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SYNOPSIS

i

•

•

In this report a method is presented for the deter­

mination of the inelastic lateral-torsional buckling strength

of as-rolled steel wide-flange beam-columns. The beam­

columns are subjected to an axial force and to bending moments

applied at one end only. The end-moments cause bending about

the strong axis of the members, and the effects of initial

residual stresses are included in the analysis.

The solutions are obtained on the basis of a finite

difference approximation of the differential equations with

variable coefficients}the resulting char~cteristic determin­

ant being solved numerically by a digital computer •
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I. INTRODUCTION

A perfectly straight wide-flange member which is

subjected to an axial force and to end moments about the strong

axis of the section will deflect in the plane of the applied

moments as long as the moments and the axial force are below

certain critical values. At the instant of the attainment of

the critical loading, bifurcation of the equilibrium will take

place and failure is initiated by lateral deflection and

twisting of the member. (1)(2)

Typical beam-column behavior is illustrated in

Fig. 1, where the schematic relationship between the applied

end moment Mo and the resulting end slope Q is illustrated for

a wide-flange member bent about its x-axis. The axial force P

is assumed to remain constant as Me is increased from zero to

its final value.

The MQ-8 relationship is seen to have two branch

curves: (1) The upper branch results if no lateral=torsional

buckling is assumed to occur. In this case failure will be

~pue to excessive bending in the plane of the applied moments,

with no deformations at all except in this plane. (3) This
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curve represents the optimum performance of the member o

-2-

•
(2) If the lateral bracing is insufficient, lateral-torsional

buckling will set in at Me = MOCR and failure w~ll occur at a

moment MolMAX which is lower than the ultimate strength

Mo2MAX'

Attainment of the maximum moment is always accompanied

by yielding of part of the memberQ Whereas methods are avail­

able to determine the value of the maximum moment M0 2MAX if

failure is by excessive deflection in the plane of loading, (3)

no such methods are presently available to compute MolMAXo

Experiments on steel wide-flange beam=columns have shown

however, that the increase of the moment capacity above

MQCR (the moment at the start of lateral-torsional buckling)

is only slight, and therefore this moment can be considered to

be a good index of the beam-column strength when failure is

due to lateral-torsional bucklingQ(4)(5)

The work in this report is concerned with the

determination of the critical moment when the inception of

lateral-torsional buckling occurs after the member has already

partially yieldedQ The method of determining the critical
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•

moment is illustrated by considering a beam-column which is

loaded by one end moment only (see sketch in Fig. 1) •

The problem of elastic lateral-torsional buckling has

been thoroughly investigated. (1)(2)(6) For buckling in the

inelastic range the reduction of the stiffeners governing the

buckling behavior must be considered. Solutions have been

presented for beams (7) (8) (9) (10) (11) (12)(13) and beam-columns(14)

under moments producing Symmetric deformations. This report

considers the influence of non-uniform bending. (15)
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II. THE DIFFERENTIAL "EQUATIONS OF LATERAL-TORSIONAL BUCKLING

Assumptions

The differential equations of lateral-torsional

buckling derived herein are based on the following specific

conditions and assumptions:

(1) The axial thrust P acts through the original

centroidal axis of the member and it retains

its direction even after buckling has taken

place.

(2) The moments Me are applied at the ends of the
;, ..,\::.

member only, such that they cause bending about

the major axis of the cross sectiono No trans-

verse loads are applied between supportso

(3) The beam-columns are as-rolled steel wide-flange

shapes which are initially free of crookedness

and for which the cross-sectional dimensions do

not vary with the length 0

(4) The ends of the members are simply supported with

respect to lateral-torsional buckling. The
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boundary conditions are therefore

u = u" = {3 = {3" = 0 at z = 0 and z = L.

(5) The stress-strain diagram of the material is

ideally elastic-plastic. (Fig. 2)

(6) The residual stress pattern is symmetric and

the residual stresses are distributed in the

flanges and in the web as shown in Fig. 3.(16)

-5-

..

.>

Equilibrium requires that

o rt =Ore [bt bt ] (1)+ w (d-2t)
where b, t, d, and ware the dimensions of the

cross section, Ort is the maximum tensile residual

stress and ~rc is the maximum compressive residual

stress.

(7) The cross section retains its original shape and

no local buckling is assumed to occur before

bifurcation.

(8) The deflections are small in comparison with the

cross sectional dimensions of the member •
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Equations of Equilibrium

Equilibrium equations will be formulated in the

-6-

..

following derivation for a deformed cross section located at

a distance z from the end of the member (Fig. 4). The axial

thrust P is applied with eccentricities fey B at ~ = 0 and eyT

at z = L, where eyB and EYT are in the zy plane, which is

also the plane of symmetry of the cross section. The deformed

location of the cross section at zis fully defined by the

displacements u and v of the shear center S, and by the twist-

ing angle ~ (Fig. 4). As will be explained later, the shear

center S does not coincide with the centroid of the cross

section after yielding, and therefore this fact must be

considered in the formulation of the equilibrium conditions.

Because of the symmetry of the residual stresses about the

y-axis, (Fig. 3), S will remain on this axis (Fig. 4).

If the direction of the moments is positive as indi-

cated in Fig. 5, the bending moments in the x and y directions

at any point z are equal to

Mx= P { [~+ (1 - ~ )zILJ eyT - v} (2)

..

My = P (u + ~y0) (3)

where ) =~ and the end z = 0 is chosen such that eyB <: eyT •
e yT
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In addition to the coordinates x, y, and z, there are

coordinates ~ , 2 ,. and t associated
./

section. The axes § and? are shown

with the deformed cross-
·/~·

in Fig. 4, and the axis ,:
.. ::>

is in the direction of the tangent to the center line of the

member. The relationships for the direction cosines between

the two axis systems are~ (2)

~ 2 r
'?

-{3
du

x 1 dz

y {3 1 dw
dz

du <Iv.
z CIZ - dz 1

the f , 2 .0

The components of Mx and My in and I
(...,
./

directions are obtained from the table of directions cosines;

that is,

MS = Mx + f3My (4)

Me = -f3Mx + My (5 )

Mt >
du My dv (6)= -Mx --. dz dz

The positive directions of these moments are as shown in

Fig. 60 In addition to the torque ~I , there are three other

components of the twisting moment:

aU
M(2. P~DdZ (7)

M,t3 - los'iE dA (8)
A dz

11£4 - pt:tr ~- f) U] (9)
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(10)

(15)

(16)

(14)

0'

•

The torque M§2 is due to the component of P causing

twisting about the shear center S' (Fig. 7), 11"3 is caused by

the components of the normal stresses on the warped cross

section, and ~o~ is the twist of the end reactions (see Fig. 8)

about the shear center.

The total torsional moment M£ is thus equal to

/1.[ = 11.(1 + 11.r.z + IVftr + ~~

= (p~_M~)dU_fV7. dtJ" + ((j$;'dA1/!. trp e~T(/-J)l{)
o d2 'J dz JA d~ Lt 1. J 0

Substituting Mx and My of Eqs. (2) and (3) intoEqs 0 (4), (5)

and (10)8 M.:r » Mt, and M! will be equal to the following

expressions if small quantities of higher order are neglected:

Mf = p{[f+(I-n:Je,T - VJ (11)

Me = -P{[f+ U--J)iJ eJT1 p +- P(u+~to) (12)

"1 ~ pj ff,-[S+(i-J) LhT\~: +- s'0SdAj! + p[en~-J'!1u (13)

The differential equations of equilibrium are obtained by sett­

ing the external moments equal to the internal moments (2)

dv-
H! - B)< dz 2

d 2
/)

/V/z = -4 d2~

dfi <:7'19
~ = erE - CW-d
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In Eqs. (14), (15), and (16), the terms .Bx and By

signify the principal flexural rigidities of the cross section, ,

CT is the St. Venant torsional stiffness ,and Cw is the warping

stiffness. CoIDbiningEqs. (11), (12), and (13) with Eqs.

(~~ (l.S),' and' (16) ;,thefollowil)g differential equations are

obtained:
, ,..'

- 0

(18)

(17)

o (19)

, I

oBj1': +- PC LA +f~o}- p{ [r+ (I~f)Lj edT) f
c~ -(CT-Sf~A)! + p{~ - ~ ;-(f-!)z-]err}1:+pfI%Tf-!3u -

• Since Eq. (17) does not involve the lateral def1ec-

tion u and the twist {3, it pertains to an unbuckled deflection

configu~ation and is of no further interest here.

Further discussion in th~s paper will be limited to

the case where eyB = 0 (that is only one end moment). 'The

twodiff~rentia1'equationsgoverning lateral-torsional buckling

are then (fromEqs .(18) and (19), with f = 0) equal to:

= 0
(20)

o (21)
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..
These equations cannot be solved directly because

of the non-uniform moment term ~z, and because the coefficients

of the deformations u and ~ vary with the different patterns

of yielding due to the variation of the moment along the length

of the member. ~ numerical solution based on finite difference

equations at each pivotal point by first order central

differences with the spacing h = LIn (where n is the number

of subdivisions along the length of the member) results in

the following equations:

(23)

with boundary conditions (Fig. 9).

The setting up of the finite difference equations

at each pivotal point i = 1 through i = n-l will give 2(n-l)

simultaneous equations in terms of (n-l) unknowns for ui

and ~i quantities each.
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III. DETERMINATION OF THE STIFFNESS PARAMETERS

• occurr-

•

ing in the two finite difference equations are constant only

as long as the member remains elastic. With yielding these

coefficients change their value. and since yielding is a func-

tion of the bending moment distribution along the length of

the member, these coefficients will not be the same at every

point for which the finite difference equations are written.

The coefficients can be thought of as cross-sectional

properti~s, and they are fully defined if the distribution

of the yielded zones at every cross section is known •

Because of the presence of a secondary moment (axial force

times deflection), the b®nding moment distributions and thus

the inelastic zones are not known at the onset of lateral-

torsional buckling.

The solution of the problem is therefore one of

trial and error. For a given beam-column an axial force and

an end moment is specified first, and the corresponding

deflected shape and moment diagram is computed. It is now

possible to determine the inelastic regions, and from this

knowledge the coefficients of the two finite difference
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equations are calculated at the distinct points for which these

equations are written. If the originally chosen combinations

of P and Mo ar~ also the critical combinations for the start

of lateral-torsional buckling, then the determinant of the

coefficients of the 2(n-l) finite difference equations is

equal to zero. This will usually not occur at the first trial,

and several values of Me for a constant value of P are tried

until one 'correct answer is obtained.

The analytical process of the solution of the problem

is outlined in the block diagram of Fig. 10. The various steps,

which will subsequently be discussed in more detail, are as

follows:

(1) Establish the moment-curvature-thrust (M-0-p)

relationships about the strong axis of the

given wide-flange cross section and for the

material properties.

(2) Determine the moment·thrust-versus-yielded

pattern relationships (M, P, vs. Q!, Y , If, Y;

where Q!, 'I , 'If and j) represent the extent of

yielding in the flanges and in the web, ·as

shown in Fig 0 11) 0
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(3) Establish the yielded pattern versus By, Cw,

PYo> Cr and ~fSdA relationships.

(4) By combining the results of steps (2) and (3),

de~ermine the relationships between these co-

efficients and the axial force and the bending

moment acting at any yielded cross section.

(5) Construct the column deflection curve (CDC) by

integration of the M-0-p curves obtained in

-13-

•

step (1) for a beam-column with specific values

of P and Mo. The CDC gives the deflection and

the moment at evenly spaced intervals along the

length of the member.

(6) The appropriate coefficients from step (4) are

selected for the CDC from step (5) and the

finite difference equations are set up.

(7) The value of the determinant is tested in this

step. If it is equal to zero, one point on the

desired critical axial thrust - end moment -
• length curves is established; if it is not, a

~. new CDC is chosen and the process is repeated

until a correct answer is obtained.
"
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Moment-Curvature-Thrust Relationships

-14-

.-
The determination of the M-~-P curves is accomplished

by assuming a specific stress distribution, and thus a yield

pattern, and then computing the corresponding values of P, M,
. K~'r\-~l,\«C\._·\",,::>l-;) Dec.J.le.-

and 0 from geometry and equilibrium, (16) that is,

p ~ J5"dA ; M ~ (,,~ d A ; ¢ ~ E,;/' (25 )
A JA

where Eland C2 are the strains at the extreme fibers of the

cross section.

As the moment is increased under a constant axial

force, yielding will commence at the tips of the compression

flange, since at these locations the compressive residual

stress is maximum. As M is increased, yielding will penetrate

through this flange. Eventually yielding occurs in the tension

flange and in the web, and finally full plastification of the

cross section results.

The non-dimensionalized ; - ; - ; relationships

about the strong axis have been determined for the following

five different stages of yielding in the wide-flange section

containing residual stresses~

(1) Elastic case (Fig. lla);

(2) Partial yielding in the compression flange,
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with yielding progressing from the flange

tips towards the center while the web and

the tension flange remain elastic (Fig. llb);

(3) Partial yielding in the compression flange, in

- the tension zone of the web, and in the

tension flange (Fig. llc);

(4) Partial yielding in the compressed part of

the web, while the remainder of the web and

the tension flange are elastic and the com-

pr~ss~on flange is fully plastic (Fig. lld);

(5) Partial yielding in both the compression and

tension zones of the web, and full plasticity

-15-

in the compression and tension flanges (Fig. lle).

The five patterns enumerated above do not include

all the stages of yielding, but they permit the construction

of the M-~-P curves over the ranges of importance. Equations

corresponding to four of the five yield patterns shown in

Fig. 11 are listed in Table 1.

The M-~-P relations can be presented as a family of

curve~ with M/My as the ordinate and 0/0y , as the abscissa.
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center of the elastic core is Yo' and the coefficient

•

•

•

Each curve is for a constant value of pip. Such curves are. y

shown in F!~. 12 for t~~ 8WF3l shape and for E = 30,000 ksi;

f'y = 33 ksi; and f rc = 0.30-y • Also shown on the curves in

Fig. 12 are the regions where the various patterns of yielding

given in Fig. 11 occur. Patterns b) and c) predominate for

the curve for P = 0, and patterns b) and d) are valid over

a relatively wide range if P ~ 0.2P,.

Stiffness. Parameters

The coefficients By, CT, Cw' Pyo and J;S'dA re­

present the instantaneous resistance of the member, which

has been previously bent in the plane of the web and which

may have already. yielded ina pattern which is symmetric
, ·J"I, \1

about the y-axis, to infinitesimally small lateral and tor-

sional moments at the instant of lateral-torsional buckling.

The coefficients By, CT and Cw are the weak-axis

bending stiffness, the St. Venant's torsional stiffness, and

the warping torsional stiffness, respectiv~ly. The distance

between the centroid of the unyielded section and the shear

\(JtdA
JA

is an index of the torque contribution of the components' of

the stresses in the warped plane.
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There are two ways for determining the values of

•

•

the coefficientS; (1) one might choose to consider the

stiffness just prior to buckling, in which case previously

yielded fibers offer no resistance (tangent modulus concept),

or (2) one might consider the stiffness just after buckling,

in which case elastic unloading of previously yielded fibers

would increase the resistance (reduced modulus concept). (14)

The first of these two methods is used in this report. Thus

the stiffness parameters are computed for the elastic core .

a) Weak Axis Bending Stiffness, By

The resistance to lateral bending is proportional

to the stiffness By, and this is equal to the modulus of

elasticity E, times the moment of inertia of the elastic

core about the y-axis. The yielded portions are assumed

to possess no stiffness, since in these regions E = 0 (Fig. 2).

The equations for By for the prevalent yield patterns are~

Pattern of Fig. 11b.

Pattern of Fig. 11c

Pattern of Fig. lle

j

By = [' + V-l(/.) j Ely (26)

(27 )

= /

2
(28)
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In Eqs. (26) through (28), Iy is the moment of

inertia of the full cross section.

b) St. Venant Torsional Stiffness, CT

The torsional stiffness CT may be determined by

applying an infinitesimal torque to the member which has

already yielded by bending in the plane of the web. A

relationship between the incremental changes of stress and

strain in each element in the plastic zone is given by the

Reuss equation as(17) (18)

d d~
E. -7

de , and d'C and d rwhere d 6' ,

dr- d('
G = (29)

are the incremental changes

of stress and strain in normal and shear directions.

No shearing stress due to bending exists in the

yielded portion of the cross section just prior to buckling(19).

At the instant of the application of the infinitesimal torque

thus, c = 0, and Eq. (29) reduces to

dz- = G dy (30)

This equation is the same as the relationship which exists

in the elastic fibers of the cross section, and thus the in-

finitesimal torque is resisted as if the whole member were
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elastic. Therefore,

C T = Gkr (31)

c) Warping Stiffnes~ Cw

The warping stiffness Cw represents the resistance

of the flanges of the member to cross bendingo This

resistance is provided by the elastic core of the flanges

since'in the yielded portions E = 00 The equations of Cw

for the most prevalent cases of yielding are:

Pattern of Fig o llb:

Cw =[;
1- (/~ ~CiJ' l Elw (32)

Pattern of Fig. lle:

Cw =f2(/~2"') (~~J'!f') j Elw (33)
/ +- (I-2C<) - 8 ~3

Pattern of Fig. lld:

Cw =2~ [2i/'t 3
f-(2U- cr')d-t\'?vJ

3
] (34)

I w in Eqs. (32) and (33) is the warping moment

of inertia of the whole cross section,

d) Shear Center Distance, Yo

(35)

The distance between the centroid of the unyielded

cross section and the shear center of the elastic core is

defined by the following equations:
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Pattern of Fig. llb:

[ a J( 1- 2(/) / (d-t)Yo =
• /+ (1-2fX/ 2

Pattern of Fig o llc:
~

Yo = [7:~:-~:;~8t-'-;](d-t)

Pattern of Figo lld:

-20-

(36)

(31)

Yo = -; (d-t) (38)

e) Coefficient. ,1()ldA

The coefficient irs2dA of the equivalent tor­

sional i:i.gidity (CT - t()-S.2dA' ) in Eq 0 (19) is a reduction

of the Sto Venant's torsional stiffness due to the distri-
r ~ .1 !

buted stresses on the warped cross section at the instant

when lateral instability occurs o

In the elastic ~dnge the value of this coefficient

is

)/S'dA
The term"Gin this

(39)

equation represert~s the cont~i~uti6n,6f

the residual stresses, and it is equal to

tb3 art) if, z. uJ y
8(OYC.-3 Tit (d-t)(6''rc~Yi:)-/2 (d-2t) Ort (40)

In the inelastic range t~szdA is expressed ,as!.~the

sum of ta. effects of the residual stresses and the stress
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due to the axial force P and the bending moment M, that is

~;S'JA ~ [~A6'S'dAls + [):s<,/A)P+M (41)

For the prevalent cases of yielding, the equations of these

coefficients are:

Pattern of Fig. llb:

>.

(42)

(43)

where
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(44)

Eq. (42)+.· Eq. (43) •

+2lf2.bt (OY~+~t){tf\(/~+i +ydIj
~ ¢ { rl ( 1)3(vd k)\+ d ¢g T + t< tJ}d/ 2 - "6

3

R = /+~:-~t~8r,(d-t) - J--vdwhere

Pattern of Fig. llc:

j~5dA•

Pattern of Fig. lld:

(45)

Equations (26) through (45) permit the calculation

of the values of the pertinent coefficients appearing in the

finite difference equations i' the sectional and material pro-

perties as well as the yielding penetrations are specified.··

Since for these same yield patterns the corresponding moment

and axial force are also known from the previous step where

the M-0-p relationships were computed, it is possible to

combine these results and set up families of curves where

each curve gives the correlation between any of the co-

•
efficients and the moment for constant values of P/py • Such

curves are shown for the 8WF3l shape in Figs. 13 through 16
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•

·f

•

for values of P/Py = 0, 0.2, 0.4 and 0.6; Fig. 13 gives

the curve M/My versus Cw/CT; the curves M/My versus· yo/d

are illustrated in Fig. 15; and finally the curves in
1<r.r~A

Fig. 16 give the relationship between M/My and 1 - ~CT 0

These curves are shown here to illustrate the variation of

the coefficients in the inelastic range. In the elastic

range the coefficients are constant.

The availability of such curves as shown in Figs.

13 through 16 would permit the determination of the

required cross-sectional properties for any given value of the

moment and the axial force. It should be pointed out that

these curves represent an intermediate step in the calculation,

and they need not actually be constructed, since the cal-

culations represent a subroutine of the total digital

computer program.
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IV. LATERAL-TORS IONAL BUCKLING STRENGTH

Column Deflection Curves

The relationships discussed in the previous part

of this paper are sectional properties; they must still be

tied in with the actual problem to be solved. This is

done with the aid of the column deflection curves (CDC-s).

A CDC is the shape that a compressed member will assume

if it is held in a bent configuration by axial loads applied

at its ends. (20)(21) Any real beam-column deflected in the

plane of symmetry can be thought of being part of such a CDC.

Two CDC-s are shown in Fig. l7a. The axial force P,

applied at the two column ends, holds the member in a de­

flected shape. Since the bending moment at any point within

the curves is proportional to the deflection, the deflection

curve can also represent the moment diagram. The length in

the CDC-s of Fig. 17 is non-dimensionalized as the strong

axis slenderness ratio L/rx ' and all deformations take place

in the plane of the paper.

There are an infinite number of possible CDC-s for

any given symmetric cross section and a specified constant
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.axia1 force P. These various curves are differentiated from

each other by the slope go at the end of the column •

The relationship between the beam-columns treated

in this paper (axial force P and moment Mo at one end only)

and the CDC-s is illustrated by Figs. 17b and c. The pinned

end of the beam-column coincides with the end of the CDC.

The other end of the beam=column is situated a distance

equal to its length from the end of the CDC. The moment at

this end is equal to the end moment Mo.

There are an infinite number of CDC segments which

can be placed on the beam-column length f9r any given axial

force and length. One of these segments will correspond to

the maximum end moment M0 2MAX (see Fig. 1) which the member

can sustain if failure occurs by excessive bending in the

plane of the applied moments (20) (21), and another one will

correspond to the end moment MQCR at which lateral torsional

buckling is imminent. As shown in Fig. 17b and c, there

are two CDC-s which have MoCR as their end moment~One (Fi.g. 17b)

is located on the ascending branch of the in-plane M-9

curve in Fig. 1, and the other (Figo.'l7c), is located on the des

cending branch. Of these two, only the first is of interest

here.
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The column deflection curves are obtained from the

M-0-p curves by numerical integration, (20) giving the value

of the deflection, the slope, the moment and the curvature,

as well as the yielded pattern, at evenly spaced discrete

points along their whole lengths. From this knowledge it is

then possible with the aid of Eqso (26) through (45) to compute

the stiffness coefficients o

Computational Procedures

The complete calculations from the M-0-p curves to

the setting up of the determinant of the coefficients of the

finite difference equations were performed by a Royal McBee

LGP-30 digital computer, and the process of calculation for

one particular problem was essentially as follows~

(1) An 8WF3l section of A7 steel was chosen as the

member. The input into the computer consisted

of the cross-sectional dimensions b, d, t, and

w, and of the material properties O~ = 33 ksi,

o;.c = 0 03 ~ ,E = 30,000 ksi and G = 11,500 ksio

(2) Next an axial force and a length was chosen.

The following values of P were selected: 002Py ,
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0.4Py and 0.6Py . The length was usually
. .

selected to be a multiple of 2rx or 3rx,

since this has been shown to be a spacing

resulting in adequate accuracy. (20)

(3) From the input of step (1) above and for the

specified axial force the M-0 curve was com-

puted.

(4) Several CDC-s having different end slopes go

were computed by numerical integration from the

M-~ curve of step (3).

(5) One of the CDC-s, with a reasonable value of

go was selected from the curves of step (4).

(This initial choice of go will be discussed

later). With P/Py and go known, the value of

Mo/My for the length L/rx was determined from

the CDC. Within the length of the beam-

column, the moment and the curvature were

also known at evenly spaced points.

(6) Knowledge of the moment, curvature and axial

force at these points also includes knowledge
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of the distribution of the yielded zones (step

(3) above), and from this the values of the

sectional properties were computed at each

point (Eqs. (26) through (45).

..

(7) The final results of this computational routine

are the coefficients for the finite difference

equations, and the axial force, length, and the

end-moment of the beam-column.

The steps outlined above were computed in one con-

tinuous operation with one digital computer (LGP-30). The

next step, that of calculating the value of the determinant

of the coefficients, was performed by a larger computer and

this operation is described next.

Characteristic Determinants

The setting up of the finite difference equations

(Eqs. (22) and (23) with the boundary conditions of Eqo (24)

at each pivotal point i = 1 through i = n - 1 gave 2 (n - 1)

simultaneous equations in terms of (n - 1) unknowns ui and

~i quantities each. This set of simultaneous equations may

be written in matrix notation as
-,

o (46)
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In this equation the matrix [AJ is a set of the coefficients

Aij representing non-dimensional ~ombinations of the cross-

s"eiionall'roperties OIy , Cw, CT, Py0' and tG"s"dA ), the

load parameters (P and Mo), and the length of the m~mber.'

If the value of the determinant IAI is equal 'to zero; then

the assumed combination of P, Mo ' and L is one which causes

the, bifurcation of the equilibrium, 'that is, the start of
' "

lateral-torsional buckling.

" Buckling Strength'

Usually it was not possible to estimate the critical

'combination of p.,' Mo and' L stich that I A I, = 0 at" the. first

trial. Several values of' Mowere tri~d fbr given constant

values of P and L"andthe final correct answer wasobtairied

by interpolation. The initial choice of Mo was made easier,

,', by ,the existence' of known upper and lower bounds. ,The'

upper bound was determined from the fact that MoCR could not

be larger than the end moment corresponding to failure by

excessive bending in the plane of the applied moments

~2MAX ~n Fig.l).{3) A lower bound was provided by the

, knowledge that the most severe loading condition exists when

" two equal end moments cause the member to be bent in single
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curvature deformation. Since inelastic lateral-torsional

b~ckling solutions for this case were available, the lowest

possible value of MoCR could be f6und.(4)

The upper and lower bounds, furnish two envelopes

between which the true answer must lie. These envelopes are. '

shown as heavy dashed lines in Fig. 18. ,This figure

illustrates the various relationships which.were involved in

the solution of the problem. The curves are all for the

8WF31 shape bent about its strong axis, and they are for a

constant axial load of Oo2Py •

The heavy lines (dashed and solid) in this figure

represent the curves of end moment MQ/My as the ordinate

versus the length of the member L/rx as the abscissa. The

upper dashed line gives the upper bound envelope for the

case of a beam-column subjected to one end moment only and,

failing by excessive bending. At the right end this

envelope is intersected by another dashed line which

originates at L = 124rx when Mo = 0, and this curve represents

elastic lateral-torsional buckling as modified by the resi-

dual stresses. The terminal point of this curve at Mo =0

corresponds to weak-axis buckling under axial load only •
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The lower dashed line is for the critical moment

under equal end moments (lower bound) if failure is 'due to

lateral torsional buckling. The terminal points of this

curve are the critical weak axis buckling length 124rx

when Mo = 0, and the moment corresponding to full plastifi­

cation for L = O.

, The heavy solid line in Fig. 18 represents the so­

lution to the problem discussed in this paper. The circled

points are the critical moments which were computed by

trial and error.

Also shown in this figure are several column de-

flection curves (light solid lines) having various initial

slopes Qo. the values of all the necessary coefficients in

the determinant IA I are known at discrete points (marked

points ° to 16) along these CDC-s from the previous calcu­

lations.

The determination of a point on the critical Mo-L

curve fs achieved by the following 'procedure for L = 48rx :

The value of the determinant I AI is determined for several

CDC-s which terminate at L = 48rx between the upper and the
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lower bound envelopes. In this particular case the com­

putations were made for the CDC-s having end slopes eo

between 0.07 and 0.09 radians. The critical point is

obtained by linear interpolation of the values of the

determinant I A I ,as shown for the case of P = 0.2Py

in Fig. 19. For L = 48rx ' for example, five CDC-s were

tried, and it can be seen that the value of IAI equals

zero at M = 0.88My. The computation of all other points

was performed in a similar manner. Curves of I A I versus

Me/My are shown in Fig. 19 for L = 96rx, 64rx and 48rx •

The M-L curves showing the final results, that is

the curves for failure by excessive bending (upper light

curve) for lateral-torsional buckling with one "end moment

(heavy curve), and for lateral-torsional buckling with two

end moments (lower light curv~) are shown in Figs. 20, 21

and 22, for P = 0.2Py ' P = 0~4Py, and P = O.6PyJ respectively.

These curves show that lateral-torsional buckling can indeed

reduce the strength of beam-columns considerably in the

inelastic range.

The final step in the computation, that is, the

determination of the value of the determinant IAI was per-
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formed with an IBM 7074 computer. For each specific beam­

column length the spacing of the pivotal points on the

CDC-s was chosen such that the final matrix always resulted

in a 30 x 30 array of numbers. The number of pivotal points

within the span was thus always equal to 15.
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v. SUMMARY

This report illustrates how the lateral-torsional

buckling strength of as-rolled steel wide-flange beam-

columns may be determined for buckling in the inelastic range.

The report was intended to provide the theoretical background,

the derivations of the equations, and the method of solution.

A future report will discuss the significance of the results,

the effects of the variation of the cross-sectional and

material properties, and the loading condition. This future

report will also include the comparison of the results of

the theoretical work with the results of beam-column

experiments, and empirical design formulas will be examined

in the light of the theory presented here.

The following is a summary of the work reported in

this. paper:

(1) The differential equations of lateral-torsional

buckling are derived in a general form such that

they express elastic as well as inelastic buckl­

ing. For elastic buckling the coefficients of

the differential equations are constant, whereas
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in the inelastic range these coefficients vary

as the pattern of yielding.

•

(2) The variation of the coefficients of the differ­

ential equations is determined for the various

patterns of yielding which exist in wide-flange

shapes containing residual stresseso Formulas

and curves are presented to give the relation­

ship between the axial force and bending moment

and the resulting stiffness parameters.

(3) The method of solution is illustrated by solving

for the lateral-torsional buckling strength of

beam-columns with simply supported ends and with

moment applied at one end of the member. Since

the moment, as well as the stiffness p~rame~ers,

varies along the length of the member, the differ­

ential equations are solved by finite differences.

(4) Critical combinations of length, axial force, and

end moment are obtained by a trial and error

procedure. The resulting interaction curves are

shown in Figs. 20 through 22 for an ASTM A7 steel
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8WF3l member. All computations were p,erformed

on digital computers •
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VII. NOTATIONS

A

A· .
~J

Area of cross section

Cross-sectional coefficient in finite difference

equation

•

I A I Determinant of cross-sectional c~efficients

[A] Square matrix of cross-sectional coefficients

Bx Bending stiffness about x-axis (strong axis stiffness)

By Bending stiffness about y-axis (weak axis stiffness)

b Flange width

CT St. Venant torsional stiffness

Warping stiffness

c

d

E

eyB

~T

G

h

I w

~, ~

Modified torsional stiffness due to the effect of

residual stress

Depth of section

Young's modulus of elasticity

Smaller of the two end eccentricities

Larger of the two end eccentricities

Modulus of elasticity in shear

Distance between pivotal points

Warping constant

Moments of inertia about the x and y axis,

respectively
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M

MoCR

MolMAX

Ma2MAX

Mx, My

My

M.f/, Hi-i,
Mis', Ml1t

-39-

St. Venant torsional constant

Length of beam-column

Bending moment

Applied end bending moment

End bending moment at which the beam-column

buckles laterally

Maximum end bending moment due to lateral-

torsional buckling

Maximum end bending moment at which the beam-

column fails by excessive bending in the plane

of applied end moment

Plastic hinge moment modified to include the

effect of axial thrust

Bending moment about x- and y-axis, respectively

Moment at which yielding first occurs in flexure
My = S f"y

~omponents of M~}

M.f' M'l' Mt Moment about E , 2 and,:'g axis, respectively

..

n

o

P

Number of subdivisions

Location of centroid

Axial. thrust

Axial load corresponding to yield stress level,

Py = A 0 Y



•

205A.34

S

S

s

t

u, v

-40-

Rc = fJrei Qy' Rt = 0 rtl (J y

Radius of gyration about x- and y-axis, respec~ive1y

Location of shear cent~r

Section modulus about x-axis

Distance of any point on the cross section from

shear center

Flange thickness

Displacement of shear center in x- and y-

directions, respectively

Displacement u at each pivotal point, i-1, i,

and i+1, respectively

w Web thickness

x, y Principal coordinates of the cross section

Yo Distance between original centroid and shear c~nter

Z Coordinate along undeformed beam-column center line

~ Ratio of the width of yielding in compression flange

to the flange width

f3

f3i-1, f3i ,

f3i +1

t
•

Twisting angle at cross section about shear center

Twisting angle f3 at each pivotal point, i-1, i,

and i+1, respectively

Shearing strain
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Ratio of the depth of yielding in compression

web to the depth of cross section

Strains at both extreme fibers

Rotation at end of beam-column

Initial slope of column deflection curve

A coefficient indicating tensile yielding in the web

Cartesian reference coordinates after displacement

has taken place

Ratio of end bending moments

Normal stress

Maximum compressive and tensile residual stress,

respectively

Yield stress level

Shear stress

Curvature

Curvature corresponding to first yield in

flexure (Orc = 0)

A coefficient indicating yielding in the tension

flange
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