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INELASTIC L,OCAL BUCKLING

OF WF-SECTION'S

I ~ INTRODUCTION

During recent years there has been concen-

trated research into the inelastic behavior of steel
. I

structures.
1

It is now apparent that some of the new

theories formul·a ted may be applied to the design of

certain type structures, thus bringing an economy of

material. However, the analysis of the ultimate strength

of continuous structures, based on the simple plastic

theory, is realistic only if piastic hinges are properly

developed~ The seriousness of premature inelastic buck-
j

ling of sttu6tural steel members has been revealed by

the results of a research program on "Welded Continuous

Frames and Their Components" being carried out in Fritz

Laboratory at Lehigh University. Some beams, columns

and connections developed their calculated plastic

hinge strength and some buckled before reaching the

calculated value. Of those which did develop the theo-

retical plastic hinge moment, some collapsed immediately,

while others continued to carry the hinge moment as

straining was increased.

Structural members of perfectly plastic mater-

ial theoretically have' no :pes is tance to buckltng when
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the average compressive .stress has reached the yield

point, no matter whether the buckling concept is based

on the tangent modulus theory or the double modulus

theory. Thus, the compressed elements of structural

members should buckle when the compressive yield stress

is reached. However, as evidenced by a larf:e number of

tests, such buckling does not necessarily occur in the

compression flanges of some of the rolled shapes.

The usual couron compression tests of struc-

tural steel specimens haye always shown considerable
theresistance to buckling jn plastic range. This is evi-

dent, for example, in the typical compression stress-

strain diagram obtained trom a small coupon shown in

:\< •

Figure I.

Stress
klns/in 2

.~

10 l'

0.01
I . .-.-:... 1 . _

0.02 0.03

Strain in/in
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According to some studies made, it has been attributed

to the yielding process of steel. The same reason

might have kept some of the beam, column and connection

specimens from buckling in the early plas.tic region.

This is discussed in further detail in the next section.

To establish an effective value equivalent

to the tangent modulus -for steel for calculating the

buckling strength of small steel coupons in the plastic

range, there is proposed a seri$s of compression tests

of precisely aligned steel specimens which ~ould be
strained through the plastic range into the strain

hardening range. Results will be applied to the analy­

sis of local buckling strength of WF flanges. A fur­

ther program is recommended for the investigation of

the local buckling strength of various WF sections

tested as short co'lumns and beams. This series would

be followed by tests of WF shapes under bending moment.

The ultimate aim of this investigation is to

establish a specification for the required geometric

projection of I and WF shapes so that plastic hinges

can be developed and maintained through a considerable

range of rotation under various loading conditions

without reduction due to local buckling~ Emphasis

will be given to designating the geometric properties
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of those available sections Waich meet the requirements

of strength and of rotation capacity.

Discussions of lateral buckling of bending

members in the plastic range are also i.Dcluded.

II. INELASTIC BUCKLING CRITERION OF STRUCTURAL STEEL

Shanley has proved that an ideal column will

start to bend at a load equal to its tangent modulus

load.* According to the average stress and strain

diagram of structural steel, the tangent modulus in

the plastic range prior to strain hardening is· zero.

Thus, the criterion of the tangent modulus load is

without real meaning in the limiting case. Therefore,

in columns loaded with a slight eccentricit~, (pro­

vided the columns are made of a material vhich eLhibits

'ifEtI

(KL)2
- tangent modulus determined from

compressive stress-strain dia­
gram

=moment of inertia
= actual length of column=constant depending on end con~

di tion
(K - 1 for pin-ended column;

K ~ t for fixed-ended column)

I
'L
K

where'

~}The tangent modulus load Pt is computed from
the expression '

Pt :0
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h

the above-stated zero slope through the plastic range)

the average compression stress on the column cross-

section can never reach the yield point. Ideally

loaded columns made of perfectly plastic materiaHHl-

are actually unstable ~en the average stress reaches

the yield point. Such a column may collapse at any

instant when the average stress reaches the yield

point regardless of the length of the column.

Fig. 2

----------,----
~H(oThe stress-strain diagram is assumed to consist of
two straight lines: ohe va th a slope of E up to the
lower yield point stress; the other ~ th zero slope.
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The above statement can be demonstrated as follows:

Let Py be the load at which the average compression

stress on the column reaches the yield point

Py D A(ry
where IIA" equals the total cross-section area of the

column, ~y the lower yield point stress.

Suppose the ideal column is loaded with axial load

Py and a small displacemen t is made a1 ong the column

such as the dotted lines show in Fig. 2. Considering

a cross-section AI- A2,let the corresponding displace­

ment at that section be Yo. Then the section is under

a total axial load Py and a moment M = pYYo. In

orde~ to balance both the moment and the axial load,

the stress distribution must be changed from ij to kh.

But the stress cannot be any higher than Qy if the

material is perfectly plastic, and the added stress·

indicated by the shaded area in Figure 2 is therefore

impossible. The external moment will not be balanced.

It is obvious that the column will collapse in bending

as soon as the small displacement is made.

This reasoning would lead to a conclusion

that a member will never sustain yield point stress in

compression if it is made of perfectly plastic material.
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In the simple plastic theory of struotural

analysis, sections at which strains exceed the yield

point strain are assumed to develop "plastic hinges".

In the case of WF sections there is, from the above

discussion, a possibility of buckling of the compres­

sion flange. This would,naturallyreduce the value of the

plastic hinge moment. Therefore, the problem of in­

stability of structural steel members becomes very

important ~en consideration is given to plastic

design.

Actually none of the metals used in engi­

neering structures are perfectly plastic. In the case

of structural steel, for example, strain hardening

commences at a strain of about 15 times the yield

point strain. A typical example was shown in Fig. 1 •

But the stress-strain curve from ordinary tension

and compression tests usually 'do not give enough in­

formation for the analysis of stability problems in

the plastic range; i.e., whereas, according to the

coupon test, the column should buckle ••• it does not.

The mechanism of yielding of steel has been observed

to affect the buckling strength of compression members.

In a simple tension or compression test of a

structural steel bar, one will find that Luder's lines
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do not all appear at once when the yield point is reached.

Yield lines usually are initiated in some places and then

gradually spread over the whole specimen. While the

yield lines are progressing, the region where the yield

lines were initiated might have developed all its plastic

strain and reached the strain hardening range locally.

The specimen cannot be considered as perfectly plastic

'even though a portion of the stress and strain diagram

is observed to be parallel to the abscissa. The com-

pression member can therefore be expected to have,

theoretically, a buckling strength of tangent modulus

load with the modulus chosen from the ordinary stress-

strain curve at the starting point of the strain harden-

ing range,

d .-------.--~==-r-~--_.------_..--= I
;

I
!
!

Fig. 3

,E./ ts
.R..-.-

-_.-.-~_.
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How does this yielding process affect the

buckling strength of a compression member? It can be

demonstrated by the following analogical example:

cc !.ll.l.ilU-S-!~,T'\
j

I
I
j

I
I
I

ATrTTp-nTI

___. ~iv.....__.__ .- .....

L_. ._

(b)

Fig. 4

I,,
I
I

-tl
II

}

-------.. cJ

Suppose the compression member is slightly

tapered on one side, as shown in dotted lines in Fig.

4 (a). Instead of having a uniform stress throughout

its length, the stress distribution along the member

will be as shown by the dotted lines, Fig. 4 (b). The

root section AB will reach the yield point first, and

as stress increases the yield zones will progress to

reach the top section CD. If the mechanical. properties

of the material are homogeneous, every section will be

strain hardened as soon 8S the stress exceeds d~.

During this progression of yielding, the strajn harden-

ing zone and elastic zone are separated by only an

infinitesimally thin plane which has perfect plasticity.
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In this case the short compression member will, how-

ever, have a buckling strength at least equal to the

tangent modulus load, using as the tangent of the

stress and strain diagram the value at the starting

point of the strain hardening region as before.

To summarize the above discussion there

are tWb extreme cases:

First, if the material is perfectly plastic

and stressed to the yield point, the compression mem-

ber will be unstable and will bend no matter what the

L/r ratio of the compression member is~ The column

curve will appear as in Fig. 5.

\ ,
\ ,

Ljr .-
Fig. 5

Secondlx, if the plastic flow in a compres~

sion member is established plane by plane~ and all the

planes are strain hardened as plastic flow progresses,
."
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the compression member will then have a buckling

strength of tangent modulus load as defined above.

The column curve will be as shown in,Fig. 6.

\
\

-11-

t (J"'i

(fer

L.-~ -'--__, _

L/r _c....

Fig. 6'

The practical case may lie between the above

two extremes. Apparently tho tangent modulus load

defined as above wi 11 become the upper limit of the

buckling strength for the short compression member.

For rectangular sections 'the Lit· ratio

,which corresponds to' tlle point at which the compres-

sion specimen begins to carry gr6at~r loads than the

yield point stress may be calculated as follows:

Referring to Figs~ 3 and 7
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t
Fig. 7

II \

-

b

I

1

t

. '

it = Ets =700kips!inch2

dy = 40.36 kips/inch2

Lt::: 3.75

L
t -

; .

7.5 for the case of fixed ends.

Compression coupons have usually been tested at an Lit ratio
of 4. Test conditions simulate fixed ends.
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No bending in the plastic range is observed. In pre~

(JJ
vious work by Johnston and Opila their experimentally

determined critical Lit value was similar to that com-

puted. Tests of very carefully aligned short compres-

sion members of various L ratios are planned to evaluate
t

an effective value of the tangent modulus at the start-

ing point of the strain hardening region to predict the

buckling strength of steel structural members.

III. INELASTIC LOCAL. BUCKLING STRENGTH 0:£<1 COMPRESS.!Q!£

FLANGES OF WIDE FLANGE SECTIONS

A certain length of the flanges of a wide

flange section will become plastic when a plastic hinge

is formed at the section. The yielded area is generally

a function of the moment gradient and the·shape factor

of the member. In the case shown in Fig. 8, the

length of the yielded flange will be

l= f f 1 L

where f is the shape factor
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~t=::=::=======---=========1
l:-l_~ _L.-----·---.---.--.----.... ~.-t

Fig. 8

Load

;\loment

-14-

The buckling problem of the compression flange of the
.'WF shape in the yielded area CDn be simulated by the

buckling problem of a plate with the following boundary

conditions:

Simply
Supported

+

"~uil t -in

.__ .., a ------ Free

Fig. 9



-15-
205E.l

From the discussions in the previous section

it is obvious that the strain hardening part of the

stress and strain curve is important in the analysis

of the buckling strength of this plate under yield

stress .'

Analytic solutions to the problem of plastic

buckling ofa plate with non-linear stress-strain rela­

tions have been studied by a number of authors:

( 7) f"-A) 6 ~~..,n,. ,Timoshenko . ., Ilyusion \ '~., Stowell and Lundquist \ If

Handleman and Prager (3), Bitlaard (I}, and is summarized.

by Bleich (2}"

In both Randleman and Ilyusion's solutions,

v.on Karman's concept of double modulus column strength

were used. Stowell and Lundquist treated the problem

from Shanley's concept of tangent modulus column

str~ngth. However, all these solutions cannot be

applied to structural steel in the plastic range without

modification. On the one hand, the solutions are for

a continuously strain hardening material and on the

other, it is seen that the ~ielding process is of pro-

nounced influence.

It is not the purpose of this report to give

detail analysis of the formulation of the solutions to

this problem. It will be reported separately after a
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part of the proposed tests are accomplished.

IV. INELASTIC BUCKLING OF THE PEB OF WF SECTIONS

The web of a deep wide flange section will

buckle locally as the plastic zone penetrates close

to the neutral axis. The problem becomes more in-

volved than that of the flanges alone. The plastic

-16-

zone no longer contains only a plate. It contains the

flange and a part of the web with very irregular boun­

daries. It is hoped that time will permit analytic

studies and tests. lin the latter will be varied the

depth of the section, thickness of the web, and width

of the flanges.

V. INELASTIC LATERAL BUCKLING OF STRUCr:PURAL MEMBERS

In elastic theory it is obvious that the

lateral buckling strength of the "a" beam with two

ends built into the wall (Fig. 10 a) is higher than

a simply supported beam as shown in Fig. 10 b •

"j /', _.-.. -,/

~~ -------_._-----------§
, " \ ;/

(,0.)

Fig. 10

-'IL-l.-.------~ -fh
----·u-I
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The formation of plastic hinges at the tv~

supports of a built-in beam under uniform loading

naturally changes the boundary conditions of the beam

at the two ends. Hence, the lateral buckling strength

of the beam is reduced. ~hen a third plastic hinge is

introduced at the center of the beam the lateral buck-

ling strength will be further decreased. Tests have

shown that beams buckled laterally in presence of the

third plastic hinge at the center, although good lateral

support was provided.

The worst possible case is that ofa bending

member under constant moment.

Fig. :1;1

According to the assumption that the yielded part of the

beam is perfectly plastic, it is then evident that the

lateral buckling strength of the beam will b~ equivalent

to a beam considering only the elastic part under the

same moment. According to the assumption that the

yielded part of the beam will have a tangent modulus
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strength of strain hardening region of steel, the

~l8-

lateral buckling strength of this beam can be approxi-

mated by regarding tho beam os having different moduli

in the elastic part and plastic part. The actual

lateral buckling strength of such a beam may be in

between the above t~o limits.

No test program is specially planned for this

lateral buckling problem. However, in the continuous

beam test proposed below, lateral deflection data will

be collected as a preliminary study.

VI. PROPOSED TEST, PROGRAM

Three series of tests are proposed. One or

two continuous beam tests are also su~gested after the

three series have been completedo

(a)' Test of Short Compression Cou.pons

This series of tests is the same as the

ordinary compression test of coupons except the L/t

ratios are varied. The basic compressive stress and

strain diagram is to be determined by the data collected

from part of this series. The effective value of the

tangent modulus at the beginning of the strain harden­

ing range is studied by varying the L/r ratios of the

specimens.
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Comparisons will,be made between annealed and

as-delivered material, rectangular cross-sections and

round sections o The primary purpose for this is to

see if the yielding process is influenced by the shape

of cross-section and by the condition of the material

(annealed or as-delivered). In the latter case, is

there 'any difference in the yielding process in small

annealed and as-delivered specimens? There may be an

influence of the locked-up stresses not relieved by the

usual sectioning process~ If the yielding process is

changed by these factors there would be a resultant

influence on the effective tangent modulus.

1. Annealed R~ctangular Coupon~

No. t L Lit
1 3/8" l~.ll 4
2 " 1-7/8 11 5
3 II 2-t" 6
4 " 2-5/8 11 7
5 " 3 8
6 " 3-3/8" 9
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SR4 gages for plastic range or clip gage will

be used on both sides to detect bending. Copper plates

will be used as shims at both ends to secure uniform

pre'ssure.

2. As-Delivered Rectangular Coupons

Testing procedure and dimensions will be the

same as for the annealed coupons. Possibl~ this group

should be tested in duplicate.

3. Round Sections

d L Lid

r~=~l"--r 1 1/2" \j3 2 V~
2 " 5 "./3 /4 5 Vg 12

d I I ! 3 n 3 '{3!2 3
~~, 12'~-~'I 1-' It 4 rr 7 '/3" /4 7

I I I 5 n 2 V3 4 '3
\ !_L 6 " 9 1/3 /4 9

V_ /
'V32

'......,_./

Round sections are to be tested in as-deli-

ver ed condi tion.

(~), Tests of Short Columns

Short columns of both rectangular and WF sec­

tions are to be tested to give; information,for se;lect-'

ing the best specimens for the bend ing tes ts to follow.

Results are also expected to give indication as to

whether the previous analysis is in the right direction.
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Some of these test proportions may require modification

as a result of the first series of tests.

1. Annealed Rectangular Specimens

These tests differ from series (I).l in that

they are larger. The objective is to examine the size­

effect and to see if this changes the effective tangent

modulus.

No. t L b Lit

1 1" 5.5 2 5.5
2 1" 7 2 7
3 1" 8.5 2 8.5
4~r 1" 7 2,,~ 7

*No. 4 is tapered 1:10 to give a stress gra­

d1ent as shown in Fig. 4.

2. WF Sections (Annealed)

This series is to see how much influence the

restraining action of the web will have on the results

and to see how good a correlation can be obtained with

the results of the tests in (I.) and (II.)l. The fj.rst

step will be a pilot test to see if a sufficiently

uniform stress distributfon can be obtained in the

flanges if the web is trimmod as shown.

The lengths shown in the table following are

only tentative, since the tests, (possibly two of each

shape)., will be carried out in the vicinity of the

·critical Lit determined in previous tests of rectangu-
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lar specimens.

, 1
1...1

I I 'fJ...'---l.l--:::.'l'6_.;:::=,U
.f

series
No.
1
2
3
4
5
6

No.
Tests

2
2
2
2
2
2

Section
8WF67
8WF40
8WF31
8WF24
8WF17
8WF13

L
g"
6"
6"
6"
4"
4"

Lit

Both in this series and in the one to follow,

further consideration will have to be given to the

problem of residual stress, a variable which has been

. observed to aggravate the local buckling tendency.

(a) Test of WF Shapes Under Bending Moments (Annealed)

This series of tests will contain two groups.

First will be a series of simply supported beams, each

simulating two cantilever beams.

tP

1

__. l J
6.======='- ,J------ 1,-=========-=;:6

Fig. 12
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It will contain around ten specimens with different

-23-

sections and moment arms. Specific dimensions of the

specimens will be determined after the first two sets

of tests are completed.

The second group will contain fewer speci­

mens and will be loaded under constant moment as shown

in Fig. 13.

I II II l
I===~=========~

6

Fig. 13

All the specimens will be annealed and lateral

supports will be provided in tho test set-up.

One or two continuous beams are proposed to

verify the theory in the indeterminato structures.-
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