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fRITZ ENG}NEm~~;; L\~~j\i~\~~;\1
LEHIGH UNIVERSIT¥-.

BETHLEHEM, PENNSYLVANIA
(Reprinted from Journal of Applied Mechanics for December, 194-1, pp. A-176-A-180)

Lateral Buckling of I-Section Column With
Eccentric End Loads in Plane of the Web. .

By BRUCE JOHNSTON,l BETHLEHEM, PA.
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THE TORSION CONSTANT

The torsion constant J appears in Equation [2] and in the solu­

S Numbers in parentheses refer to the References at the end of
the paper.

where
u.. average compressive stress at buckling load
E = effective modulus, equivalent to E below proportional

limit, but modified by shape of cross section and stress­
strain relations above proportional limit (1)2

10 equivalent pin-ended length
r radius of gyration
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FIG. 1 VARIOUS LOAD POSI­
TIONS A,pPLIlIID TO I-SECTION

COLUMNS
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where

J = torsion constant· (polar
moment of inertia for
circular sections)

effective shearing modulus
moment of inertia about

principal axis in plane of
web

moment of inertia about
principal axis normal to
plane of web

h == distance between flange
centroids

I,.

The axially loaded I-section column also has a tendenry to
buckle by twisting· on its own axis. In the case of thin-waIl spc­
tions of certain cross section and length, twisting buckling may
occur at lower loads than the bending or Euler buckling. This
type of buckling is important in.
aircraft construction and has
been studied in general by Wag­
ner (2) and Kappus (3) and for
the I-section in particular by
Lundquist (4). The critical·
twisting-buckling load for the
centrally loaded I-section column
may be written in terms of prop-
erties given in some handbooks
on structural sections (8).

The critical buckling stresses
by Equation [2] for structural­
steel wide-flange sections are usually considerably above the
yield point but in some of the lightest-weight sections the critical

.stress is only slightly above the yield point for structural steel.
Such sections should be investigated for torsional buckling if
made of high-yield-point alloy steels.

1 Associate Direotor of the Fritz Engineering Laboratory, and
Associate Professor of Civil Engineering, Lehigh University, Bethle­
hem, Pa.

Presented at the National Meeting of the Applied Meohanics
Division of THE AMERIOAN SOOIETY OF MlIIOHANIOAL ENGINElIIBS
held in cooperation with the ComInittee on Applied Mechanics of the
Struotural Division of the American Society of Civil Engineers,
PhiladelphIa, Pa., June 20-21, 1941.

Discussion of thIs' paper should be addressed to the Secretary,
A.8.M.E., 29 West 39th Street, New York, N. Y., and will be accepted
until January 10, 1942, for publication at a later date. DiscuBBion
received after the closing date will be returned.

NOTlll: Statements and opinions advanced in papers are to be
understood as individual eXpressions of their authors, and not those
III the Sooiety.

THE behavior of the ideally straight and uniform I-section
column, under· the various positions of loading shown in
Fig. 1, will be reviewed briefly and particular attention

given to loading position 3. Application: of the results is made to
some structural-steel sections, and Uie limits are indicated within
which the uBual secant formula for eccentrically loaded columns
may be expected to apply.

In all of the cases to be discussed it is assumed that the cross­
sectional dimensions of the column are sufficiently thick to main­
tain the shape and prevent local buckling in the elastic range. It
is noted that the torsional propertiell of the section may affec:t the
behavior in load positions I, 3, and 4.

I-SECTION UNDER AxIAL .. LoAD: POSITION 1

A brief discussion of the axial-load condition is introduced for
completeness. The problem is one of pure stability, and the

, critical buckling stress for integral failure is given by the modified
Euler formula developed by Considere, Engesser, von Karman,
and others

When a relatively slender column of the symmetrical I
or WF shape is loaded eccentrically in the plane of the
web by longitudinal end loads it may fail by elastic in­

_stability involving a combination of lateral bending and
twisting. TiDlOshenko has shown that in the case of the
solid rectangle a considerable end eccentricity. causes
the critical buckling load to be only slightly less than the
Euler critical load for the same strip loaded axially. The
corresponding solution for the WF or I-column, presented
herein, shows that relatively small eccentricities of the
longitudinal end load applied in the plane of the web
cause a large falling off from the Euler critical load.

For the ideally straight column, with a material per-
. ,fectly elastic upto the yield point, there would be a critical

l/r ratio for any given eccentricity, column length, and
:material. Below this critical ratio the column would
fail by yielding, according to the secant or eccentricity
for:mula. Above the critical ratio the failure would be by
elastic instability with respect to lateral bending and
twisting.

AppliCation of the equations is made to two structural
wide-flange sections, of light and mediu:m weight, and the '
results are presented in the form of diagrams.

1
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bt3
J = 3" - 0.21Qt4 [3]

tion to be discussed for load positions 3. The torsion constant J
of a narrow rectangular strip of thickness t and breadth b is given
by (5)

The approximate torsion constant of the open structural section
may be built up as the summation of the J values as given by
Equation [3] for the component rectangular elements. The cor­
rect J values will be somE'what larger. and the author has evalu­
ated corrections by means of soap-film tests which permit ac­
curate calculation of the torsion constant of the structural I-beam
and wide-flange sections (6, 7), including the effect of variable
flange thickness and fillets. The results have been verified experi­
mentally (7), and were used to evaluate the handbook (8) values.

THE I-SECTION ECCENTRICALLY LOADED IN POSITION 2

The behavior of the column eccentrically loaded in position 2
is not one of pure buckling. The limiting Euler load can never
be reached, but the column will bend more and more in its weak­
est direction until it is no longer useful, either because of local
yielding or excessive deflection. For. materials with a linear
stress-strain relationship, the secant formula gives the relation­
ship between average axial stress and the maximum stress due to
.combined direct load and bending, based on the usual assump­
tions for bending with small deflections

.............. {5]d

2

u 1B1 dz2 = P«(:Je - u)

d(:J du
G - = --Pe

dz dz

Before discussing the I-section loaded in position 3, Timo­
shenko's solution for the rectangle will be briefly reviewed and the
results presented in a somewhat different form.

Timoshenko (10) shows for this loading that the differential
equations of the buckled rectangular strip, involving lateral
bending and twisting, respectively, are .(:.f' ,,-4)

ror-' ~t. \0

1I'yI-Me' = Pe = l BIG [8]

The strip is assumed as free to rotate in the xz and yz planes at
each end. but is held against twisting at both ends.

By eliminating (:J between these equations the following is ob-
tained (_~. ofl 'f' ~l\)

""of.• ,. M \0

d3u [P2e2 P ] du '
dz3 + BIG + J3" dz = O [6]

G
R1 =­

2e2'

3 Reference (8), "Structural Shapes."

If e becomes very large while Pe remains constant, the solution
for pure bending is obtained

Integrating Equation [6], it is found that the smallest value of
P which will hold the strip in its buckled position is given by e.,,{ \0

\'A 'l.~ ~ . "
p2e2 P 11'2 ~, V\If'

B,G +~ = Z2 " {7]

The corresponding solution for the I-column, herein presented,
shows that relatively small eccentricities of longitudinal end load
applied in the plane of the web cause a large falling off from the
Euler critical load. The relative difference in the behavior of the
rectangular cross section and the I-beam cross section is due to
thE' respective differences in the ratios between the torsional and
bending stiffnesses of these cross sections. In the case of the nar­
row rectangle, the torsional stiffness is numerically about 1.5
times as great as the lateral bending stiffnes,s, whereas, conversely,
in the case of the structural shape, the lateral bending stiffness is
relatively much greater than the torsional stiffness, ranging from
15 times as great for deep narrow I-beams to as much as 120
times as great for broad wide-flange (WF) sections.

NOMENCLATURE

The following nomenclature is in addition to that previously
cited:

x, y, z = coordinate axes
u, v, w = corresponding displacements

(:J = angle of rotation
P = load

M = moment
e = eccentricity of load at end

B I = Ely = lateral bending stiffness factor
G = JG = torsional stiffness factor

h ~ fBI . . '. f b .
a = 2"c = torslOn-bendmg constant or I- earns With

free warping of flanges restricted!
(Tmax

length of column
radius of gyration

P
average stress = A
eccentricity
S
- where S = section modulus
A .

"eccentricity ratio"

[4]
<Fa = 1 + ~ sec~~j' .

r =

8

Ii =

Ii

8

l

where

Salmon (9) credits the first derivation of the "eccentricity" or
"secant" formula to H. Scheffler in the year 1858. For materials
with a linear or nearly linear stress-strain relationship up to the
yield point, the formula may be used to determine the average
stress at which the yield-point stress is reached, and a safe pro­
portion of this average stress may be used as the working load.

I-SECTION ECCENTRICALLY LOADED IN POSITION 3

When an ideally straight and uniform column of the sym­
metrical 1- or WF-shape is loaded eccentrically in the plane of
the web by longitudinal end loads as in position 3, it may fail
by elastic instability, involving a combination of lateral bending
and twisting. In such a case, the secant formula may not be used
as a design criterion.

S. Timoshenko (10) has presented a method for evaluating the
lateral buckling of I-section beams under various types of load­
ing; in particular, the I-beam subjected to pure bending in the
plane of the web. Timoshenko (10) also presents the solution
for the lateral buckling of the rectangular cross section loaded by
eccentric end loads, applied in the plane of the center line of the
long axis. In the case of the rectangle it is shown that con­
.sidE'rable end eccentricity causes the critical buckling load to fall
but little below the Euler critical load for the same strip loaded
axially.
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If e becomes zero in Equation [7], the Euler load is the result

B I 1r2

Per = 12 [9]

The solution of Equation [7] as a quadratic, using only the
positive result, may be written conveniently as follows

Pc.=RI(~1+~-1) [10]

where

Br d
2
u = P(fJe - u) )

dz'
........ [13]

C dfJ _ BN d3fJ = _ du Pe .
dz 4 dz 3 dz J

In Equations [13] it is assumed that v displacements are in­
appreciable in comparison with end eccentricity e. Equations
[13] may be combined into the following by eliminating fJ as a
variable '

d
5
u _ (.!. _ p) d'u _ (~+ P2e2) du = 0 [14]

dz 5 a2 B I dz 3 Bias BICa2 dz " .

df3
C ~ = M •.......•....•..•... [11]

(1) u = 0 for z = 0

(2)
d2u

= 0 for z = 0-
dz'

(3)
d2fJ B I d'u 1 d2u

for z = 0= - - + - - = 0,
dz' Pe dz' e dz2

(4) u = 0 for z = I

(5)
d2u

= 0 for z = I-
dz2

let

In terms of the constants N I and N 2, the integration of Equation
[14] may be written

u = DI + D2cosh Nlz + D3 sinh Nlz + D. cosh N2Z

+ D5 sinh N2Z [15]

Dh D., D., D., and Do are constants of integration to be evaluated
hy end conditions.

Case A. Assume that the column is free to rotate in the xz
and yz planes at each end but that twisting of the ends about the
z axis is prevented. The deflection u and the lateral bending mo-

ment (BI ~~) will be zero at each end. The flanges are free to

warp at the ends so the local bending in each flange (Bt :) also

equals zero at each end. The following end conditions may
therefore be ~ed:

and

x

y

-u.peJL--'==i=m==
!yl--r--_--,--+-!-----ip{

--i
/TI

x

~''-~ - --.~j.

where M. = twisting moment.
Timoshenko (10) shows that, when longitudinal warping of

the flanges is restricted, lateral shears due to bending of the

Equation [10] may be used for any value of eccentricity e. The
application of Equation [10] to the I-beam or WF-section will
give results that are too low because of the relative increase in

the ratio of ~ for such sections.

Timoshenko shows that for relatively large eccentricities the
critical load for the rectangular strip falls but little below the
Euler critical load. For example, when e = O.ll the critical load

.is about 6 per cent smaller than that given by Euler's formula.
Such is not the case for the I-section, however, and relatively
small eccentricities cause a large falling off from the Euler load.

The twist of the I-beam in "pure torsion" with flanges free to
. warp longitudinally is expressed by the following

FIG. 2 LATERALLY BUCKLED I-BEAM WITH ECCENTRIC END LOADS From conditions 1, 2, and 3
IN PLANE OF WEB

(1)
(2)

(3)

flanges are set up. The torsional moment is then expressed
satisfactorily by the following

d(3 BN d3fJ· .
C dz-7 dz 3 = M [12]

o = D I + D. + D.
o = D2N I 2 + D.N.2

(BI N12) (BI N2.)o = D. - Nl~ + -' + D~ - N.~ + -
~ e ~ e

From 2 and 3, since N I ' ~ N.2, D. = D~ = 0 therefore D I = 0
Equation [15] is now reduced to

The bending stiffness of one flange is taken as very nearly equal
to Bd2.

The buckled condition of the I-beam or WF-section for load
position 3 is shown in Fig. 2. The differential equations for this
equilibrium condition (similar to Equation [5] for the rectangle)
must now include the flange-bending effect as in Equation [12]

u = D. sinh Nlz + Do sinh N2Z [16]

Substituting end conditions 4 and 5 into Equation [16]

o = D3 sinh Nil + Do sinh Nsl

o = D3N I ' sinh Nil + DoN.' sinh N 21
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or, squaring both sides, and substituting for Al and A 2

When e = 0 Equation (18) reduces to the Euler load for the pin­
ended column

or substituting N 1 ~nd N, in terms of Al and A2

, .sinh (z ~~l + ~ V Al~ + 4A2)

sin (l ~- ~l + ~ VA12 + 4A2) = 0

The solution follows along the same lines as for case A and the
result is finally found to be '

Per = Rl[~(1 + 4Rt)(1 + 4R2+ ~3) - (1 + 4Rt)J. (21)

, 48111"2

Per ='-It- ' (22)

When e = 0 the critical load for fixed ends is obtained

When e approaches 00 as Pe is held constant, the equation for
pure bending is obtained

M = Pe = 211"VB:C 411"ta2
er l T + 1. ........ (23)

It should be noted that Equations [21] and [23] may be ob­
tained directly from the corresponding Equations [20] and [19]
for pin ends, by the substitution of a reduced length l/2 for l.

After studying the foregoing problem the author distributed
an abstract, including Equation (20), to several engineers. Mr.
H. N. Hill, research structural engineer of the Aluminum Com­
pany of America, pointed out that both Equation [7) and Equa­
tion (18) agree with the following relationship

M2 P

M
' + P = 1. (24)

er er

p2 2P 1 4p2e2 ".2

B ,+ -Bt +"4 + B C 2 = -It''' [18)
! la a 1 a

P 11 1
---+­
2B1 2a2 2

since the sinh term is always greater than zero, the sine term must
equal zero. The lowest value of the sine term to give zero is 11",

resulting in the following equation which determines the critical
- buckling load -

~~ ~l + ~ VA1'+4A, = f (17)

When e approaches '00 as Pe remains constant, Equation (18)
reduces to the case of pure bending

11" _ ;-;:,-;:. ~~
Mer = Pe ;= l V BIC "V + 1. ........ (19)

Equation (19) is identical to that derived by Timoshenko for
pure bending. 4

Equation (18) may be solved directly as a quadratic for the
positive value of Per for any eccentricity of load .

Per = R l [ ~ (1 + Rt)(1 + Rt + ~:) - (1 + Rt)] . (20)

In Equation [24), Mer is the critical moment for lateral buck­
ling of either the rectangle or I-section (Equation (8) or [19])
for pure moment, and Per is the Euler critical load for buckling
in the weak direction. Equation (24) may be solved for M

~ = Mer ~1 - :er [25]

Equation [25) gives the end bending moment which will cause
instability when added to a strut loaded axially with load P.
Equation (25) is the basis of design criteria for this problem. 6

Figs. 3 and 4 show the application of Equation (20) to light­
and medium-weight 14-in. wide-flange structural sections, some
of the properties' of which are given in Table 1.

TABLE 1 PROPERTIES OF WIDE-FLANGE STRUCTURAL
SECTIONS

where

C
Rl =­

2e"
R _ 211"'B1

• - It

General
Torsion constants Radii of gyration

Weight, ,---"--~
dimensions, Area, Ib fter J a Maxi- Mini-

in. sq in. (in.') (in.) mum mum
14 X 6'/. 8.81 30 0.41 70.93 5.73 1.41
14 X 12 24.71 84 4.48 76.66 6.13 3.02

When R, is placed equal to zero in Equation (20), the solution
reduces to that for the rectangle, as given by Equation [10).

Case B. Assume that the column is fixed against lateral rotac
tion in the xz plane at each end, free to rotate in the yz plane,
and held against twisting at each end as before.

The end conditions in this case are as follows:

(1) u = 0 for z = 0

(2)
du

= 0 for z = 0
dz

d{j
= 0 for z = 0

Bl d3u 1 du
(3) --+--

dz Pe dz 3 e dz

(4)' u = 0 for z = l

du
(5) - = 0 for z = l

dz

4 Reference (10), Equation 159, p. 261.

The calculations in Figs. 3 and 4 were developed for various
ecc.entricity ratios e/8 and various slenderness ratios l/r. The
eccentricity ratio e/8 is the ratio between end eccentricity of load
and the kern distance.

In Fig. 3 the critical stress (fTer = ~er) by Eq~ation (20), for

,ends free to rotate, is plotted against the slenderness ratio in the ,
weak direction, and comparison is made with the Euler curve.
In Fig. 4 the same critical stresses are plotted against the slender­
ness ratio in the strong plane. Also plotted in Fig. 4 are average
stresses (fTa), at which the maximum stress would reach the mini­
mum specification yield-point stress value of 33 kips per sq in,
for structural steel, as calculated by the secant formula

33

fT
a

= 1 + ~ see i J;
s 2r "li

• Reference (8), "Structural Aluminum Handbook," p. 58.
• Reference (8), "Structural Shapes."
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3 Recalculate critical load for lateral buckling using 6 + 8 in
place of 6.

The foregoing would result in an "overcorrection" and the
actual critical load would be between the uncorrected and the
corrected values. In the case of the 14-in. WF at 84, with a
maximum moment of inertia only about 4 times the minimum,
the correction is appreciable and is shown by the dashed lines in
Figs. 3 and 4. The actual buckling load would lie in the shaded
area between the dashed and solid lines. In the case of the 14-in.
WF' at 30, with a maximum moment of inertia 16 times the mini­
mum, the correction is negligible.

THE I-SECTION COLUMN ECCENTRICALLY LOADED IN POSITION 4

Load position 4 in Fig. 1 represents the most general case
with the thrust line in neither principal plane of the I-section.
The maximum stress in such a case is sometimes calculated by
resolving the end moment into the components in the principal
planes and superposing the results given by the secant formula
for the stress due to each effect. Such a procedure neglects direct
stresses due to torsion which in the case of torsionally weak 1­
sections may amount to more than that added by the direct de­
fi!lctions considered by the secant formula.

The author has made an ~pproximatesolution of this problem
to verify the foregoing conclusions; however, the results are not
considered to be necessary in this paper.

CONCLUSION

In conclusion, it is well to ask: "Just what is the structural
significance oithe types of behavior which ha.ve been discussed?"
Real columns are not ideally straight and the end conditions are
rarely as simple as those tested herein. The actual column is
usually framed as an integral part of a structure,in which case
the eccentricities introduced through frame action will not
remain constant, but usually will reduce for loads below the
pin-ended Euler load. Nevertheless the study of certain funda­
mental types of structural behavior may lead to a better under­
standing of what may happen in a structure, and thereby result
in improved procedures of structural design.
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FIG. 4 AVERAGE STRESS AT YIELDING OR LATERAL BUCKLING FOR
. Two WIDE-FLANGE SECTIONS

T Reference (10), p. 13.
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FIG. 3

The curves in Fig. 4 incJ.icate for various eccentricity ratios the
relative ranges of column slenderness in which inelastic failure or
elastic instability would occur for the two steel shapes which were
considered, assuming a linear stress-strain relationship.

It should be noted that the foregoing solution neglects the addi­
tional moment due to v displacements in the yz plane. An ap­
proximate correction which will be on the safe side may be made
as follows:

1 Calculate the critical load by Equation [20].
2 Calculate approximate additional deflection7 at the center

as follows

r in this case is the maximum radius of gyration, about the :/;­
axis.
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