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1. S Y N 0 P S.I S

i

The application of p1astit design to continuous frames

constructed of wide-flange shapes, imposes more severe limitations on

the geometry of these shapes than conventional elastic design, In

regions where yielding starts first the flanges must be able to sustain
/

strains considerably larger than the yield strain without the occurence

of local (plate) buckling.

With this practical application in mind, the problem of

buckling of steel plates compressed beyond the yield strain is treated

in the present dissertation. In the strain-hardening range the material

is considered to be homogeneous, However, because of the yielding

process the materi.al cannot be expected to remain isotropic. Therefore,

general expressions for the buckling strength are derived assuming the

material to have become orthogonally anisotropic.

Orthogonal anisotropy in the case of plane stress is expressed

mathematically by stress-strain relations involving five moduli.

Numerical values of the moduli are estimated from the incremental

theory of plasticity taking the second invariant of the deviatoric

stress tensor as the loading function. The influence of initial

imperfections is taken into account through proper adjustment of the

values of the moduli,

In the yielding range the average strain in the direction of

loading is between the strain at which yielding starts and the strain

at the beginning of strain-hardening. For this case the material
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is considered to be partly elastic and partly strained up to the strain-

hardening range.

Finally, theoretical estimates are compared with test results.

Fair agreement is obtained.



-3

2. I N TR 0 D U C T ION

Presently used steel wide-flange shapes are proportioned such

that no local buckling occurs within the elastic range, Consequently
I

they can safely be used for structures in which the design is based upon

theoretical first yield as the limiting condition (conventional design).

However, design based upon ultimate strength (plastic design) imposes

more severe requi.rements on the sections with regard to local buckling,

The structure will reach its full ultimate load only if those parts

where yielding starts first, can undergo sufficiently large

deformations, For framed structures constructed of wide-flange shapes

the flanges at the above mentioned locations must then be able to

sus tain s tra~.ns considerably larger than the yield s train.. Consequently

the flanges should be proportioned such that local (plate) buckling

does not occur u.nder t.his condition,

In order to solve problems of plate buckling the relationships

between the increments of stresses and strains due to the deflection

of the plate out of its plane must be known.. Within the elastic range

the assumption that the material is isotropic and homogeneous leads

to predictions which are in good agreement with test results(l)*.

A satisfactory transition curve for the range from the elastic limit

stress to the yield stress can easily be obtained by applying Bleich's

semi-rational theory to an effective stress-strain curve(2),

* See list of references, page 49 .
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During the yielding process the material is heterogeneous,

Yielding takes place in so--called slip bands and the s train jumps from

its value at the elastic limit to that at the beginning of strain-

hardening (3) , When all the material has been strained to the strain-

hardening range the material again becomes homogeneous, To the

strain-hardening range, stress-strain relations of different theories

of plasticity could be applied, Such theories can be divided into

two groups: deformation or total stress-strain relations and

incremental stress-strain relations,

Bij1aard(4) was first to apply deformation stress-strain

relations to the plate buckling problem, The theory was developed

further by Ilyushin(S) and modified by Stowel1(6), Incremental

stress-strain relations were applied by Handelman and Prager(7),

An extensive survey of stress-strain relations in the plastic range

has been made by Drucker (8) , Although the necessity for an incremental

type of mathematical theory of plasticity has been shown, the results

of plastic buckling tests on aluminum plates are well correlated by a

deformation theory and bear no resemblance to predictions of

incremental theory, Dnat and Drucker(9) investigated the influence

of initial imperfections on tor~ional buckling for a simplified

model of a cruciform section, .For this case the paradox appears at

its worsL Dnat and Drucker showed tha.t incremental plasticity leads

to proper results when unavoidable initial imperfections are taken

into accounL

All theories of plate buckling in the plastic range imply

orthotropic behavior of the material, This assumption seems to be
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very reasonable. Therefore, in the present dissertation general

expressions for the buckling strength of orthotropic plates are

derived from general stress-strain relations involving five moduli

(Chapter 3). Tests by the author on .combined compression and torsion

of steel tubes showed that the behavior of the material is well described

by the incremental theory with the second invariant of the deviatoric

stress tensor as the loading function(lO). Consequently, this theory

is used in order to obtain values of the moduli of the general stress

strain relations.

Generalities on'stress and strain and incremental stress

strain relations are reviewed in Chapters 4 and 5. The influence of

initial imperfections is illustrated in Chapter 6. From the results

of coupon tests numerical values of the moduli are then obtained in

Chapter 7. The influence of initial imperfections is taken into

account through adjustment of the value of the shear/modulus. Combining

the results of Chapters 3 and 7 gives numerical solutions of the local

buckling problem presented in Chapter 8. Theoretical predictions are

compared with test results in Chapter 9.
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3. B U C KL I NG 0 F .R E C T AN G U LA R

o R THO T R 0 PIC PLATE S

3.1 General

Consider a rectangular steel plate taking the center plane of

the plate as .the x - y coordinate plane.. Compressing the plate in the

x - direction into the strain~hardening range may affect all

deformation properties of the material. Hence the tangent moduli, Ex

andEy in the x - and y - direction respectively, are probably

different. The same may hold. for the coefficients of dilatation, Yx

and ~y in the x - and y - direction. The shear modulus, Gt , may also

be affected.

Thus

U Ex 1
- =C:>O"xEx

where

€ = normal strain

'0 = shear strain

0" = normal .stress

1" = shear stress

(3.1)
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Then the relations between the increments of strains and

stresses can be .writtenas follows:

1 ~dEx = da .. E dayEx x y

dEy
"(x L (3,2)= - E do + E dayx x y

dO'XY = 1
d-rxyGt

If equations (3.2) are valid for the entire cross-section the

expressions for the bending and twisting moments in terms of the

deflection, w, in the direction of the z-axis become

= (3.3)

=

where

t- thickness of plate,

(3.4)

(3.5)

The condition that the bent position is in equilibrium can

Qe expressed by the following differential equation:



·D . e>4w +... Xc> 4.. x.

where

=

.D
Y

-8

(3.6)

2H =

~he derivation of these equations may be found in the

pertinent li terature(1l). Only ifH2 = DxDy ' an .assump tion made by

Bleich(2), can solutions of this differential equation be easily ob-

tained.

If the plate is initially perfectly plane the value of Ox

at which bifurcation of·equilibrium occurs (the plane and the bent

positionarli! both .equilibrium position,s) is determined by equation

(3.6). Tllecondition that both the plane and the bent po.s1tion are

equilibrium positions can also be expressed in terms of.work. The

additional.work done by the.external force~ due to bending of the.plate

~ust equal the change in internal energy of the plate.
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This yields the following integral equation

+
C)2w 2-

2Dxy ( 0 xOY) Jdxdy (3.7)

When external restraints are provided to the plate the right-

hand side of equation (3.7) has to be supplemented by additional

terms expressing the work done by these restraints.

By assuming an appropriate deflection surface, equation (3.7)

gives an approximate solution. The degree of approximation depends

upon the correctness of the assumed deflection surface. In any case

the result will be conservative.

3.2 Plates with one Free Edge

For a rectangular plate with the loaded edges x= 0 and

x = £ hinged, edge y = 0 restrained against rotation and edge y = b

free (figure 1) the following deflection surface is assumed

(3.8)

The ratio BfA depends upon the amount of restraint. In the

case of e1as tic res traint, where 1::; moment per uni t length required

for a unit rotation

= (3.9)
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Deflection surface (3.8) is similar to the one used by.

Lundquist and Stowe11(12).As shown in the appendix better results are

·obtained with equation (3.8) if the following values for a1 and a2 are

used

For 0 <13 < 0.3

and for 13 == 00

a1· = - 0.7

a2 = 0.2

a1 = loll

a2 = 0.57

Substituting w in equation (3.7) and i~tegrating gives

(3.10)

where

C1 =

C2 =

C3

C4

1/2 + 2/5 a1 + 1/3 a2

1/5 + 1/3 ~1 + 1/7 (a2 + a 2) + 1/4 a 1a2 + 1/9 a~
1

4 + 12ai + 144/5 a~ + ~2a1+ 16a2 + 36a1a 2
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C6 = 2(1 + al + a2)

C7 = 4/3 + 3al + 1/5 (9ai+ l6a2) + 4ala2 + 16/7 a~

The minimum value, acr ' of ax is obtained for t/b given by

it- = 1{
b

t + 13Cl + 132C2

213 + 13 2C3
(3.11)

In the limiting cases when the edge y = 0 is hinged or completely

fixed equation (3.10) reduces to

a. Edge y = 0 hinged (~ = 0) a~d t = L

For a long plate the first term can be neglected and

b.Edge y = 0 completely fixed (13 =00)

(3.12)

(3.13)

The minimum value, acr ' of Gx is obtained when the half-wave

length t satisfies

it- = 1 39b •

Then

(3.14)

= (~t [10. l4VE;;E'y - 3.88 ( 'YyEx + V xEy)

12(1,., y ~ v y)

(3.15)
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3.3 Plates Supported Along All Four Edges

The loaded edges x = 0 and x = J?, are hinged and the edges

y = t d/2 have equal restraint against rotation (figure 2). For this

case the following. deflection surface is used(13)

w = (3.16)

The ra~io B/A depends on the amount 9f restraint. For elastic restraints

wi th 1= moment per unit length required for unit rotation

=
B
A

= (3.17)

J/
. Subs ti tuting w from equation (3.16) in equation (3.1\7) and integrating/,
gives

22 [(1)2 n2't1f'E _ +E·.!:.. .
~2(1- ""x Yy) '. x J?", Y d4

+

. (3.18)

with

c
1 = 0.09472

c 2 -= 0.00921

c3 = 0.04736

c
4 = 0.01139
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The minimum value of ax is obtained for j,given by

j,

d=
Ex 1/4 + ()Cl'i- 132C2

Ey 1/4+ (Cl + 2/~2) 13 + 132d3
., . (3.19)

In the limiting cases, when the unloaded edges y = ± d/2

are hinged or completely fixed, the minimum values of ax are

a. Edges y = + d/2 hinged (~ = 0)

= iI2 (E.)2 r2 VE;;Ey +. 'YyEJt +.... ~xEy +
acr .' IT d L 1- 'Yx "Vy

where

b. Edges y = ± d/2 completely fixed (t3 =010) .

· (3.20)

· (3.21)

J(2 (E.)2 [ 4.554 VE;;.Ey + 1.237 (YxEy + Y"yEx) +
12 d l-"V.~Vy

+ 4.943 GtJ .(3.22)

where

j,

d = \fiE.x0.66 . iT
,y

· (3.23)

In the following chapters values of Ex' Ey ' ~x' Yy and Gt

will be determined. On substituting these values in the above general

expressions, numerica.l solutions to the local buckling problem will be

obtained.
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4. ,S IR ES SAND ,S IRA I N

4.1 General

The moduli qf the orthotropic stress-strain relations of

equations (3.2) will be determined using the mathematical theory of

plasticity. ,After summartzing generalities on stress and strain in

the present chapter a review of the theory will be given in Chapter 5.

In order to save space and ,time tensor notation will be used in

referring to g~n~ralizedstress,andstrain.

In tensor notation c.;lrtesian coord~na,tes xl' x2 and x3'

corresponding to the x, yand z'axi,s of engineering notation are

denoted by letter subscri~ts i, j, k,~ which take the values 1, 2

and 3.

1'h:e nine compollents of stress and stra,in tensors are

represented b~ single symbo~s O'ij andEijresl?e<;:tively. By definition

and

all 0'12 0'13

O'~l °22 °23

0'31 0'32 °33

T Txy xz

(4.D

E 21.. Eh E 23

E31 E32 E:b

1/4~' '
U~

l/'4ffzx

•>

(4.2)
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pue to symmetry of the tenso~s,

=

=

a· .J1 (4.3)

(4.4)

fhe stress and strain tensors each consist of 6 independent components.

The derivation ,of equatiol1s (4.3) and (4.4) can be found in ,the

pertinent literature, e.g. in Sokolnikoff's book on the mathematical

theory of elastic~ty(14).

As is customary in tensor notat:ion repeateq subscripts will

indicate summation. Furthermore, the, Kr~mecker delta, 5ij' is defined

as unity for i= 'j aq:dzero for i ,rF j.

The state of stress, with components aij can be split into

two parts: a unifo;rm tension (or compression), S, and another state

of stress, with componentssij' having the same shear stress but ,zero

mean normal st,ress . The '~atter is called the deviatoric stress tenso.r.

Thus

with

= Si' + S5··J' 1J (4.5)

s = 1/3 aii , (4.6)

Similarly, the strain tensor with components Eij can be

divided into a uniform expansion, e, and a deviatoric strain tensor with

components e ..•
1)
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Thus

e· .
~J

and

= + (4.7)

e

4.2 Invariants

1/3 ~il (4.8)

The derivatiori of the pri,.ncipal stresses, O'p" from the ,,6 ,inde
\~<}~s

pendent components 'O'ij' of the stress tensor j..oad's to a cubic equation

+ + C = o (4.9)

The coeffici,.ents' A, Band C are functions of the stress components.

,As equation (4.9) mll~t be independent of the arbitrarily chosen

coordinate' axis, xi' the coefficients A, B andC are necessarily in-

variants. It is customary to choose as the first invariant

O'kk ( :i:: - A) . (4.10)

With regard to plastic deformations the deviatoric stress

tensor is more important than the stress tensor itself. The invariants

specifying the state of deviatori.c stress are obtained from a cubic

equation similar to equation (4.9).

The invariants are

+ BO' S
P + C' = o . (4.11)

= = O'kk -,,s 0 kk o (4.12)
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= 1/3 Sij Sjk ski ( = -C~)
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(4.13)

(4.14)

4.3 Yield Conditions

It is commonly assumed that yielding occurs whenever some

function of stress, f (Oij)' equals some number, k! If the material

is origiqa11y isotropic this yield condition is independent of the

orientation of the coordinate system. In this instance f must be a

function of the stress invariants. Bridgman(15) has investigated the

influence of 11 and found .thatpressures of the order of the yield

stress have practically no influence on yielding. .The yield condition

thus becomes

f(J2 J3) = k . (4.15)

One of thesimplesl: yield conditions is the Huber-von

Mises-Hencky criterion

2= k (4.16)

where k denotes the yield stress in pure shear. It represents a

surface of constaqt distortional strain energy. Nadai pointed out

that it is also a constant octahedFa1 shear stress criterion.

Tresca's maximum shear stress criterion is mathematically

more complicated and takes the form

64k6 = 0 . (4.17)
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However, as mentioned by Prager(16) , even .under the most

unfavorable circumstances the value of Vi2 furnished by Tresca's

yield condition differs from the value of k furnished by the Mises

condition only by about 15%. Furthermore, test results usually fall

in between the predictions of Tresca,' sand Mises' yield conditions.

On account of .its greater simplicity the Mises condition is generally

preferred for theoretical analysis.
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5. L.N C .R E M EN T AL .S TRE SS-

ST R A I NR E L. AT 10 .N S

.5.1 General

An extension of the yield function is obtain~dby assuming

the existence ofa loading function, f (aij)' which depends upon the

state of stress and strain and the history of loading. For ideally

plastic materials plastic flow occurs whenever f equals some number k.

For materials exhibiting strain-hardening plastic deformations occur

when the loading f\,Jnction.exceeds k.

Prager(l7) proved that, if

1. . A loading function exists

2. The relation between infinitesimals of stress and strain

.is linear,

the only permissible stress-strain relation for strain-hardening

material. when loading is

and when unloading is

p'
dE ..
"~J

=
C)f

F-·
';)a~j

.(5.1)

= 0 .. . (5.2)

p
where €ij = plas tic. ,component A:>f.s.tr:ain€ijandFi:indIare

functions,oL~tres£cand.atrc~.in.) .ht'Ynvv~ Qvv\ol J.k-{Qh-~ '} ~cr-L-V0ld .
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The geometric proof ·0£ Prager's stress-strain law (equations 5.1 and

5.2) is also included by Drucker in his survey of stress-strain

relations in the pLastic range(8).

Applying different types of loading functions Edelman and

Dtucker(18) have derived various incremental stress-strain relations

fromPrager's law.

As no information was available concerning the actual

behavior of steel i.n the strain-hardening range the author carried

out a few tes.ts on combined compression and torsion of steel tubes(lO) •

. The tubes were compressed into the strai.n-hardening range and then

subjected to torsion while keeping the axial load constant. It was

found that for this particular loading path the behavior is very well

described by Prager's incremental stress-strain relations taking

f =

. Although these tests are by no means a general verification

of this theory they give some indicat.ionof its possible validity. In

view of t.hese results and on account of its simpli.city, the loadi.ng

function f = J2 will be applied in the following derivations.

5~2 Loading Functionf =J2

Applying the loading function f = J2 to equations (5.1) and

(5.2)

d€~. = F 's.. dJ
2~J ~J

. (5.3)

when dJ2 > 0



p
dE.. = 0
"'~J

. when dJ2 6: ()

~2l

· (5.4)

The increments of the elastic components'€~j' of the strains are

given by Hooke's law

where

=
-1+ 'V

E :doij
Y'
E ,cl°kk °ij · (5.5)

E = modulus of. elasticity

'V = Poisson's ratio

For the case of plane stress (oz = 'txz = 'tyz = 0) the

stress-strain .relations, written !n unabridged form, are

.(5.6)

d.E Z =

· (5 ~ 7)

· (5.8)

when

2(1 +Y)' .'
= .····E . . :&r + 2F.'I" dJ2 · . (5.9)

and

1
dJ2 = 3 ( 2IJx

· (5.11)
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Y 1
dEy = - E dox + E day (5.1Z)

"V'
(5.13)d€z = - E (dox + day) ..

dO
.2(1 + 'Y)

doT (5.14)= 'E ·

when dJZ '= 0

The function.F can be obtained from the results of a simple

coupon test for whichoy = ~ =day = d~ = 0

.. Denoting

F is defined by equation (5.6) as

· (~.15)

F
3

= ·4JZ [ .
1 1. ]E:" - E"t · (5.16)

~. -Becauseo.f J-nitialimperfections the above derived stress-

strain relations cannot be applied without modification to the

local buckling problem.. After investigating the influence of initial

imperfections on two simplified models in Chapter 6, effective stress-

strain relations for the strain hardening range of steel will be

derived in Chapter 7.
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6. I N .F L ,U ENC EO FIN .1 TI A L

IMPERFECT IONS

6.1 General

A perfectly plane plate will remain plane if it is

subjected to loads acting in its center plane which do not exceed

the corresponding buckling loads. In the case of longitudinal loading

in the x-direction producing a state of stress with Ox as the only

component, this state of stress will remain unchanged up to the point

when buckling occurs. Consequently the buckling stress can be

obtained from stress-strain relations (5.6) to (5.9) with Oy = t = O.

However, the buckling strength of actual plates with

unavoidable imperfections does not agree with the predictions for

perfectly plane plates. The reason for the discrepancy seems to be

eqtlation (5.9) which p.redicts elastic behavior with regard to the

superimposed .shear stres.ses .

.Applying a simplified stress-strain diagram to. a simplified

model .of a ctuciformsection.QnatandDrtlcker(9) have shown that small

unavoidable imperfections may account for the difference between

predicted and actual behavior. .Apparently the influence of imp.er

fections on sections which fail by torsional buckling is completely

:different from those which fail in bending. .The latter case has been

investigated by Wilder, Brooks and Mathauser(19).
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In the following, this difference in behavior wi,ll be

illustrated for simplified models which buckle in the strain-

hardening range. The appliedsimplifiedstress-strai~curvewith

n = E/E t = 40 is shown in figure 3. .Reasons why the compressive

stresses can exceed the yield stress, 0'0' will be discussed in

Chapter 7 .

. 6.2 Simpl ifiedWFColumn

The simplified·WF column co~sists of two thin flanges of

equal area sep~rated by a web of infinite shear stiffness and

~egligiblearea (figure 4). Instead of a true initial imperfection

the defle~tions at .the beginning of strain-hardening (a = 0'0 and·

.E= Eo) are used in the computations.

Following. the same approach as Wilder, Brooks and Mathauser

the deflection curve is assumed to be

y =
10{

y siIlT . (6.1)

. At the beginning of strain-hardening

Yo
1tX

Yo sin T . (6.2)

The load vs deflection curve is found by considering equilibrium

of the center section of the column: ..
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For the first part; of the 10a.d vs deflection curve the

strain in both flanges increases and the relation between .average

stress and deflection is &iven by

• (6.3)

where

a = average stl;"ess of both flanges

at = tangent: modulus stress

2
. 1! Et

at .= (ilr)2

f = y/d

d = depth .of se~tion

f o = value of f at b~ginning of strain-hardening.

. Strain reversal occurs for

V'l 00)'
f = f s = .'2:" (1 -at .. f 0 .. · (6.4)

The corresponding stress, as, is obtained from equation (6.3) substi-

tuting f = f s •

After strain-.r.eversa1 has started the load vs deflection

relation is given by

.. c76 [~~j-1.) +fJ =g; [~(:~l)+ f s] + '%; n~n1 (f - f s)

· (6.5)

Figure 6 shows curves of 0/00 vs f fOJ:'O't/oo 1 ..2 and

.'

different values of foe The figure illustrates the behavior of the
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column for loads corresponding to stresses a ~ at .. Although the

deflections start to increase more rapidly the load continues to

increase. Therefore it is safe to use the tangent modulus load, which

corresponds to ° =Ot' as the limit of usefulness of the column.

6.3 Sim~lified Cruciform Section

In contrast to the above example the influence of initial

imperfections on the buck-ling ~treng·th.- <;>f a-column·- 0.£ s-implified

cruc!formcross·-sectionwillnow be illustrated. The simplified

stress-strain curve of fi~u,re 3 is applied to the solution of the

problemas given by OnatandD~ucker(9).

The cross-section consists of a thin shell of constant

thickness h (figure 5). ~he colu~n which is loaded uniformly is

assumed to fail by twisting. The ends are considered as providing

no restraint, which consiQ-erably simplifies the kinematics of the

problem and makes thest~te of stress and strain the same at each

cross-section.

The shear stress follows the contour and is constant in

magnitude. . Theresul ting moment, Ml' is given by

. (6.6)

The twisting moment,M2' produced by the axial force is

. (6.7)
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in which

I p = polar moment of inertia

e = angle o.f twist per unit length .

.The condition thattb,ec9lumn is in equilibrium is satisfied by

equating '~l andM2 such that

o = · (6.8)

The relationship between the increments of the str~sses and angle of

twist is found by differentiating equation (6.8)

3t (d-r -rdQ )
do = ':"'"7'1" :Q7'b" e. - .Q .

Substituti:p.g equations (6.9), (6.8) and (5.6) in equation (5.9)

leads to the following .differentialequation:

lob do.' [~J
2 r .err"''- cr- . 1+ r =

where

.' • (6.10)

= ~ + 1 ~ ~

3t;2
= b2 G (elastic tdrsional buckling stress)

An approxirri~te solq.tion for small values Oft is given by Onat and

., Drucker as

o = · (6.11)
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Results for ~h(! strain-hardening range of steel, n' = 46

(n= 40) are shovin in figure 7. Load vs rotation ,curves are plo.tted

for initial imperfect~ons bQo = 0,0.010 al'l.d 0.10 , bQ being the angle

of twist between two cross-sectic;ms adist~nce b apart. In all cases

It is seen that very s;nall iIllper{ections cause a consider-

able re,ductionof the column strength .. A peJ;"fecPY stra;ght m(!mber

would .reach .itse1astic bucl<~ing load, for the ca~e considered

e
oc/oo = S.An imperfec~io~at o~ 0 0 and £ ~ £0 of bQo'~ 0.010

reduces the maximum load to ami 0 0 = 1.4. . Consequent1y the app i icat ion

of the J 2 incr:entental theory to a perfect1yplan(! 1'1at;ewhichfails

primarily by twisting cannot be expected to correctly predict the

buckling strength of actual plates.

Rather tl1an attempt to solve the buckHng problemo~ .a .

plate with initial imperfections, effec~ive stress-~train relations

are determined in the nex~chapter. It will be necess~ry to reduce

th,e initially elasticval~e of the tangent. shear ;nodulus such,that

the application of stress-strainrelatioJ;ls (S.6) to (S.9) to the

genera1~xp:res$ions o!:Cl1apter 3 will result ina corrElctdescription

of the behavio.r of actua~ plates.
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FO R THE S T 'R A IN - HA.RD. EN I N G

RAN.G E OF S T EE L

...

7.lResults of Coupon Tests

A typical stress-strain curve obtain,ed from a simple

coupon test is shown in figur~ 8. It must be borne in mind that

thestrainI;'epresentsan average stra,in measured over a certain gage

length. .Itwoul~ be entirely erroneo~s to assume that the local

strains within the plastic rangefrom~f to Eo are equal to the

average strain. Yielding of mild steel occurs in small slip barids(3).

iSlip takes place in a "jump" such that the strain across such a narrow

ban.d jumps from Ef to Eo' The first slip band originates at a .weak

point in th~ spec~men, d"!.1e to an inclusion, a stress concentration or

'other defects . From there on yielding will spreadaloIlg the specim~n.

This consideration leads to the conClusion that there is

no material.within the specimen at a strain between the yield strain,

€f' and the strain-hardening strain, Eo .. Either the material is still

elastic or it has reached the strain-hardening range.

In the strain-hardening range, E > Eo' the m'aterial is

.again homogeneous and in this range the J2 theory of plasticity will

be applied. In the :J.nt.ermedia,te range, .Ef <E < Eo, the specimen

can be consider:ed to consist of two ma.terial~ .
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The results of 21. compression coupon tests carried out at

Fritz Engineering Laboratory are summarized in Tab~e 1. The coupons

were cut from the flanges of WF shapes and from angles. For the

interpretation of the results of coupon tests the following must be

taken into account .. Coupons are tested continuously ina hydraulic

testillg machine. It has become customary in Fritz Laboratory to test

coupons with.a valve opening of the machine corresponding to a .strain

rate of 1 micro in. lin. per second in the elastic range. It has been

shown by Huber and Beedle~ th~t the ratio of the yield stress of

a static test (where the load settles down after each increment of

strain) and the yield stress of a continuous coupon test is appr6x-

imately 0.925. Consequently a value of the yield stress,O'o' of

0.925 x 39.2 ~36 k~~ will be used in the following derivations.

Stress-strain curves for the strain-hardening range as

obtained ~rom 5 selected coupon tests have been replotted in figure ~ .

. Coupons 9 and 18 represent the extreme cases while 5, 15, and 17

represent tests with average results .

. The average stress-strain curve for the strain-hardening

\. range can be expressed by the three pa,rameters introduced by Ramberg

andOsgood(2l).

:: I.,.

€ - €. 0
= 0' - 0'0

1';0
+ .(7.1)
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where

°0 = 36 ksi

·.Eo = 14 x 10-3 in./in.

. Eo = 900 ksi .*
K - 21

n = 2

Equation (7.1) is also plotted in figure 9.

The total stress-strain curve, as it .will be used in th~

following derivations, is shown in figure 10. The tangent modulus,

E t , in the direction of loading, x, is defined by equation (5.15)

and plotted in figure 11. .This information is sufficient to

determine F (J2) defined by equation(S .16). . From equations (5.16)

and (7.1) it follows that

..,'
.. (7.2)

for JZ > 1/3

Figure 12 .shows F As a .function of J2'

Compression tests on coupons taken: from webs of WF shapes

have also been performed by Huber and Beedle(20). The results showed

that the yield stress of web material is in general aboutl~% higher

* The values....ofEo in Table ..1 ,are.t-aken .IrOOlF. L. reports in which
they are usually not given as the slope of the stress-strain curve
at the initiation of strain-hardening but as the slope at a strain
SOIl\ewhat larger than EO' . Consequently Eo. as used in equation (7.1)
is. larger than the average value given in Table 1.
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than that of flange material. Unfortunately these compression tests

were not carried into the strain-hardening range, and consequently

no information is available with regard to the shape of the

stress-strain curve in the strain-hardening range.

Results of tension coupon, tests carried out as part ofF. L.

Project20SE (see Table 2) show the same tendency of higher yield

stresses for web material. The strain-hardening modulus, Eo, however,

does not seem to be affected.. Consequently the only difference of

the stress-strain curves for flange and web material is assumed to be

in the value of 00' For flanges 00 = 36 ksi and for webs 00 = 40 ksi.

7.2 The Tangent-Modulus In Shear

Consider the case where shear stresses; T, are super~mposed

on a constant normal stress, ax' taking 0y= 0 and dox = doy = O.

The relations between the increments of stress and strain given by

equations:(5.6) and (5.9) reduce to

· (7.3)

2(1 +Y)
E · (7.4)

Integrating equation (7.4) gives the relationship between

T and 0 as shown in figure 13 for Ox = 36 ~si and 0x= 48 ksi.The

corresponding slope

· (7.5)

is plotted in figure 14.
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It should be noted that from .equation(7 .3) it follows

that,due to the shear stress, T, the axial strain, Ex' increases

(figure 15). .This phenomenon has· also been confirmed by tests(lO).

Consequently when a plate fails by twisting, an increase of the

axial load is carried by the central part of the plate cross-section

and the shear stresses occur at the part of the section near the

plate surfaces. Therefore, it is justified to assume dcrx = 0 in

determining Gt . Furthermore, in cases where Gt is of importance

e.g. hinged outstanding flanges, normal stresses, cry, perpendicular

to the direction of loading ar.e small, justifying the assumption

cry = O.

It is seen from figure 14 that the value of Gt drops

rapid+y for small values of d' However, from the point at which

Gt = 2000 ksi .the decrease is slower.. Q6nsequently this value is

selected as a useful value ofGtfor the strain-hardening range of

steel. From figure 13 it follows that the influence of the

magnitude of the normal stress can be neglected for that part of

the strain-hardening range under.consideration.

7.3 Bi-AxialNormal Stresses

For regions of a plate in which cross bending is of

importance the sheat stresses are zero or very small, e.g. the center

of plates supported along ,all four edges or the fixed edge of a '

clamped outstanding flange.
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In th~s case equations (5.6) and (5.7) reduce to

-[i -i F (2crx - C1 y ) (2cry - crx) J dcry · (7.6)

dEy [1 1 (2cry -' dx)2J dcry += -+-FE . 9

[v 1 - C1y ) (2cry - crx) ] dcrx (7.7)- E - '9 F (2crx ·

Comparing equations (7.6) and (7.7) with equations (3.2)

gives

1. 1 1
(2crx

2
= -+-F - cry)Ex E 9'

1 1 1 2
= -+-F (2cry crx)Ey E 9

v l.F (2crx cr ) (2cry crx)E -'9" - -y
"'Ix 1 1 '(20'x

. 2
E + '9. F - C1y )

"" - 1 F (2crx - cry) (2 cry - crx)-
E 9

Yy = l + 1 F "2
E ~. (2cry - crx>'

(7.8)

· (7.9)

(7.10)

· (7.11)

reduce to

For a perfectly plane plate (cry = 0) equations (7.8) to (7.11)

Ex ,- Et

4 E Et
Ey = E + 3Et

(7.12)

· (7.13)
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E - (1 - 2y), Et
"Ix = 2E."

-Vy
2 E - (1 -2") Et=

E+.3 Et

.(7.14)

; (7.15)

.Equations (7.12) to (7.15) have been applied with .diff~r.ent

notation by Handelman andPrager(7) .

Equations (7.9) to (7.11) are valid on1~ ~f

· (7.16)

or rewritten

and with equations (7.6) .a,nd (7.7)

(2 -V) 4Ex .. (1 ~ 2'1') dEy> 0

.(7.17)

~ (7.18)

Figure 16 shows the assumed linear strain distribution ,due

to curvaturesdKx and'dKy in the x-,and y- directions.

dEX == dEi + z,~ . ., · (7.19)

dEy = dE2 + xdKy · (7.20)

where d€l and d€2 are ,strain increments of the central plane in the x

and y direction and z is the distance to the central plane.
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The condition that all of the section is deformed

plastically is obtained by substituting equations (7.19) and (7.20)

in equation (7.18)

(2 -Y) (dEl + zdKx) - (1 - 2V) (d€2 + zdKy) > 0

fClr -t/2~z ~ tj2

· (7.21)

Tq.e increase of the fox'ce per unit width in the. x- direction,

Nx ' is found by rearranging equation (3.2) and integrating over the

thickness of the plat.e

dN =.x

t/2
J (do.".) dz-

-t/2 ""

· (7.22)

The increase of the force per unit .width in the y- direction is

t/2
dNy = J (dOy) dz

-t/2

= __E,,-;y,......t..-,._
1 - 'IIxVy

=

· (7.23)

However, no external forces are applied in the y- direction, thus

· (7.24)

or

Substituting equation (7.25) in (7.22) gives

· (7.25)

dNx = · (7.26)
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The plasticity condition, equation (7.21), then becomes

[ 2 - y + (1 - 2.'Y)."V X] dEJ. +

for - t/2 .~ z ~ t/2

'1;-
(2 -Y) zdK.JC;" (1 - 2Y)tdKy > 0 ,(7.27)

If the neutral zone between loa<iingand unloading zones

is at z = t/2, equation (7.27) gives

_ ~2_-Y) OK~ - (1 - m OKy \

, \2. - y + (1 - 21') y x /

Obviously dEl > 0 only if

· (7.28)

" (7.29)

Checking the plasticity conditi.on(7. 27) for dEl given by equation

(7.21) shows that condition (7.27) is not violated if (7.29) is

satisfied.

If the neutral zone is at z = -t/2 equation (7.27) gives

t/2 (1 - 2'1') OK - (2- 'Y) dK"\

2 -Y + (1 - 2'Y) 'Vx -).

and dEl > 0 only if

· (7.30)

dKy >
2 _'\f ,

r -2Y dI<x · (7.31)

The plasticity condition (7,27) is not violated if equation (7,31)

iss,atisfied.
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From equations (7.28) and (7.30) it is seen that

dEl = 0

and consequently accor.ding to equation (7.26)

for

· (7.32)

Furthermore dJ2 = 0 for. the entLre cross-section.. Thus

· (7.33)

for an initially plane plate with 0y = O.

In this case~ since bending is not accompanied by an

increase in axial load the influence of initial imperfections will

be the greatest. Suppose biaxial loading starts at 0x= a~,

0y = 0, Ex = E~, Ey ·= E;. Then it follows f:t'om equation. (5.10) with

equation. (7.33) that

Integrating (7.34) gives

· (7.34)

= J~ + o~ · (7.35)
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Equations (7.8) to (7.1.1) reduce to

1 1 lJ. .....2
- - + .....:. F' a; · (7.36)

Ex E 9

1 1 1
F (2. 1:)2 (7.37)= -+- ay - ax 0

Ey E; :9 2

y _2 F <!i (~ *)ay - axE "9'"
Y l+ ~ ~r~~y- 'ai).2. · (70,38)Y

'V 2 F * (~ *)E.', g ax ay ax
'Yx ---

J:. +l~ F
'.,"? .- · (7.39)

E 9 a~-

The results are shown graphically in figures 17 and 18.

From figure 17 it is seen thatay has little affect on Ex.. Negative

values of ay cause a drop of ,Eyas shown in the same figure. However,

according to equation (7.24) negative values of ay must .always be

accompanied by posi.tive vaiues at o.ther parts of the plate cr.oss-section.

For the latter case an increase ofEy is observed. ,Consequently, the

effective modul~s of the whole section will be affected only to a

small extent .. Furtgermore, the product ~x '~y does not change much

because of ay (figure 18). Thus for biaxial bending the influence of

initial imperfections is neglected.

\ b')
_The values of Ex, Ey ' 'YX) and o/~, are given"be equations

(7.12) to (7.15). The results are plotted as functions of Ex in

figures 19 and 20,
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aF WIDE-FLANGE SHAPES

8.1 Outstanding Flangel3 of Infinite Length

The critical stress for an outstanding flange of an ortho-

tropic material is given by equation (3.10). Substituting the values

of the moduli derived in Chapter 7 into this equation, will give an

estimate of the buckling strength of an actual steel flange. The

ratio of the half wave length, £, and the flange width, b, i.s given

as a function .of the coefficient of restraint, 13 ,by equation (3 .ll)

and is shown in figur.e 2.2. From figure 21 it is seen that 'VEy/Ex

varies from 1.38 for €x = 14· x 10-3 to 1.40 for Ex = 55 x 10'-3.

Consequently '!J Ey/Ex has been .chosen to have a constant value of

1. 39 for the entire strain-hardeni.ng range. Finally the critical

stress is obtained by combining equations (3.10) and (3.11).

As deformations are mor.e important than stresses the

results are plotted in figure 23 as €cr vs b/t curves, where Ecr is

the strain corresponding to the critical stress. The c.urves plotted

are for 13 = 0 (hinged flange), 13 = 0.01, 13 = O. (and 13 = o<::l (fixed

flange) .

. For the intermediate range, €f < €cr < Eo' yielding will

start at certain locations and spread along the flange. Buc.kling will

occur when a sufficient length has yielded to allow a buckle to be

formed under the action of yield stress 0'0' The length of the



plastically deformed buckle will be finite and consequently the

average strain of the infi.nite1y long flange will .approach the yield

s'train. The transition c:urves for E f < E cr < Eo have therefore been

indicated as vertical lirtes in figure 23.

8.2 Hinged Flanges of Finite Length

Consider a hinged flange of length 2L. The loaded edges

x = 0 and x = 2L are f~~xedJ' the unloade.dedge y= 0 is hinged. and the

unloaded edge y = b is free. If all of the material has been

strained into the strain-ha:t'dening range, the buckling st:::-ess is given

by equation (3.12).

In the elastic range equation (3.12) reduces to

. (8.1)

When acr obtained from equation (8.1) equals or exceeds ab yielding

will have connnenced.. A.ssume that yielding starts at both ends and

then moves toward the middle. This assumption seems to be reasonable

in view of the fixed end restraints and has also been confirmed .by

tests.

The middle section, being still elastic, is practically

rigid compared with the yielded zones of length ~L. Assuming that

only the latter will deform equation (3;12) mu~t be replaced by the

following

= = . (8.2)
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The corresponding criti.cal strain is

'.

the b/tvs ~ curve has been plotted in figure 24 as a so1i4 line.. As

,;

/'

,.

Substituti.ng i.rtequation (8.2) the values of. ~x' Y x' V y an~Gtthis

GVfJ/
equationdetermine.s the relationship between b/t.and ~ .. ~or Lib =2,65·......-'l7~

~QI)t;)

elasti.c deformatiqns ha,ve bee.n .neglected in. equation (8.2) bit = 0t0

for ~= O.F()r this case bit = 20,7 which .is found fromequ.ation (3.12)

by substituting the elastic values of Ex, "(x' "Iy , Gt and taking

cr = 36 ksi.andL/b = 2.65. Knowing the rigid plastic solution.and

the point .f()r ~ = 0 of the elastic"plal3tic solution the latter has been

sketched i.n. figure 24 as a dotted Hne. The ~J.astiC'.""plastic solution

of bIt vs ~ with equation (8.3) gives tell:" a.s a function.of bit for the

rangeEf <€'cr < ~o' The soluti~n for E'er> ~o i.s found from equation

(3.12),

8.3 Webs

The problem of buckling of uniformly compressed webs

(rectangular plates supported at all four edges) has been treated

theoretically in section 3 ..3, 'rhe critical stress is given bye,quatiort

(3.l8L theI;atio of half~wave length,;', to wicith.of plate,d, b.ei.ng

determined bY. equatipn (3,19).

Figure 26 shows a plot of i,fd.as.a function of t~e facto:r

of restraint, 13, for "V Ey/Ex= L 39, a va1u.e representative of t.he

strain'-hardening range.. Substituting these values for ;,jd in equa~ion
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(3.18) gives the values of the critical stress. The corresponding

strains have been plotted in figure 27 as a function of the width

over thickness ratio, d/t,for t3 = 0 and t3 =00.

Applying the same reasoning as in .the case of infinitely

long flanges (section 8.1) the transition curves for the range

€f < € < €oare found to be vertical lines in figure 27.
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9.1 Compression Tests on Angles

A number of compression tests on angles were performed

with the purpose of checking the theoretical estimates developed

above ..Ang1e specimens have better known boundary conditions than

.WF sections and therefore give a more positive check. Whenbuck1ing

t~rs~pna11y, the flanges of the angle act as two plates each with

one- free and one hinged edge, the heel forming the hinged edges. The

loaded ends of the column were fixed against rotation in the testing

machine. The dimensions of all specimens are given in table 3.

The resultant stress vs axial strain curves for the columns

are shown in figure 28. Furthermore the rotations of the center

sections were determined and are plotted as a function of the strain

in figure 29.
. - .

The ct~,ti.c~l strains are defined as the strain at which
, , c' ,.. ? ;'. :"'J

the rotation starts to increase more rapidly than it did initially.

Specimens A41 and A42 did not buck1et,orsionally but failed by bending

about the weak axis.

The results of all tests on angles are summarized in table 4.

The critical strains are plotted as a function of the bit ratios as

in figure 25. In this figure the theoretical solution is also shown,

the derivation of which is given in section 8.2. The test results

compare favorably with the theoretical predictions.
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9.2 Tests on Wide-Flange Shapes

In order to inve~tigate the actqal behavior of WF sQapes

with regard to local buckling, six different shapes were each

.tested under two loading conditions:

(a) .Axial compression (Test P1, D2, ])3, D4,.D5,D6)

(b) Pure bending (Te~t BI, B2, B3, B4, B5, B6)

The dimensions of allWF spec~mens are given in .table 5.

The length of each specimen was divided into three gage

lengths over which the challgein length was measured directly with

0.0001" Ames .dials. .Along the edges of the flanges and the center

of the web lateral deflection measurements were taken.. For the bending

tests the lateral rotation was measured at the loading points (which

.were supported against lateral rotati9n) and near the center line of

the beam.

The results of the compressiona~d bending tests are shown

in figures 30 and 31 respectively.. Plotted are PIAvs €av for the

compression tests andM/Z vs e:av for the bending tests

P

M

A

Z

=

=

=

compress:j..ve load

bending 1p.0ment

area of ~ross-section

plastic ~ection.modulus (twice the static moment

of half the section. about the .strong .axis)

average strain at center of compressed flange.
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As a typical example, the maximum flange. and web denec

tions.and lateral rotation vs the average strain for test B~3 are

shown in figure 32 .. From these curves the crticial strains are

obtained as indicated by arrows in figures 30 and 31. The critical

strain is defined as the average strain at which the deflection of

the flange or web starts to incre~se more rapidly than it ,did

initially. The results of all tests aresumrnarizedin table 6.

When comparing the results of tests onWF shapes it should

be borne in mind that' the different types of buckling cannot be

separated. Consequently the results should bE1 interpreted with

caution. For the cases where flange buckling was predominant the

critical strains of the flanges vs the b/t ratios and the tb.eoretical

curves are plotted in figure 23. The results of tests .D4 andD6are

omitted because web buckling occurred first and obviously caused

premature flange buckling. Furthermore specimen ~4did not develop

a major flange buckle but failed by lateral buckling. Therefore this

result has also been eliminated from figure 23. From this figure it

can be concluded that, if premature web buckling is prevented" the

webs of the tested sections provide positive restraint to .. the flanges

corresponding to a value of ~ of the order of 0.01.

For the cases where web buckl~ng occu:r;redfirst (Tests ])2"

D4 and.l)6) the critical strains are plotted vs the d/t rattos as in

figure 27. This figure also shows the corresponding theoretical

curves. For testp2 flange and web buckling qccurred simultaneously
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and it is therefore possible that the web buckled prematurely.

9.3 Summary

The results of the investigation presented in this

diss.ertation can be divided into two parts: thederivationof

stress-strain relations for the strain-hardening range of structural

.steel and their applications to the local buckling problem.

Incremental stress-strain relations were derived desc;:,ribing

the orthotropic behavior of steel after it has be~ncompressed into

the strain-hardening .range. . The values of .the tangent moduli and the

coefficients of dilatation in, the direction of compression and

perpendicular to it are shown. in figures 11, 19 and 20. . An applicable

value of the tangent shear modulus was found to be 2000 ksi. The

above stress-strain relations were appl~ed to the local buck~ing

problem. The derived values of the moduli and coefficients were

substituted in general exp.ressil:ms for the buckling strength of

orthoq:opic plates. The agreement betWeen predictions and test

results (figures 23, 25 and 27) finally justified this approach .

. A direct p.ractica1. application of the findings presented in

this dissertation is the prevention of local buckling pf outstandin~

flanges in continuous frames, in which the .design is based upon ultimate

strength. From the required rotation capacity of the plastic hinge~
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the strains of the flanges can be determined. Figure 23 then gives

the required b/tratio, for t3 = 0.01. It should be emphasized,

however, that the stress-strain relations could equally well be

applied to other problems involving the occurrence of biaxial

stresses and strains in the strain-hardening rang~ of steel.
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Tensor Notation

coordinate axis
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i, j, k, £, m

=

=

are letter subscripts tak~ng the values 1, 2 and 3

components of stress tensor

principal stress

components of deviatoric stress tensor

s

E ••
~J

e
Eij

EP
ij

eij

e

=

=

=

=

mean normal stress

components of strain tensor

elastic strain component

plastic strain component

components of deviatoric strain tensor

mean normal strain

f

Kronecker delta

first invariant of stress tensor

are invariants of deviatoric stress tensor

yield and loading function

k

F

=

=

constant

function defined by equation (5.1)

Engineering Notation

x, Y & z are coordinate axis

w = deflection of plate

y deflection of simplified column

= maximum value of yy



f .-

f o =

f s

Ox =

0* .-
X

0y

0
0

at .-

Ocr

oe =cr

as =

1"xy =

Ex .-

E* =X

E =
Y

E* =
Y

Eo =

Ef =

Ecr =

Eav =

dXY =

E =

.E t

Ex =

Ey

Eo =

ratio of - over depth of simpl~fied columny

value of f at initiatio~ of strain-hardeq.ing

value of f at which strain r~v~rsal takes place

normal stress in x direction

value of Ox at which biaxial loading starts

normal stress in y direction

yield stress

tangent modulus stress

critical (buckling) stress

elastic buckling stress

value of a at which strain reversal takes pla~e

shear stress

normal strain in x direction

value of Ex at which biax~al loading starts

normal strain in y direction

value of E at which biaxial loading starts
y

strain at initiation of strain-hardening

yield strain

critical strain corresponding to ocr

average strain

angular strain in xy plane

modulus of elastictty

tangent modulus

tangent modulus in x direction

tangent modulus iny direction

strain-hardening modulus
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G .-

Gt
=

'Y' =

~
.-

=

mo.du1us of elasticity in shear

tangent modulus in shear

Poisson's ratio

coefficient of dilatation for ~tress increment in x

direction

coefficient of di1atationf9r stress increment in y

direction
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n =

n .-

n' =

D =x

D =
Y

D =xy

H .-

P =

M =

M =x

M =
Y

~y -

Nx .-

Ny

Qy =

- =Qy

1- =

b =

d =

exponent in equation (7.1)

ratio\ of modu1~s of elasticity over tangent modulus

ratio defined by equation (6.10)

bending stiffness per unit width of plate in x direction

bending stiffness per un~t width of plate in y direction

torsional stiffness per unit width of plate

func tion defined by equation (3.6)

compressive load

bending moment

bending moment per unit width of plate in x direction

bending moment per unit width of plate in y direction

torsional moment per unit width of plate

axial force per unit width of plate in x direction

axial force per unit width of plate in y direction

shear force per uq.it width of plate

boundary shear force per unit width of plate

half wave length of buckled shape

wdith of plate with ~ne free edge

width of plate supported at all four edges



d .-

t =

I =

A =

Z =

h =

e =

e =

1 =

11 .-

Kx
.=

~
=

K =xy

.,.54

depth of simplified column

thickness of plate

moment of inertia per unit width of plate

area of cross-section

plastic section modulus

thickness of sheet forming simplified cru~iform section

angle of twist per unit length

lateral rotation of beam

edge moment per unit length to produce unit rotation

of edge

function defined by equation (6. !O)

curvature of plate in x 'direction

curvature of plate iny direction

twist of plate

f3 = B/A = coefficie~t of restraint
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·A P P·E N·.D I.X

Deflection Surfaces of Outstanding Flanges
i

In order to obtain an approximate solution for an qrthotropic

plate buckling problem,an assumed deflection surface may be used in the

energy equation (3.7). When all edges are hinged, fixed or par~ially

restrained against rotation an appropriate deflection surface

fulfilling all boundary conditions can eas:Llybe f04nd (Section 3.3).

However, when the plate has a free edge ~s in the ~ase of

outstanding flanges the selection of a surface becomes more involved.

Consider a rectangular plate, the loaded edges x = a and x = £ hinged,

the unloaded edge y = a either hinged, fixed or re~trained and the

unloaded edge y = b free. The boundary conditions for the free edge

are:

= a (A.l)

where

= Q +O~y
y Ox

= a (A.2)

=

=

shear per unit length

boundary shear per unit length.

Qy is found from equilibrium of a differential plate el~ment

= G>My +
oy

OMxy

Ox
(A.3)
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The boundary shear Q is determined by replacing the twisting moment
y

by equivalent shear forces and adding them to Qy . The derivation of

these equations can be found in the pertinent literature qV.

Substituting in equations (Al) and (A2) the expressio~s fOT My andMxy '

equations (3.4) and (3.5) give

'C>2w
+Yx

'02w
O·

()x2 = .
()y2

Dy
~3w

('"Yx Dy + 2 Dxy)
-o3w

0oy3 + =
() x 2i:> y'

(A.4)

(A.5)

. If edge y = 0 is hing~d the following deflection surface

satisfies the boundary conditions at all but the free edge

= [~ + hl (~t + 11;2 (ytJ ..~ (A.6)w b Sl.n I,

Substituting equation (A.6) in the boundary conditions for the free

edge, i.e. equations (A4) and (AS), gives two equations from which the

coefficients hl and h2 can be determined. Figure 33 shows h~ and h2 as

a function of I,lb for values of the rigidities corresponding to an

axial stral.'n of 25 x 10-3 . F th fi it i th t f r nib> 2rom e. gure s seen· a . 0 k .

the coefficients are approximately zero. It may be noted that for an

elastic and isotropic material hl and h2 also usually are taken zero.

When edgey = 0 is fixed deflection surface

..,-:

..------

w
rex
I,

(A.7)
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satisfies the boundary conditions at all edges except the free edge,

y = b. Substitutingw as given by (A7) in eqllations (A4) and (AS) yields

two equations from which a
l

and a 2 can be determined. The result is

shown in figure 34 where a l and a 2 are plotted as a function of £/b for

values of the rigidities correspond~ng to an axial strain of 25 x 10-3 .

It is seen that the coefficients show little variation for the range

£/b > 2.

For the case where the unloaded edge, y = 0, is restrained, a

combination of equation (A6) and equation (A7) is used

(A.B)

For small values of.~ the .h~lf-wave length w4ich corresponds

to the minimum value of a will satisfy the condition £/b >~. For this

range the following values of al and a 2 have bee~ selected

a l - - 0.7

= 0.2

From figure 22 showing £/b as a function of ~ it is seen that these

values of a
l

and a
2

may be used for ~ < 0.3.

Applying these values to the case of a fixed flange (~ =00)

would give a value of half-wave length to flange width ratio of

£/b = 1. 20
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However, this value of £/b is outside the .range for which the above

values of a
l

and a
2

are valid. By a trial and error proced~re it i~

found that, for a fixed flange,

and

=

£/b-

-1.11

0.57

1.00

Lundquist and Stowell(12), in their paper on bu~kling of

outstanding flanges, assumed the following .deflectionsurface

with a*
1

a*
2

a*
3

=

=

- 1.0076

+ 0.5076

- 0.1023

For small values of the coefficient of restraint, ~, it will make little

. difference whether equation (A8) or (A9) is used. For ~ = O.the result

is identical. The biggest difference will occ;ur for ~ = OCI. In this

case the bit ratio for which Ecr = Eo obtained from equation (A9)

would be b/t= 17.65. Using equation (A8) withal = - 1.11 and

a2 = 0.57 gives bit = 14.6 for Ecr = Eo. Although equation (A9) is

known to be good in the elastic range it can not be ~pplied to the

strain-hardening range of steel.
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TABLE 1

RESULTS OF COMPRESSION COUPON TESTS

Fritz Lab. 00 Eo Eo
Coupon Number Section ksi x103 ksi Note

1 220A-UF3 14WF30 39.7 13.0 730 All WF sect~on

2 220A-UF4 " 41. 5 14.6 690 cqupons taken
3 220A-LF1 " 42.5 14.6 650 from flanges
4 220A-LF2 " 3900 12.5 790
5 220A-LF3 " 39.7 12.5 730
6 220A-LF4 " 42.0 13.0 670
7 220A-A " 40.8 15.0 640
8 220A-B " 40.8 12.5 675
9 220A-D " 40.3 15.5 650

10 220A-E " 39.6 14.5 650
11 220A-F " 35.3 (6.0) 780
12 220A-G " 36.2 (6.5> 700
13 220A-B2F3 8WF31 40.0 17.4 770
14 220A-B2F6 " 38.8 11.5 810
15 220A-B2F7 " 39.0 14.8 730

16 205E-C14 10WF33 40.0 14.5 855
17 205E-C15 " 37.0 13.8 805
18 205E-C2 8WF40 38.4 12.8 1060
19 205E-C9 L6.6.3/8 39.0 12.8 710
20 205E-C12 " 37.6 14.3 906
21 205E-C13 " 35.1 14.6 845

Average Va1ues* 3902 13.9 755

* Numbers in parentheses not used for dete~mining ~verageva1ue
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RESULTS OF TENSION .COUPON TESTS
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*Loca- Yield Stress Strain at Strain-Hard-
Strain- ening Mocl,u1us

tion
0'0 ksi Hardening Eo ksiCoupon Sec.tion

Eo x 103

T 6 10WF33 1 35.5 16.5 675
T 7 5 35.0 14.7 750

T 21 1 35.4 18.4 530
T 22 8WF24 2 35.6 18.0 600
T 23 3 36.3 19.3 470

T 31 1 35.6 14.3 525
T 32 10WF39 2 36.8 18.9 580
T 33 3 37.8 16.3 580

T 41 1 37.1 18.0 ·500
T 42 12WF50 2 36.9 18.1 530
T 43 3 39.4 15.9 580

T 51 1 37.6 16.9 560
T 52 8WF35 2 37.3 16.6 465
T 53 3 39.9 19.6 600

T 61 1 38.0 20.8 520
T 62 10WF21 2 34.2 23.4 570
T 63 3 44.2 23.6 490

*Location of Coupons
2.

s 6

All coupons tested in Baldwin 60,000~

Hydraulic Mac~ine. Valve opening
corresponding to testing speed of 1
micro-in. lin. per sec. in the elastic
range.
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DIMENSIONS OF ANGLE SPECIMENS
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Length W:i.dth Thickness Area
Specimen 2L(in. ) b(in. ) t (in.) bit 2L/b (in2)

A-21 25.0 4.87 0.383 12.70 5.14· 3.78

A-22 25.0 4.79 0.381 12.60 5.21 3.70

A-31 17.9 3.27 0.370 8.85 5.48 2.48

A-32 17.9 3.28 0.374 8.79 5.46 2.51

A-41 12.5 2.31 0,377 6.13 5.41 1.80

A-42 12.5 2.34 0.371 6.36 5.35 1.81



TABLE 4

RESULTS OF ANGLE.TESTS

(J (Jcr Type ofkYo 103Test S1 €cr . ksi Buckling

A-22 --- 3.0 32.2 torsional

A-31 34.9 16.5 35.8 torsional

A-32 34.6 16.5 35.6 t;orsiona1

A-41 35.3 -- -- bending

A-42 34.1 -- -- bending
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TABLE 5

DIMENSIONS OF WF SPECIMENS
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A Z 2b tf d t w L L l
Spec. Shiipe in2 in3 in in in in in in bltf d/tw

B1Dl 10WF33 9.66 38.56 7.95 0.?f.29 9.37 0.294 32 32 9.2 3109

B2 D2 8WF24 6.83 22.56 6.55 0~383 7.63 0.236 26 26 8.6 32.3

B3 D3 lOWF39 11. 34 45.63 8.02 0.512 9.37 00328 32 32 708 28.6

B4 D4 l2WF50 14025 70.28 8.18 00620 11. 57 0.351 32 32 6.6 33.0

B5 D5 8WF35 10.00 33.68 8.08 0.476 7.65 0.308 32 32 8.5 24.8

B6 D6 10WF2l 5.84 22.45 5.77 0.318 9.56 0.2~2 23 26 9.1 40.9

A =

Z =

2b =

t f =

d

~
.-

L =

Ll =

area of cross-section

plastic section modulus (twice the s~atic mo~entof half
the section about the strong axis)

width of flange

thickness of flange

distance between center planes of flanges

thickness of web

length of ~ompression specimen

length of part of bending specimen subjected to pure bending
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RESULTS OF WF TESTS
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Ecr . 103 crCl: ksi Type of
Test cry ksi Flange Web Flange Web Buckling

D 1 34.4 8.5 8.5 34.2 34.2 flange

D 2 34.0 13.5 12.7 34.0 34.0 flange & web

D 3 35.2 19.0 19.0 39.0 39.0 flange

D 4 35.0 18.5 5.0 36.8 35.4 web

D 5 36.6 17.0 17.0 38.0 38.0 flange

D 6 38.0 4.3 1.6 33.8 37.2 web

B 1 ..., 7.0 - .. '" flange

B 2 - 23.0 - - .. J;lange & lat~ral

B 3 - 22.5 .. .. .. flang~ & l~teral

B 4 .. 29.0 - - ..,. lateral

B 5 - 22.0 .. - - flange & lateral

B 6 .. 14.0 .. .. .. flange & lateral



- 65
0:x

PLATE WITH ONE FREE EDGE

OX

z/, .

"".'

.i .

•

FIG. 2 PLATE SUPPORTED AT ALL FOUR EDGES

stress
rr
~ --.- --~----,.I""':----

'a.rc tg E

€o
Strain E

FIG. 3 SIMPLIFIED STRESS-S~4·n1 CURVE



P
,'"

- 66

H
H

cross section

y

,tl fl ~
I '

r

lr ..-

\
~ I'

, ,
I

I
I

I
I

l
I. ~-

- i trx·y=ysn-
~

P

FIG o 4 SIMPLIFIED WF COLUMN
P

I"'""
h

I ..... I-

H

'", b..

cross section

=r=t
f= Qx

FIGo 5 SIMPLIFIED CRUCIFORM COLUMN



- 67

1.5r-----r----------,-------r------,

T. ~-----+--_:__--:;::~t_:~:...----_j-----~

1.,~l-..,--~.,£-_l_-----_+__-----t__----_j

0.100o
1.r1J--....J.--.,;.--..I.------.l-----__~ __.J

()o050
-

f = Y
d

FIG. 6 EFFECT OF INITIAL IMPERFECTIONS ON A SIMPLIFIED
WF· SECTION



'. -- . , ' bQ o = I)-~
~
~

. ".

--
e

(ler = 5eTo,

bQo = 0 0 01 0

/
~Q = 0 0 1 0

0
-v:::-. ,."

6

5

(T-OQ

4

3

2

, 1
o 1 2

bQ

3 4

- 6~

FIG o 7 INFLUENCE OF INITIAL IMPERFECTIONS

. ON ASIMPLIFlED CRUCIFo.RM SECTlON



Stress
cr

'.

tg E

Strain E.

FIG. 8 TYPICAL STRESS-STRAIN CURVE OBTAINED FROM COUPON TEST



40

•

x 18
+ 5
o ' 15

17
9

Eq.. 7. 1 for. :
Eo :: 900 .ksl,
k:: 21
n:: 2

·0

O'
10 20 30 40 50 60xlO-3

E_c
. 0

FIG. 9 RESULTS OF COMPRESSION COUPON TESTS

~
0

20 t-----,---~--'-____:_---_+_---~.L--__1_~=--__::~F__----_+.,-----___I

10 1------+-~4~L--+___----_+-----+__----__+----____1

30

O"-(To
isi



~
~

-~

~
......-

~36- .-

.-

,

14
I'

0:x
ka!

75

50

o
30 40 50 60 x 10"'3

. . - -.
FIG. 10 STRESS-STRAIN CURVE FOR UNI-AXIAL COMPRESSION



I -
-_. '",-. ~ -._- I

!\I '
I _ -

I

..~I
I
I
~, I

I

I ~I r---
I
I -

I
-. I

I
I
I
I - - -

-Ex

S~~Si

1000

500

250

o
o 20 -

.' -" ~ -.

30... 40

E in/inx

50 60 x 10-3

FIG e 11 THE TANGENT-MODULUS IN THE DIRECTION OF LOADING



I
I
I

~
~"I

I

I
~I

~
I
I
I

~I
I ""I
I
I
I
I
I
I

" I
I
!

-2.00
xl0..6

F

in6
3kips

1.00
o 250 $00 750 1000 1250

:\

1500



15 -r------r-------r-----;---------r------'--,.--:-~-______,

.L--.

ksi
10

.5

1 2 3

6ksi

4 5

FIG. 13 SUPERPOSITION OF SHEAR STRESS ON CONSTANT NORMAL STRESS

o .



15 000

12 500

10 000

7 500

5 000

2 500

,

\

~

~
~

-

- 75

o I 2 3 4 5
x 10-6

, .

FIG" lIt THE TANGENT SHEAR MODULUS



V
./

,~. ~~
6 6 ""j

1/

/
V

/
"

6
x 10-3

5

4

3

2

1

o
o 2 3 4

-16

FIG. 15 INCREASE OF AXIAL STRAIN CAUSED BY SHEAR STRESS



·1'1-) ),

dy

t/2

t/2

FIG. 16 ASSUMED LINEA:R STRAIN DISTRIBUTION



~ 78

3000 I-------t----~~t_-_I_---t-------I

5000 1-------1-------1-----1-----44------1

6000 r-------,------,..---.,.----r---T--r----_

2000 t-------+::~-__'_*~~+_-----+--------t

. m" = 36 ksi
1000 I===~~===~==::::~::::::l======:::;:=~:==~_t

(Ii = 48 ks1

E.y
4000 t--------I------+--I----f--+------f

ksi

.,.'

Ol-------""--~---......---_.....l..-------i
1- -2

1- -4 a +1
4

+1
2

a:.
FIG 0 17 INFLUENCE OF~ ON Ex AND Ey :.

x



2. 5 n--------r------r-------"--r-~----____,

2.0
'Yx

Yy
IQ~and ~

'Yx,Yy ~ro ~
~ -..c..1Q

1.5

o.5 t--'-----f------:::!!......::------j-------',.--!

Ol..- ....... ~.l..-------..J...----.----l

1
":' '2 o

o-y
~x,

, ' 1
+4" + 1

2

0:
FIG. 18 INFLUENCE OF 2r! ON 'Yx , 7 AND YxYy .

, x '



I

I
I
~.

I "~·1

I ..

I ~

I --r-------t----I
·1

I·
I

I
I
I
I ~

4000

3000

2000

1000

o
O· 10 Eo . 20 30

E')( in/in

40
I

50 .·60 x 10-3

FtG~ 19 THE.-.TANGENT MODULUS IN THE Y-DIRECTION



I
I Yy

I
I
I
I

I
I
I
I
I
I .

1
r
I
I Yx

. I

I -

I
I

.._......- I- -

! -

- "" --

60 x 10-3504030

c... x in/in

20

I
FIG. 20 COEFFICIENTS OF DILATATION ~x and ~y

10o
o

2.0

1.0

0.5

- 1.5
"Yx

Y y -



I ..
I
I
I
I
I

~ ..

I
.. -

I"
r

I
I .

I
, I

I
f
I

1.00
o .10 20 30 40 .. - .' 50 60 x 10-3

Ex in/in 4

FIG. 21 .. VARIATION OF 'i/?;.
I

CD
I\)



Lib

,4
, ;,

3

2

1

~I-----.
i-------+-----J~~~---~..=.~--t----........ - "-----

FIG~ '22

o
o 0.5 ~

HALF~WAVE LENGTH OF OUTSTANDING FLANGES



-..

m WF Compression Te~t

o WF Bending Test

- Theoretical (.v.'rves

foY" <S"O ':. 36 k"i
(3 -:: coet-ficient of re5traint

D:>
II

8

~-------

30

x10-3

40 r--------r----,~.,____;_-__,__--.,_---__._---__,

10

o
o

Cf _

5 /0 /5 20 25

73".
Fig, ;::1;6 -Buckling of Wide - F1ClV18e Ohape~



- 85
25

20

b/t ..

10

5

\

K-- ., \
'\

\ Rigid Plastic

"",
.,

/ :s~,~Elastic-PI

~""-
"""""! .~~

---- -
"

,

o 0.75 .

. ,FIG. 24 YIELD PENETRATION f AS A FUNCTION OFb/t

f'or L/b = 2~65



-, ....

x 10-)
40t-----r-:--r-----t---'-----.,------,--------r----~

t

6

30I-~-----+--+-+--__+_-----_r_

Ang~~:'re~ts ,,,'

Theoretical Curves
Lib = 2.65Lib =

eo _

20 J------+--\----\--t------+---------t----:-----I

10 J------4---+--~~----+------t-----...,

---- -----~----

o LO--------L..5-.-,;...---l..1.0----~1-5-'--------2~0-----:-:25

bit

FIG. 25 BUCKLING OF A HINGED FLANGE (Comparis()l1,1I1:ith:,:t>e.sultsof'
, '. angle tests)



Lid

1
0
00 '

- Vi. ~: = 1 0 39

~I--- ' "
, ,

~ --+""' - - f------ 1--------I- -, --,'- -----

l

-,

.. -.....

o 5.0
,(3

FIG 0 26. HAL...WAVE LENGTH OF WEBS

10.0 ._

I .



---' - ---D2- - - -, -"-, - - -m--
C.,2.. __

m WF Gompresslon Test

-- Theoretical CUrves

30

20 h=-=-----+----~f__---+_---\---t---__\_-+---'--_1

x 10-.3
40------,,-------r-------r--r----r;--"'-------.-----,

101-----+------+----+----+-+------it-----j

D4
EJ

D6
oL..-----L.--......;...--+---_--J. -'- l-o;,, .....

o 10 2030 40 50 60

d/t

FIG. 27 BUCKLING or' WEBS (Comparis()I1 tilth' Results-Of'
WFCompressJon Test~).

I

0:>
0:>



50 r-------,r-----,-----,-----,.,.-r-----,

A 42

Q

20 ~----+---,..---+-...,..--

10 f!\--,.-..--+------+---

40 I-------j-----t--:-?'~r__.:.-:-t----t..,....------..--I

piA
(ksi)

30

P

o
o 10 20 30 40

Average Strain So (in/in)

FIG. 28 RESULTS 'OF ANGLE COMPRESSION TESTS



,.
r.

x 10-3
40.---...,.-----r----~_r__----_,__-------~----....,.

30 1--~--_+_---....:..-___4-----_t_----_+_---~__i
A31

- criti al strain

OL- --I~ .;...L.. ~ __l_ __:_---.....J

-5 0 5 10 15

10~-----+---.ttjrr--,---+-----_+-----+_---....;"..-.__i

A2

average
stram

e (in/in) 20 1-----:..----I-----~I___,.."....==---~b:._........,:===:........-___4----__1

Rotation or CenterPlane Q (radians)'

FIG. 29 ROTATION OF ANGLE SPECIMENS



I
~ Flange Bucklin g

I
Buckling···1 Web

-t
I

I

6?
...r.L~,D3

~,I ... . . . "

r;.,:, 4
I_~.J'" \ ;r l 1m..... . D
Iv:i D5
~~ t., ..d

.:... .~
..

~Dl ~D2
. D6

P
"

-

.~J/-h
,I

H

lJ:::
~z
f.'3

..~
e;

~
/

'/7 ;-
..

50

40
piA

(ksi)

30

20

10

o
o 20 30 40

- 91

average·· strain E. (in/in)

FIG o 30 RESULTS OF WF COMPRESSION.. 'rESTS



~ flange buckli g

. B4

40 ~---+----,---+7'iil9-~--1-----+-----j

M/Z
(.ksi)

30

20

...
'.

length Lf

. 10 Dt------t--

°O' 10 20 30 40

Average Strain Of Compression Flange Eov

FIG o 31 RESULTS OF·WF BENDING TESTS

..,;:



o 0.10 0.20

Rotation at ~~Q~ (radians)

se/e sketch
of Fig. 29

e

-

.,
~.~

J?o.

"'"~

i>
~ '----1

--

o Q• .5 ... 1. 0 0 0 • .5 . _..1.• 0

Web Deflection (inches) Flange Deflection (inches)

o

30

20

10

E

FIG. 32 TYPICAL CURVES FOR LATERAL WEB AND FLANGE DEFLECTIONS AND LATERAL ROTATION

(WF BENDING TEST B3)
..:-.



5.0

1\

h2

,

-

I

h1

I

I
!I

.
".

0.0

-4 0
• 0

-1.0

+2.0

-3.0

·+1.0

. coe:ff'ielents .

FIG. 33 COEFFICIENTS OF DEFLECTION SURFACE
-FOR· HINGED -FLANGE, . h1 and h2



..
·+0 r::'
I 0 :;J

coefficients

a2

~ I
~------- ~

.
'!:.(i·

1------

.. ( .-

.'[-0 :

[-,1

'--

i,;,

•

o

FIG o 34 COEFFICIENTS OF DEFLECTION SURFACE

FOR FIXED FLANGE, al and a2



-96

V ITA

The author, eldest son of Jan and Hinderkien Haaijer, was

born on April 26, 1929 in Borger, The Netherlands o

He entered the Technological University of Delft, The

Netherlands in September, 1947. Upon completion of his program of

studies the degree of Civil Engineer was awarded in November, 1952.

During 1951 and 1952 he was employed as assistant to Professor N.

Nanninga, Professor of foundation engineering at the Delft University.

In September 1952 he came to Lehigh University, Bethlehem,

Pennsylvania. Besides being engaged in research at Fritz Engineering

Laboratory he taught in the Division of Mechanics.

During leaves of absence from Lehigh University he worked

as bridge designer with Gannett, Fleming, Corddry and Carpenter, Inc.,

Consulting Engineers, Harrisburg, Pennsylvania and as research

.engineer at the Hydraulics Laboratory, Delft, The Netherlands.

On January 29, 1955 ~e married Willemina K. Veenstra.

Presently they have one daughter, Karen, born November 21, 1955.


	Lehigh University
	Lehigh Preserve
	1956

	Local buckling of wf shapes in the plastic range, Ph.D. Dissertation, Lehigh University, (1956)
	G. Haaijer
	Recommended Citation


	tmp.1349700844.pdf.ttM4T

