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SYNOPSIS

In this report a method is presented for the deter;
mination of the inelastic lateral-torsional buckling strength
of'as-rolled steel wide-flange beam-columns. The beam-
columns are subjected to an axial force and to bending moments
applied at one end only. The end-moments cause bending about

the strong axis of the members,‘and the effects of initial

residual stresses are included in the analysis.

The solutions are obtained on the basis of a finite
difference approximation of the differential equations with
variable coefficients,the resulting characteristic determin-

ant being solved numerically by a digital computer.
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I. INTRODUCTION

A perfectly straight wide-flange member which is
subjected to an axial force and to end moments about the strong
axis of the section will deflect in the plane of the applied
moments as long as the moments and the axial force are below
certain critical values. At the instant of the attainment of
the critical loading, bifurcation of the eéuilibrium.will take
place and failure is initiated by lateral deflection and

twisting of the membero(l)(z)

Tygical beamfcolumn behavior is illustrated in
Fig. 1, where the schematic relationship between the applied
end moment M, and the resulting end slope 6 is illustrated for
a wide-flange member bent about its x-axis. The axial force P
is assumed to remain constant as M, is increased from zero to

its final value,

The Mp-0 relationship is seen éo have two branch
curves: (1) The upper branch results if no lateral-torsional
buckling is assumed to occur., In this case failure will be
pdueAto excessive bending in the plane of the appliéd moments,

with no deformations at all except in this planeo(3) This
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curve represents the optimum performance of the member.

(2) If the lateral bracing is insufficient; lateral-torsional
buckling will set in at My = Mycp and failure will occur at a
moment MyimMax which is lower than the ultimate strength
Mo2MAX -

Attainment of the maximum moment is always accompanied
by yielding of part of the member. Whereas methods are avail-
able to determine the value of the maximum moment Mgomax if
failure is by excessive deflection in the plane of 1oading,(3)
no such methods are presently available to compute Myimax-
Experiments-on steel wide-flange beam-columns have shown
however, that the increase of the moment capacity above
Mycr (the moment at the start of lateral-torsional buckling)
is only slight, and therefore this moment can be considéred”to
be a good index of the beam-column strength when failure is

due to lateral-torsional bucklingo(A)(S)

The work in this report is concerned with the
determination of the critical moment when the inception of
lateral-torsional buckling occurs after the member has already

partially yielded. The method of determining the critical
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moment is illustrated by considering a beam-column which is

loaded by one end moment only (see sketch in Fig. 1).

The problem of élastic lateral~torsiqna1 buckling has
been thoroughly investigatedo(l)(z)(6) For buckling in the
inelastic range the reduction of the stiffeners governing the
buckling behavior must be considered. Solutions have been
presented for beams (7) (8) (9) (10) (11) (12) (13) and beam-columns (14)
under moments producing Symmetric defofmations° This report

considers the influence of non-uniform bending, (1)



205A.34

II. THE DIFFERENTIAL EQUATIONS OF LATERAL-TORSIONAL BUCKLING

Assumptions

The differential equations of lateral-torsional

buckling derived herein are based on the following specific

conditians and assumptions:

(L)

(2)

(3)

(4)

The axial thrust P acts through the original
centroidal axis of the member and it retains
its direction even after buckling has taken

place.

The moments M, are applied at the ends of the
member only, such that they cause bending about
the major axis of the cross section. No trans-

verse loads are applied between supports.

The beam-columns are as-rolled steel wide-flange
shapes which are initially free of crookedness
and for which the cross-sectional dimensions do

not vary with the length.

The ends of the members are simply supported with

respect to lateral-torsional buckling. The
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)

(6)

()

(8)

boundary conditions are therefore (

u=u"=8=8"=0at z =0and z =1L,

The stress-strain diagram of the material is

ideally elastic-plastic. (Fig. 2)

The residual stress pattern is symmetric and
the residual stresses are distributed in the
flanges and in the web as shown in Fig, 3, (16)
Equilibrium requires that

= bt .
Tre =0re \jbt +w (d-2t) J (1)

where b, t, d, and w are the dimensions of the

’

cross section, G}t is the maximum tensile residual
stress and 0 . is the maximum compressive residual

stress.,

The cross section retains its original shape and
no local buckling is assumed to occur before

bifurcation,

The deflections are small in comparison with the

cross sectional dimensions of the member.
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Equations of Equilibrium

Eduilibrium eéuations ﬁill be formﬁléted in the
following derivation for a deformed cross section located at
a distance z from the end of the member (Fig. 4). The axial
thrust P is applied with eccentricities eyp at z = 0 and eyT
at z = L, where eyp and ey are in the zy plane, which is
also the plane of symmetry of the cross section. The deformed
location of the cross section at z is fully defined by the
displacements u and v of the shear center S, and by the twist?
ing angle B (Fig. 4). As will be explained later, the shear
center S does not coincide with the centroid of the cross
section after yielding, and therefore this fact must be
considered in the formulation of the eduilibrium conditions.
Because of the symmetry of the residual stresses about the

y-axis, (Fig. 3), S will remain on this axis (Fig. 4).

If the direction of the moments is positive as indi-
cated in Fig. 5, the bending moments in the x and y directions

at any point z are equal to

P{[S+ a-frn] ey - v @)

/

Mx

My =P (u + By,) (3)

where f = {;ZE and the end z = 0 is chosen such that eyB= €yT.
yT
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In addition to the coordinates x; y; and z; there are
coordinates © ; ? ’-a“d;f associated with the deformed cross-
section, The axes § and 7 are shown in Fig. 4, and the axislé
is in the direction of the tangent to'the center line of the
member. The relationships for the direction cosines between

the two axis systems are: (2)

3 7/ ;

du

X 1 -B dz

y B 1 %5
_ du .

z dz dz 1

The components of M, and My in the § ,2 and C;

directions are obtained from the table of directions cosines;

ﬂmti&
Mg = M + By “)
M, = -BMX‘ + My (5)
M, = <My %% - My %g (6)

The positive directions of these moments are as shown in
Fig. 6. In addition to the torque Mg, , there are three other

components of the twisting moment:

M_(.‘z = P%fzi (7)
2d
Mey = £rsgf 7. ®)

o = PGty )
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The toréue Mg, 1is due to the component of P causing
twisting about the shear center s’ (Fig. 7); Mes is caused by
the components of the normal stresses on the wérped cCross
section, and ﬁ£¢ is the twist of the end ?eactiqns (see Fig. 8)

about the shear center.

The total torsional moment My is thus equal to

(P? M) du+_50¢dAg£ +Eb£§1%iﬁgu ,
Substituting My and My of Eqs. (2) and (3) into Eqs. (&), (5)
and (10), Mg , My, and Mg will be equal to the following

expressions if small quantities of higher order are neglected:

“e= Lo+ 001 el an
My =-Plls+ 1-5)%] QJT§ 6+ P(uvpy,) (12)

{yo [§+0-5) ]e,,ﬁ— %rs*c/A £ p[%—(f—fﬂu (13)

The differential equations of equilibrium are obtained by sett-

ing the external moments equal to the internal moments (2)

My = 855 (14)
My =-8,5 (5)

d 7
/1\4{ B CTJZE - Cafa'zz'/i; (16)



C20sA.340 g

 In Eqs. (14), (15), and (16), the terms By and By

ZSLgany the pr1nc1pal flexural rlgldltles of the cross sectlon,”'

o CT is the St. Venant tor31onal stiffness, and Cw is. the warplng“t_

’stlffness Comblnlng-Eqs (ll), (12), and (13) w1th Eqs-.nz
: (lh; 05), and (16), the follow1ng dlfferentlal equatlons are

obtalned

Bxdz f’D{” D’+</—f)4]en}'-='”¢ i o (17)
,A}FauP(mpgo) P{[f+ - -f) Je""}? _ 0 18)
,Cagz,-(CT JrsJA +P{7o B’+(/ f)é e,,} +P[—(—qa =0 (19)

Since Eq. (17) does not involve the lateral deflec-
tion u and the twist B, it pertains to an unbuckled deflection

configuration and is of no further interest here.

further discussion in thas paper will”be'limited to
the'case}where éyB = 0 (that is only one end moment). ' The
ltWO»differeﬁtial’equatibns gbvefning lateral-torsional buckling
are then (frdmiEqs; (18) and (19);with f'= 0) equaluto:.

ks pu- (Mo—_— PG = 0 @03

_,C?fé (c, SO“JA)‘-/E (Mo—-Pi)J"*T“ =0 -oan
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These equations cannot be solved directly because

Moz

of the non;uniform moment ;erm —_ and because the coefficients
of the deformations u and B vary with the different patterns

of yielding due to the variation of the moment along the length
of the member. A numerical solution based on finite difference
eeuations at each pivotal point by first order central

. differences with the spacing h = L/n (where n is the number

of subdivisions along the length of the member) results in

the following equations:

Mi—:‘(Z“ %;j) U + U ces —(Mo%‘P’o)%zﬁi = [ (22?

(Mof-P})f Uz + 7"? u; —(mf—Pyo)C-f—; Uier
"_" i-2 +|:2 (/“ "Mwhz] fer + [OJ FL' ‘(23?
- [25_(/_ f&sdA)h} FL.*" + Car sz _

with boundary conditions (Fig. 9).
up =up = 0; By = By = 0; B-1 =-By; Bpyl = -Bp-1  (24)

The setting up of the finite difference equations

at each pivotal point i = 1 through i = n-1 will give 2(n-1)
simultaneous equations in terms of (n-1) unknowns for uq

and Bj quantities each,
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III. DETERMINATION OF THE STIFFNESS PARAMETERS

The coefficie#ts By; QT} CQ; Pyo anq gfgdA. _qg?urr;
ing in the two finite difference equationé are constant ohly
‘tas long as the member remains elastic. With yielding these
coefficients change their value, and since yielding is a func;
tion of the bending moment distribution along the length of
the member; thgsg coefficients wil} not bgvthevsame at every
point for which the finite difference eéuations are Qritten.
The coefficients can be thought of as cross-sectiqnal
properties, and they are fully defined if the distribution
of the yielded zones at every cross section is known,

Because of the presence of a secondary moment (axial force
;imes dgflectiqn), the bending moment distributions and thus
the inelastic zones are not known at the onset of lateral-

torsional buckling.,

The solution oﬁ the problem is therefore one of
trial and error. qu a given beam-column an axial force and
an end moment is specified first, and the corresponding
deflected shape and moment diagram is computed. It is now
possible to determine the inelastic regions, and from this

knowledge the coefficients of the two finite difference
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equations are calculated at ;he distinct points for which fhese
eduations are writteni If the originally chosen combina;ions
of P and M, are also the critical combinations for the start

of lateral-;orsional buckling, then the determinant of the
coefficients of the 2(n-1) finite difference_gduations is

equal to zero. This will usual;y not occur at the first trial;
and several values of M, for a constant value of P are tried

until one correct answer is obtained.

The analytical process of the solution of ;he problem
is outlined in the block diagram of Fig. 10, The various steps,
which will subsequently be discussed in more detail, are as
follows:

(1) Establish the momentfcurvature-thrust M-0-P)
relationships about the strong axis of the

given wide-flange cross section and for the

material properties.

(2) Determine the moment-thrust-versus-yielded
pattern relationships (M, P, vs., @, ¢ ,V’,) 5
where @, Y , ¥ and / represent the extent of
yielding in the flanges and in the web5.és

~ shown in Fig. 1D).



2054, 34

3

(%)

(&)

(6)

)
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Establish the yielded pattern versus By, Cw>

Pyo, Cr and g@szd/l relationships.
A

By combining the results of steps (2) and (3),
determine the relationships between these co-
efficients and the axial force and the bending

moment acting at any yielded cross section.

Construct the column deflection curve (CDC) by
integration of the M-f-P curves obtained in
step (1) for a beam-column with specific values
of P and M,. The CDC gives the deflection and
the moment at evenly spaced intervals along the

length of the member.

The appropriate coefficients from step (4) are
selected for the CDC from step (5) and the

finite difference equations are set up.

The value of the determinant is tested in this
step. If it is equal to zero, one point on the
desired critical axial thrust - end moment -
length curves is established; if it is not, a
new CDC is chosen and the process is repeated

until a correct answer is obtained.
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Moment-Curvature-Thrust Relationships

The determination of the M-¢-P curves is accomplished
by assuming a specific stress distribution, and thus a yield
pattern, and then computing the correspondlng values of P, M,

546\«\'&( \Lc\\m\ 1\5\-.\)) BDe CA\C
and § from geometry and equilibrium, (16) that is,

P - SW-A ;M- gG'%dA ;@ - ‘C—df’— (25)
A Ja |
where £] and £, are the strains at the extreme fibers of the

cross section,

As the moment is increased under a constant axial
force, yielding will commence at the tips of the compression
flange, since at these locations the compressive residual
stress is maximum. As M is increased, yielding will penetrate
through this flange, Eventually yielding occurs in the tension
flange and in the web, and finally full plastification of the

cross section results,

@

The non-dimensionalized ——--;;—-JE relationships
about the strong axis have been determined for the following
five different stages of yielding in the wide-flange section
containing residual stresses:

(1) Elastic case (Fig. 1lla);

(2) Partial yielding in the compression flange,
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with yielding progressing from the flange
tips towards the center while the web and

the tension flange remain elastic (Fig. 1llb);

(3) Partial yielding in the compression flange, in
. the tension zoné'of the web, and in the

tension flange (Fig. llc);

(4) Partial yielding in the compressed part of
the web, while the remainder of the web and
the tension flange are elastic and the com-

pression flange is fully plastic (Fig. 11d);

(5) Partial yielding in both the compression and
tension zones of the'wéb, and full plasticity

in the compression and tension flanges (Fig. lle).

The five patterns enumerated above do not include
all the stages of yielding, but they permit the construction
of the M-f-P curves over the ranges of importance. Equations
corresponding to four of the five yield patterns shown in
Fig. 1l are listed in Table 1.

_ N
The M-@-P relations can be presented as a family of

curves, with M/My as the ordinate and ¢/¢y, as the abscissa.



205A.34 -l6-

Each curve is for a constant value of P/Py° Such curves are
shown in Fig. 12 for the 8WF31l shape and for E = 30;000 ksi;
f& = 33 ksi; and (¢ = OOBCTya Also shown on the curves in
Fig. 12 are the regions where the various patterns of yielding
given in Fig° 11 occur. Patterns b) and c) predominate for

the curve for P = 0, and patterns b) and d) are valid over

a relatively wide range if P 2 0.2Py.

S;iffnessxParameters

The coefficients By, Cr, Cy» Py, and Sf3ﬂﬂ re-
present the instanténeous reéiscance of the member, which
has been previously bent in the plane of the web and which
may have already yielded inag pattern which is symmetric

about the y-axis, to infinitesimally small lateral and tor-

sional moments at the instant of lateral-torsional buckling.

The coefficients By, Ct énd Cy are the weak-axis
bending stiffness, the St. Venant's toréional stiffness, and
the warping torsional stiffness, respecti;glyo The distance
between the centroid of the unyielded sectién and the shear
center of the elastic core is y,, and the coefficient §f§dA

is an index of the torque contribution of the components of

the stresses in the warped plane.
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There are two ways for determining the values of
the coefficients; (1) oné might choose to considef the
stiffness just prior to buckling, in which case previously
yielded fibers offer no resistance (tangent modulus concept);
or (2) one might consider the stiffness just after buckling;
in which case elastic unloading of previously yielded fibers
would increase the resistance (reducgd modulus concept)o(l4)

The first of these two methods is used in this report. Thus

the stiffness parameters are computed for the elastic core.

a) Weak Axis Bending Stiffnessl,By

The resistance to lateral bending is proportional
to the stiffness By, and this is equal to the modulus of
elasticity E, times the moment of inertia of the elastic
core about the y-axis. The yielded portions are assumed
to possess no stiffness, since in these regions E = 0 (Fig. 2).
The equations for By for the prevalent yield patterns are:

Pattern of Fig. 1llb.

By { } El (26)
Pattern of Fig. llc
By (‘; /220()"3}”} ] - @7)

Pattern of Fig. lle

/
By = —2‘ EI (28)
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In Eqs. (26) through (28), L, is the moment of

inertia of the full cross section.

b) St. Venant Torsional Stiffness, CT

The torsional stiffness Cy may be determined by
applying an infinitesimal torque to the member which has
already yielded by bending in the plane of the web. A
relationship between the incremental changes of stress and
strain in each element in the plastic zone is given by the

Reuss equation as(l7)(18)

dT
-z 3T 29)
dg-%? o~ :

where d ¢, d& , and dT and dY are the incremental changes

of stress and strain in normal and shear directions.

No shearing stress due to bending exists in the
yielded portion of the cross section just prior to buckling(lg)°
At the instant of the application of the infinitesimal toréue
thus, ¢ = 0, and Eq. (29) reduces to

dT = G/ (30)
This equation is the same as the relationship which exists
in the elastic fibers of the cross section, and thus the in-~

finitesimal torque is resisted as if the whole member were
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elastic. Therefore,

o=k =G 208+ (go2pa”] 31)

c) Warping Stiffness, Cy

The warping stiffness C, represents the resistance
of the flanges of the member to cross bending. ‘This
resistance is provided by the elastic core of the flanges
since in the yielded portions E = 0. The equations of C
for the most prevalent cases of yielding are:

Pattern of Fig. llb:

2
Cy =[/ y } EL, (32)

"= 20

Pattern of Fig. lle:
_[2C-20 (7-84%) ]

c EL (33)
Tormagy DT
Pattern of Fig. 1lld:
£ 7,2 | g @ .3
Cw =2§E"[2f>f *‘{2(/—(7)0/—2% w :‘ (34)

I, in Eqs. (32) and (33) is the warping moment
of inertia of the whole cross section,

I, = l%l (35)

Ly

d) Shear Center Distance, y,

The distance between the centroid of the unyielded
cross section and the shear center of the elastic core is

defined by the following equations:
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Pattern of Fig. 1llb:

N RO A R
Yo { S (1-20) 2] (d=1) . 36

Pattern of Fig. llc:

E

(/-2¢) "'-l:l (d ZL)

y =[ - (37)
° L/ (rom)-8¥ 2

Pattern of Fig., 1lld:

Yo = ~2—/(c/—t) (38)

2
e) Coefficient , l&?SJA

The coefficient §§fdA of the equivalent tor-

~ sional figidity“(CT - KES%JA’ ) in Eq. (19) is a reduction
of the St. Venant's torsional sp}ffness due to the distri-
buted stresses on the warped cross section at the instant

when lateral instability occurs.

In the elastic range the value of this coefficient

is

14 ] =
SNZC’A - P(=) + C @9
A .
The term'C in this equation represents the contzibution of
the residual stresses, and it is equal to
=t Gy b, 2 NS 2
C = g—(é‘m—sl)Jr 7 (-0(FreTa) - 5 (d-22) O (40)
In the inelastic range Sﬁsim is expféééedjasithe

) A
sum of the effects of the residual stresses and the stress
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due to the axial force P and the bending moment M, that is

SNHA =[ﬁ®sdA\ + t§®2m

(41)

A P+M
For the prevalent cases of yielding, the equations of these

coefficients are:

Pattern of Fig. llb:

R} bt (o G :
[go;s dA} 'S‘=—8- (6y- ) er = (d- t)(ﬂc 0ve) [{ o (//-—5(>_3} “42)

3

uﬂ&aﬁ Lt 1

+

B
et

i) et )

3
I+ (1-20)  2(d- t)} J

K?wﬂmgb”{£< >H—héQMFLMLw{1

P S P o
thB@,Lé 2(d é){/ T zwf%] — 20 hE( 6yt ,t§}

.3? 43)

bat 2 \ 2, Hjo\ 4
- (e B3 davon’ i 5 ’¢(d )ﬁ/+(/ Zi tz%

__S_ / _ t - « __U‘_{/ --‘j‘r s g/ __t» ’.__..,(.__‘_.
e e R | AL 8 —t

e ﬂ U/ iy 2(5—&}1

/ P
meffwﬁu

where 0V = Oy =0+ 26 (€yc + Gre)
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Pattern of Fig. llc:

SG‘s’dA = Eq. (42) + Eq. (43).
A 2 2,2 2
+2¢bt@k+mg{%$+(k+§>+&0§

(44)
wly ¢ { & vd_k |
3
__ (s=200 _t
where R = /+(/iwf~8w3<d_ﬂ >—-vd
Pattern of Fig. 1l1d:
A doud’, ey bl Bt |
SESdA = ﬁ{bt(d-t)+?</—2—a—)+ —6‘“%*‘ /—5'(6;(.‘1” 0Vt> 5)

-ﬂ f(/_a)_ _t\
6 % 24’
EQuations (26) through (45) permit the calculation
of the values of the pertinent coefficients appearing.in the
finite difference equations if the sectional and material pro-
perties as well as the yielding penetrations are specified.-
Since for these same yield patterns the corresponding moment
and axial force are also known from the previous step where
the M-§-P relationships were computed, it is possible to
combine these results and set up families of curves where
each curve gives the correlation between any of the co-
efficients and the moment for constant values of P/Pyo Such

curves are shown for the 8WF3l shape in Figs. 13 through 16
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for values of P/Py =0, 0.2, 0.4 and 0.6; Fig. 13 gives
the curve M/My versus Cy/Cr; the curves M/My versus yo/d
are illustrated in Fig. 15; and finally the curves in

o5 "dA
Fig. 16 give the relationship between M/My and 1 -%—.,

Cr
These curves are shown here to illustrate the variation of
the coefficients in the inelastic range. In the elastic

range the coefficients are constant.,

The availability éf such curves as shown in Figs.
13 through 16 would permit the determination of the
required cross-sectional properties for any given value of the
moment and the axial force. It should be pointed out that
these curves represent an intermediate step in the calculation;
and they need not actually be constructed, since the cal-
culations represent a subroutine of the total digital

computer program,
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IV. LATERAL-TORSIONAL BUCKLING STRENGTH

Column Deflection Curves

The relationships discussed in the previous part
of this paper are sectional properties; they must still be
tied in with the actual problem to be solved. This is
done with the aid of the column deflection curves (CDC-s).

A CDC is the shape that a compressed member will assume
if it is held in a bent configuration by axial loads applied
at its endso(zo)(21) Any real beam-column deflected in the

plane of symmetry can be thought of being part of such a CDC.

Two CDC-s are shown in Fig. 17a. The axial force P,
applied at the two column ends, holds the member in a de-
flected shape. Since the bending moment at any point within
the curves is proportional to the deflection, the deflection
curve can also represent the moment diagram. The length in
the CDC-s of Fig; 17 is non-dimensionalized as the strong
axis slenderness ratio L/ry, and all deformations take place

in the plane of the paper.

There are an infinite number of possible CDC-s for

any given symmetric cross section and a specified constant
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axial force P, These various curves are differentiated from

each other by the slope 8, at the end of the column.

The relationship between the beam-columns treated
in this paper (axial force P and moment M, at one end only)
and the CDC-s is illustrated by Figs. 17b and c. The pinned
end éf‘the beam-column coincides with the end of the CDC.
The other end of the beam-column is situated a distance
equal to its léngth from the end of the CDC. The moment at

this end is equal to the end moment M, .

There are an infinite number of CDC segments which
can be placed on the beam-column 1ength for any given axial
force and ].engtho One of these segments will correspond to
the maximum end moment M, ypx (see Fig. 1) which the member
can sustain if failure occurs by excessive bending in the
plane of thé applied moments(zo)(Zl), and another one will
correspond to the end moment Mgcr at which lateral torsional
buckling is imminent. As shown in Fig. 17b and c, there
aré two CDC-s which have MgCRr as their end moment: One (Fig, 17b)
is located on the ascending branch of the in-plane M-©
curve in Fig. 1, and the o;her (Fig..‘l7c) .is located on the des
cending branch., Of these twq, only thg first is of interest

here.
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The column deflection curves are ;btained from the
M-Q-P curves by numerical in;egration,(zo) giving the value
of the defLectioﬁ, the slope, the moment and the curvature;
as_well as the yielded pattern, at evenly spaced discrete
‘pqints glong their who;e"lengthso- From this knowledge it is
then possible with the aid of Eqs. (26) through (45) to compute

the stiffness coefficienCS,

Computational Procedures

The complete calculations from the M-§-P curves to
the setting up of the determinant of‘the coefficients of the
finite difference equations were performed by a Royal McBee
LGP-30_digital cqmputer, and thg process of calculation for

one particular problem was essentially as follows:

(1) An 8WF3l section of A7 steel was chosen as the
member., The input into the computer consisted
of the cross-sectional dimensions b, d, t, and
w, and of the material properties 5g= 33 ksi,

6 = 0.30;, E = 30,000 ksi and G = 11,500 ksi.

(2) Next an axial force and a length was chosen.

The following values of P were selected: 0°2Py,
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0.4Py and O,6Pyo The lepgth was usually
selected to be a multiple of 2ry or 3rg,
since this has been shown to be a spacing

resulting in adequate accuracyo(zo)

From the input of step (1) above and for the
specified axial force the M-f curve was com-

puted.

Several CDC-s having different end slopes 6,
were computed by numerical integration from the

M-0 curve of step (3).

One of the CDC-s, with a reasonable value of

8, was selected from the curves of step (4).

(This initial choice of 68,5 will be discussed

later). With P/Py and 6, known, the value of
MO/My for the length L/ryx was determined from
the CDC. Within the length of the beam-

column, the moment and the curvature were

~also known at evenly spaced points,

(6)

Knowledge of the moment, curvature and axial

force at these points also includes knowledge
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of the distribution of the yielded zones (step
(3) above), and from this the values of the
sectional properties were computed‘at each

point (Eqs. (26) through (45)).

(7) The final results of this computational routine
are the coefficients for the finite difference
equations, and the axial force, length, and the

end-moment of the beam-column.

The steps outlined above were comﬁuted in one con-
tinuous operation with one digital computer (LGP-30). The
next step, that of calculating the value of the determinant
of the coefficients, was performed by a larger computer and

this operation is described next.

Characteristic Determinants

The setting up of the finite difference eduations
(Eqs. (22) and (23) with the boundary conditions of Eq. (24)
at each pivotal point i =1 through i =n - 1 gave 2 (n - 1)
simultaneous equations in terms of (n - 1) unknowns uj and
Bi quantities each. This set of simultaneous equations may-

be written in matrix notation as

(AE) = o )

{
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.ln thlS equatlon the matrlx [A] is a set of the coefflcients_
Ajj representlng non-dlmensional comblnatlons of the cross- S
‘"ssectional properties (B Cw: Cr, Pyob andj"‘sz'dA )

load parameters (P and Mo), and the length of the member. |
: If the value of the determlnant |AI lS equal to zero; then

the assumed comblnatlon of P, M and L is one which causes

””~::the blfurcatlon of the equillbrlum, that lS, the start of

| lateral torSLonal buckllng.

. Buckling Strength -

Usually it was not possible to estimate the‘criticals
'hcomblnatlon of P Mb and L such that |A| =0at the first"
l'trlal Several values of Mo were trled for glven constant
.:values”of P and L,Qand.the_flnal-correet:answer»wasxobtalned
‘A by-interpolation.z The inltial cholce of Mohwas made easierA
by the existence of known upper and lower bounds.;'lhen o
upper bound was determlned from the fact that MoCh could not:
be larger than the end moment correspondlng to fallure by
- excessive bendlng 1n the plane of the applled moments
| OMOZMAX in Flg. 1) (3) A lower bound was provxded by the
hknowledge that the most_severe loadlng condition ex13ts when_

" two equal end moments cause the member to be bent in single
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curvature deformation. Since inelastic lateral-torsional

buckling solutions for this case were available, the lowest

éossible value of Mycr could be found. (*)

The upper and lower bounds furnish two envelopes

—~

~between which the ;fue answer must lie. These envelopes are

shown as heavy dashed~lines-in'Figo 18. . This figure
illustrates the various relationships which were involved in
the solution of the prdblem° Thg.curves'are all for the
8WF31 shape bent about its strong axis, and they are for a
constant axial load of 0;2Py;

| The heavy linés (dashed and sélid) in this figure
represent the curves of end moment My/My as the ordinate
versus the length of the memEer L/rx as the abscissa. The
upper dashed line gives the upper bound envelope for the
case of a beam-column subjected to one end momént only and
failing by excessive bending. At the right end this

envelope is intersected by another dashed line which

originates at L = 124rx-when M, = 0, and this curve represents

elastic lateral-torsional buckling as modified by the resi-

~dual stresses. The terminal point of this curve at M, = 0

corresponds to weak-axis buckling under axial load only.
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The lower déshed line is for the critical moment -
under eéual end moments (lower bound) if failure is 'due to
lateral torsional buckling. The terminal points of this
curve are the critical weak"axis buckling length 124ry
when My = 0, and the moment corresponding to full plastifi-

cation for L = 0.

. The heavy solid line in Fig. 18 represents the so-
lution to the prbblem discussed in this paper. The circled
points are the critical moments which were computed by

trial and error.

Also shown in this figure are severél column de-
‘flection curves (light solid lines) having various initial
slopes 85. The values of all the necessary coefficients in
the dgterminant |A| are known at discréc@ points (marked
points O to 16) along these CDC-s from tﬁe'previous calcu-

lations.

The determination of a point on the criticel M,-L
curve is achieved by the following procedure for L = 48ry:
The value of the determinant | A| is determined for several

CDC-s which terminate at L = 48ry between the upper and the
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loﬁer béund envelopes. In this particular case the com-
putationsvwere made for the CDC-s having end slopes éé
between 0.07 and 0.09 radians. The critical point is
obtained by linear interpolation of the values of the
determinant | A| , as shown for the case of P = 0.,2Py

in Fig. 19. For L = 48r,, for example, five CDC-s were
tried, and it can be seen that the value of |A| eduals
zero at M = 0,88M’y° The computation of all other points
was performed in a similar manner. Curves of | A| versus

I"IO/M.y are shown in Fig. 19 for L = 96ry, 64r# and 48ry.

The M-L curves showing the final results, that is
the curves for failure by excessive bending (upper light
curve) for lateral-torsional buckling with one'end moment
(heavy'curve), and for lateral-torsional buckling with two
end moments (lower light curve) are shown in Figs. 20, 21
and 22, for P = O,2Py, P = ofapy, and P = 0°6Py,re3pectivelyf
These curves show that lateral-torsional buckling can indéed
reduce the strength of beam-columns considerably in the

inelastic range.

The final step in the computation, that is, the

determination of the value of the determinant |Al| was per-
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formed with an IBM 7074 computer. For each specific beam;
column length the spacing of the pivotal points on the

CDC-s was chosen such thét the final matrix always :esulted
in a 30 x 30 array of numbers., The number of pivotal points

within the span was thus always equal to 15,
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V. SUMMARY

This report illustrates how the lateral-torsional
buckling strength of as-rolied steel:wide-flange bgam;
columns may be determined for buckling in the inelastic range.
The report was intended to provide the theoretical béckg:ouné;
the dérivations of the eduations, and the method of solution,
A future report will discuss the significance of the results;
the effects of the variation of the cross-sectionai and'
material properties, and the lqading céndition° This future
report will also include the comparison of the results of
the theoretical work with the results of beam-column
experiments, and empirical design formulas will be examined

in the light of the theory presented here.

The following is a summary of the work reported in

this paper:

(1) The differential equations of lateral-torsional
buckling are derived in a general form such that
they express elastic as well as inelastic buckl-
ing. For elastic buckling the coefficients of

the differential equations are constant, whereas
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(3)
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in the inelastic range these coefficients vary

as the pattern of yielding.

The variation of the coefficients of the differ-
ential eduations is determined for the various
patterns of yielding which exist in wide-flange
shapes containing residual stresses. Formulas
and curves are preéented to give the relationf
ship between the axial force and bending moment

and the resulting stiffness parameters.

The method of solutibn is illustrated by solving
for the lateral-torsional buckling strength of
beam-columns with simply supported ends and with
moment applied at one end of the member. Since
the moment, as well as the stiffness parameters,
varies along the length of the member, the differ-

ential equations are solved by finite differences.

Critical combinations of length, axial force, and
end moment are obtained by a trial and error
procedure. The resulting interaction curves are

shown in Figs. 20 through 22 for an ASTM A7 steel
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8WF3l member. All computations were performed

on digital computers.
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VII. NOTATIONS

Area of cross section

Cross-sectional coefficient in finite difference
equation

Determinant of cross-sectional coefficients

Square matrix of cross-sectional coefficients
Bending stiffness about x-axis (strong axis stiffness)
Bending stiffness about y-axis (weak axis stiffness)
Flange width

St. Venant torsional stiffness

Warping stiffness

Modified torsional stiffness due tb thé effect of
residual stress

Dépth of section

Young's modulus of elasticity

Smaller of the two end eccentricitiesv

Larger of the two end eccentricities

Modulus of elasticity in shear

Distance between pivotal points

Warping constant

Moments of inertia about the x and y axis,

respectively
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L

M

MO

Mocr

Mo1Max

Mo2max

My, My
My

Mé/, Mg i
Mﬁé’ M@?
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St. Venant torsional constant

Length of beam-column

Bending moment

Applied end bending moment

End bending moment at which the beam-column
buckles laterally |

Maximum end bending moment due to lateral-
torsional buckling

Maximum end bending moment at which ;hg beamf
column fails by excessive bending in the plane
of applied end moment
Plastic hinge moment modified to include the
effect of axial thrust
Bending moment about x- and y-axis, respectivel§

Moment at which yielding first occurs in flexure

My=S()‘y
Components of Mﬁ;

Mg, MZ’ Mf‘Moment about § , 7 andﬁf axis, respectively

n

o

Number of subdivisions

Location of centroid

Axial thrust

Axial load corresponding to yield stress level;

Py = A 6‘y
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RC ’ Rt
Tx, ry
S

S

Uj-1, Yi»
uj+l

Bi-1, By,
Bin
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Re = Grc/ﬁ'y, R, = 0rt/0y

Radius of gyration about x- and y-axis, respectively
Location of Shear.center

Section modulus about x-axis

Distance of any point on the cross section from

shear center

. Flange thickness

Displacement of shear center in x- and y-

directions, respectively

Displacement u at each pivotal point, i-1, i,

and i+l, respectively

Web thickness

Principal coordinates of the cross section
Distance between original centroid and shear cénter

Coordinate along undeformed beam-column center line

.Ratio of the width of yielding in compression flange

to the flange width

Twisting angle at cross section about shear center

Twisting angle B at each pivotal point, i-1, i,

and i+l, respectively

Shearing strain
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Ratio of the depth of yielding in compression

web to the depth of cross section |
Strains at both extreme fibers

Rotation at end of beam-column

Initial slope of column defléction curve

A coefficient indicating tensile yielding in tﬁe web
Cartesian reference coordinates after displacement
has taken place

Ratio of end bending moments

Normal stress

Maximum compressive and tensile residual stress,
respectively

Yield stress level

Shear stress

Curvature

Curvature corresponding to first yield in

flexure (0 4. = 0)

A coefficient indicating yielding in the tension

flange
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Fig. 17 Column Deflection Curves and Beam-Columns
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