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I. INTRODUCTTION

The study of steel colums at Lehigh University has as
one of its objectives the determination ef the.behavioer of columms
in welded continueus frames. This paper presents the results
of a part of ene phase of this overall investigation and deals
specifically with the problem of the strength of celumns
subjected to two glven cenditions of leading. Results have
been presented in interaction curve form and cemparisons have
been made with available test datz. Approximate design equations
have also been included.
The work leading up te this report is contained in the
following published and unpublished papers:
1. -Progress Report Ne. 6, "Colum Strength Under Combined
Bending and Thrust", (Ref. 6).
In this report are presented the elastic limit
interaction curve equatiens fer the four cenditions
of loading illustrated in Figure 1. (Cendition "a" -
mements applied at both ends ef the celum preducing
double curvature; conditien "b" - moment applied at
one end, the other end held fixed; condition "c" =«
mements applied at boeth ends producing single
curvature in the member; and conditien "d" =
moment applied at one end, the other end pinned.)
This repert also gives the fully plastic equatien for

a zero length member,
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2. Progress Report "L", "Interaction Curves for Colums",
(Ref. 9).

The detailed derivations for the equations summarized

in Progress Report No. 6 are presented in this paper.
3. Progress Report No. 10, "Plastic Deformation of
Wide-Flange Beam-Columns', (Ref. L).

This report presents a method whereby the basic
moment-curvature relationships including the in-
fluence of axial thrust and cooling residual stress
can be obtained. A set of curves summarizing the
findings of this study are included here in Fig. 3.
Coelumn strengths are‘also developed for a selected
range of variables and predictions are compared with
test results.

4. Progress Report No, 11, "Stability of Beam-Columns
| Above the Elastic Limit", (Ref. 11).

Using the M-f relationship developed in Progress
Repert Ne. 10, this paper presents a method whereby
approximate maximim carrying capacities can be
determined for a condition '"c'" type of loading

(see Fig. 1).

In this repert nondimensional interaction curves are
developed feor a wide-flange section. The two cenditions eof
loading that have been censidered are "c' and "d" (see Fig. 1).
Three types of curves are presented. These are

a. Initial Yield Interaction Curves



205A.19 -3-

b. Maximum Carrying Capacity Interaction Curves (neglecting

the influence of reéidual s8iress).
¢. Maximum Carrying Capacity Interaction Curves (Including
the influence of a residual stress of the type shewn
in Fig. 2).
The interaction curves for each of these cases are shown in Figs. L,
5, 6 and 7, 8 and 9.
Approximate equations for the ultimate carryirng capacity of
members containing residual stresses of the type shown in Fig. 2
are next developed. These formulas.are kept as close as
practicable to the theoretically developed interaction curves in
the range of most frequently occuring practical cases.
In the final portion ef the paper the theoretical curves are
compared to experimental test results®, The following sets of‘
tests are used for comparison:
a. Massonnet!s experiments in Belgium (Ref. 1).
b. Johnston énd Cheney's experiments at Lehigh University
(Ref. 8). ’

Cc. Wisconsin experiments for the Special Committee on
Columr: Strength of the A.S.C.E. (Ref. 12).

d. Tests in the current Lehigh University Investigation

(Ref. 10 and more recent results).
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II. DEVELOPMENT OF THE INTERACTION CURVE

As stated in the preceding section, three types of interaction
curves will be developed. The first of these is fer the case of
initial yielding in the member. (While these general equations
have been developed elsewhere, Ref, 9; it was consgidered
necessary for completeness to include them in this report.) The
other two types that are considered are for the maximum carrying
capacitys one .that assumes no residual stress, and the other
that. assumes a residual stress of the magnitude and pattern
shown in Fig. 2. Since the latter two cases are determined by
mumerical integration of a given moment-curvature relationship,
and since the starting point for these calculatiens is the elastic
limit deflection, the elastic deflection equations have also

been included in the sections on initial yield.

1. Initial Yield Interaction Curves

‘a. Loading Condition 'c" (pin-ended member subjected to

equal end moments producing single curvature).
Timoshenko, on page 12 of his beok on "Elastic Stability"
(Ref. 5), gives the following equation for the deflection of
an axially loaded member subjected to couples applied at each end.
(FOP the nemenclature see Appendix.AQ'
For the case where M, - M, = My and P = Py, equation (a) reduces to

Mo

F me—————— i + si L-x) = kL‘o-ooo
A e kx + sin k(L-x) - sin (v)
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The interactien curve equation for this conditien is developed
on page 20 and 21 of Progress Report "L" (Ref. 9) and is as

~follows:

-~ -

MO=S[O?};-.PE9.] 005%000‘00009'00000(0)

Nen-dimensienalizing this equation with respect to the moment that
would just preduce initial yielding in the member had it been

subjected to pure moment (i.e. no thrust).

o;yoo-oooocro.(d)

?.4.9.=.§_03r- %0.] cos-lg-L-

But My = Sa‘y and Py = Ad'y. Therefore,

M , .
fﬁ‘g "-.'-__(1-' %2) cos l{éL" e o & o o o 5 @ o ° & » e e & o .(1)
PN y

For ease of cemputation Equation (1) can be rewritten in a

slightly different form by noting that

zc_L..‘.,a‘z:e,,.r:J__.,Po _LlL [Po
2 2 EI 2\ EAr 2 r \AE

C-(HEE -3 ()BT
.or |

/ -

%%V{?EE_{ e )



Fer an E value of 38,040,000 psl and 075 of 33,000 psi, this reduces

‘to

Po

kL L _
?:(00005h91>;"§; ooloo_ooooooooo\-ogf)

When substituted inte equatien (1)

I‘% = [11::’- %—?—J cos (C.)°OOSH91')% ‘J_P%) S IR . « o (la)

This equatimn' has beern plotted en Fig. I in interactien curve -

form f@rélenderness-*ratiés ranging frem O-to 120 in increments of 20.
Since the deflected shape of the colum axis at the time of
initial yielding is neceséary for later calculations, it is here

further developed. Working with equatien (b),

sin kx + sin k(L=x) - sin kL

. L
s

<
u

)

o

_S__ siﬁkx sin kL ces kx ~ cos kL sin kx sin kL
R sin kL ¥ ~ sin KL = 5in KL

<

S

which gives

Mtf)_.1 ' ‘ '
s\ | sin kx o -
Y“’(K) -iil- [E-ﬂq—-kf -1+cosk:x-cetklenloc:] (@)
| Py o o \E
L 1




Note from equatien (f) that if

KL = 0,010982 ‘I Po 2

kx will similarly be

o o 6 & 6 ¢ ® o o .o e o o o (h)
kx = 0.010982 X ‘, Po ]
Py

Substituting these expressiens and the S/A value for the 8 WF 31*
section into Equation (g) results in the following equation which

contains enly the variables L/r, x/r, ¥y, Mo/M.y and Po/Py,

= (3.010)

+ces@;01o982 -fyl %;)
L{Pa\ L . x |P
- Jocot (0.010982 ;J%)} 5in{0.010982 \r;;) 1 vereeod(2)

~ -

b. Loading Conditien "d" (Pin=-ended member subjected to

end moment applied only at one end of member . See Fig. 1)
The interactien curve equation was developed on pages 9-13

of Progress Repert "L" and is as follows:

Mg = S [ﬁ'""‘P@f;} sin kL

Dividing through by M.y and substituting the value of kL from Eq. (h)

Mo Po| . ( L e)
e | ] o= 00010982 - 5 e o & o ¢ o 0o o & s o i
o= |- B o)

g
£

|

% gee discussion on page 14 for justification of the use of 8WF31 slope.
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This equation has been plotted on Fig. 7 in interactien curve ferm
for slenderness-ratios of 0, 80,100 and 120. It sheuld be noted
that equation (3) assumes that the maximgm moment occurs away
from the end of the member. When this is net the case and the
applied end moment is the maximum moment aleng the member the
interaction curve equation becomes a straight line és shown.

The deflection equation for this condition of loading is

given on page 11 (Equation 18) of Ref. 5.

| Mg [ sin kx x | |
sz(sinkL-L)oco.ooooooooooooo(i)

Non~dimensionalizing, this becomes

Hy
S M sin kx x ,
= - | |- Sl as &
v A) EQ sin kL i L L N B .(j)
By ‘

or for the 8 WF 31 section

y = (3.010)

e

In each of the interaction curve figures that have been and
wiil be presented there has also been given a scale (acroess the
top and down the right hand sidej for ec/r®. That is, a line
dravm from the origin through the ec/r? value in question will
interséct the desired slenderness curvé at the critical value of
Po/Pyo This follows from the fact that had the member been

eccentrically loaded,

Pe= M0
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or non-dimensienalizing

Pe. - Mo
Say' My

If the left hand side of this equation is multiplied by Py/Py

or

(§§) (9%) T .(k}

r*/ T My ' .

2. Interaqtion Curves for Maximum Carrying Capacity

The interaction curves for loading condition "c" neglecting
residual stress are shown in Fig. 5. For the ﬁase of an agsumed
residual stress of the type and magnitude shown in Fig. 2, the
curves are shown in Fig. 6. The corresponding interaction curves
for leading cendition "d" are shown in Figs. 8 and 9.

In tﬁe follewing discussion a method is presented for developing:
the curves shown for case "d", A similar method was used in the
development of each of the curves. The numerical werk is
materially reduced for the condition."c" type of loading due to
symmetry. A typical solution for this loading is showm in the
bppendix of Progress Report R (Ref.7).

The problem is essentially as followé: for a given slenderneés

ratio and given axial thrust it is desired to construct a curve

which defines the relationship between.the applied end moment and resulting
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end rotation as strains within the membef become dnelastic. It
is further desired to take into account the residual stresses which
are "locked-up" in the member due to rolling.q (The presence of
these residual stresses, their magnitude and distribution have been
demenstrated in previous reports, Ref. 10; ). ‘Having defined this
applied moment-resulting rotation relationship; the maximum
carrying capacity will correspond to the uppermost point on this
curve; that is, the point at which the derivation of the end
moment with respect to the end rotation becomes zero.
Assumptions and limitatiens of the solution are
l. The mement-curvature relationship will be that shown
in Fig. 3. |
2. Failure will cofrespond to excessive bending in the plane
of the applied moments; that is, in the plane of the
web. (Failure due to combined bending and twist or
due to local instability of the flange elements is
not considered.)
The selutien will be ene of numerical integratioen of the given
M~f relationship. The systematized numerical integration procedure
of Newmark (Ref. 3) has been used. o
For ease of understanding an actual case will be computed.
The problem for consideratien bésthle following given conditions:
Po / P, = 0,80 (Po = 0.80 x 301 = 240.8K)
Lk = Lo

8 WF 31 Sectien
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LA
e

<
fond
3

The length correspending to this assumed slenderness ratioe is

L = Lo (3.47) = 138.8 inches
Subdividing this length into 8 equal aivisiens of A each,

A = 17.35 inches.

For a first trial, assume that the member is subjected tp !
an end moment Mo such that My / My = 0.20. The elastic de=

flection according te equation (L) would then be

0.20 sin (0.010982) (40)  0.80
y = (3.010) 575 Sm éo.0109'8‘2§ Eﬂo'g' .80 ~

X
L
or
sin 1.188 L '
y=(0.7525) 0.9276 W%oo.o;ooooo.o(s)

"x" is measured from the M, end of the member.

A tabular solution of Equatien (5) is given in Appendix C.
These deflection values will be used in the first cycle of the
numerical integration. As stated previeusly, the column has been
subdivided into 8 equal parts 17.35 inches in length. In line "a"
the moments due to M, are listed for each point. The assumed
deflectiens are indicated in line "b". Fer the first approximation
the "initial yield" selutien calculé.ted in Appendix C is used.
For ‘éach éuccessive numerical :‘mtegratieﬁ cycle the final dgflections
of the previeus cycle are used until convergence is reached. 'In
line "e" the moment Poy is showng dn line "d"j}sblr%eiyszr;n of the moments in
lines"a" and "c". This teotal moment is then transformed into non-
dimensional form by dividing by My (M=904.2"in. kips farithe SWF3L

section). This is.shown in line "e", In line "f' the concentrated
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angle changes are listed. These were obtained from an enla;fged version
of the MAMy versus @/@; curves &f Fig. 37. The P/Py = 0.8 curve
was used.

Lines "g" and "h" show the perfarmance of the usual mnne"rical
integration process. For example, in line "g" the values of line
et have been added in consecutive order. Multiplying by the
factor shown in the right hand columr (i.e. M) will give the
slope at the midpoint of each of the segments. In a similar mammer
~ line "' is obtained. It should be noted, however, that line "h"
indicateé a deflection at point 9, the right hand end of the beame
colurm, Since there is no deflection at that point a rigid
body rotation is performed and proportional ccrrection factors
are computed in line "i". The sum of lines "h" and "i" give
the final deflection in terms of the multiplication facter for
this cycle of iritegration, Multiplying these values by N°fy
(i.e., 17.35% x O.{_QOOZ?S = 0.0828) will give the final deflection
in inches. |

As would be expected, the final deflectiens 'de not correspord
to the assumed ones shown in line "b", Therefore other cycles of
integration must be carried out. The initial and the iiinal
deflections for the fourth cycle are shown at the bottem of
Appendix 4. It should be noted that the two deflections varied
&t the most 0.001 inches. For most of the calculations three
cycles of integration were sufficient. , (

The true deflected configuration of the colurmm has new been

obtained fer the given ratio of Po/Py and L/r and for the
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assumed Mo/My. The next step in the procedure is to compute the
rotation at the applied moment end of the member. Thisiis

calculated from the following equation

o =0 =0¢ 8;)‘\'50

which, as shown in Appendix E, assumes that the deflection curve
(considéring only the last two segments) can be represented by a
psrabola. The deflections O and 3¢ 4re the deflectiens at
sections 2 and 3 on the colum. Frem Appendix D these were shown

to be . = 0.070 inches and SC = 0.113 inches. It therefore

B
follows that

6y = 4(0.070) - 0,113 _ 0.00L81
2(17.35) '

Tor a range of increasing values of MO/My the end slope (@)
is determined. These are then plotted as shown in Fig. 10, The
poeint on this graph at which the MQ/My vaiue becomes a maximum
correspends\to the maximm carrying capacity of the member (with
Po/Py = 0.80 and L/r = L0). This point of collapse is
characterized by the fact that at this value of end moment the °
numerical integration process begins to give divergeﬁt results.
For the case in question Mo/My (max) = 0.233. Since the
properties of this section were based on ‘average ﬁeaswed values
for the standdrd 8 WF 31 section, and since the “corresponding
shape factor, f, of the section was 1.09 (Ref. L), this critical
value of end moment could be non-dimensienalized with respect to

the fully plastic moment by dividing by the shape factor. That is,
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Mo = 002 -
. Mp (max.) .1.09 0.21L

The curves shown in Figs. 5, 6, 8 and 9 were all computed, point
by peint, by this laberidus methed., A peint of collapse was

found fer each increment ef lead and slenderness.

3. Discussion of the Interactien Curves

It should be emphasized that the interaction curves for
maximum carrying capacity as shewn in Figs. 5, 6, 8 aﬁd’9 were
cémputed for the 8 WF 31 section. Hewever, since it is reasonable
to assume that as the shape factor of a member increases, the
strength of the corresponding beam-column should alse become
larger; and since the shape factor used in the calculations was
1.09 (the lowest value for rolled WF and I shapes); use of these
curveé for other sizes should.give conservative strength pre-
dictiens.,

- For steels of different yield strength than 33 ksi, the
values of slenderness raties, L/r, sheuld be medified by the
factor \} 33/c} as indicated. This will ensure that in the
ﬁen-dimensional form the intersectien ef the Euier curve and
yield point of the material will always correspend te the cerrect
slenderness value.

To make the graphs more useful when eccentricity values
(ec/%e) are givegiinstead of end moment, values of ec/r?

sre also given on these figures,

% -~
Oy is the yield stress level of the material in question.
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AInleutward appearance the curves for residual stress and
without residual stress are very similar with the values being
lower for the case with residual stress. The actual magnifude
of this reduction is dependent on the cenditien ef leading,

slenderness ratio and Po/Py or ec/r® value as shewn in the

diagrams.
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IIT. APPROXIMATE DESTIGN EQUATIONS

' Te facilitate the work of the designer, there are developed
in this section, for various ranges of variables, approximate
equations to the maximum strength interactien curves presented
in the preceding chapter. Only the interaction curves including
the influence of residual stress are considered.

The assumptions and limitations on these equations will be
the same as fer the interaction curves themselves} that 1is, -
the cross-section is assumed to be 6f the wide-flange type
(in the strictest sense an 8 WF 31) and further +that it ié benf
about its stroeng axis; the material is A7 mild structural steel
having a minirum yield stress level of 33 ksi, and: the member
is agsumed to fail due fo excessive bending in the plane of the
applied mements (i.e. the plane of the web).

It should be re-emphasized that failure due to combined bending
and twist has not been considered. While mest laboratery columns
fail in such a manner, a majority of the members found in practice
are restrained in their weak direction by wall systems, etc. For
these and other cases where adequate lateral support is provided,
the derived equations directly apply.  Local instability of flange
elements has alse not been considered. The problem is not

cengidered to be of major concern for presently rolled shapes.

1. Axial Lead Only

In Fig. 11 is shown the colum curve for pure axial thrust which
includes the influence of residual stress. If it is assumed that
the range of slenderness in questien is 02 (L/r) £ 120, then the

following approximate equatien will define the relationship between
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the axial thrust ratio (Po /Py) and slenderness . ratio, (L/r),

see Apbeﬁdix Fs

Fo.s. L (-I-'3+.....£__ Elz-l LV ... (7
Py 3,500,000 \r/ = 32,000 | r EECR RS

This equation is shewn as a dashed line in Fig. 11.
If it is desired to approximate only that pertion of the
curve below the Euler curve (i.e. L/r £ 112), then the simpler

expression

-P;qzzl-#—-——-—-—l I"-a L -L-
Py 111,000 \ T/ 7 BB { T/ e v v o o e o v v o oo . (72)

may be used.

Tabulated values of Po/Py versus L/r are given in Appendix F.

2. Approximate Interactien Equation fer Conditien "c" Loading

Assuming as in the case of pure axial thrust that L/r will not

exceed 120 and further that Po/Py £ 0.6 an equation of the type

Mo Po Po ) ® :
T
Mp ) Py @ Py ® & @& & o & & o s » O & & o (8)

can be made to approximate the curves shown in Fig. 6.
cg,zuui/?are assumed tc¢ vary with the slenderness according to the

.general equatiens

== v w (B s (2« = (3f
3= by + by (E‘I:) * by (%)z + bh(%-)z

R IR B IR RN (8a)
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Then as shown in Appendix F (section 2),

- %&) &fr)? . (/)
K = 0.L20+ 25 - 396 1,,_1674)_,900

and - I € )
. 1,/ _ 2 . 3
= oo - D M - o

A comparison between the "measured" and the approximate values for
/& and ﬁ is shown in Fig. 12,

Fig. 13 compares the reéulting_approximate equatioﬁs with
the interaction curves of Fig. 6. Again to facilitate their use,
values of A_and /63 have been tabulated for various slenderness

ratios fromO to 120 (Table II).

3. Approximate Interaction Equation for Conditien "d" Loading

~ The following type of approximate equatien was develeped for

loading condition "d" (see Appendix F = section 3):
Mo Po
p-an o—— + . [ [ ) ° [ ) . L ] e o ' » * . . - - . . .
RS Py /5 (9)

Here, as before ot and P are assumed to vary with slenderness, and
\

as shown in Appendix F = (section 3)
. L/r) , (T/2)®  (L/e)3
A« -1.110 - (15/9 )4 8,8‘% ~ 720,000

and e e e e e .(éa)

5= 1133+ 3080 * ,ﬂig,o‘oo



205A.19 =15

Plotting Equatiens (9) and (9a) versus the interaction curves
of Fig, 9 (see Fig. 15), it is neted that fer lower values of
(L/r) the approximaté Equation is conserva’cive; whereas, for
" larger values, too great a moment ¢capacity is predicted. Neglecting
the influence of strain-hardening, it is known that the maximum
moment a beam can sustain when subjected te pure moment is its
fully plastic value. A value of Mo/‘Mp = 1.0 should therefore
be the absolute maximum that the approximate relatienship can
take, Due to strain-hardening it has been obser\}ed from test
results that fer this loading conditien the presence of a thrust
of 0,12 Py will ot reduce the moment capacity below this fully
- plastic value, M. (see Table 8 , Appéndix.iG).,. Therefore,
Equat ions (9) and (9a) are the approximate interaction equations
providing the predicted Mo/hpé. 1.0, When these equations predict

a value of Mo/Mpﬁ 1.0, the 1.0 value sheuld be used.

L. Summary of Appreximate Equations

a, Axial Load enly: .

Po .. ( \)3 L 1 (L )
Py = §oo 000 32,000 ooo r) T 358 \r
Values of Pe/Py for 0{L/r {120 are tabulated in Table 1,

Appendix F. The equation is valid from O {L/r {120.

| b. Case "c" Loading

f-o-Ele £P)

Values of X and (3 for 0<L/r £120 are given in Table 2 of

Appendix F. The equation in net valid for Po/P, 70.6.
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c. Case "d" Leading

[0 O\
- (B)8

Values of X and /3 for 04 L/r£.120 are given in Table 3
of Appendix F. The equation is met valid for Po/Py) 0.6.
Where the equation predicts a value of Mo/Mp) 1.0, the

value MQ/Mp = 1.0 should be used.

An alternate (less precise) apprdXimation,

%:-u" P/Pz
My W-0.12 )

could be usgd for this loading condition, It ghould be
;génted out, however, that if values of the constants are
;5 be tabulated; the more precise two constant equatisns
will be no more difficult to use than the one constant

equation.
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Iv. COoOM PARISON OF THEORETICAL. PREDICTIONS

WITH EXPERIMENTAL RESULTS

In developing the maximum strength interaction curves of
section IT of this report, it was necessary to make certain
assumptions. (The major one of these was that lateral torsional
buckling will not occur.) In this section,these predictions of
strength will be compared with test results.

The following experimental data will be used for comparison:

a. Johnston and Cheney's tests (Ref. 8),

b. Massonnet!s tests (Ref. 1),

¢. Tests in the current lehigh series (Ref. 6 plus more recent
results), and

d. Wisconsin tests (Ref. 12).

1. Tests of Johnsten and Cheney.

Johnston and Cheney performed a series of column tests at
Lehigh University in the early 19L40%'s. Their findings are recorded
in Ref. 8. | “

In total 93 column tests were carried out; 89 were made
on 3 I65,7 sections and 6.were made on 6 WF 20 sectiens. Columns
were tested by‘both concentric and eccentric application ef the
axial thrust; however, the column tests under pure axial load
cannot be compared with the interactien curve since their end
conditions were such that they failed by column buckling aﬁeut the
weak axis. The tests which can be compared with the derived curves
are tabulateé in Table L of Appendix G. With the exception of the

value Po/Py, all values shown -in this table have been reproduced
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frem Table No. V (p.20) of Ref. 8. The test numbers refer to the
original test number designations. The celumn headed by "Member"
indicates whether the section was a 3 I 5.7 (Marked - I), or

a 6 WF 20 (marked = II). Lot 1 in the material column signifies
a steel with a yield strength of L2.L ksi, whereas lot 2 is for one
having a value L40.8. The yield stfength of lot 3 was 39.8 ksi.
Appendix G lists the sectien and material properties of the .
columns. The eccentricity ratios are alse given. It sheuld be
peinted out that,due to the manner of lead applicatien (through
knife~edges) ,the members were pin-ended in their streng directien
and essentially fixed in their weak directien.

These tests correspond to a cenditien "¢ type ®f loading,
and Figs, 16 and 17 show the comparisen ef the test results with
the theoretical predictiens. (The elastic limit solutien is
shewn as a dotted line, the ultimate strength curve neglecting
residual stress is a solid line, and.theépltimate strength curve
including residual stress,67§b = 0.3 g5, is a dot-dash line.
Slenderness ratios were adjusted to account fer the difference in
yileld stress level,

Jomston and Cheney report that the "columns loaded
eccentrically te proeduce bending in the strong directien usually
failed by plastic lateral-torsienal bubkling, after initially
passing the yield point in the case of the sherter celums, and
somewhat belew the yield peint in the lenger celumms."

The higher final strengths of the short celumms (L/r =22,
see Figs. 16 and 17) can be explained by the actien of strain-

hardening, which was neglected in the calculatiens eof the
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interaction curves of section II. The columms with a high L/r
(see Figs. 16 and 17) failed below the predicted values. For
these celumns lateral tarsien has resulted in a decrease in the

ultimate carrying capacity of the member.

2. TeSts(gg Massonnet

In April 195 Massonnet reported on a series of colum tests
which were conducted in Belgium (Ref. 2) A total of 95 tests
were performed. The cross-sections considered were the DIE 10,
DIE 20 and PN 22 profiles. The first two of these are geometrically
similar te the American wide-flange shapes whereas the iast is a
nary ow flange,railnlikefcontinental profile similar to the
American Ifghaped section. Since the interaction curves of
secuien 2 were develeped for the wide-flange type of cross-section,
the test results fpr the PN 22 sectien are not directly applicable;
The shape factor for the PN 22 sectiong i.e.,the ratio of the
initial yleld momert te the fully plastic ﬁoment, is much greater
than that of the DIE 10 and 20.) |
It should here be ebserved that Massennet'!s test colums
were pimned at the ends in beth directions sinée they were provided
with aimost frictienless, and almest perfectly hydraulically
seated, steel balls. Fer such end cenditions, the possibility
of laterai-tersienal buckling is most prenounced.
Three types of loading were used in these tests:
a. ep/e] = +1; (e] and e, are end eccentricities of load
application) this would correspond to a conditien "c"

type of leading.
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b. es/eq = 0, i.e. ep = 0. This case cerresponds te a
type "d" ecendition of leading,

Co 92/e1 = =1, i.e. equal moments are applied at each
end e¢f the member in a manner which preduces double
;:ufvatureo This weuld correspend to a condition "a¥
type ef loading.

Massemnet has in all cases applied an eccentricity of the
axial thrust in the plane of the web (i.e. streng axis bending).
In st.a*t',ﬁ.ag the pregram and in tabulating the results, hewever, |
ha has listed the slenderness raties in the weak directien. Since
the interactien curves develeped in sectien twe ef this repert
consider emly the behavier of the member in ‘Ehé plane of the
applied mements, 1t is necessary that these values be referred
te Lhe streng directisn. The test series as listed by Massonnet
cevers a range of slend@rmesss(L/r'y), frem 4O to 175, uwith
respect te thgx weak directien. This weould correspend to an
L/rx frem approximately 2L to 110,

.The colums with the higher slenderness values were the
DIE=-10 sectiens (neminal L/r’y = 130 and 175, neminal L/ryx = 82‘ and
1105,} These were the lighter sectiens and had a neminal area
of 2Q°78 em® (3.24 in.®) as cempared te 57.03 ecm® (8.85 in.2)
for the DIE=20. |

The eccentricity ratios for each increment of length were,
in general, |

£, = 0.5, 1.0 and 3.0,
Tx



Masseommed denebes thiz rabie by the symbel "m® where

e being the end eccentricity of lead applicatien and/gx the core
radius, Since the core radius can be expressed in terms of the

radivg of gyration as

it can be sheown that {note that ¢ = 4/2)

In tebles & and 7 ef Appendix G,the test results are tabulated.
These tables srs taken largely frem Table 8, pages 58, 59 and

The test numbers ave the original test number

j«B

T ey oy 42 13 e
SLAEUa VLN

The arse fer each ssoblen was measured and reperted in the

v
¢

papery nwwever, ne iadividual measurements of the yield strength
davel were given. ' The value of Py'was therefore determined by
milbiplying the measured areas by 26,875 tons per square
centimetber {1 metric teon = 1000 kg) fer the DIE 10 sectiqn, and by
24,056 teng per square cenbimebter for the DIE 20 secti@ﬁ, Thesev
values of the yield stress are average values, determined by
goupon tests,

The value of Py is the maximum reported lead each column
sugtained, The slenderness ratios were determined as shoﬁﬁ in
Tables 6 and 7,and these were then reduced as in the other cases
Ter comparissn purposes to correspond te a 33 ksi yield-stréngth.

stzel, The adjustment was made accerding te the equations
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(3) aas. - 2
r | adj. = r q—§

where
for DIE 103 o-;,‘ = 26,375 tons/em® = 38.2 ksi

for DIE 205 g% = 24.056 tons/en® = 3h.2 ksi

In Fig. 18, these test results are compared to each of the
three interaction cenditiens discussed previously for a conditien
e type of leading, It will be noted that the test values
deviate markedly.from the predicted values.. This is due to
lateral tersional buckling which is more-or-less iﬁsured by
the pin-ended conditioﬁ in the weak direction., The Euler curve
in the weak direction has also been shewn to afford a better
“feeling" of the cleseness of this column'buckling conditien.

Fig. 19 indicates the correlation between predicted strength
and experimental result for those members tested under a
condition "d" type of loading, As weuld be expected, these
results lie cloger to the predicted cases than did those fer
condition "e" loading,Since the broblem of lateral-torsienal
buckling is not se severe. None the less, there is a marked
influence ‘of lateral buckling on the columm strength. In.
this figure,there has also been showm the Euler column curve in

the weak direction.

3. Tests in the Lehigh Series

Table 8, Appendix G lists certain of the tests that have been
carried out in the present Lehigh Investigation and compares their

results to predictiens based en this report. A majerity of the
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results listed were taken from Ref. 6; however, there have been
included the resu}ts of several more recent tests. The end
conditions in each of these tests are pin-ended in.the strong
direction and fixed in the weak,

Since the majority of the members tested are inva range
where the interaction curves converge to a point (i.e. for low
values of Po/Py, all values of Mo/My approach the value 1.0),
most of these test results have not been shown on graphs. While
these ratios of thrust to moment at collapse are typical of those
developed in single story portal frames, they do not afford a
comparison over too wide a range of vériables. For the pure axial
load tests, however, Fig. 20 shows the correlati;n with predicted
strength. An additional test by Huber (Ref. 10) (LWF13, L/r = 130)
has been included to extend the range of coverage. It will be
noted from Table 8 that experimental results have been tabulated
with respect to two values of yield stress. The first of these,
Q0 y = L0 ksi, is that average value determined from tension
coupon tests. The second tabulation is for an adjusted yield stress
level which varies according to the section in question. As
shown in Ref. 13, tension coupons tested at normal laboratory
rates over estimate the true static yield stress level of the
section. Assuming that the average values shown in Ref. 13 are

coﬁrect, the adjusted non-dimensional values are made according to

BiF31 @y (statid = (0.92) Oy (coupen)
LWF13 Oy (etatic)= (0.97) 67 (oupon)

The correlation between the test resylts for the axially load members,

interpreted in the manner déscribed above, is quite good.
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L. ZTest in the Wisconsin Series

Ref. 12 describes a series of column tests that were cérried
out in the late 1920's at the University of Wisconsin. Rolled,
built-up and tied.coiumns were tested, and in Table 9 are listed
those tests which can be compared with the loading condition "c"
curves developed in section IT of this report. The members tested
were 8 H 32 shapes and corresponded to the modern 8 WF 31,

which was used as a basis for calculations in this report. A
constant value of ec/r® = 1.0 was used in each of the tests. End
conditions were such that the member was essentially pinned in the
strong direction and fixed in the weak..

These results are shown on Fig. 21, Tests H-l, H-2, and H-3
confirm the theoretical curve, whereas the tests with high L/r
values fall below the predicted strengths. While the exact manner
in which the members failed is not indicated in the report, it is
weasonably safe to assume that these members failed by lateral-
torsional buckling.

Since the members of this series of tests were gedmetrically
similaf to those of Massonnet's, the influence of pin-endedness
versus fixed-endedness in the—weak direction can be seen by

comparing the test results of Figs., 18 and 21.
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Ve, SUMMARY AND CONCLUSIONS

In this repert there have been develsped for two loading
conditions ("c" and "d"-=see Figure l),' interaction curves for
prédicting '!ihe strength of wide~flange beam columns bent about
their strong axis. Three types of selutiens were obtained.

(Fig. 4 and 7)
The first of these was the initial yield selutionjpthe second
was for me’iximu‘m strength neglecting the influence of residual
stre's'F} E3na Sﬁﬁg dﬁ‘gn)_rd was for maximum strength including the
influence of an assumed residual stress distributien (see

(Figs. 6 and 9) _

Fig. 2). A'While strong axis bending was assumed, the solution

did not take into account the possibility of lateral=-torsional
buckling.v It should be noted, hewever, that while most test

colurms fail in this manner, a majority of the members found in
practice are laterally restrained aleng their length by wall systems,
bracing, etc. For these or other cases where adequate lateral
restraint is provided, the solutions of this report directly

z2pply.

Because of the large amount of numerical work required to
obtain the maximum strength interaction curves, it was necessary
to selsct a section for computation. Since the 8 WF 31 section
bas one of the lowest shape facters of any of the sections rolled,
it was selected. The use of the resulting curves for other
cross=sections will result in conservative strength predictions,

To facilitate analysis and design, appreximate anaiytical

sxpressions were developed for the maximum strength selutiens
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(Figs. 11, 13 and 15)
including the influence of re31dual stress. A Constants for these

expressions are tabulated in Appendix F as Tables 1, 2 and 3.‘
In the 1astbpart of the report the theoretical cunves
are compared with test results. Four series of experiments
were considered and graphs indicating the :orrelation were
(Figs. 16-21) -
given.A In general, as slenderness increased, there resulted
a decrease in the carrying capacity of the member over that
predicted herein. This tendency was further exaggerated when
the member was also pin~ended in its weak direction. (Note,
for example, the decrease in strength of Massonnet's columns.
over those of the Wisconsin series.) In all of thése
cases, failure was due to .la'beral-torsional instability. They
indicate the seriousness-of this problem in predicting the
strength of laboratory test colums. Further work is

currently underway.
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ec/r

L/r

Appendix A

Nomenclature

Area of crossesection (in.<)

Modulus of elasticity (E= 30,000 ksi for A=7 steel)

Moment of inertia about the x-x axis (in.*)

Length of the member (inches)

Moment (inch=kips)

Applied moment at the end of the member (inch=-kips)

Moment czorresponding to full plasticity of the section (inchakipsj
Moment corresponding to initial yield under pure moment (inch=kips)
Applied axial load (kips)

Load corresponding to the yielding of a short column (kips)
Section Modulus about the x-x axis (in.3)

Plastic Modulus about the x=x axis (iﬁchesa)

Width of fignég

Distance fvom centroid to outer fiber (inches)

Depth of member

Eccentricity (iqches)

A parameter, from page 2 of Reference 5.

Radius of gyraticn about the x=x axis (inches)

Thickness of flange

" Thickness of web

A distance along the axis of the member (inches)
Deflection (inches)
Eceentricity ratio

Slenderness-ratio



3
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Nonenclature (cont'd}

MW‘B " Non-dimensional constants

g Deflections of speciiic stations along the member (in.)

e o End rotation {(radianz)

ﬁyfzcﬁx Unit rotation cor?egponding to initial yield under pure moment

Al

}\ A distance which is evenly divisible into the length of the
member (inches)

} Oy ' Yield point stress. (Assumed to be 33 ksi for A=7 steel).
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Appendix B
Sectienal Properties of an 8 WF 31 Section.

Frem AISC Handboek:

d = 8.00 in A = 9,12 in® Ty = 37.0 in*

b = 8,000 in Ix = 109.7 in* Sy = 9.2 in®

t = 0,433 in Sx = 27.4 in® y = 2.01 in

w = 00288 ir'l X = 30)47 j_n. CX = ).loOO ir’l
g, =2=_(2) (33) = 0.000275 radians

Ed (30,000)(8.00)
My =87y = (27.4) (33)

Py =iy = (9.12) (33)

it

90h 2 in kipS

301K

1]

2
Tx o (3.47)2 .
o = 50 =.3,010 in

= | [Pel. 4 o |
KL =T |2 F = 0,0i0982 L | Po.
[E [1“ PY} rxj Fy

wx = 0.010982 £ [Ee
r \JP.V



Appendix C
A tabulated solution of Equatien 6 '

v = 0.7525 (sin 1,188 x/L) (%)
0,92762 L

" xn

A | | .
_ ' sin 1,188 x/L (sin 1,188 Tiw x, ty®
Position (inches) x/L .1.188 x/L sin 1.188 x/L  0.92782 0.957%z (Ll (inches)

1 0 0 0 0 0 0 0

2 17.35 "0.125 0.1485 0.14796 0.160 0.035 0,026
3 3L4.7  0.250 0,2970 0.29265 0.315 0,065 0.049
L 52.05 0.375 0.LLSS 0.L43091 © 0.L65 0,090 0,068
5. 69.4  0.500 0.5500 0.52269 0,563 0,063 0.047
6 86.75 0.625 0.6875 0.63460 0.684 0.059 0.0Lk
7 10k.1  0.750 0.825 0.7318L 0,792 0.042 0.032
8 121.45 0.875 0.9625 - 0.82062 0.885 0.010 0.008

9 . 138.8  1.000 1.1880 0.92762 1.000 - 0 ? 0

For the case of
My = 0.20 ‘M, = (0.20) (90L.2) = 180.84"K

The end shear (i.e. the horiz. Reaction is %2 = %g%fgk = 1.303K

Then the moment at each position is the following:

Position 1 2 3 L 5 6 7 8 9

g 0 17.35  3h.7 52,05 69.L 86,75  10k.1  121.k5  138.8
Mo - Mo x. 181 158 136 113 90 68 Ls 22 0

—
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Appendix D
. L/r= 1o
- {Pp/Py. = 0,
Me g 0.2
L = 138,8" .
7@3 = .
| —// 4> PB 2,4008K
- » 2 = 1,303

@) MF I\ietati@zn;

o
=\
S
(=)
&
D

S
o)
&
&

6 113 90 é LE o Moment due to Mg
bl D _0.026 0.0k9 = 0.068  0.0L7 0.ohL 0.032 04008 Asgumed deflectién
“ell o g 10 iy | 10 1 .9 Mement due te Pg
= ) , Total Moment
dl 1.1 163 14 7 100 7 52 25 (a + o)

3

elp.p00 0.180 0.141 0.1i0 0.111  0.085 0.058 o,lgzs o || My /My

£10.p50 0.490 0.250 0,210 0.151 0.119 0.083 0.Johs O P

gll | 0.350| 0.6L0] 0.890 1.100 1,251 | 1.370 {1.453 | 1.498 )‘¢Y

T
hil g 0.350 - 0,990 1.860 2.980 L.P31 5.601 7.05L 8 ;.;;}\be Deflectien

3 . : A\ 4) Cerrection
il g 14069 2,138  3.207 _h.zz76 S.3L5 6.1h1  7.183 8554 4

te deflectien
- * Fir .
Il 4 04719 1,143 1,37 1,296  1.01 0.340  0.h29 ¢ )‘4’/ $8#ection
0 : _ - Final deflectien
ki ¢ 04060 0.095 0.110 0.107 0.p92 0.045  0.D36 a in inches .
' {1st Trial)

all.d 069 ollm2 of1z1 o0.029 0.2 0.081  o0.bu3 fosuned deflection
Ny . o - Final deflection
k|l 0 ofoo 0f113 ofizz 0.130 0.z 0.082 o.pu3 /g | pe ol e
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Derization of the end:slope eqaati@n' .
ek A.
N N _ .
- - - —g— - X
g 8'_ '
B
5.
§ ;
-T
T Shape of deflected golumn
¢ -
R4
Assume that the deflected shape ©+ . of the celum is a

parabola of the ferm
y=AX" +Bx +C
Boundary coenditions: @x=0 . y=0
@x =X y =£§é§
ex =2\ ¥ =5
1.)0 =¢ "
2.). 6= M2 + BN 2 555‘:)\-B>\_

3.) _,,SE"’ LAN? + 2B X
ggle ugb- LBA + 2BX

. pobfa-de
2\

A=de-2ig
N

-(ae)e o (Mashe)x

The slope at x = O

2 A
x=0

2 X N &8
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Appendix F

1. Development of an approximate colurnn equation for axial load only.

)i

From Figs. 6 and 9 (Re = 0.3g3) the following values of %2 are obtained

when M2 = 0,
y

L,
r 0
' Po
o ’ 1.00
Py

20

0.96

Lo

0092

On Fig. 11 this relationship is plotted.

y

General Equation - assuming a cubic parabola:

Boundary conditions:

Substituting:'

Hid R S

8 L

=)40 -

=80 ~m-

1.) 64,000 a + 1600 b + L0 ¢ = -0.08

2.) 512,000 a + 6L00 b + 80 ¢ = =0.17

3.) 1,728,000 a + 14,400 b + 120 ¢ = -0.38

60 80 100
0.88 0.83 0.75
1,0 =w= d = 1,00
0.92
0.83
0.62
Solving:
8 = e 1 *
3,h90,000
b = 1 .

32,000

c= =L

358

120

0.62
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1/ L)2

Y | AL L 1 /L)
Py Y9 = 375060,000 | r 32,000(1' "3'55(:7 SR & s

In Table 1 the values of ;’% are tabulatedfor L/r. This table is similar

to the one furnished by the AISC handbook for allowable column stresses.

Matching only that part of the curve below the Euler value (i.e.
L/r S 112), the simplified expression

(L) (LY
Po \r r
==l -t L will be obtained
y < 6 _
L = Po o |
e L = 50, 2 0.900
L . " Po .
@ = =100, g 0.755

0.900 = 1= 50 (50)2
=< £

‘ 2
0.755 = 1 = 2% - 350

Solving for X and r3 2
o< = 111,005 P =65
then the equation will be:
L)? /;.)
%’1' 1T, 500 "5‘5’1:[&1

In table la the values of Po/Py are tabulated versus L/r.

u
»
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TABIE 1

Value§ of‘ Allowable Axial Thrust (determined. from Equaticn. II)

L/r  Po/Py L/r Po/Py L/r  Po/Py
0 1.000 52 0.899 | 86  0.809
5 0,987 5hL - 0.895 88 0.801

10 0.975 56 - 0.891 90 0.793

15 0.96L 58 0.887 92 0.785

20 10,954 ‘ 50 0.883 9k 0.776

25 0.9L5 62 0.877 96 0.767

30 0.937 6L 0.87k ' 98 0.757

32 0,933 66 0.869 100 0.7L7

3l 0.930 68 0.865 102 0.736

36 0,927 70 0.860 10k 0.726

38 0.923 72 0.85hL ~ 106 0.714

Lo 0.920 7k 0.8L49 108 0.702

L2 0,917 76 0.843 110 0.690

Ly 0.913 78 0.837 12 0.677

46 0,910 80 0.830 11, 0.66l

L8 o.906v 82 0.823 116 0.650

50 0.903 8L 0.816 ' 118 0.635

120 0.620
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TABLE 1a

Values of Allowable Axial Thrust (determined from Equation ITa)

L/r | Po/Py R 7 o PO/Py
0 1.000 66 0.858
5 10.992 68 - 0.853

10 0.98L 0 0,847

15 0.975 72 0.8L2

20 0.965 7h 0.836

25 0.956 | 76 0.830

30 0.945 j 78 0.824

; 32 0.941 80 0.818

3k 0.937 8 0,812

36‘ 0.933 8l : 0.806
38 04928 86  0.800

Lo 0.92L 88 0.7%h

h2 0.919 : 90 0.787

LL 0.91L 92 0.781

16 0.910 S 0.775
18 0,905 % 0.768
50 0.899 98 . 0.761
52 0.895 : 100 0.755
5L 0.890 : 102 0.748
56 0.885 04 0.741
58 0.880 | 106 0.755
60 0.875 | 108 0,728
62 0.869 110 0.720

6L 0.864 112 - 0.713
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2. Development of an interaction equation for the condition "c"
loading.

Assume the following interaction equations
qup.-?sl.o-d.go- -(g(g-o- oo.ooo.o.oo.oo(a)

y N/ .

As an example the calculation of o and p will be given for
L/I' (= 1200
Note: for all the calculations for this case. 11;2 = 0.3 and

' y ,

PO = 0.6 will be used. (The form of the equation insures Mo/lVIp =1
P.

v -
when £2 = 0.)

Py

1.) £%= 0.6 ‘Mo = 0.008 (from Fig. 6)
Py ' My

2.) 22 _ MP‘=0278
Py. 03 My .

from Equation a.
oA + (5 (g_q),, 1,00 - Mmo

Pyl ;;_;_
then |
1.) X + 0.6 fS = 1~0000“6°-008 X + 0.6 3= 1.653
2,) K+ 0.3 (3 = 1000 = 0.278 K + 0.3{3 = 2.007
0.3 '
~ Solving: D(i = +g.§ig

Similarly the values of o and P are computed for the other
slenderness ratios,

Following are the computed values of X and @ :
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L/r =< (3

0 +0.423 +0.770
20 +0.683 +0.500
40 +0.990 40,167
60 +1.363 ~0.217
80 +1.828 -0.753
100 +2,327 ~1.313
120 +3,157 -2.510

In Fig. 12 « and . (5 are plotted versus L/r.

The & - curve is approximated by the following cubic equation:

K = él + ap (.I_.L_,) + ag (%‘)2+ ah(%:_)a

at & =0, - A = 0.L20 .. a,;= 0.120
at L = 120 . A =3.15
r
at. L = 80 oL = 1.80
-
- L
at = Lo o= 1.00

1.) 120 ap + 14,100 a3 + 1,728,000 &), = 2.730
29) 80 &2 + 6h00 33 + 512,000 ah = 1.380
3.) LO ay + 1600 a3 + 61,000 a), = 0.580

-}“'

Solvings

- 1l - 1 s - 1
%2° Z8.96 23 35,087 24 = T;183,700
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. 2 w1\ 3
L L L
then A = 0,420 + \/T’\ - (F) 2T (f‘")
69 29,000 1,164,000 « ¢ .o e-0 o D

L6

The values of <X from equation b are plotted in dotted line on
Fig. 12, Good correspondence exists.

The ﬁ ~curve is approximated by the following cubic equation:

Bromorwll +us( +uft

L

at = = 120 /5 = -2,510

at {;‘- = 80 (5 = =0.720
L

at Z= 10 (5 = +0,160

1.)-120bp # 14,400 b3 + 1,728,000 b), = -3.280
2.) 80 bo + 6LOO by 512,000 b), ==1,490

3.) L0 by + 1600 by + 64,000 by = =0.610

Solving:

N SO N T Jp—
2 == 88,005 P3¥ B695 PL" 808,080

= 0.770 - 4 +€;')2 - @_}3 ’

58.1 8700 606,000 + s s s s e 0 o s o ()

The values oforom Equation (c¢) are plotted on Fig. 12 in dotted
line. '
Yable 2 contains the values of <A and /8 for various

slenderness ratios, determined from Equations (b) and (c).
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mRIE 2
Values of 0t ande for %% = 1.0-0«%3" -ﬁ%g?)éFLoading condition "c')

e o [ L/r L f% ~
0 0.42 0.77 62 1.39 Q.25
5 od9 - 0.69 © 6L . L3 =0.29
10 0.56 0.61 66 1.47 ~0s3L
15 0.63 &0.53 68 1.52 ~0.39
20 0.70 0.L46 70 1.56 ~0liky

. 25 0.77 0.39 72 1.61 ~0.149
30 0.85  0.31 BN 1.65  =0.5L
32 0.88 0.28 76 1.70 =0.60
3L 0.91 0.25 78 1.75 ~0.66
36 0.9  0.22 80 1.83 =075
- 38 0.97 0.19 82 1.85 ~0,78
4O 0.9  0.17 | 8L, 1.90  =0.8L
L2 1.03 0.13 86 1.96 =0,91
Lk 1.06  0.10 88 2,01 =0.98
b6 1.09 0.0 9  2.07  =1.05
48 1.13  0.03 92 2,13 =1.13
50 S1.17  =0.01 n 2,19 =1,20
52 1,20  -0.05 : 96 2.25 -1.28
5l 1.2,  -0.08 98 2432 =1,37
56 1.28 -0.12 100 2.38 =145
58 131 -0.16 . 102 2.5 -1.5k

60 1.35 -0.21 10k 2.52 =1.63
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Continuation Table 2

Y (
106 . 259 <173
108 @67 -1.83
1o 2.7k -1.93
‘w2 282 -2.03

448~

e % B
11 2.90 ~2.14
116 2.98 -2.26
118 3.06 -2.37
120 3.16 | =2.51
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3., Development of an interaction equation for the condition "d%

loading.

Assume the interaction curve to be the following straight

line: » .
Mo o 4P |
P.% d(%) + p - *® L] [ ] L * * * L] * ® L] L] * L] * » * (d)

For L/r = 120, from Fig. 9:

8 0050 i e e At R ot s O

Sy

My Determined by drawing the best
straight line through the curve
, ~ in question (by "eye")
£2 »0.20 <= = 1.0
y y .
1.) 0 = 0.500% +f3
2.) 1.0 0,10k + 5
(x = "2 QSOO
i(s = +10250
Summary of constants obtained:
L ¢ 0 60 80 100 120
¢} -1,111 ~1.317 -1.538 -1.887 -2.500
FH +1,133  +1.172  #1.200  +1.208  +1.250

These values ofo<_and 3 are plotted \}ersus '::ITJ in Fig. 13.

Assuming for"ﬁthat £ =n+ B(.]I:'.‘.)lf c(%‘./\z ,

A =1,133, sinceel a0 /3 =1,133,
. r

Wwhen & =60, (3=1.172, and
r N .

when;{: , /3 = 1.250
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Therefore
1,) 0,039 = 60 B + 3600 C
. 2,) 0,117 = 120 B + 14,400 C

C=_ 2 s B=_L_
185,000 3080

or

Beran s 5 (2) + s @a e (@

The curve represented by this equation is pldtted as a dotted line in
Fig. 130
For 0{ assume that

A «h+3 (L) * ¢ @a P (1%') 3

The matching conditions are chosen as

| grhen;.e 0; A=-Ln ——— A =-1,110
when ,f', = 603 % = -1.-32'
when % = 1004 A = «1.89
when % = 120, A = 2,50

1.) 60 B + 3600 C + 216,000 D = =0,210
2,) 100 B + 10,000 C + 1,000,006 D & =0.780
3.) 120 B + 14,400 C + 1,728,000 D = =1.390

o 1
189 8,669 720,000
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o\=-1110-§_1:2+ (L) . (%')

189 8,889 720,000 + s s s s o s e e oo (£)

The curve representing this- equatioh is plotted as a dotted
line in Fig. 1. Good agreement is noted for both oA and <)
with the original curves.
Table 3 contains values of A and ﬁ determined from Equations

(e) a.nd (f) . Intermedlate values may be interpolated.
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Table 3.

M Po
Values of o and B tor M}% = o 5 + 3

(Loading Condition "d")

Lfr X ﬁ5
g 1.13h 1,135
10 - =1,153 1.137
15 | -1.169 L1139
20 ~1.182 B O 17
25 -1.194 o 1.
30 -1.205 1.148
35 -1.217 1;151
Lo -1.231 1.155
Lus ~1.247 | 1.159
50 -1.267  1.163
55 ~1.292 1.167
60 -1.323 1,172
65 ~1.360 1.177
70 -1.106 1.182
(I ~1.1460: . 1.188
80 -1.524 1.194
85 ~1.600 1.200
90 ~1.688 1.206
95 -1,788 1.213
100 ~1,903 1.220
105 -2.033 1.227
110 -2,179 ©o1.23L
115 - -2.3L3 1.2l2

120 : -2.525 1.250
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Test No:
C=L9 I
C=~50 I
g81 I
C=52 I
" C=53 I
c=5L 1
G55 1
C-56 1
C=57 I
C-58 T
G50 1
C=60 I
C=61 I
Cub?2 I
C=63 I
c-6L 1
C=65 I
066 1
C=67 I
c-68 T

Appendix G "
Table i

Test results of Jomston and Cheney

Member

Eccentricity
Material “inches
1 | 1.01v
1. 1.01
2 1.01
2 1.01
2 1.01
2 1.01
2 1.01
2 1.01-
2 1.01
2 . 1.01
2 0.50
2 1.52
2 2,02
2 3.03
2 5.05
2 7.07
2 0.50
2 - 1.52
2 | 2,02
2 3.03

Iv&k

22.6
32.6
k2.1
L7.1
52.1
62.0
72.0
82.0
101.8
121.6
22.3
22.3
22.3
22.3
22.3
22.3
L7.1

L7.1

L7.1
h7.1

P max
kips
38.6
37.5
33.5
31.3
32.8

- 30.7

27.0
2L.5
18.7
15.6
L7.h
31.2
25.6
19.h

13.9
10.3 .
Lh.6
26.8
21,8
18.2

Po/Py

0.555
0.540
0.501
0.L68
0.L4%0
0.L58
0.L405
0.366
0.280
0.233
0,709
0.466
0.383
0.291
0.207
0.15L-
0.667
0.L401
0.326

0.272
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Test No.
C~69 I
C=70 I
‘C—7l
G=T72 I
C-~73 I
C=-7h I
C=75 I
c=76 I
6~5 II
6-6 IT.

Member

I

Continuation of Table L

Material
2
2

2

Eccentricity
inches

5.05
7.07
10.50

1.52
2,02
3.03
5.05
7.07

| 2.23

L.l5

L/r

u7.1

h7.1
72.0
72.0
72.0

72 .O

-T72.0

72,0
héo?
L6.9

P max

kips

12.2
9.2
3L.6
22.8
20.8
1L.8
10.7
7.9
127.6

8540

Po/P
o/ -

0,182

0.138
0.516
0.3k2
0.311
0.221
0.160
0,118
0.5L3
0.363
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Material and Section Properties of the Test Sections of Johnston and

2054.19

Cheneyts Experiments:

1l.) Member I

Section: 315.7 _
Area: 1.6L. in 2 ‘
Depth: 3.00 in |
Lyt 2.5 in *
Socxt 1.7 4n 2
rxx:. 1.23 in
Plastic Modulus (£): 1,14 ‘
Yield strength: Lot 1. oy = h2.2 ksi; My, = 81.97K
Lot 2. o= L0.8 ksig M, = 79.34"K
2,) Member IT
Section: 6 WF 20
' Areas 5.90 in?
Depth: 6.20 in
" Txxt 11.7 in?*
Syxt 13.Y in®
Tyx? 2.66 in
Plastic modulus (f): 1.12
Yield strength: Lot 3. 5 = 39.8 ksij M, = 5961K
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315.7

6 WF 20

Table 5

~56-

0.50"
1.01"
1.52"

2.02"

3.03"

5.05"
. 7 007"

2.23
L.bs

ec

2
r

0.L96
1.001
1.507
2.003

3.004

5.007

7.010 °

'11\' g

0.977
1.949

~ v W

Eccentricity Ratios for\JohnSton:and Cheney!'s Tests

ecC

= (approx.)

1/2

11/2 .

r®  (approx.)
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Test No.

1

\O @ W

10

17
-18
2l
25
26
33
3k
35
L2
L3

Section
DIE 20 .

n

1

n

10

Table 6

Massonnet's Test Results, Loading‘Case figh

r

0.5
1.0
3.0
0.5
1.0

3.0

0.5

1.0
3.0
0.5
1.0
3.0
0.5
1.0
3.0
0.5
1.0

3.0

- P max
* (tons)

88.8
66.8
35.8

8L.8

6L4.8
32.8
71.0
59.0
32.5
62.0
53.5.
29.0
22.8
19.3
11.5
13.8
12,1
9.05

Py(ﬁon§>

132
132
132
- 13k
133
133
135

13k

13k

ERET

133
134
53.8
5.5
55.0

57.1

- 55.6
5547

L/rx
23.6
23.7
23.7
35.6
35.4
35.5
Lh.L
hh.2
L.l

- 59.1

58;7

59.2

80.8
82.l
82.6

109.9

110.3

109.6

Corrected
L /rx

23.2
23.3
23.3
3L.9
3L.8
3.8
h3.5
L3.3
L3.L
58.0
57.6
58.1
75.0

- 76.5
76.7

102.0
102.5

101.8

Po/Py,
0.672
0.506
0,271
0.633
0.L87
0.2)y7
0.526
0.hLo
0.2l2
0.462
0.Lo2
0.216
0.L2l
0.35L
0,209
0.241
0.223

0.163
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«58e
Table 7
Massonnet's Test Results, Loadigg Case "g"
ec Pmax P

Test No, Section = (tons) (%ons) L./ry L /rx(33) Po/Py
) DIE 20 0.5 95.0 133 - 23.6 23.2  0.715
5 " 1.0 78.8 133 23.6 23.2  0.593
11 " 0.5 93.8 13k 35.6 35.0  0.700
12 " 1.0  7L.8 133 35.3 3L.7  0.562
13 o 3.0  L0.3 133 35.2 34,6 0.303
19 o 0.5 90.8 133 b7 465 0.683
20 " 1.0 © 70.0 133 L7.7 L6.8  0.526
21 " 3.0 39.0 1L e 6.8 0.291
27 " 0.5 82,0 133 59.0 ' 58.0  0.616
28 . L 1.0 67.0 135 59.6  58.6  0.L96
29 " 3.0 381 135 59.2 58.2  0.28
36 DIE 10 0.5 25,0  56.h 8L.9 76.0  0.LhY
37 . L0 2hh S8 8.7 76,9 0.433
38 " 3.0 15.05 57.0 82.7 76.9  0.264
L5 L 0.5 11.8  57.7 109.1 101.5  0.204

L7 " 3.0 10.8  57.7 109.1 101.5  0.187
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r, (DIE 20) = 8.2 cm. (Handbook value)

ry (DIE 10) = 3.97 cm (Handbook va}ue)

DIE 10 -c‘y = 26,875 kg /mm® =38,2 ksi; -\1‘3%12. = 0,929 = correction factor

En
DIE 20~ Gy = 24.056 kg/mi® = 31.2 ksig Jiﬁlz' = 0.982 = correction factor
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: ' Table 8
Test Results of the Current Lehigh Test Series
3 i Experimental #* Theoretical
Oy = LOksi+ | Adjusted Oy #
Loading | ' Adjusted
Test No, Member |Conditions Po/Py | Mo/Pyl Po/Pyl Mo/Mp L/ry | Po/Py | Mo/Mp
T-8 GWF31 c 0.62 | 0,12 | 0.68 : 0.13 52 | 0.76 | 0.13
T-11 | 8WF31 c 0.87| 0 | 0.95| 0 2 10,9 | o
T-12 8WF31 c 0.12 | 0.8 | 0.13 | 0.92 52. 0.13 | 0.86
T=-15 8WF31 c 0.85| 0 0.93 9] 39 0.93 0
T-16 BWF 31 c 0.1210.78 | 0.13 | 0.85 | 39 | 0,13 | 0.89
T-18 SWF31 c o.9i 0 0.99 | © 25 1 0.96 0
T-19 BWF31 c 0.12 1 0.81| 0.13 | 0.88 25 1 0.13 | 0.92
T=-20 lWF13 e 0.12 1 0.8L | 0.12 | 0.87 50 9___1_2_ 0.88
T=26 LWF13 c 0.12 | 0.79 _o_._{g{ 0.81 76 0.12 0.82
T-28 HWF13 c 0.80, 0 0.82 | © 76 | 0.83 0
T~32 IWF13 c 0.12 | 0.76 | 0.12 | 0.78 101 Q.12 | 0.76
T-13 8WF 31 a 0.12 | 1.05 | "0.13 | 1.1k 52 | 0,13 | 0.95
T-23 | LWF13 d Sh&é 1.05 | 0,12 | 1.08 76 0.12 0.96
T-31 | LWF13 4 0.12 | 0.98 ;g:_g__z_ 1.01 101 | 0.12 | 0.95

%* Parameters that were held constant are underlined.
+ Gy L0 ksi determined from tension coupons
# Adjusted (- is obtained by pfo-rating the tension coupon value

in the same ratios as those given in Ref. 13.
(Note: values change for different sections.)
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Test No.
H-l
H=2
H=3
Hely
H=5

ec/r?
1.00
1.00
1,00
1.00

1.00

L//1'°X

11.h
29.0
L9.5
69.6
89.7

Table 9

Wisconzin Test Results

L/rx (33)
10,7
27.2
46,5
65.0
35.4

G’y
37.l ksi
37.k
37.k
38.0

36.L

Cult,
(ksi)

20.7

19.95
17.95
15,10

12,60

~61=

Po/Py
0,553
0,533
0,480
0.398
0.3L6
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FIGURES
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Po PO ' PO ,PO
/i\ Mo /l\ L /j\m 4 M,
i I | |
| | | |
| l [ |
L | |
' |
| | I l
| (
' |
! ! |
PR—— _____a,.m%n,r __.____S__._ ) \L ey
Mo i : Mo
By T Py Po Po
Case "a" . Caze "b" Case ‘' Case '"d"
Pigure 1

Basic Conditions of Loading

O-RC = 0,36-}7

bt , ,
I RT =[b__(—)_t+w a-7ty.| 9 Rre

Figure 2

Assumed Cocling Residual Stress Pattern
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1.0

Figure 3

Moment-Thrust-Curvature Relationmships for an 8WF 31
Sectien, Including the Iafluence of BResidual Stress
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()]
-~

:g“

wB5w

1.0

(]
W

0.5

Mo
M,

Note: d7 = Wield Stress im kai

Figure 4

Initial ¥ield Interaction Curves for Comdition "e" Loading
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.Note: G’yﬂ = Yield Stress in ksi

Figure 5

Maximum Strength Interaction Curves for Conditlon "e" Loading,
Neglecting Residual Stress.

ec
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‘ e
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B 1 4.0
5.0
7.0

0 . 0.5 1.0

Mo
- Mp
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1.0 [

" %40 Y | "WF Section

~ Strong Axis Bending

N

N\

AN

o
L
—
—

. Mo

Note: d“y? = Yield stress in ksi
Figure 6
,ﬁaximpm Strength Interaction Curves for .Condition '"ec'

Loading, Including Influence of Residual Stress
(chC = 0.3 030 ‘

———
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Note: 0~y = Yield Strength in ksi
Figure 7

Inivtial' Yield Interaction Curves for Condition "d" Loading
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YO T T 7 7 7 7 7 7 ‘
/ Po .
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. ‘ Po Po 1.5
| IN \\ \\ L ‘33 7 e &
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L N q _
} /'4.0
- , _45.0
x
0 \ ] L I | [ | { I
0 ‘ 0.5 T.0
Mo
Mp
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0 o - 0:5. 1.0

1.0 T % 1 7 7 7 7 T 7
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N . \ \ § i \ "‘IF'Sgction. 2.0
- 0.5 \\\\«100 \\‘ _,ﬁtrong Axis Bending
\ 100 N
\ \ _A3.0
_ w _ \i\
. RN
0 ] I | | | | |
0 0+5
Mo

Mp

Note: G’y = Yield stress in ksi

Figure 8

‘Haximm Strength Interaction Curves for Condition '"d'" Loading,
Neglecting Residual Stress
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Note: &y = Yield Stress in ksi

Figure 9

-70-
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- Maximum Strength Interaction .Curves for Condition "d"
Loading, Including the Influence of Residual Stress
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Q.25 [

= 0.233

-

0-20 rost

Mo 05~ [ - Po

Mo

' . Case ."a"
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. | Po
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= - .. Po

- L=u40
I
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0 0.004 0.008 0.012 0.016 0.020

Figure 10

.Typic31 Mbment vs;.End-Rotation,Cﬁrve for Condition "d" Loading
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" ‘Euler Curve V

5

73,500,000 32,000

Py ©
] il | | | | | L ! 1 |
0 ‘ ‘ _ ‘ 50 , 100

e

Note: O y = Yield Stress in ksi
Figure 11

Approximate Equation for Axial Load Only (Re = 0.307)
(Column Pinned in Strong Direction and . Fixed inWéak ‘Uirection)
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"

Figure 12

Coefficients ¢ and ﬁ for_~Cond1tion Me" Interaction .Curves
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Figure 13 : e

Comparison between "Exact'" and "Approximate" Ihteragtion
.Curve, for Loading Condition .''C". :
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-Coefficients X and (5 for Condition "d" Interaction .Curves
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Figure 15

: Comparison between "Exact" -and "Approximate" interaction
" Curve, for. €ondition "d" Loading.
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Figure 16

Comparison with Test Results of Johnston and . Cheney
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Figure 17

.

Comparison with Test Results of Johnston and Cheney
(Continuation of Figure 16)
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Figure 18

,Compafison”with‘Test Results of Massonnet
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Figure 19

Comparison with Test Results of Massonnet
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Fuler Curve in Weak Axis

A. Huber Test
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Figure 20

Comparison with Test Results of the Lehigh Test Series



Po
Py

190

0.5

205A.19

. -82-

Po

L

8H32 Section
.Strong Axis Bending

Euler Curve in Weak Axis

Figure 21

Cbmparison‘with‘Test,Results of the Wisconsin Test Series
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