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i

In this paper a method is proposed for the solution of the

inelastic lateral buckling problem of as-rolled wide-flange beams

subjected to equal end moments. The method is based on the determina

tion of the reduction in the lateral and the torsional stiffnesses due

to yielding. The effect of initial residual stresses is included in

the calculations. An "exact" analytical procedure is worked out for

several examples at first, and then a simplified formula is proposed

which reduces the computational work considerably. Currently used

empirical design procedures are checked against the results, and a

possible modification of one of. them is discussed.
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1. I N T ROD U C rIO N
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A perfectly straight steel wide-flange beam which is subjected to

bending moments about its strong axis (the x-x axis as shown in the inset

of Fig. 1) will deflect in the plane of the applied moments as long as

these moments are below a certain cri.tical value. However, when the

critical loading is reached, bifurcation of the equilibrium will take

place, and failure due to lateral buckling is initiated by lateral deflec

tion and twisting of the member. (1)(2)

The buckling of axially loaded columns is usually represented by

so-called "column-curves", where the relationship between the length of

the member and its critical load is plotted on a cartesian coordinate

system. Similar relationships can be established for the lateral buckling

of beams. A typical length versus critical moment curve is shown in Fig. 1

for a simply supported steel wide-flange beam subjected to equal end

moments. This curve consists of the following three parts: (1) Portion

CD represents classical elastic buckling(l); (2) P0!"tion AB depicts the

buckling behavior of a very short member for which it can be assumed

that all fibers have been strained into the strain-hardening range(3) ,

and (3)portion BC of the curve corresponds to buckling in the inelastic

range. Buckling in this range takes place when some parts of the cross

section are yielded, while other parts are still elastic. The strain

hardening and the elastic curves are typical Euler hyperbolas which do

not intersect. The curve for inelastic buckling provides a transition

between these two extreme idealizations.
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In the ensuing report a method will be presented for the determination

of the buckling strength in the inelastic range 0 The problem will be solved

for the case of a simply supported as-rolled steel wide-flange beam subjected

to equal end moments causing single curvature deformation, An analytically

"exact" solution will be developed for a given average residual stress

distribution. This solution will then be simplified for design application.

Finally, the results will be compared wi.th existing empirical approximations,

and a possible design modification will be discussed.

1.1 PREVIOUS WORK

Of the three types of problems shown in Fig, 1, the problem of elastic

lateral buckling has been investigated most thoroughly.* Solutions for the

lateral buckling of beams in the strain-hardening range have been developed

recently for structural steel wide-flange beams(3) and for rectangular

beams made of a metal having a monotonically increasing stress-strain

curve~4) Inelastic lateral buckling solutions for steel beams of rectan

gular(S) and wide-flange(6) shape containing no residual stresses are

available, In an unpublished report(7) the author has presented solutions

for the determination of the inelastic lateral=torsional buckling strength

of as-rolled wide-flange beam-columnso The following report is a summary

and an extension of that work in Ref. 7 which per~ains to the buckling of

beams, This work differs from previous solutions in the fact that the

reduction in beam stiffness due to early yielding caused by the residual

stresses is included in the calculations.

*A discussion of this work can be found in Refs. 1 and 2, These references
include extensive listings of the pertinent literature,
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1.2 LATERAL BUCKLING IN THE INELASTIC RANGE

-3

Schematic load-deflection curves for beams failing by lateral

buckling in the inelastic range are shown in Fig~ 2. The inset of Fig.

7a illustrates two possible deflection configurations into which any

interior cross section of the beam may be deformed: For the first of

these, . the only deformation is the transverse deflection v. The

beam is located directly below the undeflected cross section and in

. .

..

iO,

the plane of the applied moment. The second deflection configuration

represents the buckled shape of the cross section. The corresponding

deformations are the transverse deflection v, the lateral deflection u,

and the twist~. Bifurcation of the equilibrium takes place when the

cross section moves from its laterally undeflected deflection configura-

tion to an infinitely close buckled deformation

The curve in Fig. 2a shows the relationship between the applied

end moment Me and the transverse deflection v as Mo is increased from

zero to its maximum value Mm. If no lateral buckling were to occur,

the curve would increase monotonically until it would approach the fully

plastic moment ~ as an asymptote (dashed curve). However, at the critical

moment Mcr (where Mcr is above the elastic limit moment M~ for inelastic

buckling) bifurcation of the equilibrium takes place, and the deflection

curve deviates from its original course because of lateral buckling. The

beam wilt still be able to support a small increase of moment to ~, after

which rapid unloading indicates failure.

The relationship between M and the lateral deflection u or theo

tWisting angle ~ is illustrated in Fig. 2b. No lateral deflection or
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twist is present until the critical moment is reached. As the moment is

increased above Mcr ' these deformations will rapidly increase until Mm:
and thus failure is reached. In the case of smal{ initial imperfections

lateral deformations u and 13 will exist from the start elf loading: (see dot-dash

curve in Fig. 2b),.'"

The computation of the maximum moment for perfectly straight beams

f b . th 11 i . i 1 . i' . , t l' d (2)or or eams W1 sma n1ta excentr1c t1es 15 qU1 e comp 1cate .

For this reason the moment causing initiation of -lateral buckling will

be used as a lower bound to the maximum moment. This moment is computed

on the basis that at buckling no previously yielded fibers will unload

elastically and that additional bending is resisted by the unyielded

elastic core of the member. The critical moment M corresponds to the
cr

critical or "tangent modulus" load of axially loaded columns failing

in the inelastic range.(l) Just as the tangent modulus load is taken

as the critical load for axially loaded columns, here the moment causing

initiation of buckling is taken as the critical moment at which the

structural usefulness of the beam is exhausted. This assumption usually

results in only a small conservative error.
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II. D EVE LOP MEN T .0 F THE THE 0 R Y

11.1 ASSUMPTIONS
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'.

The following assumptions underlie the subsequent theoretical

derivation's:

(1) No external lateral forces are applied to the beam between supports,

(2) The beam is initially straight and fr~e of imperfections.

(3) The cross section retains its original shape during buckling

(that is, local buckling is assumed to be not critical(8»,

(4) The ends of the beam may not translate or twist; however they are

free to rotate ,laterally and the end sections are free to warp

("simply supported" end-condi tions (1) .

(5) The applied end bending moments are equal, causing single

curvature deformation about the strong axis of the beam (see

inset of Fig. 1).

(6) The beams are as-rolled, ASTM-A7 steel wide-flange shapes. The

idealized cross section is shown in Fig.·3 (fillets and variations

of the flange thickness are neglected).

(7) The cross sectional and material properties are uniform along

the whole length of the beam,

(8) The stress-strain diagram is as shown in Fig. 4, The material

properties are assumed to be uniform over 'the cross section. The

following standard values of these coefficients are used for

computational purposes:

(J y = 33 ksi
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E = 30,000 ksi

Est= 900 ksi(8)

G = 11 ,500 ksi

Gst= 2.,400 ksi(8)

(9) The assumed residual stress pattern is shown in Fig. 5~9)

These stresses are assumed constant across the thickness of

each cross section element. The stress ~rc is the maximum

compressive stress at the tips of the flanges, and rrrt is the

maximum tensile residual stress. Consideration of equilibrium

requires that the relationship between ~rc and ~rt be the

following: (9)

[
bt orc 1

rrrt = bt + w(d-2t) J ..•. (1)

where b, t, w, and d are cross sectional dimensions defined

in Fig. 3. A maximum compressive residual stress of ~rc =

0.3O-y will be used for the numerical computations~9)

11.2 THE BUCKLING EQUATION

The equation representing the critical combination of length and

end moment for simply supported wide-flange beams under uniform moment

has been derived by Timoshenko.* This equation may be written in the

following form:

..

2
(Mo)cr . . . • (2)

*The derivation is shown in Chapter V of Ref. 10. Timoshenko's derivation
was made specifically for elastic buckling. However, the process can be
extended to include also inelastic buckling if the stiffnesses are in the
general terms of By, CT , Cw instead of the usual elastic expressions Ely,
GKT and EIlJ
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wh2re

=7

(MQ)cr End moment at initiation of buckling

By = Bending stiffness about the y=axis

L = Length of the beam

= St. Venant torsional stiffness

Cw ::;: Warping stiffness.

Equation 2 is the characteristic value of the differential equations

of lateral buckling under pure moment for the following simply supported end

conditions:

u = at z = 0 and z = L

The coordinate z is measured from one end of the beam al~ng the deformed

centroidal axis (see inset in Fig. 1).

The stiffness coefficients By, Cr and C~l are equal to the

following expressions in the elastic range:

EI d2
Y=
4

• • . • • (3)

where I = Moment of inertia of the. wide- flange section about i t-s y.,.axis
y

K.r = St. Venant torsion constant(ll)

I W '= Warping constant(ll)

d = Depth of the section (See.Fi~~ 3).

If buckling takes place after certain portions of the cross section have

already yielded, the expTessions of Eq. 3 for the stiffnesses need not hold
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true. Yielding reduces the stiffness of a member, and therefore the inelastic

values of By, CT' and Cw will not remain constant. They will vary with the

amount of yielding. The primary purpose of this report is to establish the

variations of the stiffnesses due to yielding, and then to solve Eq. 2 for

the values of the critical moments in the inelastic range.

The derivation of Eq. 2 implicity assumes the following two conditions:

(1) The stiffnesses may not vary along the length of the member, and (2) the

shear center must lie in the plane of bending (that is, the y-y plane). Since

the moment is uniform along the whole length of the beam, each cross section

is subjected to the same forces, and thus each cross section is yielded

identically. Therefore the stiffnesses do not vary along the z-axis. Further

more, yielding will be symmetrical about the y-y axis because of the symmetrical

residual stress pattern (see Fig. 5). As a consequence, the shear center

will remain on the y-y axis. Thus both conditions imposed by Eq. 2 are

fulfilled for a yielded wide-flange beam.

11.3 DETERMINATION OF THE ZONES OF YIELDING

In order to be able to compute the stiffnesses governing the

buckling equation in the inelastic range, the yielded pattern corresponding

to the applied bending moment must be known. The relationships between

the bending moment and the corresponding curvature and the yielded zones

are derived in Appendix A by a step-by-step procedure, starting from the

unloaded state and leading to successively more and more severe cases of

yielding. The process consists of finding the curvature and the bending
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moment caused by given stress patterns. These stress-patterns (shown

in Figs. 6 to 11), as well as the yielded configurations, ar~ dependent

on the cross sectional geometry (Fig. 3) and on the initial residual stress

distribution (Fig. 5).

The equations expressing the relation between the moment M, the

curvature ¢, the compression flange yielding parameter CL (Figs. 7 and 8)

and the tension flange yielding parameterY(Figs. 9 and 10) are tabulated

at the end of Appendix A. Several sample derivations are given at the

beginning of this appendix to illustrate how the equations are developed

from the equilibrium conditions.

The results of the computations are. shown in ,Fig ..12 for the

8WF3l section. The curves in the upper portion of this figure show the

variation of the moment and the curvature with compression flange yielding

CL, whereas the curves in the lower half of Fig. 12 give the relationship

betwe8u M, ¢, and the tension flange yielding parameter'~

With the aid of Fig. 12 it is thus possible to determine the

extent of yielding corresponding to any moment. (See inset in Fig. 12.)*

11.4 SIIFFNESSES OF THE YIELDED CROSS SECTION

In the previous section it was shown how the yield-pattern of a

wide-flange cross section corresponding to a given moment can be obtained.

* Web yielding Vd can be determined from equations given in Appendix A.
Since the web contributes little to the lateral stiffness of the cross
section, no M vs,) curves are shown.
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The yielded configuration of the section is shown in the inset of Fig, 12,

From this sketch it may be observed that yielding (cross~hatched area) is

synnnetrical about the y-y axis, and that the interface between the elastic

and the plastic portions of the flange is inclined across the fl~nge

thickness, In order to simplify subsequent calculations this inclination

is neglected; the simpler yield pattern is shown in Fig, 13. The compression

flange is assumed yielded uniformly a distance ~b from the toes of the

flange, and the tension flange is yielded a distance 1ft' b from the center.

Since this simplification reduces the elastic core by a small amount, the

foregoing assumption is conservative,

In the derivations of Appendix A it was stipulated that the

stresses may nowhere exceed the yield stress a y .* As a consequence the

strains in the plastic sections lie on the flat portion o~ the stress-strain

d.i.d.gram, where the modulus of elastici ty is equal to zero. Since the

bending stiffness By and the warping stiffness Cw are d~pendent on the

modulus of elasticity (Eq. 3), only the elastic core can be assumed to

furnish those stiffnesses. It has been shown(5) that at the start of

lateral buckling St, Venantis torsional stiffness CT is not dependent on

the amount of yielding, and therefore the full elastic value of CT = GKT

can be used for substitution in the lateral buckling equation, Thus only

the stiffnesses By and Cw need be computed for the unyielded core of the

wide-flange cross section.

* A proof that this assumption is correct can be seen from Fig, 12, where
the maximum curvature when both flanges are fully yielded is equal to
1,52 0y ' This curvature is considerably below the curvature at the
start of strain hardening ( 0st ~ 12 0/3», and thus the yielded
portions can be assumed to have no resistance to additional bending.
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Bending Stiffness By.

-11

The bending stiffness of the elastic core about the y axis is

equal to (See Fig. 13):

A rearrangement of this expresssion yields the following equation for By:

. • • • . (4)

where I is the moment of inertia qf the original unyie1ded seGtion.y

(Iy = b3t ). and B1 is a reduction factor which is equal to
6

This relationship between~. ~. and B1 is i11ustrate~ in Fig. 14.

When the section is fully elastic ( ~ = r = 0). B1 ~ 1.0. and when

~ = r =0.5 (full yielding of the. flanges). B1 =O.

Warping Stiffness CWo

. (5)

The warping stiffness of a section with unequal flanges has been

det~rmined (Eq. 231. Ref. 1) as

. • . . • (6)
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where 1
1

is the moment of inertia of the compression flange about the

y-axis, and 1 2 is the corresponding property of the tension flange. From

Fig. 13 it is seen that

3(1-20.) · . . . . (7)

· . . . . (8)

Substitution of Eqso 7 and 8 into Eq. 6 gives the following expression

for the warping rigidity:

· . . . . (9)

where I is the moment of inertia of the original section, and B2 is a
y

reduction factor equal to

=

1/r3 3(1-8 L ) (1-20.)
. . . . (10)

The curves relating a., y and B are shown in Fig. 15. At a. =If = 0,
2

B2 = 0.25, thus fulfilling the fully elastic boundary condition. At a. = 0.5)

that is when the compression flange is fully yielded, Bi = 0 for any

value of -r This means that when the effective s~ction is aT-section,

the warping rigidity is zero.(l)
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The curves in Figs. 14 and 15 permit the determination of the

stiffnesses By and Cw when ~ and¥i are known. In subsequent calculations

it is desirable to have a direct relationship between the moment and the

stiffness coefficients Bl and B2 . This may be accomplished by eliminating

~ and T with the aid of Fig. i2, where the moment versus ~ and y
curves are shown. The resulting curves for the 8WF3l section are given

in Fig. 16, where moment is plotted directly against Bl and B2 . Thus if

M is known, the corresponding stiffnesses By and Cw can be immediately

determined from this figure and from Eqs. 4 and 9.

11.5 THE INELASTIC BUCKLING CURVE.

The equation of buckling (Eq. 2) can be rearranged in the following

manner:

2 4
(M) L <.

""'0 cr
2 C L2 .... 4 C B = 0

T( By T - JL W Y

If this equation is divided by ~2 = Z2 uy
Z (where Z is the plastic

modulus) and by r y
4 (where r y is the weak axis radius of gyration of the

original cross section), and if the expressions for B ,C and Care
y T w

substituted from Eqs. 4, 3c and 9, the buckling equation can be written

in the following non-dimensional form:

l(~rJ ~~)4_~'::i )(7) Bl} (r~ j_.

_[(~2Er . (11)
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Equation 11 is a fourth order equation in that slenderness ratio

L/ry which corresponds to the critical moment at which lateral buckling

commences. The coefficients of L/r consist of the cross sectional con
y

stants AKT

Z2
and (where A is the cross sectional area of

the original section), the material constants
2. 2

and ( 11 E ).
cry

the non-dimensional bending moment Mo/~' and the coefficients Bl and B2

which are directly dependent on the moment.

The con~truction of the critical length-versus-moment curve of

Fig. 1 can be performed in the following manner: For a given wide-flange

cross section first the moment versus Bl and B2 ~urves are developed (as

shown- in Fig. 16 for the 8WF3l section). Next,Eq. 11 is solved for

L/ry for assumed values of the moment. This is done for a sufficient

number of moment values until the whole course of the buckling curve is

established. Figure 17 shows such a curve for the 8WF3l section. For

moments from 0 to 0.631 ~ elastic buckling governs. In this region the

stiffnesses By and Cw are undiminished. For a moment larger than 0.631 ~,

yielding takes place due to the presence of residual stresses before the

section buckles. Points on this portion of the curve are computed by

assuming a moment (Mo > 0.63 Mp)' finding the values of Bl and B2 corres

ponding to this moment from Fig. 16, and solving Eq. 11 for the critical

weak axis slenderness ratio. The increments of moment used for the

inelastic part of the curve in Fig. 17 were chosen at 0.05 M .
P

The cut-off point for the start of strain hardening (at

L/ry = 20 in Fig. 17) is computed by a method suggested

2 is solved by setting B
Y

G K and Cw =
st T

in Ref. 3. Equation
2

Estlyd ,where
4
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Est and Gst are strain hardening moduli. It has been shown(20) that this

poinsat which the whole section can be assumed to be strain hardened at buckling,

occurs at a slenderness ratio of about 20 for all rolled wide-flange

sections.

The curve in Fig. 17 describes the buckling behavior of an 8WF3l

section over its whole length range. Inelastic buckling governs up to a

length of about 220 r , or to about 37 feet. Thus it can be seen thaty

for practical lengths one must consider the reduction in buckling strength

due to yielding.

The error involved in assuming that yielding does not start

until the yield moment MY = s cry (where S is the section modulus) is

reached is illustrated in Fig. 18. In this figure curve A represents the

inelastic solution including residual stresses, and curve B is a

continuation of the elastic Euler hyperbola until (M) = M. A straighto cr y

line transition has been used from the yield moment to (Ma)cr = MP at

the start of strain hardening. It can be seen that the residual stresses

have a considerable influence on the buckling strength, and that their

neglect may lead to results which may be as much as 30% unconservative.

The usual design procedure which does not permit the use of

moments larger than the yield moment is shown by the dashed horizontal

line in Fig. 18. One can note that for L/ry >90 this rule leads to

unconservative answers, whereas in the range of 0 < L/ry < 90 the full

strength of the beam is not utilized.
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A method has been presented for the determination of the buckling

curves for wide-flange beams failing by inelastic lateral buckling.

Numerical results are shown for the 8WF3l section in Fig. 16. Additional

calculations by the same procedure were made for the 27WF96, the l4WF142

and the l4WF246 section. The results of the calculations are shown as the

solid line curves in Fig. 19.

This method of computing the inelastic lateral buckling strength

has one serious shortcoming: the computational work is too laborious. The

main reason for this is the complex geometry of the stress patterns result-

ing from the cross sectional shape of the wide-flange section and the

residual stress existing before load application.

A simplification of the calculations may be achieved as follows:

In Fig. 20 are shown the reduction curves for the four sections for which

computations were made (27WF94, 8WF3l, l4WF142, l4WF246). In the upper
"

portion of the figure the M/~ versus B1 relationship is given, while in

the lower half the curves for M/~ versus B2 are shown. It can be observed

from this figure that for even these geometrically dissimilar wide-flange

sections the range in which these curves lie is not very great. Therefore

no great error will result if one average curve is used for any wide-flange

section. These approximate average curves are shown as heavy solid lines

in Fig. 20 .

The use of these average curves for Bl and B2 simplify the
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ca~culations considerably. Al~ that is necessary for the determination

of the buckling curve is the solution of Eq. 11 for (L/ry) cr for the

assumed moment values (MO/Mp)cr,using Bl and B2 from the average curves in Fig.20.

The lateral buckling equation (Eq. 11) ~an be Written in the

following form:

I~ this equation the coefficients

..

constants, depending

1{2EG
, 2
0y

on the properties of

and ~ 0;2E )2 are

the ~terial. Furthermore, a

.(12)

computation of (Ad/Z) and (l-t/d) for a majority of the tabulated wide-

flange sections has shown that these coefficients are nearly constan~ for

'all sections. The average values of these constants are ~ ~ 2.53
Z

and (l-t/d) =- 0.950. Substitution of the material constants of

0 = 33 ksi, E ='30,000 ksi and G = 11 ,500 ksi, ~nd the average cross
y

sectional constants Ad and l~t/d into Eq. 12 leads to the following
Z

explicit equation for the cr~tica1 length:

•
. . . . . (13)
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where the coefficient Dr is equal to

=

6KT x 10
. ~ .. (14)

•

An examination of Eq. 13 shows that the critical length cox::res-

ponding to a given moment is dependent only on the non-dimensional ratio

DT. Values of this coefficient are tabulated in a table in Appendix B.

The values of D
T

for sections usually used as beams vary from.about 200 to

900. Since DT = 219 for the 27WF94 section, and DT = 925 for the 8WF3l

section, the curves for the beams fall into the narrow band between the

curves for the 8WF3l and the 27WF94 sections in Fig. 19 •

The buckling curves resulting from using the above simplifications

are shown as dashed lines in Fig. 19 for the 8WF3l and the 27WF94 sections.

The difference between the "exact" curves and the approximate curves is

quite negligible, especially in the inelastic range. It may therefore

be concluded that the approximations do not greatly influence the final

result, and thus a relatively simple way has been found to determine

inelastic buckling curves for as-rolled wide-flange sections.
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IV. COM PAR ISO N WIT H DES I G N
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A P PRO X I MAT ION S

The fact that the buckling strength of beams is reduced due to

yielding before the theoretical yield moment My is reached has been known

for some time.(12) Because no direct computation of the reduction has

•

been available, empirical design approximations have been suggested for

the computation of the critical moment in the inelastic range. These

approximations can be grouped into two categories: One of these methods

is to provide an empirically determined transition curve between the

elastic Euler hyperbola and an allowable maximum moment at zero length.

The other method consists of computing the critical moment by the elastic

formulas, and then to r'educe this "ideal II moment in accordance wi th an

empirically determined reduction curve to an lIa 110wab1e" moment. The

first approach has been used extensively in this country(l2), and the

latter is the basis of the German buckling specifications.(13)

In the following one of each of the above discussed procedures

will be compared with the "exact" theory of this report.

IV.1 COMPARISON WITH A TRANSITION CURVE METHOD

It has been shown (12) that the critical elast'ic allowable lateral

buckling stress can be expressed by the following approximate equation:

12 x 106

(crcr)w =--L-d---

bt

..... (15)
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where ( o ) is the critical working stress (psi).cr w

-20

The terms L, d, b

and t are as defined in Fig. 1 and 3. !he ma~imum value of ( 0cr)w is

the yield stress 0y divided by a safety factor. If the minimum yield

stress is specified as o y = 33 ksi. and .if the maximum allowable stress

is 20 ksi(14), the safety factor is 1.65. The critical stress in Eq. 15

can thus be written in terms of the ul~imate stress as

=
12 x 106 x 1.65

Ld/bt
= 19.8 x 106

Ld/bt

Multiplying the critical st~ess by the section modul"ts S .and non-

dimensionalizing it through division by Mp = Z 0 y' the following

expression results for the critic~l moment:

1
f (

600 )
Ld/bt

" . . (16)

where f is the shape-factor. Equat~on 16 is a non-dimens~onal form of

the AISC lateral buckling rule;(14) A plot of this equation is shown

as a heavy solid cur~e ~n Fig. 21. Since the limiting moment of Eq. 16

is the yield moment My, the curve is cut-off by a horizontal plateau at

Mo = 0.876 Mp (if an average value of f = 1.14 is used as the shape factor)

and at Ld/bt = 600. On the same figure (Fig. 21) are also plotted the

"exact" curves computed in this report for four sections. It may be

observed that the AISC rule is conservative in the ranges of 0 ( ~~~400

and above about Ld/bt = 800. In the range 400(~ (800 the rule

results in a reduction of the safety factor below the minimum value of 1.65.
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In order to keep the safety factor everywhere above 1.65, the

( 12)
following transition curve has been proposed :

acr = 33,000 - 0.0125 (Ld/bt)2

Equation 17 can be non-dimensiona1ized into

(~) cr • } ~ - 0.378 x 10
6

(Ld/bt)2]

This transition curve is shown as a dashed curve in Fig. 21.

· . • . . (17)

· . . . . (18)

It lies

ever~vhere below the theoretically determined curves, and is thus con-

servative. It's range of application is <Ld (a bt 775.

A possible new design approach, which would retain the well

known Ld/bt parameter and which would make more efficient use of the

inelastic strength of the beam, is shown in Fig. 22. A straight line

transition curve between elastic buckling (Ld/bt ~ 800) and buckling

in the strain hardening range is shown in this figure. The corresponding

equations are as follows:

1.00

-' Ld./ r d
for 0 ~ bt ~35 ...:L

bt

· • . . . (21)
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0.342 bt ": 35
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( Mo) - 1.000 _
Mp c; 800 - 35

~J
ryd

bt

-22

..... (22)

..... (22)

for

526
Ld/bt

:cor

35 ryd ..; Ld (' 800
bt ~. bt ~

800 " Ld <00
" bt "

. ~ .. ; (23)

Equation ~l repre~ents the lateral bracing spac~ng rule used in .plastic

design(18), which states that 'in the vicinity of a plastic hinge (that

is Mo = Mp), the critical length for uniform moment is equal to 35 r y .*
(Since the non-dimensional length parameter used is Ld/bt, the slender-

ness ratio =
Ld

bt
x

bt

dry
) . Equation 23 is the AISC Ld/bt rule,

which governs elastic instability (see Eq. 16, wq.ere the shape factor is

set equal to 1.14). Equation 22 represents the straight line transition

between the end points of Eq. 21 and 23. In Fig. 22 the curves of

these three equations are compared with the "exact,II solutions for four

cross sections. It is seen t,hat the proposed curves utilize th~ inelastic

strength of the beam, .while at the same time they repres~nta safe lower

bound.

------~--~----~----------------------------

* This rule has been shown to be correct by theoretical and experim~ntal

means.(3)(19)
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IV.2 COMPARISON WITH A REDUCTION CURVE METHOD
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The Column Research Council(15) has proposed that for an

approximate determination of the inelastic buckling strength of beams

it can be assumed that the relationship between elastic and inelastic

buckling strength is the same for beams as for columns.* Since the

inelastic buckling strength of axially loaded columns is well known,(15)

the relationship between elastic (Euler) buckling and plastic (Engesser-

Shanley) buckling can be easily established. The elastic, or "ideal"

1C 2EIbuckling stress of a column is If this expression is
O'cr =

L2

divided by v y , and the values of 33 ksi and E = 30,000 ksi

are substituted, the following equation results for the ideal stress:

8970
=-- 2.. (L/r)

. . . . . (19)

The inelastic buckling stress for wide-flange sections can be approxi~ted

(
ocr)--a; all = 1 -

(L/r)
645

(L/r)2
111,000

. . . . . (20)

The curve showing the ideal-versus-allowable stress relationship, as

computed by eliminating the slenderness ratio from Eqs. 19 and 20 is

shown in Fig. 23. Since it is assumed that the same curve will approximate

lateral buckling, the coordinates in this figure are expressed as critical

bending moments.
------------------------------------------

d 1 , h b kl' 'f" (14)* This same philosophy un er ~es t e German uc ~ng speC1 ~cat~ons,

See also Ref. 16 for further explanation of this method.
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The lateral buckling strengths of a beam can be thus approximated

by calculating the elastic critical moment (by keeping Bl = 1,0 and B2 = 0,25

in Eq, 11), and then entering the reduction curve of Fig, 22 and directly

reading off the inelastic "allowable" moment.* The results of the computa-

tions for the 8WF3l section are shown in Fig. 24, where the approximate

curve is dra~~ as a dashed line. The comparison is fair, with a maximum

deviation being about 5%.

* This method is especia.lly useful for cases where the end conditions
of the beam are not simple and where the beam, is subjected to lateral
loads or a moment gradient. Elastic solutions are available for these
cases(16) , wherea.s the computation of "exact" inela.stic solutions seems
too difficult at this time.
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v. CON C L U S ION S

In this report a method has been presented for the determination

of the inelastic buckling strength of steel wide-flange beams failing by

lateral buckling. The method has been illustrated for the case of wide

flange beams because o.f their frequent occurrence in civil engineering

structures, The type of solution, however, may be adapted for any cross

sectional shape under any residual stress distribution, provided that

bending takes place in a plane of symmetry, and that the residual stresses

are also symmetrical about the plane of bending. A further stipulation

is that bending is uniform and that the stress-strain diagram can be

approxi~ted by straight lines.

An extension of this work would be to compute the lateral buckling

strength of beams subjected to unequal bending moments or to loads placed

between the supports. In this case the moment, and thus the distribution

of yielding along the length of the beam, is non-uniform. The best way

of obtaining a solution would be to solve the differential equations of

lateral buckling by the method of finite differences, possibly with the

aid of a digital computer. The stiffness reduction curves of Fig. 20 can

b~ utilized in these calculations.

The critical length versus end moment curves for a given wide

flange section are obtained in the following manner:

(1) The yielded zones corresponding to a given inelastic moment

are determined with the aid of the conditions of equilibrium.

General equations are given in Appendix A, and the curves
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relating compression flange and tension flange yielding

corresponding to various moments are shown in Fig. 12

for the 8WF31 shape.

(2) The weak axis bending stiffness By and the warping stiffness

Cw for the "effective" reduced section are computed by Eqs.4

and 5 and Eqs. 9 and 10, respectively. Curves showing the

reduction coeff:i.dents Bl and B2 are shown in Fig. 16 for

the 8WF31 section, The St. Venantis torsional stiffness is

not reduced due to yielding. (5)

(3) The lateral buckling equation (Eq. 11) is solved for the

critical length for va.rious assumed values of the inelastic

moment and the corresponding reduced stiffness. The result

ing curve for the 8WF3l section is shown in Fig. 17.

A simplification of this procedure can be accomplished by noting

that the moment versus stiffness reduction coefficients B1 and BZ are

nearly the same for all wide-flange sections, (see Fig. ZO) and that

certain non-dimensional cross sectional properties can be assumed to

v~ry only a small amount for the tabulated rolled wide-flange shapes.

The critical length corresponding to any inelastic moment can be expressed

byEq. 13.
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. The results of the "exact" procedures have been compared with

currently used design approximations (see Figs. 21 and 24) , for the

determination of inelastic buckling strength. It was shown that the

AISC Ld/bt rule, coupled with a parabolic transition curve in the

inelastic range, provides a suitable lower bound for wide-flange sections.

A possible modification of this rule is illustrated in Fig. 22.

The corresponding design equations are Eq;:~Iil~ 22 and 23. This

modified rule would make better use of the inelastic strength of beams,

..

especially for lengths below Ld = 300.
bt
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VII. NOM ENe L A T U R E

a Cross sectional area (in. 2)

= Stiffness reduction coeffi.cients

= Weak axis bending stiffness (lb. -in. 2)

torsional stiffness (lb.-in.
2

)

= Warping sti.ffness (lb.-in. 4)

::: Cross sectiOi~.al. coefficient defined by Eq. 14

= Modulus of e:lasticity (psi)

Strain harcening modulus (psi)

Shear modulus (psi)

= Shear WJdulus in the strain hardening range (psi)

= Moment of inertia about the y-y axis (in. 4)

::: Effective momenta of inertia of the compression flange and the
tension flange, respectively. (in. 4)

= Warping coefficient (in. 6)

= Torsion coefficient (in. 4)

= Unsupported length of the beam (in.)

= Critical length (in.)

= Applied end bending moment (in.-lbs.)

= Ultimate moment, (in.-lbso)

= Critical end moment (in.-lbs.)

= Plastic moment (ino-lbs.)

= Yield moment (in.-lbs.)

Section IDI:lduhlS (in. 3 )

Plastic modul~s (in. 3)

= Non-·dimensional coefficients defin,ed by Eqs 0 A-8, A-13 and A-ll,
respectively
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b =Width of flange (in.)

d = Depth of beam (in.)

f = Shape factor

r = Weak axis radius of gyration (in.)
y

t = Thickness of flange (in.)

u = Lateral deflection (in.)

v = Transverse deflection (in.)

w = Thickness of web (in.)

~b = Compression flange yielding (in.)

~ = Angle of twist

-30

..
= Curvature, curvature at the yield point, curvature at the

onset of strain hardening, respectively.

..

~ = Tension flange yielding (in.)

,) d, L d = Web yielding (in.)

~_ ~ = Compression and tension flange stresses, respectively (psi)
l"lT' MB

= Yield stress (psi)

= Maximum compressive and tensile residual stresses, respectively (psi). CTrc,CTrt

...C& = Cri tical s tress (psi)
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The relationship between the applied bending moment and the resulting

curvature and yield patterns are developed below by a step-by-step procedure.

a) The Unloaded S t.e~te

In the unloadod state only the residual stresses are present on the

cross section. Their magnitude and distribution is shown in Fig. 5.

b) Elastic Behavior

Figure 6 shows the stresses on the three components of the cross section

(the compression flange, the web, and the tension flange). In this figure

arMT and ClMB are the absolute values of the maximum top or compression

flange stress and the bottom or tension flange stress, respectively. The

angle 0 is the curvature of the section in the plane of the web. Strains

are assumed proportional to the distance from the neutral axis.

If the forces in each of these parts due to the stresses are summed

and equated to zero, it is found that

(A-l)

The summation of the moments about the center of the section due to the

assumed stress dilstribution gives

M = (J S
MT

(A-2)

where M is the moment applied to the section and S is the section modulus.

Because it will be more convenient to work with non-dimensional

ratios, both sides of equB\\tion A-2 will be divided by ~ = (J yZ, where



20SA.28 -32

M is the fully plastic moment, and Z is the plastic modulus. Thus, the
p

non-dimensional form of Eq, A-2 is

M
(A-3)

where f = zis is the shape factor of the cross section.

The curvature ¢ is obtained by geometry from Fig, 6.

tan E0 "';f E0
d

2 a MT

d
(A-4)

If .the yield stress cry is used in Eq, A-4, the Ilinitial yield curvature"

E0y is obtained. Therefore

(A-S)

and

The limit of elastic behavior is reached when

a >a (see Eq. 1), yielding will first commence
rc rt

a +a = a
MB rt y

elastic range, and

whichever occurs first, Since

(A-6)

a + a = a or
MT rc y

aMT = a in the
MB

in the compression flange, Thus

(;)= 1 _ ~c
el.lim,

Using the abbreviation

(A-7)
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T = 1 -
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(A-8)

the values of the moment and the curvature at the commencement of yielding

are:

(A-9)

,

c) Part of the Cross Section is Yielded

From Fig. 6 it can be seen that the yield stress will first be reached

at the tips of the compression flange, since it is here that the maximum

compressive stresses due to bending moment and the maximum compressive

residual stress are additive. The various stages of th~s partially

yielded condition are shown in Figs. 7 to 11 for the three components of

the cross section. Figures 7 and 8 show the compression flange. Figure

7 gives the case where yielding has not yet penetrated through the thick-

ness of the flange and Fig. 8 shows the case where yielding has penetrated

through the flange. -Figures 9 and 10 give the corresponding situation on

the lower flange, while Fig. 11 depicts the stresses in the web.

Yielding commences first on the outside faces of the tips of the

compression flange, and it progresses toward the center of the flange.

The amount of yielding measured from the outside face of the flange is

~b. The maximum extent of possible yielding is when yielding has

bprogressed over the whole width of this face; thus (~b)max = 7 or

1
-,:. The tension flange (Fig. 9) will begin to yield at the
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center of the flange~ and yielding will progress toward the tips. The

amount of yielding in this flange is designated as rb (see Figs.

9 and 10) and therefore 1
2

From Figs. 7 and 8 the following relationship can be developed

for the stress 0 MT:

0+20.(0 +0 )Y rc rt

In non-dimensional form

where

(A-10)

w (A-ll)

By similar considerations from Figs. 9 or 10, the bottom flange

str.ess is:

.,

where

u = 1 _ 0 rt
cry

(A-12)

(A-l3)
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The relationship between top flange and bottom flange stresses

(From Figs. 6 or 11) is determined by the geometry of similar triangles:

aMT art
d- ~+ E0

..

Non-dimensionalizing this expression, and solving for a MB'

(A-14)

d) Compression Flange Partially Yielded, tE(Il > 20, ( arc + art).
Tension Flange and Web Still Elastic

The stress picture at the initiation of yielding is shown in Fig. 7

for the top flange. The tension flange and the web remain elastic, and

the stresses for these components are shown in Fig. 6.

Summing up forces on the cross section:

- (aMB - ! tE(Il) bt
2

Top
Flange

Web

Bottom
Flange
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If the expression above is divided by

-36

a: , and if the values of
y

0
y

(Eq, A-S) , O'MT (Eq. A-10) and rr (Eq, A-14) are substituted, the
MB

following non-dimensional equation is obtained for the curvature:

2 a. 3W2 (d/t)
(r/J/C/Jy) - (T+2 a. W) (0/0y) + ~--- = 0

3(1+ ~'d _ !:L)
2bt b

(A-1S)

(A-16)

Equation A-1S reduces to Eq, A-9 when a. = 0, that is, at the inception

of yielding, The upper limit for Eq, A-1S is when the inside face of

the compression flange commences to yield, or when yielding has progressed

to the outside face of the tension flange, whichever occurs first.

The first of these limits, i.e., when the inside face begins to

yield, occurs when tE0 = 20. ( arc + art) (See Fig, 7), In non-

dimensional form

(C/Jl0 y ) (1) = (d/ t) Wa. (1)

Substituting the value of (0/C/JY)(1) fromA-16 into Eq, A-1S, the following

quadratic equat~on is obtained for 0.(1):

2 3 ( 1+ d~.t - w. [
a. (1) + 4D b ) :.(dlt-2) a. (1) - ~J = 0 (A-17)

The other alternative, that is, when the tension flange commences

to yield before the top flange has yielded through its thickness, requires

that a ME = a Y - a rt· This relationship is solved for the curvature in

non-dimensional form (using Eq. A-14) as
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Hence
= 2 C/J/0y -1 +

-37

(0/C/J ). = 1 - W ( 112 - C,(2)· )
Y (2)

Substituting this value of (C/J/0
Y
)(2) into Eq. A-1S, the following

equation is obtained for the value of a,(2):

(A-18)

2 2 "
- W u. - i'W a. (2) +

(2) ,

+ (l-I) + W ( *+ ~ - 1) = 0
(A-19)

The surrmw.tion of moments about the centroid of the section yields

the following non-dimensional expression for the bending momento

M
Mp

G- a W JL 2 C/J/0 y ,
(A-20)

'.

The limits· of Eq. A-20 are the same as the limits of the curvature

equation, (Eq. A-1S).

e) More Severe Cases of Yielding

The procedure which was outlined in the preceding sections is

employed to obtain the curvature and the limits of the application of

the equations for further yielding. In all cases the sum of the forces

is equated to zero to obtain the curvature, and momen.ts are taken about
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the centroid of the original cross section to obtain the bendingtl1C)ment.

The resulting equations are su~rized below:

1) The limit of elastic behavior (Fig. 6)

l1oment:

Curvature:-
(M/~)el. lim. = T/f

(f/J/f/JY)el. lim. = T

2) Compression flange partially yielded (Fig. 7)! tension flange
and web elastic (Fig. 6) .

Curvature:

a 3 W2 (d./t)
(f/J/f/Jy ) 2 - (T+2 Ci W) (0/0y ) + = 03(1+ wd ..- ~)

2bt b

~loment:

M = (0/¢y) (l/f) 
lip

Limi ts: 0 ~ a. ~ 0.(1) .or 0' a., 0.(2) whichever is smaller j

0.(1) and 0.(2) are defined by:

2 [dW
. n(l) + 3 7Et-

[

W2(d/t) ~i
3(dw _ ~ + 1)

2bt b

3) Compression flanse partially yielded
and web elas tic (Fig .7)

Curvature:

(Fig. 8» tension flange.



[
d/t (1 + dw _

2bt

•
2Q5A,28

Moment:

(0Ny ) 2 + {3W(d/ t)

+ 3W(d/t)2 {~~2 _ (

-39

~) - ~\(0/0Y) +

(T + 2 o.~i = 0

M .

Mp
(1- ~) +0. 2 W(l-t/d)

Limits:

- a. (tl d) (1- 4t)}
3d

•
0.(1) .<. 0. <; 0.(3) Y= 0

where 0.(3) is defined by:

~W2 L1 + 3 (d/t) (d/t-1)]~ 2
0.(3) -

{

' 2

+ . l-W + W4 + 3W (dl t) 2 (1+ wd _ ~) (1 - T - ~)1 = 0
2bt b 2 ~

4) Compression flange partially yielded (Fig, 7), tension flange
paitially yielded (Fig, 9), web elastic (Fig, 6),

Curvature:

W2 (0. 3 - 1ff3 ) (d/t)

3( 1+ wd _ !!)
2bt b

= 0
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Moment:

Limits:

[ ..3 +r- w

-40

. I. "lt/]
( a. '+ + T t.+~J

a. , a. ~
(2)'" .

a.
(4) ,

•

where 0.(4) and ~(4) are, defined by:

The relationship between a., ~ and 0/0y is:

1 1
W - "2"

(d/t-l)3 - 1 = 0

5) Compression flange partially yielded, (Fig, 8), tension flange
partially yielded, (Fig. 9), web elastic, (Fig. 6).

Curvature:

(:y)3 +t W(d/t) [<d/t) (1 - ~)+(d/t) 2 ( ~li) _~](:y) 2 +

+ {3W (d/t) 2 [W ..
2

- ( 1 t ~~t - ~) (T+2 "w~)J [!'w(d/t)] 3 0 0
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Moment:
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~ =('~)':(1:.)_ btd J.I~ (d/tHl-1l ~ +
~ \ f/J y f Z lL 3f/J/0y 0/f/Jy J

+ [(f/J/f/Jy)
2

2 3t J 2 4t 1
' 3W (t/d) (1- 2d ~ + (1, W(l-t/d).- a,{t/d) (f/J/0y) (1- 3d 1

Limits: or

or ,Ir' ?.. llr <. 7/r
T (4) -....; T '" T (5)

where (1,(5) and ~ (5) are defined by:

l/W + (1,(5) - 1/2

(d/t - 1)

Also:

~2 R~ -t) wd w J
(5) -L~(d/t=2) + (1 + 2bt - b) (1,(5) +

T,yd w fd 1 1 T l
(l+7Dt -b)LF (W -"2) - w (d/t - 1~

(d/t-2)
= 0

r = l/W (f/J/0y - 1) + (1/2 - (1, )

~) Compr~ssion flange I (Fig. 8) I tension flange I (Fig. 10). and
web (Fig. 11) I partially yielded.

Curvature:
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where

and

Moment:

Limits:

-42

.Ld/ t -~ +7{f+ ~~t - ~ -(~bt)VJ (r/J/0y ) -

-{W (d/t) [(1+ ~:t - ~) ( ~ +0.) + ( ~ - ~~t) ( ~ ;. ~ ). +

~= l/W (0/0y - 1) + (1/2 - ~)

:p = b~d{(1_t/d) [:y - W(cr. 2.c -2~ -- tId ( :y) El-cr.-'f) (l-~~) +

+ ~W (:y)(t/d)(l-~~~l + (~~21{[t-W(! - cr.) -tId (~)J El- 2~)2 +

+ V(l- 2t/d - 2 -v2J]
0,(5) ~ a, ,< 0.5

7) All of the top flange has just yielded.

(Note that this is not a range, but only a point condition. For

bottom flange and web see Fig. 10 and 11.)

Curvature:

-2 (l-T) + ~W + ~~( 1 - ~t)~ -0) ~~V] = 0
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and

Moment:

v = (1- ~t)

8) All of outside face of bottom flange yielded.

(Note, this is not a range, but a point condition, i.e. l' = 0.5.

For web, see Fig. 11).

Curvature:

(:Y+ 3W (d/t)2 [(2-0) C;:t) -~ (U-T) - w/b (l-U~ :y 
:'(l+W) (3W) (d/t)2 (Wd) = 0

2bt

Moment:

(2 + 3W + ~W~J-6(t/d)(1-t/d)}
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APPENDIX B

.SECTION Dr SECTION DT SECTION Dr

26WF300 578 21WF 73 334 14WF 43 447

230 354 62 246 38 386

194 312 18WF114 867 30 242

150 190 96 646 12WF190 4329

33WF240 496 85 695 106 1785

200 356 64 426 65 786

152 263 60 408 58 842

130 188 50 281 53 709

30WF210 539 16WF 96 899 50 830

172 376 88 769 40 578

132 291 78 833 36 568

108 190 58 497 27 343

27WFl77 555 50 418 10WF112 3600

145 394 36 222 72 1809

114 256 14WF426 7757 49 966

27WF 94 219 246 3712 45 11.30

24WF160 621 142 1580 33 639

130 421 320 5147 29 696

120 423 136 1570 21 329
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