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SYNOPSTIS

In this paper a method is proposed for the solution of the
inelastic lateral buckling problem of as-rolled wide-flange beams
subjected to equal end moments. The method is based on the determina-
tion of the reduction in the lateral and the torsional stiffnesses due
to yielding. The effect of initial residual stresses is included in
the calculations. An "exact! analyfical procedure is worked out for
several examples at first, and then a simplified formula is proposed
which reduces the computational work considerably.A Currently used
empirical design procedures are checked against the results, and a

possible modification of one of them is discussed.
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I. INTRODUCTION

A perfectly straight.steel wide-flange beam whiéh is subjected to
bending moments about its strong axis (the x-x axis as shown in the inset
of Fig. 1) will deflect in the plane of the applied méments as long as
these moments are below a certain critical value. However, when the
critical loading is reached, bifurcation of the equilibrium will take
place, and failure due to lateral buckling is initiated by lateral deflec-
tion and twisting of the member.(l)<2)

The buckling of axially loaded columns is usually represenfed by
so-called "column-curves'", where the relationship between the length of
the member and its critical load is ?lotted on a cartesian coordinate
system. Similar relationships can be established for the lateral buckling
of beams. A typical length versus critical moment curve is shown in Fig. 1
for a simply supported steel wide-flange beam subjected to equal end
moments. This curve consists of the following three parts: (l) Portion
CD represents classical elastic buckling(l); (Z)PortﬁanB depicts the
bdckling behavior of a very short member for which it can be assumed
that all fibers have been strained into the strain-hardening ;ange(3),
and (3)pdrdon BC of the curve corresponds to buckling in the inelastic
range. Buckling in this range takes place when some parts of the cross
section are yielded, while other parts are still elastic. The strain-
hardening and the elastic curves are typical Euler hyperbolas which do

not intersect. The curve for inelastic buckling provides a transition .

between these two extreme idealizations.
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In the ensﬁing report a method will be presented for the determination
of the buckling strength in the inelastic range. The problem will be solved
fof the case of a simply supported as-rolled steel wide-flange beam subjected
to equal end moments causing single curvature deformation. An analytically
”exéct” solution will be developed for a given average residual stress
distribution. This solution will then be simplified for design application.
Finally, the results will be compared with existing empirical approximations,

and a possible design modification will be discussed.

I.1 .PREVIOUS WORK

Of the three types of problems shown in Fig. 1, the problem of elastic
lateral buckling has been investigated most thoroughly.* Solutions for the

lateral buckling of beams in the strain-hardening range have been developed

(3

recently for structural steel wide-flange beams and for rectangular

beams made of a metal having a monotonically increasing stress-strain

curveg4) Inelastic lateral buckling solutions for steel beams of rectan-

(6)

shape containing no residual stresses are

(7)

guiar(5) and wide-flange
available, In an unpublished report the author has presente& solutions
for the determination of the inelastic lateral-torsional buckling strength
of as-rolled wide-flange beam-columns. The following-report is a summary

and an extension of that work in Ref. 7 which pertains to the buckling of

beams. This work differs from previous solufions in the fact that the

reduction in beam stiffness due to early yielding caused by the residual

stresses is included in the calculatious.

*A discussion of this work can be found in Refs. 1 and 2. These references
include extensive listings of the pertinent literature.
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I.2 LATERAL BUCKLING IN THE INELASTIC RANGE

Schematic load~deflection curves for beams failing by lateral
buckling in the inelastic range are shown in Fig. 2. The inset of Fig.
2a illustrates two possible deflection configurations into which any
interior cross section of the beam may be deformed:. For the firs£>of
these, . . the only deformation is the transverse deflection v. The
beam is located directly below the undeflected cross section . and in
the plane of the applied moment. The second deflection configuration
represents the buckled shape of the cross section. The corresponding
deformations are the transverse deflection v, the lateral deflection u,
and the twist B. Bifurcation of the equilibrium takes place wﬁen the
cross section moves from its laterally undeflected deflection configura-

tion  to an infinitely close buckled deformation

The curve in Fig. 2a shows the relationship between the applied
end moment M, and ;he transverse deflection v as M, is increased from
zero to its maximum value M. If no lateral buckling were fo occur,
the cutrve would increase mondtonically until it would approach the fully
plastic moment MP as an asymptote (dashed curve). However, at the critical
moment Mcr (where Mcr is above the elastic limit moment ME for inelastic
buckling) bifurcation of the equilibrium takes place, and the deflection
curve deviates from its original course because of lateral buckling. The
beam will still be able to support a small increase of moment to My after

‘which rapid unloading indicates failure.

The relationship between Mo and the lateral deflection u or the

twisting angle B is illustrated in Fig. 2b. No lateral deflection or
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twist is present until the critical moment is reached. As the moment is
increased above M.y, these deformations will rapidly increase until My .

and thus failufe is reached. In the case of small initial imperféqtions
lateral deformations u and B will exist from the startdf.loading&(See dot-dash

curve in Fig. 2b) ..

The computation of the maximum moment for perfectly straight beams
or for beams with small initial excentricities is quite complicatedo(z)
Fsr this reason the moment causing initiation of lateral buckling will
be used as a lower bound to the maximum moment. This moment is computed
on the basis that at bﬁckling no previously yielded fibers will unload
elastically and that additional bending is resisted by the unyielded
elastic core of the member. The critical moment Mcr corresponds to the
critical or "tangent modulus' load of axially loaded columns failing

in the inelastic range.(l) Just as the tangent modulus load is taken

as the critical load for axially loaded columﬁs,‘here the moment causing
initiation of buckling is taken as the critical moment at which the

structural usefulness of the beam is exhausted. This assumption usually

results in only a small conservative error.
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II. DEVELOPMENT OF THE THEORY

II.1 ASSUMPTIONS

. The following assumptions underlie the subsequent theoretical

‘derivations: - -

(1)
(2)
(3)

(4)

(3

(6)

(7)

(8)

No external lateral forces are applied to the beam betw.een‘supports°
The beam is initiaily straight and free of imperfections.

The cross section retains its original shape during buckling

(that is, local buckling is assumed to be not critical(s))o

The ends of the beam may not translate or twist; however they are
free to rotate }éterally and the end seétions are free to warp
(”simply supported" end-conditions(l)).

The applied end bending moments are equal, causing single
curvature deformation about the strong axis of the beam (see

inset of Fig. 1).

The beams are as-rolled, ASTM-A7 steel wide-flange shapes. The
idealized cross sectién is shown in Fig. 3 (fillets and variations
of the flange thickness are neglected).

The cross sectional and material properties are uniform along

the whole length of the beam,

The stress-strain diagram is as shown in Fig. 4. The - material
properties are aésuméd to be uniform over the cross section. The
following standard values of these coefficients are used for

computational purposes:

cy = 33 ksi
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E = 30,000 ksi
Egp= 900 ksi(8)
G = 11,500 ksi

G = 2,400 ksi(®

(9) The assumed residual stress pattern is shown in Fig. 5(9)
These stresses are assumed constant across the thickness of

each cross section element. The stress Orc is the maximum

compressive stress at the tips of the flanges, and Ot is the

maximum tensile residual stress. Consideration of equilibrium

requires that the relationship between o,. and T be the

Irc
following:(g)
.| Pt ¢ -‘ C e e (D)
Ort bt + w(d-2t)J

where b, t, w, and d are cross sectional dimensions defined
in Fig. 3. A maximum compressive residual stress of 0., =

(9)

O.3cry will be used for the numerical computations.

I1.2 THE BUCKLING EQUATION

The equation representing the critical combination of length and
end moment for simply supported wide-flange beams under uniform moment
has been derived by Timoshenko.* This equation may be written in the

following form:

2 2 | | _
(mgi_=<1E;1> <%F+lzfﬁ;> AR

*The derivation is shown in Chapter V of Ref. 10. Timoshenko's derivation
was made specifically for elastic buckling. However, the process can be
extended to include also inelastic buckling if the stiffnesses are in the
general terms of By, Cp» C.. instead of the usual elastic expressions EIy,

. GKy and EI,

w
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whare
(My) ... = End moment at initiation of buckling
By = Bending stiffness about the y-axis
L = Length of the beam
Crp = St, Venant torsional stiffness
Cy = Warping stiffness. )

‘Equation 2 is the characteristic value of the differential equations
of lateral buckling under pure moment for the following simply supported end

conditions:
dZy
u:-?d—zz—=[3= dE-z—-=0 atz=0andZ=L

The coordinate z is measured from one end of the beam alQng the deformed

centroidal axis (see inset im Fig. 1).

The stiffness coefficients By, Cp and C are equal to the

y’

following expressions in the elastic range:

EI.,d?

: - et 4 ‘
G = EL, = — Ce e (3

where I = Moment of inertia of the wide-flange section:about its y-axis
KT = St. Venant torsion constant(ll)
I,,= Warping constant(ll)
d = Depth of the section (SeeAEig, 3).

If buckling takes place after certain portions of the cross section have

already vielded, the expressions of Eq. 3 for the stiffnesses need not hold
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true. Yielding reduces the stiffness of a member, and therefore the inelastic
values of By, Cr, and Cw will not remain constant. They will vary with the
amount of yielding. The primary purpose of this report is to establish the
variations of the stiffnesses due to yielding, and then to solve Eq. 2 for

the values of the critical moments in the inelastic range.

The derivation of Eq. 2 implicity assumes the following two conditions:
(1) Thé stiffnesses may not vary along the length of the member, and (2) the
shear center must lie in the plane of bending (that is, the y-y plane). Since
the moment is uniform along the whole length of the beam, each cross section
is subjected to the same forces) and thus each cross section is yielded
idéntically. Therefore the stiffnesses do not vary along the z-axis. Further-
more, yielding will be symmetrical about the y-y axis because of the symmetrical
residual stfess pattern (see Fig. 5). As a consequence, the shear center
will remain on the y-y axis. Thus both conditions imposed by Eq. 2 are

fulfilled for a yielded wide-flange beam.

11.3 DETERMINATION OF THE ZONES OF YIELDING

In order to be able to compute the stiffnesses governing the
buckling equation in the inelastic range, the yielded pattern co;responding
to the applied bending moment must be known. The relationships between
the bending moment and the corresponding curvature and the yielded zones
are derived in Appendix A by a step-by-step procedure, starting from the
unloaded state and leading to successively more and more severe cases of

yielding. The process éonsists of finding the curvature and the bending
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moment caused by given stress patterns. These stress-patterns (shown
in Figs. 6 to 11), as well as the yielded configurations, are dependent
on the cross sectional geometry (Fig. 3) and on the initial residual stress

distribution (Fig. 5).

The equations expressing the relation between the moment M, ;he
curvature @, the compression flange yielding parameter o (Figs. 7 and 8)
and the tension flange yielding parameteer(Figs. 9 and 10) are tabulated
at the end of Appendix A. Several sample derivations are given at the
beginning of this appendix to illustrate how the equations are developed

from the equilibrium conditions.

The results of the computations are shown in Fig. :12 for the
8WF31l section., The curves in the upper portion of this figure show the
variation of the moment and the curvature with compression flange yielding
o, whereas the curves in the lower half of Fig. 12 give ;he relationship

between M, @, and the tension flange yielding parameteréyﬁ

With the aid of Fig. 12 it is thus possible to determine the

extent of yielding corresponding to any moment. (See inset in Fig. 12.)*

IT.4 STIFFNESSES OF THE YIELDED CROSS SECTION

In the previous section it was shown how the yield-pattern of a

wide-flange cross section corresponding to a given moment can be obtained.

* Web yielding 7V d can be determined from equations given in Appendix A.
Since the web countributes little to the lateral stiffnéss of the cross
section, no Mvs 7 curves are shown.
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The yielded configuration of the section is shown in the inset of Fig. 12,
From this sketch it may be observed that yiélding (cross-hatched area) is
symmetrical about the y-y axis, and that the interface between‘the'elastic
and the plastic portions of the flange is inclined across the flange
thickness. 'In order to simplify subsequent calculations this inclination

is neglected; the siméler yield pattern is shown in Fig. 13. The compression
flange is assumed yielded uniformly a distance ab from the toes of the
flange, and the tension flange is yielded a distance Tk‘b from the center.
Since this simplification reduces the elastic core by a small amount, the

foregoing assumption is conservative.

In the derivations of Appendix A it was stipulated that the
stresses may nowhere exceed the yield stress Uy.* As a consequenée the
straians in the plastic sections lie on the flat portion of the stress-strain
dizgram, where the modulus of elasticity is equal to zero.  Since the

bending stiffness B, and the warping stiffness C,, are dependent on the

y )

modulus of elasticity (Eq. 3), only the elastic core can be assumed to
furnish those stiffnesses. 1t has been shown(s) that at'the start of
lateral buckling St. Venant's torsional stiffness Cp is not dependent on

the amount cf yielding, and therefore the full elastic value of CT = GKT

can be used for substitution in the lateral buckling equation. Thus only
the stiffnesses By and Cy need be computed for the unyielded core of the

wide-flange cross section.

* A proof that this assumption is correct can be seen from Fig. 12, where
the maximum curvature when both flanges are fully yielded is equal to
1.52 @,. This curvature is considerably below the curvature at the
start “of strain hardening ( @gp ¥ 12 ¢y(3)), and thus the yielded
portions can be assumed to have no resistance to additional bending.
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Bending Stiffness By.
The bending stiffness of the elastic core about the y axis is

equal to (See Fig. 13):

B, =E |&. (b-2ab)> + £ E (2713
y [Tf N 127 12 ¥

A reétrangement of this expresssion yields the following»equation for'By:

By = EIyBI | A €Y

where»Iy is the moment of inertia of the original unyielded section,

(Iy = EEE ), and B) is a reduction factor which is equal to

This reiationship between a, \V"' and B1 is illustrated in Fig. 14.
When the section is fully elastic ( a =.W'=“0), Blbé.i;o, and when

a = yﬂ‘ = 0.5 (full yielding of the flanges), B, = 0.

Warping Stiffness Cy.

The warping stiffness of a section with unequal flanges has been

determined (Eq. 231, Ref. 1) as

c, = (@-n? | 1l | NG|
A 1+, |
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where Il is the moment of inertia of the compression flange about the

y-axis, and I2 is the corresponding property of the tension flange. From

Fig. 13 it is seen that

b3 '
I = _t_ (1°2CL)3 « e e e .(7)
12

3 |
I, = %E (1-8‘51/3) Ce e (8)

Substitution of Eqs. 7 and 8 into Eq. 6 gives the following expression
for the warping rigidity:

2 ‘I .
Cw = EIy (d-t) B, " A &)

where Iy is the moment of inertia of the original section, and B, is a

reduction factor equal to

3 3
(1-8Y ) (1-2a) .
B, = 4 | C .. .(10)
4 By :

The curves relating «, -¢f and B2 are shown in Fig. 15. At « =}V~= 0,

By = 0.25, thus fulfilling the fully elastic boundary condition. At a = 0.5,
that is when the compression flange is fully yielded, BZ = 0 for any

value of 'vf . This means that when the effective ségtion is a T-section,

(1

the warping rigidity is zero.
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The curves in Figs. 14 and 15 permit the determination of the
stiffnesses By and C,, when o and er are known. In subsequent calcuiations
it is desirable to have a direct relationship between the moment and the
stiffness coefficients By and B,. This may be accomplished by eliminaﬁing
a and ’W’ with the aid of Fig. 12, where the moment versus o and ‘y?
curves are shown. The resulting curves for the 8WF3l section are given

in Fig. 16, where moment is plotted directly against B, and BZ‘ Thus if

1

Mis kﬁpwn, the corresponding stiffnesses B, and C;, can be immediately

y

determined from this figure and from Eqs. 4 and 9.

I1.5 THE INELASTIC BUCKLING CURVE.

The equation of buckling (Eq. 2) can be rearranged in the following

manner:

A 2 2 4 _
M) L' - x2ByCpLl” - x C By =0

2

If this equation is divided by Mp2 = Z Uyz (where Z is the plastic

modulus) and by ry4 (where ry is the weak axis radius of gyration of the
original cross section), and if the expressions for By’ CT and C are

w

substituted from Eqs. 4, 3c and 9, the buckling equation can be written

_ in the following non-dimensional form:

Mo)z L\ 'rn'zEG AKT \ . - L ¥
C

My Jer | \Fy Lcyz 22 ) | \wy
| (IIZE 2 A23d-p)? ‘
— | e (Ble) =0 A G|

%
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Equation 11 is a fourth order equation in that slenderness ratio
L/ry which corresponds to the critical moment at which lateral buckling

commences. The coefficients of L/'ry consist of the cross sectional con-

2 2
stants éEE and A%(d-t) (where A is the cross sectional area of
z2 z ,
. . . . ZEG / E 2
the original section), the material constants T 5b and ( & )
o oy
y

the non-dimensional bending moment MO/MP, and the coefficients By and B2

which are directly dependent on the moment.

The construction of the critical length-versus-moment curve of
Fig. 1 can be performed in the following manner: For a given wide-flange
cross section first the moment versus B, and B2 curves are developed (as
shown. in Fig. 16 for the 8WF31l section). Next,Eq. 1l is solved for
L/ry for assumed values of the moment. This is done for a sufficient
number of moment values until the whole course of the buckling curvé is
established. Figure 17 shows such a curve for the 8WF3l section. For
moments from 0 to 0.631 Mp elastic buckling governs. In this region the
stiffnesses By and CW are undiminished. For a moment larger than 0.631 MP’
yielding takes place due to the presence of residual stresses before the
section buckles. Points on this portion of the curve are computed by
assuming a moment (M% > 0.63 Mp), finding the wvalues of By and B2 corres-
ponding to this moment from Fig. 16, and solving Eq. 11 for the critical
weak axis slenderness ratio. The increments of moment used for the

inelastic part of the curve in Fig. 17 were chosen at 0.05 MP.

The cut-off point for the start of strain hardening (at

L/ry =20 in Fig. 17) is computed by a method suggested in Ref. 3. Equation

2
R . _ _ _ Egel d
2 is solved by setting By = EstIy’ CT = GstKT and C, = 42 , Wwhere
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(20)

E that this

st and GSt are strain hardening moduli. It has been shown

point at which the whole section can be assumed to be strain hardened 2t buckling,

occurs at a slenderness ratio of about 20 for all rolled wide-flange

sections.

The curve in Fig. 17 describes the buckling behavior of an 8WF31
section over its whole length range. Inelastic buckling governs up to a
length of about 220 ry, or to about 37 feet. Thus it can be seen that
for practical lengths one must consider the reduction in buckling strength

due to yielding.

The error involved in assuming that yielding does not start
until the yield moment My =8 Uy (where S is the section modulus) is
reached is illustrated in Fig. 18. 1In this figure curve A represents the
inelastic solution including residual stresses, and curve B is a
continuation of the elastic Euler hyperbola until (Mo)cr = My' A straight.
line transition has been used from the yield moment to (My)., = Mp at
the start of strain hafdening. It can be seen that thé residual stresses

- have a considerable influence on the buckling strength, and that their

neglect may lead to results which may be as much as 30% unconservative.

The usual design procedure which does not permit the use of
moments larger than the yield moment is shown by the dashed horizontal
line in Fig. 18. One can note that for L/r& >» 90 this rule leads to
unconservative answers, whereas in the range of 0 < L/ry < 90 the full

strength of the beam is not utilized.
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JII. SIMPLIFICATION OF THE

PROCEDURE

A method has been presented for the determination of the buckling
curves fdr wide-flange beams failing by inelaétic lateral buckling.
Numgrical results are shown for the 8WF3l section in Fig. 16. Additional
calculations. by the same procedure were made for the 27WF96, the.1l4WF142
and the 14WF246 section. The results of the calculations are shown as the

solid line curves in Fig. 19.

This method of computing the inelastic lateral buckling strength
has one serious shortcoming: the computational work is too laborious. The
main reason for this is the complex geometry of the stress patterns result-
ing from the cross sectional shape of the wide-flang; section and the

residual stress existing before load application.

A simplification of the calculations may be achieved as follows:
In Fig..20 are shown the reduction éurves for the four secfidns for which
computations were'made (27WF94, 8WF31, l4WF142, l4WF246). 1In the upper
portion of the figure thelM/Mp ;ersus~ 31 relationship is given, while in“ }
the lower half the curves for M/Mp versus B, are shown. It can be observed
from this figure that for even these geometrically dissimilar wide-flange
‘sections the range in which these curves lie is not very great. Therefore
no great error will result if one average curve is used for any wide-flange
section., These approximate average curves are shown as heavy solid lines

in Fig. 20.

The use of these average curves for B; and B, simplify the
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calculatibns considerably. All that is ﬁecessary for the determination
‘of the buckling curve is the solution of Eq. 11 for (L/ry)cr for the

assumed moment values (MO/MP)cr,using B; and B, from the average curves in Fig.20.

" The lateral buckling equation (Eq. 11) can be written in the

following form:

2 4 2 ; 2 2
Mo L\ _ (n EG Ad) L\ _
.M;-cr r—y' %y - Z ad2 ol

2 2 2 2 o .
1 E Ad - = .
_{K 5 .) (E_) (1 —) (BIBZ% 0 A ¢ V)
s _ : 7 2EG ' <<E \2
. In this equation the coefficients T and oy ) - are
. y*

" constants, depeﬁding on the properties of the material. Fufthermore, a
coﬁputation of (Ad/Z) and (1-t/d) for a majority of the tabuiated wide-
flange secti§ns has shown that these coefficients are nearly constant for
"all sections. The average values of these constants are %ﬂ = 2.53
and (1-t/d) = 0.950. Subét;tution of the material constants of

u'rf;'= 33 ksi, E =J36,0001ksi ;nd G = 11,500 ksi, and‘fhe aVérage cross
sectional constants %2 and 1-t/d into Eq. 12 leads to the following

explicit equation for the critical length:

| : e ——— !
(%_\ = | 10 DBy |, +-‘/il + 4.65 x 10 (32/31)(“0/“9)‘ ] 5
“yjer (MO/MP)(Z:I- ! _ DTZ . P ¢
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where the coefficient D is equal to

KT x 10

D, = ‘ .
T vy | C e . L (14)

An examination of Eq. 13 shows that the éritical length corres-
ponding to a given moment is dependént only on the non-dimensional ratio
* Dy Values of this coefficient are tabulated in a table in Appendix B.
The values of DT for sections usually used as beams vary from about 200 to
900. Since Dp = 219 for the 27WF94 section, and Dy = 925 for the 8WF3l
section, the curves for the beams fall into the narrow band between‘the

curves for the 8WF3l and the 27WF94 sections in Fig. 19.

The buckling curves resulting from using the above simplifications
are shown as dashed lines in Fig. 19 for the 8WF3l and the 27WF94 sections.
The difference between the '"exact' curves and the approximafe curves is
quite negligible, especially in the inelastic range. It may therefore
be concluded that the approximations do not greatly iﬁfluence the final
result, and thus a relatively simple way has been found to determine

inelastic buckling curves for as-rolled wide-flange sections.
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IV. COMPARISON WITH DESIGN APPROXIMATIONS

The fact that the buckling strength of beams is reduced due to
yielding before the theoretical yield moment My is reached has been known

for some time.(lz)

Because no direct computation of the reduction has
been available, empirical design approximations have been suggested for
the computation of the critical moment in the inelastic range. These
approximations can be grouped into two categories: .One of these methods
is to provide an empirically determined transition curve between the
elastic Euler hyperbola and an allowable maximum moment at zero length.
The other method consists of computing the critical moment by the elastic
formulas, and then to reduce this "ideal" moment in agcordance with an
empirically determined reduction curve to an ''allowable' moment. The

first approach has been used extensively in this country(lz), and the

latter is the basis of the German buckling specifications.(13)

In the following one of each of the above discussed procedures

will be compared with the "exact' theory of this report.

IV.1 COMPARISON WITH A TRANSITION CURVE METHOD

(12)

It has been shown that the cfitical elastic allowable lateral

buckling stress can be expressed by the following approximate equation:

6
12 x 10
(Oup)y = A ¢ %))

bt
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where ( Ocr) is the critical working stress (psi). The terms L, d, b
Vi

and t are as defined in Fig. 1 and 3. The maximum value of ( Gcr)w is
the yield stress cy divided by a safety factor. 1If the minimum.yield
stress_is specified as qy = 33 ksi. and if thg_maximugﬁallowablg é;ress
is 20 ksi(14), the safety facfor is 1.65. The critical stress in Eq. 15
can thus be written in terms of the ultimate stress as

| 12 % 106 x 1.65 _ ..:19:.8‘x i06

(0cy) = S.F. x (ger), = Ld/bt | - Ld/bt

Multiplying the critical stress by the section modulus S and non-
dimensionalizing it through division by M, =2 Uy, the following

expression results for the critical moment:

(Yo .1 (_QD.Q_) . .8
My fer f Ld/bt o

where £ is the shape-factor. Equation 16 is a non-dimensional form of

the AISC lateral buckling rule;(la) A plot of this equationiis shown

as a heavy solid curve %n Fig. 21. Since the limiting momént of Eq. 16

is the yield moment My;.the curve is cut-off by a horizontal plategu at

Mo = 0.876 Mp (if an average value of f = 1.14 is used as the shape factor)
and at Ld/bt = 600. On the same figure (Fig. 21) are“also plotted the
Yexact'" curves computed in thi§ repoft for four secfions° It ﬁay'be
observed that the AISC rule is conservative in the ranges of O (I%%~<:400
and above about Ld/bt = 800. In the range 400(:%%5<: 800 the rule

results in a reduction of the safety factor below the minimum value of 1.65.
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In order to keep the safety factor everywhere above 1.65, the

(12) |

foellowing transition curve has been proposed

Ger = 33,000 - 0.0125 (Ld/bt)? N e Y

Equation 17 can be non-dimensionalized into

Y =3 [} - 0.378 x 10° (Ld/bt)z] Cee . (18)
MJer
This transition curve is shown as a dashed curve in Fig. 21. It lies

everywhere below the theoretically determined curves, and is thus con-

servative. It's range of application is 0< %% <: 775.

A possible new design approach, which would retain the well
known Ld/bt parameter and which would make more efficient use of the
inelastic strength of the beam, is shown in Fig. 22. A straight line
transition curve between elastic buckling ( Ld/bt 2/ 800) and buckling
in the strain hardening range is shown in this figure. The corresponding

equations are as follows:

( Mo\ = 1.00 . ... .(2D)
Mp Jer ,
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Ld r d] | |
o — - 35 . .
(59) = 1.000 - 2 342{‘“ ‘ e (22)
Mp) cr 800 - 35 1y
bt . X
| a0 (22)

- =
FlE
[}
| w
| N
~} o
o
t

£

cr S
e (23)
Cfor 800 S M Koo
N bt N
EQuatiQn 21 represents the lateral bracing spacing'fule used inlﬁlas;ic
(18) |

. design » which states that in the vicinity of a plastic hinge (that

is Mo = Mp), the critical length for uniform moment is equal to 35 ry.*
(Since the non-dimensional length parameter used is Ld/bt, the slender—

) L Ld bt
ness ratio = = -~ X —_—

Y. Equation 23 is the AISC Ld/bt rule, .
“which goverﬁs elastic_ihstability (see Eq. 16,‘where theﬁshapé fac£§r is
set equal to 1.14). Equation 22 represents the stréight line traﬁgitioﬁ
Between the ehd points of Eq. 21 and 23. 1In Fig; 22 .fhe curQes of

these three equations are compared with the "exact' solutions for four
cross sections. It is seen that the proposed curves utilize thg inelastic
gtreﬁgth of the beam, while at the same time they'represqng'a safeAIOWef
bound,

* This rul
means . \

W
~0
~
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1V.2 COMPARISON WITH A REDUCTION CURVE METHOD

The Column Research Council(ls) has proposed that for an

approximate determination of the inelastic buckling strength of beams

it can be assumed that the relationship between elastic and inelastic
buckling strength is the same for beams as for columms.* Since the
inelastic buckling strength of axially loaded columns is well known,(ls)
the relatioﬁship between elastic (Euler) buckling and plastic (Engesser-
Shanley) buckling can be easily established. The elastic, or '"ideal"

x 2E1

buckling stress of a colum is If this expression is

0 =
cr .2
divided by Cy, and the values of Oy = 33 ksi and E = 30,000 ksi

are substituted, the following equation results for the ideal stress:

(_32;5 _870 .. C e (19)
9% Ji T @wn? |

The inelastic buckling stress for wide-flange sections ¢an be.gppfgkiﬁated

py(17)

. (20)

(_Gg.) L@ win?
9y Jal1 645 111,000
The curve showing the ideal-versus-~allowable stress relationship, as
computed by eliminating the slenderness ratio from Egs. 19 and 20 is
shown in Fig. 23, Since it is assumed that the same curve will approximate

lateral buckling, the coordinates in this figure are expressed as critical

bending moments.

(14)

See also Ref. 16 for further explanation of this method.
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The lateral buckling strengths of a beam can be ;hﬁs approximated
by calculating the elastic critical moment (by keeping B, = 1.0 and B, = 0.25
in Eq. 11), and then entering the reduction curve of Fig. 22 and directly
reading off the inelastic "allowable" moment.* The results of ;he computa-
tiéns for the 8WF3l section are shown in Fig. 24, Qhere the»approximate
curve is drawn as a dashed line. The comparison is fair, with a maximum

deviation being about 5%.

* This method is especially useful for cases where the end conditions
of the beam are not simple and where the beam is subjected to lateral
loads or a moment gradiemt. Elastic solutions are available for these
cases(l ), whereas the computation of "exact' imelastic solutions seems
too difficult at this time.



205A.28 | -25

V. CONCLUSTIONS

In this report a mefhod has been presented for the determinétion
of the inelastic buckling strength of steel wide-flange beams failing by
lateral buckling. The method has been illustrated for the case of wide-
flange beams because of their frequent occurrence in civil engineering
structures, The type of solution, however, may be adapted for any cross
sectional shape under any residual stress distribution, provided that
bending takes place in a plane of symmetry, and that the residual stresses
are also symmetrical about the plane of bending. A further stipulation
is that bending is uniform and that the stress-strain diagram can be

approximated by straight lines.

An 9xtension of this work would be to compute.the lateral buckling
strength of beams subjected to unequal bending moments or to loads placed
between the supports. In this case the moment, and thus the distribution
of yielding along the length of the beam, is non-uniform. The best way
of obtaining a solution would be to solve the diffeiential equations of
lateral buckling by the method of finite differences, possibly with the
aid of a digital computer. The stiffness reduction curves of Fig. 20 qaﬁ

be utilized in these calculations.

The critical length versus end moment curves for a given wide-

flange section are obtained in the following manner:

(1) The yielded zones corresponding to a given inelastic moment
are determined with the aid of the conditions of equilibrium.

General equations are given in Appendix A, and the curves
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relating compression flange and tension flange yielding
corresponding to various moments are shown in Fig. 12

for the 8WF3l1 shape.

(2) The weak axis bending stiffness By aﬁd the warping stiffness
C, for the "effective" reduced section are computed by Egs.4
and 5 and Egs. 9 and 10, respectively. Curves showing the
reduction coefficients By and B, are shown in Fig. 16 for
the 8WF3l section. fhe St. Venant's torsional stiffness is

(5)

not reduced due to yielding.

(3) The lateral buckling equation (Eq. 1l1l) is solved for the
critical length for various assumed values of the inmelastic
moment and the corresponding reduced stiffness. The result-

ing curve for the 8WF3l section is shown in Fig. 17.

A simplification of this procedure can be accomplished by noting
that the moment versus stiffness reduction coefficients B; and B2 are
nearly the same for all wide-flange sections, (see Fig. 20) and that
certain non-dimensional cross sectional properties can be assumed to
vary only a small amount for the tabulated rolled wide-flange shapes.

The critical length corresponding to any inelastic moment can be expressed

by "Eq. 13.
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. The results of the '"exact' procedures have been compared with
currently used design approximations {see Figs. 21 and 24), for the
.determination of inelastic buckling strength. It was shown that the
AISC Ld/bt rule, coupled with a parabolic transition curve in the

inelastic range, provides a suitable lower bound for wide-flange sections.

A possible modification of this rule is illustrated in Fig. 22.

“The corresponding design equations are Eqéi I; 22 and 23. This

modified rule would make better use of the inelastic strength of beams,

especially for lengths below Ld - 3p0.

bt
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VII, NOMENCLATURE

A = Cross sectional area (inuz)

B1,By = Stiffness reducticn coefficients

By = Weak axis bending.stiffness (lb,-in.z)

Cr = St. Venant torsional stiffness (lb.-inoz)

C, = Warping estiffness (lbn—in,4)

D = Cross sectional coefficient defined by Eq. 14

E = Modulus of elasticity (psi) _ 5

Ege =‘Strain hardening modulus (psi)

G = Shear modulus (psi)

Gge = Shear moduius in the strain hardening range (psi)

I, = Mcment of inertiz about the v-y axis (in.4)

11,12 = Effe?tive moments of in?rtia of the compression flange and the
tension flange, respectively. (in,4)

Iy = Warping coefficient (inoé)

Ky = Torsion coefficient (inaa)

L .= Unsupported length of the beam (in.)

L., = Critical length (in.)

M, " = Applied end bending moment {in.-1bs.)

Mm = Ultimate moment, {(in.-~1bs.)

(Mo)cr = Critical end moment (in.nlbso)_

M, = Plastic moment (im.-1bs.)

My = Yield moment (in.-1bs.)

S = Section modulus (in°3)

z = Plastic modulus (in03)

T,U,W = Non-dimensional coefficients defined by Eqs. A-8, A-13 and A-ll;

respectively
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b = Width of flange (in.)

d = Depth of beam (in.)

£ . = Shape factor

ry = Weak axis radius of gyration (in.)
t = Thickness of flange (in.)

u = Lateral deflection (in.)

v = Transverse deflection (in.)

w = Thickness of er (in.)

ab = Compression flange yielding (in.)
B = Angle of twist

@, ¢y, ¢st = Curvature, curvature at the yield point, curvature at the

onset of strain hardening, respectively.

= Tension flange yielding (in.)

= Compression and tension flange stresses, respectively (psi)

Yield stress (psi)

Vd,Td = Web yielding (in.)
%M1 “MB

[

Y

o Ot - Maximum compressive and tensile residual stresses, respectively (psi)
oG

Critical stress (psi)

%r
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APPENDIX A

The relationship between the applied bending moment and the resulting

curﬁature and yield patterns are developed below by a step-by-step procedure.

a) The Unloaded State

In the unloadad state only the residual stresses are present on the

cross section. Their magnitude and distribution is shown in Fig. 5.

b) Elastic Behavior

Figure 6 shows the stresses on the three components of the cross section
(the compression flange, the web, and the tension flange). In this figure
GMT and GOyg are the absolute values of the maximum top or compression
flange stress and the bottom or tension flange stress, respectively. The

angle @ is the curvature of the secticn in the plane of the web. Strains

are assumed proportional te the distance from the neutral axis.

If the forces in each of these parts due to the stresses are summed

and equated to zero, it is found that

(A-1
O T S (A-1)

The summation of the moments about the center of the section due to the

assumed stress distribution gives
M=o 8 (A-2)
where M is the moment applied to the section and S is the section modulus.

Because it will be more convenient to work with non-dimensional

ratios, both sides of equation A-2 will be divided by Mp =<5yZ, where
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Mp is the fully plastic moment, and Z is the plastic modulus. Thus, the
non-dimensional form of Eq. A-2 is
M 0 v 1 0 .
= MI = MT
M o VA £ (o] (A-3)
% Iy y
where f = Z/S is the shape factor of the cross section.
The curvature ¢ is obtained by geometry from Fig. 6.
o1 g, 20 -
tan B¢ TEg = ML+ MB _ MT (A-4)
d d
If the yield stress ay is used in Eq. A-4, the '"initial yield curvature"
E¢y is obtained. Therefore
g, = 2%y (A-5)
7 d
and
_9. _ 9 '
= A-6
3y oy (4-6)
The limit of elastic behavior is reached when o __+ o = g
MT re y
OMB + Urt = ¢ , whichever occurs first. Since oM = © in the

elastic range, and

in the compression flange. Thus

=)

Using the abbreviation

Orc

1 -

el.lim.

O o )»crt (see Eq. 1), yielding will first commence

(A-7)
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T=1- _xC (a-8)

the values of the moment and the curvature at the commencement of yielding

are:

=T (A-9)

ZIZ
e

[

=3

[N

=]

o
———
‘491@

( Pjel.lim

c) Part of the Cross Section is Yielded

From Fig, 6 it can be seen that the yield streés will first be reached
at the tips of the compression flange, since it is here that the maximum
compressive stresses due to bending moment and the maximum compressive
residual stress are additive. The various stages of this éartially
yielded candition are shown in Figs. 7 to 11 for the three components of
the cross section. Figures 7 and 8 show the compression flange. Figure
7 gives the case where yiélding has not yest penetrated through the thick-
ness of the flange and Fig. 8 shows the case where yielding has penetrated
through the flange. ‘Figures 9 and 10 give the corresponding situation on

the lower flange, while Fig. 11 depicts the stresses in the web.

Yielding commences first on the outside faces of the tips of the
compression flange, and it progresses toward the center of the flange.
The amount of yielding measured from the outside face of the flange is
ab. The maximum extent of possible yielding is when yielding has

b

progressed over the whole width of this face; thus (ab)_ .. = - oOr

0 é a S % The tension flange (Fig. 9) will begin to yield at the
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center of the flange, and yielding will progress toward the tips. The
amount of yielding in this flange is designated as A?Vb (see Figs.

' 1
9 and 10) and therefore 0 - YK 3

From Figs. 7 and 8 the following relationship can be-developed

Ot
for the stress MT

0rc + cyM'].‘ B Gy + 2a ( 0rc +'0rt)

”In non-dimensional form

c o} ‘o + O . _ : .

ML g e g o f—ES T TEY - roogw (A-10)

o] o o

y y y
where
oo xe ¥ %y | (A-11)
- )
y

By similar considerations from Figs. 9 or 10, the bottom flange

stress is:
OMB Grt Orc +c .
—= l.— ) U+2Ww : (A-12)
Oy Oy Ty

where
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‘The relationship between top flange and bottom flange stresses

(From Figs. 6 or 11) is determined by the geometry of similar triangles:

oMt + OB _ ‘MB * Crt
d d- OMT + Jrt
EQ E®

Non-dimensionalizing this expression, and solving for ¢

(A-14)

d) Compression Flange Partiallv Yielded, tE@ > 2a (0rc + Ort),
Tension Flange and Web Still Elastic = —

The stress piéture at the initiation of yielding is shown in Fig. 7
for the top flange. The tension flange and ﬁhe web remain elastic, and

the stresses for these components are shown in Fig. 6.

Summing up forces on the cross section:

Z:P =0 = . 2 Top
(Opym- L tE@)bt - &P 4g2(0rc + ort)? + Flange
MT Z 3 | =
- EQ . .
+ W(d-2t),:(oMT - tE@) - % (opp+oy - 2tE¢)]‘ - Web
- 21 | Bottom
(omB 7 tE@) bt Plange
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.If the expression above is divided by g§, and if the values of
@ ‘E . A-5), O, Eq. A-10) and G (Eq. A-14) are substituted, the
y (Ed ) vt (B4 ) MB(q )

following non-dimensional equation is obtained for the curvature:

. ' 3wZ (4 : .
@167 - (e2aW) (@16, + 20 B (A-15)
Y y ' wd  w.
3(1+ — - =)

bt b

Equation A-15 reduces to Eq. A-9 when o = 0, that is, at the inception

of yielding. The upper limit for Eq. A-15 is when the inside face of

" the compression flange commences to yield, or when yielding has progressed

to the outside face of the tension flange, whichever occurs first.

The first of these limits, i.e., when the inside face begins to
yield, occurs when tE@ = 2a ( oOpc + Grt) (See Fig. 7). In non-

dimensional form

_ (A-16)
y)(l) = (d/ v Wct,(l)

Substituting the value of (@/@

(/¢
Y)(l) from A-16 into Eq. A-15, the following

quadratic eqqatioﬁ is obtained for a(l):

2 LA N T .
@1y " 3(1* 26t T %) [(d/t-Z)a. 1 " WJ =0 (A-17)

The other alternative, that is, when the tension flange commences
to yield before the top flange has yielded through its thickness, requires
that OMp = %y - Ort- This relationship is solved for the curvature in

non-dimensional form (using Eq. A-14) as
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o o Orc
B Faoge 1+ 2 2aw
Hence J b4 ' y
@/8y) )y =1 - W (172 - (3 ) . (a-18)

Substituting this value of (¢/¢y) into Eq. A-15, the following

(2)

equation is obtained for the value of ()

2, 3 22 .
3(1+ W ¥
2bt b

+(1-T)+W(§+§-1)=o (A-19)

The summation of moments about the centroid of the section yields

the following non-dimensional expression for the bending moment.

'3 2.2 ~
Moo g/z) - 2bd W ot - X W (A-20)
b ©@/0y) (s/2) 3z /¢y | 2 0/0, .

The limits of Eq. A-20 are the same as the limits of the curvature

equation, (Eq. A-15).

e) More Severe Cases of ¥Yielding

The procedure which was outlined in the preceding sections is
employed to obtain the curvature and the limits of the application of
the equations for further yielding. In all cases the sum of the forces

is equated to zero to obtain the curvature, and moments are taken about
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the centroid of the original cross section to obtain the bending moment°

The resulting equations are summarized below:

.

1) The limit of elastiC'behavior (Fig. 6)

Moment: . (M/Mf)el 1im = T/f
Cu?vatgre: : @/8) ;. Lim, =T

2) . Compresgsion flangg partially yielded (Fig. 7), tension flang__
- and web elastic (Figﬁ 6) S

Curvatur;:
3 4?2 ¢4
©/8)° -(v+2aW) @8 + Fr w5y " °
: o . 2bt . b
Moment:

- 3, :2..2 . ) ‘

bd“W. W

= : 1/fF) - 2 1 - QW
@y 1D = ey [ T2 ¢/¢y] |

E=

Limits: 0 « & (1) or 0 £ o & @(g) whichever is smaller;

@(1) aﬁd a(2) are defined by:

2 . [4 v, ] .

w2(d 3 a2 2 - H I.
s | vy T g Mt [T G g - D

'2bt'E

3) Compression flange partially yielded (Fig. 8), tension fl ge
and web elastic (Fig. 7) :

Curvature:
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@9/9,)° {3w(d/t) [d/t (1 t o T %)_ ]}%(qf/(zsy) +

s awan? {wd - 1e S _w  + zam)

2bt
Moment:
4t .
- (/D) (8/0) (1- ﬁ)}
Limits:
) £ @ € «3) 7[:0
where (3) is defined by:

{ [1 + 3 (d/t) (d/t- 1)]}

. d 2 (/02 (14 ¥ 3 4l o
—&(3;* 2+ W E.+3 (d/t) (1+ bt "‘g_ )’7 t]} 0((3)-‘-

\ , |
{1w+ - W (/0? 1+ 34 _ W) (L-T-w)]

4) Compression flange partially yielded (Fig. 7), tension flange
partially yielded (Fig. 9), web elastic (Fig. 6).

Curvature:

- 2 (o3 3
(¢/(15y)2 - (T +2aW) (8/8) + We (o - Y7 ) (d/1) _o

3( 1+ w4 _ W
2bt b
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Moment:

2 .
M _[¢ 1\ _ bd_ w? . 4 4];
"M;'..((é_\) (E> 32 (6/8,) [“ 1 A <¢/¢ (o’ +yf

Limits:

a. a . AL
" ¢ R SRR "AC G O

where a(4) and ﬂr'(4) are. defined by:

YV =% )<d/c-1)=(———),
: | 4a . AN
@34),E<--n<—-—;>+3< 2 (- 30~ 1) %;
(d/t - D3 - 1 4)_.}"
- 1 1y2 37 wd _ w | 1 1
3@/ -(z-g) + T+ - 50| -
' (d/t - 13 - " " @enI-1 Y

5) Compression flange partially yielded, (Fig, 8), tension flange
partially yielded, (Fig. 9), web elastic, (Fig. 6).

Curvature:

¢ \> e e (1-2)+ @o? ‘_’_] A%

('6;) | +{3 w(d/t) [d t (1 b)+ t ( ?,b) 'm](iby) +

+ {3w /6y’ [w o - <1 . %) (T+2 qWﬂ}(%—)'lj//V(d/t)] 3.
. k ) y .
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Moment:
v ,—4 . -]; btd [ ( /t)(l VW ] +
M \¢y { 3079, 4/9,
+ [(@185)2 ) | | e
™ (e/9? (1- 35 )]+ G W(l-t/d)- oft/d) (8/dy) (1- 3g )}
Limits: a(3)35; o S; a(s) or a(4) 5; o4 Sé Q(s)

0 < V< Vs, —°F Vi STV <V

where a- and 1”'(5) are defined by:

(3)
1/W + a,v - 1/2
- (5) .
W(S) (@t - D !
1 1
CLZ(—W- —-2—) (1+_“&_E) Q +
(5) 1 (d/t-2) 2bt b (3)
wd
(1+ 76t ~ b)[-(_ _—) w(d/t'lg] _
(d/t-2) =0

Also:

‘ QP‘: LW (@/0y - 1) +(1/2 -a)

6) Compréssion flange, (Fig. 8), tension flange, (Fig, 10) , and
web (Fig. 1l1), partially yielded.

Curvature:
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fare -a+¥+ Fop -2+ W) @/8,) -

ey b gre wd o T __d‘_‘l_
-{W(d/b) [-(H‘—z’ﬁ w)( +a) + ( ‘;_’bt)( 2)+

where "/f= 1/W (¢/¢yi- 1) + (1/2 - a)

-and ’I)= Vu - t/d

(23/(25y
Moment:
5;=1—)'Z_'{(1t/d)[—'W(a,2+ 2)]°t/d(_)[(l-(~%(l- )_'_.
2 (9N e/aya-35) e (22N 1wl - a) -t/a ‘”) (1- 252 4
W @\ 24 62 ) | 2 6; 3
+ PA- 2t/d - 2 P2 }
Limits: < loh \< 0.5

(5)

7) All of the top flange has just yielded.

(Note that this is not a range, but only a point condition. For
bottbm flange and web see Fig. 10 and 11.)

Curvature:

8\ 2 Ta/er (/o (1 - (Q,) | o .

(a/t) (3w/2) (1 - 2%y (& 1) -
(qsy) "‘[ RS “{] o) (3W/2) (a/e)" | 2w~
-2 (1-T) + 3_W +¥(1_%)( ) wcn)J
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1 ¢ 3
where = = [ (l-t/d) 2~ =1
jpf W [ﬁ By :}
and 1) - (1_ ZE) - 1

Moment:

B %_d %1'“‘1) EHW (p-y2 -7 ]- L (e/d) @/8,) (1- 7Yy (1-45) -

-1 2 1g y 2 3t ¢ . 2
3(t/D) (¢y) (%)(1 ?&)} v -2y - +27)

8) All of outside face of bottom flange yielded.

(Note, this is not a range, but a point condition, i.e. 7V‘= 0.5.

For web, see Fig. 1l1).

Curvature:

\ 3 . d .
(¢_ + 3w (d/t)” [(2 ) (w—b) - 2 @1 - w/b (1-m)) & -
@ 2 0
y y
=(14H) (3W) (d/)? ('__.wd) =0
2bt

Moment:

VZIZ
o

= -%1-{(1~t/d) -( )(t/d) (g (1- 2d )}

2/ _
A B R G VIS S W)t/ (1ot/)
62 {(qs/ay) @762 (2 + 3w+ 5-,) e(t/d) (1 t/d)}

+
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SECTION D SECTION Dy SECTION Dy
26WF300 578 ~ 2IWF 73 334 L4WF 43 447
230 354 62 246 38 386
194 312 18WF1l4 867 30 242
150 190 96 646 12WF190 4329
33WF240 496 85 695 106 1785
200 356 66 426 65 786
152 263 | 60 408 58 842
130 188 50 281 53 709
30WF210 539 16WF 96 899 50 830
o 376 88 769 40 578
132 291 78 833 36 568
108 190 58 497 27 343
27WF177 555 50 418 10WF112 3600
145 394 36 222 72 1809
114 256 14WF426 7757 49 966
27WF 94 219 246 3712 45 1130
24WF160 - 621 i42 1580 33 639
130 . 421 320 5147 29 696
120 423 136 1570 21 329
100 309 111 1124 8WF 67 3221

94 342 87 742 31 925 _.
76 305 8 901 28 1010
21WF142 793 78 766 24- 789
112 521 74 895 20 590
96 544 61 640 | 17 . 500

82 412 53 630
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AB: Buckling in the
strain hardening

\E . range.
\ BC: Inelostic buckling

CD: Elastic buckling

Bending about x-x axis

Fig.

1 MOMENT-VERSUS-LENGTH CURVE FOR SIMPLY SUPPORTED BEAM
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Fig. 2 ILLUSTRATION OF THE NATURE OF LATERAL -BUCKLING
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Fig. 3 THE IDEALIZED WIDE -FLANGE CROSS SECTION
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Fig. 4 IDEALIZED STRESS-STRAIN DIAGRAM IN TENSION AND COMPRESSION
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Fig. 5 ASSUMED RESIDUAL STRESS PATTERN
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Fig. 6 STRESS DISTRIBUTION 1IN THE ELASTIC RANGE
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Fig. 7 COMPRESSION FLANGE PARTIALLY YIELDED [tE(b >2 @ (Gt Ort)]
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Fig. 8 COMPRESSION FLANGE PARTIALLY YIELDED ,_t.E(ZS g,za(orc%crt):‘
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© Fig. 11 WEB PARTIALLY YIELDED



" 205A. 2€ A . | o _55
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Fig. 12 MOMENT AND CURVATURE VERSUS TENSION AND COMPRESSION FLANGE
' YIELDING (8WF31)
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Fig. 13 THE "EFFECTIVE" CRCSS SECTION
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Fig. 14 BENDING STIFFNESS OF THE YIELDED CROSS SECTION
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Fig. 15 WARPING STIFFNESS OF THE YIELDED CROSS SECTION
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Fig.16 MOMENT - VERSUS - BENDING AND WARPING STIFFNESS
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Fig. 17 BUCKLING CURVE FOR 8WF31 SECTION
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Fig. 18 INFLUENCE OF RESIDUAL STRESS ON LATERAL BUCKLING (8WF31)
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