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i1

A design procedure for the determination of the spacing

of latcTal supports' in plastically designed steel frames is

proposed. The procedure is applicable to structures which

are subjected primarily to bending forces and which are

fab:ricated from rolled, mild steel sections . The report is

a continuation of a previous paper (2) in ~l7hi.ch a theoretical

basis is presented for the spacing of lateral braces. This

procedu're is simplified for practical use and modified as

a reSl11t of experiments. These experiments are described,

and finally design recommendations are presented.
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1. I N T ROD U C T ION

-1

1

A plastically designed steel structure fails when a

suffici.ent nu.mber of plastic hinges have developed to form

a mechanism. At those hinges which do not form last the

member is required to undergo a certain amount of inelastic

rotati.on ~,fithout a decrease of the moment capacity. If the

hinge is one of the first ones to develop, this rotation may

be qu.ite consi.derable~l)

The member may not deliver the required rotation at the

full plastic moment if its rotation capacity is reduced by

instability. One such instability effect is lateral-torsional

buckling. Its occurrence may be postponed until the member

has delivered its required rotation if lateral bracing is

provi.ded at sufficient intervals along the compression flange

of the member.

The purpose of this report is to derive formulas by which

the necessary distance between lateral braces may be determined.

These rules represent simplifications to a method presented

recently(2) and they apply to structural steel (ASTM-A7)

wide-flange sections which are subjected pri.marily to bending

forces. The paper also contains a report on tests which were

conducted to substantiate the theoretical derivations.
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WORK

In a. paper entitled liThe Lateral=Torsional Buckling of

Yielded Structural Steel Members,g M. W. White (2) .developed

a method for determining the spacing of lateral supports for

beams so that lateral buckling is delayed until after the

required hinge rotations have taken place. This method is an

e~~tension of the classical elastic lateral buckling theory

for finding the critical lengths of elastically restrained

beams which are subjected to end moments about their strong

axis. It is assumed that in the case of inelastic lateral

buckling, portions of the beam are strain=hardened and

portions are elastic. By applying the appropriate strain-

hardening and elastic moduli of the respective sections to

the differential equati.ons of lateral=torsional buckling and

then matching boundary conditions at the common juncture of

the two regions, the critical length of the beam was obtained

as the eigenvalue of the differential equations.

The critical length between lateral braces is expressed

by the following formula:

(1)



".

.'

205E.ll

t'Jhere

Lcr = Critical unsupported length.

-3

..

r = ~l1eak axis radius of gyration.y

Mp = plastic moment of the section.

Mo = The larger of the two end moments.

-U f - Co!."rection factor for moment ratio.

Vs = Correction factor for St. Venant's torsion.

V( = correction" factor for the degree of end fixity.

Va =: Cor-cection factor for the effect of partial

strain-hardening.

If al1 four correcti.on factors in Eq. 1 are equal to

1.0, Lcr represents the critical length of a beam which is

subjected to uniform moment. It also means that the whole

beam is strain-hardened (strain-hardening modulus E t=900 ksi. s

and shear modulus Gst ::: 2,500 ksi (3», that the contribution

of St. Venan-c i s torsiort to the lateral bu.ckling strength is

neglected, and that adjacent portions of the beam do not

restrain it from lateral buckling. The four correction

factors modify this "base length lr to include the effects
(

of non~uniform moment, (7/r ), St. Venant' s torsion, (-Vs )'

*It has been showu(2) that for the relatively short segments
under consideration here, lateral buckling is resisted
mainly by the warping stiffness.
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1

degree of end fixity ~ (~) and parti.al strain=hardening)

(1/~ • EEWh of these effects are bf:neficial and thus the

correction factors increase the base length.

Equati.on 1 rep:eE:stSi.1ts an ini.tial motion (eigenvalue)

solution, and i.t: dO!;;'.B not ,;;i'<le the ultimate iateral buckling

strength of the member.* The concept is analogous to the

tangent modulus theory ofax.Lally loaded columns, and as

such the solution gives a lower bound to the true strength

of the member'.

The result,s of this y\lor:k a1-:'e ,e,pplica.ble to structural

steel frJide=flange beams when it ean be ,assumed that the

effects of tb,e axi.al for'ce and the sh(-;:ar force are small.

The loads <l.l:e assumed to be appli.€;d to the beams at the

points of lateral support.

Whereas the method represen,ts a ra.tional solution to

a very complicated problem, there are still some objections

against using it in design. These are the £ollowing~

(1) For the case where the member is subjected to a

nearly uniform moment, the method gives results

~.7hich are overly conserva.tive when compared with

'-e"'t"" - (2)l.. ~O 0::;. ".

'It'A study of the lired:uced modulus il strength and "ultimate"
strength of beams failing by lateral buckling is now underway
at Lehigh unive:rsity" prelimina.ry consi.derations reveal that
the results of the "tangent modul.us ll approach are quite con­
ser:vative.
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(2) The design is an iterative procedure, involvi~g

the determination of the critical length of each

unbraced segment by trial and error.

(3) Numerous charts are required for finding the

correction factors.

(4) One of the parameters necessary for finding Va is

the inelastic rotation at each plastis hinge. This

quantity varies according to geometry. and loading

and its determination involves considerable effort~l)

In the following section simplifications will be developed

which will enable the determination of the correction factors

in a more straightforward manner. Ultimately one simple

equation, dependent only on the ratio of the end moments, is

suggested.

3. S IMP L I F I CAT ION S . 0 F

3.1 SIMPLIFICATION FOR J1.

THE THE 0 R Y

The correction factor ~ accounts for the increase of

the critical length when the beam is not under uniform

moment. The ratio of the smaller to the larger end moment
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.. is ) , and it can vary from +1.0 to -1.0. TI1.e increase

of the critical length is shown to be dependent on f and

on the degree of end fixity. (2) The relationship between

V1' and f is developed in Ref. 2 and it is shown in Fig. 1

for the cases of simply supported and fully fixed ends. The

true value of 1/f is in the region bounded by the two curves.

For reasons of simplification the two curves in Fig. 1

can be replaced by a straight line without introducing an

appreciable error. The simplified expression for Vf is

-Vr = l. 34 - O. 34 f (2)

This straight line is shown as a heavy solid line in Fig. 1.

(The maximum possi.ble error is about S%~

. 3 .2 SIMPLIFICATION FOR ~'3'

The basic critical length was derived on the premise

that St. Venant's torsional stiffness will not resist lateral

buckling. This is a reasonable assumption when f = 1.0.

However, it is shown in Ref. 2 that -V s increases as r
becomes smaller. The correction factor 1J is also shown

s

to increase as the cross sectional parameter di (where d

is the depth of the section, Z is the plasti~ modulus, and
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K is St. venant~s torsion constant) decreases.

-7

The relationship between r , dZ
K

and ~ is showns

.,

in Fig. 2. The degree of end fixity is seen to have little

effect all. V~, except where f approaches -1.0. However,..,
d~ influences ~ considerably, especially if ~z is less

than 600. A tabulation of ~ for most of the rolled wide­

flange sections (Appendix C, Ref. 2) shows that for sections

which are generally used as beams the value of dZ ranges
K

from about 500 to 1000. From Fig. 2 it can be seen that for

this range 1Js may be represented as a straight line (heavy

solid line) without introducing an error on the unsafe side

of more than 2%. Thus, the simplified equation for ~ is

= 1.08 - 0.04r (3)

3. 3 SIMPLIFICATION FOR Va!"

The base critical length of 18 r y is obtained by

assuming that the whole member is strain-hardened. The

whole beam is assumed to be uniformly yielded because of

the equal end moments. If the end moments are unequal,

this assumption. is not true since only parts of the beam

are yielded. The assumption is now made that some parts
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of the length are fully elastic, while others are fully

strain-hardened. The elastic portion of the length is

governed by the elastic moduli E and G, and the strain­

hardened portion is governed by E'seand. Gst.By matching

boundary conditions at the junction of the two regions,

the differential equations are solved numerically with

the aid of an IBM-650 electronic computer.

The results are plotted in a series of charts (Figs.

12 to 16 in Ref. 2) which show the relationship between

the correction factor 1Ia and the coefficient a (where

OL is the length of the strain-hardened region, as illus­

trated in the inset of Fig. 3) for various end conditions

and moment ratios. It can be shown (Fig. 16, Ref. 2) that

the end conditions have little effect on this relationship.

Average curves for various values of f are given in Fig. 3.

From this figure it can be seen that f also has little

influence on the relations between a and~. In fact,

an average of all the curves may be used without impairing

the accuracy of lJa significantly. This average curve is

shown as a heavy curve in Fig. 3. In the subsequent calcu­

lations this average curve will be used.

The value of the correction factor for partial strain-
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hardening may be obtained thus from Fig. 3 if the extent

of stra.in harden.ing Q'L along the length of the beam seg-

ment is knm.m. In Ref 0 2 it was shown that Q'L is dependent

on the inelastic rotation at the hinge (determined by the

. methods of Ref 0 1) ~ on the moment ratio f , and on the

ratio of the curvature at the start of strain-hardening to

that at the elastic limit; ~st/0y. The following equation

represents this relationship~

where
8

R
= In1easti.c angle change of the segment under

investigation.

I
I
\

= Elastic curvature· when M =

is equal to:

M.
P

This curvature

(j) =p
Mp
EIx

(5 )

0st = Curvature at the start of strain-hardening.

The derivation of Eqo 4 (pp. 72-77, Ref. 2) is based on the

following reasoning: For an assumed idealised moment-

curvature relationship (which includes the influence of ,

residual stress and strain-hardening) the length of the

yielded zone and the, magnitude of the moment at the hinge
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can be determined if the inelastic rotation 8
R

and the

moment ratio f are known. If the length of the yielded

zone is taken as the length of the strain-hardened zone

aL, a safe solution results since not all of the yielded

zone is strain-hardened.

It is furthermore assumed that the total inelastic

rotation' of the hinge is distributed between the two seg-

ments joining at the hinge in accordance with the ratio

of the moment gradients. That is

..

where

= (6 )

8R,8L = Inelastic angle change to the right and to

the left of the hinge, respectively.

gR,gL = Moment gradient of the right and the left

segment, respectively. (The relationships

defining 8, gR and gL are shown with the

aid of an illustrative example in Fig. 4.)

Since the total inelastic rotation 8 is equal to

8 = (7)

the inelastic rotation of the hinge end of the right seg-

ment is
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e =
R

-11

(8)

F r . e "'1 e f 6R aT'l!.d r.0 glv.n VQ .u S 0., Ll

L0p

and for an assumed

average value of 0st/0y = 12 3 arnay be computed from Eq. 4.

The corresponding value of 1/a is then obtained from Fig. 3.

Combining the cuxve from Fig. 3 and O! from Eq. 5, a set

of curves showing the relationship between f and ~ for

.~

•

various constant values of SR
L0p

These curves are shown in Fig. 5 •

may be constructed.

3.4 THE CRITICAL LENGTH WITHOUT THE INFLUENCE OF END RESTRAINT

It '\A7ill be convenient in future derivations to have a

solution for the cI:'itical buckling length of the beam when

the effect of end restraint is not included. For this

reason Eqo 1 can be ~Titten as fol1ows~

(9)

,
Since the critical length is derived for Mo = ~, the radical

in Eq 0 9 is equal to 1..0 0 For given values of· f and.

e
~ , the critical length may now be computed with the aidUDP
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of Eqs. 2 and. 3 ,and Fig. 5.

for constant values of

-12

A plot of f ve.rsus (L/ry ) • ..1.1
cr vI

is shown in Fig. 6. The

•

curves are ne.e.rl.y strai.ght lines 3 and they could be repre-

sented as such (Fig. 7).

The c.harts in Fi.g. 7 give a solution to the problem

of dete.rrnin.ing critical bracing spacing if the end restraints

due to the adjacent members are neglected. Even though

the solu.ti.on has been simplified considerably, it is still

necessary to compute the inelasti.c ~ngle change eRG One

further step towar.d Siimplic.ity ~vould be to assume a value

for the ineLBlSt.i.c rote,tion which i.s a.n average u.pper limit

for most structures. Although no studi.e.s on the most

probable hirr\ge angle are availa.bl.e ~ i.t i.s believed that a

valu.e of

critical

~- -- 3.0 woud represent a reasonable value. The
'p

length then would be expressed by the following

linear equation (shown a.S a heavy dashed line in Fig. 7):

(
L \ 1. _. 48 = 30 f

r y Jcr' r)'o . (10)

•
Ex.periments have shO\.vIl (as will be discussed later in

this report) that if f is crear +1 0 0, Eq. 10 gives con-

servative results. The tests i.ndicate that the critical

length need not be less than 30 r y . Thus the simplified
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i

expressions for the bracing spacing witn the exclusion of

the e.ffect of end restraint are as follows:

(;Jcr 1 30; for 1.0 ~ r ~ 0.6-- =
1J~

(;y\r
(11)

1 = 48- 30f; for O~6~ r) -1.0. --
VI

3.S SIMPLIFICATION FOR zJ,.

In order to complete the solution to the problem it

is still nec.essary. to determine the effect on the critical

length of the end restraint due to the adjacent spans. One

could assume~ of course, that the ends of the beam segment

under cOI1!.iElideration are simply supported~- (V, = 1.0). How­

ever ~ it has, been S\ho~'D. (4) that under uniform moment the

critical length is doubled i.f the ends of the beams are

fixed. Since the restraint offered by the adjacent beams

will be between these two extremes, L obtained for simple
cr

supports could be quite conservative.

The following two assumptions are made in the sub-

sequent derivations~

(1) Since the added refinement of including the

effect of more than one adjacent span is not justified, the
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ends of the tlNO neighboring spans are as'sumed laterally

simply supported.

(2) It is asslliued that the effective lateral buckling

length is the same as the effective length of axially

loaded columns. 'Thi.s use of the well-known effective

length concept of centrally loaded colurrms(5) for the

lateral buckling of beams is not quite CDrrect if the moment

ratio is not equal to +1.0, but it is sufficiently accurate

for the practical cases under considerat.ion. 7<

The two assumptions above reduce the problem to find-

ing the effective length of the center span BC of the three-

span column ABeD shown in Fig. 8a. The column is subjected

to an axial force P, and the outer ends of the spans AB

and CD are simply supported.

The restraint of the outside spans may be replaced by

springs acting at the ends of the critical span BC (Fig. 8b).

The spring coefficient k of each spring .can be expressed

approximately as

is the stiffness of the restraining beam,

j

..
where

Ely

L

k =
3Ely

L
(l - pIp )cr (12)

~>'For further discussion of this see Ref. 4 or p. 40-42 of
Ref. 2. It is shownin Ref. 2 that V, = 1'.8 when f =-1.0,
thus giving a maximum error of 10%.
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and 1 - pIp represents the reduction in stiffness due
cr

to axial force.

written as

Since pIPcr = ( L
Lcr

)2, Eq. 12 can be

k =
3Ely

L

(13)

•

Equation 13 is compared with an exact solution for

an axially loaded column in Fig. 9, and it is seen to give

conservative results. The approximation-of Eq. 13 is also

conservative for the case of uniform moment (compressive

forces uniformly distributed along the flange) or for zero

moment ratio (Fig. 9)~

Thus the spring constants of the two springs at the

ends of beam segment Be are

(14)

3Els [1- I Ls \
2J

Ls \LScr -;

The subscripts I and s refer to the larger and the

' .. smaller spring constant, respectively.

(
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0,

The correction factor 1/r is defineu as the ratio of

the simply supported critical length of the center span

in Fig. 8a to the restrained critical length. Knowing

the spring constants k f and kg ,L of the columncr

and V(. (The derivations are not reproduced

I,·

shown in Fig. 8b can be determined by the slope deflection

method, modified to include the effect of the axial force~5)

The variables of the solution can be grouped into the ratios

k s k". L
k.( , 3EIy

in this report.) The relation~hips between these three

ratios are shown in Fig. 10. This figure shows '~ versus

for constant values

For a continuous beam of constant section and equally

It may be seen in Fig. 10

braced spans the value of

is, T = I.e == I, L s == Lj.!os

kg 1 - ~~cr)2and ' Iz." ==
!.

1 -

~~cr) 2

1<} L
3EIy
= L,

is less than 1.0. That

and thus

that in this case the relationship between b} and

t,

be approximated by a family of straight lines. The equation

of these lines is

(15 )
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The next step is to represent (LR )cr and (Ls)cr

in terms of the moment ratios of the two adjacent spans,

fs and f'f' and the center span, ) cr. Under the moment

diagram shown in the inset of Fig. 11 for example, the

segment AB remains elastic and thus it gives a larger

restraint to the critical segment BC than the segment CD

which is next to the plastic hinge at C and is therefore

partially plastified. Hence ~ = f
AB

, fa = fCD and

) cr = fBc •

The following equations have been derived in the

Appendix for the critical lengths of the- adjacent segments:

(L~\ = 15l-38r~ -1100 (l'icrl-0 . 9)
r y/ cr t

for 0.9 < jfcrl<l.O

(~) =: Lj.8-30~
y cr f

(16)

(17 )

(18)

for Ifcrl = 1.0 or if one end of the adjacent span
contains a plastic hinge. (Span CD, Fig. 11)
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If Eqs. 17 or 18 yield critical lengths smaller than

30 r y ~ Li = 30 r should be used, as was- -suggested for
y .

Eq. 11. For the adjacent segment furnishing the smaller

restraint, (Ls ) cr values· may be obtained ..by using f' s

instead of fJ in Eqs. 16, 1.7 and 18. Equations 16, 17

and 18 are represented in Fig. 11 for various .,values of

fer·

In the preceeding discussion it was demonstrated that
_.

the correction factor VI can be determined if the simple

plastic analysis moment diagram is available. In every

day design practice it is not necessary to compute 1fas

precisely as outlined above. A value of--V, = 1.25 can be

assumed as an appropriate value for typical restraint

situations. Using this correction factor, the following

simplified equation is obtained:

(L/r) . = 60-40 f
y cr

but not less than 30.

(19)

4. EXPERIMENTAL I N V EST I G A.T I O'N

Two series of tests were conducted to substantiate

the assumptions of the lateral buckling theory. Each of
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these test series consisted of four beam- tests. In each

test two symmetrically spaced loads were~applied trans­

versely to a simply supported beam (see inset in Fig. 14).

The.beam segment between the loads (segment BC in Fig. 14)

was the critical segment. Lateral braces were supplied

at the load poi.nts (B and C), preventing- lateral movement

of the compression flange.

The first four beam tests were experiments where the

critical segment was subjected to a uniform moment and

these have already been reported~2) Only the final results

are given here (Table 2 and Fig. 18) for-- purposes of com­

parison. The side segments of these beams were boxed in

to provide full lateral fixity, thereby making.the correc­

tion factor zJ, = 2.0 under the applied uniform moment

gradient.

The arrangement of the test set-up is shown in Fig.

13 for four further tests (LB-5, LB-6, LB-7 and LB-8).

Load was applied to the test beam at two equally spaced

locations through a loading beam. The test beam was

supported on two 12 in. diameter rollers placed on the

base beam, which in turn rested on the weighing platform

of the testing machine. The. whole test -set-up could be
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..

shifted along the longitudinal axis of the beam, such

that B.ny combination of the ratio betwe.en the two loads,

and thus the moment ratio f of the cri.tical span, could

be adlieved.

The critica.l span of the test beam rJ18.S the segment

bettveer:. the loa.d points. Lateral bracing at ·the load

points tvas accomplished by angle studs clamped to the base

beam an.d e.xtending,upward on each side of the test b':eam

(see section A-A in Fig. 12). Lateral support was given

to the top flange only.

The i.nstrumentation consisted of level bars placed

at the loading points and the support points, measuring

the rotation in the plane of bending; three additional

level-bars, placed at the load points and at the mid-

section of the critical segment, were used to measure the

rotation of the mid-section with respect to the laterally

supported load-points; def~ection dials, measuring over

a nine inch gage length, were placed on the top and the

bottom flange to measure the average strain from which

the curvature could be computed. A schematic view of the

instrumentation is shown in Fig. 13 •
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.' Readings were taken at equal loa.d increments as long

as the beam remained elastic. During plastic 'deformations,

increments of transverse deflection' were gaged by a Gontrol

dial atmtd-span (see Fig. 13); measuring the relative

distance between the base beam and, the specimen • An,

initial load reading was t~ken after the degired deflection

had been reached and rnaintained~ and a final load reading

was taken after all the gages had been read. the &verage

of thes"e two' readings was taken as the recorded load.

Test curves for each of the four tests are shown in

Figs. l4t:hrough 17. In each figure an inset is included

whicq shows the location and the relative magnitudes of

the loads. Also shown is the moment diagram, indicating

the location of the plastic moment Mp and the moment

ratio f. Two curves, giving the relationship between

the moment (non-dimensionalized by Mp2 and the rotation

at each reading point, are shown in the figures: One curve

(circles) indicates the total rotation of the critical

segment (obtained by adding the'rotation of the level bar

~t the load points,' see inset in Fig. 13) in the plane

of bending. The other curve shows the lateral rotation

of' the center of the test be8J;n'. This curve is shown '

becau~~ it deteriniq,esthe ,load at which <lateral buckling

started.
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The four test specimens were cut from the same piece

of a lOWF21 be&Tl. The phy~ical properties of the material

were obtained by tensile coupons cut from the web and the

flanges of the beams. Table 1 shows the average static

yield stress of the flanges, and the vallies of A, Z and

Ix as determined from the measured dimensions. The plastic

moment M.p, and the eLa~ti.c curvature 0p were computed from

the above quantiti.es, mud they are also shown in Table 1.

The test results for all eight tests are shown in

, Table 2. In this table, the va.lue of ~ represents the

lateral restraint of the neighborin~ segments, and it is

computed by the methods outlined in section 3 of this

report. The rotation 9R (non-dimensionalized as ~p)

is the plastic rotation in the critical segment at ,the

point of maximum moment. The value of 8a is calculated

by subtracting the elastic rotation at M =~ from the

rotation corresponding to the maximum rotation in the

plane of the applied loads.

curves obtained previously (Fig. 7) in Fig.

The test results are plotted on the p " L) versus-,,~-vcr r y

18. The

inelastic rotation of each test is shown in parentheses
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after each test point. From Fig. 18 it may be observed

that if the average inelas,tic rotation 8
R

/L¢p is assu,'ned

to equ8,1. 3. 0 ~ the l.ofl'ler limit for t.he critical slender-

ness ratio need not be less than 30. The test points

lying belo~T thi.s limit a.1l exhibited rotation capacities

well over 3L(6. Therefore the rule I;<lhi.ch stipulated that. p

the minimum critical length be 30 r y (for Vr = 1.0) ,

(Eq. 11) is justified by tests.

5. RECOMHENDATIONS FOR DESIGN

The design si.mplifications for the spacing of lateral

,bracing of members subjected pr.imarily to bending moments

can be summarized in the following suggested, procedure~

(1) Obtain the ultimate ben.ding moment diagram of

the stru~ture by the plastic theory.

(2) DeterminE: the member sizes and the i.nelastic

t · t' hh· (1)ro.at~ons a eac nnge.

(3) Assume the spacing of the latera~ braces, and

determine the moment ratios of each critical

span and its adjacent spans from the moment dia-

gram in accordance with the assumed spacing.
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• (4) Determine the critical length exclusive of the

influence of the restraint of the side spans,

from F':Lg" 6 0 Thepararneter

is computed by th.e follov.:i.n.g formulas:

Elp .-
~·t.

(6 )

E n
'''x

(5 )

In case the inelastic hinge rotation e is not

computed ~ the. critical length is obtained by

,- ''\ C'tL/ry,"cr . .-/;; ,) = 48- 30 ) CEq., 10) but not

smaller than 30. If the assumed spacing of the

lateral supports is smaller than the critical

length obtained in the preceeding operation,

the spacing is conservative.

(5) Obtain the correction factor for the restraint

of the adjacent segments V( from Fig. 10. The

spri.ng constants of the. adjacent segments k,e

and k s are dl~termined by the following formulas:
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(14 )

(6) The critical lengths L 1. cr and L of theser

(16)

~ 1100 :( If 1,-0 0 9)cr

(17)

for 0 0 9 <If(,r:' J <l. 0

('!:l,') -= 48 = 30 p.
\ '""Y cr )f (18)

for I f ~yl:= 1 0 0! \"- ~,

(? )In case: the, apa.cing of the braces is uniform

(1" -:::: Lcr := 1,5') ~ and a. be.&"TI of constant cross

the vatue of ~ can be obtained'

from the fo1.1ovJing formuLa. ~
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(15 )

whe:r.e L"~ and L.e are computed by Eqs. 15, 16
c:>c.r . eX'

or 180

(8) For the mOiSt: r'8.pid and 8Jimplified operation (-z1
a.B~umed to be 1." 25)" the ti),liiisu.med bracing spacing

may be checked by the: .applicaticl1:'"i. of the follml7-

. ing simple formula:

(19)

ExamJpl.e proble;i,;DIl'i for the detel:mination of the bracing

s pac :Lng are give.n in: Ref 8" 2 ~ 6 anld 1" '*

'~'The equ8.tion.~, for the critical. length of the adjacent
spans in Ref. 7 ,'3l.:r'e diff:i';;r.ent from thE:: equations developed

in thi.s report. Thi.8, is due to a. difference. in derivation
.and due to a1::1 cu:itrlmetic.al error in the preliminary report.
Therefore~ the equation

(k-)r, y . cr
1. ~'r~)

in Ref. 7 (Eq. 6.21) LS incorrect.
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6. S U M MAR Y

-27

•

•

In the preceeding sections of this paper recommenda­

tions are made for the determination of the spacing

between lateral braces i.n pla.sti.cally designed beams.

The rules are applic.able for plastically designed steel

frames if the members are primarily subjected to bending

moments' and if they are fabricated of parallel-flanged

rn~rnbers .

The recomme,ndati.on;:-, are based on simplifications

made on a theory which ~las proposed by White. (2) For

routine calculations a simple equation i~ giv~n (Eq. 19);

if the problem warrants a more precise analysis, formulas

and c.harts are provi.ded .
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8. NOM ENe L A T U R E
f

d

E

g

G

K

~ peptq of sectioq
'.• It

= ~o4ulus of elas~iQity
'" "1 "

= Mom~n~ gradient

= ~hear modulus

= ~o.m~tl1: of inert~~ about x-axis of section

~ x~~~ry~ of inert~~ about y-axis of section

= ~~;,pi~g constant
." ."'-.' .. ' ",

= ~~~ ~~nant's tov~ion coqstant

k

L

,

= §p.t+~~
" "

= ~~q&~l;l.

constant pf restraining segmept

of unbrageq ~p'aQ .
;. . "j'

~y

Z

Ol

e

~Q1

= ~~~&e+. of two e~q ~omeQts

= f~~~~~c momen~

= W~~~ ~xis rad~u~ of g~~4tiqn

= P+ast~c modul~s

= ~~tent of yie+d~ng in the beam

= +q~la~tic rot~ttqn

= qqrregtion fac~4r for the effect of practice
st;raip.-harden~ng

. I

= Corfeqtion f~ctq+ for the degree of end fixity

= Go~rection factor for moment ratio
.~.

1:1 CO~1;'ection factor for St. venant's torsionro' ,~ ."
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r = Moment ratio

o-y = Yield Stress

o = Curvature

0p = Elastic curvature at M = Mp

Subscripts:

st = Strain-h.rdening

t = Larger

s = Smaller

cr = Critical

R = Right

L = Left

-30
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9. A P PEN D I X

DETERMINATION OF Lcr FOR THE ADJACENT SPANS.

For the three-span beam shown in the inset of Fig.

11, the absolute value of the moment at: the support B

is equal to·

M =p
(A-1)

The critical length for the span AB is(2)

(A-2)

The coefficient ,)fAB represents the correction factor

for the moment ratio of beam AB; the rest of the equation

is the critical length due to uniform moment if St .

. venant 's torsion is neglected (Eq. 4.lL, Ref. 2). For.

simplicity it is assumed that the beam AB is not restrained

at its ends. Due to this assumption and due to the neglect

of St. venant's torsion (which has considerable influence

i.n elastic buckling), the critical length obtained from

Eq. A-2 is ~maller than the actual L of the beam. Thecr

influence of this on the value of ~,is however, quite

small, since the variations of (L.(. )cr cause little
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change in the term 1 _ ( __L__)2

Lf cr
if

(which is the usual case).

for tl1ide-flange shapes, and

in A-2, noting that the warping

=

substituting A-l

I d2
Yconstant IuJ

rearranging the equation,the critical length of the

adjacent span is equal to

(~AB \ ~1T'i
y Jcr AB

(A-3)

h .. fgydT e rat~o ~ 1.6 for most rolled wide-flange
Zry2

.sections. (2) The correction factor -Jr is given by

Eq. 2; substitution of ';r and the constants E = 30 x

106 psi and 0- = '33 ksi into Eq. A-3 gives the follow­.y

ing equation for L ..... cr'

(
L ~ 107 [ . J~ = J1;r ,1.34 - 0.34 JAB
r y cr

(A-4)

Equation A-4 is only valid if the span AB remains

elastic (that is rBC ~ 0.9 - see Ref. 2). If the

adjacent span is next to a plastic hinge (span CD in
(

Fig. 11), or if f BC = 1.0, the critical length is
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'.-.

determined by Eq. 10. A graphical representation of

Eq. A-4 for various constant ratios of )BC is given in

Fig. 11. Also shown in this figure is -the curve for

f BC = 1. a (Eq. 10). If a straight line variation

between the limit of elastic buckling and buckling when

one end of the adjacent span contains a plastic hinge is

assumed, the following equation can be derived for the

range 0.9 <'/fBCI< 1.0:

(A-S)

In this equation, the term 80.f AB is small when compared

with 1030, and therefore the equation may be abbreviated

to

( :AB\ = 151 - 38 f AB - 1100 ( f BC - 0.9)
y / cr

(A-6)

A line representing Eq. A-6 for >BC = 0.95 is shown in

Fig. 11.
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TABLE 1

Section and Material Properties (measured)

-f'

.'

...

Cross Section 10WF2l

Yield stress, 0-, 3803 ksi (static yield levely of flange material)

Area 6.39 in2 (6019 in2 Handbook
value);

Plastic Modulus, Z 24087 in3

Moment of Inertia, Ix 109.90 in4 (10603 in4 Hand-
book value)

Plastic Moment 953 kip~in

Elastic Curvature, np =0 0.000289 rad linElx p
- -

TABLE 2

Test No. Results

Test Section VI L
f cr

e at M -
v,ry TL max

p

LB-l 10WF29· 2.00 1104 1.000 2305
LB-2 10WF29 2.00 20.5 1 0000 ; 509

LB-3 l6WF36 2.00 11.2 10000 602

LB-4 10WF29 2.00 3508 1 0 000 005

LB-5 10WF21 - 1.27 37.8 O~388 408

LB-'6 10WF2l 1.30 29.6 0 0706 406

LB-7 10WF21 1.40 20.6 0.912 809

LB-8 10WF21 1.45 19.9 -0 0980 10.4
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(Eq. 14)
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Fig. 10- EFFECT OF END RESTRAINT ON tJt
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