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I. SYNOPSIS

Thie paper, which discusses the behavior of pin=-ended,
steel, wide~flange bemm=columns, 1s the development of a virtual
displacement method of solution to the inelastic instabllity
préblem. The méthod i1s equaily agplicéble to‘the solution of
elastic or inelastic beam=column problems but 1ts greatest appli-
cation seems to be in the inslastic field. Using the proposed
method of solution, the erltlical value of loading for members
subjected to concentric, eccentric and/or latersl loads, can be
determined in a fraction of the.time required by existing solu-

tlionsg.
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II. INTRODUCTION

The problem under conside;ation‘is the determination
of the maximum loading a beam~columﬁ'type nember can cavPy.
The importance of the problem 1s evidént, aiﬁee 1f 1t is possi-
ble to predict the "collapse" loaﬁing of a member, it 1is also
possible to evaluate for a member with a given loading the true
factor of safety. '

A'large number of veriables enter in the solution of
pﬁoblems of this type, and to reduce these 1n the development
that will follow, 1t will bo assumed thab: |

a. The mods of fallure 13 that of bsnding in th@
plane of the applied mom@nts. Furthermore, this
plane 1s eoincidant with a principal axls of the
section. (Lateral-torsional and/or local buckling
arse not consiéered,)' | | |
- b. The material uader study possesses stress-strain
properties as shown in Flg. 1e

¢+ Members are originally stralght, free from ac-
cldental eccentriclties, and of uniform cross-
section along thelr lengths;

© To 1llustrate the phenomena being studled, conslder
the typical load-deflection curves of Flgs. (2) and (3).

- PFor the axially loaded member, Fig. 2 (elastic beha-
vior), axial thrust, P, can be increased from zero to a certein
critical value, Pg, With the member remasining in the stralght
equilibrium positlion. However, on application of the slightest

aedditional Inerement of thrust above the eritical value, latéral
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deformation occurs. Thus at the instant of bending there exist
two adjscent positions of equilibfium of the same load; that
18 to say, the member 1s'ind1fferént with regard to elther &
straight or a deflected configuration. This conditlon, knvwn
as bifurcation of the equilibrium position, is called a "con-
dition of instability".

For the eccentrically loaded column problem of Flg. 3

a different type of behavior is observed. First.of all, the

member starts to deflect on the Slightest'apﬁlieation of thrust.

Elastically this deformation incresses with the maximum strength
approaching the Euler load, However, as deflections increase
with load, the oﬁtérmost compressive flber stross at the center
of the column increaséa asg th@lpﬁsduct of P and y,. Because of

this raplidly inereasing stress aituétion, thére 1s reached a

- load at which ylelding of the member takes place, (e.z., polnt

"a' in Plg. 3). 4s the load is further inecreased, ylelding
progresses across and along the member, théreby reducling its
resistanée to furtherrléadihg. Finally;}there 18 reached a poiﬁb
at which an increasgse in load is impossible, the member progreé—
silvely deflecting a8 load remalns constant. At this'instant, ’
the member is indifferent with regard to two possible adjacenﬁ
equilibrium configurations ahd 1t becomes unstable.

Herein then, "instability” 1s considered &s that pheno-
menon where undsr & given constant load there exist two possible
adjaeenﬁ equilibrium positions.

To detsrmine this condition of instability, éaveral
basic methods of solution aré avallable, Three of these are as

follows:
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a. If thé force requifed t6 displace the loaded
colﬁmh into é,different, daflected position equals
gero, then the member l1s said to be 1nd1fferent'with
regard to which of the positions 1t will assume, and
a condition of instabllity exists.

b, If the total work assoclated with a loaded column
remalns the same as the member is deflected, that is,
thﬁ_rafe of change with respset to deflection equals
ZOPO, indifferenca again has taken place.

e If'if is pbssiblé to determine the axial load =
lateral deflection relatlon, the member will become

unstable when
P

— = 0
=

Y

sginece fof that value of axisl load thsre exist two

adjacent aquilibfium posltions.



111, EXISTING SOLUTIONS

In the main, previous solﬁtiong of the irelastic in-
'atability, beam-column problem have been based on the criterion
of instebillty that involves the determination of the maximum
point of a 1d§&ﬁdefleetion'curve. in general sach of those solu-
tions has bsen based'on'the'work of Karman, who, starting from
an assumed strain distribution pattern, (and thus a stress dls~
~tribution pattsrn)‘ ealculated the corresponding moment, thrust
end curvature values which would have produced such e stress
confignratioh. Since tﬁe three eqQuations defining these variables,
M, P and @, contain five unknowns (see Fig. 4), one expression

of the form
Myt = £(4,P) - , (1)

can be obtained by eliminating the two cross-section variables,
(ot and oy), which define the generalized yield pattern.
Consider:now a typlcal beam~column (Fig. 5)s Since

equilibrium must be satlisfied at all times, 1.6.

Moxt = Mynt , | (2)

snd since the equatleon for external moment, Mgyy, &b any point

- along the column can be expressed as a function of P, v, lateral

" loads, etc., L.o.

Mext =g (P, ¥, lateral loads, stc.),

solutlon to equation (1) will be of the form

~ P=h (&, y, lateral loads, atec.) (3)
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At this point ths various methods of solutions differ.
 Kerman and Chwalla (3) usad mmerical or graphlcal integration
4o solve equation (3) for direct values of P versus y. Jezek (71
Westargaard and Osgood (1624and-dthers assumed a known ﬁeflection,
curve such that ¢ could be obtained directly in terms of y by
differenﬁiation; Both of these methods of solution have as thelr .
objective the determination of a means of describing thrust as a
function of defleot;on; o " .
| £(y), o (4)

for which, according to criterion (c), 1nstab111ty occurs whan

oF

w2 ()

- 3y
(Ses Fig. 3.)

The difficulties involved in either of thess methods
of solutian arise frem the fact thet for any conventional type
of cross-gection other than a simple ractangle or clrele; 1t 18
impossible to ﬁfite a continuous function for Eq. (1)3 therefore
curves orvgraphs'must first be devised to supply the M~p~§ in-
formation corrospondingnﬁo various stress conditions (%), Pro-
ceading from these plots it 1s necessary to lntegrate sultable
¢ values and obtain the a&tual load~deflection cﬁrve.

To eircumvent this difficulty, Jezek (7) introduced in
his approximaete solution a "shape factor"* the purpose of which :
was to relate the relative atiffness of the section in question
to that of the rectangle, This tyﬁa of solutlion lends 1tself
readlly to tha’formuiation of deslgn equations® which are com=

paratively easy to solve.
- - L - - - L] - - ol - - ad LJ - - - b L L3

* Page 45, Ref. (1).
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One notably dlfferent type of solution to thé sccentric
1nstabi11%:y préblem was presented by Ros (11), (12), who reasoned
that if the rate of inecresse in effective, internal, resistance
sccentriclty, M/P, 1s the same as the rate of increase in the
external applled centerline eccentricity, then instability will
adcur. Using this condition he obtained a grephical solution
for the vectangular section problem by expressing the internal
eccentricity as & functioh of the.aum of the outer fiber strains
(a memsure of curvature).

It has beeﬁ shown that the presance of residusl streass
1s of definite influence on the strength of columns (&), (9),
Thils m&keavaolution by the above methods even more complicated.

To overcome the aifficulties.encountered in each of
these solutions; the ﬁéthod presented in the next section of
this paper was developed. The mechanics are similer to those

presented by Ros (12) for the rectangular section.
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IV. THE PROPOSED VIRTUAL

"DISPLACEMENT METHO D

OF SO0LUTTIO N

Bending lnstability can be considered as a breakdown
~1in the reélstance the member offers to furthef bending. Since
bending is synonymoua with moment appliocation, 1t should be
posslible, then, to determine for a glven 1oad1ng condition 11
the section offers sufficient resistance to further vending by
displacing the;lbaded'spécimsn é virtual amount and notihg the
change in extérpal applied moment at the mosﬁ criticél section
and the 1nterné1_ﬁomenﬁ of resistance offered at that same sec -
tion. If the inoréase in external moment.is'greater than that
which the intepnal stréss pgbterh can supply,vtha member falls
since resisting moment cannot "keep up" with epplled moments.
 When these two.ratios'offincr@ase are the same}a condltion of
indifference exists, The necessary condition for instabllity
can then be stated:

When externai moment at the most eritical section

1ncréases at a rate equal to the rate of incrsase

in resistance momenﬁ supplied by the internal stress

syatem at that same section, the mamheb becomos un~

stable, | | | |
Writing in the form of an equation

2Y _am |

40 loxy T 740 int (5)
where AM/A40 1s the rate of change in moment with respect to

curvature, d.
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For 111ustration consider the axially 10&&6& column -
"&hown.in Fig. 2 assumed, for eese of aolution, to bucklis in the
elastic stress rangs. As the ‘thrust, P, 18 inereaséd the poten=-
‘t1al of the external system to subject the varlous cross-sectlons
along the member to bending moment in additlon to applied thrustl

increase as the thrust, i.e.

Whereas, intarnaliy (as éhown in Pig. 6) the resistance to this
possible external moment 18 constant at a value defined by the
equation |

AMy ¢ = EIA @ | (7)

Ayt aﬁd'auint represent changes inmoment when going from the
straight (original) to the deflected position (e virtual dis=-
placenent away).

Assuming the deflection ourve is of the fom
Ay = Ay, coa'%?

then

Aﬁo = -_‘—Aaﬁ (Ay : GOQ 7r3{) - A '"'2
or

- 2

whers the zero subscript denotes conditions at the center of
the colum (the most critically deformed section). Shbstituting
Eq. 8 in Eq. 6, |
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Oloxt =~ T ELCE
Writing this expression and Eq. (7) as the change in montent

divided by the virtual curvaturse to obtain the rate of change

in moment with respect to 0, gives

(9)

Ad,
int

Each of Eqs. 9 can be plotted as function of P and
(AM/AB), (see Fig. 7). There 18 reached & point at which the
rate of sxternal poténtiallty of momant application (aM/ad ext)
exactly equals the rate of internal resistance to lateral defor-
mation (AM/aﬁ 1nt)+ At that point the member can assume either
the stralght or the deflected position, and therefore a condition
of instabllity e#ists. Above that critical value of load; F,n,
it is impossible for the internal change in resistéﬁca moment
to "keep up" with the potential change in externa11§ app11ea
moments and‘tharefore the member cocllapses. ‘To>evaluate the
nmagnituds of the load eorrespOnding_te this critic&l-condihion,

use the instabllity condltion of Eq. 5,

AM, | LM,
Aao = Ado
oxt int

or

Lﬂ
Per 5% = EI,
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which when solved for Pé? glves

Por "IE%EL ’
the Eﬁler buckling load for & stralght, axially.loadeﬁ, elastie
column. | |
| 'Had the thrust been applied eccentrically anﬁ/ow a
lateral load superimposed thereby introducing bending from the
sbait;-thﬁ following would bhave resulted. In the origlnal de-
fieoted equilibrium position (see Fig. 8), prior to subjecting

the membsr to the virtual disturbance,

':“P(ﬁ“‘YQ)*%'

M .
0 laxt

whereas, after the )y, change

J

M, RL

.éP(e+yo+4ye)+J?

ext

The increase in sxternal moment caused by this dlsturbance is
equal to the difference betwsen the final and original moment
Valu@ﬁ, i.8,

— aal

AMy ,
0l oxt ©

L]

ext ¥o

ext

or

"'[]P{IQ »_::. P (y,)

ext

It should be nbted that this is the seme as for the exially
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loaded column problem shown previously¥.

tInternally, ggain considering elastic conditions for
simpilification, (ses Fig. 9), resistence to bending is constant
at a value ‘ ‘

AM

"= BY
i)
e int

Selutlon to this prbblem then 18 the same as for the pure axial
load case, instablility occurring at the Euler'buekling 10&@._°
However from the alscussion of Fig. 3 end from the bending resis=-
tance plot of Fig, 10 1t is obvious that this conditlon can never
be reached and satisfy the assumption of sn elastic internal
stress sltuation. To solve the éroblem then, it is first neces-
sary 40 determine internal bending stiffness above the elastic

1imit.

"Bending Stiffness Above the Blastile Limlt

| As was dlscussed in Sectlion ITI (Flg. 4) the moment-
curvature relation sabove the elastic limit i? a funotion of axial
thrust as well as cross«~ssctionel dimenaiohavand mschanical pro-
perties of the material., Thus to be able to use the resulting
M~g curves for integration it is necessary to flrst determine
compatible moment and thrust quantlities corresponding to given
@ values, This can become a major problem for anything other

then simple shapes; howsver, by modifying the problem under study

* Generslizing, 1t cen bs shown that 1f the member is pin-snded,
rogardless of lateral loads, inelastic or elastlec actlon, ste.,

AN =P (4y).
‘ ext (43 ‘ ’
For the case of restrained members, a fector taking into account
" the end condition will need to be added to the right hand side
of the equation,
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to one where axial thrust 1s held constant and moments lncreased
to collapse, a relatively simple, semigraphical solution is
availabls_(g) whereby compatible M, P, ¢ values cen be determined
for any typa'of'cross~seetion having one axls of symmetry.

| Two sets of curves resulting frem thaet previcus study
are here shown as Fig. 11 end Fig. 12 and are the -4 plote (at
constant P-values) for the 8WF3Ll (strong axils bending) and for
the rectangular section respectively. Thaese plots have been
made non-dimensional by dividing the moment valus by My, the
moment corresponding to initial yleld in the abasence of axial
- thrust, and the curvature valus by ¢y, the ¢urvature correspond=-
ing to My. . | \ |
- To have these results in a form sultable for direct
use in Eqg. 5 1f‘18 necessary to further develop them by obtain~
ing tangent values at ﬁarioua points along each curve., Thess
tangent velues will be of the form

¢

.1
273 My

which can be considered as a measure of the desired intsrnael
stiffness term, AM/AG|ypny 1n Eq. 5. The tangent curves obtained
from Figs. 11 and 12 are shawn.in Figs.'ia énd 14, In each case
the tangent values are plotted as & function of the two coordinates
M/My and @/dy.

If a cosine derlection curve ls sssumed and the exter~

nal rate of change substituted in

AM @ N o
. L = :
1d M?_ ext a0 y
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then, T
A @ P _
) er
0| =2 (10}
-V |ant B’ (10)
since ' :
. My Na M e * Y -
ext ¥ ) P@

In these equations, ?g s the Euler buckling load for the
member of length L. | |
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| V. APPLICATIONS

For any mémberréuﬁjected to both end thrust and bend=
ing moments, the total moment at any sectlon 15 composed of two.
parts: one is due to the exlal thrust times the deflection;
the other is independent of deflection (e.g. ond moments, lateral
loads, etc,). That part of the cenherline moment which is inde-~
pendent of deflection 18 noted ﬁhroﬁghout the remainder of this
discussion as "mp". |

If 1t 1s assumed that the moment producing loads are
symmetrically placed on tha structure and that the deflection

curve can be approximated by the equation

. | . Tx .
Yy =y, coOB T {11)
the externael rate of increase in centerline moment with respect

to curvature will be given by the equation

AM L®

. Ford P - .

‘ZE ext ™
However, to have this in the non-dimensionsl form suitable for
use in Figs. 13 and 14, it is neceasary to multiply both sides
of the equation by 1/BI. Thils then, as was shown in the last
section, glves | |

AM éti.

———
»

B _ (P &
"% = 5p) () B (o)

‘e

é}int

- Where Py 13 the Euler bugklihg load for the pin-ended member.
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Since a cosine deflection curve (Eq. 11) was assumed,

the eenterline deflection cen be expressed &s - -
Ve ® (¢°) L ¢ - E | (11a)
o gy ¥V 3

Substituting Eq. (1la) in the fallewingvexpr6951on for m,

By, My Py

M-y My My‘

my, M z - o
-ﬂz-‘-’w(%-)(”“) B (14)
My My Pg S -

It should here be noted in the derivation of Eq. 14
- 1t wes not necessary to'conaidér the ex@lieit form of the moment
producing loads; only the axial thrust, an assumed defleétien
curve and the'length'of the member was used, Eq. f14) then 1s
the solutlon to the general inelastlc instability problem for
members, which due to appllied loads, deform symmetrically ac=
cording to Eq. (11).
To illustrate the procedﬁre, consider ths following
numerical example s _ |
Glven an'BWFSl section, Lir = 80, subjected to &
constant axial thrﬁst valug of P/Py = 0,43 determine
the eritlcal values of various "moment producing,
loading components”. (See'Fig.'ls.) |
For this problem, according to Eq. (12), AM/AG « dy/My

int
= (0.346), which from Figs. 13 and 14 give the criticel centerline
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moment® and corresponding curvature® valuss as

. AM Gy Strong Axls Waak Axls
A0 ¢ ey Bendkh _Bending
. & - (Rectangls)
: . _
- 0.624 0.904
B |
0,346
ao ‘ . _
Y

Substitutlion of these quantities in Eq. 14 gives the following

values for my/My

| ] W
suggngiﬁxis g:ﬁag?
Bending (Rectangle)
m
(Eﬂ) 0.398 0.522
Y er

-7

Since in Fig. 15 the moment at the center of ths column

exclusive of thrust times deflection 1s equal to

My

= (tp + By,

" the critical value of the moment producing loads will be glven

by the following expressionst

mg
(=)
¥y op

o

My

= 0.398 (for strong axls bending)

= 0.522 (for wesk sxis bLending)

L S ) -

- - - L2 -

* These values have basen cirscled in Flgs. 13 and 14,
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Ead other loading conditions been imposed, & similar procedurse
“would have been used. The expressions for a few {yplcal problems
are shown in Table I,

‘In each of thesé problems, the quantity of primary im-
porténee is mo/ Mys To racilitata'sblution ef other problams wﬁera;
length and~P/Py values are @ifferent from'this one, vélues of
me/My have been obtalned for both strong axls and weak axis bend-
ing in a range of slenderness from O $1/# $120. The plots re~
sulting from these calculations are shown in Figs. 16 and 17,
They are a&pplicable only to those cases of load which produce
single curvature deformation that can be apprpxiﬁataa by & ?full"
 cosine curve. ' | | |
Figs. 16 and 17 can be used to éolve three baslcally
diffarentitypes‘of beam-eolumn'probiems.
| 1. éiven avccnstént éxial thrust, determine the
‘meximum lateral load snd/or end moment the
_m&mﬁer‘can‘carry. | |
2. Given the lateral loads and/or end éom@nts,
determine the maximum axlal thrust to which
the membep;can;be subjected, _
d. Clven an ecéantricity, determine the maximum
axial thrust. _
The first two are solvable directly from the figures. For the
third case, however, 1t is filrst necessary to "lay-off" a line
which described the relationshlp betwseen m, and P.* The point of
intersection of this "e-1ine" with the glven slenderness ratio
wllil éétermine the eritical axial thrust.

* This line woﬁld correspond to the equation my = Peg or
(mg/My) = (P/Py) (ec/r?).
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VI. DISCUSSION AND SUMMARY

In the:fdragoing presentatlon a statical method was
used for determining conditions of indifference. This method
implies that an’aéuilibrium posiiien is Jmown and 1% 1s desired
to determine if that position is stable or unstable. Solutlion
was achieved by comparing the raterf‘ehange in external moment
to the rate of changs in inbernal resistancé moment for a glven
virtual displacement of the loaded specimen. If the internal
moment increased at a rate groster than the extérnal momeént, the
specimen was stable. If the rate of change 1n-exterﬁa1 was the
‘larger, the mambérxwaa unStabla.' For the case whers the rates of
change were eqﬁal, & condition 6f indifference (incipient in-
stabllity) exlsted. |

&, Influence of Assumeé Daflacted Configuration

For. ease of aolutian, it was aasumed throughout this
report that the evsr-all behavior of the member eould be pre-
dlcted with sufftcfient sceuracy by assuming & deflsctlon curve,
the magnibtude of which would bs governed by the sfrain distri~
bution pattern ét the most highly deformed cross-section. This
simplification éliminatad the need of minimizing integrals and -
resulted in a direcﬁ determination of an end moment, axial thrust
and criti@al Iength sorresponding to a given strass distribation »
pattern. However, whsn using such & procedure, a eertaiﬂ amount
of error is 1ntroduaéd, the member esséntlally being forced into
en unnatural configuration. To determine the magnitude of this

error, the following three comparisons will be made.
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a. Comparison of stréngth results obtained for
several dlff@fent Curves.

b. Comparison of the deflection and strengbh re=-
sults of each of these curves with individual sclus |
tions obtalinsed by nuﬁerical 1ntagration,<énd |

v Comparisoﬁ with previoué published solufions}
namely,‘Chwalla's(l),~Jazek‘sfl) and Timoshankafs,‘lé)

In the first compérison;'ths three types of configuraé
tion shown in Fig. 18 are considered, The first of these, that
of a "full-cosins" curve, was used in the development of the
general method of solution (Sectlon III) and also in the preced~
ing sectlion on "Applications". The second i1s a paradola, and
the third is a ”partial coslne” curve of the form suggested by
| Westergaard and’OSgood (16), 1In the firat two cases the moment
boundary condition is,violated. |

. Since each of these assumed curves involves one pare -
meter, yo, the previously derived 1nstability eéndition,-

AM
) v
axt

y
_ int
can be directly applled. For the first two cases,

&, "Full Cogine" curve

AM N |
g e T end. - (18)
be "Parabolic® curve
| AN 1,2
ne - 8 - (16)
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For the "Partial Cosine" curve (assumption "c¢"), 1t 18 necessary
to further develop -AM/Z¢ éxt so that the ends of the "Lv-iength
are held at a glven deflectlion, e, rather than”maintaiﬁing a
hypothetical "i"-length member. (See Fig. 19.) If such & pro-
cedure 1s carried out & complex equation contalning functions of
4y, and A} and cosines thereof is obtalned which cannot be solved
expliclitly for ‘Ayb‘in terms of Aﬁo. However, by considering
‘only the first two terms of s cosine series, the expression can
"be reduced and résults in thé folloﬁing equation:

- |
tnt = © | (17)

h'b
SR '

Even though this 18 the same external rate of momsnt increase
as found for case "a", the solutions for members "a" and "c¢" are
different, the Mg valuss being debtermined by different aquationa.v
| a. "Full Cosine" curve |
L -
Me"‘Mo"'-P¢o—- {18)

Th

b. ”Partialeoaine" gurve
i N ‘
He = Mg -cmg gi— (19)

1 1s determined by éoﬁsidering the full value of M, and éc at

the center section, 1l.e,

(20)

r = (P/Py) (oy/2?B) | (20a)
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' The comparison between these solutions 1s illustrated
in Flgs. 20 and 21. Here 1s presented a series of interaction
curves for various length rﬁtios for the SWFﬁl.m@méer behﬁ abouﬁ
both its strong and weak axés. The "full cosine” deflection
" curve gave the highest strengbth veluss. The "perabola' gave
the lowest prediction, |

A recent paper by John Clark (4) discusses, in part,
this same question. Therein he not only investigates the appll-
cabllity of the "partial cosine” curve but alse & much more com=-
plicated three paramater defleaﬁlon equ&tion.‘ Comparison with

test results is also shown 1n that repbré. In general, however,
his results indicate that the increase In accuracy obtained by
using the more complicated deflectlion eipression does not warrant
the added work reqpired to obtain #laolution.

The second means of comparisona'numerical integration,
was used as & check in & previous réport'(g) and one figure based
on that work is here included to indlcate the observed trends.
(See Flg. 22.) There is difference between the load deflection
curves obtained by the various -methods; however, the ultinate
‘carrying capacitlea of the mambérs aere in comparativaly'goad'

_agreement for these examples. ' | -

The third,ébmparison ls that between previous published
solutions and the curves of wltimate strength as pradicted by the
"partial cosine" deflection curves presented earlier in this dis-

- cussion. Since previous information regafding WF sectlon behévior
is lacking, comparison is made only for the redtaﬁgulér sections

furthermore, only for two slenderness ratios,
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Chwallals éolutién 18 based on a numerlesl integration
procedure and should therefore be considered as being "exact".
His derivétion 18 based on (&) a typlcal Germsn steel ﬁith a
stress~straln curve having a proportional limit of 27 kei, and
& yleld stress level of 34 kal. Jezek's 1s en approximation
based on (a) a "full cosine" deflection éurVe and (b) a stress-
strain curve of the ideallzed clastle type (see Fig. 1). Timo=
shenko's solution a&lso considers (a) the "full cosine" curve
but (b) the stress-strain curve has a proportional limit 30 ksi,
8 yleld level of 56 kst and an ultimate étrength of B8 ksi. |
Fig. 23 shows the comperison obtained bstween esach of .
thése previous solutions and the "partial cosins" solution of
this report. All curves have been adjustpd to & yleld stress

level of 40 ksi. Length adjustment was according to'tha equation

In general, Chwalla's solubtion glves the lowest strength valuesi
Jezek's glves the highest. The pertial cosine solution 1s be-

tween these two limits, as is Timoéhenko's golution.

be. Elastically Restrained Members

In actual structures, columns are usurlly restrained
at thelr ends rather than being pin-ended, and a recent paper(z)
dlscusses sueh & condition, In that study a method was develéped
for reducing the actual restrained system to one of an equivalent,

pineended, eccentrically loaded column. Having determined by that
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method the equivalent member for a restrained column problem,

the éolution and curves presented in this paper directly apply.

¢+ Residual Stresses

| To include the varieble of residual stress, it is
necessary to develop a complementary set of curves for the de-
sired pattern and magnitude of residual stress. This develop~
ment would start from a given M= curve (9), whieh included
the effect of thé residuallstreés pattern, and proceed aslong
the same lines previously described.

d. Load-Deflection History

It should be pointed out that no speclal considera=
tion hag been glven to the manner in which a condition of in=
stabllity is approached; that ia, thablaqdvderlaetion history
of the member in guestion. The presented curvea &and numerical
work assume that.an axial load, smaller.than that required fér
failuré, ls first applied and that bending 18 then increased
from zero to its maximum valus, Under this condition %heré-
will be no unloading of previously ylelded fibers. The result-
ing critical loads then will be comparable to the reduced modu=
lus load for axially loaded members.

. As was clearly demonstrated, first by Shanl&y‘(ls)
and later by Duberg end wilder (5) ana others, 1f en extally
loaded colﬁmn 18 considered aszan imperfect compression member
with the 1mpérfection éppfdaching zéro, the column will start
to bend at the tangent modulus 165&., Increased thrust beyond

~ this value will be accompanled by an incressing rate of lateral
deflaection, the mampar reaehing 1ts maximum strength at some

point prior to attainment of the reduced modulus load.
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Since one 1limit of thé'gaéeralized beam=column prob-
1@& is the axially loaded soclumn, there will be a certain amounte‘
of error 1nvo1ved in ‘the metho& of'soluhioﬁ developed in this
réport._ While 1t:18 felt that for tha assumed stress strain
curve of Fig. 1, ths resulting error 18 quite small, furth@r
extension of this work to‘mnteriala having curved atresg-straln
relations (either %8 a basic material proﬁerﬁy or as & raesult
of “esidual stress, etc.) should be sccompanied by sultable
~ check calculations to 1ndicata the amount of error involved in
this typs of & procedurs. The error will be primarily a func=«
tion of the initlal eccentricity. Other important factors would
be the type of eross=section and the streas-strain ralaﬁion;

A recent WACA report (17) provided one sourcs of in=
formaﬁien for these check -calculations. Therein load-deflection
surves are presented (for an 1deaslized WF section column) for
various initial ecoentricities and stressw-strain curves.

Since a majority of the practicel beam~column prob=-
lems encountered in the analysis of Civil Engineering type
structures contalin moment producing loaés greater than that
which could be aﬁtributad to accidental imperfections, this
"tangent modulus 1nf1uenee“ will more than 11kely‘not bs & real
problem.

It 1s interesting to note that the early numerical
work on collepse atrength of rectangular sectioﬁ, beam~columns
carried out by Chwalle was based on a typlcal "German Steel"
type stress~straln relation {linsar up to the proportional |
limit, parabolic from the proportionai limit to the yleld stress
level and then horizontal to the point at which strain hardening
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commences). Recently (2>;this work has been corrected and it

was found that adjustment was needed only when the ratio of the
centerline deflection at maximum load to the depth of the sec-
tion was less than 0.1, 8 camparatively small deflection value.

8. Local and Lateral.lnstabilitz

Neither loocal nor lateral types of instability were
considered in the development presented in this paper. The
considered condition of instability in each case has been that
of excessive bending in the plane of the applied moment. How~-
ever, when bending i1s forced about the major axis of a section
(that condition most frequently encountered in practice); when
~there 1a appreeiable a1fference in bending stiffﬁeaa betwsen the
two principal axes of the section; and when there is little 1f
any lateral aupport along the member, the mode 6f failure will
more than likely be. that due to a combined bending and twiating‘
action (8}, 1n practice, however, this will not necessarily be
the case since members will be frequently restrained by bracing,
walls, floors, ste. ‘Whare sufficient lateral restraint is pro-

‘vided, tﬁe problem of bending plus twist is nonexistent, and
collapse can be determined by the methods previcusly.described.

Another entirely different type of problem can develop
when thevcross-section is éomposed of connected, relabtively thin,
projecting elements. For those types of members, Ehe projecting
glemonts may individvually or collectively deform in cerbtain local
regions and thersby change the original cross-sectionel properties
of the mamber. \

Aasuming the validity of any of the currently avall=-

able inelastic local buckling theories, the meximum strain, €.
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that a flangé can sustain and remain in ﬁhe stfai@ﬁt position |
can be praéicted. From this can be determined the critical wvalue
of €ox/5. Using the procedure outlined in Ref, 9 and noting
that Fmé.x '(6
-l 1+zo<(.@-)'

(see Fig. 24), the corresponding critical value of ¢o/By for
available, rolled, wi&eﬁflange shapes can be determined and 1s
found to be comp‘SAFively 1arges (@, - 2 5.0). From Fig. 13 it
can b$ geen thatha condition will be raalized only at extremely
low values of thrust, (Per/Pa 0.05).

SUMMARY

This report presents a virtual displaaamant solublon
to the inelastic instabllity problem, the method being equally
-adapbable to elastic, inelastlic, conecentrically loaded, eccentrl~
cally loaded and/or laterally loaded colunns .
' The essence of the solution is that of applying a

~ virtual curvature change to the loaded member and squating the
rate of change in external moment &t the most highly stressed
section %o the 1nterna1 atiffness resulting from that curvature
- change. For ease of solution, deflection curves of one parameter

were assumed caus;hg tha‘syst@m to reduce to collocatlon &t one
| polnt. It wasvéhown that the ultimate strength of such members
is relatively;unaffeat@d'by cholece of deflection curve, the
"full cosine” givifxg the highest strength prediction and the
parabola'givihg'the lowest prediction. {Flgs. 20 and 21,) The
"partial cosine” solution écmpared favorably with previously
available solutions. (Flg. 23.)
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To facllitate solution of problems other than those
discussed herein, curves have been presented which ensure rapld

determination of critical loading values (Figs. 20 and 21) for

any symmetrically deformed pin~ended member.
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Area of_crosa-section

Width of ¢ross=section

Depth of cross-~gsecticn

End}@ecantridity of axial load epplication
ﬁoung's modulus of elasticlty

Moment of inertias of total cross-section about the
principle axis of section under consideratlon

Length of member {distance between pins)

Length of hypothetical member {used in "Partial
Coslne deflection curve assumption)

Change in length of hypothetical member due to a
virtual change in centerline curvature

Bending moment

Internal bending moment due to strass distribution
across section

External bending moment due to latersl loads, end -
moment, initial curvature, and axlal thrust times
deflection )

Bending moment &t Which yield point 15 reached in
flexure

Bending moment at the centerline sectlon of the member

That part of the centerline moment which is indepen~
dent of deflection

End applied bending moment

Changs in value of centeriine moment due to a virtual
changé in curvature at that same sectiocn

Axilal thrust

Axial thrust corresponding to yleld stress level
over entire secticn

Euler buckling load

Maximum thrust & member can carry
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doncsntrated lateral load
Flange thickness (wide~flange section)
Deflaction parallel to web 1n undeformed posl*7on

Deflectlon perpendicular to web in undeformed
position

Deflection In plane of moment application
Centerline deflection

Change in centerline deflectlon due to a vlirtual
change in centerline curvaturs

Ratio of the depth of yleld penetration in compression
to total depth of section

' Unit strain

Unit strain corresponding to fnltlel yield

Maximum average unit strain on compression flange of
wlde~flange section (strong axis bending)

Unit normal stress
Lower yisld point stress

Variable normsl stress on tension side of cross~section
(positive when in tension)

Curvature

Centerline curvatnure

Virtual change in centerline curvature
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