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This paper, which discusses the behavior of pin-anded,

steel; wide ....flange baam""CPlunm.s~ is the development of a virtual

d1$placement mathod of solution to the inelastic instability

p:t;toblam. The method 1s equally appli cable to the eolutl O~ ot

elastic OJ? inelastic beam-eolunm problema but 1t8 ~eatest appli­

cation seamS to be in the 1nelasticfield. Ufi,1ng the proposed.

methoo of solution. the critical "laluElof loading f'o~ !n(m1'ber$

SUbjected. to concentric. eccentrio and/or lateral loads" can be

determined in a .frs.otion of the time required by eXisting solu'"

t10218.o
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II. I N T ROD U Of ION

'rho problem under consideration is the detemdnat10n

of the mQjtimum loading a beam....column typo m~l'tlb~rean ca~y•.

The importa.nce of the problem is evident. s1noe if' it is possi­

ble to predict the "collapseu loading of a mambarl 1t is also

possible to evaluate fora mentbeI' with a given loading the true

factoX' of safety.

A large number of variables enter in the solution of

problems of this type; and to reduoe these in the development

that will follow, it will bo assumed that:

&. The mode of failure is that of bending 1n th~

plnne of the applied mO:.lents. Furtbermore" this

plane is coineident w5.t11 a principal axis of the

section. (Lateral-torsional andlor loe~l buckling

ax>e not considered •. )

b. The material ulldar stud.'Y pO$seases stress -strtlin

properties as shown in Fig. 1.

c. Members are originally straight J: ft-ee frOm so­

c1dent$l ecoentricities, and of uniform cross'"

section along their lengthS.

To illustrate the phenomena being stud1.ed, consider

the typical load-deflectHm curves of Figs .• (2) and (3).

Fo~ the axially loaded member, Fig. 2 (elastic beha­

vior), axial thrust, P" can be increased from zero to a certain

critical valu~ Pe, With the mamber remaining 1n the straight

equ1;t..lbrium position. Howeve:r, on applIcation of the slightest

additional increment of thrust above the crItical valn6,. lat$ral
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defo:t"'!l1.S.tion occurs. Thus at the instant of bending there $.x1st

two adjacent positions of equilibrium of the same load; that

1s to 8aYt the member ls" indifferent with regard to either a

straight or a defleotedeonfi gu1'9.tlon. Thiscondi tiol'l, knTft'm

asbif~catlon otthe equil:tbrium position, is called a neon'"

dltion of instability".

For the eccentrically loaded column problem of l''''ig. 3

a. different type of beha.vior is observed. First of' all, the

member starts to deflect on the Slightest applioa.tion of thr~8t.

ElQst!cally this deformation increa.ses with the maxim.um strength

approaching the Euler load. However, as deflections increase

with load, the outermost compresslvetiberstressat the center

of the column increases as the product of P and Yo. Beca.use of

this rapidly lncreasingstress situation, there is reached a

load at which yielding of the member takes place, (e.g., point

f~8." in Fig. 3). As the loa.d is further increased;. yielding

progresses a.cross and along the member; thereby reducing its

rss:tstana6 to further loading. Finally" there iareached a point

at which an increase in load is imposs1ble .. the member progres­

sively deflecting as load rema.1:nsoonstant. At this instant"

the member 1s indifferent with regard to two possible adjacent

equilibrium contlgurationsand it beoomes unstable.

Herein then, "instability" is considered as that pheno­

menon where under a given constant load there eXist two possible

adjacent equilibrium positions.

To determine this condition of instability, several

basic methods of solution 41"$ available, Three of these are as

follows:
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a. If the .force required to displaoe the·loadad

colQ~ into adl.fferent, deflected position equals

zero, then the ..member 1$ said to be indifferent with

regard to which of the positions It will aasumet and

a condition of lnstabi11tyexists.

b. If the total work associated with a loaded column

remains the same as the member 1sdefleoted,thatis,

the rate of change with respeet to defleotion equals

zero, indifferenoe again has taken place.

c. If 1t is poss!ble to determine the axial load ....

lateral defleotion relation, the member will become

unstable ~hen
~ 1')

- :::: 0
~y

$i006 for that valuaofaxial loa.d there exist two

adJaoent equilibrium positions.
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III. E X I S TIN G SOLUTIONS,

'w

In the mtilin, previous solutions of the inelastic in...

sta.bility, beam.-column p:roblern haV$ been otlls$d on the oriterion

of instability that involves the determination of the maximum

point of e. load...defleotion ourve. :tn. general eaoh of thosE! solu ...

tions has been based 'On the work of Karman" who. starting from

an assumed strain dlstributlion pattern~ (and thu.$ a stress dis ...

trlbutlon pattern). oalculated the oorresponding moment. thrust

and curvature values which wculd have produced such a. stress

configuration. Since the three equations defining these variables,

M, P and 0, oontain five unknowns (see Fig. 4), one expression

of' the form

(I)

"

can be obtained by eliminating the two oross"'section variables,

'(ClC. and O'a>, which define the generalized yield pattern.

Consider now a typical' beam-column (Fig. 5). Sinoe

equ:ll1briumlltuatbe satisfied at all t1iU.$s, 1.e.

and sinoe the equation for external moment, Me~t' at any point

along the column can be ex.preased SSQ function of P, F,la-tat-al

loads, etc., i.e.

Mext =g (P, y, lateral loads, etc.),

solution to equation (1) 1'1111 be of the form

. P =h (0, y, lateral' loads. etc.) (5)
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At this point the various methods of solutions differ.

Ka;rmana1'\...d Ohwalla (3) used numer1ealor graphioal 1ntegr:ation

to sOlva equation (3) for direot values of' P versus y. Jezak(7\

Weatsl'gilarc1 and Osgood (16l and others assumed a known deflection

ourve such that 0 could be obtained direotly 1n terms of 1 by

differentiation. Both of these methods of solution have as their

objeotive ·the determination of a means of describing thr-nst as Q

funct10n of defleot1on~

P=f(y), (4 )

r

tor Which, according to oriterion (c), 1nllltab11ity oocurs when

(8e$ F1g.3.)

!he d1ff1c'~ltles involved in elthe1r' of these methods

of solution arise from the fact that for any eonv$ntiona} type

of eross""sect1on other than a simple rectangle or circle;. it 113

1mpos.sible to write Ii continuous function t01" Eq.• (1) J therefore

euwes or graphs must fi.rst be devised to supply thG M....P-0 in­

formation corresponding to various stress conditions (9). P-ro­

caeding from these plots 1t is necessary to integrate suitable

{6 values and obtain th$ actual load-defl$ct10n curve.

To oiroumvent this difficulty, Jezek (7) introduoed in

his appro~1mate solution a tr~hape f'actorUitthe purpose of wh1ch

was to relat& the relative stiffness ot the section in question

to that of the rectangle 10· Tb1$ type of solution landa itself

readily to theformulat1on of design aquations* whioh are com ....

paratively easy to $olve~
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One notably dlffaren'b type of solution to the ecoentric

instability problem Was presented by R08 (11), (12), who rea$oned

that if the rate of increase in effective,internal.1res1stanae

eccentricity,_ M/p, is the $ame as the rate of' increase in the

external applied centerline eccentricity, than instability will

OCCU:t'. Using this condition he obtained a graphical solution
. .

for the rectangular section problem by expressing the internal.

eccentricity as a function of the sum of th$ outer tiberstrain8

(a. measure of curvature) .. ·

It has been shown that the p~esence or residual stress

is of def1nl te influence on the str~rngth or oolumns (6), (9).

This makes solution by tha abo'i16 methods even more complicated.

To overoome th$ difficulties encountered in each of,'

these solutions .. the method presented in the next section of

thle paper was developed. The mechanics are similar to those

pt"EH;H~nted by Ros (IS) to:r· the reotangular seotion.
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IV. THE PRO P 0 SED V I. RT -q A L

DISPLACB:MENT METHOD
~ 1

OF SOT.;UTION,

Bending instability can be considered sa a breakdown.

in the resistance the member offers to further bending. Since

bending is aynonymoua with moment applioation, it should be

possible., then, to determine for a g1ven loading condition if

the s~ction offers sufficient resistance to further bending by

displacing tq.s,loaded'specimen ~ 'virtual' amount and noting the

change 1n external applied moment at the most critical section

and the internal,moment ot :resistanoe offered at that same sec ...

tion. If the increase in flxternal moment 1sgreater than that

whioh the internal atress ~ttern canaupply, the member fai18

since resisting momentca.nnot lIkeep up" with applied nlOl'l1ents,

Wh~n these tworat1oa 'of" increase are the same $. condition of

1ridifi'erenC6 exists. The necesil,sry condition fov 1nstabllity

can then be stated:

When external moment at the most critical section

increases at a ~ate equal to the rate ot increase

in resistance moment 8upplled by the internal stress

system at that sames6ction" the member becomes un'"

stable.

W~itlng in the torm of an equation

A:1K I
~ ext

AM 1
=:~ 1nt (5)

where AMI ArA 1s the rate of' change in moment wi th ~speet to

curvature; 0.
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.Fo~ 111ustration consider theuially load$d column .

shown in F1g.2 assumed; for ease ot solution, to buckle in the

elastic str$ss range. As thathrust. P, is 1nereas$d the poten­

-tial of the external system to sUbject the various cross-sections

along the member to bending mOnient in addition to applled thrust

increase as the thruet, i.e.

( 6)

Whereas) internally (as shown in Fig_ 6) the resistance to thi$

possible external-moment is constant at a value defined by the

equation

(7)

~Mext a.nd l1Mint represent changes lnmoment when going from the

straight (original) to th6l defleoted position (a virtual d1s ....

placement away).

Assuming the d$flect1on curve 13 of the form

r

than

(8)

where the zero subscript denote~ conditions at the center of

the colmnn (the most critically deformed section). SUbstituting

Eq. 8 in Eq. 6,
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Writing this expression and Sq. (7} as the change in moment

dIv:'tded by the virtual CuI-vatiW8 to obtain theratEt of ehang$

in moment with respect to 0o giv$S

(9)

Each of Eqs. 9 can be plotted as function of P and

(LUl;f/Ll0) .. (see Fig. 7). There is reached. a pOint a.t which the

rate ot external potentIality of moment application (AM!1l0Iext)

e~actly equals the rate of lnts!"nfll resistance to laters'l detor­

mation (L\M/Ll0\1nt). At that point the member can assume either

the atraight or the d$fleet$d position; and therefore a condition

of instability e~l$ts. Abo~6 that critical Vslu$ ot load, Peri

it 1s 1mposs1ble for the internal ehang$ in res.1stt:mce moment

to rfkeep upu with the potential change in externally applied.
-

moments and therefore the mambe11=' collapses. To eiTaluatethe

magnitude of the lOad correspond1ngto this critical condition,

use the lnstability condition of Eq. 5,

or
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which when solved for p~~ 61v$$

-11

"

the EUler 'buckling lQad tor Q a-tralght, axially loaded ... elastic

column.

Had th$ thrust been applltad taceent:r1oe.l11! arld/o:r $.

lateral load superim.posed thereby introducing bending £t>om th$

start .. the folloWing would have resulted. In the original de'"

fleeted equilibrium position (see Fig. 8), prior to subjeoting

the member to the virtual d1stU~bance,

If· .. = p ($ + '0> .... ~
G ext 4

The increase in 0xternQl moment caused by this d1$turb$nce i$

equal to the difference between the t1naland original moment

It .should be noted that this is the same &$ for the. axia.lly
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.'

loaded column 'problem shown previously*.

Internally, again conE3iderlng elastio oond:i.t1oI1S for

simplification" (see Fig. 9), resistance to bending 1$ constant

a.t a value
AM
L\0' == E!

int

Solution to this problem then 1$ the same as for the pure axial

load ease. instability occurring at the Euler buckling load.

HOYlev~r from the d1eeuse1on of Fig. 3 and, from the b~nding res121­

tanc$ plot of Fig " 10 1tis obVious that this condition can neve~

be reached and satisfy the assumption of 'an elastic internal

stress situation. 'resolve the problem. then.. it 18 first ntees­

sa~J to determine internal bending'stiffn$ss above the elastic

limit.

Bending Sti.f:fness Above the Elastic Limit

As W$oS discussed in Section III (Fig. 4) the momeut­

curvature relat10n .bove the elastic limit 12 a funotion of axial

thrust as well as oross-sectional dimensions~ndmechanioal pro·

parties of the material. Thus to be able to use the 1~esult1ng

M""0 curves tor integration it is necessary to .first determine

compatible mozn&nt and thrust quantities corresponding to given

ovalues. This can beoome a major probl$m :for anything other

thfimsil1lPle shapes} however" by modifying the problem under stUdy.. ~ - .... ... - ... .. .. - '... ....
*' Gl!)n6ra11z1ng, it can be shown that if the member is p1n-ended,
regardless of lateral load.s, inelastic ox-elastic action" <..te.,

.L1 MI. %:l; P (Ay) il

ext
For the case of restrained members" So factor taking into account
the end condition will need to be added to the right hand slde
of the equation.
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to one where axial thrust 1s held constant and moments inereased

to collapse, a relatively slmpl$~ semlgraph1cal solution 1s

available (9) whereby compatible M,· p,! 0: values oan be deteI1ni1.ned

for any type' ofoross-se~t1onhaVing one axis of symmetry.

Two sets ot curves resulting from that previous stUdy

Qre here shown as Fig. 11 and Fig. 12 and are the M-0 plots (at

cGn$tant p-ValU8$) for the aWF~l ($trong axis bending) and tor

the rectangular section respectively_ These plots ~va be~n

made non~dlmen$ional by dividing the moment value by My, the

moment corresponding to initial yield in the absence of axial

thrtU~t, and the ourvature value by rdy.l the ourvature oorrespond'"

ing to My.

To have these r$sulta in a form SUitable for direct

use in Eq. 5 1. t is necessary to further develop them by obtain­

ing tangent values at various points along eaoh curve. The$6

tangent valu~8 will be of the form

AM 0..,,-
Llr<$ !O .....4

:r.ty

which can be considered as a measure 01' the desired internal

atif'f'ness term, AM/Ll0Itnt. in Eq. 5. The tangent curves obtained

from F1gs. 11 and 12 are shown in Fig•• 13 and 14. Ineacn case

the tangent values $1"6 pl¢tted as a function of the two eoord1nat.es

'ti/My and 0/0.,.

It' a cosine d.efleetion curve is assumed and the exter­

nal rate of change substituted.in
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then,

$:I.nce

LIM ~ . Per
~.}l; =-

. Y :lnt ~.

-14

(10)

In these equations, Fe ts the Euler buokling load for the

member of length t •.
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v•. A P .PL XC· A, T I .ON S

-15

-'

For any membersub3ected to both end thrust and 'bend ...

lng mo~nts1 the total moment at any aeetlon 1s aompoeed of two

parts: one 1s due to the axial thrust times the defledtion;

the otheX' 1s independent ot deflection (e.g" end. moments, later611

loads,. etc.). That part of the centerline moment which is iode ...

pendent of' deflection is noted throughou.t the remainder of thi$

d1 scussi on as "mo".

If it is assumed that the moment producing loads a1'$

symmetrically placed on the structure and that the deflection

curve can be approximated by the equation

(11)

the exte:rna.l rate of increar.le incenterllne moment with respect

to curvature will be given by the equation

However, to have this in the non-dlmensional formsuitab16 for

u.se in Figs. i3 and 14, it is necessary to mUltiply both sides

of the equation by liB!. Th1$ then. as WQS shown in th$ last

section. gives

(12)

Where Fe 1s the EUler buelc11ng load foX' th$ p1n..-ended member.
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Sinoe a eosine deflection eurve (Eq. 11) was ~ssumed,

the eente%"11ne deflect10ncan be expressed as " 0"

(lla)

Subst1 tuting Eq. (11a) in the fOl1ew:tng expre"ss1o'l'l for mo

me> Mo....... = .....
My 'My

(13)

_0

(14) "



Strong Axi$
BfJn~ilg

Weak Ana
Bending

. (Reetangle)

0.55$

Weak AxiIJ
Bend1ns

(R$Qtangl.)
atitt'one; Axia

!end.ing

Substitution of these quant1.tlea in Eq. 14 gives th. followlng

value$tQ~ mo/My,.---=---"".--------;----------.

Since in Fig. 1$ th$ moment at tho c.nt.~ of thtlt column

exe.lulllve of thrust times defleotion 1. equal to

1110 == <rI$ + !f>,
tht arttical value of the mOll1tsnt p1"oducln.S loadaw!.11 'b~ g1VEm

by the fOllowing expressions,

(~) • (M. + a::.I,~) tu.
M., or ' It,- II; 0.598 (tor 'strong $:Xis bending)

=0.522 (tor ••ak fAX!. b$nding)
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Had othe~ loading conditions ~en impoesd, a similar procedure

would hav$been used.. 'rhtJ<9xpressi ons tor a few typical problems

are shown 1n Table I.

In eaoh ot these problems, the quantltyo£ primary 1m...

portanee is mol My. To faeilltatesolution ot other problems where

length andP/py values are d1i'ferent f'romthie one, values ot

malMy ha.ve been obtained tor both strong axis and. weak Uis bend­

ing 1n a range of a1 endernessfrom 0 ~ LIi ~ 120. The plots %'$'"

sulting tt"om these calculations are shown in Figs. 16 and 17.

They ar¢ applicable only to those eaae~ of load which produce

single ourvature deformation that can be approXln1$.ted by a Ufull"

cosine curve.

Figs. 16 and 17 can be used to solve three bAsically

different types of be~-eolumn problems.

1. Given a constant axial thrust, detet'mine the

. maximum lateral load and/or end m01:ll$nt the

mQrober oan carry.

2. Given the lateral loads and/or end moments,

determine the maximum axial thrust to whieh

th. membep'eanbe SUbjected.

3. Given an eCOentricity. determ1ne the maximum

axial thrust.

The first two are solvable directly from th, figures. For the

third case, however .. it 1.s first necessary to "lay-off lt a line

which described the relationship between mo and 13.* The point of

intersection ofthia Ita-line" Vii th the given slendet'ness ratio

Will determine the critica.l a~81 thrust.
.... -* This line would correspond to th$ equation mo ::: P.E;l or

(mo/My ) ::: (p/Py) (ec/rlq) •.
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VI.. D. IS. C U S S IO N A. N D SUM MAR Y
_.~,. F,' , ,,' ~t . " 'I......

...19

..

In the tor$go1ng presentation a stat10al method was

used for dete:rm1ning condi t'1ons of indifference. This method

implies th$lt an equl11 brlUJ.'11 pos1tion :t$ !mown a.nd it is desired

to det6rmine if that position is stabl$ or unfitable. Solution

waB .aChieved by oomparing the J:>6te of change 1n exte1"na.l mO!'Jlelnt

to the rate of change 1n internal resistance moment for a given

vi:t"tual displacement of the loaded specimen. If the internal

moment increased at a rate ~eater than th$ external mom$nt, the

specimen was .table. It the ·rat. of change in external Was the

la.rger, the member 'Nas unstable. For theoaee where the rates of

change were $qual, a oondl tlon ot indifferenoe (incipient 1n·

stability) e:xi~ted...

B!' Influence of Assumed Defl$cted Config.. urs.tlon• 1 _

'or. easeofsolut1en, 1 t wQsaesumed throughou't; this

report that the over-.all behavior of the mambaI' Could be pre­

dicted with suttlei.nt acauraey by assuming a deflection curve,

the magnitude ot which would bel governed by the strain d1stri ...· .

button pattern at the moat highly deformed cross-seotion. This.

simplification eliminated th$ need of minimiZing integrals and

resulted in a dlr.ct determination of an end moment, axial. thrust

EUld er1tieal length corresponding to a given stress distribution
~ .."~': :J:: >- 't

pattern. How.veto, when us1ngsuch a procedure, a certain amount

of error 1s !nt~odueed, the member essentially being forced into

an tul11l!tture,l eont'1gurat1on. To determine the m$grt1tude of this

error.. the follOWing three comparlaon$ will be mad••



..

a., Compar1s.on of strength results obtained tor

several different curves.,

b., Oomparison of thtl deflection ands,trengbh re ....

sUlt$ ot $Qoh of thes$ curve&! with individual $clu't;'

tiens obtained by numerical integration" and

e .., Comparison With previous published $olut1.one;

namely,Ohwalla' lS( 1) "Jezek' s{l) and Tlmosh~n..li::o.s .,< 14)

In the first comparison" the three types of configura­

tion shown 11'1 Fig. 18 are considered. Th., first of these,. that

of' $. ufull ....cosins" curve, was used in th6 development of the

f:>-eneral Illethod ot solution (Section III) and. 81$0 in the preoed ....

,ing section on "Applioations". The second 1s apal"illoola", and

the t~~rd isa "partial oO$i1'1a" curve of the form suggested by

Westergaard. and Osgood (Ie). In the .:first two eases the nlOf!1Etnt

boundary condition is ,violated.

Sines each of th$se aS$ttm.$d. ourves invc>lves one para;.

meter". Yo~ the previously derived instability condition,-

,liM .,. AM
2llf .... Ln1 "

{axt 1nt

can be direetlY applied., For the first two C&~$S#

a. ttFull Cosine tt ourve

t.!M
flO

int,
and. (IS)

,

b. ffparabolic tt ourve

:: p t
a

8,



205A ..14 -21

For the rtpart1al Cosine" curve (as$U1l1pt1on "aU), it is necessary

to f'urthe'r develop· AM/A,r/Jlex:t $0 that the ends· of the flr}l length

are held. at a g1 van· deflection, e, :rather thanma,.ntalninga

hypothetical "l"-l$ngth member. (See F1g. 19.) If such So pro­

cedure i$ carried out acornplex equatlonoontain1ngtu.nctions ot

Al0 and At and cosines thereof 1s obtained wh1chcannot be solvE!u~

explicitly for Ayo 1n terms of A00 • However, by considering

only the firattwo terms of a cos1ne serIes, the expression can

be reduced and. results in the following equationt

L\M L$iJ- .

~0 int == P ;;;r (17)

Even though this is the same external rate ot moment increase

as found for case "art, the solutions for members tta,fI and "e" fire

different, the Me values be1ng determined by d1r:f'e~ent equations.

a. "Full Cos1ne lt curve

(18)

(19)

~ 1s determined by considering the full value of Moand £/Jost

the center 8ectlon~ 1~$.

t lit(-) =r .

Mo
1,2 = T ·

·0

flo/My

( 20)

(20a)
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(See Fig. 22.) There is d1f'ferenOEl bet.,(;ten the load deflection

curves obtained by the various cmethods'; hmvever, tl1t!) ultlrruate

carrying oapaci.ties of the members are Jn comparatively good'

agreement for these examples.

The thlrdcompar1son i$ that between previoua published

solutions and. the curves of ultimate strength as predicted by-the

ffpart1S1 oosine" deflection ou:rves p:resented earlier :tn this dis­

cussion. Sinee previous 1ntor.nat!on regarding WF section behaVior

is lacking, comparison is made only tor the rectangular section.

furthermore. only for. two slenderness ra.tios.
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Chwalla's solution 1$ based on a numerical integrat10n

procedul"e and should therefore be oons1der$d as being "exact." •

. His deriva.tion 113 based on (a) a typical German steel With a

stress-strain curve having a proportional limit of 27 kai, and

So yield stres$ level of 34 ka5.. Jezekts 1s a.n approxima.tion

ba.sed on (a) a "full cosine u deflection curve and (0) a. stress­

strain cu~va of the iC1ealU::ed elastie type (see Pig. 1). Timo·

shanko' 8 solution alao considers Ca) the 'ffull cosineu curve

but (b) the stress-strain curve has a proportional limit 30 ka1,

a yield level or 36 kat and an ultimate strength of S6 kai"

Fig. 23 shows the comparison obtained b$tWE'H~n eaoh of .

these pre\T10U8 solutions and the Itpartial e·os1n$u solution of

this report.. All curv$S have been adjusted to So yield stress

. level of 40 kat. Length ad,1uatment was ~ccord1ng to the equat10n

\~
·r~iO.o

Inganura.l" Ohwallo. t s aoluti'on g1"e$ the lowest strength values J

Jezek' 5 g1ves the highest. The part1al eosine solution is be'"

tween these two limits, as is T1mQshenko t s solution.

b. Ela.stically Restrained Member!

In actual struetures, columns are UsUAlly re$trained

at their ends rather than being p1n-.ended, and a r$cent p&pe:r( 2)

d1seusses such Q condition. In that stUdy a method was developed

for ~educ1ng the actual restrained sy$tem to one of ~1 eqUivalent.

pln~ended, eccentrioally loaded column. Having determined by that
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method th$ equi'l1alent membel' fbr a rEUJtrained column problem,

the $ol~tion and curves presented ln thiS paper directly apply.

c. Residual Stress$a

To inolude the va.riable of residual stress" it is

necessary to develop a coznpl$mentary slilt ot ourves for the de­

sired. pattern and magnitude of residual liItress. Thi$ develop­

ment would start from a given M~ curVe (9), whieh included

the effect ot the residual· 'stres$pattern, and proceed a.long

the same linea previously described.

('1. Load-Defleotlon History

It should be pointed out that no special ¢ons1dera­

tian has been given to the manner in which a condition of in­

stability is approached; that ls, the load--detleetion history

of th$ member in question. Tht, presented curvea (ind numerical

work assume that an axial loadt smaller than that required tor

fa1lure~ is first applied and that bending is then increased

from l'iero to its maximum va.lus. Under this condition ther$

will be no un1 oading of' prev1 ously yialded f'i bel'S. The result ....

ing critical loads then wl11 b$ comparable 'to the reduced. modu­

lus load tor axially loaded members.

As was clearly demon$trated, first by Sha.n!CiJ'1 (1$)

and later by Du'berg and W~lder(5) and otner$, if' an axially

loaded column 18 cons1der.das an imperfect compression member

With thG imperfection approaching zero, the column will $t8.1't

to bend at the tangent mOQulus load•. Increased thrust beyond

th1$ Ve.1U$ wlll.be accompanied by an incree.sing ttat$ of lateral

aeflection, the memberr$aeh1ng itll maximum strength at Some

point prior. to attainment ot the reduced. modulu$ load.
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81nos one limito! the ge~erallzed beam""Column prob­

lem 18 the axially loaded eolumn.. there wlll be a certaln e.mount,

of error inVolved intne method ot'solutlon developed in this

report.. While i t.::is telt that tor the assumed fltrass st~e.ln

ourve ot F1"g. l~, the resU1ting error ia'qui te small" tU1'ther

ext$nSlon of this work to materials having curved. str6$s-stra1n

relations (either ,as e. basic material p~operty or as. a !result

of residual 8'01'$$8" etc.) shoUld be'Qccompanied by suitable

cheek c$lculationsto ind~cate the. amount ot erro~ involved in

this type of a procedure. The erro~ will be primarily a tunc"

tion of the init+al eocentricity. Other important fa.ctors would

be thfl type ot cross-section and the streas"strain relation.'

A reoent NACA report (17) provided one source of in­

formation for thess check -calculations. '1'he:reln load..odetlect1on

curves are presented (tor an idea.lized WF section column) tor

various In1tial ecoentricities and .tre$s~straln curV$S.

Since a majority ot the practical beam~olumn p~ob.

l$m$ encountered in the analY$is of Civil Engineering type

struetu~e$ eonta1n moment producing loadS greater than that

which could be attributed to aco1dental impe:rf'ect1ou13" this

"tangent modulUS lnnu6mcs tl will more than likely not be a real

problem_

It 1s interGst1ng to note that th$early numerioa1

Work on collapse strength o~ reetangular section, beam~olumns

carried out by Chwalla was based on a typioal IIGe:rmen. Steel fl

type stress.strain relation (linear up to the proportion~l

limit" parabolic from the propOrtional limit to the yield stress

lev$l and then horizontal to the point at which strain ha:rden:tng
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commences). Recently Un -this work Me been cOl"reeted and it

was found that adjustment was needed only when the ratiQ of the

eenterllo$ deflection at maximum load to the depth of the sec­

tion wa~ lees than 0.1# a comparativelY small def1~ct1on value.

e. ~ocal-and Lateral Instab11it::r

Neither looal nor lateral types ot instability were

con$id$red in the development presented in this paper. The

eons1det>ed condition ot instability in each eaSe has been that

of excess1v& bending in the plane ot the applied moment. How­

ever, when bending 1$ forced about the m.ajor axis of a section

(that cond1tion most frequently enoountered in praotioe). When
..

. theIt6 18 appreciable ditferacl1ce in bending st1ff'ns&$ be-tween the

two principal axes ot the section; and when there 10 'little it

any lateral support along the member, the mode ot failure will

more than 11kely be that due to a combined bendlngand tWisting

4ct1on (8). In practloe, howeve:r, thiS will notneoesaarily be

the case since members w111 be frequently restrained by bracing,

walls, .floors, ete. Where sufficient lateral restraint is pro­

vided, the problem of bending plustw1st 1$ nonex.lartentl, and

collapse can be determined by the methods previously d$scribed.

Another entirely different type ot problem can develop

When the erol\HI ...seetlon is composed ot oonneoted" relatlvaly thin,

projeoting elements. For those types ot tn.mbers, the projeotin@

elements may individually or colleotively deform in certain local

regions and thereby ohange the orlginalcross-seetional properties

of the member •

Assuming the validity of any of the o~rently avail.

able inelastic local bUckling theories, the maximum atrain~ fmax"



that a. flange oan sustain a.nd remain in the etralght position

can be predioted. F~om this CQn be determined the critical value

of ~ul f '1.,. U$ing the procedure outlined in Ret. 9 and noting

that

"

(see P1 S. 24), the corl'eeponding critical value of 0r:'/(/)y for
41.

available, rolled, wide"'flang$ shapes can be dettnomined and is

found to be oompa~at.1V~ly large (0olr/Jy ~ 3.0). Front F:tg. 13 'tt
. S\)~ ,

can b$ aeen that~a condition will be realized only at extremely
L-

low valuea of thrust, (Pct»/Pe .... 0.05).'

SUMMARY
I

This repot»t presents a Virtual displaoement solution

to the inelastic instability problem, the method being equally

adaptable to elastic; inelastic. concentrically loaded~ secentr!·

cally loaded and/or laterally loaded oolu.mns.

The 81ll$ElnOe of th$ solution 1s thSl.t of applying a.

Virtual curvature ehange to the loaded m0mbar and equating the

ra-be of change in external moment at the most highly stressed

section to the internal stiffness resulting trom that curvature

change. For ease of,sol.ution, defleetion curves ot one paramEJter

were a51s.umed causing the, sY$t$nt to reduce to collocation at one

point. It was shown that tha ultimate strength ot such members

is ~elatlvely unaffeoted by choioe of deflection curve, the

"fUll eos1n9" giving t~e highest stl"ength pred1et1onand the

parabola giving the lowest prediction. (Figs. 20 and 21.) The

"partial cosine" solution compared favorably With previously

available solutions. (Fig. 23.)
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To taoi11tate $olution of problem$ otper than tho~e

dlsCUStH~d herein, curves have been presented whlchensure .%'a.pld

determination otcritical loading values (Figs. 20 and 21) for

any symmetr'ic8.11y deformed pln1nded member.
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VIII. NOM ENe L A T U R E

Area. of eross-section

Width of cross"'section

Depth of crose "seotien

End eocentricity of axial load application

Young's modulus of' elasticity

Moment of inertia of total orOSS -seet! on. about the
principle axis of section under consideration

Length of member (distance between pina)

Length of hypothetical m8111oero (used in lfpartial
Cos in." deflection curve asallmptlon)

Change in length of hypothetica.l member due to So
virtual change lncenterline cu~vature

Bending moment

Internal bending moment due to stress distribution
across section

E"tternal bending moment due to lateral loads, el1d
moment, initial ¢~vature, and axial thrust times
defle~tlon - .

Bending moment at which yield point is reached in
flexure

Bending moment at the eenterline seotion or the member

That part of th.e centerline moment which is 1ndepen...
dent .of deflection

End applied bendinG moment

Change 1n value of centerline moment due to a virtual
change 1n curvature at that same section

Axial thrust

A%lal thrust oorI'€tspond1ng to yield 8t~eBS l~vel

over entire section

EUler buckling load

Maximum thrust a member oan oarry
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00
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Conc0ntrated lateral load

Flange thickness (wide-flange s$ct1on)

Deflection parallel to w$b in undeformed pO!ilit5.on

Deflection perpendicular to web in undeformad
position

Deflection in Plane of moment application

Oenterlin~ d$flection

Change in centerline deflection due toa virtual
change 1n centerlina curvature

Ratio of the depth of yield penetration in gom.pres$..ion
to total depth of section

Un! t strain

Unit strain corresponding to initial yield

Maximum a~erage un!tstraln one ompttession flanga of
wide~fls.nge section (strong axl$ bending)

Unit nottmal stress

Lower yield pol~t stress

Variable normalst'res5 on tension aide of cross -section
('posltiv$ when in tension)

Curvature

Centerline curvature

Virtua.l ohange in oenterline ourvature
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