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1 supports in plastically designed steel frames is
proposed, The procedure is applicable to structures which
are subjected primarily to bending forces and which are
fabtricated from rolled, mild steel sections. The report is
a c@ntinuation of a previous paper<2) in which a theoretical
basis is presented for the spacing of lateral braces., This
procedure is simplified for practical use énd modified as

a result of experiments. These experiments are described,

and finally design recommendations are presented,



1., INTRODUCTTION

A plastically designed steel structure fails when a
sufficient nuwber of plastic hinges have developed to form
a mechaniswm, At those hinges which do not form last the
member isg requiréd to undergo a certain amount of inelastic
rotation without a decrease of the moment capacity. I1f the
hinge is cne of the first ones to develop, this rotation may

(1)

se quite considerable.

The member may not déliver the required rétatioh at the
full plastic moment if its rotation capacity is reduced by
.instability, One such instability effect is lateral-torsional
buckling., 1Its occurrence may be postponed until the member
has delivered its required rotation if lateral bracing is
provided at sufficient intervals along the compression flange

of the member.

he purpose of this report is to derive formulas by which
the necessary distance between lateral braces may be determined,
These rules re@resent simplifications to avmethod presented
recently(z) and they apply to structural steel (ASTM-A7)
wide-flange sections which are subjected primarily to bending
forces., The paper also contains a report on tests which were

conducted to substantiate the theoretical derivations.
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2. A BRIEF REVIEW OF PREVIOUS WORK

In a paper entitled "The Lateral-Torsional Buckling of
Yielded Structural Steel Members' M. W, White(z}.developed
a method for déterminimg the spacing of lateral supports for
beams so that lateral buckling is delayed until after the
required hinge rotations have taken place, This method is an
extension of the classical elastic lateral buckling theory
for findiﬁg the critical lengths of elastically restrained
beams which are subjected to end moments about their strong
axls, It is assumed that in the case of inelastic lateral
buckling, portions of the beam are strain-hardened and
portions are elastic. By applying the appropriate strain-
hardening and slastic moduli of the respective sections to
the differential equaticns of lateral-torsional buckiing and
then matching boundary conditions at the common juncture of
the two regions, the critical length of the beam was obtained

as the eigenvalue of the differential equationms.

The critical length between lateral braces is expressed

by the following formula:

E) enumwnlz e
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where

L., = Critical unsupported lengih.
ry = Weak axis radius of gyrationn
Mp = Plastic moment of the section.
My, = The larger of the two end moments.,
'ﬁf = Correction factor for moment ratio.

' 1@ = Correction factor for St., Venant's torsion.
l& = Correction factor for the degree of end fixity.
L@ = Correction factor for the effect of partial

strain-hardening.

If 2ll four correction factors in Eq. 1 are equal to

i

| T
VR

represents the critical lengtih of a beam which is

subjected to uniform moment., It also means that the whole

beam is strain-hardened (strainm-hardening modulus Est=900 ksi
3 k| o~ ~ ¢ . ( 3 ) . Y

and shear modulus Ggr = 2,500 ksi ), that the contribution

wle " . B .

of St, Venant's torsiod to the lateral buckling strength is

neglected, and thai adjacent portions of the beam do not

restrain it from lateral buckling. The four correction

factors modify this ''base length' to include the effects
; .

of non-uniform moment, (z@ ), St. Venant's torsion, (‘y%),

s M ovam e e wten  eifte  Gwm wmse  dme e Gme v am e e mme e e e s e e e e et e e o

*It has been shown(2) that for the relatively short segments
under consideration here, lateral buckling is resisted
mainly by the warping stiffness.
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degree of end fixity, (1), and partial stralmmhardenlng,
(Ve . Each of these effects are beneficial and thus the

correction factors ingrease the base length,

EquaLlon 1 represents an initial motion (eigenvalue)
solution, and it does not give the ultimate lateral buckling
strength of the membefu* The concept is analogous to the
tangent modulus thecyry of axially lecaded columns, and as
such the solution gives a lower bound to the true strength

of the member.

The vesults of this work ave applicable to structural
steel wide-flange bsams when it can be assumed that the
effects of the axial force and the shear force are small,
The lcads ave assumed to be applied to the beams at‘the

points of lateral support.

Whereas the method represents a rational solution to
a very complicated problem, there are still some objections

against using it in design., These are the following:

(1) For the case where the member is subjected to a
nearly uniform moment, the method gives results

which are overly conservative when compared with
tests, (2)

%A study of the "reduced modulus' strength and "ultimate"
gstrength of beams failing by lateral buckling is now underway
at Lehigh University. Prelimirary considerations reveal that
the results of the '"tangent modulus' apprecach are quite con-
zexvative,
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(2) The design is an iterative procedure, involving
the determination of the critical length of each

unbraced segment by trial and error.

(3) Numerous charts are required for finding the

correction factors.

(4) One of the parameters necessary for finding i)d is
the inelastic rotation at each plastis hinge, This
quantity varies according to geometry and loading

. ~ . . . , 1
and its determination involves considerable effortg )

In the féllowing section simplifications will be developed
which will enable the determination of the correction factors
in a more straightforward manner. Ultimately one simple
equation, dependent only on the ratio of the end moments, is

suggested,

3, SIMPLIFICATIONS ‘OF _THE THEORY

3.1 SIMPLIFICATION FOR %

The correction factor 24 accounts for the increase of
the critical length when the beam is not under uniform

moment. The ratio of the smaller to the larger end moment
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is ¢ , and it can vary from +1.0 to -1.0, The increase

of the critical length is shown to be dependent on f and

on the degree of end fixity.(z) The relationship between
1? and § ié developed in Ref, 2 and it is shown in Fig. 1
for the cases of simply supported and fully fixed ends. The

true value of 1@ is in the region bounded by the two curves,

For reasons of simplification the two curves in Fig. 1
can be replaced by a straight line without introducing an

appreciable error. The simplified expression for 24> is

Vp = 1.3 - 0.34¢ <?>

This straight line is shown as a heavy solid line in Fig. 1.

(The maximum possible error is about 5%)

‘3.2 SIMPLIFICATION FOR 2/;.

The basic critical length was derived on the premise
that St. Venant's torsional stiffness will not resist lateral
buckling. This is a reasonable assumption when §f = 1.0,
However, it is shown in Ref. 2 that 2)3 increases as §
becomes smaller. The correction factor 7J 1is also shown

]
. . . dz
to increase as the cross sectional parameter < (where d

is the depth of the section, 2 is the plastic modulus, and



B
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K is St. Venant's tocrsion constant) decreases.

The relationship between § , é% and 2/S is shown

in Fig. 2. The degree of end fixity is seen to have little

effect on 2/, except where f approaches -1.0. However,

influences zé considerably, especially if %Z is less

than 600. A tabulation of é%- for most of the rolled wide-

dz
K

flange sections (Appendix C, Ref. 2) shows that for sections
which are generally used as beams the value of %% ranges

from about 500 to 1000, From Fig. 2 it can be seen that for

this range 2/3 may be represented as a straight line (heavy

solid line) without introducing an error on the unsafe side

of more than 2%. Thus, the simplified equation for 1é is

Vg = 1.08 - 0.04¢ (3)

3.3 SIMPLIFICATION FOR sz.

The base critical length of 18 ry is obtained by
assuming that the whole member is strain-hardened. The
whole beam is assumed to be uniformly yielded because of
the equal end moments. If the end moments are unequal,
this assumption is not true since only parts of the beam

are yielded. The assumption is now made that some parts
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of the length are fully elastic, while others are fully
strain-hardened. The elastic portion of the length is

governed by the elastic moduli E and G, and the strain-

, hardenedvportion_is governed by Egtandzcst;By matching

boundary conditions at the junction of the two regions,
the differential equatiohs are solved numerically with

the aid of an IBM-650 electronic computer.

The results are plotted in a series of charts (Figs.
12 to 16 in Ref, 2) which show the relationship betweenl
the correction factor 2V, @nd the coefficient « (where
a, is the length of the strain-hardened region,'as illus-
trated in the inset of Fig. 3) for various end conditions
and moment ratios. It can be shown (Fig. 16, Ref. 2) that
the end conditions have little effect on this relationship.
Average curves for various values of §’-are given in Fig. 3.
From this figure it can be seen that §f also has little
influence on the relations between @ and Z{4. In fact,
an average of all the curves may be used withoutlimpairing
the accuracy of 'v& significantly. This average curve is
shown as a heavy curve in Fig. 3. 1In the subsequent calcu;

lations this average curve will be used.

The value of the correction factor for partdal strain-
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hardening may be obtzined thus from Fig. 3 if the extent
of strain hardening QL along the length cf the beam seg-
ment is known. Inr Ref. 2 it was shown that @l is dependent

on the inelastic rotation at the hinge (determined by the

" methods of Ref., 1), on the moment ratio f , and on the

ratio of the curvature at the start of strain-hardening to
that at the elastic limit, (ést/QSy° The following equation

represents this relationship:

B _lalt=3) -0 ssl by _ .L{a(\-s’)-o.oss] o |
L ‘Ko.evs(l—g()) K\( %o ') T2 - o (-9) f+2 (4)

where
eR = Inleastic angle chgnge of the segment under
investigation,.
@p = Elaétic curvaturé'when M = Mp, This cutvature
is equal to:
- M -
% = S )
¢ . = Curvature at the start of strain-hardening.

- The derivation of Eq. 4 (pp. 72-77,,Réf, 2) is based on the

following reasoning: For an assumed idealised moment-
curvature relationship (which includes the influence of
residugl stress and strain-hardening) the length of the

yielded zone and the magnitude of the moment at the hinge

.




205E.11 -10

can be deterhined if the inelastic rotation SR and the
moment ratio §{ are known, If the length of the yielded
zone is taken as the length of the strain-hardened zone
¢l , a safe solution results since not all of the yielded

zone 1s strain-hardened.

It is furthermore assumed that the total inelastic
rotation' of the hinge is distributed between the two seg-
ments joining at the hinge in accordance with the ratio

of the moment gradients. That is

RS = © 8 , (6)

where

Or:8; = Inelastic anglé change to the right and to

L
the left of the hinge, respectively.
gR,gL = Moment gradient of the right and the left
segment, respectively. (The relationships

defining @, &p and gL are shown with the

aid of an illustrative example in Fig. 4.)

Since the total inelastic rotation © is equal to -

o = e, + 6 (7)

the inelastic rotation of the hinge end of the right seg-

ment 1is
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e
S = ~ (8)
R 1 + gpley
For given values of mgg_ and f and for an assumed
: L
p

average value of ¢St/¢y = 12, « may be computed from Eq. 4.
The corresponding value of 2/, is then obtained from Fig. 3.
Combining the curve from Fig. 3 and @ from Eq. 5, a set

of curves showing the relationship between f and 16 for

various constant values of R may be constructed.
L6,

These curves are shown in Fig. 5.

3.4 THE CRITICAL LENGTH WITHOUT THE INFLUENCE OF END RESTRAINT

It will be convenient in future derivations to have a
gsolution for the critical buckling length of the beam when
the effect of end restraint is not included., For this

reason Eg., 1 can be written as follows:

L 1 2 Mg

Since the critical length is derived for M, = Mp’ the radical

in Eq. 9 is equal to 1.0, For given values of f and

e
E%g , the critical length may now be computed with the aid
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. . ' 1
of Eqs. 2 and 3 and Fig, 5. A plot of § versus (L/ry)cro'i;

for constant values of EE_ is shown in Fig. 6. The
Lo,

curves are nearly straight lines, and they could be repre-
sented as such (Fig. 7).

The charts in Fig. 7 give a solution to the problem
of detexmining critical bracing spacing if the end restraints
due to the adjacent members are neglected, Even though
the scluticn has been simplified comsiderably, it is still

necessary to compute the inelastic angle change € One
’ L

RD
further step toward simplicity would be to assume a value
for the inelastic rotation which is an average upper limit

for most structures, Although no studies on the most

probable hinge angle are available, it is believed that a

value of g%_ = 3.0 woud represent a reasonable value, The
“p v B
critical length then would be expressed by the following

linear equation (shown as a heavy dashed line in Fig. 7):

L)oo S48 - 30 10
Bt e

Experiments have shown {(as will be discussed later in
this report) that if f is nmear +1.0, Eq. 10 gives con-
servative results, The tests indicate that the critical

length need not be less than 30 Ty. ‘Thus the simplified
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expressions for the bracing spacing witn the éxclusion of

the effect of end restraint are as follows:

I

L 1 _
("i-") . —— =30; for 1.0) ¢ » 0.6
yjJjcr v« :

(11)

L 1 306 |
(‘E") . L = 48-30p; for 0.6) ) -1.0
yjer Yy

3.5 SIMPLIFICATION FOR V).

In order to complete the solution to the problem it
is still necessary to determine the effect on the critical
length of the end restraint dué to the adjacent spans. One
could assume, of course, that the ends of the beam ségment
under cousglderaticn are simply sﬁpported«(zy =1.,0). H6w=
ever, it hss been shon(A) that under uniform moment the
critical length is doubled if tﬁe ends of the béams are
fixed., Since the reétraimt offered by the adjacent beams
will be between these two éxtremes, Lcr obtained for simple

supports could be quite conservative,

The following two assumptions are made in the sub-

sequent derivations:

(1) Since the added refinement of including the

effect of more than one adjacent span is. not justified, the
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ends of the two neighboring spans are asssumed laterally
simply supported,

(2) It 1s assumed that the effective lateral buckling
length is the same as the effective length of axially
loaded columns, This use of the well-known effective
length concept of centrally locaded columns(s) for the
lateral buckling of beams is not quite correct if the moment
ratio is not equal to +1.0, but it is sufficiently accurate

for the practical cases under consideration.*

The two assumptions above reduce thé‘problem to find-
ing the effective length of the center span BC of the three-
span column ABCD shown in Fig. 8a. The column is subjected
to an axial force P, and the outer ends of the spans AB

and CD are simply supported,

The restraint of the outside spans may be replaced by
springs acting at the ends of the critical span BC (Fig. 8b).
The spring coefficient k of each spring can be expressed

approximately as

3Ely .
k = - (1 - B/P_ ) (12)
Ely
where is the stiffness of the restraining beam,
L _

—— e e— — m— G aams eams  mmms  Omme  CID v Wi CMEE)  meme  mmme  amm e e e G Mo e e e e G e m—

#For further discussion of this see Ref. 4 or p. 40-42 of
Ref, 2. It is shownin Ref, 2 that 1/ = 1. 8 when f =-1,0,
thras giving a maximum error of 10%.
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and 1 - P/Pcr represents the reduction in stiffness due’

to axial force. Since P/P.,. = ( L )2, Eq. 12 can be

written as

- 3EIy

) L \2 @3
1o (2]

Equation 13 is compared with an exact solution for

an axially loaded column in Fig. 9, and it is seen to give
conservative results. The approximation of Eq. 13 is also
conservative for the case of uniform moment (compréssive
forces uniformlydistributed along the flange) or for zero

moment ratio (Fig. 9).

Thus the spring constants of the two springs at the

~ends of beam segment BC are

) L 2
~ 4 -
ky = ET“[(E_L">

3EI; |.
K, - s [/ Ls \2
Ls Lscr

The subscripts 4 and s  refer to the lafger and the

(14)

smaller spring constant, respectively,
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The correction factor Lﬁ'is defined as the ratio of
the simply supported critiéal length of the center span‘
in Fig. 8a to the restrained critical length. Knowing
the gpring constants kt and kg LCr of the column
shown in Fig., 8b can be determined by the slope deflection
method, modified to include the effect of the axial forcegs)

The wvariables of the solution can be grouped into the ratios

ks s Ky L and.'v?.' (The derivations are not reproduced
k { BEIy

in this report.) The relationships between these three
ratios are shown in Fig. 10. This figure shows'Zé versus

k

'S
Ez- for constant values %%f;é .
y

For a continuous beam of constant section and equally

braced spans the value of kL  is less than 1.0. That

EIy -
is, Ig=1y =1, Lg=1L =1L, and thus kyL f (L_
3EI . L cr
kS 1 - L 2
and 'E;': Lscr . It may be seen in Fig. 10

1 - L Z
Lycr .
kg

that in this case the relationship between Z} and = can
, }

be approximated by a family of straight lines. The equation

of these lines is

Y, =lo +O-l6[\- (&;ﬂ +O:20 (l i (_L\: ﬂ

S e

(15)
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r=vt e . . -

The next step is to represent (Lf )Cr and (LS)Cr
in terms of the moment ratios of the two adjacent spans,
f; and f%, and the center span, fcr” Under the moment
diagram shown in the inset of Fig. 11 for example, the
segment AB remains elastic and thus it gives a larger
restraint to the critical segment BC than the segment CD
which is next to the plastic hinge at C and is therefore
artiall lastified. Hence §} = . = and
p y P ¢ ?AB, fs TCD

C cr f%c’ B

The following equations have been derived in the

Appendix for the critical lengths of the adjacent segments:

Lg _ 107 .
== = —=—1|1,34 - 0,34

for 0¢ |F,]€ 09
Lg) | ' .
== = 151-38¢ -1100 -0.9
<ry cr fe (}fcr, ) ‘ a7
for 0.9< [ferK1.0
51) = 4:8-30 | | 18)
(ry cr T 9
for lfér' = 1.0 or if one end of the adjacent span

contains a plastic hinge. (Span CD, Fig. 1l1)
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If Eqs. 17 or 18 yield critical lengths smaller than

30 Tys Ly = 30 r should be used, as was. .suggested for

y
- Eq. 11. For the adjacent segment furnishing the smaller
restraint, (L.)., values'may be obtained-by using fg

instead of 7 1in Eqs. 16, 17 and 18. Equations 16, 17

and 18 are represented in Fig. 11 for various .values of

fcr°

In the preceeding discussion it waé demonstrated that
the correction factor 24( can be determined if the éimple
«plastic analysis moment diagram is available. In every
day dgsign practice it is not necessary to compute %;as
precisely as cutlined above, A value of~»?= 1.25 can be
assumed as an appropriate value for typical restraint
situations. Using this correction factor, thé'following

simplified equation is obtained: -

(L/r)) . = 60-40p R (19)

but not less than 30.

4, EXPERIMENTAL INVESTIGATTION

Two series of tests were conducted to substantiate

the assumptions of the lateral buckling theory. Each of



205E.11 -19

these test series consisted of four beam tests., In each
test two symbetrically spaced loads were applied trans-
versely to a simply supported beam (see inset in Fig. 14).
* The beam segment between the loads (segment BC in Fig. 14)
was the critical segment, Lateral braces were supplied
at the load points (B and C), preventing lateral movement

of the compression flange.

The first four beam tests were expefiments where the
critical segment was subjected to a uniform moment and
these have already been reportedgz) Only the final results
are given here (Table 2 and Fig. 18) for»purposes of com-
parison. The side segments of these beams were boxed in
to provide full lateral fixity, thereby making the correc-

tion factor LQ = 2,0 under the applied uniform moment

gradient,

The arrangement of the test set-up Eé shown in Fig.
13 for four fﬁrther tests (LB-5, LB-6, LB-7 and LB-8).
Load was applied to tﬁe test beam at two equally spaced
locations thfoughfe loading beam., The test beaﬁ»was_ |
supported on two 12 in. diameter ro}lerseplaced on the
base beam, which in turn rested on the weighing platform

of the testing machine. The whole test set-up could be
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shifted along the longitudinal axis of the beam, such
that any combination of the ratio between the two loads,

‘and thus the moment ratio f of the critical span, could

- .

se achieved,

The critical span of the test beam was the segment
between the load points., Lateral bracing at the load
points was accomplished by angle studs clamped to the bése
beam and extending upward on each side of the test Peam
(see section A-A in Fig. 12). Lateral support was given

to the top flange only.

The instrumentaticn consisted of le&el bars placed
at the loading points and the suppért points, meésuring
the rotation in the plane of bending; three additional
level-bars, placed at the load points and at the mid-
sectionAof the critical éegment, were used to measure the
rotétion of the mid-section with respect to the laterally
supported load-points; defleétion dials, measuring over
a nine inch gage length, were placed on the top and the
bottom flange to measure the average strain from which
the curvature could be computed. A schematic view of the

instrumentation is shown in Fig. 13.
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Readings-wefe~taken at equel load increments as long
asjthe.beam remained elastic;' Dufing plestic’deformetions,‘

- increments of transVerse deflection’Were gaged by a'ebntrol

"'dial at. mid-span (see Fig. 13), measurlng the relative

dLstance between the base’ beam and the specimen‘ An .
initial load reading was taken after the degired deflection
had heen.reeched and msintained, and a final Llead reading
was.t&ken after all the gages hed bee& read; - The &verage

of these two readlngs was taken as the reccrded load.

Test curves for.each_of the four tests are shewn in
Figs. 14 through 17, 'In each figure an‘inset is included
whieh shpws the location and the'relative magnitudes of
the 1oads; AAlso shown is the moment diagram, lndlcatlng _
the location of the plastic moment Ml and the moment

ratio f . Two curves, giving the relationship between

the moment (non-dimensionalized by M,) and the rotation

2
‘at eaeh reading point? are shown in the figures: One curve |
-(citcles) indicates the total rotation of the critical

segment (obtained by.addingvthe”rotation ef the level bar

| at the load points,isee inset iﬁ Fig. 13) in the plane

'of bending.' The othervcurve shows the-lateral‘rotatioh.

of the center of the test beam. This eurve is showﬁ“

1because it determines the loed -at which lateral buckllng

started.
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The four test specimens were cut from the same piece
of a 10WF2l beam, The physical properties of the material
were obtained by tensile coupecns cut from the web and the
flanges of the beams. Table 1 shows the average static
yield stress of the flanges, and ;he values of A, Z and

I, as determined from the measured dimensions., The plastic
moment Mp, and the elastic curvature @p were computed from

the above quantities, and they are also shown in Table 1,

The test results for all eight testé are shown in

" Table 2., In this table, the value of 'Wf repreéents the
lateral restraint of the neighboring segments, and it is
computed by the methods outlined in Section 3 of this

report., The rotaticn Op {(non-dimensionalized as R )

| Lo

is:the plastic rotation in the critical segment at .the
point of maximum moment . The value of eR is calculated
by subtracting the elastic rotation at M = MP from the
fotation corresponding to the maximum rotation in the
plane of the applied lcads.

The test results are plotted on the § ‘versus L

Vy Ty

4y

curves obtained previously (Fig. 7) in Fig. 18. The

inelastic rotation of each test is shown in parentheses
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after each test point, From Fig. 18 it may be observed‘
that if the sverage inelastic rotation GR/LQ‘JP is assumed
to equal 3,0, the lower limit for the critical slender-
ness ratio need not be less than 30. The test points
lying below this liﬁit all exhibited rotation capacities
well over 3L®p, Therefore the rule which stipulated that
the minimum critical length be 30 ry (for Yy = 1.0)

(Eq. 11) is justified by tests,

5. RECOMMENDATIONS FOR DESIGN

The design simplificatiouns for the spacing of lateral
.bracing of members subjected primarily to bending moments

can be summarized in the following suggested procedure:

(1) Obtain the ultimate bending moment diagram of
the structure by the plastic theory.

(2) Determine the member sizes and the inelastic

. ' . (1)

rotations at eachhinge.

{3) Assume the spacing of the lateral braces, and
determine the moment ratios of each critical
span and its adjacent spans from the moment dia-

gram in accordance with the assumed spacing.
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{£#) Determine the critical length exclusive of the

(

)

(L/x,y _ L  frow Fig. 6. The parameter OR
vier = T
B ‘7‘/ Lv,.
f P
is computed by the following formulas:
8 -
O = ©®
1,%=gR/gL
M .
o = —B_ (5)
T
Ely

In case the inelastic hinge rotation 6 is not

computed, the critical length is obtained by
- .1

LT Yo i} = 4830 Rq. 10 £ not
ity dey { Syl 8 30§>(Eq ) but not

smaller than 30, If the assumed spacing of the
lateral supports is smaller than the critical

length obtained in the preceeding opersation,

- the spacing ls conservative.

Obtain the correction factor for the restraint
ct the adjacent segments 24' from Fig. 10, The

spring constants of the adjacent segments Ky

o
o
£,
-

G
f l’

e determined by the following formulas:
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-
3EL Ly \¢
kg = o | [l
L cry
(14)
L L JEL L. [Es \2
Kg = o, ‘ e
Lo Scr
(6) The eriti@&l lengths Ly .. and LSC of the
adjacent segments are

-y

(7

(16)

- 38g, - 1100 {

ecr‘~o,9)

17)
for 0.9 ¢ Iftr,< 1.0

/

1.1) -
\ ¥ /e .
for | §or|= 1.0

) In case the spacing of the braces is uniform

48 - 30¢
| (18)

Ly = L

section 1s used, the value of zé can be obtained’

= 1.}, and a beam of constant cross

from the following formula:



205E.11

=26

L\
v g QY

40,20 fL- (15)

Y] viv@ Y P ’1 & =] o) T By ‘
where Ly, and lazcr are computed by Eqs. 15, 16

ox

AL

. b

18,

(8} For the most rapid and simplified cperation ('bé

suwed to be 1.25), the agsumed bracing spacing

37

may be checked by the apwchatlnn nf the follow-

Cing

g simple formula:

(_L-> = 60-40 ¢ . (19)

but not less than 35.

Example problems for the determination of the bracing

$pacing

o g— —

*#The equations for
spans in Ref. 7 ax

in this
and due

are given in Refs. 2, 6 and 7.%

e cwmn AN RAD et GwD DRSO SWEL e G CRED  GERD  ouen  GAD  emed OO mwes e s

tical length of the adjacent
rent from the equations developed

—t jewe  cmE e mes

report, Th1~ i3 due to a difference in derivation
to an arithmetical error in the prellmlnary report,

Therefore, the eguation

(

in Ref,

Ly 134

=T e s "‘]’J 60 § 1 “
v Jer jjfcr J )
7 (Eq. 6.21) is incorrect,
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6. SUMMARY

In the preceeding.sections of this paper recommenda-
tions are made for the determination of the spacing
‘between lateral braces in plastically designed beams.

The rules are applicable for plastically designed steel
frames 1f the members are primarily subjected to bending
moments and if they are fabricated of parallel-flanged

members.

The recommendations are based on simplifications
made on a thecry which was proposed by White,(z) For
routine calculatiqqs a simple equation is given (Eq. 19);
if the prcblem warrants a more precise analysis, formulas

and charts are provided,
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8. NOMENCLATURE

d = Depth of section

E = Modulus of elasticity

o4 = Moment gradient

G = Shear modulus

Iy = Moment of inertig about x-axis of section
Iy = Moment of inertja gbdut y-axis of section

I, = WQEQipg constant

K = 8, yenant's torsion cogstant

k = gpfigg constant of restraining segment
= ﬂéﬁggh of unbrageq ggaﬁ

5 = nggé; of two end moments

= Plastic moment

r = Weak axis radiug of gyration

A = Plas;ic modulus

a = Extent of yielding in the beam

e = Inelagtic rotation
241 = Corregtion factér for the effect of practice
' strain-hardenin% '
?@ = Corregtion factor for the degree of end fixity

Correction factor for moment ratio

<y

Correction factor for St. Venant's torsion
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f = Moment 'ratio
oy = Yield'Streéﬁlﬂ
“¢ - Curvature
‘ ¢p = Elastic gqﬁat_:'ute ‘at M=
Subscripté:.‘;
st = Stfaiﬁ-hardéqi¢g  . 
{ - Larger o
s = Smaller
er = Critical .  3A ’ 
R = Right

Mp
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9. APPENDTIX

DETERMINATION OF icr FOR THE ADJACENT SPANS.

For the three-span beam shown in the inset of Fig.
11, the absolute value of the moment at' the support B

is equal to
= |fc ,s" ol 275 @a-1)

The critical length for the ‘span AB is(z)

(A-2)

'<LAB>cr - V8 a5 e

Mp

The coefficient 14AB represents the correction factor

for the moment ratio of beam AB; the rest of the equatidn
is the critical length due to uﬁiform moment if St.
"Venant's torsion is neéiected (Eq. 4.11, Ref. 2). For
simplicity it is assumed that the beam AB is not restrained
at its ends. Due to this assumption and due to the neglect
of St. Venant's torsion (which has considerable influence
in elastic buckling), the critical length obtained from

Eq. A-2 is smaller than the actual L., of the beam. The
infiuence of this on the value Qf 1/? , 1s however, quite
small, since the variations of (L

{)cr cause little
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change in the term 1 - ( —--—I—"——--—)2

F L e
Lycr ok <K.Llcr

(which is the usual case).

Substituting A-1 in A-2, noting that the warping

2 .
constant I, = Iyd for wide-flange shapes, and
—5— .

rearranging the equation, the critical length of the

adjacent span is equal to

L /1.4 \
AB -ﬂ-‘) ! y _
y Jer ch y\ Y
,  .[T.d |
The ratio —QLTT ~ 1.6 for most rolled wide-flange
Zry
(2)

.sections., The éorrection factor 14> is given by
Eq. 2; substitution of W? and the constants E = 30 x
10° psi and o, = 33 ksi into Eq. A-3 gives the follow-

ing equation for L.,

LAB 107 :
= , [1.34 - 0.3 ¢ ] (A-4)
r AB
yfx ,/ ’3 BCI
Equation A-4 is only valid if the span AB remains
elastic (that is §j, £ 0.9 - see Ref. 2). If the

adjacent span is next to a plastic hinge (span CD in

Fig. 11), or if gBC = 1.0, the critical length is
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determined by Eq. 10. A graphical feprésentationlof

Eq. A-4 for varioué constant ratios of §BC is given in
Fig. 11. Also shown in this figure is the curve for
SDBC = 1.0 (Eq. 10). 1If a straight line variation
between the limit of elastic buckling and buckling when
one end of the adjacent span contains a plastic hinge is

assumed, the following equation can be derived for the

range 0.9 4 :,fBC(< 1.0:

LAB . '
(;_:y—> T 151 - 38 f,. -[)"BC—O.9J[1030-80 fA];l (A-5)

In this equation, the term BOS?AB is small when compared
with 1030, and therefore the equation may be abbreviated
to
LAB ,
— = 151 - 38 fAB - 1100 ¢( ch - 0.9) (A-6)
y/ cx
A line representing Eq. A-6 for ?BC = 0,95 is shown in-

Fig. 1l1.
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TABLE 1
- Section and Material Properties (measured)
Cross Section 10wr21

Yield Stress,a3,

38.3 ksi (static yield level
of flange material) :

Area : 6.39 in? (6.19 in? Handbook
value)
Plastic Modulus, Z 24.87 in>

Moment of Inmertia, I
book wvalue)

109,90 in% (106.3 in“* Hand-

Plastic Moment 953 kip-in
Elastic Curvature, -P _ 0.000289 rad/in
EL, °p |
- TABLE 2

‘Test Noﬂ Results

Test Section 7/, 'Ver Peor %—- at M.
Y P
LB-1 | 1OWF29 2.00 11.4 | 1.000 23.5
LB-2 10WF29 2.00 20.5 | 1.000 5.9
LB-3 L6WF36 | 2.00 11.2 | 1.000 6.2
LB-4 1OWF29 2.00 35.8 | 1.000 0,5
LB-5 LOWF21 - 1.27 | 37.8 | 0:388 4.8
LB-6 10WF21 1.30 29.6 | 0.706 4.6
LB-7 10WF21 1.40 | 20.6 | 0.912 8.9
LB-8 10WF21 1.45 19.9 | 0.980 10.4
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1.7 Fixed end supports

:Simplenend supports'

1.6F
f\%°

<

1.5

7)S’= 134-0.34 ¢

Fig, 1 - CORRECTION FACTOR FOR MOMENT RATIO
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'1.30

Simple end supports

- Fixed end supports

D =1.08-0.04 ¢

1.00

Fig. 2 - CORRECTION FACTOR FOR ST. VENANT'S TORSION
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r:-
Elastic Region
L.Of—
Strain Hardened Region
o Mo
L k
< — 5 |
3.0 = >
i //,——%——-?=+07
\ -§=+0.3
2.0 ' Average Cufve
. \ ?:-—'0_5 & ?=-O.7
R '\ ‘ o
1.0 i
0

Fig. 3 - AVERAGE o VS, W« CURVE FOR ANY
BOUNDARY CONDITION AND MOMENT RATIO
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~L L Eﬁ L

TLoading

Segment Under Investigation
/.
l ,

3L

Moment Diagram

InelastiF Hinge Rotation

Gig. lf - DEFINITION OF MOMENT GRADIENT AND HINGE ANGLE
I [ .
FOR EQS. 4 THROUGH 8
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.0

|
1.0 0.5 o #0.5 o *1.0

Fig, 5 = CORRECTION FACTOR FOR PARTIAL STRAIN HARDENING
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P.;_*—CD (1), SB o I, <£; (L) gé%q
S Ay 7 5 %
L L 1 Ly N
™ =T L

< (a)
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-
7 ' :
: (k)

Fig. 8 - DEFINITION FOR EQS. 11 THROUGH 16
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1.0

Fig. 10 - EFFECT OF END RESTRAINT ON vx
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