € 0

given by Hooke's law

e 1L+V v
d€; 5 E 993 ~ F dog By
where
E .= modulus ofAelasticity
Y = Poisson's ratio
For the case of plane stress (gz = Txz = Tyz = 0) the

stress-strain relations, written in unabridged form, are

~dey

dgy

de,

dy
when

_dJ2
and

X

v '
E doy -AE dcy + 3 F (204 -'cy) dJ,
v 1,0, 1 '

v . 1 .
- E (dqx + day) 3 F (ox + oy) dJy-

+v) .
Z027) 40 + 2Frdly

W e

1 L .
(ng - -cy) dng-}-‘g (Zdy- UX") ,dcyﬂ' ZTdI},.O

gf.
dcx-- E.doy

|
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(5.4)

. (5.5)

.10)

.11)
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Y 1

dey = -gdogy +F dcy e e e e e e e o (5.12)
i :

de, = - E (dqx +-d°y) A S )

: Y
2AEY) ao L Gaw

;E

[«
Q*
1

when dJs £ 0

The function F can be obtained from the results of a simple

coupon test for which,cy =q = doy =‘dT'= 0
.Denoting
de
HE_ = Et . . . e . . . . . . . . ..(5.15)
€x - |

F is defined by equation (5.6) as
3 1 1 |
F = YA E; -F e e+« « 4 v « + < (5.16)

= "Because..of initial imperfections the above derived stress-
straiﬁ relations cannot be applied without modification to the
local buckling<problem..AAfter investigating the influence of initial
imperfections on two simplified modelsvin1Chapter,6, effective stress-
.strain relations for the strain hardening range of steel will be

derived in Chapter 7.
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6. INFLUENCE OF TINTTTIAL

IMPERFECTIONS

6.1 General

A perfectly plane plate will remain plane if it is
subjected to loads acting in its center plane which do not exceed
the corresponding buckling 1§ads. In the case of longitudinal loéding
in.the.x—direction_producing a state of stress with gy as the only
component, this state of stress will remain unchanged up to the point
.when_buckling occurs. . Consequently the buckling stress can be

obtained from stress-strain relations (5.6) to (5.9) with oy =1 = 0.

However, the buckling stréngth of actual plates with
unavoidable imperfections does not agree with the predictions fp;
perfectly plane plates. The reason fér the .discrepancy seems to be
.equation_(5.9) which predicts elastic behavior with regard to the

superimposed shear stresses.

_Applying a simplified stress-strain:diagram to. a simplified
model .of a crucifofmzsectionAOnat.and-Druckef(g) have shown that small
unavoidable imperfections may account .for the difference between
predicted and.actual_béhavior. .Apparently the influence of imper-
fections on sections which fail by torsional buckling is completely
different from those which fail in bending. .The latter case has been

investigated by Wilder, Brooks and'Mathauser(lg).
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In the following, this difference inAbehavior will be
illustrated for simplified models which buckle in the straip-
hardening range. The applied,simplified.stress-straip‘curve with
n = E/Et.= 40 is shown in figure 3. Reasons why the compressive
stresses can.exceedﬁ;he yield stress, Og» will be discussed in

Chapter 7.

‘6.2 Simplified WF_Column

The simplified WF column consists of two thin flanges of
equal area separated by a web of infinite shear stiffness and
negligibie.area (figure 4). Instead of a true initial imperfection
the deflections at the beginning of strain-hardening (¢ = g, and -

€ = g,) are used in the computations.

Following the same approéch_as Wilder, Brooks and Mathauser

the deflection curve is assumed to be

y = ¥ sin'%? B D

. At the beginning of strain-hardening

. RX : ' ' '
Yo = Yo sin T e e e e e e e e e e e (6.2)

The load vs deflection curve is found by considering equilibrium

of the center section of the column..



. For the first part of the load vs deflection curve the
strain in both flanges increases and the relation between average

" stress and deflection is given by

T o= r - (*%5 -1 )-%g e L (6.3)
where

g .= ‘average stress of.both‘flanges

op = tangent modulus stress

L x®Ee

£ = §/d

d | ; depth of section

£, = wvalue of £ a£ b¢ginning of strain-hardening.

. Strain reversal occurs for

1 . Oo.
£ = £ =\/70- 52) fo o o . e e o (6.8)

The corresponding stress, os,-is'obtained from equation (6.3) substi-

tuting f = fg.

After strain-reversal has started the load vs deflection

relation is given by

o f_n-l = _os|_n-1 ot . én . \

r [-Ztn?ij‘.l.-) _+_ .f:] =5 [2@ Tt fS] + e (f - £g)
| | ... (6.5)

Figure 6 shows curves of g/og vs £ for”at/co.é 1.2 and

different values of f£f,. The figure illuétfates the.behaviorvof the
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column for loads corresponding to stresses o-g'ct. -Although the
‘deflections start to increase more rapidly the load continues to
increase. Therefore it is safe to use the tangent modulus load, which

corresponds to ¢ = 0y, as the limit of usefulness of the .column.

6.3 Simplifiéd Cruciform Section

In contrast to the above gxample the influence of initial
imperfections on the buckling-streﬁgthwpf & column-of simplified
crucifbrmucross‘sectionQWill.ﬁow be illustrated. The simplified
stress-strain curve of figure 3 is applied to the solutién.of the

problem.as given by Onat and Drucker(g).

The cross-section consists of a thin shell of constant
thickness h (figure 5). The column which is loaded uniformly is
assumed to fail by twisting.  The ends are considered as,providing
no restraint, which considerably simplifies the kinematics of the
problem and makes the .state of stress and strain the sﬁme at each

cross-section.

The shear stress follows the contour and is constant in

magnitude. The resulting moment, M;, is given by
M = 8%tbh N )
The twistidng moment, My, produced by the axial force is

Mz = g _Ip °] B D)



in which

H
0

polar moment . of inertia-

©
]

angle of twist per unit length.

0

The condition that the column is in equilibrium is satisfied by

equating M; anc,l'-.M2 such that

(o]
(]
N

R (¥ )

The relationship between the increments of the strésses'and,angle,of

twist is found by differentiating equation (6.8)
3t dT 1de N o
ds = 17 v R 1))

Substituting equations (6.9), (6 8) and (5. 6) in equation (5. 9)

leads to the following differential equation

' . 'd'e": ) . )
21/ %fﬁ[%] e ;?' . . e . . . . .(6.10)

where

Q 36 3G
'o= r 4 1 <
gt E¢ T
X:] -3t2
de = b2 G (elastic torsional buckllng stress)

-An approximate solytion for small values of;%’is given by Onat and

g0l P ( &)%—“ + ue'[ . (Y_‘z)‘%‘n]
1+ (,}, 7’o~

where')Vo is the value of 7/ at g = oo,,e = €4

‘Drucker as

(6.11)
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Results for the strainrﬁardeﬁing fange of steei, n' = 46
(n = 40) are shown in figure 7. :Loéd vs rotation ,curves are plotted
for initial imperfections b8, =‘0)'O;Ql°'anduo.1°,.b9 being the.angle
of twist between two cross-sections a.distance b apart. In all cases

oe/og = 5.

It is seen that very small impe:feCtionsvcause.a consider;v
able reduction of the column strength. A perfecfly stra;gﬁt member
wbuld.réach.its'elastic buckling load, fo:xthe caSe con§idered 
cg/oo = 5. .An imperfection at ¢ = covénd_é = 6°,§f b6, .= 0.01°
reduces the maximum load to cm/co-¥ 1;4. :ansequenply the éppiic#tion
of the Jy incremental theqryvté a péffec;ly'plane'place.whighifails
primarily by twisting cannot be,expgcted to cdrrgctly ﬁfedict‘the |

buckling strength of actual plates;

Rather than attempt to sélve.tﬁe-chkling problemuof]a.
plate with initial;imperfectioﬁs,‘effecti&e stress-gtrain_relations
are determined in the next chapter. .it.will be necessary to reduce
the initially elastic-val#e of the tangent shear modulus such,that .
the applicatioﬁ of stress-strain relations (5.6) to (5.9) to the
general expressions offChapter 3 wiil result in a correét:deécriptionv

of the behavior of actual plates.



7. STRESS-STRAIN RELATIONS

FOR _THE STRAIN-HARDENING

RANGE OF STEEL

7.1 :Results of .Coupon Tests

A typical stress-strain curve ob;ained from a simple
coupon test is shown in figure 8. It must be borne in mind that
the strain represents an average strain.measured over a certain gage
length. It would be entirely erroneous to assume that the local
strains within the plastic range from e¢ to Gd are equal to the
average strain. Yielding of mild steel occurslin_small slip bands(3).
.Slip takes place in. a '"jump" such that the strain across such a narrow
Baﬁd jumps from ef to €4 The first slip band originates at.a,weak
point in the specimen, due to an inélusion, a stress éoncentration or

other defects. From there on yieldiqg wi11 spread along the specimen.

This consideration leads to the conclusion that there is
no material within thg specimen at ‘a strain between the yield‘strain,
€fs and the strain-hardehing strain, €,. . Either the material is still

elastic or it has reached the strain-hardening range.

In the strain-hardening range, € > €4, the material is
.again homogeneous and in this range the Jy theory of plasticity will
be applied. In the intermediate range,‘éf < € < €4, the specimen

can be considered to conéist of two materialsg.
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The results of 21 compression coupon tests carried out .at
Fritz Engineering Laboratory'are,summarized in Table 1. The coupons
were cut from the flanges of WF shapes and from angles. . For the
interpretation of the results of coupon tests the following must be
taken into account. . Coupons are,testéd continuously in a hydraulic
testing machine. . It has become_customary‘in:Fritz Labofatory to test
coupons with a valve opening of the machine corresponding to a strain
rate of 1 micro in./in. per second in the elastic range. .It has been

%) d e [20)

shown by Huber and Beedle ~ that the ratio of the yield stress of i
a static test (where the load settles down after each increment -of
strain) and the yield stress of a continuous coupon test is approx-
imately 0.925. Consequently a value of the yield stress, g,, of

-0.925 x 39.2 = 36 ki will be used in the following derivations.

Stress-strain curves for the strain-hardening range as
obtained from 5 selected coupon tests have been replotted in figure 9.
.Coupons 9 and 18 represent the extreme cases while 5, 15, and 17

represent tests with average results.

_The average stress-strain curve for the strain-hardening
range can be expressed by the three parameters introduced by Ramberg

and Osgood(21){

_ 0 = 0Og g - Oo\T
- = —2 4+ R[—2 e e e e e e L (701
€ - €g By ( T, ) . (7.1)
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where -
0, = 36 ksi
€, = 14 x 1073 in./in.
.Eo = 900 ksi *
K = Zi
n = 2

Equation (7.1) is also plotted in figure 9.

The total stress-strain curve, as it will be used'in the
following derivations, is shown_in_figure 10. The tangent modulus,
E¢, in the direction of loading, x, is defined by equation (5.15)
and plotted in figure 11. This information is sufficient to
determine F (J9) definea by equation (5.16). From equations (5.16)

and (7.1) it follows that

- _L L], o6 —of
F = [67.3 V3 593“J2:] x 10 kips3 - - .. (7.2)

for Jg > 1/3 og = 432 kipsz/in.4
Figure 12 shows F d4s a function of Jj.

Compression tests on coupons taken: from webs of WF shapes
have also been performed by Huber -and Beedle(zo). The results showed

that the yield stress of web material is in general about 10% higher

- - - - - - - - - - - - - - - - - - - - - - -

* The values..of Ey in Table .l .are .taken from F. L. reports in which
they are usually not given as the slope of the stress-strain curve
at;the initiation of strain-hardening but as the slope at a strain
somewhat larger than €g. .Consequently Eg. .as used in equation (7.1)
is.larger than the average value given in Table 1.
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than that of flange material. Unfortunately these compression tests
were not carried into the strain-hardening range, and consequently
no information is available with regard to the shape of the

stress~-strain curve in the strain-hardening range.

.Results of tension coupon. tests carried out as part of F. L.

Project. 205E (see Table 2) show.the same tendency of higher yield
stresses for web material. The strain-hardening modulus, E,, however,

. does not .seem to be affected. . Consequently the only difference of
the stress-strain curves for flange and web material is assumed to be

in the value of ¢g,. For flanges g, = 36 ksi and for webs Op = 40 ksi.

7.2 The Tangent-Modulus In Shear
.Cbnsider the case where shear stresses; 1, are supérimposed
on a constant normal stress, gy, taking oy = 0 and doy, = doy = 0.

The relations between the increments of stress and strain given by

equations (5.6). and (5.9) reduce to

_ & o
deX = :’? F UX TdT . . . . . . . . . o . (7-3)

21 +v
_d’J = _QE_)_ dt + 4F 12 dt

Integrating equation (7.4) gives the relationship between

e e (708

t and aﬁés'shown_in figure 13 for oy = 36 ksi and oy = 48 ksi. The

corresponding slope

| :
.ct,=-_d—5 N ¢ )

'is plotted in figure 14.



It should be noted that from equation (7.3) it .follows
that, due to the shear stress, 7, the axial strain, e,, increases
(figure 15). This phenomenon has also been confirmed by tests(10),
Consequently when a plate fails by twisting, an increase of the
.axial load is carried by tHe central part of the plate cross-section
.and the shear stresses occur at the part of the section near the
plate surfaces.  Therefore, it is justified to assume doy = 0 in
determining Gg. Furthermore, in cases where G¢ is of importance
e.g. hinged outstanding flanges, normal stresses, Oys perpendicular
to the direction of loading are small, justifying the assumption

oy = 0.

It is seen from figure 14 that the value of G¢ drops
rapidly for small values ofa'. Howevef, from the point at which
Gt = 2000 ksi the decrease is slower. . Consequently this value is
selected és a useful value of G¢ for the strain-hardening range of
steel. From figure 13 it follows that the influence of the
magnitude of the normal stress cén be neglected for that part df

the strain-hardening .range under consideration.

7.3 Biwﬁxial.Nprmal Stresses

For regions of a plate in which cross bendihg is of
importance thé éhear stresses are zZero Qr very“small, e.g. the center
pf plates supported along .all four edges or the fixed edge of a : .

clamped outstanding flange.



In this case equations (5.6) and (5.7) reduce to

de

O

1 2
< = |:§+"‘F (204 cy) ] doy +

v 1 _ ‘
-1g°79 F (204 - gy) (Zgy - og) dcy . . . (7.6)
: 1,1 L2
dey = _E-_l-"g-F(Zoy-'ax)jl dcy-l-
v 1 . v
“lE" 3 F (20x - oy) 2oy - ox):] dogy . . . (7.7)

Comparing equations (7.6) and (7.7) with equations (3.2)

gives

L 1 .1_ . _ 2
E; = z + 9;F (2qx cy) e e e e e e e W (7.8)
1 11 2 : '
Ey = E + 9 F (Zo’y - OX) ' . . S . . . ° . s . (7°9)
%-.-_ %— F (204 - oy) (20y - ox)
Y. .= T3 1 ) i e e e .. (7.10)
X . . _ {
E‘ + g (ZO'X_ Uy) .
, E;+ 3. F (ZGy_* ox)"
For a perfectly plane plate (cy = 0) equations (7.8) to (7.11)
reduce to
Ex = Et I Y V)
. 4 E Et
Ey = _E—;—gﬁz O ¢ )
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E - (1 --2V) Et

—VX = °F . . . . . o e e o (7-14)
2 E - (1 -2V) E¢ ‘
v, = e+ e e e e« e« s (7.15
y E+3 Et ' ¢ )

Equations (7.12) to {(7.15) have been applied with different

notation by Handelman_anvarager(7).

Equations.(7.9) to (7.11) are valid only if

dJ, > 0 N 22 1))
or rewritten

2doy = doy > 0 Y ¢ A %)
-and with equations (7.6) .and (7.7)

(2 -v) dey - (1 - 2V) dey > 0 e e e e e . (7.18)

Figure 16 shows the assumed linear strain distribution due

to curvatures dRyx and dKy in the x- and y- directionms.

)

dey, = dej + szx T (7.19)

dey

deg + XdKy .+« . . . . . ... . (7.20)

where dcl and'dgz are strain increments of the central plane in the x

and y direction aﬁd z is the distance to the central plane.
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The condition that all of the section is deformed
plastically is obtained by substituting equations (7.19) and (7.20)

in equation (7.18)
(2 -Y) (deyp + 2dK) - (1 - 2V) (dep + zdRy) >0 . . (7.21)
for -t/2 £z € t/2

The increase of the force per unit width in the x- direction,
N,, is found by rearranging equation (3.2) dnd integrating over the

thickness of the plate

t/2
dN = do’. dZ =
e =, o
= Ext v
=TTV v (de1 + V5 dep) Ce e e L (7222

The increase of the force per unit width in the y- direction is

ft/2
dN,, = (do,) dz =
Yy “t/2 v

Eyt

=TTV, e tYede) ... L (7.23)

However, no external forces are applied in the y- direction, thus

@y = 0 e e (T28)

or

de, = -V, dey T YY)
Substituting equation (7.25) in (7.22) gives

de = Ext del . . ° . © . o . - . o ° (7—26)



The plasticity condition, equation (7.21), then becomes
[2 =Y 4+ (1-27)YV x:] dej + (2-V) lzd;K,zc = (1- ZV))\'de >0 (7.27)

for - t/2 =2z £ ¢t/2

If the neutral zone between loading and unloéding zones

ig at z = t/2, equation (7.27) gives

£/2/(2 -¥) dRy - (L - 2v) dRy)

d = . (7.28
1 2-v+a-my, (7.28)
Obviously dey > 0 only if .
2 .YV :
de <1 -37v -dK,,. s e e e e e e e e e . (7.29)

Checking the plasticity condition (7.27) for de; given by equation
(7.21) shows that condition (7.27) is not violated if (7.29) is

satisfied.

If the neutral zone is at z =-t/2 equation (7.27) gives

e/2[C - 29) &y - (2 ) ,de\

de; = \2 v+ (1L - 27) ,Vx . (7.30)
and dej > O omly if
L2~V
de > T -5y 9K o e e e e e e e ew (723D

The plasticity condition (7.27) is not violated if equation (7.31)

is satisfied.



-38
From equations (7.28) and (7.30) it is seen that
de; = 0

and consequently according to equation (7.26)

dn, = 0
for
2-Y ‘ ‘
de = T -5% de o e e e e e e e . (7.32)

Furthermore dJ, = 0 for the entire cross-section. Thus

=

doy = 7 »dcy e e e e e e e e e e e (7.33)
for an initially plane plate with Oy = 0.

In this case, since bending is not accompanied by an
increase in axial load the influence of initial imperfections will
be the greatest. Suppose biaxial loading starts at Oy = a¥,

oy = 0, ex = eiﬂ €y = e§, Then it follows from equation (5.10) with

equation (7.33) that
1
aJj, = 5 :cydcy s e e+ e e e e aoe .. (7.34)
Integrating (7.34) gives

1
= 7 0¥ + ¢ S ¢ %))
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Equations (7.8) to (7.11) reduce to

1 . 1., 4 _ %2
E = “ﬁ"l-g FO‘X o » B o . .« - . - . B (7.36)
1 1 . ,3. Sy 2 '
L _ 1.1 CARS ) A
o Etg FGoy-o) (7.37)
Y _2 * (3 R
E-§F(3oy k)
'Vy = TS Y T T e e T o . . £7.38)
§+§F(§°y'cx)
MG N "d*)
v, = B e S ... . (7.39)
X "];+£;..F0‘*.2 . S
E 9 X

The results are shown graphically in figures 17 and 18.
From figure 17 it is seen that-ay has little .affect on E,. . Negative
values of ¢

cause a drop of E, as shown in the same figure. However,

y y

according to equation (7.24) negative values of gy must ‘always Be
accompanied by positive values at other parts of the plate cross-sectiqn.
Fof the latter case an increase of'Ey is observed. ‘Conseqqently, the
effective modulus of the whole section will be affected only to a

small extent.  Furthermore, the product'Yg -W’y does not change much
because of-cy (figure 18). Thus for biaxial bending the influence of

initial imperfections is neglected.

| - \
| by ) o1
)

_The values of Ex’rEy"Vx’ and'7§,are given,bé equations V;
(7.12) to (7.15). 'The results are plotted as functions of €y in .%

figures 19 and 20.
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8. APPLICATION TO0 LOCAL BUCKLING

-O0F WIDE-FLANGE SHAPES

8.1 Outstanding Flangeg of Infinite Length

The critical stress for an outstanding flange of an ortho-
tropic material is given by equation (3.10).  Substituting the values
of the moduli derived in Chapter 7 into this equation, will give an
estimate of the buckling strength_of'an,acﬁual steel flange. The
ratio of the half wave 1enéth, £, and the flange width, b, is given
as a function of the coefficient of restraint, B, by equation (3.11)
and is shown in figure 22. From figure 21 it is seen that é/Ey/EX
varies from 1.38 for e, = 14 x 1073 to 1.40 for ex = 55 x 1073,
Consequently <% Ey/EX has been chosen to have a constant value of
1.39 for the entire strain-hardening range. Finally the critical

stress is obtained by combining equations (3.10) and (3.11).

As deformations are more important thén stresses the
results are plotted:in_figure 23 as €.p VS b/t curveé, where ecr is
the strain corresponding to the critical stfess. The curves plotted
are for 8 = 0 (hinged flange), § = 0.01, B = 0.1 and B = o0 (fixed

flange).

_For the intermediate range, €r < €cr < €55 yielding will
start at certain locations and spread along the flange. Buckling will
occur ‘when a sufficient length has yielded to allow a buckle to be

formed under the action of yield stress o,. The length of the



plastically deformed buckle will be finite and consequently the
average strain .of the infinitely long flange will approach the yield
strain. The transition curves for e€f < €., < €y have therefore been

indicated as vertical lines in figure 23.

8.2 Hinged Flanges of Finite Length

Consider a hinged flange of lemgth 2L. The loaded edges
x = 0 and. x = 2L are fixed, the unloadéd.edge vy = 0 is hinged and the
unloaded edge y = b is free. 1If all of the material has been
strained into the strain-hardening range, the Buckling stress is given

by equation (3.12).
In the elastic range equation (3.12) reduces to

oer = (%)Z[W% (%)2+c], .. .. (8.1)

‘When 0., obtained from equation (8.1) equals or exceeds g, yielding
will have commenced. .Assume that yielding starts at both ends and
then moves toward the middle. This assumption seems to be reasonable
in view of the fixed end restraints and has also Been_confirmed,by

tests.

The middle section, being still elastic, is practically
rigid compared with the yielded zones of length {L. Assuming that
only the latter will deform equation (3:12) must be replaced by the

following

IEJZ " ﬁ?Ex (JL)Z
Ocr = 0 = kb 12(1 — Y}; ,Yy) ;L ~+ Gt . . (802)
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The corresponding critical strain is

€er = (1 - g) eg+ley . o . . L. 0L (83)

Substituting in equation (8.2) the values of E,, ¥ _,V¥_.and G_ this
N _ > » AT TX? Ty e T OJFS//
' . . )

equation determines the relationship between b/t .and {.  For L/b =2.65 /’BxﬂhdeQ»
o . . (terts ]

the b/t vs £ curve has been plotted.in figure 24 as a solid line. As z

elastic deformations have been neglected in eqﬁationj(8°2) b/t = O

for £ = 0. For this case b/t =‘20,7 Which.is,found‘ffom,equation (3012)>

by substituting the elastic values of E,, ¥, Yy, G and taking

g = 36 ksi.and L/b = 2.65. Knowing the rigid plastic solution and

the point for § = 0 of the elastic»plastic solution the latter has beésn

sketched in figufe 24 as a dotted line. The elastic-plastic solution

of b/t vs { with equation (8.3) gives €., as a function of b/t for the

‘range €f <»€cr.< €,. The solution for €.,.>¢€, is found from equation

(3.12).

8.3 Webs

The problem of buckling of uniformly éompréssed webs
(rectangplar plates.supported”at-allAfour edges) has been tregted
theoretically in_section 3,3,‘,Ihe,critical_stress is given by equation
. (3.18), the:ratib of Halfrwave‘length,,ﬂ, to width of plate,,da being

determined by equation (3.19).

'Figure'26 shows a plot of £/d .as a function of the factor
. 4 e
of restraint, B, for \/Ey/ = 1.39, a value representative of the

strain-hardening range. Substituting these values for £/d in equation



(3.18) gives the values of the critical stress. The
strains have been plotted in figure 27 as a function

over thickness ratio, d/t,for B = 0 and B =2%.

Applying the same reasoning as in the case
long flanges (section 8.1) the transition curves for

€r < € < g, are found to be vertical lines in figure

=43
corresponding

of the width

of infinitely

the range

27.
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9. TEST RESULTS AND SUMMARY

9.1 Compresdion Tests on Angles

A number of compression tests on angles were performed
with the purpose of checking the theoretical estimates developed
above. .Angle specimens have better known boundary conditions than
WF sections and therefore give a more positive check. When buckling
torsionally, the flanges of the angle act as two plates each with
one- free and one hinged edge, the heel forming the hinged edges. The
loaded ends of the column were fixed against rotation in the testing

machine. . The dimensions of all specimens are given in table 3.

The resultant stress vs axial strain curves for the columns
are shown in figure 28. Furthermore the rotations of the center
sections were detgrm##gd‘aﬁd are plotted as a fuﬁction of the strain
in figure 29. The pfisggéiyst¥éins are defined.as the strain at which
the rotationrstartslgébincfeégéﬁggre rapidly than it did initially.

Specimens A4l and A42 did not buckle torsionally but failed by bending

about the weak axis.

The results of all tests on angles are summarized in table 4.
The critical strains are plotted as a function of the b/t ratios as
in figure 25. 1In this figure the theoretical solution is also shown,
the derivation of which is given in section 8.2. The test results

compare favorably with the theoretical predictions.
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9.2 Tests on Wide-Flange .Shapes
In order to investigate the actual behavior of WF shapes
with regard to local buckling, six different shapes were each

tested under two loading conditions:

(a) .Axial compression (Test D1, D2, D3, D4, D5, D6)

(b) Pure bending (Test Bl, B2, B3, B4, B5, B6)

The dimensions of all WF specimens are given in table 5.

N
The length of each specimen was divided into. three gage

lengths over which the change'i;vlength was measured directly with

0.0001" Ames dials. .Along the edges of the flanges and the center

‘of the web lateral deflection measurements were taken. .For the bending

tests the lateral rotation was measured at the loading points (which

.were supported against lateral rotation) and near the center line of

the beam.

The results of the compression,and bending tests.are shown
in figures 30 and 31 respectively. . Plotted .are P/A vs €gy for the

compression tests and M/Z vs €y for the bending tests

P ‘= compressive load
M = bending moment
A = area of cross-section

Z = plastic section modulus (twice the static ‘moment
of half the section about the strong axis)

= average strain at center of compressed flange.
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As a typical example, the maximum flange and web deflec-
tions and lateral rotation vs the average strain for test B-3 are
shown in figure 32. From these curves the crticial strains are
obtained as indicated by arrows ih_figures 30 and 31. The critical
strain is defined as the average strain at which the deflection .of
the flange or web starfs to increase more rapidly thantit,did

initially. The results of all tests are summarized in table 6,

When comparing the results of tests on WF shapes it should
be borne in mind that the different types of buckling cannot be
separated. _ConseQUently.the results should be interpreted with
caution. For the cases where flange buckling was predominant the
cri;ical strains of the flanges vs the b/t ratios and the theoretical
curves are plotted in figure 23. The results of tests D4 and D6 are
omitted because web buckling occurred first and obviously caused
premature flange buckling. = Furthermore specimen B4 did not develop
a major flange buckle but failed by lateral buckling. Therefore this
result has also been eliminated from figure 23. From this figure it
can be concluded that, if premature . web buckling is prevented, the
webs of the tested sections provide positive restraint to the flanges

corresponding to a value of B of the order of 0.01.

For Ehe cases where web buckling occurred first (Tests D2,
D4 and D6) the critical strains are plotted vs the d/t ratios as in
figure 27. This figure also shows the corresponding theoretical

curves, For test D2 flange and web buckling occurred simultaneously
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and it is therefore possible that the web buckled prematurely.

9.3 Summary

The results of the investigation presented in this
dissertation can be divided into two parts: the derivation of
stress-strain relations for the strain-hardening range of structural

steel and their applications to the local buckling problem.

Incremental stress-strain relations were defived describing
the orthotropic behavior of steel after it has been compressed into
the strain-hardening range. The values of the tangent moduli and the
coefficients of dilatation in the direction of compression and
perpendicular to it are shown in figures 11, 19 and 20. - An applicable
- value of the tangent shear.mddulus was found to be 2000 ksi. The
above stress-strain relations were applied to the local buckling
problem. The derived values of the moduli and coefficients were
substituted in_géneral expressions for.the buckling strengfh.of
orthotropic plates. The agreement between predictions and test

results (figures 23, 25 and 27) finally justified this approach.

-A direct practical application of the findings presented in
this dissertation is the prevention of local buckling of outstanding
flanges in continuous frames, in which the design is based upon ultimate

strength. .From the required rotation capacity of the plastic hinges
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the sprains of the flanges can be determined. Figure 23 then gives
the required b/t-ra;io, for B = 0.01. It should be emphasized, .

. however, that the stress-strain relations could equally well be
applied to other problems involving the occurrence of biaxial

stresses and strains in the strain-hardening range of steel.
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ll, NOMENCLATURE

Tensor Notation

X, = coordinate axis

i, j, k, £, m are letter subscripts taking the values 1, 2 and 3

0 j = components of stress tensor

op = principal ;tress

sij = components of deviatoric stress tensor
s = mean normal stress

eij = components of strain tensor

E?j = elastic st;ain.component

e?j = plastic strain component

{3 = components of deviatoric strain tensor
e = mean normal strain

aij = Kronecker delta

I1 = first iﬁvariant of stress tensor

Jl’ J2 & J3 are invariants of deviatoric stress tensor'
f o= yieid and ioading functiﬁn

k = constant

F = function defined by equation (5.1)

Engineering Notation

X & 2z are coordinate axis
b

W deflection of plate

~<
(1

deflection of simplified column

= maximum value of y

-51
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ratio of j over depth of simplified column
value of £ at initiation of strain-hardening
value of f at which strain reversal takes'place
normal stress in x direction

value of o, at which biaxial loading starts
normal stress in y direction

yield stress

tangent modulus stress

critical (buckling) stress

elastic buckling stress

value of ¢ at which strain reversal takes place
shear stress

normal strain in x direction

value of ¢  at which biaxjal loading starts
normal strain in y direction

value of ey at which biaxial loading starts
strain at initiation of strain-hardening
yield strain

critical strainlcorresponding to 0.,

average strain

angular strain in xy plane

modulus of elasticity

tangent modulus

tangent modulus in x direction

tangent modulus in.y direction

strain-hardening modulus
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modulus of elasticity in shear
tangent modulus in shear
Poisson's ratio
coefficient of dilatation for stress increment in x
direction
coefficient of dilatation for stress increment in y
direction
exponent in equation (7.1)
ratio! of modulus of elasticity over tangenf modulus
ratio defined by equation (6.10)
bending stiffness per unit width of plate in x direction
behding stiffness per unit width of plate in y direction
tofsional stiffness per unit.widph of plate
function defined by equation (3.6)
compressive load |
bending moment
bending moment per unit width of plate in x direction
bending moment pér unit width of plate in y direction
tgrsional moment per unit width of plate
axial force per unit width of plate in x direction
axial force per unit width of plate in y direction
shear force per unit width of plate
boundary shear force per unit width of plate
half wave length of buckled shape
wdith of plate with one free edge

width of plate supported at all four edges
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d = depth of simplified column

t = thickness of plate

I = moment of inertia pér unit width of plate ‘

A = area of cross-section

Z = plastic section modulus

h = thickness of sheet forming simplified cruciform section

°] = angle of twist per unit length

e = lateral rotation of beam

7# = edge moment per unit length to produce unit rotation
of edge |

?p = function defined by equation (6.10)

K, = curvature of plate in‘x‘direction

.Ky = curvature of plate in y direction

-ny = twist of plate

A,B,al,az,cl,cz,c3,c4,c5,c6,c7,hl and,h2 are constangs

B = B/A = coefficient of restraint
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A PPENDIX

Deflection Surfaces of Outstanding Flanges

In order to obtain an approximate solution for an orthotropic
plate buckling problem,an assumed deflection surface may be used in the
energy equation (3.7). When all edges are hinged, fixed or partially
restrained against rotation an appropriate deflection surface

fulfilling all boundary conditions can easily be found (Section 3.3).

However, when the plate has a free edge as in the case of
outstanding flanges the selection of a surface becomes more involved.
Consider a rectangular plate, the loaded edgesx = 0 and x = £ hinged,
the unloaded edge y = 0 either hinged, fixed or restrained and the

unloaded edge y = b free. The boundary conditions for the free edge

are:
My = 0 . . . ... (A.1)
D .
- = Q+&L=o e e e e .. (A
Qy Yy Ox '
where
Qy = shear per unit length

boundary shear per unit length.

Qy
Qy is found from equilibrium of a differential plate element

o, 2y

- e e e e e e e e A.3
Oy Ox ( )

;Qy =
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The boundary shear Qy is determined by replacing the twisting moment
by equivalent shear forces and adding them tO'Qy. The derivation qf
these equations can be found in the pertinent literature (11).
Substituting in equations (Al) and.(AZ) the expressions for My and Myys

equations (3°Aj and (3.5) give

D2y 22w _ ‘ '
S Ve pd TO
3 3
2w o’w
Dy 2% 4+ ¢r, D, +2D,,) <X (A.5)
7 2oyl 7y xy szay'

. If edge y = 0 is hinged the following deflection surface

satisfies the boundary conditions at all but the free edge

w = [% + by (%)3 + b, (%)4] sin 2 . L . (A.6)
- Substituting equation (A.6) in the boundary conditions for the free
edge, i.e. equations (A4) and (AS), gives two equations from which the
coefficients hl and h2 can be determined. Figure 33 shows h1 and h2 as
a function of £2/b for values of the rigidities corresp&nding to an
axial strain of 25 x 1073. From the figure it is seen that for 2/b > 2
the coefficients aré approximately zero. It may be noted that for an

elastic and isotropic material h; and h2 also usually are taken zero.

When edge vy = 0 is fixed deflection surface

w o= [(%)2 + a; (%)3 + a, (%)4]5111 %3{- . (A.7)

—
™
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.satisfies the boundary conditions at all edges except the free edge,
y = b, ASubstituting_w as given by (A7).in equationS»(AA) and (AS) yields
two equations from which a1 and a, can be determined. The result is

shown in figure 34 where a, and a, are plotted as a function of £/b for

1
values of the rigidities corresponding to an axial strain of 25 x 1073,
It is seen that the coefficients show little variation for the range

2/b > 2.

For the case where the unloaded edge, y = 0, is restrained, a

combination of equation (A6) and equation (A7) is used

. 2 3 4

=2 b4 b X) X
v '[b +B{(b)+al (b) + 2y (3 'HS“" A
For small values of B the half-wave length which corresponds

. to the minimum value of ¢ will satisfy the condition £/b > 2. For this

range the following values of a; and a, have been selected

a; = - 0.7

a, = 0.2

From figure 22 showing £/b as a function of B it is seen that these

values of a1 and a, may be used for g < 0.3.
Applying these values to the case of a fixed flange (B =o0)

would give a vaiue of half;wave length to flange width ratio of

Z/b = 1.20
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However, this value of 4/b is outside the range for which .the above
values of al and a2 are valid. By a trial and error procedure it is

foundv;hat, for a fixed flange,

1

al = -1.11
a, = 0.57

and £/b = 1.00

Lundquist and,Stowell(lz), in theilr paper on buckling of

outstanding flanges, assumed.the following deflection surface

W = [% +B { (%)2 + a’f (%)3 +,' Va: (%)4+ a’;’(%‘)s}J sin'{lez{- (A9)

with ai = - 1.0076
ag = + 0.5076
a* = - 0.1023

3

For small values of the coefficient of restraint, B, it will make little
"difference whether equation (A8) or (A9) 1is used. For B = 0. the result
is identical. The biggest difference will occur for B_=Cb. In this
case the b/t ratio for which €er = €, oﬁtained from equation (A9)

would be b/t = 17.65. Using equation (A8) with-al-= - 1.11 and

ap = 0,57 gives b/t = 14.6 for €er = €o- ~Although equation (A9) is
known to be good in the elastic range it can not be applied to the

strain-hardening range of steel.



TABLE 1

RESULTS OF COMPRESSION COUPON TESTS

Fritz Lab, 0o €o Eg
Coupon | Number Section | ksi | x103 | ksi Note
1 220A-UF3 14WF30 39.7113.0 730 | A1l WF section
2 220A-UF4 " 41.5 | 14.6 690 | coupons taken
3 220A-LF1 " 42.5 | 14.6 650 | from flanges
4 220A-LF2 " 39.0 | 12.5 790
5 220A-LF3 " 39.7 ] 12.5 730
6 220A-LF4 " 42.0 | 13.0 670
7 220A-A " 40.8 } 15.0 640
8 220A-B " 40.8 §12.5 675
9 220A~-D " 40.3 ] 15.5 650
10 220A-E M 39.6 | 14.5 650
11 220A-F " 35.3 1} (6.0) 780
12 220A-G M 36.2 | (6.5) 700
13 220A~B2F3 8SWF31 40.0 | 17.4 770
14 220A-B2F6 " 38.8 | 11.5 810
15 220A-B2F7 " 39.0 | 14.8 730
16 205E-Cl4 10WF33 40.0 | 14.5 855
17 205E-Cl15 " 37.0 | 13.8 805
18 205E-C2 8WF40 38.4 | 12.8 1060
19 205E-C9 16.6.3/8 | 39.0 | 12.8 710
20 205E-C12 " 37.6 | 14.3 906
21 205E-C13 " 35.1 | 14.6 845
Average Values¥* 39.2 | 13.9 755
* Numbers in parentheses not used for determining average value



TABLE 2

RESULTS OF TENSION COUPON TESTS

=60

Strain at'| Strain-Hard-
* - Yield St
i?ca © ress ‘Strain- ening Modulus
ion i , .
Coupon | Section o, ksi Harden1gg Eo ksi
€y X 10-
T 7 5 35.0 14.7 750
T 21 1 35.4 18.4 530
T 22 8WF24 2 35.6 18.0 600
T 23 3 36.3 19.3 470
T 31 1 35.6 14.3 525
T 32 10WF39 2 36.8 18.9 580
T 33 3 37.8 16.3 580
T 41 1 37.1 18.0 - 500
T 42 12WF50 2 36.9 18.1 530
T 43 3 39.4 15.9 580
T 51 1 37.6 16.9 560
T 52 8WF35 2 37.3 16.6 465
T 53 3 39.9 19.6 600
T 61 1 38.0 20.8 520
T 62 10WF21 2 34.2 23.4 570
T 63 3 44.2 23.6 490

*Location of Coupons

All coupons tested in Baldwin 60,000#

PZY
N o

e\t

Hydraulic Machine. Valve o
corresponding to testing speed of 1

micro-in./in. per sec. in the elastic

range.

pening




TABLE 3

DIMENSIONS OF ANGLE SPECIMENS

-61

Length Width Thickness Area

Specimen 2L(in.) b(in.) t (in.) b/t 2L/b (in2)
A-21 25.0 4.87 0.383 12.70 5.14 - 3.78
A-22 25.0 4.79 0.381 12,60 | 5,21 3.70
A-31 17.9 3.27 0.370 8.85 5.48 v2,48
A-32 17.9 3.28 0.374 8.79 5.46 2.51
A-41 12.5 2.31 0,377 6.13 5.41 1.80
A-42 12.5 2.34 0.371 6.36 5.35 1.81




TABLE 4

RESULTS OF ANGLE TESTS

Test EZi €cr * 103 Egi gzziliig
A-22 --- 3.0 | 32f2 torsional
A-31 34.9 16.5 35.8 torsional
A-32 34.6 16.5 35.6 toféional
A-41 35.3 -- : -- bending -
A-42 34.1 -- -- ‘bending




TABLE 5

DIMENSIONS OF WF_SPECIMENS

-63

length of part of bending specimen subjected to pure bending

A z 2b | tg d e, | L |l

Spec. | Shape | in? in3 in in in in in | in b/tf d/ty
Bl D1 | 10WF33 | 9.66 | 38.56 7.95 0.429]| 9.37(0.294 32 (32}9.2 | 31.9
B2 D2 | 8WF24| 6.83 |22.56 |6.55}0,383 7.63 10.236| 26 | 26 8.6 | 32.3
B3 D3 | 10WF39 | 11.34 | 45.63 |8.02 |0.512| 9.37 |0.328| 32(32}7.8 | 28,6
B4 D4 | 12WF50 | 14.25 | 70.28 |8.18 | 0.620 | 11.57 |0.351 32 {32 6.6 33.0
B5 D5 8WF35] 10.00 | 33.68 |8.08 0;476. 7.65 [0.308]) 32 |32]8.5 24:8
B6 D6 | 10WF21 | 5.84 |22.45 {5.77 {0.318 | 9.56 |0.232| 23| 26 9,1 40.9
A = area of cross-section
Z = plastic section modulus (twice the static moment of half

the section about the strong axis)
2b = width of flange
ty = thickness of flange
d = &istance between center planes of flanges
t, = thickness of web
L = length of compression specimen
.Ll =




TABLE 6

RESULTS OF WF TESTS
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ccr - 103 Ocr ksi_ Type of
Test gy ksi Flange Web Flange Web Buckling
D1 34.4 8.5 | 8.5 34.2 34.2 fiange”
D2 34.0 13.5 | 12.7 | 34.0 | 34.0 | flange & web
D 3 | 35.2 19.0 19.0 39.0 39.0 flange
D 4 35.0 18.5 5.0 36.8 35.4 web
D 5 36.6 17.0 17.0 38.0 38..0 flange
D6 38.0 4.3 1.6 33.8 37.2 | web
B1 = 7.0 - - - flange
B 2 - 23.0 - - - flange & lateral
B 3 - 22.5 - - - ' flange & lateral
B 4 - 29.0 - - -  lateral
B5 - 22.0 - - - flange & lateral
B 6 - 14.0 - - - flange & lateré.l
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